
ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

If you look around you will find that all computer systems, from your
portable devices to the strongest supercomputers, are heterogeneous
in nature. The most obvious heterogeneity is the existence of computing
nodes of different capabilities (e.g. multicore, GPUs, FPGAs, …). But there
are also other heterogeneity factors that exist in computing systems, like
the memory system components, interconnection, etc. The main reason for
these different types of heterogeneity is to have good performance with
power efficiency.
 Heterogeneous computing results in both challenges and
opportunities. This book discusses both. It shows that we need to deal
with these challenges at all levels of the computing stack: from algorithms
all the way to process technology. We discuss the topic of heterogeneous
computing from different angles: hardware challenges, current hardware
state-of-the-art, software issues, how to make the best use of the current
heterogeneous systems, and what lies ahead.
 The aim of this book is to introduce the big picture of heterogeneous
computing. Whether you are a hardware designer or a software developer,
you need to know how the pieces of the puzzle fit together. The main goal is
to bring researchers and engineers to the forefront of the research frontier
in the new era that started a few years ago and is expected to continue
for decades. We believe that academics, researchers, practitioners, and
students will benefit from this book and will be prepared to tackle the big
wave of heterogeneous computing that is here to stay.

Heterogeneous Computing

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a series of high-quality books for the computer science community, published
by ACM and many in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University
2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:
Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Heterogeneous Computing
Hardware and Software Perspectives

Mohamed Zahran
New York University

ACM Books #26

Copyright © 2019 by the Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trade-
marks or registered trademarks. In all instances in which the Association for Computing
Machinery is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran

books.acm.org
http://books.acm.org

ISBN: 978-1-4503-6097-5 hardcover
ISBN: 978-1-4503-6233-7 paperback
ISBN: 978-1-4503-6100-2 eBook
ISBN: 978-1-4503-6098-2 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3281649 Book 10.1145/3281649.3281653 Chapter 3
10.1145/3281649.3281650 Preface 10.1145/3281649.3281654 Chapter 4
10.1145/3281649.3281651 Chapter 1 10.1145/3281649.3281655 Chapter 5
10.1145/3281649.3281652 Chapter 2 10.1145/3281649.3281656 References/Index/Bio

A publication in the ACM Books series, #26
Editor in Chief: M. Tamer Özsu, University of Waterloo

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTEX.

First Edition

10 9 8 7 6 5 4 3 2 1

http://books.acm.org
http://dx.doi.org/10.1145/3281649
http://dx.doi.org/10.1145/3281649.3281653
http://dx.doi.org/10.1145/3281649.3281650
http://dx.doi.org/10.1145/3281649.3281654
http://dx.doi.org/10.1145/3281649.3281651
http://dx.doi.org/10.1145/3281649.3281655
http://dx.doi.org/10.1145/3281649.3281652
http://dx.doi.org/10.1145/3281649.3281656

To my family, without whom I wouldn’t have existed in the first

place and wouldn’t have managed through this life.

Contents

Preface xiii

Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing? 1

1.1 The Power Issue 2
1.2 Heterogeneity beyond Our Control 5
1.3 Heterogeneity within Our Control 9
1.4 Seems Like Part of a Solution to Exascale Computing 11

Chapter 2 Different Players: Heterogeneity in Computing 13

2.1 Multicore 14
2.2 GPUs 17
2.3 FPGA 23
2.4 Automata Processors 24
2.5 Neuromorphic Chips 25
2.6 Other Accelerators 26
2.7 Mix-and-Match 28
2.8 In Conclusion 32

Chapter 3 Architecture: Heterogeneity in Design 33

3.1 Memory System 33
3.2 Interconnect 35
3.3 Examples of Supercomputers 43
3.4 Security Challenges Facing Heterogeneous Computing 46
3.5 Bandwidth 50
3.6 In Conclusion 65

xii Contents

Chapter 4 Programmability 67

4.1 Wish List of a Programmer 67
4.2 Psychology of Programming 69
4.3 What Do We Have? The Current Status Quo 71
4.4 In Conclusion 88

Chapter 5 Research Directions 91

5.1 Processing-in-Memory (PIM) / Near-Data Processing (NDP) 91
5.2 Exascale Computing 92
5.3 Neuromorphic Chips 92
5.4 Quantum Computing 95

References 97

Index 111

Author’s Biography 113

Preface

The term heterogeneous computing has become famous lately (lately, meaning in
the last five years!). It started infiltrating many articles. Research papers have been,
and are still being, written about heterogeneous computing and its implications
on both software and hardware. The definition of this term is quite straightfor-
ward: executing programs on a computing platform with computing nodes of different
characteristics. What is tricky is whether this is a good thing or a bad thing.

From a hardware perspective, as we will see later in this book, it is a good thing.
Each computing node is efficient in specific types of applications. Efficiency here
means it gets the best performance (e.g., speed) with lowest cost (e.g., power). This
excellence in price-performance is very much needed in our current era of big data,
severe power consumption, and the road to exascale computing. So if we can assign
to each node the part of the program that it excels at, then we get the results of
price-performance, and this is the main challenge facing the software community.

From a software perspective, heterogeneous computing seems like bad news
because it makes programming much more challenging. As a developer, you have
way more tasks than with traditional homogeneous computing. You need to know
about different execution units, or at least learn about the computing nodes in
the system you are writing code for. Then you need to pick algorithms to make
your program, or different parts of your program, suitable for these nodes. Finally,
you need to tweak your code to get the needed performance by overcoming many
bottlenecks that certainly exist in heterogeneous computing, like communication
overhead between the different units, overhead of creating threads or processes,
management of memory access of those different units, and so on.

We cannot then say that heterogeneous computing is good or bad news. But we
can say that heterogeneous computing is now the norm and not the exception. It
is here, it will continue to be here, and we need to deal with it. But how do we deal
with it? This is the topic of this book.

xiv Preface

This book discusses the topic of heterogeneous computing from different an-
gles: hardware challenges, current hardware state-of-the-art, software issues, how
to make the best use of the current heterogeneous systems, and what lies ahead.
All the systems we use, from portable devices to supercomputers, embody some
type of heterogeneity. The main reason for that is to have good performance with
power efficiency. However, this opens the door to many challenges that we need to
deal with at all levels of the computing stack: from algorithms all the way to process
technology. The aim of this book is to introduce heterogeneous computing in the
big picture. Whether you are a hardware designer or a software developer, you need
to know how the pieces of the puzzle fit together.

This book will discuss several architecture designs of heterogeneous systems,
the role of operating systems, and the need for more efficient programming models.
The main goal is to bring researchers and engineers to the forefront of the research
frontier in the new era that started a few years ago and is expected to continue for
decades.

Acknowledgments
First and foremost, I would like to thank all my family for their support, encourage-
ment, and unconditional love. I would like to thank Steve Welch, who is actually
the one who gave me the idea of writing this book. A big thank you goes also to
Tamer Özsu, the Editor in Chief of ACM Books, for his encouragement, flexibility,
and willingness to answer many questions. Without him, this book wouldn’t have
seen the light of day.

Anything I have learned in my scientific endeavors is due to my professors, my
students, and my colleagues. I cannot thank them enough. Dear students, we learn
from you as much as you learn from us.

I would like also to thank Paul C. Anagnostopoulos and the entire copyediting
team, who got the book into much better shape than my initial version. A thank
you is also due to Achi Dosanjh, Barbara Ryan, and Bernadette Shade from ACM
for their great help in the last stages of this book.

Mohamed Zahran
December 2018

1Why Are We Forced to
Deal with Heterogeneous
Computing?

When computers were first built, about seven decades ago, there was one item on
the wish list: correctness. Then soon a second wish appeared: speed. The notion
of speed differs of course from those old days and applications to today’s require-
ments. But in general we can say that we want fast execution. After a few more
decades and the proliferation of desktop PCs and then laptops, power became the
third wish, whether in the context of battery life or electricity bills. As computers
infiltrated many fields and were used in many applications, like military and health
care, we were forced to add a fourth wish: reliability. We do not want a computer
to fail during a medical procedure, for example; or it would have been a big loss
(financially and scientifically) if the rover Curiosity, which NASA landed on Mars
in 2012, failed. (And yes, Curiosity is a computer.) With the interconnected world
we are in today, security became a must. And this is the fifth wish. Correctness,
speed, power, reliability, and security are the five main wishes we want from any
computer system. The order of the items differs based on the application, societal
needs, and the market segment. This wish list is what directs the advances in hard-
ware and software. But the enabling technologies for fulfilling this wish list lie in
hardware advances and software evolution. So there is a vicious cycle between the
wish list and hardware and software advances, and this cycle is affected by societal
needs. This chapter explains the changes we have been through from the dawn of
computer systems till today that made heterogeneous computing a must.

In this chapter we see how computing systems evolved till the current status
quo. We learn about the concept of heterogeneity and how to make use of it. At
the end of this chapter, ask yourself: Have we reached heterogeneous computing
willingly? Or against our will? I hope by then you will have an answer.

2 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

1.1 The Power Issue
In 1965 Gordon Moore, cofounder of Intel together with Robert Noyce, published a
four-page paper that became very famous [Moore 1965]. This paper, titled “Cram-
ming More Components onto Integrated Circuits,” made a prediction that the
number of components (he did not mention transistors specifically, but the pre-
diction evolved to mean transistors) in an integrated circuit (IC) will double every
year. This prediction evolved over time to be two years, then settled on 18 months.
This is what we call Moore’s law: transistors on a chip are expected to double every
18 months. The 50th anniversary of Moore’s law was in 2015! More transistors per
chip means more features, which in turn means, hopefully, better performance.
Life was very rosy for both the hardware community and the software community.
On the hardware side, faster processors with speculative execution, superscalar
capabilities, simultaneous multithreading, etc., were coupled with better process
technology and higher frequency, which produced faster and faster processors. On
the software side, you could write your program and expect it to get faster with every
new generation of processors with any effort on your part! Until everything stopped
around 2004. What happened?

Around 2004 Dennard scaling stopped. In 1974 Robert Dennard and several
other authors [Dennard et al. 1974] published a paper that predicted that voltage
and current should be proportional to the linear dimensions of the transistors.
This has been known as Dennard scaling. It works quite well with Moore’s law.
Transistors get smaller and hence faster and their voltage and current also scale
down, so power can stay almost constant, or at least will not increase fast. How-
ever, a closer look at the Dennard scaling prediction shows that the authors ignored
leakage current (was very insignificant at the time when the paper was published).
Now as transistors get smaller and smaller, leakage becomes more significant. The
aforementioned paper also ignored the threshold voltage at which the transistor
switches. Around 2004 those two factors overcame the prediction of Dennard scal-
ing, and now we increase the number of transistors per Moore’s law, but the power
density also increases. Power density has many effects. One of them is that it in-
creases packaging cost. Also, dealing with power dissipation becomes problematic
and expensive. Given all that and given that dynamic power is proportional to clock
frequency, we are stuck! What is the solution?

The solution is to stop increasing the clock frequency and instead increase the
number of cores per chip, mostly at lower frequency. We can no longer increase
frequency, otherwise power density becomes unbearable. With simpler cores and
lower frequency, we reduce power dissipation and consumption. With multiple
cores, we hope to maintain higher performance. Figure 1.1 [Rupp 2018] tells the
whole story and shows the trends of several aspects of microprocessors throughout

1.1 The Power Issue 3

Transistors
(thousands)107

106

105

104

103

102

101

100

19801970 1990 2000

Year
2010 2020

Single-thread
performance
(SpecINT × 103)

Frequency
(MHz)

Typical power
(Watts)

Number of
logical cores

Figure 1.1 Trend of different aspects of microprocessors. (Karl Rupp. 2018. 42 years of microprocessor
trend data. Courtesy of Karl Rupp https://github.com/karlrupp/microprocessor-trend-data;
last accessed March 2018)

the years. As the figure shows, from around 2004 the number of logical cores
started to increase beyond single core. The word logical includes physical cores
with simultaneous multithreading (SMT) capability, also known as hyperthreading
technology [Tullsen et al. 1995, Lo et al. 1997]. So a single core with four-way
hyperthreading is counted as four logical cores. With SMT and the increase in the
number of physical cores, we can see a sharp increase in the number of logical
cores (note the logarithmic scale). If we look at the power metric, the 1990s was not
a very friendly decade in terms of power. We see a steady increase. After we moved
to multicore, things slowed down a bit due to the multicore era as well as the rise
of dark-silicon techniques [Allred et al. 2012, Bose 2013, Esmaeilzadeh et al. 2011]
and some VLSI tricks. “Dark silicon” refers to the parts of the processor that must
not be turned off (hence dark) in order for the heat generated not to exceed the
maximum capability that the cooling system can dissipate (called thermal design
point, or TDP). How to manage dark silicon while trying to increase performance?
This is the question that has resulted in many research papers in the second
decade of the twenty-first century. We can think of the dark-silicon strategy as a
way to continue increasing the number of cores per chip while keeping the power
and temperature at a manageable level. The figure also shows that we stopped,
or substantially slowed, increasing clock frequency. With this bag of tricks, we
sustained, so far, a steady increase of transistors, as the figure shows at its top

4 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

curve. There is one interesting curve remaining in the figure: the single thread
(i.e., sequential programs) performance. There is a steady increase in single thread
performance almost till 2010. The major reason is Moore’s law, which allowed
computer architects to make use of these transistors to add more features (from
pipelining to superscalar to speculative execution, etc.). Another reason is the
increase in clock frequency that was maintained till around 2004. There are some
minor factors that make single thread performance a bit better with multicore.
One of them is that the single thread program has a higher chance of executing
on a core by itself without sharing resources with another program. The other is
that of thread migration. If a single thread program is running on a core and that
core becomes warm, the frequency and voltage will be scaled down, slowing down
the program. If the program is running on a multicore, and thread migration is
supported, the program may migrate to another core, losing some performance in
the migration process but continuing at full speed afterwards.

The story outlined above relates the hardware tricks developed to manage the
power and temperature near the end of Moore’s law and the end of Dennard scaling.
Those tricks gave some relief to the hardware community but started a very difficult
problem for software folks.

Now that we have multicore processors all over the place, single thread programs
are no longer an option.

The free lunch is over [Sutter 2005]! In the good old days, you could write a se-
quential program and expect that your program would become faster with every
new generation of processors. Now, unless you write parallel code, don’t expect to
get that much of a performance boost anymore. Take another look at the single
thread performance in Figure 1.1. We moved from single core to multicore not be-
cause the software community was ready for concurrency but because the hardware
community could not afford to neglect the power issue. The problem is getting even
harder because this multicore or parallel machine is no longer homogeneous. You
are not writing code for a machine that consists of similar computing nodes but
different ones. So now we need heterogeneous parallel programming.

We saw how we moved from single core to multiple homogeneous cores. How
did heterogeneity arise? It is again a question of power, as we will see. But before
we go deeper into heterogeneity, it is useful to categorize it into two types from a
programmer’s perspective.

A machine is as useful as the programs written for it. So let’s look at heterogene-
ity from a programmer’s perspective. There is this heterogeneity that is beyond a
programmer’s control. Surprisingly, this type has been around for several years
now; and many programmers don’t know it exists! There is also heterogeneity

1.2 Heterogeneity beyond Our Control 5

within a programmer’s control. What is the difference? And how come we have
been dealing with heterogeneity without knowing it?

1.2 Heterogeneity beyond Our Control
Multicore processors have been around now for more than a decade, and a lot of
programs were written for them using different parallel programming paradigms
and languages. However, almost everybody thinks they are writing programs for a
heterogeneous machine, unless of course there is an explicit accelerator like a GPU
or FPGA involved. In this section we show that we have not been programming a
pure homogeneous machine even if we thought so!

1.2.1 Process Technology
Everybody, software programmers included, knows that we are using CMOS elec-
tronics in our design of digital circuits, and to put them on integrated circuits we
use process technology that is based on silicon. This has been the norm for decades.
This is true. But even in process technology, there is heterogeneity.

Instead of silicon, semiconductor manufacturing uses a silicon-insulator-
silicon structure. The main reason for using silicon on insulator (SOI) is to re-
duce device capacitance. This capacitance causes the circuit elements to behave
in nonideal ways. SOI reduces this capacitance and hence results in performance
enhancement.

Instead of traditional CMOS transistors, many manufacturers use what is called
a Fin field-effect (FinFET) transistor. Without going into a lot of electronics details,
a transistor, which is the main building block of processors, is composed of gate,
drain, and source. Depending on the voltage at gate, the current flows from source
to drain or is cut off. Switching speed (i.e., from on to off) affects the overall
performance. FinFET transistors are found to have a much higher switching time
than traditional CMOS technology. An example of a FinFET transistor is Intel’s tri-
gate transistor, which was used in 2012 in the Ivy Bridge CPU.

Those small details are usually not known, or not well known, to the software
community, making it harder to reason about the expected performance of a chip,
or, even worse, of several chips in a multisocket system (i.e., several processors
sharing the memory).

1.2.2 Voltage and Frequency
The dynamic power consumed and dissipated by the digital circuits of all our pro-
cessors is defined by this equation: P = C × V 2

cc
× F × N , where C is the capaci-

tance, Vcc is the supply voltage, F is the frequency, and N is the number of bits

6 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

switching. As we can see, there is a cubic relationship between the dynamic power
and supply voltage and frequency. Reducing the frequency and reducing the supply
voltage (up to a limit to avoid switching error) greatly reduces the dynamic power,
at the expense of performance.

There are many layers in the computing stack that do dynamic voltage and fre-
quency scaling (DVFS). It is done at the hardware level and per core. This means
that even if we think we are writing an application for a homogeneous multicore,
it is actually heterogeneous because it may have different performance measure-
ments based on the processes running on each core. It is also done at the operating
system (OS) level. With Intel processors, for example, the OS requests a particular
level of performance, known as performance-level (P-level), from the processor. The
processor then uses DVFS to try to meet the requested P-state. Up to that point, the
programmer has no control and all this is happening under the hood. There are
some techniques that involve application-directed DVFS. The programmer knows
best when high performance is needed and when the program can tolerate lower
performance for better power saving. However, this direction from the application
can be overridden by the OS or the hardware.

1.2.3 Memory System
Beginning programmers see the memory as just a big array that is, usually, byte
addressable. As programmers gain more knowledge, the concept of virtual memory
will arise and they will know that each process has its known virtual address space
that is mapped to physical memory that they see as a big array that is, usually, byte
addressable! Depending on the background of the programmers, the concept of
cache memory may be known to them. But what programmers usually do not know
is that the access time for the memory system and large caches is no longer fixed.
To overcome complexity and power dissipation, both memory and large caches are
divided into banks. Depending on the address accessed, the bank may be near, or
far, from the requesting core, resulting in nonuniform memory access (NUMA for
memory) [Braithwaite et al. 2012] and nonuniform cache access (NUCA for cache)
[Chishti et al. 2003]. This is one of the results from heterogeneous performance of
memory hierarchy.

Another factor that contributes to the heterogeneity in memory systems is the
cache hits and misses. Professional programmers, and optimizing compilers to
some extent, know how to write cache-friendly code. However, the multiprogram-
ming environment, where several processes are running simultaneously, the virtual
memory system, and nondeterminism in parallel code make the memory hierarchy
response time almost unpredictable. And this is a kind of temporal heterogeneity.

1.2 Heterogeneity beyond Our Control 7

Another form of heterogeneity in memory systems is the technology. In the last
several decades, the de facto technology used in memory hierarchy is dynamic RAM
(DRAM) for the system memory, and in the last decade embedded DRAM or eDRAM
for last-level cache, for some processors, especially IBM POWER processors. For
the cache hierarchy static RAM (SRAM) is the main choice. DRAM has higher
density but higher latency, due to its refresh cycle. Despite many architecture
tricks, DRAM is becoming a limiting factor for performance. This does not mean
it will disappear from machines, at least not very soon, but it will need to be
complemented with something else. SRAM has shorter latency and lower density.
This is why it is used with caches that need to be fast but not as big as the main
system memory. Caches are also a big source of static power dissipation, especially
leakage [Zhang et al. 2005]. With more cores on chip and with larger datasets,
the big-data era, we need larger caches and bigger memory. But DRAM and SRAM
are giving us diminishing returns from different angles: size, access latency, and
power dissipation/consumption. A new technology is needed, and this adds a third
element of heterogeneity.

The last few years have seen several emerging technologies that are candidates
for caches and system memory. These technologies have the high density of DRAM,
the low latency of SRAM, and, on top of that, they are nonvolatile [Boukhobza et al.
2017]. These technologies are not yet mainstream, but some of them are very close,
waiting to solve some challenges related to cost, power, and data consistency.

Table 1.1 shows a comparison between the current (volatile) memory technolo-
gies used for caches and main memory, namely, DRAM and SRAM, and the new
nonvolatile memory (NVM) technologies. The numbers in the table are approxi-
mate and collected from different sources but for the most part are from Boukhobza
et al. [2017]. Many of the nonvolatile memory technologies have much higher den-
sity than DRAM and SRAM; look at the cell size. They also have comparable read
latency and even lower read power in most cases. There are several challenges in
using NVM that need to be solved and are shown in the table. For instance, write
endurance is much lower than DRAM and SRAM, which causes a reliability prob-
lem. The power needed for write is relatively high in NVM. Consistency is also a big
issue. When there is a power outage, we know that the data in DRAM and SRAM are
gone. But for NVM when do not know whether the data stored are stale or updated.
The power may have gone off while in the middle of a data update. A lot of research
is needed to address these challenges. NVM can be used in the memory hierarchy
at a level by itself, for example, as a last-level-cache (LLC) or in main memory, which
is a vertical integration. NVM can also be used in tandem with traditional DRAM
or SRAM, which is a horizontal integration. The integration of NVM in the memory

8 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

Table 1.1 Comparison of several memory technologies

DRAM SRAM ReRAM FeRAM PCM MRAM

Cell Size (F 2) 60–100 120–200 4–10 6–40 6–12 16–40

Endurance 1016 1016 109 1015 1010 > 1015

Read Latency (ns) 30 1–100 10 20–80 20–50 3–20

Read Power M L L L M L

Write Latency (ns) 50 1–100 50 50 50 3–20

Write Power M L H H H H

hierarchy can be managed by the hardware, managed by the operating system, or
left to the programmer to decide where to place the data. The first two cases are be-
yond the programmer’s control. In the near future, memory hierarchy is expected
to include volatile and nonvolatile memories, adding to the heterogeneity of the
memory system.

Figure 1.2 shows a summary of the factors that we have just discussed.

Heterogeneity
in

memory

Cache misses
Technology Nonuniform

access

Volatile
 • DRAM
 • SRAM
Nonvolatile
 • STT-RAM
 • ReRAM
 • MRAM
 • PCM
 …

• Coherence
• Thrashing

• NUMA
• NUCA

Figure 1.2 Factors introducing heterogeneity in memory.

1.3 Heterogeneity within Our Control 9

1.3 Heterogeneity within Our Control
In the previous section we explored what happens under the hood that makes the
system heterogeneous in nature. In this section we explore factors that are under
our control and make us use the heterogeneity of the system. There is a big debate
on how much control to give the programmer. The more control the better the
performance and power efficiency we may get, depending of course on the expertise
of the programmer, and the less the productivity. We discuss this issue later in the
book. For this section we explore, from a programmer perspective, what we can
control.

1.3.1 The Algorithm and The Language
When you want to solve a program, you can find several algorithms for that. For in-
stance, look at how many sorting algorithms we have. You decide which algorithm
to pick. We have to be very careful here. In the good old days of sequential program-
ming, our main issues were the big-O notation. This means we need to optimize
for the amount of computations done. In parallel computing, computation is no
longer the most expensive operation. Communication among computing nodes (or
cores) and memory access are more expensive than computation. Therefore, it is
sometimes wiser to pick a worse algorithm in terms of computation if it has a bet-
ter communication pattern (i.e., less communication) and a better memory access
pattern (i.e., locality). You can even find some algorithms with the same big-O, but
one of them is an order of magnitude slower than the other.

Once you pick your algorithm, or set of algorithms in the case of more sophis-
ticated applications, you need to translate it to a program using one of the many
parallel programming languages available (and counting!). Here also you are in
control: which language to pick. There are several issues to take into account when
picking a programming language for your project. The first is how suitable this lan-
guage is for the algorithm at hand. Any language can implement anything. This
applies to sequential and parallel languages. But some languages are much easier
than others for some tasks. For example, if you want to count the number of times
a specific pattern of characters appears in a text file, you can write a C program
to do it. But a small Perl or Python script will do the job in much fewer lines. If
you want less control but higher productivity, you can pick some languages with
a higher level of abstraction (like Java, Scala, Python, etc.) or application-specific
languages. On the other hand, the brave souls who are using PThreads, OpenMP,
OpenCL, CUDA, etc., have more control yet the programs are more sophisticated.

10 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

Algorithm 1.1 AX = Y: Matrix-Vector Multiplication

for i = 0 to m − 1 do
y[i] = 0;
for j = 0 to n − 1 do

y[i] += A[i][j] * X[j];
end for

end for

1.3.2 The Computing Nodes
When you pick an algorithm and a programming language, you already have in
mind the type of computing nodes you will be using. A program, or part of a pro-
gram, can have data parallelism (single thread–multiple data), so it is a good fit for
graphics processing units (GPUs). Algorithm 1.1 shows a matrix (m × n) vector mul-
tiplication, which is a textbook definition of data parallelism. As a programmer, you
may decide to execute it on a GPU or a traditional multicore. Your decision depends
on the amount of parallelism available; in our case, it is the matrix dimension. If the
amount of parallelism is not very big, it will not overcome the overhead of moving
the data from the main memory to the GPU memory or the overhead of the GPU
accessing the main memory (if your GPU and runtime supports that). You are in
control.

If you have an application that needs to handle a vast amount of streaming data,
like real-time network packet analysis, you may decide to use a field-programmable
gate array (FPGA).

With a heterogeneous computing system, you have control of which computing
node to choose for each part of your parallel application. You may decide not to
use this control and use a high-abstraction language or workflow that does this
assignment on your behalf for the sake of productivity—your productivity. However,
in many cases an automated tool does not produce better results than a human
expert, at least so far.

1.3.3 The Cores in Multicore
Let’s assume that you decided to run your application on a multicore processor.
You have another level of control: to decide which thread (or process) to assign to
which core. In many parallel programming languages, programmers are not even
aware that they have this control. For example, in OpenMP there is something called
thread affinity that allows the programmer to decide how threads are assigned to
cores (and sockets in the case of a multisocket system). This is done by setting some

1.4 Seems Like Part of a Solution to Exascale Computing 11

environment variables. If you use PThreads, there are APIs that help you assign
thread to cores, such as pthread_setaffinity_np().

Not all the languages allow you this control, though. If you are writing in CUDA,
for example, you cannot guarantee which streaming multiprocessor (SM)—which is
a group of execution units in NVIDIA parlance—your block of threads will execute
on. But remember, you have the choice to pick the programming language you
want. So, if you want this control, you can pick a language that allows you to have
it. You have to keep in mind, though, that sometimes your thread assignments
may be overridden by the OS or the hardware for different reasons, such as thread
migration due to temperature, high overhead on the machine from other programs
running concurrently with yours, etc.

1.4 Seems Like Part of a Solution to Exascale Computing
If we look at the list of the top 500 supercomputers in the world,1 we realize that
we are in the petascale era. That is, the peak performance that such a machine can
reach is on the order of 1015 floating point operations per second (FLOPS). This
list is updated twice a year. Figure 1.3 shows the top four supercomputers. Rmax is
the maximal achieved performance, while Rpeak is the theoretical peak (assuming
zero-cost communication, etc.). The holy grail of high-performance computing is
to have an exascale machine by the year 2021. That deadline has been a moving
target: from 2015 to 2018 and now 2021. What is hard about that? We can build
an exascale machine, that is, on the order of 1018 FLOPS by connecting, say, a
thousand petascale machines with high-speed interconnection, right? Wrong! If
you build the machine in the way we just mentioned, it would require about 50%
of the power generated by the Hoover Dam! It is the problem of power again. The
goal set by the US Department of Energy (2013) for an exascale machine is to have
one exascale for 20–30 MW of power. This makes the problem very challenging.

Heterogeneity is one step toward the solution. Some GPUs may dissipate power
more than multicore processors. But if a program is written in a GPU-friendly way
and optimized for the GPU at hand, you get orders of magnitude speedup over a
multicore, which makes the GPU better than a multicore in performance-per-watt
measurement. If we assume the power budget to be fixed to, say, 30 MW, then using
the right chips for the application at hand gets you much higher performance.
Of course heterogeneity alone will not solve the exascale challenge, but it is a
necessary step.

1. https://www.top500.org/

12 Chapter 1 Why Are We Forced to Deal with Heterogeneous Computing?

Rmax Rpeak Power
Rank System Cores (TFlop/s) (TFlop/s) (kW)

1 Summit: IBM Power System
AC922, IBM POWER9 22C
3.07 GHz, NVIDIA Volta
GV100, Dual-rail Mellanox
EDR Infiniband IBM,
DOE/SC/Oak Ridge National
Laboratory, United States

2,397,824 143,500.0 200,794.9 9,783

2 Sierra: IBM Power System
S922LC, IBM POWER9 22C
3.1 GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR
Infiniband IBM / NVIDIA /
Mellanox,
DOE/NNSA/LLNL, United
States

1,572,480 94,640.0 125,712.0 7,438

3 Sunway TaihuLight: Sun-
way MPP, Sunway SW26010
260C 1.45 Ghz, Sunway (/sys-
tem/178764),
NRCPC National Super-
computing Center in Wuxi
(/site/50623) China

10,649,600 93,014.6 125,435.9 15,371

4 Tianhe-2A (MilkyWay-2): TH-
IVB-FEP Cluster, Intel Xeon
E5-2692v2 12C 2.200 GHz,
TH Express-2, Intel Xeon Phi
31S1P (/system/177999),
NUDT National Super
Computer Center in
Guangzhou (/site/50365)
China

3,120,000 33,862.7 54,902.4 17,808

Figure 1.3 Part of the TOP500 list of fastest supercomputers (as of November 2018). (Top 500 List.
2018. Top 500 List Super Computers (November 2018) Courtesy Jack Dongarra; Retrieved
November 2018; https://www.top500.org/lists/2018/11/)

2Different Players:
Heterogeneity in
Computing

In this chapter we take a closer look at the different computing nodes that can exist
in a heterogeneous system. Computing nodes are the parts that do the computa-
tions, and computations are the main tasks of any program. Computing nodes are
like programming languages. Each one can do any computation, but some are way
more efficient in some type of computations than others, as we will see.

In 1966 Michael Flynn classified computations into four categories based on
how instructions interact with data. The traditional sequential central processing
unit (CPU) executes an instruction with its data, then another instruction with
its data, and so on. In Flynn’s classification, this computation is called single
instruction–single data (SISD). You can execute the same instruction on different
data. Think of multiplying each element of a matrix by a factor, for example. This is
called single instruction–multiple data (SIMD). The other way around, we refer to
the same data that go through different instructions as multiple instruction–single
data (MISD). There are not many examples of MISD around. With some stretch we
can call pipelining a special case of MISD. Redundant execution of instructions, for
reliability reasons, can also be considered MISD. Finally, the most generic category
is multiple instruction–multiple data (MIMD). There are some generalizations.
For instance, if we execute the same set of instructions on different data, we can
generalize SIMD to single thread (or single program)–multiple data (SPMD). One
of the advantages of such classifications is to build hardware suitable for each
category, or for categories that are used more often, as we will see in this chapter.

14 Chapter 2 Different Players: Heterogeneity in Computing

2.1 Multicore
The first player in a heterogeneity team is the multicore processor itself. Figure 2.1
shows a generic multicore processor. The de facto definition of a core now is a CPU
and its two level-1 caches (one for instructions and the other for data). Below the L1
caches are different designs. One design has a shared L2 and L3 cache, where L3
is usually the last-level cache (LLC) before going off-chip. An L2 cache is physically
distributed and logically shared to increase scalability with the number of cores.
This makes the shared L2 cache a nonuniform cache access (NUCA), as we saw in
the previous chapter. An LLC cache is also NUCA. This LLC is designed either in
SRAM or embedded DRAM (eDRAM). POWER processors, from IBM, have eDRAM
as an LLC. Another design has private L2 caches per core followed by a shared LLC.
In some recent processors, but not in many, there is also an L4 shared cache; for
example, Intel’s Broadwell i7 processor has a 128 MB L4 cache implemented in
eDRAM technology. After the cache hierarchy, we go off-chip to access the system
memory. Currently, the vast majority of system memory is in DRAM, but as we saw
earlier, nonvolatile memory technology (such as PCM, STTRAM, MRAM, ReRAM,
etc.) will soon appear and will be used with and/or in place of DRAM and also in
some cache levels.

When we consider programming a multicore processor, we need to take into
account several factors. The first is the process technology used for fabrication. It
determines the cost, the power density, and the speed of transistors. The second
factor is the number of cores and whether they support simultaneous multithread-
ing (SMT) [Tullsen et al. 1995], called hyperthreading technology in Intel lingo and
symmetrical multithreading in AMD parlance. This is where a single core can serve
more than one thread at the same time, sharing resources. So if the processor has
four cores and each one has two-way SMT capability, then the OS will see your

Cache hierarchy

…
Core

(CPU + L1)

Shared memory

Core
(CPU + L1)

Core
(CPU + L1)

Figure 2.1 Generic multicore processors.

2.1 Multicore 15

Figure 2.2 IBM POWER9 processor. (Courtesy of International Business Machines Corporation,
© International Business Machines Corporation)

processor as one with eight cores. That number of cores (physical and logical)
determines the amount of parallelism that you can get and hence the potential per-
formance gain. The third factor is the architecture of the core itself as it affects the
performance of a single thread. The fourth factor is the cache hierarchy: the number
of cache levels, the specifics of each cache, the coherence protocol, the consistency
model, etc. This factor is of crucial importance because going off-chip to access
the memory is a very expensive operation. The cache hierarchy helps reduce those
expensive trips, of course with help from the programmer, the compiler, and the
OS. Finally, the last factor is scaling out. How efficient is a multisocket design? Can
we scale even further to thousands of processors?

Let’s see an example of a multicore. Figure 2.2 shows the POWER9 processor
from IBM [Sadasivam et al. 2017]. The POWER9 is fabricated with 14 nm FinFET
technology, with about eight billion transistors, which is a pretty advanced one, as
of 2018, even though we see lower process technologies (e.g., 10 nm) but still very
expensive and not yet in mass production. The figure shows 24 CPU cores. Each

16 Chapter 2 Different Players: Heterogeneity in Computing

core can support up to four hardware threads (SMT). This means we can have up
to 96 threads executed in parallel. There is another variation of the POWER9 (not
shown in the figure) that has 12 cores, each of which supports up to 8 hardware
threads, bringing the total again to 96 threads. The first variation, the one in the
figure, has more physical cores so is better in terms of potential performance,
depending on the application at hand, of course. Before we proceed, let’s think
from a programmer’s perspective. Suppose you are writing a parallel program for
this processor and the language you are using gives you the ability to assign threads
(or processes) to cores. How will you decide which thread goes to which core? It
is obvious that the first rule of thumb is to assign different threads to different
physical cores. But there is a big chance that you have more threads than physical
cores. In this case try to assign threads of different personalities to the same physical
core; that is, a thread that is memory bound and a thread that is compute bound,
or a thread with predominant floating point operations and one with predominant
integer operations, and so on. Of course there is no magic recipe, but these are rules
of thumb. Note that your assignment may be overridden by the language runtime,
the OS, or the hardware. Now back to the Power9.

Each core includes its own L1 caches (instructions and data). The processor
has a three-level cache hierarchy. L2 is a private 512 KB 8-way set-associative cache.
Depending on the market segment, power9 has two types of cores: SMT4 and SMT8,
where the latter has twice the fetch/decode capacity of the former. The L2 cache is
private to SMT8, but if we use SMT4 cores, it is shared among two cores. Level 3
is shared, banked, and built out of eDRAM. But DRAM has high density, as we
said earlier, and L3 is a massive 120 MB and has nonuniform cache access (NUCA).
This cache is divided into 12 regions with 20-way set associativity per region. This
means a region is local per SMT8 core, or two SMT4 cores, but can be accessed
by the other cores with higher latency (hence NUCA). The on-chip bandwidth is
7 TB/s (tera bytes per second). If we leave the chip to access the main memory,
POWER9 has a bandwidth of up to 120 GB/s to a DDR4 memory. These numbers
are important because it gives you an indication of how slow/fast getting your data
from the memory is, and how crucial it is to have a cache-friendly memory access
pattern.

For big problem sizes, you will use a machine with several multicore processors
and accelerators (like a GPU, for example). Therefore, it is important to know the
bandwidth available to you from the processor to the accelerator because it affects
your decision to outsource the problem to the accelerator or do it in-house in the
multicore itself. POWER9 is equipped with PCIe (PCI Express) generation 4 with 48
lanes (a single lane gives about 1.9 GB/s), a 16 GB/s interface for connecting neigh-

2.2 GPUs 17

boring sockets, and a 25 GB/s interface that can be used by externally connected
accelerators or I/O devices.

Multicore processors represent one of the pieces of the puzzle of heterogeneous
computing. But there are some other chips that are much better than multicore
processors for certain types of applications. The term much better here means they
have a better performance per watt. One of these well-known chips that is playing
a big role in our current era of artificial intelligence and big data is the graphics
processing unit (GPU).

2.2 GPUs
Multicore processors are MIMD in Flynn’s classification. MIMD is very generic
and can implement all other types. But if we have an application that is single
instruction (or program or thread)–multiple data, then a multicore processor may
not be the best choice [Kang et al. 2011]. Why is that? Let’s explain the reason with
an example. Suppose we have the matrix-vector multiplication operation that we
saw in the previous chapter (repeated here in Algorithm 2.1 for convenience). If
we write this program in a multithreaded way and we execute it on a multicore
processor, where each thread is responsible for calculating a subset of the vector Y,
then each core must fetch/decode/issue instructions for threads, even though they
are the same instructions for all the threads. This does not affect the correctness
of the execution but is a waste of time and energy.

If we now try to execute the same program on a GPU, the situation will be
different. SIMD architectures have several execution units (named differently by
different companies) that share the same front end for fetching/decoding/issuing
instructions, thus, amortizing the overhead of that part. This also will save a lot of
the chip real estate for more execution units, resulting in much better performance.

Figure 2.3 shows a generic GPU. Each block that is labeled lower level scheduling
can be seen as a front end and many execution units. Each execution unit is

Algorithm 2.1 AX = Y: Matrix-vector multiplication

for i = 0 to m − 1 do
y[i] = 0;
for j = 0 to n − 1 do

y[i] += A[i][j] * X[j];
end for

end for

18 Chapter 2 Different Players: Heterogeneity in Computing

High-level scheduling

Lower-level
scheduling

Memory hierarchy

Lower-level
scheduling

Lower-level
scheduling

Figure 2.3 Generic GPU design.

responsible for calculating one or more elements for vector Y in the example of
Algorithm 2.1. Why do we have several blocks then? There are several reasons.
First, threads assigned to the different execution units within the same block can
exchange data and synchronize among each other. It would be extremely expensive
to do that among the execution units of all the chips as there are hundreds in
small GPUs and thousands in high-end GPUs. So this distributed design makes the
cost manageable. Second, it gives some flexibility. You can execute different SIMD-
friendly applications on different blocks. This is why we have high-level scheduling
shown in the figure. Execution units of different blocks can communicate, albeit in
a slow manner, through the memory shared among all the blocks, labeled “memory
hierarchy” in the figure, because in some designs there are some cache levels above
the global memory as well as specialized memories like texture memory.

The confusing thing about GPUs is that each brand has its own naming conven-
tion. In NVIDIA parlance, those blocks are called streaming multiprocessors (SM or
SMX in later version) and the execution units are called streaming processors (SPs)
or CUDA cores. In AMD parlance, those blocks are called shader engines and the
execution units are called compute units. In Intel parlance, the blocks are called
slices (or subslices) and the execution units are just called: execution units. There
are some very slight differences between each design, but the main idea is almost
the same.

GPUs can be discrete, that is, stand-alone chips connected to the other proces-
sors using connections like PCIe or NVLink, or they can be embedded with the

2.2 GPUs 19

multicore processor in the same chip. On the one hand, the discrete ones are of
course more powerful because they have more real estate. But they suffer from the
communication overhead of sending the data back and forth between the GPU’s
memory and the system’s memory [Jablin et al. 2011], even if the programmer sees
a single virtual address space. On the other hand, the embedded GPUs, like Intel
GPUs and many AMD APUs, are tightly coupled with the multicore and do not suf-
fer from communication overhead. However, embedded GPUs have limited area
because they share the chip with the processor and hence are weaker in terms of
performance.

If you have a discrete GPU in your system, there is a high chance you also
have an embedded GPU in your multicore chip, which means you can make use
of a multicore processor, an embedded GPU, and a discrete GPU, which is a nice
exercise of heterogeneous programming!

Let’s see an example of a recent GPU: the Volta architecture V100 from NVIDIA
[2017]. Figure 2.4 shows the block diagram of the V100. The giga thread engine
at the top of the figure is what we called high-level scheduling in our generic
GPU of Figure 2.3. Its main purpose is to schedule blocks to SMs. A block, in
NVIDIA parlance, is a group of threads, doing the same operations on different data,
assigned to the same SM, so that they can share data more easily and synchronize.

Interface to host

NYLINK interconnect

HBM2

M
em

or
y

co
n

tr
ol

le
rs

M
em

or
y

co
n

tr
ol

le
rs

L2 cache

GTC

GTCGTC

High-level scheduling

HBM2

SM

TPC TPC

GTC
SM

SM SM

Figure 2.4 NVIDIA V100 GPU block diagram. (Based on NVIDIA, 2017. NVIDIA Tesla v100 GPU
architecture)

20 Chapter 2 Different Players: Heterogeneity in Computing

SM

L1 instruction code

L1 data cache/shared memory

Warp execution

Warp execution

Warp execution

Warp execution

Texture

Instruction cache

Warp scheduler

Dispatch unit

Register file

LD/ST units SFU

T
en

so
r

co
re

s

FP
32

IN
T

FP
64

Figure 2.5 NVIDIA V100 GPU streaming multiprocessor. (Based on NVIDIA, 2017. NVIDIA Tesla v100
GPU architecture)

There is an L2 cache shared by all, and it is the last-level cache (LLC) before going
off-chip to the GPU global memory, not shown in the figure. NVIDIA packs several
SMs together in what are called GPU processing clusters (GPCs). In Volta there are
six GPCs; each one has 14 SMs. You can think of a GPC as a small full-fledged
GPU, with its SMs, raster engines, etc. The main players, who actually do the
computations, are the SMs.

Figure 2.5 shows the internal configuration of a single SM. Each SM is equipped
with an L1 data cache and a shared memory. The main difference is that the cache
is totally transparent to the programmer. The shared memory is controllable by the
programmer and can be used to share data among the block of threads assigned
to that SM. This is why a block of threads assigned to the same SM can share data
faster. There is also an L1 instruction cache and an L0 instruction cache for each
warp scheduler. Warp? What is a warp?

Warp is a hardware concept transparent from the programmer, in theory! But
in reality, when you write a program for such GPUs, you need to know about this
concept to write a more efficient code. This is very similar to cache memory. People

2.2 GPUs 21

can write programs all their lives without knowing about the existence of caches.
But if they know about them, they can write more efficient, cache-friendly code
and therefore get better performance. You cannot always rely on the compiler
to do the job for you because there is only so much that the compiler can do.
Compilers will tend to be conservative. Moreover, the compiler will not pick the
algorithm for you or change it. When it comes to parallel programming, compilers
are not yet very mature, a problem that is even more noticeable with parallel
programming for heterogeneous systems. Now back to the concept of warps: What
is it? We said earlier that the different execution units in a GPU share the same
front end, since it is single-thread–multiple data. This means that instructions are
fetched/decoded, then all the execution units execute them, then more instructions
are fetched/decoded, then the execution units execute them, etc. As you can see,
the execution units are executing the instructions in lock-step fashion. No execution
unit can proceed to the next instruction before all the execution units, connected
to the same front end, finish this instruction. This is a price that has to be paid to
amortize the cost of the front end over a large number of execution units. A warp
is the set of threads that is executing the instructions in lock-step fashion. How
many threads in a warp? Remember, it is a hardware concept, so if you say that
the number of threads equals the number of threads in the block assigned to the
SM, you would not be correct. The number of threads in a block is usually larger
than the number of the execution units in an SM. Shall we make the number of
threads in a warp equal the number of the execution units in an SM then? This
is also not a very good decision, but the number, and type, of execution units
changes from generation to generation, and we need to keep the warp size fixed
to make compilation, scheduling, and execution easier. NVIDIA fixed the warp
size to 32 threads. That number has been fixed across generations of GPUs. So a
block of threads assigned to SMs is divided into a group of warps, and each warp
is scheduled for execution. We can see from Figure 2.5 that each SM has four warp
schedulers, which allows four warps to execute simultaneously. We said earlier that
a programmer will benefit a lot from knowing about the concept of warps. Why?
First, you can decide on the size of your blocks to be divisible by 32, hence making
the best use of the available hardware. Second, if you know about warps, you will be
very careful when writing a code with if-else conditions. As we said, threads in the
same warp execute in lockstep fashion. What if there is an if-else and some threads
have a true condition and others have false? In that case some threads execute
the if part while the others wait. Then the other threads of the warp execute the
else part while the first group waits. This means there is some kind of serialization

22 Chapter 2 Different Players: Heterogeneity in Computing

here, reducing the parallelism and negatively affecting the performance. This issue
is called thread or branch diversion [Vaidya et al. 2013], and people who write in
CUDA, for instance, and are aware of the concept of warps are quite familiar with
it. There is no magical solution for branch diversion. But there is a lot of work in the
literature, both hardware solutions and software solutions, to reduce the negative
effect of it [Han and Abdelrahman 2011]. A programming tip is to try to make all
the threads in a warp have the same condition result (true or false).

After the warps have been scheduled for execution, the job of the execution units
starts. As we see from Figure 2.5, there are several types of execution units in Volta:
integer units, single-precision floating point units, double-precision floating point
units, and tensor units. The tensor units are included in recent GPUs to accelerate
operations used in aritifical intelligence applications, especially deep learning.
There are also some special function units (SFUs) for specialized functions like
sin(), cos(), etc.

All these SMs, with all their execution units, need to be fed with data on a contin-
uous basis, and this is the job of the GPU global memory. This global memory has
been fabricated, till now, using DRAM technology and optimized for bandwidth,
unlike the main system memory that is optimized for latency. The global memory of
the discrete GPUs in general suffers from two problems. The first is its low capacity
compared to the system memory. If we look at GPU global memories, we see single-
digit GB capacity until very recently. This small size increases the communication
between the GPU memory and the system memory, which is the second problem of
GPU global memory: communication overhead. Volta GPU uses a 3D stacked mem-
ory called high-bandwidth memory. Its size is 16 GB and it delivers 900 MB/s peak
bandwidth. These two numbers from a state-of-the-art GPU illustrate the issues of
capacity and communication.

From the above description, whenever you decide to outsource part(s) of your
application to the GPU, you need to consider several things:

. Do I have data parallelism?

. How much communication is needed between system memory and GPU
memory?

. Is the amount of data parallelism big enough to overcome the communica-
tion overhead?

If the answer is yes for all the above, then you will benefit from using GPUs if you
can optimize your code to reduce the effect of branch divergence, make the best
use of the available hardware, etc.

2.3 FPGA 23

2.3 FPGA
Hardware and software are logically equivalent. What you can do with hardware you
can do with software. The hardware implementation is much faster but not flexible
and can be expensive in terms of price. Software implementation is very flexible but
is slower because you have to execute it on general-purpose hardware that fetches,
decodes, executes, etc. Can we have the flexibility of the software solutions with
the performance of the hardware solutions but with less cost than an application-
specific integrated circuit (ASIC)? FPGA comes very close to that [Hemsoth and Mor-
gan 2017]. In very simple terms, FPGA is a hardware circuit that can be reconfigured
by software. It can be updated even after it is deployed. That is, it can be configured
while it is in the field, hence the first part of its name, field-programmable gate
array. You can think of an FPGA as a group of logic gates (gate arrays) whose in-
terconnection can be programmed, resulting in implementing different functions
that can be as complicated as a soft processor. FPGAs are programmed using a
hardware description language (HDL) such as Verilog or VHDL. Besides reconfig-
urability, FPGAs can scale by connecting several FPGA boards together, and they
can efficiently handle a vast amount of streaming data.

So if your program has some parts that do not have data parallelism but are used
frequently, then FPGAs can be a good option. One example of this is the Microsoft
Catapult project [Caulfield et al. 2016] in which all Microsoft datacenters are FPGA
equipped.

If you know the functions that you will use very frequently during execution,
you can configure the FPGA before starting the execution. If you don’t know these
functions, of if these functions change during the lifetime of your application, then
a profiling is needed, followed by reconfiguration, as shown in Figure 2.6. There is
an overhead, of course, for profiling and for dynamically reconfiguring the FPGA
during execution. But the performance boost obtained will overcome this overhead.

Execute

Profile

Configure

Figure 2.6 Dynamic reconfiguration of FPGA during execution.

24 Chapter 2 Different Players: Heterogeneity in Computing

There are many big players in the industry for designing FPGAs. Xilinx is one of
them.1 Intel, after it acquired Altera, is another one.2

2.4 Automata Processors
We saw that GPUs are good for data-parallel applications. FPGAs are good for
streaming data and have the strength of flexibility in regard to hardware-
implemented functions. There is another range of applications that have broad
applicability: applications that depend on pattern-based algorithms. We can see
these types of applications (pattern matching, pattern recognition, and so on) in
many domains like data mining, bioinformatics, etc. [Wang et al. 2016]. Many of
these domains depend on what we call inexact matching, which is computationally
intensive and in which accuracy is often sacrificed for the sake of tractability. A few
years ago, around 2012–2013, Micron Technology proposed a hardware chip that
could natively implement nondeterministic finite automata (NFA), which is a math-
ematical tool for pattern matching and has less states than a deterministic finite
automata (DFA) and hence can be efficiently implemented in hardware. Micron
now has stopped development work for automata processing, but there are other
researchers in academia (Center for Automata Processing at University of Virginia)
and industry (Natural Intelligence Semiconductor Inc.) working on it.

NFA can have several active states at the same time. In real-life applications,
active states can number in the hundreds, or even thousands. This means using a
traditional multicore processor, with at most tens of cores, is not the best route to
take. Using GPUs may be better but will suffer from a severe memory bandwidth
bottleneck because each active state needs to be processed in a different memory
location; states are usually presented as state-tables with every state containing in-
formation about the next state, resulting in a very cache-unfriendly access pattern.
To have only one active state, we need to use DFA, with a booming number of states
in comparison to NFA. This is where an automata processor (AP) comes in handy.
Simply speaking, AP is a native implementation of NFA.

AP initial design depends on the inherent parallelism in memory. Memory can
be seen as a matrix of rows and columns accessed with row addresses and column
addresses. AP uses an 8-bit symbol as input to a row decoder. The decoder enables
one out of 256 rows. Each column is represented by a state transition element
(STE). The initial design has 49,152 columns (i.e, states). A subset of these states is

1. https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

2. https://www.intel.com/content/www/us/en/products/programmable/fpga.html

2.5 Neuromorphic Chips 25

LogicLogic

Routing matrix

…

LogicLogic

8×256
decoder

8-bit
symbol

STE 0

0

254

255
STE 1 STE 2 STE 49,151

Figure 2.7 An automata processor chip (STE = state transition element).

active at any point of time. When a row is selected, the active states pass through
a logic that can then activate another set of states using a reconfigurable routing
matrix, as shown in Figure 2.7. To add versatility, AP is also equipped with logic
elements that can implement AND, OR, NOT, NAND, or NOR gates. This helps
with implementing combinational circuits of arbitrary complexity. Also, there are
counter elements that can be configured to send an activation signal after the count
reaches a threshold. An AP board has a set of AP chips.

Using the AP is very similar to any accelerator. The CPU configures the AP,
offloads the data and program, then retrieves the result. There is a software de-
velopment kit (SDK) for programming the AP with binding to languages like C
and Python. The programming is done using a markup language called Automata
Network Markup Language (ANML). ANML is used to describe the network. The
binding to other languages, through the SDK, helps with describing automata net-
works, creating input streams, parsing output, and managing computational tasks.

2.5 Neuromorphic Chips
Everybody agrees that the brain is the most sophisticated, efficient, and powerful
information processor in the universe, at least the part of the universe known to
us. This pushes a lot of researchers to learn from Mother Nature, and we start
to hear statements like brain-inspired machines, cognitive computing [Modha et al.
2011], etc. There are three types of relationships between the brain and computers.

26 Chapter 2 Different Players: Heterogeneity in Computing

The first is to simulate the brain on traditional (super)computers. In this case we
are building tools for neuroscientists, medical doctors, etc. This is a traditional
case of scientific computing. The second type is brain-machine interface, which
has its (future) applications in many fields. The third type is to learn from how the
brain works and use this experience to build better machines. This is what we are
interested in for this section.

Neural networks in general have been around for several decades. Deep learn-
ing has been around for two decades with many advances enabled by the fact that
hardware is becoming more and more powerful. Here we have to be very specific: we
are getting inspired by the brain, but we are not building a brain. We are building
a useful chip. So we have to be careful about what exactly we are getting inspired
by [Zahran 2016]. For instance, we forget. Do we want machines that forget? We re-
member things in an approximate way. Is that what we want [Grigorian et al. 2015]?
The design space is vast and open to possibilities [Potter 2001]. But for now the clos-
est chips to the market are neuromorphic chips. These chips mimic neural networks,
with several variations. Devices like memristors are used to model synapses of neu-
ral networks in neuromorphic chips [Sayyaparaju et al. 2017]. Neuromorphic chips
are used in pattern matching, recognition, etc., after a phase of learning. However,
we can say that neuromorphic chips are still not mainstream, but there is definitely
a lot of progress.

2.6 Other Accelerators
Besides the chips that we have discussed in the previous sections, there are some
special chips that are used, or can be used, in heterogeneous systems. Simply
speaking, you can use any application-specific computing unit in a heterogeneous
system setup; for example:

Digital signal processors (DSPs). Processing analog signals, such as audio and
video, is a must in today’s environment. The main characteristic of such
workloads is that they apply several mathematical equations on a stream of
signals that are sampled. As with any specialized circuits, DSPs are more
power efficient than general-purpose processors for these types of applica-
tions. This is why we see them a lot in many portable devices (smartphones,
tablets, etc.). However, they can also be used in high-performance computing
for some types of scientific applications when needed.

Quantum computing (QC). QC has made very big steps forward, leading to ad-
vances that have gotten them close to production. Quantum computers do

2.6 Other Accelerators 27

not depend on the traditional binary bits we use in our digital transistor-
based computers. QC depends on quantum bits (qubits). Each qubit can be
either zero, one, or something in between. Qubits can also exist in superpo-
sition and have two values at the same time. Quantum mechanics is mind
boggling in itself when we consider concepts like entanglement and super-
position! When we use these concepts to build a computing platform, things
will be . . . well . . . mind boggling! A few years ago, quantum computing
was considered more or less science fiction or a research endeavor beyond
our current technology and too risky to pursue. Nowadays we can see many
implementations of quantum computers. There are many big players invest-
ing in QC, including but not limited to Microsoft,3 IBM,4 Google,5 and Intel.6

The reason for this enthusiasm is that QC can be much faster than traditional
computers in some types of applications (e.g., factorization), once they reach
supremacy level (believed to be about 50 qubits).

Tensor processing units (TPUs). The TPU is Google’s chip designed specifically
to support AI applications, more specifically to accelerate neural networks
used in machine learning [Jouppi et al. 2017]. The chip was announced by
Google in 2016. The main idea of a TPU is to be efficient in the computation
operation frequently used in neural networks (NNs). If we look closely at how
a traditional NN works, it depends on many neurons, each one summing up
the product of a signal from other neurons with the weight of the connec-
tion between that neighboring neuron and the current one. For example, if
a neuron is connected to 10 other neurons, it has to do 10 multiplications,
multiplying the signal from the neuron by the weight connecting that neuron
to the one in question, then adding the results. This series of multiplications
and additions has a nickname: matrix multiplication. Simply speaking, we
need a piece of hardware that can do matrix multiplication efficiently. You
may say that GPUs are already doing this efficiently. This is true, but TPUs are
doing an extra step of simplifications. They are using quantization to trans-
form floating points (32 bits for single-precision) to 8-bit integers. The main
philosophy here is that you do not really need the high precision of floating
points to implement activation of neural networks. TPUs are implemented,

3. https://www.microsoft.com/en-us/quantum/

4. https://www.research.ibm.com/ibm-q/

5. https://research.google.com/pubs/QuantumAI.html

6. https://newsroom.intel.com/press-kits/quantum-computing/

28 Chapter 2 Different Players: Heterogeneity in Computing

unlike most other processors, on complex instruction set computing (CISC),
where complex instructions are used to control matrix multiplication units
that constitute the core of TPUs.

TPU and QC may not be available to customers to buy, at least for now. However,
customers and other companies can have access to them through the cloud. What
we can see here is that the computing devices in a heterogeneous system may
not use the same instruction set. This requires a radical change in how we design
our development environment and ecosystem of libraries, compilers, assemblers,
linkers, etc.

When building a heterogeneous system, there are several decisions that have to
be made. First, what are the types of processing elements needed in the system?
Second, how many of each type is needed? Third, how is the memory hierarchy
managed? There is a compilation of several accelerator chips that may exist in some
heterogeneous systems besides the famous one.7 The problem is more complicated
when we talk about big machines (supercomputers, datacenters, etc.). In the next
section we look at these types of decisions but for single chips.

2.7 Mix-and-Match
There are many chips in the market that include heterogeneous computing ele-
ments, besides of course the heterogeneity in memory access time, etc., that we
have discussed earlier in this book. In this section we look at some examples of
these chips.

2.7.1 Intel Coffee Lake
Intel Coffee Lake is a code name for a design by Intel of its new multicore. It appears
in many brands like the i3, i5, i7, and i9. This architecture was released in October
2017 and uses Intel refined 14 nm technology, which uses tri-gate transistors. We
will take an example of a Coffee Lake CPU: the Core i7-8700K. The i7-8700K has
six cores with two-way hyperthreading technology, making the hardware support
12 threads. The chip also has integrated graphics: the Intel GT2. The cores, the
integrated graphics, and a system agent (for I/O and memory) are connected using
a ring interconnect. Figure 2.8 shows the architecture of Intel Skylake, which is
almost the same as the Coffee Lake. The i7-800K has six cores instead of the four
cores in the i7-6700K (shown in the figure) and has embedded graphics of 9.5
instead of 9. The architecture is the same.

7. https://www.sigarch.org/a-brief-guide-of-xpu-for-ai-accelerators/

2.7 Mix-and-Match 29

Figure 2.8 Intel architecture for the i7-6700K. (© Intel Corporation, Used with Permission)

The Intel GT2 is the generation 9.5 of Intel integrated graphics. The GT2 has
one slice and 24 execution units. Let’s take a quick look at the integrated graphics
to see the difference between it and a discrete GPU similar to what we saw ear-
lier in this book. One part of this embedded graphics unit is what is called the
unslice. The unslice is the piece responsible for fixed-function media and geome-
try functions. It has its own power management and clock domain independent
from other cores. This gives it the ability to turn off the slice or run it with higher
performance on demand, saving power and optimizing performance. If we leave
the fixed-function pipelines and move to a more general-purpose execution (yet GPU
friendly), we find the slice. The slice is a cluster of subslices. Each sublice is a group
of execution units. A global thread dispatch unit ensures load balancing among
subslices. There is a difference between the execution units here and the CUDA
cores, or SP, in NVIDIA discrete GPUs, for example. In the case of NVIDIA GPUs,
each SP is an execution unit without a front end. So a group of threads, called a warp
in NVIDIA parlance, executes in lockstep, hence SIMD (or STMD). In our case here,
each execution unit is an independent unit. And each execution unit is sophisti-
cated enough internally to be multithreaded, support seven threads, and execute
instructions in SIMD fashion thanks to its support of 128 SIMD 32-bit registers
per thread. By varying the number of execution units per subslice, the number of
subslices per slice, and the number of slices, a different type of scalability serving
different market segments can be built. Figure 2.9 shows the architecture of the
embedded graphics. The embedded GPU hosts a slice of the L3 cache. Hence the
GPU and the different cores in the chip share the L3 cache.

When it comes to memory hierarchy, each core has an IL1 (i.e., level 1 of
instruction cache), a cache size of 32 KB, is 8-way set-associative, and it has 64 sets.

30 Chapter 2 Different Players: Heterogeneity in Computing

Figure 2.9 Embedded Intel graphics with one slice. (© Intel Corporation, Used with Permission)

The block has a size of 64 bytes across the whole cache hierarchy. This cache is
shared by the two threads of the core. A DL1 cache (i.e., level 1 data cache) per
core is also 32 KB and 8-way set-associative, with 64 sets. It uses a writeback policy
to lower-level caches to reduce bandwidth requirements. The L2 cache is unified
and noninclusive. It is 256 KB and 4-way set-associative, and also uses a writeback
policy. L3 is the last-level cache. It is sliced, and each slice is up to 2 MB per core,
but this cache is shared across all cores. The cache uses a writeback policy too.

2.7.2 Qualcomm Snapdragon 845
Our next example of a heterogeneous chip is a system-on-chip (SoC) targeting mo-
bile platforms to support AI applications and virtual and augmented reality: Qual-
comm’s Snapdragon 845. The chip uses cores from Arm’s Cortex-A75 (performance
cores) and Cortex-A55 (efficiency cores) designs code-named Kryo-835. The cores
use Arm’s DynamiQ cluster technology, which enables the cores to share the cache
hierarchy, as opposed to older designs where each of the cores have discrete hier-
archies. The SoC also has the Adreno 600 series GPU. Because we are talking about
SoC, the chip is more heterogeneous than traditional chips, as it has, besides the
cores and the GPU, a DSP, a modem, and audio codec.

2.7 Mix-and-Match 31

The performance cores have 256 KB private L2 caches while efficiency cores use
128 KB private L2 caches. The L3 cache is a shared 2 MB. In the memory controller,
there is a 3 MB system cache that acts as an L4 cache shared by the whole SoC chip.
But not all execution units share the memory hierarchy. There is an isolated island
in that chip: the secure processing unit (SPU). The SPU has its own execution unit
with its own random number generator and memory. It is important for the SPU to
be isolated from the other pieces in order to defend against attacks.

This SoC is a very good example of the heterogeneity in hardware. Several dif-
ferent applications use the different execution units here. The development of a
single application that leverages all the different heterogeneous execution units is
still in progress, except in some areas of high-performance computing.

2.7.3 Arm big.LITTLE
In the past, designing CPUs for portable devices meant lower power consumption.
But now, with the new wave of applications that need AI, augmented reality, etc., we
also need high performance. High performance and low power seem to be mutually
exclusive, but heterogeneity in hardware is a good step toward reconciling the
two. For high performance, CPUs for portable devices need to provide the highest
performance possible within the power envelope (remember, in portable devices
there is no access to fans). For low performance, the CPU must consume very low
power. These two requirements dictate the philosophy of Arm’s big.LITTLE CPU.

As you may have guessed from its name, this chip uses two types of cores. Big
processors are designed for highest performance. Little processors are designed
for the lowest power consumption. The success of this architecture depends on
assigning computing tasks to the core that are most suitable for it based on the
required performance of that task. The task requirement can change several times
in its lifetime. With cores with different capabilities, a task can migrate to the
needed core during execution. Unused cores can be turned off. The two types of
cores use Arm Cortex-A15 (for high performance) and A7 (for low power), hence
the same Instructure Set Architecture (ISA). The high-performance core uses out-
of-order execution with superscalar capability, while the low-performance core is a
simple in-order core. Figure 2.10 shows a block diagram of the processor. GIC on the
top is the global interrupt controller. Cache coherence is very much needed in this
design to make task migration among cores as efficient as possible by keeping the
data in caches coherent. Without it, migrating a task would require main memory
access, which would result in a big performance loss.

As we said earlier, the performance efficiency depends on scheduling tasks to
the right core at the right time. The big.LITTLE has two models of scheduling. The

32 Chapter 2 Different Players: Heterogeneity in Computing

Cortex-A15
core

Cortex-A15
core

Interupts

Memory controller ports System port

Interupts

L2

Cortex-A7
core

Cortex-A7
core

IO-coherent
coreL2

GIC-400

CCI-400 (cache-coherent interconnect)

Figure 2.10 Arm big.LITTLE. (Reproduced with permission from Arm Limited. Copyright © Arm Limited
(or its affiliates))

first one is called CPU migration. In this model, each big processor is paired with
another little processor. This requires that the number of cores of each type must
be equal. If we have four big cores and four little cores, the OS will see four cores.
The task is assigned to one of the cores and moved between the big and the little
based on its requirement using a variation of DVFS. The other model is called global
task scheduling, which is the usual scheduling we expect. The OS sees all the cores
and is aware of their different capabilities. Using heuristics, tasks are assigned to
the most suitable cores. This second model does not require the processor to have
the same number of cores of each type.

2.8 In Conclusion
In this chapter we looked at heterogeneity in computing. We had a tour of the dif-
ferent computing nodes and we saw some real-life examples. We saw heterogeneity
across chips (discrete GPU, traditional multicore, FPGA, etc.). We also saw hetero-
geneity within the same chip. However, there is more to heterogeneity in hardware
design. We need to look at the architecture from a different angle, which is the topic
of the next chapter.

3Architecture:
Heterogeneity in Design
In the previous chapter we looked at the main pieces of the puzzle in a heteroge-
neous system: the computing nodes. In this chapter we put those pieces together
and see the result of their interaction. The computing nodes need to access the
memory, and storage, and need to be interconnected. So we look at the memory
system as well as the interconnect. We also take a detailed look at some examples
of supercomputers. Once we have a fully working system, we need to start worry-
ing about two other factors that affect performance: security and bandwidth, which
constitute the rest of this chapter.

3.1 Memory System
The memory system is actually a hierarchy, or many hierarchies for supercomput-
ers, datacenters, hyperscalers, etc. The lowest level of this hierarchy, farthest from
the processors, is the system memory. The higher levels are caches.

In the 1990s and the first decade of the twenty-first century, most of the research
related to cache memory [Smith 1982] proceeded in two parallel paths. The first
deals with caches for uniprocessor systems in an attempt to enhance one or more
of the cache aspects, such as access time, accuracy, and power consumption. The
second path deals with parallel architectures.

For uniprocessor systems, some work tries to capture the program behavior
and adapt the cache based on this program’s requirements [Calder et al. 1998,
Dhodapkar and Smith 2002, Lee and Kim 2002]. Also, several proposals have been
made in academia to enhance the memory system by dynamically varying one of
its parameters [Peir et al. 1998, Kin et al. 1997, Veidenbaum et al. 1999, Albonesi
2002, Calder et al. 1996, Abella and Gonzalez 2006]. Improving the hit rate has been
the main goal for a long time [Karkhanis and Smith 2002]; for instance, column-
associative caches [Agarwal and Pudar 1993], filter caches [Kin et al. 1997], and

34 Chapter 3 Architecture: Heterogeneity in Design

predictive sequential-associative caches [Calder et al. 1996] are all geared toward
increasing the hit rate by modifying the way an address is decoded and the sequence
followed to find a block, at the expense of simplicity. Peir et al. [1996] proposed a
path-balancing technique to help match the delays of caches and data paths. This
has the effect of decreasing the access time. Another important aspect of a cache
is its power consumption. Cache being one of the main power-hungry structures
on-chip, it triggered a lot of research both in academia and industry [Flautner et al.
2002, Flautner et al. 2002, Ghose and Kamble 1999, Inoue et al. 2002, Kamble and
Ghose 1997, Kaxiras et al. 2001, Kim et al. 2001, Kim et al. 2002, Kim et al. 2004a,
Albonesi 2002]. For example, in Veidenbaum et al. [1999], the authors proposed a
cache memory where cache line size is continuously adjusted by hardware based
on observed application access.

The second path taken in memory system research is the cache hierarchy for
multiprocessor systems. The research in that area consists mainly of coherence
protocol schemes [Archibald and Baer 1986, Agarwal et al. 1988, Eggers and Katz
1989, Tomasevic and Milutinovic 1993, Moshovos 2005]. That path is now targeting
multicore architectures [Hammond et al. 1997, Krishnan and Torrellas 1999, Cheng
et al. 2006, Ekman et al. 2002, Nayfeh 1998].

These two paths in memory system research proceed in parallel. But with the in-
troduction of multicore architectures (aka chip multiprocessors or CMPs), the two
paths started to converge [Beckmann and Wood 2004], and the main theme was
the high bandwidth available on-chip, as opposed to the limited, and more expen-
sive, off-chip bandwidth. However, wire delay represents a big challenge because it
does not scale with the transistor [Agarwal et al. 2004, Beckmann and Wood 2004].
This leads to the introduction of networks on-chip [Dally and Towles 2001, Benini
and DeMicheli 2002, T. T. Ye 2003], which uses the experience gained at design-
ing packet-switched networks to design on-chip networks that connect cores and
caches. With the increase in the number of on-chip cores and the fact that most of
the current designs still make use of the traditional design of a private L1 cache for
each core and a shared L2 cache among cores, the problem of sharing the L2 caches
among cores becomes important both in academia [Kim et al. 2004b, Qureshi and
Patt 2006] and in industry. The problem of cache sharing for multicore architectures
uses experience gained from cache partitioning in clustered architectures [Farkas
et al. 1997]. Another trend is to use small caches to act as an aggregate large cache
[Varadarajan et al. 2006, Chang and Sohi 2006]. These methods have the advan-
tage of saving power but do not solve the problem of application interference in
caches, where two applications have conflicting cache requirements, which hap-
pens very frequently in simultaneous multithreading architectures [Tullsen et al.

3.2 Interconnect 35

1995, Lo et al. 1997], multicore architectures [Sinharoy et al. 2005, Borkar et al.
2006, Ramanathan 2006, Broadcom Corporation 2006], and systems built as a hy-
brid of the two, like the Niagara (UltraSPARC T1) [Kongetira et al. 2005].

Another line of research that has been targeting single core and has migrated,
without many enhancements or changes at first, to multicore is cache replacement
policy [Jeong and Dubois 2003, Reineke et al. 2006, Guo and Solihin 2006, Megiddo
and Modha 2004, Qureshi et al. 2006, Al-Zoubi et al. 2004, Wong and Baer 2000].
Cache replacement policy decides which block to evict to make room for a new
incoming block.

Cache replacement starts to evolve with the widespread usage of multicore and
manycore processors [Pekhimenko et al. 2015, Ros et al. 2015, Guo et al. 2013].
However, cache hierarchy nowadays needs to deal with different types of scenarios:
heterogeneous multicore, like multicore with embedded GPUs, and many-core
chips like GPUs [Xie et al. 2015].

Another aspect of the memory hierarchy is the inclusion property. It goes with-
out saying that most hierarchies now do not support inclusion, except at the last-
level cache. The main reason for that is to make the best use of the chip area. With
inclusion, data is replicated in all the higher cache levels (“higher” means closer
to the processor). As the number of cores increases, the data replication increases,
especially when there is a lot of data sharing among cores. But if we do not have
an inclusion property at the last-level cache, which is almost one big shared cache
before going off-chip, then coherence will happen off-chip, which will result in very
high performance degradation.

3.2 Interconnect
We are in the big-data era. Machines are number-crunching huge amounts of data.
But in order to solve big and important problems, data have to be moved both in
the memory hierarchy and among cores/processors. This makes the interconnect
a vital part of overall performance in any system.

There are several aspects of interconnect in any system:

. The topology. What is the shape of interconnection among the different
pieces? A piece can be a processor, a computing node, a switch, etc.

. The granularity. What are we connecting (cores, chips, full cabinets)?

. The technology. What is the material we are using (fiber optics, copper)? A
single system can use different technologies at different granularity levels;
that is, using copper to connect cores, fiber optics to connect processors, and
so on.

36 Chapter 3 Architecture: Heterogeneity in Design

. The protocol. How are data encoded as electrical or laser signals?

. The switching and routing technology. Data may have to be routed through
several hops in order to go from one point to another point. How is this done?

The technology, protocol, and switching affect the bandwidth sustained by the
interconnect and hence the overall performance of data movement. The granularity
is just the playground of the interconnect. For example, connecting cores inside
a chip [Kumar et al. 2005, Jerger et al. 2017] has different characteristics than
connecting several cabinets. Inside the chip the distances are much shorter and
the bandwidth is much higher, but space and power are more restrictive than off-
chip and among cabinets. In this section we take a look at the different aspects of
interconnect.

3.2.1 Topology
The topology is the shape of interconnection. In its general form, it is an undi-
rected graph of connected vertices. These vertices can be cores, processors, routers,
blades, cabinets, or anything we want to connect. Of course connecting all ver-
tices to each other (i.e., a fully connected graph) is very expensive in terms of area
and power consumption. Each connection consumes, and dissipates, power. At
the same time, we want each node, a vertex in the graph, to be able to communi-
cate with any other node. This is where topology comes in. It answers the question,
What are the best and most economical interconnections among the nodes? Nodes
exchange messages.

An interconnection network can be direct or indirect. Suppose we have N nodes
to be interconnected. For direct networks, the nodes that need to be interconnected
reside inside the network. Indirect networks have the nodes sitting outside the
network. Both cases are shown in Figure 3.1. In the case of an indirect interconnect
(Figure 3.1(a)), the interconnect itself is made of routers and switches, while in
direct interconnect (Figure 3.1(b)), the node itself contains the router or switch.

The topology can have a regular shape (mesh, ring, torus, etc.) or an irregular
one. How do we compare two different topologies? One of the important measure-
ments is the diameter. For a message to go from node A to node B, if the two nodes
are not directly connected, the message has to go through several hops (called the
routing distance). The diameter is the maximum number of hops between any two
nodes. The lower the diameter the better because then the message will travel less
distance. Figure 3.2(a) shows a bus interconnect. The longest routing distance is
two, which the distance needed to send a message from node A to node C. So the
diameter of this topology is two. If we move to the ring interconnect in Figure 3.2(b),

3.2 Interconnect 37

Inter-
connect

Nodes

…

(a) (b)

Figure 3.1 (a) Indirect interconnect; (b) direct interconnect.

(a) (b)

A B C A B C

Figure 3.2 (a) Bus interconnect; (b) ring interconnect.

we can easily see that the diameter is now one, which is better. As you may have real-
ized, the diameter grows with the number of nodes. Only a fully connected topology
has a fixed diameter of one. A ring of n nodes has a diameter of floor (n/2).

Besides the ring and the bus, there are many different interconnect topologies.
Figure 3.3 shows some examples. As you can see from the figure, some topologies
are indirect interconnect (crossbar, tree, and omega) and some are direct intercon-
nect (hypercube, mesh, and torus). Of course there are systems with irregular topol-
ogy. The interconnect can be sophisticated to include contention control through
routing, in which case messages sent from source to destination may take different
routes depending on which links are heavily used.

That covers the topology. How about the technology used for the links?

3.2.2 Technology
The interconnect was designed mainly using copper from the old days until today.
Let’s take on-chip as an example. A link between two entities (core, cache, etc.) is
a group of parallel copper wires. The more parallel wires we put, the higher the
bandwidth we get because we can move more bits in parallel. But more parallel

38 Chapter 3 Architecture: Heterogeneity in Design

(a) Crossbar

Switch

(b) Tree

(c) Multistage omega network (d) 4D hypercube

(e) 2D torus (f) 2D mesh

Switch

Figure 3.3 A few examples of different topologies.

wires means more chip area. If we don’t have this needed area, then we can make
each copper wire thinner. Thinner wire increases its resistance and hence its tem-
perature and the power it dissipates. So we have a trade-off of bandwidth versus
power. This trade-off is not the only problem we face. Wire delay is a performance
bottleneck.

3.2 Interconnect 39

Amplifier

Si
detector

Logic

Driver

Si
modulator

Logic

Laser Waveguide

Figure 3.4 Generic setup for on-chip optical communication.

Moving data around from core to shared cache or among different banks of
a cache affects performance in a negative way. The communication also affects
programming. Programmers now need to manage data locality (to reduce data
movement) and data communication (to move data in an efficient way). If there
is a broadcast channel and it has low latency, then the programmer’s task will be
easier. This is where optical interconnection comes into play.

Using photonics, we have several advantages. The power consumption is less
than copper. Contention is not a big problem because you can use different wave-
lengths. You can have arbitrary interconnection because two overlapping laser
beams will not interfere. In Kurian et al. [2010], for example, the authors use
nanophotonic technology to implement a fast, efficient global broadcast network
implemented as a ring connecting all the cores on-chip. This network can be used
together with a traditional point-to-point copper network. Optical interconnection
is getting more and more momentum and is already in use on-board and across
boards [Kobrinsky et. al. 2004, Kodi and Louri 2007, Xue et al. 2010, Nitta et al.
2013]. Figure 3.4 shows a typical optical interconnect that can be used on-chip. The
main processor is of course electrical (the logic part). There must be a modulator to
transform electrical pulses into a laser beam by modulating the laser beam using a
driver. The modulated laser beam is directed, using a waveguide, to its destination
where a detector returns it to its electrical form to be consumed by the logic. The
main drawback for optical interconnection is that it is still more expensive than
traditional copper interconnection.

As we can see, there is heterogeneity here too, because we can have optical
and copper interconnect in the same system. Each network can have different
topology too.

Now that we can have different topologies and different technologies, how are
data sent across the interconnect links? There must be some kind of protocols.

40 Chapter 3 Architecture: Heterogeneity in Design

Table 3.1 Bandwidth provided by HT

Version Max. Aggregate Bidirectional Bandwidth (GB/s)

1.0 12.8

2.0 22.4

3.0 41.6

3.1 51.2

3.2.3 Protocol
In computer systems, data move from one entity to another. These data take the
form of streams of bits, messages, packets, etc. (depending on how you look at it).
How do these data move? There must be a protocol between sending and receiving
partners, whether these partners are CPUs, cache banks, or even full cabinets.
There have been many protocols in the last several decades. In this section we look
at three of the most widely used protocols: HyperTransport, PCI Express (PCIe),
and NVLink.

HyperTransport (HT)1 is a point-to-point link connecting CPUs to one another
and connecting CPUs to I/O devices. HT was first introduced by AMD in
2001 and has undergone several updates by many partners. It is a packet-
based technology; that is, messages sent are divided into packets. Some
packets are for control and management while the rest of the packets are
for payload, and each packet is sent individually to its destination, where it
is combined with the other packets to reconstruct the original message. This
technology is used on-board and with switches and routers but not on-chip.
Table 3.1 shows the maximum aggregate bandwidth that HT can provide at
its maximum frequency.

PCIe, Peripheral Component Interface Express, is usually found on-board. It is
a point-to-point serial interconnect that is packet based. PCIe link can range
from one lane (x1) to 32 lanes (x32). Each lane consists of two wires, each of
which is unidirectional. Table 3.2 shows the typical speed of each wire (i.e.,
way) in a lane. Some numbers are approximations. PCIe v4.0 is just out the
door (in 2018) and v5.0 is still under development and revision.

NVLink was introduced by NVIDIA to connect GPUs to each other and to the
CPU. Previously, GPUs were connected to the CPU using PCIe. But PCIe be-

1. https://www.hypertransport.org/

3.2 Interconnect 41

Table 3.2 Bandwidth provided by PCIe

Version Bandwidth/Lane/Way (GB/s)

1.x 0.25

2.x 0.5

3.x 1

4.0 2

5.0 4

came a bottleneck for the high-bandwidth requirement of GPUs. This is why
NVIDIA introduced NVLink. NVLink uses high-speed signaling interconnect
(NVHS), which transmits data over differential pairs. Eight of these differ-
ential pairs form a sublink. Each sublink sends data in one direction. Two
sublinks (each at different directions) form a link. This link can connect a
CPU to a GPU or connect two GPUs. NVLink 1.0 has a total bandwidth of
160 GB/s while 2.0 has 300 GB/s.

3.2.4 Examples
We have seen examples of interconnect inside the chip and on-board. What about
higher granularity? In this section we take a quick look at some interconnect at
high granularity in supercomputers. The trend now is to use switches with more
skinny ports (i.e., ports with fewer parallel bits) than fewer fatter ports. The main
reason for that is that signaling rates—the electrical signals used to send the data—
have gone up relative to the sizes of the network packets. This means the penalty
for sending large packets through skinny ports (i.e., serialization) has gone down.
Another trend is to have switches with more ports. These are called high-radix
switches. The implication of this is that we can have network topology with lower
diameter. Now, let’s see some examples.

Cray Aries interconnect has a dragonfly topology. This is a hierarchical topology
introduced in 2008 [Kim et al. 2008]. At the higher level, there are groups that
are connected in an all-to-all link. This means each group has a direct link
to every other group. The topology inside each group, the lower level, can
be anything, as shown in Figure 3.5. This hierarchical organization comes in
handy in supercomputers, for example, where we need to have interconnects
at different levels (as we will see in the examples discussed in Section 3.3).

42 Chapter 3 Architecture: Heterogeneity in Design

Intergroup interconnection

GroupGroup Group

Intragroup connection

Switch Switch … Switch

Figure 3.5 Dragonfly interconnect.

More links and switches

Switch

Node

Switch

Node

Fabric
manager

Switch

Node

Figure 3.6 Intel Omni-Path interconnect.

The Aries router can support different interconnection technologies and
protocols (PCIe, Optical, etc.).

Intel Omni-Path interconnect was built with three goals in mind: low latency,
low power, and high throughput. Intel wants to use this technology for future
exascale computing, so scalability must also be a goal. This interconnect
has a fabric manager chip that sees the whole picture of the topology. The
manager cooperates with the switches in the interconnect to decide on the
best routes for each packet based on the congestion status. The main design
is shown in Figure 3.6.

3.3 Examples of Supercomputers 43

3.3 Examples of Supercomputers
In the previous chapter we looked at heterogeneity inside the chip. We saw exam-
ples of chips with heterogeneous computing nodes. This chapter goes a step further
and we look at the whole system when we connect many computing nodes. As we
did in the previous chapter, we look at examples of heterogeneous machines at the
system level. Because we are discussing high-performance computers, the mem-
ory, at that high level, is distributed. The design philosophy for most of them is the
same: few processors in a node (or card), several nodes in a blade, several blades
in a cabinet, and then multiple cabinets. At each level there are interconnections.
Processors in a node share memory. Once we are at the blade level, we have dis-
tributed memory. The naming (e.g., rack instead of blade) and number of levels
may differ among companies, but this philosophy of design allows scalability and
at different granularities when needed (adding more cards, blades, etc.). Figure 3.7
summarizes these concepts.

3.3.1 Cray XC50 Supercomputer
Our first example is the Cray XC50. The heterogeneity is obvious. It has two types
of processing nodes: general purpose nodes (Cavium ThunderX2 Arm or Intel
Xeon) and accelerator nodes. The accelerator node is an NVIDIA Tesla P100 (Pascal
architecture) GPU. Each computing node has two processors, an Intel Xeon or
Cavium Arm, and an NVIDIA P100. Every 4 nodes form a blade. Up to 16 blades

Computing
mode Increase in parallelism granularity

Lower bandwidth interconnect

Toward distributed memory

Processor

Blade

Cabinet

Figure 3.7 Design philosophy of a high-performance machine.

44 Chapter 3 Architecture: Heterogeneity in Design

form a chassis. A cabinet can have up to three of these chassis and a claimed
peak performance of 1 PFLOPS (peta floating point operations per second). By
introducing Arm and Intel processors, CRAY made their machine very flexible to
accommodate different host processors.

Each computing node has a one-to-one matching of a multicore (whether from
Intel or Arm) and an accelerator. This makes for a balanced compute to accelera-
tor ratio. This balance, coupled with a choice of CPU (Intel vs. Arm), allows Cray to
cater to different heterogeneous workloads. Even though the memory is distributed
across cards, the address space of general-purpose processors (i.e., the nonacceler-
ators) is extended to access all the physical memory in the system. This makes the
machine programmable with languages like MPI and also with schemes of parti-
tioned global address spaces (PGAS) like Unified Parallel C (UPC) and Fortran with
Coarrays. This capability of allowing processors to access the physical address of
the system is enabled through the Aries interconnect.

The Aries interconnect by Cray is a chip (router), a topology, an interconnect
technology, and a protocol. There is an Aries chip in each computing node. In
that protocol is a network address that consists of three parts: (1) an 18-bit node
identifier, (2) a 12-bit memory domain handle associated with a memory segment
registered at the remote node, and (3) a 40-bit offset into this segment. This makes
a 70-bit address that allows a processor in a node to access all physical addresses in
the system. At the technology front, the Aries interconnect uses optical connection,
and for a good reason. The downside with small-diameter topologies is that the
links (i.e., cables) are a bit long, for example, 15 meters. With that length, using
copper interconnect becomes very slow. This is why Cray uses optical interconnect
here. However, the optical interconnect is not used everywhere in that system but
is used in tandem with copper wire, as we will see shortly. The topology used
is called dragonfly. This topology has a very small diameter. There is an all-to-
all link inside the chassis. This is done with copper wires because the length is
short. Then there is another all-to-all link among six chassis. We saw earlier that
every three chassis form a cabinet. So we have an all-to-all among the chassis
forming two cabinets. At that level of chassis, the connections are done in copper
too, for two reasons. The first is to reduce the cost of the system because optical
interconnect is very expensive. The second is that the wires are short so copper
wires will not hurt performance. Among groups of two cabinets we have optical
cables and connections in an all-to-all topology because here the cable’s length is
high. That is, the connection between any two points does not need to go through
many hops—actually, only two hops if the two nodes are in the same group of two

3.3 Examples of Supercomputers 45

cabinets, based on the description above—and it can get between any two nodes
in the system with at most five hops.

3.3.2 Sunway TaihuLight Supercomputer
The Sunway TaihuLight supercomputer, developed at the National Research Cen-
ter of Parallel Computer Engineering and Technology (NRCPC) in China, is the
top-ranked supercomputer in the Top500 list of November 2017. This machine
is built around the custom-designed Chinese 1.45 GHz SW26010 (ShenWei) pro-
cessor. Each core supports one thread. The simplicity of the design makes it very
efficient in providing high FLOPS. The core group is made up of 65 cores. One of
these 65 cores is used for management and the rest for computations. Those com-
putation cores are organized as an 8 × 8 grid. Every four core groups form a node.
The core groups communicate through a network on-chip. A group of 256 nodes
forms a supernode. Every four supernodes form a cabinet, and the whole system
has 40 cabinets. This means these machines have over 10.6 million cores. The main
design goal of the whole system is high efficiency in floating point operations. Its
performance is 93 PFLOPS. There is an interconnect within each cabinet and an-
other one to tie all the cabinets together. Those interconnects are custom developed
but depend mostly on PCIe connections. The main drawback of that design is that
the memory system is very slow. This is the price paid to get a very high GFLOPS/Watt
relative to the other machines in the top 10 of the Top500 list. So computation is
great but moving data is not.

You may wonder why we are using this machine as an example of a heteroge-
neous system even though it has one type of computing nodes. The heterogeneity
here is very obvious in the interconnection: within a node, within a supernode, in
a cabinet, and across cabinets. This makes data placement and movement chal-
lenging. Even though this supercomputer was the top of the Top500 list based on
the LINPACK benchmark, the gold standard of HPC for over two decades that em-
phasizes floating point muscle, it did not show great performance for the HPCG
benchmark, where the emphasis is more on data movement.

3.3.3 Titan Supercomputer
The Titan supercomputer, from Oak Ridge National Laboratory, is ranked fifth in
the Top500 list. We can see the same design philosophy: processors to nodes to
blades to cabinet. A node consists of a 16-core AMD Opteron processor and an
NVIDIA Kepler GPU. The AMD processor is connected, through DDR3, to 32 GB of
memory. The GPU is connected, through GDDR5, to 6 GB of memory. The CPU and
GPU are connected with PCIe. Together all of these form a node. Every four nodes

46 Chapter 3 Architecture: Heterogeneity in Design

Node

GPU 6GBGDDR5

PCIe

CPU

Gemini
interconnect

32GBDDR5

Node

Figure 3.8 Main design of the Titan supercomputer.

form a blade. A cabinet has 24 blades. The system consists of 200 cabinets, making
the total number of nodes 18,688. Every two nodes are connected to Cray’s Gemini
interconnect. This interconnect forms a 3D torus, as shown in Figure 3.8.

3.4 Security Challenges Facing Heterogeneous Computing
With the sophistication we have in modern machines in interconnect, processing
nodes, memory systems, and storage, keeping these machines safe in this intercon-
nected world is a challenge. Moreover, the amount, type, and speed of data to be
processed are also becoming heterogeneous, complicating the problem of securing
the whole system from cyberattacks.

In 2008, when an infected flash drive was inserted into one of the US Depart-
ment of Defense (DoD) laptops, the DoD suffered a significant compromise of its
classified military computer networks.2 The Stuxnet attack exposed the inherent
problems with computer-controlled systems in critical infrastructure and indus-

2. http://www.defense.gov/home/features/2010/0410 cybersec/lynn-article1.aspx.

http://www.defense.gov/home/features/2010/0410 cybersec/lynn-article1.aspx

3.4 Security Challenges Facing Heterogeneous Computing 47

trial process control systems.3 This previously classified incident was the most
significant breach of US military computers ever and marked a turning point in
US cyber defense strategy. It was also a turning point in computer system research
and industry to make security as important as performance and cost, not just an
afterthought. The sensitive information and critical applications handled by com-
puters makes building a trusted computer system a necessity and not a luxury. This
is easier said than done due to the proliferation of methods by which a computer
system can be attacked. Trusted computing is a paradigm that has emerged to ad-
dress the security concerns in general-purpose computing systems [TCG 2008].
There are software-oriented and hardware-oriented ways to attack a system, and
also software-oriented and hardware-oriented ways to add security to computer sys-
tems and build trusted platforms. To design a trusted computing system, security
has to be systematically incorporated into the various stages during the design of
such systems: including system architecture, hardware implementation, and soft-
ware implementation [McGinn-Combs 2007].

Securing heterogeneous systems is even more challenging due to the different
ways programs are executing in different accelerators and the need to move a lot of
data around. Prior to execution, a program resides on the disk. When this program
starts execution, it is copied to the system memory to be fetched and executed by
the processor. This program can be tampered with while it is on the disk [Nijim
et al. 2006, Hughes and Murray 2005, Ruan et al. 2009, Abualsamid 1998], on the
bus from disk to memory or from memory to the processor [Su et al. 2009, Elbaz
et al. 2005, Coburn et al. 2005], while in the memory [Di Crescenzo 2005, Yan et al.
2006, Vaslin et al. 2009], or when moving from node to node (or blade to blade or
cabinet to cabinet in large systems). It can also be modified by malicious software
[Lin 2008]. Simply using encryption and decryption schemes is not enough to
ensure that programs will be secure, because side channel attacks can be extremely
dangerous [Tiri 2007, Standaert et al. 2009, Wang et al. 2009].

Computer systems can be compromised using software attacks and/or hardware
attacks [Waksman and Sethumadhavan 2010, Karri et al. 2010]. The most obvious
threat model is time of check/time of use (TOCTOU) [Bratus et al. 2008], where there
is an interval between the time the software has been checked for integrity and
the time the software is used. During that interval, the software can be tampered
with and illegitimately modified. Other types of attacks involve taking advantage of
program vulnerabilities. Most programs usually contain vulnerabilities. Over the

3. http://www.globalpost.com/dispatch/asia/101016/stuxnet-cyber-warfare-computer-science.

http://www.globalpost.com/dispatch/asia/101016/stuxnet-cyber-warfare-computer-science

48 Chapter 3 Architecture: Heterogeneity in Design

years attackers have devised various ways to exploit vulnerabilities in programs and
transfer control to their attack code. Some of the most common types of attacks are
as follows:

Buffer overflow attacks [Cowan et al. 1998] arise due to lack of bounds checking
on the size of the input array being stored in the buffer. Attackers make
use of an unchecked buffer in a program and overwrite it with their own
data, thus allowing unintended control transfer to their own attack code.
This is also known as the “stack smashing attack” and is one of the highest
reported vulnerabilities to CERT.4 Several hardware-based solutions, like a
secure return address stack [Lee et al. 2003], using a nonexecutable stack
[Cowan et al. 1998], etc. have been proposed to thwart these attacks. Secure
languages such as Cyclone, which perform array bounds checking, have
also been proposed. As more and more applications are developed, buffer
overflow attacks still form a major share of the vulnerabilities reported.

Return-into-libc [Nergal 2001] exploits buffer overflow to overwrite the return
address with the address of a C library function such as system(). Instead
of returning into code located in the stack, control is transferred to a memory
area occupied by a dynamic library. Since it uses existing code rather than the
attacker’s shell code, a return-into-libc attack is very difficult to detect.

Code injection attacks [Kc et al. 2003] inject malicious code into a running
application and then cause the injected code to be executed. The execution
of the injected code allows the attacker to gain the privileges of the executing
program. Instruction set randomization has been proposed to counter code
injection attacks.

Replay attacks [Wheeler 2008] involve fraudulent repetition of valid data trans-
mission by an attacker. If the destination does not detect the duplicate copies
of the data being sent by the attacker, the attack is successful.

As we can see, for each type of attack there are many attempts to defend against
it. This means if we want to protect our program from, say, 10 different attacks,
we need to implement 10 different defenses! A unified security system is needed to
ensure program integrity against most, if not all, different threats.

4. http://www.cert.org defines CERT as an organization devoted to ensuring that appropriate
technology and systems management practices are used to resist attacks on networked systems
and to limit damage and ensure continuity of critical services in spite of successful attacks,
accidents, or failures. CERT is not an acronym.

http://www.cert.org

3.4 Security Challenges Facing Heterogeneous Computing 49

On the hardware side, attacks can result from a malicious piece of hardware
(called a hardware Trojan) inserted into the computer system [Waksman and Sethu-
madhavan 2010, Karri et al. 2010], or through an external attacker who takes phys-
ical possession of the system (like a laptop or desktop) [Tereshkin 2010]. Collec-
tively, hardware threats can be grouped into three categories. The first category is
the side channel attack [Karri et al. 2001, Standaert et al. 2009, Wang et al. 2009,
Tiri 2007]. This type of attack compromises the system by capturing information
about program execution, such as electromagnetic signals emitted due to compu-
tations [Fiori and Musolino 2001, Gandolfi et al. 2001], or by exploiting weaknesses
in caches and branch predictors [Aciiçmez 2007, Kong et al. 2008, Aciiçmez et al.
2010]. The second category requires physical access to the system. By gaining ac-
cess to the system, the attacker can launch attacks against encrypted disks, or make
the system boot from a compromised OS, or compromise an external device such
as the Ethernet card.5 Finally, the third category of hardware threats consists of
hardware Trojans. A hardware Trojan is a malicious circuitry, or malicious modifi-
cation of circuitry, inserted into the computer system [Jin et al. 2009, Tehranipoor
and Koushanfar 2010, Clark et al. 2009, Wang et al. 2008, Potkonjak et al. 2009].
This circuit can be inserted during any phase of the chip design and fabrication:
specification phase, design phase, validation phase, physical design phase, fabri-
cation phase, or deployment. The Trojan is typically dormant and is triggered only
after some event, such as the execution of a specific instruction sequence, or ex-
ternal signals, etc. When triggered, the Trojan can disable some hardware fences,
cause denial of service, leak information, or cause the system to malfunction. How
do we defend against all that?

Integrity checking to detect control flow anomalies at runtime involves comput-
ing a hash value of an instruction or a basic block at compile time and comparing
it with the hash value calculated at runtime [Schuette and Shen 1987, Gelbart et al.
2005, Gassend et al. 2003]. At a microarchitecture level, the instruction can be
modified to secure the system against malicious code injection [Fiskiran and Lee
2004]. This technique of course has some performance effect because it controls
the processor pipeline and does not commit the instructions in the basic block
until integrity has been checked.

For multicore processors, Orthrus [Huang et al. 2010] employs replication of
the program on multiple cores to enhance security. At runtime, these replicas ex-
ecute on different cores with the same input, and their outputs are checked for

5. http://www.theregister.co.uk/2010/11/23/network card rootkit/.

http://www.theregister.co.uk/2010/11/23/network card rootkit/

50 Chapter 3 Architecture: Heterogeneity in Design

consistency. Since it is much more difficult for an adversary to successfully com-
promise all the replicas without causing detectable divergence, the system is more
secure at the expense of efficient hardware usage. SHIELD [Patel and Parameswaran
2008] uses a dedicated security processor that monitors the applications running
on the other processors.

There are still several open questions:

. We need to ensure that the schemes used to ensure security are scalable to
large numbers of nodes.

. We need to carefully model the effect on power and performance.

. We need to extend the system to different types of accelerators.

Ensuring the security of systems is one of many factors affecting performance.
Bandwidth is another important factor.

3.5 Bandwidth
We are facing a bandwidth wall both off-chip and at higher levels (among blades,
cabinets, etc.). With a large number of cores per chip and a huge number of
processors and computing nodes in high-performance computing machines, we
expect potential performance gains but also severe performance bottlenecks: the
expected increase of bandwidth requirements.

Software applications are becoming much more sophisticated and are charac-
terized by large memory footprints. This means an increase in the number of cache
memory misses and more accesses to off-chip memory, which, in turn, puts a lot
of pressure on memory ports, memory buses, and socket pins, and severely affects
overall performance. As we go from on-chip to off-chip to on-board to blades and
all the way to cabinets, the bandwidth required is higher but the bandwidth given
by technology is lower. For instance, on-chip bandwidth is much higher than off-
chip. Solving the bandwidth problem needs different solutions at different levels.
Dealing with on-chip is different than off-chip, which is different than among com-
puting nodes, and so on, because the bandwidth requirement is different and the
technology used is different. Let’s see how we can approach the bandwidth wall at
one level: managing off-chip bandwidth. We did some experiments and we present
here some insights.

3.5.1 Adventures with Off-Chip Bandwidth
A traditional memory system, DRAM, can be optimized for latency or bandwidth
but not both. So we have latency-optimized memory for CPUs and bandwidth-

3.5 Bandwidth 51

optimized memory for GPUs—another manifestation of heterogeneity. Most of the
work related to memory systems in academia/industry focuses on managing the
interconnection network, reducing power consumption, or designing an efficient
memory system (in terms of number of cache misses). However, off-chip band-
width has always been thought of as a technological, rather than an architectural,
problem, unlike on-chip bandwidth requirements. Any cache miss leaves the po-
tential for a lot of traffic, not only for bringing the missed block but also for writing
back victimized dirty blocks (i.e., blocks chosen by the cache replacement policy to
be evicted from the cache). This bandwidth requirement affects performance, and
leads to power dissipation and a consumption increase in interconnects, off-chip
interface, memory controllers, and memory banks. Most of the current multicore
architectures use a shared on-chip last-level cache (LLC). Since off-chip traffic is
mostly generated by this on-chip LLC, this LLC needs to be bandwidth friendly
with as little hardware overhead and as little negative impact to performance as
possible. Let’s assume, for the sake of this adventure but without loss of general-
ity, that we have a multicore processor with a two-level cache hierarchy. The LLC is
level two. Let’s also assume the LLC is using least-recently-used (LRU) replacement
policy. LRU is not really used in real processors, but it is the basic algorithm from
which other, more practical, policies have emerged.

We experimented with a SPLASH-2 benchmark suite [Woo et al. 1995] on a
multicore chip of four cores.6 Figure 3.9 shows the percentage of LLC accesses for
which the LRU block of the accessed set is found dirty. We can see that, on average,
whenever the LLC (in our case, the L2 cache) is accessed, 69.5% of the time the
LRU block of the accessed set is dirty. This means a high chance of generating
writebacks, which leads to off-chip traffic. We aim at decreasing the amount of
traffic going toward the memory without increasing the traffic coming from the
memory. That is, we want to decrease the amount of data written back to off-chip
memory without increasing cache misses.

The traffic generated by the LLC is the result of the replacement policy used in
this cache. There are many excellent replacement policies available in the literature
[Jeong and Dubois 2003; Yang et al. 2005; Kharbutli and Solihin 2005; Qureshi et al.
2006, 2007; Sheikh and Kharbutli 2010; Jaleel et al. 2008, 2015]. Their main goal is to
reduce read misses, but they do not consider the effect on bandwidth requirement.

The LRU block is victimized. But what happens if we try to victimize a non-LRU
block? And why do we victimize non-LRU blocks? There is a common belief that

6. We have chosen the benchmarks with the largest memory footprint from the SPLASH-2 suite.
The input set of the benchmarks does not vary with the number of cores.

52 Chapter 3 Architecture: Heterogeneity in Design

1.0

0.8

0.6

0.4

0.2

0.0
Barnes Cholesky Fft FmmN

u
m

b
er

 o
f d

ir
ty

 L
R

U
/t

ot
al

 L
2

ac
ce

ss

Radiosity Radix Raytrace

Figure 3.9 Ratio of dirty LRU blocks to the total number of Accesses in the LLC.

non-LRU blocks are important blocks and that getting rid of them hurts perfor-
mance. This is true for an L1 cache. But is it true for an LLC? Table 3.3 provides
evidence that violating the LRU strategy, of victimizing the LRU block, at the LLC
does not always lead to severe performance loss. The table shows the total execution
time, in terms of number of cycles, of the whole execution of SPLASH-2 benchmarks
for several non-LRU schemes normalized to the LRU scheme. LRU-M means we al-
ways victimize the Mth block from the LRU stack. For an 8-way set-associative cache,
which is the one we use in this experiment, LRU-7 is the most-recently-used (MRU)
block. As we see from the table, even when we always victimize the MRU block,
the performance loss can be as little as 6%. Of course this is application depen-
dent and hardware dependent. But it is an insight that may help to direct building
future systems. This gives us an idea about what to expect if we deviate from tradi-
tional LRU. This means that the LRU stack in the LLC is no longer an LRU stack, and
does not represent recency behavior for the running multithreaded application. There
are two reasons for such a surprising behavior. First, the LLC contains blocks that
have exhausted their temporal locality at L1 (or upper-level caches in case of more
than two levels). Therefore, blocks at the LLC have less temporal locality than L1,
which makes the concept of recency at the LRU stack of the LLC less meaningful.
The second reason is that the LRU stack at the LLC is the result of interference of
LRU stacks of L1 caches (each core has its own L1 caches), so if the interference
is destructive, it no longer represents recency information for any single thread,
nor for the whole program. Different threads have their own important blocks, and
hence their own LRU stack. When these threads share a cache, the LRU stack of
that cache is not really very useful. Thus the LRU stack is a “mix” of LRU stacks of
L1 caches, which may not yield a recency order of any running thread. Sometimes

3.5 Bandwidth 53

Table 3.3 Normalized values of the number of cycles for victimizing a non-LRU block

Scheme/Bench Barnes Cholesky Fft Fmm Radiosity Radix Raytrace

LRU 1 1 1 1 1 1 1

LRU-1 1 1.03 1.01 1 1.01 1 1.02

LRU-2 1 1.06 1 1 1.01 1.04 1.06

LRU-3 1 1.15 1.01 1 1.03 1.07 1.12

LRU-4 1.02 1.23 1.01 1.03 1.03 1.09 1.21

LRU-5 1.04 1.37 1.02 1.06 1.03 1.12 1.36

LRU-6 1.13 1.55 1.04 1.12 1.05 1.18 1.63

LRU-7 1.46 1.69 1.06 1.21 1.09 1.25 2.05

this interference is constructive, which happens when there is a high percentage
of shared blocks. Programs with such constructive interference are LRU friendly,
such as Raytrace, for example, and are negatively affected by victimizing non-LRU
blocks.

Further evidence that the strict order of the LRU stack is losing its importance is
shown in Figure 3.10. The figure shows the stack hit ratios of the LRU stack for one,
four, and eight cores for some of the SPLASH-2 benchmark suite. For one core, the
result is expected and known; the majority of the hits occur at the MRU position.
But as we increase the number of cores, which in our case increases the number of
threads, the MRU block becomes less important. Are these findings of any use to
us? Let’s see.

We need to try several things. Let’s start with a simple static technique. Suppose
we have an n-way associative cache. The blocks are placed from position 1 to n with
the most-recently-used block at position 1 and the least at position n. In a regular
LRU, whenever a new block has to be placed in the cache, the block at position n

(the LRU block) is evicted. In our experiment, let’s call it modified LRU (MLRU); we
choose to victimize a clean block between LRU and LRU−M. This saves bandwidth
by retaining the dirty blocks in the cache as long as possible. If, however, all the
blocks from LRU to LRU−M are dirty, the LRU block is chosen to be evicted like
in the regular replacement policy. For example, if M = 3, the technique would look
for the first nondirty block starting from LRU to LRU−3 and victimize it. There is
one parameter for this scheme: M. This parameter designates how many blocks we
will examine to determine the victim. M = 1 is the traditional LRU since it means
that we will examine only one block, which is the LRU. M = n means we will look at

54 Chapter 3 Architecture: Heterogeneity in Design

80

60

40

20

0
MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1

1 core
4 cores
8 cores

LRU

Barnes

P
er

ce
n

ta
ge

 o
f b

lo
ck

 h
it

s
fo

r
L

R
U

 s
ta

ck

Cache blocks for 8-way set associativity

70

60

50

40

30

20

10

0
MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1 LRU

Cholesky

Cache blocks for 8-way set associativity

70

60

50

40

30

20

10

0

50

40

30

20

10

0
MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1 LRU

FFT

P
er

ce
n

ta
ge

 o
f b

lo
ck

 h
it

s
fo

r
L

R
U

 s
ta

ck

60

 50

40

30

20

10

0
MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1 LRU

FMM

Raytrace

80

60

40

20

0
MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1 LRU

Radiosity

P
er

ce
n

ta
ge

 o
f b

lo
ck

 h
it

s
fo

r
L

R
U

 s
ta

ck

MRU LRU-6 LRU-5 LRU-4 LRU-3 LRU-2 LRU-1 LRU

1 core
4 cores
8 cores

1 core
4 cores
8 cores

1 core
4 cores
8 cores

1 core
4 cores
8 cores

1 core
4 cores
8 cores

Figure 3.10 LRU stack hits for one, four, and eight cores for 8-way set associativity.

3.5 Bandwidth 55

the LRU blocks and n − 1 other blocks on top of it in the LRU stack. So for an 8-way
set-associative cache, the maximum M is 8. M is determined at design time and is
not changed afterward.

The main advantage of that static scheme is its simplicity. Once we decide on
the design parameter, M in this case, the implementation is fixed. However, deter-
mining this design parameter is usually not easy because it depends on runtime
information that is not available at design time, so it relies on designer experi-
ence and a lot of simulations. Determining M is very challenging and is application
dependent. We need a scheme where M changes dynamically, depending on the
application behavior. We can try some schemes for dynamically changing M, such
as writeback-sensitive and LRU-sensitive. Each of these schemes can either be global
(same M for the whole cache) or local (M per set). In the writeback-sensitive scheme,
when M is high, we have a higher chance of reducing traffic but also a higher chance
of affecting performance. This means that M is governed by how much traffic (write-
backs) is generated, and this traffic is generated only in the case of a cache miss at
the LLC. So in the writeback-sensitive scheme, M is incremented when there is a
writeback, to reduce off-chip traffic, and is decremented when there is a cache miss
with no writeback, to reduce performance loss. The new value of M will be used the
next time a victim is to be chosen. In the LRU-sensitive scheme, we check the LRU
block every time the cache is accessed to see whether it is dirty. If it is, then we have
potential traffic if we victimize the LRU block, so we increment M to reduce poten-
tial traffic. We decrement M whenever there is a cache miss, at the LLC, to reduce
potential performance loss. The technique works on the premise that if the LRU is
made dirty, then there are more chances of a writeback, so we increase the value of
M to check more blocks for a clean one. If, however, the application is LRU friendly,
it will result in misses and each miss would reduce the value of M, bringing it back
to 1 (LRU). Thus this scheme tries to reduce potential bandwidth. It assumes im-
plicitly that a dirty LRU will generate bandwidth. This assumption is not correct all
the time. This is why the former proposed scheme (writeback-sensitive) turns out
to be better. We will show results of these experiments shortly. But for now let’s
continue our brainstorming for reducing off-chip bandwidth by manipulating LLC
replacement policy.

In order to reduce the complexity of the hardware, compiler support can be
used. Compilers are essentially free in terms of hardware requirements. We will
use compiler-based profiling. The compiler will use one core to do only profiling.
During profiling the compiler builds a write frequency vector (WFV). WFV is just
a histogram representation of the number of writebacks at several time intervals.

56 Chapter 3 Architecture: Heterogeneity in Design

During profiling the compiler keeps a count of the number of writebacks at each in-
terval of length X. Then, based on that number, an entry of the WFV is incremented
by one. In our experiments we made the compiler check the number of writebacks
every 10,000 cycles. We have a WFV of 32 elements, where each element represents
an interval of 10. For example, if the number of writebacks in an interval is 75, it will
increment the element number 7 in the WFV. The above numbers are empirically
based on the SPLASH-2 suite but can be easily changed. After the profiling phase,
the compiler has a WFV representing a writeback distribution for the application
at hand. The following step removes noise from the WFV. We define noise as any en-
tries that are smaller than 5% of the largest value in the WFV, and we remove them.
This noise-removal step is necessary because we want our algorithms to be based
on frequent behavior, not some individual rare events. With the noise-free WFV,
we propose two algorithms: a frequency-based algorithm and a weighted-average
algorithm.

For a frequency-based algorithm, given a noise-free WFV:

. Pick the two indices for the highest and lowest numbers above the noise level

. Min = highest number of the interval represented by the lowest index

. Max = lowest number of the interval represented by the highest index

For example, if the two indices were 7 for the lowest and 20 for the highest, Min
would be 69 and Max would be 199. Min and Max represent two thresholds that
will be used at runtime. These two thresholds are given to the hardware. Every X

cycles, the hardware keeps a count of the number of writebacks from the LLC in
that interval. This count will either fall below Min, between Min and Max, or above
Max. If it is below Min, the LLC uses traditional LRU for victim selection because
it means that we have low numbers of replacements of dirty blocks and we do not
want to risk losing performance. If the number of writebacks is between Min and
Max, we use MLRU with M = associativity/2, as indicated in the previous section.
Finally, a number above Max means we have a lot of writebacks, so we use MLRU
with M = associativity.

For the weighted-average algorithm, Min and Max are used as they are in
the frequency-based algorithm, but Min is always 0 and Max is calculated as
∑32

i=0
WFVi∗midi

SUM
, where WFVi is the content of element i of the WFV vector, midi

is the midrange of element i (for example, if we are talking about element 6, it
spans range 50 to 59 with mid of 55), and SUM is the sum of all nonnoisy en-
tries of all WFVs. So in this algorithm we have only two regions: below Max (where
we use MLRU with M = associativity/2) and above Max (where we use MLRU with

3.5 Bandwidth 57

M = associativity). Max can be thought of as the weighted average of the indices
based on their entries. The hardware execution is similar to the frequency-based
algorithm above.

One last comment on the above thresholds is that they were computed through
profiling with a single core but will be used in a multicore environment. With
multicore, and hence multithreading, the traffic is expected to be higher due to the
increase in misses (coherence miss), coherence traffic, etc. So before using these
thresholds, we multiply them by the total number of cores.

We can combine compiler support with dynamic adaptation. The hardware will
start with the above thresholds but will adjust them dynamically based on the
behavior. It will keep track of the number of writes every X cycles, as indicated
above. The main difference is when an event occurs. An event is defined as a
situation where half or all the sets in the cache have dirty LRUs. Whenever this
event occurs, the counter that keeps track of dirty LRUs is reset if all the sets have
dirty LRUs, and Max is updated as follows. If the number of writes (numWRITES) at
the current time frame (which is every X cycles) is larger than the current Max, then
the newMax = numWRITES − delta/4, where delta is the difference of numWRITES
and currentMax. Min is adjusted in a way to make the difference between Min and
Max constant. The 4 does not represent the number of cores, but it means adding
to numWRITES 25% of the difference, which decreases the effect of some bursty
noisy behavior. For the weighted-average method, there is no Min.

After all these suggested techniques to reduce off-chip bandwidth traffic in a
multicore processor, what are the results we obtained?

We compare each technique by looking at the following parameters:

Number of writebacks. This is the traffic from the LLC to the memory, and it
is our measure of success.

Number of read misses. This is the traffic from the memory to the LLC. A write
miss is considered a read miss followed by a write hit.

Number of cycles. Of interest here are the total number of cycles taken by the
program till completion. So we are trying to reduce the number of writebacks
(our main measure of success) while not increasing the number of read
misses (negative side effect), and with minimal impact to the total number
of cycles.

Our first set of experiments compares traditional LRU with MLRU for different
values of M. Figure 3.11 shows the number of writebacks normalized to LRU. All
the benchmarks show a decrease in the number of writebacks. The maximum

58 Chapter 3 Architecture: Heterogeneity in Design

1.0

0.8

0.6

0.4

0.2

0.0
Barnes Cholesky Fft Fmm

N
or

m
al

iz
ed

 w
ri

te
b

ac
ks

Radiosity Radix Raytrace

LRU(M=1)
MLRU(M=2)
MLRU(M=3)
MLRU(M=4)
MLRU(M=5)
MLRU(M=6)
MLRU(M=7)
MLRU(M=8)

Figure 3.11 Normalized number of writebacks for MLRU.

reduction in writebacks is shown by Raytrace in which the writebacks are reduced
to near 0. This means that most of the writebacks for that application were for
local variables that are no longer needed or for register spills. That is, they are dead
values. Raytrace and Cholesky show a decrease of 36.8% and 93.9%, respectively.

Although we have reduced the traffic going from the LLC to off-chip, we want to
be sure that we have not increased the traffic coming from off-chip to memory. Fig-
ure 3.12 shows the normalized number of read misses for different values of M. For
most benchmarks the increase in misses is less than 15% except for Barnes, which
has an increase in misses of 56.9%. The high increase in misses of Barnes means
that it is LRU friendly and it has high temporal locality. For FFT and Cholesky we
even see a decrease in the number of misses by 16% and 14%, respectively. This
means that LRU is not always the best replacement policy, and it is better some-
times to violate LRU to gain reduction in off-chip bandwidth.

Figure 3.13 shows the total number of cycles normalized to the LRU scheme.
For three benchmarks (FFT, Cholesky, and Radix), we see an increase in perfor-
mance since the number of cycles has decreased. This is because we decreased
delay caused by bus contention and memory port contention in addition to a re-
duced miss penalty because the victim is overwritten, not written back. For the
benchmarks that have an increase in misses, we expect some performance loss.
Only three benchmarks show a decrease in performance, out of which two bench-
marks have an increase in the number of cycles less than 1%, except for Barnes,

3.5 Bandwidth 59

1.6

1.2

0.8

0.4

0.0
Barnes Cholesky Fft Fmm

N
or

m
al

iz
ed

 r
ea

d
 m

is
se

s

Radiosity Radix Raytrace

LRU(M=1)
MLRU(M=2)
MLRU(M=3)
MLRU(M=4)

MLRU(M=5)
MLRU(M=6)
MLRU(M=7)
MLRU(M=8)

Figure 3.12 Normalized number of read misses for MLRU.

1.6

1.2

0.8

0.4

0.0

Barnes Cholesky Fft Fmm

R
ed

u
ct

io
n

 in
 e

xe
cu

ti
on

 ti
m

e
(%

)

Radiosity Radix Raytrace

LRU(M=1)
MLRU(M=2)
MLRU(M=3)
MLRU(M=4)

MLRU(M=5)
MLRU(M=6)
MLRU(M=7)
MLRU(M=8)

Figure 3.13 Speedup.

which is 7.5%. By using M = 3 or M = 4, we guarantee good performance. For the
rest of the results, we use MLRU with M = 4 as our main static technique to com-
pare with other techniques. Also for the rest of the experiments, we drop FMM and
Radix due to their very low number of writebacks.

60 Chapter 3 Architecture: Heterogeneity in Design

1.6

1.2

0.8

0.4

0.0

N
or

m
al

iz
ed

 w
ri

te
b

ac
ks

Barnes Cholesky Fft Radiosity Raytrace

6

4

2

0
Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Min-max freq

Min-max weight
MLRU(M=4)

Figure 3.14 Normalized number of writebacks for four cores (left) and eight cores (right) (compiler
support and static schemes).

Let’s now add compiler support to the static scheme. Figure 3.14 shows the nor-
malized number of writebacks. We compare LRU with eager writeback
[Lee et al. 2000](a compromise between write-through and writeback), DIP [Qureshi
et al. 2007](dynamic insertion policy), our techniques using compiler support
(frequency-based and weighted-average), and MLRU with M = 4. The best three
schemes for four cores are the weighted-average, M = 4, and DIP. However, the
weighted-average becomes better as we increase the number of cores to eight,
which is a sign of good scalability. The frequency-based method does well too, but
the LRU part of it (when number of writebacks is below Min) holds it a step behind
the weighted-average. Similar behavior can be seen in the number of misses shown
in Figure 3.15. As the number of cores increases, the compiler-based weighted-
average method and static MLRU with M = 4 do much better. The proposed tech-
niques do not hurt performance, as indicated by Figure 3.16.

Raytrace is the only benchmark that suffers some performance loss. This is
because the interference at the LLC among the threads is constructive (blocks
shared by more than one core account for 99% of the blocks at the LLC), which
makes the program very sensitive to block replacement, as was indicated earlier in
Table 3.3.

Let’s now see how our dynamic techniques + compiler support behave. We ex-
perimented with the four variations of the dynamic techniques: writeback-sensitive
and LRU-sensitive, with each one using local or global M. We found that the global
scheme is better from a price-performance point of view. The gain we get from the

3.5 Bandwidth 61

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 r
ea

d
 m

is
se

s

Barnes Cholesky Fft Radiosity Raytrace Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Min-max freq

Min-max weight
MLRU(M=4)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3.15 Normalized number of read misses for four cores (left) and eight cores (right) (compiler
support and static schemes).

R
ed

u
ct

io
n

 in
 e

xe
cu

ti
on

 ti
m

e
(%

)

Barnes Cholesky Fft Radiosity Raytrace Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Min-max freq

Min-max weight
MLRU(M=4)

8

6

4

2

0

–2

8

6

4

2

0

–2

Figure 3.16 Speedup for four cores (left) and eight cores (right) (compiler support and static schemes).

local scheme does not justify the extra hardware. The writeback-sensitive technique
is better than LRU-sensitive techniques for most of the benchmarks. So we will be
using writeback-sensitive with global M as our dynamic technique (we will call it
dynamic M). Figure 3.17 compares the total number of writebacks normalized to
LRU. The weighted-average and dynamic M schemes are the best on average. This

62 Chapter 3 Architecture: Heterogeneity in Design

N
or

m
al

iz
ed

 w
ri

te
b

ac
ks

Barnes Cholesky Fft Radiosity Raytrace Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Dyn-min-max freq

Dyn-min-max weight
Dyn MLRU

1.5

1.0

0.5

0.0

1.00

0.10

0.01

Figure 3.17 Normalized number of writebacks for four cores (left) and eight cores (right) (compiler
support and dynamic schemes).

means that they are the most accurate at capturing block behavior. The LRU compo-
nent of the frequency-based scheme affects its ability to save on off-chip bandwidth.

Figure 3.18 compares the same techniques in terms of read misses. With the
exception of Barnes, dynamic M and weighted-average methods are the best on
average, together with DIP. To understand the behavior of Barnes, it is important
to see the number of dirty blocks it has. Figure 3.19 shows the percentage of dirty
blocks to the total number of blocks at the LLC for Barnes over time. There are
phases where this program has 80% of its blocks dirty. This causes M to be very
high, which increases the likelihood of discarding an important block, because
high values of M affect Barnes performance, as indicated by Table 3.3 earlier. This
also explains the speedup (and slowdown) shown in Figure 3.20.

What is the moral of the story? We can see from all the above that

. Bandwidth is a performance bottleneck and a big challenge.

. We are using a very diverse set of applications with different requirements,
another source of heterogeneity.

. It is very challenging to deal with bandwidth without affecting other factors
like performance.

. The problem becomes more challenging as the number of cores and threads
increases.

3.5 Bandwidth 63
N

or
m

al
iz

ed
 r

ea
d

 m
is

se
s

Barnes Cholesky Fft Radiosity Raytrace Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Dyn-min-max freq

Dyn-min-max weight
Dyn MLRU

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

Figure 3.18 Normalized number of read misses for four cores (left) and eight cores (right) (compiler
support and dynamic schemes).

80

60

40

20

0
0 1e+08 2e+08 3e+08

Barnes

Cycleses
4e+08 5e+08 6e+08

P
er

ce
n

ta
ge

 o
f d

ir
ty

 b
lo

ck
s

to
 to

ta
l b

lo
ck

s

Figure 3.19 Percentage of dirty blocks to total blocks for Barnes.

All of those scenarios were for off-chip bandwidth. Once we are off-chip, we
need to deal with bandwidth at higher granularities: among chips on-board, among
boards in blades, among blades in cabinets, and among cabinets.

64 Chapter 3 Architecture: Heterogeneity in Design

R
ed

u
ct

io
n

 in
 e

xe
cu

ti
on

 ti
m

e
(%

)

Barnes Cholesky Fft Radiosity Raytrace Barnes Cholesky Fft Radiosity Raytrace

LRU
EWB

DIP
Dyn-min-max freq

Dyn-min-max weight
Dyn MLRU

6

4

2

0

–2

–4

–6

–8

15

10

5

0

–5

Figure 3.20 Speedup for four cores (left) and eight cores (right) (compiler support and dynamic
schemes).

3.5.2 What About Bandwidth Walls at Other Levels?
At a higher level of granularity, dealing with bandwidth depends on several factors.
One factor is the implementation, which consists of the technology used (copper vs
optical) and the protocol and signaling used, as we discussed earlier in this chapter.
Another very important factor is data locality. As you may have guessed, this means
structuring your parallel program so that processes (or threads) have the data they
need near where they execute. This reduces the need for frequent data movement,
and this is a big advantage by itself. Energy efficiency of wires is not improving, and
computation cost is much lower than communication cost.

Data locality depends mainly on the programmer. The compiler and OS can have
a role, but the programmer knows the program well and can structure it accord-
ingly. The main issue here is that this complicates the task of the programmer and
affects productivity. Therefore, data locality abstraction is a need. Data locality ab-
straction is a way of expressing computations so that information about proximity
of data can be communicated to an optimizing software stack [Unat et al. 2017]. The
abstraction takes several forms: libraries, data structures, languages, or runtime.
Other tools that can help in data abstraction are debuggers, profilers, and of course
compilers. If done well, and it is still an ongoing task, data locality abstraction
will boost programmers’ productivity and will be a big step toward performance
portability.

3.6 In Conclusion 65

Compilers currently have some kind of abstraction in parallel languages. Some
have local data by default (e.g., MPI), some have global data by default (e.g., PGAS
languages), and some do not expose anything to the programmer (e.g., OpenMP).
PGAS are easier to adopt but harder to get performance easily.

In order to have runtime support for data locality abstraction, we need to have
two models: an application model and an architecture model. The application
model consists of a set of metrics that presents the application’s behavior, for
example, an affinity graph. This is still an active research topic. The architecture
model encompasses computation nodes and their heterogeneity, communication
cost, and memory access cost. Using these two models, the runtime can optimize
data movement with minimum effort on the part of the programmer.

3.6 In Conclusion
In this chapter we went from inside the chip to the system level. We saw how to inte-
grate several chips to make a big machine. The design manifests itself in different
forms: the type of computing nodes, the interconnection, and the memory hierar-
chy. In very large machines, such as supercomputers, the interconnect is usually
implemented at several levels: within a chip, within nodes, within blades, within
cabinets, and among cabinets. These levels of interconnect introduce a severe
level of heterogeneity in data movement latency, not to mention the heterogeneity
in number-crunching performance introduced by the different computing nodes.
How to program those types of heterogeneous machines? This is the topic of the
next chapter.

4Programmability

One of the main success factors of a hardware design is its programmability. No
matter how fast or power efficient the designed machine is, if it is not easy to
program, it has high chances of failure. The Cell processor is a good example of
that, even though there are some other factors that contributed to its failure, but
programmability is for sure an important factor.

This chapter discusses the issue of programmability. What do programmers
want? What do we currently have in terms of programmability of heterogeneous
systems? Can we do better?

4.1 Wish List of a Programmer
If you ask programmers from different domains and expertise about what they wish
to have from a perfect programming language, most probably each programmer
will start thinking a bit, then give you an ad hoc list. If you look at the lists from
different programmers, you will find many conflicting requirements. So you come
to the conclusion that there is no such thing as a perfect programming language.
However, we can find new programming languages created every several months!
Which is an indication that there is a lot to be desired from programming lan-
guages. But didn’t we get enough expertise in the last seven decades to design a
perfect programming language? The answer brings up more questions: Perfect for
what? And executing on what? Over the last several decades the types of machines
on which we execute our programs have changed dramatically. So, too, have the
types of applications. So a perfect programming language is really a moving target
because it depends on the application at hand, the type of machine executing the
application, and the mentality of the programmer.

Usually, the need for a new programming model arises at inflection points in
computing history: for example, VLIW, the move to multicore, exascale comput-
ing, quantum computing, the Internet of Things (IoT), and, of course, the rise of
heterogeneous computing.

68 Chapter 4 Programmability

If we can have a short list for what programmers wish from a perfect program-
ming language (list not exhaustive by any means), we can say the following:

. Programmers need to be productive. This short time-to-market puts a lot of
stress on programmers. Stress means more bugs. More bugs mean delay,
which increases the stress. So productivity is important. There have been
many studies about productivity of programming languages [Cantonnet et al.
2004, Billingsley et al. 2010]. The hard question is how to measure productiv-
ity. Researchers have tried different things, like the number of lines of code,
number of keywords, number of characters, etc. Each measurement has its
own pros and cons.

. Related to the previous point, a language needs to have a good set of libraries
built for it so that programmers do not need to reinvent the wheel or do many
low-level tweaks. This increases programmers’ productivity.

. Professional programmers like to have full control (e.g., assigning threads
to cores, reducing or increasing the voltage and frequency). Some languages
provide APIs for this lower-level control. But this comes at the expense of
productivity.

. Programming languages must ensure portability. This may come at the ex-
pense of full control because you may tweak your code and use as much
optimization as possible to get the best performance on a specific machine.
If you try to execute the code on a machine with different characteristics (e.g.,
caches with different block sizes or associativity, or different types of inter-
connection), then you may not get the expected performance or you may even
get slowdown. Virtualization comes to the rescue in these circumstances, but
at the expense of performance loss due to overhead.

. The programming language must ensure a homogeneous look at the envi-
ronment. Heterogeneity is hard. If the language hides much of the underly-
ing heterogeneity from you, things will be easier but at the expense of full
control.

. Programmers wish that the language and its associated runtime give the
highest performance. The runtime of the language must then have low over-
head and smart dynamic optimizations.

Suppose we, magically, designed a programming language with the above char-
acteristics. Will this help all programmers with their code? The answer depends
on psychology.

4.2 Psychology of Programming 69

4.2 Psychology of Programming
The term psychology of programming is used to designate the field that studies
the psychological aspects of writing programs. We do not want to go deep into
psychology here. But in this section we try to extract some aspects that designate
expert programmers and use them to come up with a list of programming language
characteristics that can help programmers do their job well. Then we use this
information to update/refine the list we made in Section 4.1.

In the book Psychology of Programming edited by Hoc [1990], there is an in-
teresting chapter titled “Expert Programmers and Programming Languages” by
Marian Petre about how expert programmers use programming languages. One of
the things mentioned in that chapter is that experts represent programs in terms
of semantic structure, unlike novices who think syntactically. I can personally con-
firm this too, when I teach undergraduate students versus graduate students (or
strong undergrad students). Average undergrad students, especially in freshman or
sophomore classes, tend to concentrate more on the syntax of the language than the
philosophy of the language or the way of thinking using the underlying program-
ming model. The chapter also mentions that experts spend more time planning.
Let me stop at this planning thing to discuss an important point: picking the right
algorithm, as things have changed a lot lately.

Let’s take the big-O notation in algorithm analysis. Our students learn how to
analyze algorithms and pick or design algorithms based on the asymptotic behavior
of computations of the worst-case scenario, also known as the big-O notation.
Is this the best way to analyze algorithms, with the machines we have now? You
can optimize your algorithm to have lower complexity, that is, a lower amount of
computation. But this may come at the expense of data movement (communication
overhead) and memory access. Communication and memory access are way more
expensive than computations today. This means you can find that an algorithm of
O(n log n) can be slower than another one of O(n2). The moral of this example, and
also pointed out in the aforementioned book, is that expert programmers think at
different levels.

Expert programmers want the ability to think in abstract form, in high-level
constructs, and also the ability to manipulate the hardware. That is, as the book
mentions, they need to choose their grain of focus at different times. This is how
they are productive. A programming language needs to provide that. One of the
main reasons programmers may need to have control over low-level details is to
be able to predict the behavior and control of their programs. If a programmer
thinks only in terms of algorithm and language syntax but knows nothing about
the cache hierarchy, cache organization, the interconnect, whether the processor

70 Chapter 4 Programmability

has superscalar capability and out of order execution, whether each core supports
multiple threads, etc., then the programmer will be in total darkness when it
comes to performance. If power efficiency is added to the list, then the programmer
may want control over the frequency and voltage of each core. If reliability comes
into question, then more hardware details must be revealed. For instance, shall
transient errors be exposed to the programmer? Or dealt with under the hood,
especially in supercomputers and large datacenters?

It should be noted that we are talking about expert programmers, designing and
writing programs for heterogeneous parallel machines to get the best performance
per watt. So applications that don’t have this requirement can just use program-
ming languages that protect the programmer from low-level details, for the sake
of productivity. In that case productivity means finishing your programming task
fast, and not having to worry about performance, power, reliability, etc.

But shall we disregard productivity even for high performance? Definitely not,
because there is an economic angle here that involves time-to-market, customer
satisfaction, etc. The point is to have a programming language that can give the
programmer the ability to think and implement at a high level, as well as the ability
to think and act on the low-level details. As languages mature and more versatile
application pools arise, programmers build more libraries, and levels of abstraction
are built to make things easier from a productivity perspective.

Given all the above, we can now modify the list from Section 4.1 to be as follows.
The wish list of programming language characteristics for expert programmers:

. Programmers need to be productive. But productivity here does not only
mean finishing your programming task fast. It means finishing it on time
and fulfilling the requirements of performance, power, reliability, etc. For
this to happen, the programmer needs to be able to access low-level details,
when needed, and high-level structures alike. A good programming language
must provide both.

. Programming languages must ensure portability. Your program may need
to be deployed on machines with different characteristics in terms of num-
ber and type of computing elements, memory hierarchy, and so on. There
are several strategies to deal with this. The first is for the language to provide
high-level constructs and let the runtime deal with the low-level details. Many
#pragma-based languages (OpenMP, OpenACC, etc.) took this route. How-
ever, this comes at the expense of some control revoked from the program-
mer, at different degrees depending on the language. The second route is to
bare it all to the programmer to write extra code to detect the underlying sys-

4.3 What Do We Have? The Current Status Quo 71

tem settings and, based on that, use different functions/libraries/algorithms.
The third strategy is to modify the code on the fly, using techniques like con-
tinuous compilation [Childers et al. 2003] or binary optimization [Hazelwood
2011]. The holy grail of high-performance computing, though, is perfor-
mance portability. Of course if your program runs on a weaker machine, you
will see performance degradation. But if it runs on a comparable machine
but with different settings (different interconnect, for example), you must
see close performance.

. The programming language must ensure a homogeneous look at the envi-
ronment. If we relate this to the first point on our list, then the correct thing
is for the language to give a homogeneous look at the environment but give
more details, that is, heterogeneity is revealed, if the programmer needs to
make low-level modifications.

. Runtime of the system must have low overhead. This item is unchanged from
our previous list.

Now that we are done with our wish list, let’s come back to real life. Are we even
close to having such a language? What do we have now?

4.3 What Do We Have? The Current Status Quo
There are several parallel programming models around. For each model there are
several implementations (i.e., several programming languages). The implementa-
tion can be either a totally new language or additions to languages through pragmas
or libraries. In this section we take a quick tour of some parallel programming
paradigms that target heterogeneous systems.

To make the comparison easier, we will use a simple example that is embar-
rassingly parallel as our running example, a simple vector addition. The sequential
version of it is shown in Listing 4.1. To concentrate on the parallelism part, we
neglect any error checking/handling in the code shown in this chapter. The two
functions get_the_data() and process_array() populate the two arrays A and B with
data and process the resulting array C. Their source code is not shown here as it
is not important to our discussion. You may wonder why vector addition is suit-
able for heterogeneous systems and not traditional homogeneous systems. If the
number of elements in the two vectors to be added is small (e.g., a few thousand),
then a few homogeneous cores are enough. Once the two vectors become huge (e.g.,
millions or billions), then we need accelerators like GPUs or many-core chips like
Xeon Phi, for example, to finish the computations fast. If the data in these vectors

72 Chapter 4 Programmability

Listing 4.1 Serial version of vector addition

1 #include <stdio.h>

2

3 #define N 1000000

4

5 int main()

6 {

7 int * A;

8 int * B;

9 int * C;

10

11 int i;

12

13 A = (int *)malloc(N*sieof(int));

14 B = (int *)malloc(N*sieof(int));

15 C = (int *)malloc(N*sieof(int));

16

17 get_the_data(A, B); //Fill the two arrays

18

19 for(i = 0; i < N; i++)

20 C[i] = A[i] + B[i];

21

22 process_array(C);

23

24 free(A);

25 free(B);

26 free(C);

27

28 return 0;

29 }

are generated in real time (i.e., streamed) and we need to process them on the spot,
then something like FPGAs are suitable for the job. Now, let’s dive into our chosen
paradigms.

4.3.1 MPI
MPI1 is a de facto programming model for distributed memory architectures, chal-
lenged only with PGAS (partitioned global address space) models. MPI is just a
library and set of APIs used on top of common languages like C/C++ and Fortran.

1. https://www.open-mpi.org/

4.3 What Do We Have? The Current Status Quo 73

You don’t want to use Java or Python on a distributed memory system, do you? We
are talking about performance here! With MPI several processes are created, using
the command line by the user. Since we are talking about processes, then it means
each process has its own address space. Nevertheless, these processes need to ex-
change data as they are solving the same problem. Data values are exchanged using
messages, hence the name MPI (message passing interface). Listing 4.2 shows the
MPI version of vector addition. It seems longer, much longer, than the sequential
version! As we will shortly see, it is just for setting the stage.

All the created processes execute the same code. In order to avoid redundant
computations, we must ensure that each process works on different parts of the
problem or does different tasks. To do that, MPI groups processes into something
called a communicator. By default, all created processes are inside one default com-
municator called MPI_COMM_World. You can create different groups from this
communicator and/or split the communicator if you want. Inside each communi-
cator in our example, we just keep the default communicator. Each process has
a unique ID, called a rank. Line 14 in the listing just initializes the MPI runtime
system and passes to it the arguments of the main() function, if any. Lines 15 and
16 let each process get its rank and the size of the default communicator. That is,
after executing lines 15 and 16, each process will know its rank, stored in a variable
with the same name, and the variable size will have the total number of processes
created. Line 48 closes the MPI runtime. You cannot use any API from MPI after
line 48. Your program may continue execution as a single process executing C (or
C++ or Fortran). By using the rank in an if-condition, you can make each process
do different things from each other. Here, the master process, the one with rank 0,
dynamically allocates three arrays: A, B, and C. It also populates arrays A and B with
data. This is done only by process 0 because of the if-condition in line 22. All the
processes, including the master process, dynamically allocate three other arrays,
of smaller sizes, called local_a, local_b, and local_c. This is shown in lines 23, 24,
and 25.

Because sending messages is very expensive and MPI is usually used in big
machines with distributed and large numbers of computing nodes, we use it when
the problem size is really huge. Otherwise, we will lose the performance we gained
from parallelism due to the overhead of communication. We are using small array
sizes in the example of Listing 4.2 just for simplicity. But in real situations, if N
is just one million, as in our example here, then MPI is a bad choice. MPI allows
two processes to communicate through MPI_Send() and MPI_Receive(). Each send
must have a corresponding receive or else you may reach a deadlock because those
APIs are usually blocking. That is, MPI_Receive(), when called by a process, blocks

74 Chapter 4 Programmability

Listing 4.2 MPI version of vector addition

1 #include <stdio.h>

2 #include <mpi.h>

3

4 #define N 1000000

5

6 int main()

7 {

8 int * A, * B, * C;

9 int * local_A, * local_B, * local_C;

10 int i;

11 int size; // the communicator

12 int rank; // the process

13

14 MPI_Init(NULL, NULL);

15 MPI_Comm_size(MPI_COMM_WORLD, &size);

16 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

17

18 local_A = (int *)malloc(ceil(N/size)*sizeof(int));

19 local_B = (int *)malloc(ceil(N/size)*sizeof(int));

20 local_C = (int *)malloc(ceil(N/size)*sizeof(int));

21

22 if(rank == 0){

23 A = (int *)malloc(N*sizeof(int));

24 B = (int *)malloc(N*sizeof(int));

25 C = (int *)malloc(N*sizeof(int));

26 get_the_data(A, B); //Fill the two arrays

27 MPI_Scatter(A, N/size, MPI_INT,

28 local_A, N/size, MPI_INT, 0, MPI_COMM_WORLD);

29 MPI_Scatter(B, N/size, MPI_INT,

30 local_B, N/size, MPI_INT, 0, MPI_COMM_WORLD);

31 }

32

33 for(i = 0 ; i < N/size; i++)

34 local_C[i] = local_A[i] + local_B[i];

35

36 MPI_Gather(local_C, N/size, MPI_INT,

37 C, N/size, MPI_INT, 0, MPI_COMM_WORLD);

38

39 if(rank == 0) {

40 process_array(C);

41 free(A);

42 free(B);

43 free(C);

44 }

45

46 free(local_A); free(local_B); free(local_C);

47

48 MPI_Finalize();

49

50 return 0;

51 }

4.3 What Do We Have? The Current Status Quo 75

Process 0 0 1 2

Process 0 0 1 2

3 4 5 6 7 8

Process 1

Process 2

3 4 5

6 7 8

Figure 4.1 A Scatter operation in MPI.

this process till it receives the data from the corresponding MPI_Send(). But in our
example here we don’t want this one-to-one communication. We need collective
communication among processes because it is cheaper than sending one-to-one
messages. So the master process takes arrays A and B, cuts them into pieces of
equal sizes, and scatters them to the other arrays including itself. This is what
happens in lines 27–30. Figure 4.1 shows how the scatter is performed. Let’s look at
one scatter operation and explain it. MPI_Scatter(A, N/size, MPI_INT, local_

A, N/size, MPI_INT, 0, MPI_COMM_WORLD) means take the array A from process
0, divide it into chunks of N/size elements, and give those chunks to processes
based on their ranks. That is, process 0 takes the first N/size, process 1 takes the
next chunk, etc. The receiving processes, including the master process, store those
chunks into another array local_A. This API is collective, which means all processes
must call it or else the program will hang with a deadlock. Each process will do the
additions of its chunk (lines 33 and 34). We have parallelism here because all the
chunks are added in parallel by the different processes. The following step is to
gather all these chunks and put them back into the original array C at the address
space of process with rank 0 (line 36). Remember that arrays A, B, and C exist only
in the address space process 0 (look at lines 23–25). Therefore, only process 0 must
free those arrays (lines 39–44). But the local arrays local_a, local_b, and local_c have
been allocated by all processes, and hence must be freed by all of them (line 46).

MPI can be used with shared memory models like OpenMP or with accelerator
languages like CUDA. A process can offload part of its code to a GPU, for example.
MPI also allows you to map processes to cores (affinity). It is an easy-to-grasp
language. You can have a parallel program ready to execute from a sequential one
with just a few extra lines, but you have to manage communication by hand.

76 Chapter 4 Programmability

4.3.2 OpenMP
Whereas MPI deals with distributed memory, OpenMP2(Open Multiprocessing) is
gaining popularity in shared memory architectures. Here we are talking about one
process executed in parallel using threads sharing the whole address space. These
threads share the heap, text, and data, but each thread has its own stack. It is also a
library on top of many common languages and is based on pragmas. A quick look
at Listing 4.3 reveals that it does not require a lot of stage setting like MPI. Actually,
the main difference between the sequential version and the OpenMP version is line
20! This line, simply speaking, tells the OpenMP runtime to generate M threads.
The number of iterations of the for-loops (OpenMP works only with for-loops, not
while nor do-while) are divided among those M threads. There are several remarks
here.

. The number of M threads can be determined by the programmers or the
runtime.

. OpenMP does not check for dependencies among iterations. It is the job of
the programmer to manage the dependencies and any critical sections that
may exist.

. If the work in each loop iteration depends on the loop index, then dividing
the iterations evenly among threads may lead to a load imbalance problem.
OpenMP gives the programmer the ability to assign loops dynamically (called
schedule) to threads, depending on some criteria (such as when a thread
finishes x iterations, it can take more).

. Even though OpenMP was created to parallelize loops, it can also assign
different tasks to threads in parallel (called tasks and sections in OpenMP
parlance).

. OpenMP gives the programmer the ability to make some variables shared
among all threads and make others private, overriding the default.

The program in Listing 4.3 starts with one process and one thread of execution.
That thread executes everything till line 19. The pragma at line 20 forks M processes.
Each process will execute a subset of the loop iterations, as we said before. Since
in this code the programmer did not indicate the number of threads, then it is
up to the runtime to determine it. In most OpenMP implementations, the default
number of threads will be the number of cores. The pragma applies only to the

2. https://www.openmp.org/

4.3 What Do We Have? The Current Status Quo 77

Listing 4.3 OpenMP version of vector addition

1 #include <stdio.h>

2 #include <omp.h>

3

4 #define N 1000000

5

6 int main()

7 {

8 int * A;

9 int * B;

10 int * C;

11

12 int i;

13

14 A = (int *)malloc(N*sizeof(int));

15 B = (int *)malloc(N*sizeof(int));

16 C = (int *)malloc(N*sizeof(int));

17

18 get_the_data(A, B); //Fill the two arrays

19

20 #pragma omp parallel for

21 for(i = 0 ; i < N; i++)

22 C[i] = A[i] + B[i];

23

24 process_array(C);

25

26 free(A);

27 free(B);

28 free(C);

29

30 return 0;

31 }

following structured piece of code. In our case here, it is the for-loop. Starting from
line 24, we are back to one thread of execution.

Starting with version 4.0, OpenMP can now offload tasks to accelerators like
GPUs and FPGAs [der Pas et al. 2017]. This is done with a modifier, called target,
added to the #pragma. Due to its simplicity and its support for accelerators, hence
heterogeneous architecture, OpenMP has gained wider popularity recently. It can
be used in tandem with MPI if we have multisocket boards (i.e., nodes), or even a
single-socket board with a multicore processor connected together. The processors

78 Chapter 4 Programmability

F
O
R
K

rank0
OpenMP

Processes
MPI

{parallel region}

Master
thread

{parallel region}

J
O
I
N

F
O
R
K

J
O
I
N

F
O
R
K

rank1
OpenMP

{parallel region}

Master
thread

{parallel region}

J
O
I
N

F
O
R
K

J
O
I
N

F
O
R
K

rank2
OpenMP

{parallel region}

Master
thread

{parallel region}

J
O
I
N

F
O
R
K

J
O
I
N

Figure 4.2 Hybrid MPI + OpenMP.

on the board are sharing memory, thus OpenMP. Across boards is distributed
memory, thus MPI. This hybrid combination is shown in Figure 4.2. In MPI you
explicitly manage communication. In OpenMP communication is implicit, which
is easier from a programming perspective but harder to debug and profile.

OpenMP enjoys a very active community and is gaining more and more popu-
larity. Recently, OpenMP started supporting accelerators too.

4.3.3 OpenCL
Open Computing Language (OpenCL)3 was developed by a consortium of many
companies, initiated by Apple and maintained by the Khronos Group [Kaeli et al.
2015]. OpenCL is designed with several goals in mind.

. Maximize portability by minimizing burden on vendors. Take a look at the
list of companies in the OpenCL consortium!

. Use all computation resources. (So it is designed with heterogeneous com-
puting in mind.)

3. https://www.khronos.org/opencl/

4.3 What Do We Have? The Current Status Quo 79

. Drive future hardware requirements.

. Abstract underlying parallelism.

The first requirement makes the host code very tedious, as you can see from
Listing 4.4. In order to minimize the burden on vendors, you have to move that
burden to the programmer and/or the runtime. Setting the stage here is sophis-
ticated. The second requirement is more or less fulfilled and growing. The third
requirement, to the best of my knowledge, is not fulfilled yet, at least not at full
scale. The fourth requirement is materialized at the expense of control to the pro-
grammer. OpenCL is C-based with a rich library of APIs. It is also a data-parallel
language, Single Program Multiple Data (SPMD).

The programming model consists of one host and one or more compute de-
vices. Each compute device consists of one or more compute units. Each compute
unit consists of one or more processing elements, as shown in Figure 4.3. This de-
scription can be mapped to a wide range of accelerators. As you can see, we did not
mention the name of any accelerator (GPU, CPU, etc.), which is the philosophy of
OpenCL. See the fourth requirement above.

The host program has some parts that are executed in parallel by the other com-
putation devices. Those parts are called kernels. All processing elements execute the
same kernel with different data, hence SPMD. Work items are grouped into work
groups. So we can say that the OpenCL kernel is the basic unit of parallel code that
can be executed on a target compute device. You decide how many work groups and
how many work items per work group. Even though all work items in all work groups
are executing the same kernel, work items in the same group can synchronize to-
gether. It is much cheaper to organize it like this because to be able to synchronize
a huge number of work items would be prohibitively expensive in hardware imple-
mentation. This is why we see in GPUs, for example, execution units (streaming
processors (SPs) or CUDA cores), that are grouped together as streaming multi-
processors (SMs). Threads executed by SPs within the same SM can synchronize
together and exchange data faster.

Because OpenCL is designed by a consortium of many companies, there are
many implementations of it. Each implementation is called a platform (line 35 in
Listing 4.4). All platforms follow the standard of OpenCL, of course. But, as with
any programming language standard, there are open issues. We saw in OpenMP,
for example, that not specifying the number of threads in a parallel section leaves
it to the runtime. What the runtime does is implementation dependent. Here also,
there are open issues and they are implementation dependent. That is, they are
platform dependent.

80 Chapter 4 Programmability

Listing 4.4 OpenCL version of vector addition

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <CL/cl.h>

4

5 #define N 1000000

6 #define SOURCE_SIZE 100000000

7

8 int main()

9 {

10 int * A, * B, * C;

11 int i;

12

13 A = (int *)malloc(N*sizeof(int));

14 B = (int *)malloc(N*sizeof(int));

15 C = (int *)malloc(N*sizeof(int));

16

17 get_the_data(A, B); //Fill the two arrays

18

19 // Load the kernel source code into the array source_str

20 FILE *fp;

21 char *source_str;

22 size_t source_size;

23

24 //Read source code

25 fp = fopen("add.cl", "r");

26 source_str = (char*)malloc(MAX_SOURCE_SIZE);

27 source_size = fread(source_str, 1, SOURCE_SIZE, fp);

28 fclose(fp);

29

30 // Get platform and device information

31 cl_platform_id platform_id = NULL;

32 cl_device_id device_id = NULL;

33 cl_uint ret_num_devices;

34 cl_uint ret_num_platforms;

35 cl_int ret = clGetPlatformIDs(1, &platform_id, &ret_num_platforms);

36 ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1,

37 &device_id, &ret_num_devices);

38

39 // Create an OpenCL context

40 cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret);

41

42 // Create a command queue

43 cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret);

44

45 // Create memory buffers on the device for each vector

46 cl_mem a_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,

47 N * sizeof(int), NULL, &ret);

48 cl_mem b_mem = clCreateBuffer(context, CL_MEM_READ_ONLY,

49 N * sizeof(int), NULL, &ret);

50 cl_mem c_mem = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

51 N * sizeof(int), NULL, &ret);

4.3 What Do We Have? The Current Status Quo 81

Listing 4.4 (continued)

53 // Copy the lists A and B to their respective memory buffers

54 ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0,

55 N * sizeof(int), A, 0, NULL, NULL);

56 ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0,

57 N * sizeof(int), B, 0, NULL, NULL);

58

59 // Create a program from the kernel source

60 cl_program program = clCreateProgramWithSource(context, 1,

61 (const char **)&source_str, (const size_t *)&source_size, &ret);

62

63 // Build the program

64 ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL);

65

66 // Create the OpenCL kernel

67 cl_kernel kernel = clCreateKernel(program, "vector_add", &ret);

68

69 // Set the arguments of the kernel

70 ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_mem);

71 ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem);

72 ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&c_mem);

73

74 // Execute the OpenCL kernel on the list

75 size_t global_item_size = N; // Process the entire list

76 size_t local_item_size = 100; //Divide work items into groups of 100

77 ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,

78 &global_item_size, &local_item_size, 0, NULL, NULL);

79

80 // Read the memory buffer C on the device to the local variable C

81 int *C = (int*)malloc(sizeof(int)*N);

82 ret = clEnqueueReadBuffer(command_queue, c_mem, CL_TRUE, 0,

83 N * sizeof(int), C, 0, NULL, NULL);

84

85 process_array(C);

86

87 // Clean up

88 ret = clFlush(command_queue);

89 ret = clFinish(command_queue);

90 ret = clReleaseKernel(kernel);

91 ret = clReleaseProgram(program);

92 ret = clReleaseMemObject(a_mem);

93 ret = clReleaseMemObject(b_mem);

94 ret = clReleaseMemObject(c_mem);

95 ret = clReleaseCommandQueue(command_queue);

96 ret = clReleaseContext(context);

97

98 free(A); free(B); free(C);

99

100 return 0;

101 }

82 Chapter 4 Programmability

Compute
unit 0

Compute
device 0

Compute
device 1

PE0

Host

Compute
unit 1

Compute
unit 0

Compute
unit 1

Compute
unit 2

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE0

PE1

PE3

Work item

Work item

Kernel is the code
for work item.

OpenCL runs on host,
which submits work
to compute devices.

Figure 4.3 The OpenCL view of parallelism.

Once you pick a platform, in case your system has several, you need to see
which devices are attached (line 36). OpenCL recognizes CPUs, GPUs, FPGAs, and
generic accelerators. The next step is to set the stage for executing a program on that
platform. Setting the stage for a program is called setting the context (line 40). Then
you create a command queue from the host to each device (line 43). A command
queue is a channel of communication by which the host can send commands to a
device. This command can be data transfer, kernel execution, etc. Even though it is
called a queue, you can set it up such that commands can be executed out of order,
in order, or something in between by setting up dependencies.

Because OpenCL wants to have higher portability with less burden to vendors,
it has its own generic memory objects: buffers and images. In the example of
Listing 4.4, we use only buffers (lines 46–51); then we include commands in the
command queues to move the arrays A and B into these buffers (lines 54–57).

Then comes the most tedious part, which is the designation of the kernel and
executing it on the computation device. The kernel can be loaded from a separate

4.3 What Do We Have? The Current Status Quo 83

Listing 4.5 OpenCL kernel version of vector addition

1 __kernel void vector_add(

2 __global int *A,

3 __global int *B,

4 __global int *C) {

5

6 // Get the index of the current element

7 int i = get_global_id(0);

8

9 C[i] = A[i] + B[i];

10 }

source code file (lines 24–28 load the source code of Listing 4.5 into a string). The
next step is to create a program (line 60) and build the program (line 64). If the
program in the source code has several kernels (in our example here it has only one
kernel), then you need to do the create kernel step (line 67) for each. This compiles
the kernel for the computation device used. Lines 70–72 specify the arguments for
that kernel. You need an API call for each argument. Finally, we are ready to execute
the kernel. To specify work groups and work items, we use what is called NDRange
(lines 75–78). At the end, you bring the data back to the host (lines 82–83) and clean
up (lines 88–98). For the sake of portability and usage with wider computing devices,
OpenCL had to sacrifice some programmer productivity and some programmer
control. If you have an Intel processor with multicore and embedded GPU as well
as a discrete NVIDIA GPU, then OpenCL can be used to execute on all of them in
parallel.

4.3.4 OpenACC
OpenACC,4 or open accelerators, is designed, like OpenMP, to make using
accelerators easy for most programmers [Chandrasekaran and Juckeland 2018].
It follows the same philosophy as OpenMP. This group of libraries is relatively
new, announced at the annual international supercomputing conference held in
2011. A quick look at Listing 4.6 clearly shows that ease of programming is one of
the goals. Programmers can write a sequential version and then annotate it with
OpenCL #pragmas. Alas, ease of programming always comes at the expense of
more control revoked from the programmer. The loop is parallelized in a way sim-
ilar to OpenMP and in a philosophy similar to OpenCL. The loop iterations are

4. https://www.openacc.org/

84 Chapter 4 Programmability

Listing 4.6 OpenACC version of vector addition

1 #include <stdio.h>

2

3 #define N 1000000

4

5 int main()

6 {

7 int * A;

8 int * B;

9 int * C;

10 int i;

11

12 A = (int *)malloc(N*sizeof(int));

13 B = (int *)malloc(N*sizeof(int));

14 C = (int *)malloc(N*sizeof(int));

15

16 get_the_data(A, B); //Fill the two arrays

17

18 #pragma acc parallel loop \

19 copyin(A[0:N-1]) copyin(B[0:N-1]) copyout(C[0:N-1])

20

21 for(i = 0 ; i < N; i++)

22 C[i] = A[i] + B[i];

23

24 process_array(C);

25

26 free(A);

27 free(B);

28 free(C);

29

30 return 0;

31 }

distributed among workers grouped into gangs. You specify the number of gangs
and number of workers or you leave it to the runtime, as we did in this example.
OpenACC allows for a third level of parallelism (besides gangs and workers) called
vectors.

4.3.5 CUDA
With GPUs becoming widely used in many applications that are nongraphic, GPU-
related languages are becoming widely adopted. Compute unified device architec-

4.3 What Do We Have? The Current Status Quo 85

ture (CUDA)5 is by far one of the most mature and widely adopted languages for
using GPUs, especially those from NVIDIA. It was born in 2006, developed and
maintained by NVIDIA. Following the same philosophy as OpenCL, a kernel is of-
floaded from the host to the device (i.e., the GPU). That kernel is executed by a
grid that is composed of a group of blocks. Each block is composed of a group
of threads. Each thread executes the same kernel but with different data, so we
are again using SPMD. As an example, launching a kernel (line 35 of Listing 4.7)
has two numbers between triple angle brackets. The first number is the number of
blocks and the second number is the number of threads per block. All the blocks
form one grid, in CUDA parlance. So we can say that a grid is a kernel in execu-
tion (one grid per kernel). Blocks and grids can be designed to be 1D, 2D, or 3D.
GPUs and CPUs have their different memory, even if the programming model of
the recent versions of CUDA gives the illusion of unified memory. Moving the data
between the GPU and CPU is very expensive, so it must be managed carefully either
by the programmer or under the hood by the runtime in recent GPU architectures
(namely, Pascal and Volta). As we can see from the code, cudaMalloc dynamically
allocates space in the device’s memory (i.e., the GPU), while malloc dynamically
allocates space in the system memory. CUDA can be combined with, for example,
OpenMP and MPI.

4.3.6 Heterogeneous System Architecture (HSA)
HSA6 is not a language per se but a set of specifications that allows seamless move-
ment and execution of data among CPUs and accelerators, like GPUs or FPGAs.
It is a cross-vendor initiative, so portability is a goal. The formal definition from
Hwu [2015] is “a new hardware platform and associated software stack that allows
different types of processors to work together efficiently and cooperatively through
shared memory.” So it is shared memory. It borrows the setup of queues of com-
mands that we saw in OpenCL and that also exists in CUDA but in a different way
(called streams in CUDA). HSA was designed with GPUs in mind. But as computer
systems have become more and more heterogeneous, HSA has expanded to include
other devices. The code is compiled to an intermediate presentation called het-
erogeneous system architecture intermediate language (HSAIL). HSAIL is vendor
independent. Before execution HSAIL is translated to the ISA of the computing
device.

5. https://developer.nvidia.com/cuda-zone

6. http://www.hsafoundation.com/

http://www.hsafoundation.com/

86 Chapter 4 Programmability

Listing 4.7 CUDA version of vector addition

1 #include <stdio.h>

2 #include <cuda.h>

3

4 #define N 1000000

5

6 int main()

7 {

8 int * A;

9 int * B;

10 int * C;

11

12 int * dA;

13 int * dB;

14 int * dC;

15

16

17 int i;

18

19 A = (int *)malloc(N*sizeof(int));

20 B = (int *)malloc(N*sizeof(int));

21 C = (int *)malloc(N*sizeof(int));

22

23

24 cudaMalloc((void **)&dA, N*sizeof(int));

25 cudaMalloc((void **)&dB, N*sizeof(int));

26 cudaMalloc((void **)&dC, N*sizeof(int));

27

28 get_the_data(A, B); //Fill the two arrays

29

30 // Move the two arrays to the device

31 cudaMemCpy(dA, A, N*sizeof(int), cudaMemcpyHostToDevice);

32 cudaMemcpy(dB, B, N*sizeof(int), cudaMemcpyHostToDevice);

33

34 //Launch the kernel in the device

35 vec_add<<<ceil(N/1024),1024>>>(dA, dB, dC, N);

36

37 //Bring the result back from the device

38 cudaMemCpy(C, dC, N*sizeof(int), cudaMemcpyDeviceToHost);

39

40 process_array(C);

4.3 What Do We Have? The Current Status Quo 87

Listing 4.7 (continued)

42 //Clean up

43

44 free(A);

45 free(B);

46 free(C);

47

48 cudaFree(A);

49 cudaFree(B);

50 cudaFree(C);

51

52 return 0;

53 }

54

55 __global__ vec_add(int *dA, int *dB, int *dC, int n)

56 {

57 int index = blockIdx.x*blockDim.x + threadIdx.x;

58

59 if(index < n)

60 C[index] = A[index] + B[index];

61 }

4.3.7 There Are Many More
The above discussion is not by any means an exhaustive list of parallel program-
ming for heterogeneous systems. We would not be exaggerating if we said that there
are new languages, or libraries, that appear almost every year. Of course we can-
not go over all of them, or even most of them, here. But at least we get a flavor of
how they work and how they differ in terms of portability, programmability, and
performance.

There are some other models that are built with multicore in mind and not ac-
celerators in general, unlike, say, CUDA and OpenCL. One very important model is
threading building blocks(TBB).7 It was developed by Intel as a C++ template library.
The programmer’s job is to break the computations, which are to be parallelized,
into a group of tasks with dependencies, then schedule those tasks for execution.
The runtime executes those tasks based on the dependencies of the multicore sys-
tem. In order to ensure some kind of load balancing, TBB uses a work-stealing

7. https://www.threadingbuildingblocks.org/

88 Chapter 4 Programmability

strategy. That is, if a core finishes its assigned tasks, the runtime can assign an-
other task from an overloaded core to that idle one. This makes programmability
easy, yet not for free. The scheduling operation itself, done by the runtime, has
its overhead. The runtime may not take into account the interconnect among cores
and the heterogeneity in frequency when some cores become hot and hence slower
due to DVFS, as we saw in Section 1.2.2.

Another important model is PThreads, or POSIX threads. Pthreads is a language-
independent standard. That is, it can be implemented in any language to support
multithreading parallel execution. There are many implementations in OS follow-
ing the POSIX standard. It is important to note here that POSIX is not only about
multithreading. It is a full standard for OS interfaces that are UNIX-like (e.g., Linux,
FreeBSD, MAC, Android, etc.). This is why POSIX stands for “portable operating sys-
tem interface.” The Pthreads standard gives a lot of control to the programmer, at
the expense of more coding, which means lower productivity from the program-
mer. All thread management, like creating, scheduling, and deleting threads, can
be done by the application programmer. This has the advantage of less system calls
and hence higher performance. Also, the fine-grain management of threads by the
programmer allows for application-specific thread scheduling. Of course the situ-
ation is more complicated than this if we dig deeper. The programmer is aware of
the threads, but these are user-level threads. The OS, the kernel, has its own threads
of execution for any application. The relationship between user-level threads and
kernel-level threads can be 1:1, N:1, or M:N depending on the implementation.

We will not go further here, but you get the idea. As a programmer for a het-
erogeneous system, you have a lot of choices. You pick what is beneficial to your
application.

4.4 In Conclusion
This chapter has provided a quick tour of the most widely used languages in het-
erogeneous systems as well as a look at the psychology of programming. We did
not cover everything, but we get the idea that we are still a long way to go from our
programming language wish list. Let me try to summarize some challenges I see
here.

. Programming languages are used by experts and novices alike. So, as we
said earlier, a language must be able to abstract many things to be easy
for programmers and increase productivity but also must support low-level
tuning when needed. Most of the languages try to do this with varying degrees
of success. So we are not there yet.

4.4 In Conclusion 89

. Programming languages must be able to scale to a very large number of
threads/processes. We are a few years away from exascale machines, and
some problems do not manifest themselves except at large scale.

. Languages are pretty bad at dealing with reliability issues (e.g., transient
errors). Soft errors are terrifying with large-scale machines.

. New programming models usually appear at computing inflection points.
We are near exascale computing, which is probably the next inflection point,
together with the Internet of Things (IoT). But do we really need new pro-
gramming models? Or do we need to fix the ones we have? I believe we need
collaboration between psychology and computer science on how program-
mers think and work.

5Research Directions
In this last chapter we discuss the current trends in research affecting the design
of parallel machines, which are now all heterogeneous machines.

5.1 Processing-in-Memory (PIM) / Near-Data Processing (NDP)
With communication cost and memory access cost skyrocketing relative to compu-
tation cost, moving processing to data instead of the other way around is gaining
a lot of momentum, especially since the enabling technology is already there:
3D stacked memory and nonvolatile memory. PIM/NDP is currently a very hot
topic of research with many interesting questions [Aga et al. 2017, Azarkhish
et al. 2016, Balasubramonian et al. 2014, Boroumand et al. 2017, Loh et al. 2013,
Punniyamurthy and Gerstlauer 2017, Seshadri et al. 2016, Siegl et al. 2016].

Think about something like matrix multiplication. Wouldn’t it be more bene-
ficial if it were done in place near the memory, or inside the memory, instead of
moving a huge amount of data all the way up the memory hierarchy to the proces-
sor(s) to make a series of multiplications and additions? If the memory is equipped
with a fused multiply-add engine, for example, then we would save a lot of band-
width (a very scarce resource) and reduce cache access, which is translated to a
better cache hit rate. However, the devil is in the details. Things are not very easy.
There are a lot of open questions in this research area:

. What type of processing do we need to have in memory for current applica-
tion trends?

. Do we need to have processing in the cache hierarchy? Why?

. How does NDP/PIM affect virtual memory?

. How does NDP/PIM affect programming models?

. How does NDP/PIM affect reliability and resilience of machines?

. Are there any security risks from using NPD/PIM?

NDP/PIM is the enabling technology for exascale computing.

92 Chapter 5 Research Directions

5.2 Exascale Computing
A quick look at the Top500 supercomputers reavels that we are already at petascale
computing. Exascale is the next big challenge. It is a much harder challenge than
going from gigascale to petascale, and this is why its delivery deadline has been
pushed several times. The most recent deadline is 2021. With exascale we can have
way more realistic simulations of the human brain, analyzing the whole human
genome very fast (curing cancer?), very fast scientific simulations pushing the
frontiers of science. We can say that the potential is almost endless. So what is
so challenging about getting to exascale? Here are the research challenges.

. If we just expanded the petascale machines to exascale, the power consumed
would be prohibitive. The measure of success is 1 exaflop for 20–30 MW.

. What are the characteristics of a programming model for such a machine?

. How do we deal with silent and transient errors at that scale? Should they be
exposed to programmers, complicating their task? Or should they be dealt
with under the hood, consuming more power? (Look at the first item of this
list.)

. Are our current algorithms scalable to that level?

. How can we scale the OS to deal with such a machine?

5.3 Neuromorphic Chips
Neuromorphic chips, or cognitive computing in general, are still not yet main-
stream. But with many research groups working on it and many application ideas
arising, we will soon see a neuromorphic coprocessor in a heterogeneous system.
Before we proceed, we need to make an important distinction between two goals of
neuromorphic chips. The first goal is to design a biological-like chip. In this case
we are building a tool for neuroscientists to use. The other goal is to be inspired by
the workings of the brain but design a chip that is useful for other cognitive appli-
cations, like pattern recognition, learning, etc. Given the nature of our book, we
concentrate on the second goal.

Schuman et al. [2017] provides an almost exhaustive survey of advances in
neuromorphic computing, with nearly 3000 references! Neuromorphic chips in-
volve experience from many different fields, as shown in Figure 5.1. Neuroscien-
tists formulate, and keep revising and refining, an accurate model for the human
brain. Material engineers find the most efficient material—memristors, for exam-
ple [Sayyaparaju et al. 2017, Shafiee et al. 2016]—to build chips inspired by that
model. Electrical and computer engineers use the material and the model to de-

5.3 Neuromorphic Chips 93

Neuroscientists
Neuroscience

model of the brain

Material scientists
Materials to
build device

Electrical engineers
Computer engineers

Device
building

Computer engineers
Computer scientists

Programming
framework

Computer scientists
Application

development

Figure 5.1 Multidisciplinary work in neuromorphic chip research.

sign the chip with the desired goals of speed, power, relability, area, etc. They
build the software framework to train and use those chips, to make it easier for
application developers to use them. Finally, to be used efficiently in the outside
world, application developers need to use those chips in their applications. The
main reasons neuromorphic chips are attractive for applications related to pattern
recognition, learning, prediction, etc. is their low power, speed, and higher reli-
ability than programming the same machine learning algorithm on a traditional
multicore processor.

Besides the above big picture about the ecosystem of neuromorphic chips, the
research directions are related to (1) the neurons and their models, (2) modeling
dendrites, axons, and synapses, if needed, to be as close as possible to the biological
brain, (3) interconnection among neurons, (4) the learning algorithm and whether

94 Chapter 5 Research Directions

it is done online or offline, and (5) the hardware design itself. These directions are
interrelated. For example, the design of the chip and neuron interconnection may
dictate a specific learning algorithm or vice versa.

We summarize the most important research questions in the following list
[US Department of Energy 2016].

. We are trying to build a hardware version of neurons, connected by synapses,
with reconfigurable interconnections (or weights). What is the best technol-
ogy? Is memristor the way to go? Or maybe some of the magnetic storage that
we saw in Section 1.2, like MRAM, STTRAM, ReRAM, etc.? We need a tech-
nology with very high scalability and reconfigurability. Still open questions
are, Which technology do we use? And what is the building block? To answer
these questions, we need to decide on the type of processing done at each
building block and how data are presented.

. Suppose we have continuously reconfigurable hardware. What does the com-
putation model look like? This is totally different from what we are used to
with fixed instruction sets and data paths.

. How will these neuromorphic chips learn? It is no longer a programming
activity like what we are used to. At the same time we need a fast way to
teach these chips or make them learn by themselves continuously. This may
require interdisciplinary research, from psychology to neuroscience to com-
puter science.

. To have wider applicability, neuromorphic chips must be easy to use. That is,
easy to train. There is a need for a development environment to train/teach
these chips that can abstract many of the lower-level issues from the user.

. How can we fit neuromorphic chips with other traditional chips, like multi-
core and GPU, within the same computing ecosystem? The main challenge
is that neuromorphic chip applications are still vague. Yes, we know they are
good at recognition, categorization, etc. But what type of patterns? When
do we decide to use those chips versus more traditional chips? The answer
to these questions will become clearer as we use them in more and more
applications and benchmark them against other approaches for different
applications.

. A lot of work has been done on hardware support for machine learning.
Can’t we also use machine learning support for hardware? Instead of just
using neuromorphic chips as coprocessors in a heterogeneous system to help

5.4 Quantum Computing 95

in some operations, we can also use them to recognize any malfunction or
performance degradation in the system and trigger correction actions.

5.4 Quantum Computing
Whenever a new hardware model appears, there is a big void between the appli-
cation programmer and the machine itself. As time passes and people gain ex-
perience, the layers in between are filled up with compilers, low-level languages,
high-level languages, workflows, etc. Quantum computers are in this early stage
now. We are not yet at quantum supremacy (where traditional parallel machines
cannot simulate that number of quantum bits (qubits)), but there are a lot of ad-
vances recently in that field. What type of programming languages do we need to
have here? And how can they interact with programming models of traditional
machines? Remember that a quantum computer is unlikely to be a stand-alone
machine but rather a coprocessor in a large heterogeneous machine.

Even though research in quantum programming started as early as 1996, we
still have a long way to go. We have to keep in mind that human intuition is better
adapted to the classical world than the quantum world. Therefore, we can expect
a lot of bugs and faults in designing quantum programs as compared to classical
programs [Ying 2016].

Any program consists of two things: the data and the control that manipulates
the data. In quantum computing, data are quantum (qubits). How about the con-
trol? Control can be classical, similar to what we have in traditional programs (e.g.,
loops, conditional, etc.). In that regard there has been some progress in classical
control with quantum data. There is also quantum control (e.g., superposition), and
quantum control with quantum data is still in its infancy. There is a lot of room for
innovation and invention in the quantum world.

References

A. Abella and A. Gonzalez. June 2006. Heterogeneous way-size cache. In International
Conference on Supercomputing (ICS), pp. 239–248. DOI: 10.1145/1183401.1183436 33

A. Abualsamid. June 1998. PGP disk’s security takes a bite out of crime. Network Computing,
9(10): 54. 47

O. Aciiçmez. 2007. Yet another microarchitectural attack: Exploiting i-cache. In Proceedings
of the 2007 ACM Workshop on Computer Security Architecture, CSAW ’07, pp. 11–18.
ACM, New York. DOI: 10.1145/1314466.1314469 49

O. Aciiçmez, B. B. Brumley, and P. Grabher. 2010. New results on instruction cache attacks.
In Proceedings of the 12th International Conference on Cryptographic Hardware and
Embedded Systems, CHES ’10, pp. 110–124. Springer-Verlag, Berlin, Heidelberg. 49

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. February 2017.
Compute caches. In 23rd IEEE Symposium on High Performance Computer Architecture
(HPCA). DOI: 10.1109/hpca.2017.21 91

A. Agarwal et al. 1988. An evaluation of directory schemes for cache coherence. In 25 Years
ISCA: Retrospectives and Reprints, pp. 353–362. DOI: 10.1145/633625.52432 34

A. Agarwal et al. 2004. Evaluating the raw microprocessor: An exposed-wire-delay architecture
for ILP and streams. In Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pp. 2–13. DOI: 10.1145/1028176.1006733 34

A. Agarwal and S. D. Pudar. 1993. Column-associative caches: A technique for reducing the
miss rate of direct-mapped caches. In Proceedings of the 20th International Symposium
on Computer Architecture, pp. 179–190. DOI: 10.1145/173682.165153 33

H. Al-Zoubi, A. Milenkovic, and M. Milenkovic. 2004. Performance evaluation of cache
replacement policies for the SPEC CPU2000 benchmark suite. In Proceedings of the
42nd ACM Southeast Conference, pp. 267–272. DOI: 10.1145/986537.986601 35

D. H. Albonesi. 2002. Selective cache ways: On-demand cache resource allocation. Journal of
Instruction-Level Parallelism, pp. 248–259. DOI: 10.1109/MICRO.1999.809463 33, 34

J. Allred, S. Roy, and K. Chakraborty. 2012. Designing for dark silicon: A methodological
perspective on energy efficient systems. In Proceedings of the 2012 ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED ’12, pp. 255–
260. ACM, New York. DOI: 10.1145/2333660.2333720 3

http://dx.doi.org/10.1145/1183401.1183436
http://dx.doi.org/10.1145/1314466.1314469
http://dx.doi.org/10.1109/hpca.2017.21
http://dx.doi.org/10.1145/633625.52432
http://dx.doi.org/10.1145/1028176.1006733
http://dx.doi.org/10.1145/173682.165153
http://dx.doi.org/10.1145/986537.986601
http://dx.doi.org/10.1109/MICRO.1999.809463
http://dx.doi.org/10.1145/2333660.2333720

98 References

J. Archibald and J.-L. Baer. May 1986. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Transactions on Computer Systems, pp. 273–
298. DOI: 10.1145/6513.6514 34

E. Azarkhish, D. Rossi, I. Loi, and L. Benini. 2016. Design and evaluation of a processing-
in-memory architecture for the smart memory cube. In Proceedings of the 29th
International Conference on Architecture of Computing Systems – ARCS 2016, Volume
9637, pp. 19–31. Springer-Verlag, New York. DOI: 10.1007/978-3-319-30695-7_2 91

R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and
S. Swanson. July 2014. Near-data processing: Insights from a micro-46 workshop. IEE
MICRO Magazine, 34(4): 36–42. DOI: 10.1109/MM.2014.55 91

B. Beckmann and D. Wood. December 2004. Managing wire delay in large chip-
multiprocessor caches. In Proceedings of the 37th International Annual Symposium on
Microarchitecture (Micro-37), pp. 319–330. DOI: 10.1109/MICRO.2004.21 34

L. Benini and G. DeMicheli. January 2002. Networks on chips: A new SoC paradigm. In IEEE
Computer, pp. 70–78. DOI: 10.1109/2.976921 34

M. T. Billingsley III, B. R. Tibbitts, and A. D. George. 2010. Improving UPC productivity via
integrated development tools. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model, PGAS ’10, pp. 8:1–8:9. ACM, New York.
DOI: 10.1145/2020373.2020381 68

S. Borkar, P. Dubey, K. Kahn, D. Kuck, H. Mulder, S. Pawlowski, and J. Rattner. 2006. Platform
2015: Intel processsor and platform evolution for the next decade. White paper, Intel
Corporation. 35

A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, K. Hsieh, K. T. Malladi, H. Zheng,
and O. Mutlu. January 2017. Lazypim: An efficient cache coherence mechanism
for processing-in-memory. IEEE Computer Architecture Letters, 16(1): 46–50. DOI:
10.1109/LCA.2016.2577557 91

P. Bose. February 2013. Is dark silicon real? Technical perspective. Communications of the
ACM, 56(2): 92–92. DOI: 10.1145/2408776.2408796 3

J. Boukhobza, S. Rubini, R. Chen, and Z. Shao. November 2017. Emerging NVM: A survey
on architectural integration and research challenges. ACM Transactions on Design
Automation of Electronic Systems, 23(2): 14:1–14:32. DOI: 10.1145/3131848 7

R. K. Braithwaite, W.-c. Feng, and P. S. McCormick. 2012. Automatic NUMA characterization
using cbench. In Proceedings of the 3rd ACM/SPEC International Conference on
Performance Engineering, ICPE ’12, pp. 295–298. ACM, New York. DOI: 10.1145/
2188286.2188342 6

S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith. 2008. Toctou, traps, and trusted
computing. In Proceedings of the 1st International Conference on Trusted Computing
and Trust in Information Technologies: Trusted Computing—Challenges and Applications,
pp. 14–32. Springer-Verlag, Berlin, Heidelberg. DOI: 10.1007/978-3-540-68979-9_2 47

Broadcom Corporation, 2006. BCM1455: Quad-core 64-bit MIPS processor.
http://www.broadcom.com/collateral/pb/1455-PB04-R.pdf. 35

http://dx.doi.org/10.1145/6513.6514
http://dx.doi.org/10.1007/978-3-319-30695-7_2
http://dx.doi.org/10.1109/MM.2014.55
http://dx.doi.org/10.1109/MICRO.2004.21
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1145/2020373.2020381
http://dx.doi.org/10.1109/LCA.2016.2577557
http://dx.doi.org/10.1145/2408776.2408796
http://dx.doi.org/10.1145/3131848
http://dx.doi.org/10.1145/2188286.2188342
http://dx.doi.org/10.1145/2188286.2188342
http://dx.doi.org/10.1007/978-3-540-68979-9_2
http://www.broadcom.com/collateral/pb/1455-PB04-R.pdf

References 99

B. Calder, D. Grunwald, and J. Emer. 1996. Predictive sequential associative cache. In
Proceedings of the 2nd International Symposium on High Performance Computer
Architecture, pp. 244–253. DOI: 10.1109/HPCA.1996.501190 33, 34

B. Calder, C. Krintz, S. John, and T. Austin. 1998. Cache-conscious data placement. In
Proceedings of the International Conference on Architecture Support for Programming
Languages and Operating System (ASPLOS), pp. 139–149. 33

F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. April 2004. Productivity analysis of the
UPC language. In 3rd International Workshop on Performance Modeling, Evaluation,
and Optimization of Parallel and Distributed Systems (PMEO-PDS). DOI: 10.1109/IPDPS
.2004.1303318 68

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, et al.
2016. A cloud-scale acceleration architecture. In 49th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-49, pp. 7:1–7:13. IEEE Press, Piscataway, NJ.
http://dl.acm.org/citation.cfm?id=3195638.3195647. 23

S. Chandrasekaran and G. Juckeland, eds. 2018. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley, Boston, MA‘. 83

J. Chang and G. S. Sohi. 2006. Cooperative caching for chip multiprocessors. In Proceedings of
the 33rd Annual International Symposium on Computer Architecture (ISCA), pp. 264–276.
DOI: 10.1145/1150019.1136509 34

L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter. June 2006.
Interconnect-aware coherence protocols for chip multiprocessors. In Proceedings of
the 33rd IEEE/ACM International Symposium on Computer Architecture, pp. 339–351.
DOI: 10.1145/1150019.1136515 34

B. Childers, J. W. Davidson, and M. L. Soffa. 2003. Continuous compilation: A new
approach to aggressive and adaptive code transformation. In Proceedings of the
17th International Symposium on Parallel and Distributed Processing, IPDPS ’03,
pp. 205–214. DOI: 10.1109/IPDPS.2003.1213375 71

Z. Chishti, M. D. Powell, and T. N. Vijaykumar. 2003. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 55–66. 6

J. Clark, S. Leblanc, and S. Knight. 2009. Hardware Trojan horse device based on unintended
USB channels. In Proceedings of the 2009 Third International Conference on Network
and System Security, NSS ’09, pp. 1–8. IEEE Computer Society, Washington, DC. DOI:
10.1109/NSS.2009.48 49

J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. 2005. SECA: Security-enhanced
communication architecture. In Proceedings of the 2005 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES ’05, pp. 78–89.
DOI: 10.1145/1086297.1086308 47

C. Cowan, C. Pu, D. Maier, H. Hinton, and J. Walpole. January 1998. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the
7th USENIX Security Symposium, pp. 63–78. 48

http://dx.doi.org/10.1109/HPCA.1996.501190
http://dx.doi.org/10.1109/IPDPS.2004.1303318
http://dx.doi.org/10.1109/IPDPS.2004.1303318
http://dl.acm.org/citation.cfm?id=3195638.3195647
http://dx.doi.org/10.1145/1150019.1136509
http://dx.doi.org/10.1145/1150019.1136515
http://dx.doi.org/10.1109/IPDPS.2003.1213375
http://dx.doi.org/10.1109/NSS.2009.48
http://dx.doi.org/10.1145/1086297.1086308

100 References

W. Dally and B. Towles. 2001. Route packets, not wires: On-chip interconnection networks.
In Proceedings of the 38th Conference on Design Automation, pp.684–689. DOI: 10.1145/
378239.379048 34

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. October
1974. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits 9(5): 256–268. DOI: 10.1109/JSSC.1974.1050511 2

R. V. der Pas, E. Stotzer, and C. Terboven. 2017. Using OpenMP—the Next Step. MIT Press,
Cambridge, MA. 77

A. S. Dhodapkar and J. E. Smith. 2002. Managing multi-configuration hardware via dynamic
working set analysis. In Proceedings of the 17th International Symposium on Computer
Architecture, pp. 233–244. DOI: 10.1145/545214.545241 33

G. Di Crescenzo. 2005. Security of erasable memories against adaptive adversaries. In
Proceedings of theedings of the 2005 ACM Workshop on Storage Security and Survivability,
StorageSS ’05, pp. 115–122. DOI: 10.1145/1103780.1103798 47

S. J. Eggers and R. H. Katz. 1989. Evaluating the performance of four snooping cache
coherence protocols. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pp. 2–15. DOI: 10.1145/74926.74927 34

M. Ekman, F. Dahlgren, and P. Stenström. August 2002. TLB and snoop energy-reduction
using virtual caches for low-power chip-multiprocessor. In Proceedings of the
IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 243–246.
DOI: 10.1145/566408.566471 34

R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, C. Anguille, M. Bardouillet, C. Buatois,
and J. B. Rigaud. 2005. Hardware engines for bus encryption: A survey of existing
techniques. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’05, Volume 3, pp. 40–45. DOI: 10.1109/DATE.2005.170 47

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. 2011. Dark silicon
and the end of multicore scaling. In Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, pp. 365–376. ACM, New York. DOI:
10.1145/2000064.2000108 3

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. 1997. The multicluster architecture:
Reducing cycle time through partitioning. In Proceedings of the 30th International
Symposium on Microarchitecture, pp. 149–159. DOI: 10.1023/A:1018782806674 34

F. Fiori and F. Musolino. 2001. Analysis of EME produced by a microcontroller operation.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’01,
pp. 341–347. IEEE Press, Piscataway, NJ. DOI: 10.1109/DATE.2001.915047 49

A. Fiskiran and R. Lee. October 2004. Runtime execution monitoring (REM) to detect and
prevent malicious code execution. In Proceedings of the IEEE International Conference
on Computer Design, pp. 452–457. DOI: 10.1109/ICCD.2004.1347961 49

K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. May 2002. Drowsy caches: Simple
techniques for reducing leakage power. In Proceedings of the Annual International
Symposium on Computer Architecture, pp. 147–157. DOI: 10.1145/545214.545232 34

http://dx.doi.org/10.1145/378239.379048
http://dx.doi.org/10.1145/378239.379048
http://dx.doi.org/10.1109/JSSC.1974.1050511
http://dx.doi.org/10.1145/545214.545241
http://dx.doi.org/10.1145/1103780.1103798
http://dx.doi.org/10.1145/74926.74927
http://dx.doi.org/10.1145/566408.566471
http://dx.doi.org/10.1109/DATE.2005.170
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1023/A:1018782806674
http://dx.doi.org/10.1109/DATE.2001.915047
http://dx.doi.org/10.1109/ICCD.2004.1347961
http://dx.doi.org/10.1145/545214.545232

References 101

K. Gandolfi, C. Mourtel, and F. Olivier. 2001. Electromagnetic analysis: Concrete results.
In Proceedings of the Third International Workshop on Cryptographic Hardware and
Embedded Systems, CHES ’01, pp. 251–261. Springer-Verlag, London. DOI: 10.1007/
3-540-44709-1_21 49

B. Gassend, G. E. Suh, D. Clarke, M. V. Dijk, and S. Devadas. 2003. Caches and hash trees
for efficient memory integrity verification. In 9th International Symposium on High
Performance Computer Architecture, pp. 295–306. DOI: 10.1109/HPCA.2003.1183547
49

O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and J. Zambreno. May 2005.
CODESSEAL: Compiler/FPGA approach to secure applications. In Proceedings of the
IEEE International Conference on Intelligence and Security Informatics, pp. 530–535.
DOI: 10.1007/11427995_54 49

K. Ghose and M. Kamble. August 1999. Reducing power in superscalar processor caches
using subbanking, multiple line buffers and bit-line segmentation. In Proceedings of
the IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 70–75.
DOI: 10.1145/313817.313860 34

B. Grigorian, N. Farahpour, and G. Reinman. February 2015. Brainiac: Bringing reliable
accuracy into neurally-implemented approximate computing. In High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium, pp. 615–626.
DOI: 10.1109/HPCA.2015.7056067 26

F. Guo and Y. Solihin. June 2006. An analytical model for cache replacement policy
performance. In SIGMETRICS ’06/Performance ’06: Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems, pp. 228–239.
DOI: 10.1145/1140103.1140304 35

Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. H.-M. Sha. June 2013. Data placement
and duplication for embedded multicore systems with scratch pad memory. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):
809–817. DOI: 10.1109/TCAD.2013.2238990 35

L. Hammond, B. Nayfeh, and K. Olukotun. 1997. A single-chip multiprocessor. IEEE
Computer, pp. 79–85. DOI: 10.1109/2.612253 34

T. D. Han and T. S. Abdelrahman. 2011. Reducing branch divergence in GPU programs.
In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units, GPGPU-4, pp. 3:1–3:8. ACM, New York. DOI: 10.1145/1964179
.1964184 22

K. Hazelwood. 2011. Dynamic Binary Modification: Tools, Techniques, and Applications.
Morgan & Claypool Publishers, San Rafael, CA. 71

N. Hemsoth and T. P. Morgan. 2017. FPGA Frontiers: New Applications in Reconfigurable
Computing. Next Platform Press, High Point, NC. 23

J.-M. Hoc, ed. 1990. Psychology of Programming, 1. Elsevier, New York. 69

R. Huang, D. Y. Deng, and G. E. Suh. March 2010. Orthrus efficient software integrity
protection on multi-cores. In Proceedings of the International Conference on

http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1109/HPCA.2003.1183547
http://dx.doi.org/10.1007/11427995_54
http://dx.doi.org/10.1145/313817.313860
http://dx.doi.org/10.1109/HPCA.2015.7056067
http://dx.doi.org/10.1145/1140103.1140304
http://dx.doi.org/10.1109/TCAD.2013.2238990
http://dx.doi.org/10.1109/2.612253
http://dx.doi.org/10.1145/1964179.1964184
http://dx.doi.org/10.1145/1964179.1964184

102 References

Architectural Support for Programming Languages and Operating Systems, pp. 371–384.
DOI: 10.1145/1736020.1736062 49

G. F. Hughes and J. F. Murray. February 2005. Reliability and security of RAID storage
systems and D2D archives using SATA disk drives. In IEEE Transactions on Storage,
1(1): 95–107. DOI: 10.1145/1044956.1044961 47

W. W. Hwu. 2015. Heterogeneous System Architecture: A New Compute Platform Infrastructure,
1. Morgan Kaufmann, Burlington, MA. 85

K. Inoue, V. Moshnyaga, and K. Murakami. February 2002. Trends in high-performance,
low-power cache memory architectures. IEICE Transactions on Electronics, E85-C(2):
303–314. 34

T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I. August. 2011. Automatic
CPU-GPU communication management and optimization. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’11, pp. 142–151. DOI: 10.1145/1993498.1993516 19

A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer. 2008. Adaptive
insertion policies for managing shared caches. In PACT ’08: Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques,
pp. 208–219. DOI: 10.1145/1454115.1454145 51

A. Jaleel, J. Nuzman, A. Moga, S. Steely, and J. Emer. February 2015. High performing cache
hierarchies for server workloads: Relaxing inclusion to capture the latency benefits
of exclusive caches. In High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium, pp. 343–353. DOI: 10.1109/HPCA.2015.7056045 51

J. Jeong and M. Dubois. February 2003. Cost-sensitive cache replacement algorithms. In
Proceedings of the 9th IEEE Symposium on High Performance Computer Architecture,
pp. 327–337. DOI: 10.1109/HPCA.2003.1183550 35, 51

N. E. Jerger, T. Krishna, and L.-S. Peh. 2017. On-Chip Networks. Morgan & Claypool Publishers,
San Rafael, CA. 36

Y. Jin, N. Kupp, and Y. Makris. 2009. Experiences in hardware Trojan design and
implementation. In Proceedings of the 2009 IEEE International Workshop on Hardware-
Oriented Security and Trust, HST ’09, pp. 50–57. IEEE Computer Society, Washington,
DC. DOI: 10.1109/HST.2009.5224971 49

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, et al. 2017. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA ’17, pp. 1–12.
ACM, New York. DOI: 10.1145/3079856.3080246 27

D. R. Kaeli, P. Mistry, D. Schaa, and D. P. Zhang. 2015. Heterogeneous Computing with OpenCL
2.0, 3. Morgan Kaufmann, Burlington, MA. 78

M. Kamble and K. Ghose. August 1997. Analytical energy dissipation models for low
power caches. In Proceedings of the IEEE/ACM International Symposium on Low Power
Electronics and Design, pp. 143–148. DOI: 10.1145/263272.263310 34

http://dx.doi.org/10.1145/1736020.1736062
http://dx.doi.org/10.1145/1044956.1044961
http://dx.doi.org/10.1145/1993498.1993516
http://dx.doi.org/10.1145/1454115.1454145
http://dx.doi.org/10.1109/HPCA.2015.7056045
http://dx.doi.org/10.1109/HPCA.2003.1183550
http://dx.doi.org/10.1109/HST.2009.5224971
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1145/263272.263310

References 103

S. Kang, H. J. Choi, C. H. Kim, S. W. Chung, D. Kwon, and J. C. Na. 2011. Exploration
of CPU/GPU co-execution: From the perspective of performance, energy, and
temperature. In Proceedings of the 2011 ACM Symposium on Research in Applied
Computation, RACS ’11, pp. 38–43. DOI: 10.1145/2103380.2103388 17

T. Karkhanis and J. E. Smith. June 2002. A day in the life of a data cache miss. In Proceedings
of the 2nd Annual Workshop on Memory Performance Issues (WMPI). 33

R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy hardware:
Identifying and classifying hardware Trojans. Computer, 43: 39–46. DOI: 10.1109/MC
.2010.299 47, 49

R. Karri, K. Wu, P. Mishra, and Y. Kim. 2001. Concurrent error detection of fault-based side-
channel cryptanalysis of 128-bit symmetric block ciphers. In Proceedings of the 38th
annual Design Automation Conference, DAC ’01, pp. 579–584. ACM, New York. DOI:
10.1145/378239.379027 49

S. Kaxiras, Z. Hu, and M. Martonosi. June 2001. Cache decay: Exploiting generational
behavior to reduce cache leakage power. In Proceedings of the 28th IEEE/ACM
International Symposium on Computer Architecture, pp. 240–251. DOI: 10.1145/384285
.379268 34

G. S. Kc, A. D. Keromytis, and V. Prevelakis. 2003. Countering code-injection attacks with
instruction-set randomization. In Proceedings of the 10th ACM Conference on Computer
and Communications Security, CCS ’03, pp. 272–280. ACM, New York. DOI: 10.1145/
948109.948146 48

M. Kharbutli and Y. Solihin. October 2005. Counter-based cache replacement algorithms.
In Proceedings of the International Conference on Computer Design, pp. 61–68. DOI:
10.1109/ICCD.2005.41 51

H. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam, M. Irwin, and E. Geethanjali.
August 2001. Power-aware partitioned cache architectures. In Proceedings of the
IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 64–67.
DOI: 10.1145/383082.383095 34

J. Kim, W. J. Dally, S. Scott, and D. Abts. 2008. Technology-driven, highly-scalable dragonfly
topology. In Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, pp. 77–88. IEEE Computer Society, Washington, DC. DOI:
10.1109/ISCA.2008.19 41

N. Kim, K. Flautner, D. Blaauw, and T. Mudge. November 2002. Drowsy instruction
caches: Leakage power reduction using dynamic voltage scaling and cache sub-
bank prediction. In Proceedings of the IEEE/ACM 35th International Symposium on
Microarchitecture, pp. 219–230. DOI: 10.1109/MICRO.2002.1176252 34

N. Kim, K. Flautner, D. Blaauw, and T. Mudge. February 2004a. Circuit and microarchitec-
tural techniques for reducing cache leakage power. IEEE Transactions on VLSI 12(2):
167–184. DOI: 10.1109/TVLSI.2003.821550 34

S. Kim, D. Chandra, and Y. Solihin. 2004b. Fair cache sharing and partitioning in a
chip multiprocessor architecture. In PACT ’04: Proceedings of the 13th International

http://dx.doi.org/10.1145/2103380.2103388
http://dx.doi.org/10.1109/MC.2010.299
http://dx.doi.org/10.1109/MC.2010.299
http://dx.doi.org/10.1145/378239.379027
http://dx.doi.org/10.1145/384285.379268
http://dx.doi.org/10.1145/384285.379268
http://dx.doi.org/10.1145/948109.948146
http://dx.doi.org/10.1145/948109.948146
http://dx.doi.org/10.1109/ICCD.2005.41
http://dx.doi.org/10.1145/383082.383095
http://dx.doi.org/10.1109/ISCA.2008.19
http://dx.doi.org/10.1109/MICRO.2002.1176252
http://dx.doi.org/10.1109/TVLSI.2003.821550

104 References

Conference on Parallel Architectures and Compilation Techniques, pp. 111–122. DOI:
10.1109/PACT.2004.15 34

J. Kin, M. Gupta, and W. H. Mangione-Smith. 1997. The filter cache: An energy efficient
memory structure. In Proceedings of the 30th Annual International Symposium on
Microarchitecture (MICRO-30), pp. 184–193. DOI: 10.1109/MICRO.1997.645809 33

M. J. Kobrinsky, B. A. Block, J.-F. Zheng, B. C. Barnett, E. Mohammed, M. Reshotko,
F. Robinson, S. List, I. Young, and K. Cadien. May 2004. On-chip optical interconnects.
Intel Technology Journal, 8(2): 129–142. 39

A. K. Kodi and A. Louri. March 2007. Power-aware bandwidth-reconfigurable optical
interconnects for high-performance computing (HPC) systems. In IEEE Parallel
and Distributed Processing Symposium. IPDPS 2007, pp. 1–10. DOI: 10.1109/IPDPS
.2007.370273 39

J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou. 2008. Deconstructing new cache designs for
thwarting software cache-based side channel attacks. In Proceedings of the 2nd ACM
Workshop on Computer Security Architectures, CSAW ’08, pp. 25–34. ACM, New York.
DOI: 10.1145/1456508.1456514 49

P. Kongetira, K. Aingaran, and K. Olukotun. March 2005. Niagara: A 32-way multithreaded
SPARC processor. IEEE Micro, 25(2): 21–29. DOI: 10.1109/MM.2005.35 35

V. Krishnan and J. Torrellas. 1999. A chip-multiprocessor architecture with speculative
multithreading. IEEE Transactions on Computers, 48(9): 866–880. DOI: 10.1109/
12.795218 34

R. Kumar, V. Zyuban, and D. Tullsen. June 2005. Interconnection in multi-core architectures:
Understanding mechanisms, overheads, and scaling. In International Symposium on
Computer Architecture, pp. 408–419. DOI: 10.1109/ISCA.2005.34 36

G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C. Kimerling, and A. Agarwal.
2010. Atac: A 1000-core cache-coherent processor with on-chip optical network.
In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, pp. 477–488. ACM, New York. DOI: 10.1145/
1854273.1854332 39

H. Lee, G. Tyson, and M. Farrens. December 2000. Eager writeback—a technique for
improving bandwidth utilization. In Proceedings of the IEEE/ACM 33nd International
Symposium on Microarchitecture, pp. 11–21. DOI: 10.1145/360128.360132 60

J.-H. Lee and S.-D. Kim. 2002. Application-adaptive intelligent cache memory system. ACM
Transactions on Embedded Computing Systems, 1(1): 56–78. DOI: 10.1145/581888
.581893 33

R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. March 2003. Enlisting hardware architecture
to thwart malicious code injection. In Proceedings of the International Conference on
Security in Pervasive Computing, pp. 237–252. DOI: 10.1007/978-3-540-39881-3_21 48

J. Lin. 2008. On malicious software classification. In Proceedings of the 2008 International
Symposium on Intelligent Information Technology Application Workshops, pp. 368–371.

http://dx.doi.org/10.1109/PACT.2004.15
http://dx.doi.org/10.1109/MICRO.1997.645809
http://dx.doi.org/10.1109/IPDPS.2007.370273
http://dx.doi.org/10.1109/IPDPS.2007.370273
http://dx.doi.org/10.1145/1456508.1456514
http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1109/12.795218
http://dx.doi.org/10.1109/12.795218
http://dx.doi.org/10.1109/ISCA.2005.34
http://dx.doi.org/10.1145/1854273.1854332
http://dx.doi.org/10.1145/1854273.1854332
http://dx.doi.org/10.1145/360128.360132
http://dx.doi.org/10.1145/581888.581893
http://dx.doi.org/10.1145/581888.581893
http://dx.doi.org/10.1007/978-3-540-39881-3_21

References 105

IEEE Computer Society, Washington, DC. DOI: 10.1109/IITA.Workshops.2008.106
47

J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, and D. M. Tullsen. 1997. Converting thread-level
parallelism to instruction-level parallelism via simultaneous multithreading. ACM
Transactions on Computer Systems, 15(3): 322–354. DOI: 10.1145/263326.263382 3, 35

G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts, M. R. Meswani, D. P. Zhang, and
M. Ignatowski. 2013. A processing-in-memory taxonomy and a case for studying
fixed-function PIM. 1st Workshop on Near Data Processing, held in conjunction with
the 46th IEEE/ACM International Symposium on Microarchitecture (MICRO 46). 91

D. McGinn-Combs. February 2007. Security architecture and models. http://www.giac.org/
resources. 47

N. Megiddo and D. s. Modha, 2004. Outperforming LRU with an Adaptive Replacement
Cache Algorithm. Computer 37(4): 58–65. DOI: 10.1109/MC.2004.1297303 35

D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J. Sherbondy, and R. Singh.
August 2011. Cognitive computing. Communications of the ACM, 54(8): 62–71. DOI:
10.1145/1978542.1978559 25

G. E. Moore. April 1965. Cramming more components onto integrated circuits. Electronics,
pp. 114–117. 2

A. Moshovos. June 2005. Regionscout: Exploiting coarse grain sharing in snoop-based
coherence. In Proceedings of the 32nd IEEE/ACM International Symposium on Computer
Architecture, pp. 234–245. DOI: 10.1109/ISCA.2005.42 34

B. A. Nayfeh. 1998. The case for a single-chip multiprocessor. PhD thesis, Stanford University,
Stanford, CA. 34

Nergal. December 2001. Advanced return-into-lib(c) exploits (PaX case study).
http://www.phrack.org/. 48

M. Nijim, X. Qin, and T. Xie. November 2006. Modeling and improving security of a local disk
system for write-intensive workloads. ACM Transactions on Storage, 2(4): 400–423.
DOI: 10.1145/1210596.1210598 47

C. J. Nitta, M. K. Farrens, and V. Akella. 2013. On-Chip Photonic Interconnects: A Computer
Architect’s Perspective. Morgan & Claypool Publishers, San Rafael, CA. 39

NVIDIA, 2017. NVIDIA Tesla v100 GPU architecture. http://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf 19

K. Patel and S. Parameswaran. June 2008. SHIELD: A software hardware design methodology
for security and reliability of MPSoCs. In Proceedings of the ACM/IEEE Design
Automation Conference, pp. 858–861. DOI: 10.1145/1391469.1391686 50

J.-K. Peir, W. Hsu, H. Young, and S. Ong. 1996. Improving cache performance with balanced
tag and data paths. In Proceedings of the International Conference on Architecture
Support for Programming Languages and Operating Systems (ASPLOS), pp. 268–278.
DOI: 10.1145/237090.237202 34

J.-K. Peir, Y. Lee, and W. Hsu. 1998. Capturing dynamic memory reference behavior with
adaptive cache toplogy. In Proceedings of the International Conference on Architecture

http://dx.doi.org/10.1109/IITA.Workshops.2008.106
http://dx.doi.org/10.1145/263326.263382
http://www.giac.org/resources
http://www.giac.org/resources
http://dx.doi.org/10.1109/MC.2004.1297303
http://dx.doi.org/10.1145/1978542.1978559
http://dx.doi.org/10.1109/ISCA.2005.42
http://www.phrack.org/
http://dx.doi.org/10.1145/1210596.1210598
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://dx.doi.org/10.1145/1391469.1391686
http://dx.doi.org/10.1145/237090.237202

106 References

Support for Programming Languages and Operating Systems (ASPLOS), pp. 240–250.
DOI: 10.1145/291006.291053 33

G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. Gibbons, M. Kozuch, and T. Mowry. February
2015. Exploiting compressed block size as an indicator of future reuse. In High
Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium,
pp. 51–63. DOI: 10.1109/HPCA.2015.7056021 35

M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey. 2009. Hardware Trojan horse
detection using gate-level characterization. In Proceedings of the 46th Annual Design
Automation Conference, DAC ’09, pp. 688–693. ACM, New York. DOI: 10.1145/1629911
.1630091 49

S. M. Potter. 2001. What can artificial intelligence get from neuroscience? In Artificial
Intelligence Festschrift: The Next 50 Years, pp. 174–185. Springer-Verlag, New York. 26

K. Punniyamurthy and A. Gerstlauer. 2017. Exploring non-uniform processing in-memory
architectures. In 1st Workshop on Hardware/Software Techniques for Minimizing Data
Movement, held in conjunction with PACT. 91

M. Qureshi, A. Jaleel, Y. Patt, S. C. Steely, and J. Emer. June 2007. Adaptive insertion policies
for high performance caching. In Proceedings of the 34th International Symposium on
Computer Architecture (ISCA), pp. 381–391. DOI: 10.1145/1250662.1250709 51, 60

M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt. June 2006. A case for MLP-aware cache
replacement. In Proceedings of the 33rd International Symposium on Computer
Architecture (ISCA), pp. 167–178. DOI: 10.1109/ISCA.2006.5 35, 51

M. K. Qureshi and Y. N. Patt. 2006. Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 423–432.
DOI: 10.1109/MICRO.2006.49 34

R. Ramanathan. 2006. Intel multi-core processors: Making the move to quad-core and
beyond. White paper, Intel Corporation. 35

J. Reineke, D. Grund, C. Berg, and R. Wilhelm. September 2006. Predictability of
cache replacement policies. Reports of SFB/TR 14 AVACS 9, SFB/TR 14 AVACS.
http://www.avacs.org 35

A. Ros, M. Davari, and S. Kaxiras. February 2015. Hierarchical private/shared classification:
The key to simple and efficient coherence for clustered cache hierarchies. In High
Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium,
pp. 186–197. DOI: 10.1109/HPCA.2015.7056032 35

X. Ruan, A. Manzanares, S. Yin, M. Nijim, and X. Qin. 2009. Can we improve energy efficiency
of secure disk systems without modifying security mechanisms? In Proceedings of the
2009 IEEE International Conference on Networking, Architecture, and Storage, NAS ’09,
pp. 413–420. DOI: 10.1109/NAS.2009.71 47

K. Rupp. 2018. 42 years of microprocessor trend data. https://github.com/karlrupp/
microprocessor-trend-data (last accessed March 2018). 2

http://dx.doi.org/10.1145/291006.291053
http://dx.doi.org/10.1109/HPCA.2015.7056021
http://dx.doi.org/10.1145/1629911.1630091
http://dx.doi.org/10.1145/1629911.1630091
http://dx.doi.org/10.1145/1250662.1250709
http://dx.doi.org/10.1109/ISCA.2006.5
http://dx.doi.org/10.1109/MICRO.2006.49
http://www.avacs.org
http://dx.doi.org/10.1109/HPCA.2015.7056032
http://dx.doi.org/10.1109/NAS.2009.71

References 107

S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. March 2017. IBM power9
processor architecture. IEEE Micro, 37(2): 40–51. DOI: 10.1109/MM.2017.40 15

S. Sayyaparaju, G. Chakma, S. Amer, and G. S. Rose. 2017. Circuit techniques for online
learning of memristive synapses in CMOS-memristor neuromorphic systems. In
Proceedings of the Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, pp. 479–482.
ACM, New York. DOI: 10.1145/3060403.3060418 26, 92

M. Schuette and J. Shen. March 1987. Processor control flow monitoring using signatured
instruction streams. IEEE Transactions on Computers, C-36(3): 264–276. DOI: 10.1109/
TC.1987.1676899 49

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S. Plank.
May 2017. A survey of neuromorphic computing and neural networks in hardware.
ArXiv e-prints. https://arxiv.org/abs/1705.06963 92

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry. 2016. Buddy-RAM: Improving the performance and
efficiency of bulk bitwise operations using DRAM. https://arxiv.org/abs/1611.09988
91

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S.
Williams, and V. Srikumar. 2016. Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, pp. 14–26. IEEE Press, Piscataway, NJ.
DOI: 10.1109/ISCA.2016.12 92

R. Sheikh and M. Kharbutli. October 2010. Improving cache performance by combining cost-
sensitivity and locality principles in cache replacement algorithms. In Proceedings
of the International Conference on Computer Design (ICCD), pp. 76–83. DOI: 10.1109/
ICCD.2010.5647594 51

P. Siegl, R. Buchty, and M. Berekovic. 2016. Data-centric computing frontiers: A survey
on processing-in-memory. In Proceedings of the Second International Symposium on
Memory Systems, MEMSYS ’16, pp. 295–308. ACM, New York. DOI: 10.1145/2989081
.2989087 91

B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner. 2005. Power5 system
microarchitecture. IBM Journal of Research and Development, 49(4/5): 505–521. DOI:
10.1147/rd.494.0505 35

A. Smith. 1982. Cache memories. ACM Computing Surveys, 14(3): 473–530. 33

F.-X. Standaert, T. G. Malkin, and M. Yung. 2009. A unified framework for the analysis of
side-channel key recovery attacks. In Proceedings of the 28th Annual International
Conference on Advances in Cryptology: The Theory and Applications of Cryptographic
Techniques, EUROCRYPT ’09, pp. 443–461. Springer-Verlag, Berlin, Heidelberg,
pp. 443–461. DOI: 10.1007/978-3-642-01001-9_26 47, 49

L. Su, S. Courcambeck, P. Guillemin, C. Schwarz, and R. Pacalet. 2009. SecBus: Operating
system controlled hierarchical page-based memory bus protection. In Proceedings of

http://dx.doi.org/10.1109/MM.2017.40
http://dx.doi.org/10.1145/3060403.3060418
http://dx.doi.org/10.1109/TC.1987.1676899
http://dx.doi.org/10.1109/TC.1987.1676899
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1109/ICCD.2010.5647594
http://dx.doi.org/10.1109/ICCD.2010.5647594
http://dx.doi.org/10.1145/2989081.2989087
http://dx.doi.org/10.1145/2989081.2989087
http://dx.doi.org/10.1147/rd.494.0505
http://dx.doi.org/10.1007/978-3-642-01001-9_26

108 References

the Conference on Design, Automation and Test in Europe, DATE ’09, pp. 570–573. DOI:
10.1109/DATE.2009.5090729 47

H. Sutter. March 2005. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3): 202–210. 4

TCG. April 2008. Trusted platform module (TPM) summary.
http://www.trustedcomputinggroup.org/. 47

M. Tehranipoor and F. Koushanfar. January 2010. A survey of hardware Trojan taxonomy and
detection. IEEE Design & Test of Computers, 27(1): 10–25. DOI: 10.1109/MDT.2010.7
49

A. Tereshkin. 2010. Evil maid goes after PGP whole disk encryption. In Proceedings of the 3rd
International Conference on Security of Information and Networks, SIN ’10, p. 2. ACM,
New York. DOI: 10.1145/1854099.1854103 49

K. Tiri. 2007. Side-channel attack pitfalls. In Proceedings of the 44th Annual Design Automation
Conference, DAC ’07, pp. 15–20. ACM, New York. DOI: 10.1145/1278480.1278485 47,
49

M. Tomasevic and V. Milutinovic. 1993. The Cache Coherence Problem in Shared-Memory
Multiprocessors: Hardware Solutions. IEEE Computer Society Press, Los Alamitos, CA.
34

D. M. Tullsen, S. Eggers, and H. M. Levy. 1995. Simultaneous multithreading: Maximizing
on-chip parallelism. In Proceedings of the 22nd International Symposium on Computer
Architecture, pp. 392–403. DOI: 10.1109/ISCA.1995.524578 3, 14, 34, 35

D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain, et al.
October 2017. Trends in data locality abstractions for HPC systems. IEEE Transactions
on Parallel and Distributed Systems, 20(10): 3007–3020. DOI: 10.1109/TPDS.2017
.2703149 64

US Department of Energy. April 2013. Technical challenges of exascale computing. Technical
Report JSR-12-310. https://fas.org/irp/agency/dod/jason/exascale.pdf.

US Department of Energy. 2016. Neuromorphic computing, architectures, models, and
applications: A beyond-CMOS approach to future computing. Technical report, Oak
Ridge National Laboratory. 94

A. S. Vaidya, A. Shayesteh, D. H. Woo, R. Saharoy, and M. Azimi. 2013. SIMD divergence
optimization through intra-warp compaction. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13, pp. 368–379. ACM, New
York. DOI: 10.1145/2485922.2485954 22

K. Varadarajan, S. Nandy, V. Sharda, A. Bharadwaj, R. Iyer, S. Makineni, and D. Newell.
June 2006. Molecular caches: A caching structure for dynamic creation of
application-specific heterogeneous cache regions. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-39), pp. 433–442.
DOI: 10.1109/MICRO.2006.38 34

R. Vaslin, G. Gogniat, J.-P. Diguet, E. Wanderley, R. Tessier, and W. Burleson. February 2009.
A security approach for off-chip memory in embedded microprocessor systems.

http://dx.doi.org/10.1109/DATE.2009.5090729
http://www.trustedcomputinggroup.org/
http://dx.doi.org/10.1109/MDT.2010.7
http://dx.doi.org/10.1145/1854099.1854103
http://dx.doi.org/10.1145/1278480.1278485
http://dx.doi.org/10.1109/ISCA.1995.524578
http://dx.doi.org/10.1109/TPDS.2017.2703149
http://dx.doi.org/10.1109/TPDS.2017.2703149
http://dx.doi.org/10.1145/2485922.2485954
http://dx.doi.org/10.1109/MICRO.2006.38

References 109

Microprocessors and Microsystems, 33(1): 37–45. DOI: 10.1016/j.micpro.2008.08.008
47

A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. 1999. Adapting cache line
size to application behavior. In Proceedings of the 1999 International Conference on
Supercomputing, pp. 145–154. DOI: 10.1145/305138.305188 33, 34

A. Waksman and S. Sethumadhavan. 2010. Tamper evident microprocessors. In Proceedings
of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pp. 173–188. IEEE
Computer Society, Washington, DC. DOI: 10.1109/SP.2010.19 47, 49

K. Wang, K. Angstadt, C. Bo, N. Brunelle, E. Sadredini, T. Tracy II, J. Wadden, M. Stan, and
K. Skadron. 2016. An overview of Micron’s automata processor. In Proceedings of the
Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, CODES ’16, pp. 14:1–14:3. ACM, New York. DOI: 10.1145/2968456
.2976763 24

P. Wang, D. Feng, W. Wu, and L. Zhang. 2009. On the correctness of an approach against
side-channel attacks. In Proceedings of the 5th International Conference on Information
Security Practice and Experience, ISPEC ’09, pp. 336–344. Springer-Verlag, Berlin,
Heidelberg. 47, 49

X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. 2008. Hardware Trojan detection
and isolation using current integration and localized current analysis. In Proceedings
of the 2008 IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems,
pp. 87–95. IEEE Computer Society, Washington, DC. DOI: 10.1109/DFT.2008.61 49

E. Wheeler. September 2008. Replay attacks. http://www.sans.org/. 48

W. Wong and J.-L. Baer. January 2000. Modified LRU policies for improving second level cache
behavior. In Sixth International Symposium on High-Performance Computer Architecture
(HPCA-6), pp. 49–60. DOI: 10.1109/
HPCA.2000.824338 35

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture, ISCA ’95, pp. 24–36. ACM,
New York. DOI: 10.1145/223982.223990 51

X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. February 2015. Coordinated static and
dynamic cache bypassing for GPUs. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pp. 76–88. DOI: 10.1109/HPCA
.2015.7056023 35

J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain, et al. 2010. An intra-
chip free-space optical interconnect. In Proceedings of the 37th Annual International
Symposium on Computer Architecture, ISCA ’10, pp. 94–105. ACM, New York. DOI:
10.1145/1815961.1815975 39

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin. 2006. Improving cost,
performance, and security of memory encryption and authentication. In Proceedings

http://dx.doi.org/10.1016/j.micpro.2008.08.008
http://dx.doi.org/10.1145/305138.305188
http://dx.doi.org/10.1109/SP.2010.19
http://dx.doi.org/10.1145/2968456.2976763
http://dx.doi.org/10.1145/2968456.2976763
http://dx.doi.org/10.1109/DFT.2008.61
http://www.sans.org/
http://dx.doi.org/10.1109/HPCA.2000.824338
http://dx.doi.org/10.1109/HPCA.2000.824338
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.1109/HPCA.2015.7056023
http://dx.doi.org/10.1145/1815961.1815975

110 References

of the 33rd Annual International Symposium on Computer Architecture, ISCA ’06,
pp. 179–190. DOI: 10.1145/1150019.1136502 47

H. Yang, R. Govindarajan, G. R. Gao, and Z. Hu. December 2005. Improving power efficiency
with compiler-assisted cache replacement. Journal of Embedded Computing, 1(4):
487–499. 51

T. T. Ye. 2003. Physical planning for on-chip multiprocessor networks and switch fabrics. In
14th IEEE International Conference on Application-Specific Systems, Architectures and
Processors (ASAP’03), pp. 97–107. DOI: 10.1109/ASAP.2003.1212833 34

M. Ying. 2016. Foundations of Quantum Programming, 1. Morgan Kaufmann, Burlingon, MA.
95

M. Zahran. March 2016. Brain-inspired machines: What, exactly, are we looking for? IEEE
Pulse, 7(2): 48–51. DOI: 10.1109/MPUL.2015.2513728 26

W. Zhang, M. Kandemir, M. Karakoy, and G. Chen. August 2005. Reducing data cache
leakage energy using a compiler-based approach. ACM Transactions on Embedded
Computing Systems, 4(3): 652–678. DOI: 10.1145/1086519.1086529

http://dx.doi.org/10.1145/1150019.1136502
http://dx.doi.org/10.1109/ASAP.2003.1212833
http://dx.doi.org/10.1109/MPUL.2015.2513728
http://dx.doi.org/10.1145/1086519.1086529

Index

3D stacked memory, 22

Altera, 24
AMD, 14, 18, 45
AMD Opteron, 45
application-specific integrated circuit, 23
Arm, 30, 31
artificial intelligence, 17
automata processors, 24

bandwidth, 22, 30, 34, 38, 50, 64
banks, 6
big data, 17

cache, 6, 33, 37
cache coherence, 31
cache replacement, 35
Catapult project, 23
central processing unit, 13
CMOS, 5
Coffee Lake, 28
coherence protocol, 15
communication overhead, xiii
concurrency, 4
consistency model, 15
Cortex-A75, 30
CPU, 85
Cray, 41, 43
CUDA, 9, 11, 18, 84

dark silicon, 3
datacenters, 70
DDR3, 45
DDR4, 16

Dennard, Robert, 2
Dennard scaling, 2, 4
digital signal processors, 26
distributed memory, 72
DRAM, 7, 22
DVFS, 6
dynamic power, 5

eDRAM, 7, 14, 16
exascale, xiii, 11, 42, 67, 92

FinFET, 5, 15
Flynn, Michael, 13
Fortran with coarrays, 44
FPGA, 10, 23, 82, 85

GDDR5, 45
global memory, 22
Google, 27
GPU, 10, 11, 16, 27, 29, 35, 40, 45, 51, 82, 84,

85

heterogeneous system architecture,
85

high-bandwidth memory, 22
hyperthreading technology, 3, 28
HyperTransport, 40

IBM, 14
Intel, 23, 28, 42
interconnect, 35
Internet of Things, 67

last-level cache, 14

112 Index

memory hierarchy, 6, 35
microarchitecture, 49
Microsoft, 23
MIMD, 17
Moore, Gordon, 2
Moore’s law, 2, 4
MPI, 72
MRAM, 14
multicore, 3, 4, 10, 11, 14, 17, 28, 34, 35, 49,

51, 67
multiple instruction–multiple data, 13
multiple instruction–single data, 13
multiprogramming environment, 6
mutlicore, 10

near-data processing, 91
networks on-chip, 34
neuromorphic chips, 25, 92
nonuniform cache access, 6, 14
nonuniform memory access, 6
Noyce, Robert, 2
NUCA, 16
NVIDIA, 11, 18, 29, 40, 85
NVIDIA Kepler, 45
NVLink, 18, 40
NVM, 7

Omni-Path, 42
OpenACC, 70, 83
OpenCL, 9, 78, 79
OpenMP, 9, 10, 70, 76, 79
optimizing compilers, 6

PCIe, 16, 18, 40, 45
PCM, 14
petascale, 11
photonics, 39
POWER9, 15
processing-in-memory, 91
programmability, 67
PThreads, 9, 11, 88

Qualcomm, 30
quantum computing, 27, 67, 95

ReRAM, 14

secure processing unit, 31
security, 46
shared memory, 76
silicon on insulator, 5
SIMD, 17
simultaneous multithreading, 2, 3,

34
single instruction–multiple data, 13
single instruction–single data, 13
Skylake, 28
SMT, 14, 16
Snapdragon, 30
special function units, 22
speculative execution, 2
SPMD, 13, 79
SRAM, 7
streaming multiprocessor, 11, 18
streaming processors, 18, 79
STTRAM, 14
Sunway, 45
supercomputers, 43, 70
superscalar, 2
symmetrical multithreading, 14
system memory, 22
system-on-chip, 30

TaihuLight supercomputer, 45
tensor processing unit, 27
threading building blocks, 87
thread migration, 4
Titan supercomputer, 45

Unified Parallel C, 44

Verilog, 23
VHDL, 23
virtual address space, 19
virtualization, 68
virtual memory, 6
Volta architecture, 19

Xilinx, 23

Author’s Biography
Mohamed Zahran

Mohamed Zahran received his Ph.D. in electri-
cal and computer engineering from the University
of Maryland at College Park in 2003. He is cur-
rently a faculty member with the Computer Sci-
ence Department, Courant Institute of Mathemat-
ical Sciences at New York University (NYU). His
research interest spans several aspects of com-
puter architecture, such as architecture of hetero-
geneous systems, hardware/software interaction,
and Exascale computing. Zahran is a senior mem-
ber of IEEE, a senior member of ACM, and a mem-
ber of Sigma Xi Scientific Honor Society. Besides

research and teaching, he is also interested in the history and philosophy of science
and used to be a good chess player!

You can follow him on

LinkedIn. https://www.linkedin.com/in/mzahran/

Twitter. https://twitter.com/MohamedMZahran

His webpage. http://www.mzahran.com

http://www.mzahran.com

ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

If you look around you will find that all computer systems, from your
portable devices to the strongest supercomputers, are heterogeneous
in nature. The most obvious heterogeneity is the existence of computing
nodes of different capabilities (e.g. multicore, GPUs, FPGAs, …). But there
are also other heterogeneity factors that exist in computing systems, like
the memory system components, interconnection, etc. The main reason for
these different types of heterogeneity is to have good performance with
power efficiency.
 Heterogeneous computing results in both challenges and
opportunities. This book discusses both. It shows that we need to deal
with these challenges at all levels of the computing stack: from algorithms
all the way to process technology. We discuss the topic of heterogeneous
computing from different angles: hardware challenges, current hardware
state-of-the-art, software issues, how to make the best use of the current
heterogeneous systems, and what lies ahead.
 The aim of this book is to introduce the big picture of heterogeneous
computing. Whether you are a hardware designer or a software developer,
you need to know how the pieces of the puzzle fit together. The main goal is
to bring researchers and engineers to the forefront of the research frontier
in the new era that started a few years ago and is expected to continue
for decades. We believe that academics, researchers, practitioners, and
students will benefit from this book and will be prepared to tackle the big
wave of heterogeneous computing that is here to stay.

	Contents
	Preface
	1. Why Are We Forced to Deal with Heterogeneous Computing?
	2. Different Players: Heterogeneity in Computing
	3. Architecture: Heterogeneity in Design
	4. Programmability
	5. Research Directions
	References
	Index
	Author’s Biography

