
ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

With recent advances in natural language understanding techniques and far-
field microphone arrays, natural language interfaces, such as voice assistants
and chatbots, are emerging as a popular new way to interact with computers.
They have made their way out of the industry research labs and into the
pockets, desktops, cars and living rooms of the general public. But although
such interfaces recognize bits of natural language, and even voice input, they
generally lack conversational competence, or the ability to engage in natural
conversation. Today’s platforms provide sophisticated tools for analyzing
language and retrieving knowledge, but they fail to provide adequate support
for modeling interaction. The user experience (UX) designer or software
developer must figure out how a human conversation is organized, usually
relying on commonsense rather than on formal knowledge. Fortunately,
practitioners can rely on conversation science.

This book adapts formal knowledge from the field of Conversation Analysis
(CA) to the design of natural language interfaces. It outlines the Natural
Conversation Framework (NCF), developed at IBM Research, a systematic
framework for designing interfaces that work like natural conversation. The
NCF consists of four main components: 1) an interaction model of “expandable
sequences,” 2) a corresponding content format, 3) a pattern language with
100 generic UX patterns and 4) a navigation method of six basic user actions.
The authors introduce UX designers to a new way of thinking about user
experience design in the context of conversational interfaces, including a new
vocabulary, new principles and new interaction patterns. User experience
designers and graduate students in the HCI field as well as developers and
conversation analysis students should find this book of interest.

Conversational UX Design

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a series of high-quality books for the computer science community, published
by ACM and many in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Conversational UX Design: A Practitioner’s Guide to the Natural
Conversation Framework
Robert J. Moore, IBM Research–Almaden
Raphael Arar, IBM Research–Almaden
2019

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University
2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:
Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Conversational UX Design
A Practitioner’s Guide to the Natural
Conversation Framework

Robert J. Moore
IBM Research–Almaden

Raphael Arar
IBM Research–Almaden

ACM Books #27

Copyright © 2019 by Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trade-
marks or registered trademarks. In all instances in which the Association for Computing
Machinery is aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

Conversational UX Design: A Practitioner’s Guide to the Natural Conversation Framework
Robert J. Moore
Raphael Arar

books.acm.org
http://books.acm.org

ISBN: 978-1-4503-6301-3 hardcover
ISBN: 978-1-4503-6302-0 paperback
ISBN: 978-1-4503-6303-7 ePub
ISBN: 978-1-4503-6304-4 eBook

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3304087 Book 10.1145/3304087.3304095 Chapter 7
10.1145/3304087.3304088 Preface 10.1145/3304087.3304096 Chapter 8
10.1145/3304087.3304089 Chapter 1 10.1145/3304087.3304097 Chapter 9
10.1145/3304087.3304090 Chapter 2 10.1145/3304087.3304098 Appendix A
10.1145/3304087.3304091 Chapter 3 10.1145/3304087.3304099 Appendix B
10.1145/3304087.3304092 Chapter 4 10.1145/3304087.3304100 Appendix C
10.1145/3304087.3304093 Chapter 5 10.1145/3304087.3304101 Appendix D
10.1145/3304087.3304094 Chapter 6 10.1145/3304087.3304102 References/Index/Bios

A publication in the ACM Books series, #27
Editor in Chief: M. Tamer Özsu, University of Waterloo
Area Editor: Michel Beaudouin-Lafon, Universit́e Paris-Sud and Institut Universitaire de France

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTEX.
Cover art: Raphael Arar.
Cover image: The Euphonia, (The Talking Machine); Source: The London Journal: Weekly
Record of Literature, Science and Art. NO. 1340, VOL. LII, London: 1870, November 1, 1870,
pg. 245.

First Edition

10 9 8 7 6 5 4 3 2 1

http://books.acm.org
http://dx.doi.org/10.1145/3304087
http://dx.doi.org/10.1145/3304087.3304095
http://dx.doi.org/10.1145/3304087.3304088
http://dx.doi.org/10.1145/3304087.3304096
http://dx.doi.org/10.1145/3304087.3304089
http://dx.doi.org/10.1145/3304087.3304097
http://dx.doi.org/10.1145/3304087.3304090
http://dx.doi.org/10.1145/3304087.3304098
http://dx.doi.org/10.1145/3304087.3304091
http://dx.doi.org/10.1145/3304087.3304099
http://dx.doi.org/10.1145/3304087.3304092
http://dx.doi.org/10.1145/3304087.3304100
http://dx.doi.org/10.1145/3304087.3304093
http://dx.doi.org/10.1145/3304087.3304101
http://dx.doi.org/10.1145/3304087.3304094
http://dx.doi.org/10.1145/3304087.3304102

Contents

Preface xiii

Chapter 1 Introduction 1

1.1 Natural Language Interfaces 3
1.2 Conversational UX Design 5
1.3 Conversation First 7
1.4 Mutual Understanding 17
1.5 About This Book 23

Chapter 2 Conversation Analysis 25

2.1 What Is a Conversation? 26
2.2 Topic vs. Structure 27
2.3 Anatomy of a Conversation 29
2.4 Conversation Types 39
2.5 Conclusion 43

Chapter 3 Conversation Authoring 45

3.1 A Simple Finite-State Machine 47
3.2 Conditions (Intents, Entities, Context) 49
3.3 Responses 56
3.4 Branching 59
3.5 Conclusion 62

Chapter 4 Natural Conversation Framework 63

4.1 Interaction Model 65
4.2 Content Format 69
4.3 Conversational Activity Patterns 76
4.4 Conversation Navigation 79
4.5 Conclusion 85

x Contents

Chapter 5 Conversational Activity UX Patterns 87

5.1 Pattern Language for Conversational UX 88
5.2 A1 Inquiry (User) 90
5.3 A2 Open Request 93
5.4 A3 Extended Telling 103
5.5 A4 Quiz 106
5.6 A5 Inquiry (Agent) 109
5.7 Combining Patterns 114
5.8 Conclusion 119

Chapter 6 Sequence Management UX Patterns 121

6.1 B1 Repair (Agent) 122
6.2 B2 Repair (User) 128
6.3 B3 Extended Repair 138
6.4 B4 Sequence Closers 142
6.5 B5 Sequence Abort 145
6.6 Conclusion 147

Chapter 7 Conversation Management UX Patterns 149

7.1 C1 Opening (Agent) 149
7.2 C2 Opening (User) 155
7.3 C3 Capabilities 161
7.4 C4 Closing 165
7.5 C5 Disengaging 174
7.6 Conclusion 180

Chapter 8 Conversational UX Design Process 183

8.1 Design Thinking 183
8.2 Stage 1: Empathize 187
8.3 Stage 2: Define 190
8.4 Stage 3: Ideate 192
8.5 Stage 4: Prototype 203
8.6 Stage 5: Test 208
8.7 Conclusion 209

Chapter 9 Conclusion 211

9.1 Conversation Metrics 212
9.2 Final Thoughts 217

Contents xi

Appendix A Conversation Analysis Transcription Conventions 219

Appendix B Dialog Design Pseudocode 221

Appendix C NCF Pattern Language Summary 223

NCF Pattern Types 223
NCF Patterns and Examples 226

Appendix D Sample Conversation with Alma 265

References 275

Index 283

Author Biographies 297

Preface

Ever since I started working in Silicon Valley research labs, I have dreamed of
designing machines that can talk. As a sociologist trained in ethnomethodology
and Conversation Analysis (CA), I have always been eager to apply my knowledge of
the “machinery” of human conversation to the design of conversational machines.
While at Xerox’s Palo Alto Research Center (PARC), beginning in 1999, I asked my
colleagues specializing in natural language processing why we could not build a
conversational system. They told me it would require a dialog platform, which we
did not have. Years later in 2012, I joined IBM’s Almaden Research Center (ARC)
in San Jose. Having watched Watson beat human champions at Jeopardy only the
year before, my first thought was, how can I teach Watson to hold a conversation?
By 2013 I was asked to advise a group that was doing just that. I shared my formal
knowledge of the structure human conversation to suggest ways that their system
could be more “conversational.”

Then in 2015, IBM developed its own dialog platform, the Watson Dialog service.
The platform provided an authoring tool for creating natural language interactions
that anyone could use, even a sociologist! Immediately I began learning the simpli-
fied, GUI-based programming tool and creating conversational user experiences.
I learned to chain dialog nodes together in various ways, set conditions, train in-
tents, write responses and test to see if my conversational sequences worked. Soon
I was authoring conversation spaces. I collaborated with a team, as the conversa-
tional UX designer, that was developing an application called What’s in Theaters, a
conversational agent for accessing movie information. What’s in Theaters was not a
product, but simply a prototype application demonstrating best practices for how
the Watson Dialog service could be used. Through working on this application, and
many more that followed it, I learned how to perform the role of conversational UX
designer on software development teams.

From the start, my interest in creating conversational user experiences has
been to develop a systematic design framework that is based on the science of

xiv Preface

Conversation Analysis and related fields. As a conversation analyst, I am fascinated
with the mechanics of mundane conversational activities; however, I expect the
average UX designer is not. My aim was to develop a set of reusable patterns for
conversational activities and their local management, and to share them with UX
designers so they could focus more on the content of their agent and less on the ba-
sic conversation mechanics. In consulting across IBM and outside of it, I learned
that development teams creating conversational agents lacked a common vocab-
ulary for talking about the different parts of a conversation. I realized that even
before providing the set of interaction patterns, development teams could benefit
from the vocabulary of CA, with its turns, sequences, activities, conversations and
more. They needed a systematic way to refer to the various parts of the thing they
were trying to build.

In 2016 I began working with my current team, re*THINK Enterprise, in IBM Re-
search, to develop conversational agents for the travel industry. As part of this team,
I met and began working with my co-author, Raphael, a UX designer, researcher and
artist. Together we tackled questions of how to integrate conversational UX with vi-
sual UX on desktop and mobile platforms. Through these efforts, we began to talk
about how we could package formal knowledge from Conversation Analysis for UX
designers. The CA literature is somewhat dense and technical. Simply directing
designers to it would not be enough. So we looked for similarities across the disci-
plines, for example, in the concepts of “user-centered design” [Norman 1988] and
“recipient design” [Sacks et al. 1974], to help translate ideas between analysts and
designers. In addition, we experimented with adapting the design thinking pro-
cess to the development of conversational agents, testing them on real projects.
Together we sketched out a novel methodology for conversational UX design.

In 2017 we organized a workshop at the CHI conference on human-computer
interaction in Denver on the topic of Conversational UX Design. The workshop
attracted a large group of researchers, both from academia and from industry,
all working in the area of chatbots and voice assistants. Each of the participants
displayed a real passion for conversational interfaces. In addition to participants,
our workshop attracted the attention of publishers. As a result, we have produced
two books on the topic, of which this is one.

Motivation for this Book
The motivation for this book is to address an emerging challenge increasingly
faced by user experience (UX) designers: how to model natural conversation. Today’s
chatbot and voice assistant platforms enable you to create rich natural-language in-

Preface xv

teractions, but they leave it up to you to figure out how to model the structure of
those interactions. In order to determine how the system will respond to a particular
kind of user utterance, you must program dialog. Modeling simple question-answer
or command-control interactions may be easy enough, but modeling natural con-
versational activities is more challenging. Answering has a different interactional
structure from quizzing. Debating has a different structure from storytelling. Trou-
bleshooting has a different structure from tutoring. And in any of these activities
and many others, participants may need to elicit more information or repair prior
utterances at any time in order to achieve mutual understanding.

This book provides a conceptual framework for designing the user experience
with conversational user interfaces. It provides both introductory theory from con-
versation science and design assets from our experience building such systems over
the past four years. The theory is adopted primarily from Conversation Analysis, a
subfield of sociology, that has been around for over 50 years. The design assets con-
sist primarily of a “pattern language” [Alexander 1977] applied to user interaction
design [Erickson 2000] consisting of 100 UX patterns for conversational agents. The
theory explains the structures of human conversation and the systematics behind
the pattern language. In addition, the framework provides an interaction model,
content format and navigation method for conversational interfaces.

We have selected these patterns for their genericness and reusability. We have
mined the empirical literature of Conversation Analysis (CA) and abstracted from
our own experience. The patterns are verbal interaction patterns that are indepen-
dent of any particular content, such as travel, entertainment, healthcare, com-
merce, etc. The CA literature identifies these formal, generic patterns that are
adapted by people to many kinds of conversational activities in all kinds of social
settings. These patterns are used by speakers to do interactional work: to achieve
the purpose of the interaction, to manage its course, and to recover from routine
troubles. Our pattern language offers only a subset of the many patterns specified by
Conversation Analysis. More patterns exist and will be added over time. In addition,
the patterns we selected are simplified versions of the natural human patterns. They
do not support all the rich variations that people exhibit in natural human conver-
sation. Finally, our pattern language provides an initial set of actions against which
the conversational competence of any automated agent can be measured.

The patterns are practical and combinable, like building blocks. For example,
the open request pattern can be combined with the extended telling pattern to create
a troubleshooting conversation. Through the first pattern, the user can present a
problem and the agent can ask diagnostic questions to arrive at a solution, and
through the second pattern, the agent can deliver a set of instructions, the pace of

xvi Preface

which the user can control. On the other hand, the extended telling pattern, user
inquiry pattern and quiz pattern can be combined to create a tutoring conversation.
The first pattern is used to present educational material, such as an explanation
of “friction” or the themes in Pride and Prejudice, during which the user can solicit
definitions and clarifications. The second pattern enables the user to ask questions
about the material presented. And the third pattern enables the agent to quiz the
student on his or her recall and understanding of the material. In fact, the pattern
language can be used to design a wide range of conversations across many, many
use cases.

The patterns are ordered in terms of their function. First, the patterns labeled
“conversational activities” are those through which the participants achieve the pri-
mary business, or purpose, of a conversation: requesting a ride, getting a restaurant
recommendation, answering questions about health insurance, solving a com-
puter problem, teaching concepts in physics, and much more. Second, the patterns
labeled “sequence-level management” are those through which the participants
manage particular sequences within the conversation: requesting a repeat of what
was just said, requesting a definition of an unknown term, acknowledging the ful-
fillment of a request with “thank you,” aborting a set of instructions that is too
long, and more. These patterns enable the participants to manage the social ac-
tivities within a conversation. And third, the patterns labeled “conversation-level
management” are those through which the participants manage the initiation and
cessation of the interaction itself: starting a conversation with “hello,” “how are
you?,” and/or “how can I help you?,” describing what the customer service agent
can do, getting in a last topic before the conversation ends, disengaging upon be-
ing insulted, asking to be transferred to a “real person” and more. These patterns
enable the participants to manage the state of engagement.

For convenience and clarity, each pattern has the same format. First, there is
an abstract model of the pattern in the form of a transcript with generic social
actions (in capitals). Second, the pattern is illustrated with a particular example
from some particular use case. Third, each pattern is named and numbered for easy
reference. Subpatterns are numbered by adding decimal places to the numbering
of the main pattern. For example, “A4.2 Quiz Repairs” is a subpattern of “A4.0 Quiz.”
The patterns are then organized into the three functional classes: conversational
activities, sequence-level management, and conversation-level management.

We are publishing our approach in an effort to foster an open community of
UX designers and others who are passionate about conversational UX design and
who wish to leverage the conversation sciences, such as Conversation Analysis. We
hope that the pattern language, which forms the core of our Natural Conversation

Preface xvii

Framework, will be adopted and expanded by such a community. To foster collabo-
ration, we encourage conversational UX designers everywhere to create transcripts
representing how their agents interact and to share these designs with each other.
Through such sharing, conversational UX design, and dialog design in particular,
can evolve into a more mature discipline.

Acknowledgments
This book would not have been possible without the support of our IBM manage-
ment, Guang-Jie Ren and Sandeep Gopisetty. They believed in our vision from the
start and provided the much-needed resources that have enabled us to develop con-
versational systems. These resources include the time and expertise of the other
members of the re*THINK Enterprise team. Without them, we could not have cre-
ated all of the pieces required to build a whole conversational agent.

I must also acknowledge the invaluable guidance of Rafah Hosn, who led the
What’s In Theaters project, which was my first experience in identifying best prac-
tices for conversational agent development.

And I must thank Mitch Mason for teaching me how to design dialog through
examples and my endless questions about how to extract an entity or define a
condition.

Finally, I thank my family for understanding when I spent weekends writing
instead of being a husband or a dad.

Robert J. Moore
March 2019

1Introduction
All conversations are interactions, but not all interactions are conversations.

—Moore and Arar [2018]

While we all know how to have a conversation, we do not all know exactly how they
work. We typically ignore the mechanics of human conversation in order to focus
on the message being communicated. But if we are to design such mechanics, we
must understand them more formally. Fortunately, there are fields of study within
the social sciences that do just this. Social sciences, like Conversation Analysis (CA),
can help user experience (UX) designers understand the principles and patterns of
natural human conversation for the purpose of creating user interfaces that attempt
to simulate them.

The best way to understand the mechanics of natural human conversation, and
other conversation-like interactions, is to capture their details in a mechanical
recording and closely analyze a text-based transcription of that recording. Tran-
scripts enable you to focus on the talk itself, rather than the medium, although
when done face-to-face, embodied actions, as well as the physical setting and arti-
facts, may be required to understand it fully. Consider the following excerpt from
a transcript of a conversation-like interaction (Example 1.1).

Example 1.1 Rogerian Therapy.
1 A: Men are all alike.

2 B: In what way?

3 A: They’re always bugging us about something or other.

4 B: Can you think of a specific example?

5 A: Well, my boyfriend made me come here.

6 B: Your boyfriend made you come here?

7 A: He says I’m depressed much of the time.

8 B: I am sorry to hear that you are depressed.

9 A: It’s true. I am unhappy.

10 B: Do you think coming here will help you not to be unhappy?

2 Chapter 1 Introduction

What can we say about this interaction? We might say that it is about “how men
are annoying.” Or we might say that A is complaining about men and B is listening.
Or we might say that A is making statements and B is asking follow-up questions. Or
we might even say that B is practicing Rogerian therapy, a person-centered method
of psychotherapy pioneered by Carl Rogers in the 1940s, by getting A to talk about
herself.

In fact, A is a user and B is the computer program ELIZA [Weizenbaum 1966,
pp. 36–37], one of the first chatbots. The user typed her utterances, and the auto-
mated agent returned textual responses. ELIZA appears to be a good listener, but
it does not have much to say. It does not have any real-world knowledge to offer.
And apart from Rogerian-style psychotherapy, it provides no service. Weizenbaum
[1966, p. 42], the creator of ELIZA, explains how the chatbot works psychologically.

. . . it has a crucial psychological utility in that it serves the speaker to main-
tain his sense of being heard and understood. The speaker further defends his
impression (which even in real life may be illusory) by attributing to his conversa-
tional partner all sorts of background knowledge, insights and reasoning ability.
But again, these are the speaker’s contribution to the conversation. They manifest
themselves inferentially in the interpretations he makes of the offered responses.

Weizenbaum [1966] points out that the behavior of the system leads users to at-
tribute to it the ability to hear and understand. In other words, because ELIZA can
do “listening” and even “probing,” users attribute more cognitive capabilities to
it than it actually has. He suggests further that we may even form such illusory
impressions, to some degree, with other humans in “real life.”

From a conversational UX design perspective, the question is: how does ELIZA do
it? How does the automated agent do “listening”? An analysis of the transcript (see
Example 1.1), as well as Weizenbaum’s (1966) paper, reveals how. First, we can see
that ELIZA does listening by producing a generic paraphrase request (line 2) of the
user’s initial statement (line 1). Such an utterance can be employed appropriately
after anything the user says without recognizing its intent. The agent also produces
a generic example request (line 4), which can also be used after about any statement
made by a speaker (line 3). By requesting paraphrases, ELIZA gets the user to say
what she already said again but in different words, which humans routinely do in
order to manage troubles in understanding [Schegloff et al. 1977].

Next, ELIZA employs a range of generic repeat techniques. It repeats the user’s
entire utterance (line 6) but with the appropriate transformations of the pronouns.
This demonstrates that the agent “heard” what the user said (line 5) and under-
stands it to the degree that it could change “my” to “your” and “me” to “you.”

1.1 Natural Language Interfaces 3

Weizenbaum [1966, p. 42] suggests that this grammatical understanding leads the
user to attribute deeper understanding. ELIZA further repeats a part of the user’s
prior utterance, with transformation, “I’m depressed” (line 7), and incorporates
it into an utterance that recognizes it as bad news by offering an apology, “I am
sorry to hear that you are depressed” (line 8). Finally, ELIZA produces another par-
tial repeat of the user’s utterance (line 9) and combines it with a reference back to
an even earlier utterance (line 5): “Do you think coming here will help you not to
be unhappy?” (line 10). Through the production of such generic repeat and para-
phrase techniques, tailored to the user’s prior utterance(s), ELIZA helps foster the
impression that the user is being “heard and understood.”

Weizenbaum (1966) explains that ELIZA consists of a set of rules and templates
for transforming input utterances. ELIZA can do this without understanding the
meaning of what is said but simply by manipulating natural language. Like a for-
eigner with limited knowledge of English [Weizenbaum 1966, p. 37], ELIZA applies
a rule-based template to English utterances; for example, “one that specifies that
any sentence of the form ‘I am blah’ can be transformed to ‘How long have you
been blah?’, independently of the meaning of blah.” ELIZA identifies the “most im-
portant keyword,” some minimal grammatical context, and transforms the user’s
utterance into a conversation-like response [Weizenbaum 1966, p. 37]. Through
this mechanism, it appears to do “listening.”

1.1 Natural Language Interfaces
While chatbots and virtual agents have been around since ELIZA [Weizenbaum
1966], there has been a recent resurgence of interest in them as major computer
companies have released their own. Apple’s Siri, Amazon’s Alexa, Google’s Assis-
tant, Microsoft’s Cortana and IBM’s Watson are just a few examples, not counting
natural-language-based assistants by startups. With persistent Internet connec-
tions and machine-learning algorithms, virtual agents are much smarter today than
they were 20 years ago. While most of these systems accept voice input from users,
especially using far-field microphone arrays, many accept text input, sometimes
from standard applications like SMS and Instant Messaging. But although virtual
agents are becoming ubiquitous, interactions with them are still awkward, confus-
ing, limited and fraught with troubles in mutual understanding.

Conversational interfaces are very different from graphical user interfaces (GUI).
In conversational interfaces, the graphical elements are generally minimal, for exam-
ple, a text-entry box and a message history or a microphone button or nothing at all.
User interaction is conducted primarily through the words: typed or spoken. The

4 Chapter 1 Introduction

interaction metaphor for these interfaces is the natural, human conversation,
rather than the direct manipulation [Shneiderman 1982] of graphical interfaces.

Although natural language processing (NLP) has given us powerful automated
tools for analyzing the spoken and the written word alike, it does not provide a
model of how bits of language are sequenced into an interaction that is recog-
nizable as a “conversation” [Sacks et al. 1974]. Some [Button et al. 1995, p. 209]
have pointed out that a purely linguistic approach to building conversational inter-
faces, in which natural language is isolated from social activities, underestimates
the “extent to which the capacity to talk and to carry on a conversation involves the
possession of something other than purely ’linguistic’ skills, and, indeed, of other
things than skills.” There is something more than language that must be modeled
in a conversational interface and that is the organization of natural conversation.
Natural human conversation is a complex system in its own right [Sacks et al. 1974,
Schegloff 2007], which Sacks characterized as a “machinery” [Sacks 1984].

Natural language processing (NLP) techniques enable the automatic analysis of
bits of language, for example, English or Spanish or Mandarin, but how to string
those bits of language together into the kinds of sequences that occur in natural
conversation is left to the UX designer or software developer. Authoring “questions”
and their “answers” is simple enough. But how should the agent respond if the
user says “okay” or “oh” or “what do you mean?” Building the range of natural
conversational actions is still a hard problem. Luckily, Conversation Analysis (CA)
focuses precisely on this domain. It documents the systematics, or “mechanics,”
of how people naturally talk in a wide variety of settings and languages [Sacks et al.
1974, Schegloff 2007, Sidnell and Stivers 2013]. Understanding these systematics
formally is necessary for designing conversational UX, in addition to understanding
the systematics of language.

Today’s chatbots and voice assistants are something in between web search
and a human. On the one hand, they are more conversational than interacting
with a web search engine. You never say “thank you” or “what do you mean?”
to a search engine, although it may say, “Did you mean X?” to you [Moore and
Churchill 2011]. Search engines do not understand those kinds of conversational
actions, only “queries.” On the other hand, chatbots and voice assistants are not
as conversational as a native human speaker, such as your family or friends. While
you can talk to your mother about a wide range of things that are going on in your
life, virtual assistants, limited by current technology, do not possess that range
of knowledge or ability to handle such conversational complexity. Instead, they
are more like customer service interactions, which tend to be limited in scope, or
conversations with non-native speakers, which tend to require simpler utterances.

1.2 Conversational UX Design 5

Even the most “conversational” of natural-language agents do not truly engage
in conversation. Human conversation is merely the metaphor for this type of user
interface, just as direct manipulation is the metaphor for graphical user interfaces
[Shneiderman 1982]. This kind of human-computer interaction is at best a “simu-
lacrum” of human conversation [Button 1990, p. 68] and at worst bears no resem-
blance to it at all. We might think of conversational interfaces as “conversation
games.” Like video games, they offer simplified simulations of the interactions with
the real world, whether navigating a humanoid avatar through a realistic 3D envi-
ronment or interacting with other players through virtual face-to-face [Moore et al.
2007].1 Conversational interfaces are game-like in that they are interactive but con-
sist of a limited set of rules and legal “moves” compared the real phenomenon they
attempt to evoke. Just as users must learn how video-game interfaces work, or any
other user interfaces for that matter, they too will need to learn how to “play” conver-
sation games and how to navigate conversation spaces. Conversational interfaces
constitute a distinctive form of interaction, which borrows interaction patterns
from natural human conversation but also exhibits its own mechanics.

1.2 Conversational UX Design
While it is easy to create natural-language interfaces with today’s platforms, creat-
ing an effective and engaging user experience is still a major challenge. Creating
an interaction that works like a human conversation in particular is an even harder
problem. To appreciate the need for a new kind of UX design, consider web design
for a moment. In 2016, the IBM homepage looked like this (Figure 1.1). Whether
you like it or not, it is clearly designed by a professional. It has a clean look and
feel. Attractive fonts and color palette. Colorful hi-res images. It uses standard, fa-
miliar elements, such as drop-down menus, a search box, social media icons, a
“hamburger” menu and more. Furthermore, you can hire someone to build a user
interface like this. Web designer is an established role that is part of a relatively
mature discipline.

But this was not always the case. Consider the IBM homepage back in 1996 (Fig-
ure 1.2). By today’s standards, it looks amateurish at best. (No doubt it was created
by an amateur web designer.) There are no consistent color palette or font guide-
lines. The main interaction element is the hypertext link. The layout is simplistic.
The images, low-res. And the bullets and shadows look like they were created in

1. We do not mean to suggest that conversational agents are the same as the simplistic “dia-
logue trees” common in video games. Conversational agents are much more sophisticated and
nonlinear.

6 Chapter 1 Introduction

Figure 1.1 IBM Homepage 2016. (Reprint Courtesy of International Business Machines Corporation,
© International Business Machines Corporation)

PowerPoint. So what is the difference? Over the past 20 years, the discipline of web
design emerged. As the technical capabilities of the world wide web evolved, for
example the tag and high-speed networks, it became possible to apply for-
mal knowledge of graphic design to web pages to make them “look more like glossy
magazines” [Gillies and Cailliau 2000]. With the combination of user-interface de-
sign and graphic design, originally developed for the print industry, a new design
discipline was born.

Today, conversational interfaces are at the stage that web interfaces were in 1996:
the technologies are in the hands of the masses, but mature design standards have
not yet emerged around them. And the visual solutions that evolved for graphical
interfaces do not help us much with conversational interfaces, especially in the
case of voice. With conversational interfaces, the user experience consists primar-
ily of the design and sequencing of utterances. Instead of looking to the graphic
arts for help, this time UX designers should look to the social sciences. Just as for-
mal knowledge of the graphic arts revolutionized graphical user interface design,
formal knowledge of human conversation can revolutionize conversational user
interface design.

1.3 Conversation First 7

Figure 1.2 IBM Homepage 1996. (Reprint Courtesy of International Business Machines Corporation,
© International Business Machines Corporation)

1.3 Conversation First
Current chatbot and voice assistant platforms enable you to create a variety of dif-
ferent styles of user interaction. Because they use natural language classification
(NLC), these platforms are a technical advance over earlier voice control systems
that only recognized a set of pre-specified command phrases. NLC enables recog-
nition of a much wider range of phrases. However, how NLC is used together with
the agent’s responses and other UI elements can produce very different user experi-
ences. Below are invented examples of different interaction styles that we see in to-
day’s chatbots and virtual agents: System-Centric, Content-Centric, Visual-Centric
and Conversation-Centric [Moore and Arar 2018]. The styles are not mutually ex-
clusive. A given system may contain features of all of them.

8 Chapter 1 Introduction

System-Centric Style
Although system-centric interaction styles recognize natural language as input,
they still require the user to conform to certain unnatural input requirements. That
is, they require users to formulate their utterances as valid queries, which pack all
of the details relevant to their request into a single turn at speaking. This input
requirement is due to the fact that the automated agent will not remember the
sequential context, or what has been said so far, from turn to turn. Technically
speaking, each turn by the user initiates a new interaction, which always consists
of only two turns. Context is used within an utterance but not between utterances.
In addition, such systems tend to be user-driven: interactions with the system are
initiated by the user. Finally, system-centric styles tend not to do much conversation
management, things like repairing the prior turn, “what do you mean?”, or closing
the prior sequence, “okay”, no doubt because they do not remember the prior
utterance to which the user is referring.

Voice Control
The system-centric interaction style is the most prevalent today. It includes voice
control interfaces and information-retrieval interfaces, like that of web search.
Voice control interfaces are perhaps the oldest type of natural language interface.
They are based on an interaction model of simple input-output, or two-turn se-
quences, for the purpose of controlling a system. The system can only understand
a short set of commands, not other social actions, and perform the appropriate re-
sponse. Voice input is often provided as an alternative to button input so that users
can operate the device hands free. Such voice control interfaces have been widely
used since the early 2000s in cars. In addition to pressing a button on the dash-
board or steering wheel, users can give a command, for example, “air conditioner
on” or “radio 106.7 FM” or “find nearest gas station.” In most cases, the response
to the command by the car is a nonverbal action.

Today, virtual assistants often use a system-centric, voice control style. For
example, leading voice assistants, or smart speakers, mostly recognize and perform
commands issued by the user, but they tend to respond with a wider range of
utterances, as well as nonverbal actions. However, these assistants still largely fail
to remember the sequential context across turns, treating most user utterances
as a new exchange.2 This prevents these agents from performing a wide variety of

2. An exception might be support for so-called “slotted intents.” These enable the agent to re-
member an intent from a previous turn until dependent details are elicited from the user. This is
a limited form of multi-turn conversation and will be discussed in Chapter 5.

1.3 Conversation First 9

conversational activities. For example, although virtually all assistants claim to “tell
jokes,” very few actually can do joke telling correctly. If you request a joke from an
agent (Example 1.2, line 1), it will say a question joke (line 2) and then give away
the punchline (line 3) (U stands for user and A stands for agent).

Example 1.2 Question-Answer Joke Telling.
1 U: Alexa, tell me a joke.

2 A: How does NASA organize a party?

3 They planet!

When telling a question-answer joke, the teller waits to see if the recipient can
answer the joke and gives the punchline only after the recipient shows that he or
she cannot. Most virtual agents cannot do this, but instead only deliver one-liners.
A more extreme example can be found from another leading agent. If you request a
knock-knock joke from it, you get an even more unnatural response (Example 1.3).

Example 1.3 Knock-Knock Joke.
1 U: Tell me a knock knock joke

2 A: Knock knock. Who’s there? Bob. Bob who?

3 Bob, I don’t do knock-knock jokes.

This agent will pack the whole joke-telling sequence into a single response. Neither
of these are a correct way of telling a joke. Although the natural language content
is that of a question-answer joke and a knock-knock joke, the sequential struc-
ture of the jokes is anything but natural. The problem of course, is not access to
joke content, but the underlying interaction model of independent, two-turn ex-
changes. Jokes cannot be performed in a single turn, although witty remarks can.
And likewise many other conversational activities require more than two turns to
perform.

Information Retrieval
In addition to voice control interfaces, another kind of system-centric style is that
of natural language search interfaces. Like voice control interfaces, these interfaces
recognize natural language, are user-driven, and are limited to two-turn exchanges.
However, unlike voice control, natural language search interfaces return informa-
tion as their responses, rather than nonverbal actions. Such interfaces tend to be
text-based rather than voice-based and are built on a simple query-response model
found in web search and other forms of information retrieval. For example, the
following exchange is an example of this style (Example 1.4).

10 Chapter 1 Introduction

Example 1.4 Information Search.
1 A: Hello. How can I help you!?

2 U: Original Medicare coverage diabetes screenings

3 A: Medicare covers tests to screen for diabetes as well

4 as services and supplies to help treat the disease.

5 U: Original Medicare eligibility diabetes screenings

6 A: Part B covers these screenings if your doctor determines

7 you’re at risk for diabetes or you’re diagnosed with

8 pre-diabetes. These lab tests are covered if you have

9 any of these risk factors:

10 ((list of factors))

11 U: what about glaucoma tests?

12 A: There are no results for your query. Please enter a

13 valid query.

The healthcare assistant recognizes only “valid queries” and then looks up medical
information in a database. As long as the user types a valid query (lines 2 and 5),
the agent will return results, if available (lines 3–4 and 6–10). In each query, all of
the relevant keywords must be given and therefore repeated, for example, “Original
Medicare” and “diabetes screenings” (line 2 and 5). However, if the user speaks in
increments (line 11), building off the context of prior turns, as is common in natural
human conversation, the system fails (lines 12–13). Information search interfaces
are therefore very similar to web search engines, like Google or Bing. They treat
everything as a new query. We know how to use search engines to find all kinds of
useful information, but we never say “thank you” to them because we know they
will search the web for that too.

In practice, system-centric interaction styles tend to be what results when the
user experience is created by an engineer or developer rather than by a designer.
They are modeled after familiar device control or information retrieval interactions,
and they require the least work to build the dialog because they force the user
to adapt to the valid-query format. However, system-centric styles are not very
conversational. They lack a key characteristic of natural conversation, persistent
context, and the affordances that are enabled by that.

Content-Centric Style
Another interaction style found in chatbots and virtual assistants is what we might
call content-centric. In terms of their underlying interaction model, they are iden-
tical to information search interfaces. They too recognize natural language, are
user-driven, and are limited to two-turn exchanges. However, they differ primar-
ily in the form of their content. Instead of retrieving data, they retrieve handcrafted

1.3 Conversation First 11

answers to questions like those commonly found in web-based Frequently Asked
Question (FAQ) pages. In fact, in many cases, they are no doubt adaptations of exist-
ing FAQ content. For example, the following exchange is inspired by such systems
(Example 1.5).

Example 1.5 Q & A.
1 A: Hello, I am an automated Medicare Assistant. I can

2 answer questions about Medicare insurance. What is your

3 question?

4 U: am I covered for diabetes screenings?

5 A: Medicare covers tests to screen for diabetes as well

6 as services and supplies to help treat the disease.

7 Medicare will pay for 100% of its approved amount for

8 test even before you have met the Part B deductible.

9 You will pay no copay or deductible for these tests

10 if you see doctors who take assignment. Doctors and

11 other health care providers who take assignment cannot

12 charge you more than the Medicare approved amount.

13 Medicare Advantage Plans cover all preventive services

14 the same as Original Medicare. This means Medicare

15 Advantage Plans will not be allowed to charge cost-

16 sharing fees (coinsurances, copays, or deductibles)

17 for preventive services that Original Medicare does

18 not charge for as long as you see in-network providers.

19 U: thanks

20 A: I’m sorry, I don’t understand your question.

When the user asks a yes/no question about health insurance coverage (line 4), he
receives a thorough and lengthy response (lines 5–18). Instead of answering the
question with a yes or a no, the agent answers with a statement, “Medicare covers
tests to screen for diabetes” (line 5). From this kind of response, the user can usually
infer a yes or a no. However, the agent continues on to explain multiple details and
contingencies: coverage includes related “services and supplies” (line 6), it does
not count toward your deductible (lines 7–8), there is no copay (line 9), approved
doctors cannot charge more than the approved amount (lines 10–12), this applies
to both Medicare Advantage Plans and Original Medicare (lines 13–18), and more.
In other words, instead of saying yes or no, the agent implies that “it depends,” and
then details the set of circumstances on which it depends. Notice that some of the
details will not be relevant to the user; for example, users with “Original Medicare”
only do not need to be told about “Medicare Advantage Plans.”

12 Chapter 1 Introduction

Overall, the authored answers tend to be relatively verbose and detailed since
accuracy and thoroughness are of primary importance. In fact, content-centric
interfaces tend to be co-created with subject matter experts or content designers
who author the responses. But the disadvantages of long and thorough responses
is that they preclude use in voice-based interfaces, and their length tends to limit
opportunities for back-and-forth over a single topic since all of the details are
presented in one extended monologue. In content-centric systems, recognized
utterances, or “intents” (Chapter 3), tend to be topic-based rather than action-
based, as they direct all inquiries or requests pertaining to a particular topic to
a single response.

Visual-Centric Style
Visual-centric interaction styles borrow heavily from GUI, web and mobile inter-
faces, all of which rely on the principle of direct manipulation [Shneiderman 1982]
instead of text commands or natural language. Graphical elements, such as but-
tons, images, emojis and other visual elements, are mixed into the interaction
alongside natural language inputs. The most common type of visual-centric in-
terface is the “chatbot” interface. Chatbots combine chat, Instant Messaging or
texting-style interfaces with Internet bots that perform simple tasks. The follow-
ing example shows what the chatbot or visual-centric style interaction looks like
(Example 1.6).

Example 1.6 Chatbot.
1 A: Hi, I’m Melanie, your virtual nurse! I can answer your

2 Medicare questions. To start, which plan do you have?

3 [Original Medicare] [Medicare Advantage] [Other]

4 ((U clicks/taps Medicare Advantage button))

5 A: Okay, Medicare Advantage. What is your question?

6 U: am I covered for diabetes screenings?

7 A: Medicare covers tests to screen for diabetes as well

8 as services and supplies to help treat the disease.

9 Medicare will pay for 100% of its approved amount for

10 the test even before you have met the Part B

11 deductible. You will pay no copay or deductible for

12 these tests if you see doctors who take assignment.

13 A: Was this answer useful?

14 [Yes] [No]

Like the older Interactive Voice Response (IVR), chatbots tend to constrain user
to a limited set of response options. However, instead of surfacing those options

1.3 Conversation First 13

through speech, chatbot interfaces surface them through sets of buttons (lines 3
and 14). By offering buttons instead of requiring free text, chatbot systems improve
the discoverability of intents recognized by the system and, for those particular
intents, improves the speed of user input. Also, because they are text-based, chatbot
interfaces are often verbose or text-heavy, slowing the rate of interaction with longer
responses.

Chatbots often incorporate web and mobile techniques for eliciting user feed-
back after returning a response. For example, after providing an answer (lines 7–
12) to the Medicare question (line 6), the agent asks, “Was this answer helpful?”
(line 13), along with buttons for yes and no (line 14). Or they will elicit feedback
on the answer with thumbs-up and thumbs-down buttons. Since yes/no questions
already project the type of answer they prefer and because both responses are very
short, there is really no advantage to displaying buttons for yes and no, unless the
designer intends to constrain the user to only those options. In fact, in keyboard
and mouse situations, clicking yes/no buttons requires moving one’s hand off of
the keyboard and onto the mouse or trackpad and back, thereby eliminating their
convenience. But more importantly, chatbot interfaces tend to be agent-driven and
somewhat linear, minimizing points at which users are not told what to do next. For
example, the Medicare chatbot does not wait for the user’s response to its answer
about diabetes screenings. Instead it takes the next turn, hijacking “third posi-
tion” with the request for feedback (line 13). In human conversation, third position,
which comes after the first and second parts of an action pair, or “adjacency pair”
(e.g., question-answer, Schegloff [2007]), is an important slot in which the initiator
of the pair can give natural feedback, such as closing the sequence with “thank you”
or repairing the second part with “what do you mean by doctors who take assign-
ment”? Asking “was this helpful?” after every agent answer precludes the user from
doing a range of third-position actions that provide a wider range of conversational
feedback (Chapter 6).

Because chatbots solve some conversational UX design problems through vi-
sual elements, rather than through verbal actions, they cannot be fully ported
to voice-only platforms. As a result, we see a split in the design of natural lan-
guage interfaces along the lines of text- and voice-based systems. As chatbot in-
terfaces introduce more buttons and visual elements, their designs drift farther
from voice and conversational interfaces and closer to GUI and mobile inter-
faces. The more sophisticated chatbot interfaces are created by UX designers
who apply their expertise in graphic design to the problem of natural language
interaction.

14 Chapter 1 Introduction

Conversation-Centric Style
Finally, a conversation-centric style, the topic of this book, can be distinguished
from the other three. In addition to recognizing natural language, a conversation-
centric style also recognizes and exhibits the kinds of actions that are distinctive of
natural human conversation. In other words, it can do conversation management:
it can recognize social actions for managing the conversation itself. “What did you
say?,” “none of your business,” “okay,” “never mind” are all operations on prior ut-
terances in the interaction. The social actions they perform constitute a major part
of what makes a conversation a conversation. Likewise, you would not say a com-
puter could “play chess” if it could not perform checking, castling and all the other
actions that constitute chess. Furthermore, you will not find such conversational
actions in other forms of language use, such as news stories, administrative forms,
poems, etc. Designing the Medicare agent with a more conversational interaction
style would entail conversation management (Example 1.7).

Example 1.7 Conversational.
1 A: Hi, I’m Alma. I’m here to answer any questions you

2 have about your Medicare insurance. How can I help

3 you?

4 U: I have a question about diabetes screenings

5 A: Okay, what’s your question?

6 U: am I covered for them?

7 A: Diabetes screenings are covered at 100% of the

8 approved amount so there is no copay or deductible

9 if you see doctors who take assignment.

10 U: what do you mean by take assignment?

11 A: Oh. Assignment means that your doctor, provider or

12 supplier agrees to accept the Medicare-approved

13 amount as full payment.

14 U: ok thanks

15 A: You’re welcome! Is there anything else I can do

16 for you?

The conversational agent can handle preliminaries to inquiries and requests (line 4),
which check the conditions upon which those inquiries and requests depend. The
conversational agent can handle a range of repeat and paraphrase requests on its
own or the users’ responses (line 10). And the conversational agent recognizes
common methods of closing a sequence (line 14) or closing a conversation. All of these
require that the agent remember what it is talking about across multiple turns.

In addition, the responses in a conversation-centric interaction are relatively
short, or “bite-sized,” as utterances tend to be in natural human conversation. This
enables efficiency and speed as conversations happen in real time, either through

1.3 Conversation First 15

voice or through text. Instead of giving the user a long and thorough response,
as with the content-centric style, the conversation-centric style breaks the same
content into smaller chunks, returns the most relevant chunk first and allows the
user to unpackage the other chunks as needed. The result is more back-and-forth
utterance exchange instead of longer monologues.

Conversation-centric styles are fully mixed-initiative and nonlinear. Either the
user or the agent can lead, and the user can always redirect the conversation.
Consequently, they frequently rely on the user to decide next actions, rather than
on the agent leading at every turn transition. Such a conversation-centric style
of interaction is the goal of a conversational UX designer, who brings a formal
knowledge of how human conversation works to the design of talking agents.
And because it is accomplished primarily through the words, without relying on
visual interaction methods, a conversational style will work with either voice or text
input. The conversation-centric interaction style therefore is characterized by (a)
persistent sequential context; (b) fewer words per response, more back-and-forth;
(c) nonlinear interactions with many trajectories; and (d) recognition of common
conversational activities.

While each of the natural-language interaction styles detailed above, system-
centric, content-centric, visual-centric, conversation-centric, can be useful to users
for particular applications, we believe that the future of AI interfaces is the conver-
sation-centric style. People have always wanted to talk to machines the way they
talk to each other. This book is about designing conversation-centric interfaces, or
conversational agents, not simple chatbots or voice control systems.

We advocate a conversation-first approach to the design of natural language
interfaces, which is analogous to the mobile-first strategy in web design [Moore and
Arar 2018]. While mobile-first design begins with the small screen of the mobile device
and scales up to larger displays [Wroblewski 2011], conversation first begins with just
verbal input and output, whether voice or text. The UX designer must enable the
user to converse with the agent through the words alone, without buttons or visual
aids. Voice interfaces, or platforms like the Short Message Service (SMS), force one
to design for short utterances rather than for buttons, long lists, or document-
like responses. Once the conversation is fully functional, it can be enhanced, as
needed, through coordination with visual aids, just as a human speaker may use
menus or charts to supplement his or her talk. As a result, users can talk to an
agent through multiple communication channels, although the experiences will
vary in their affordances, similar to human conversation when the speakers are
talking face-to-face versus talking over the telephone. A conversation-first design
strategy involves a focus on (1) conversation-centric interaction styles, including
support for conversation management; (2) core functionality through the words

16 Chapter 1 Introduction

Table 1.1 Types of natural-language interaction styles

System-Centric Style

like voice control or web search
within-turn context
two-turn interaction model
recognizes commands or queries
user-driven
voice or visual

Content-Centric Style

like frequently asked questions (FAQ)
within-turn context
recognizes questions
document-like, topic-based responses
user-driven
visual only

Visual-Centric Style

like desktop or mobile interfaces
within-turn context
requires direct manipulation
buttons, menus, lists, images, etc.
agent-driven
visual only

Conversation-Centric Style

like natural conversation
cross-turn, persistent context
recognizes conversational actions
fine-grained back-and-forth
mixed initiative
voice or visual

alone, whether voice, text, or both; and (3) compatibility with multiple platforms,
from voice-only and simple chat to desktop and large displays. In this manner,
starting with conversation enables a designer to consider progressive enhancement
[Gustafson 2015], so that greater functionality can be increasingly implemented as
the modalities of conversation evolve.

To summarize, the four natural-language interaction styles exhibit multiple
distinctive features (Table 1.1). Each style is an ideal type, and multiple styles may
be mixed in the same application.

1.4 Mutual Understanding 17

1.4 Mutual Understanding
Although we can build user interfaces that in some ways work like natural conver-
sation, can these machines really understand us? As we saw above with ELIZA, a
chatbot may sometimes continue a conversation without understanding the sub-
stance of what the user is saying. Today’s chatbots and voice assistants are often
characterized as “AI” (artificial intelligence) or “cognitive” and as capable of “under-
standing natural language” so that the user can speak to them as he or she would to
another person. The user does not need to learn a specialized set of commands, as
in the days of command-line interfaces. These metaphors clearly suggest that ma-
chines can think and understand. But what does this mean? Does it suggest that
computers have consciousness, private thoughts, or empathy? What does it mean
to say that a computer “understands” the user? To explore this question, we briefly
draw on philosophy and social science to specify what we mean when we say that
humans “understand” each other.

Perspectives on Human Understanding
From a commonsense view, we often conceive of “understanding” as a mental state,
a psychological phenomenon. For example, if I picture an elephant in my mind and
tell you to “picture an elephant,” then an image of an elephant appears in your mind
too. If we both imagine the same animal, then we would say that we “understood”
each other. But if I had an image of a rhinoceros in my mind and incorrectly said
“elephant,” then we have not understood. According to this notion, understanding
is first and foremost an overlap of mental states or contents.

While this is a commonsense view of understanding, similar, more sophisti-
cated versions have been proposed by philosophers and scientists. For example,
according to the picture theory of meaning [Wittgenstein 1922], language consists
of complex, or “molecular,” propositions that can be broken down into “atomic”
propositions, which can be broken down no further. These atomic propositions
then correspond to “atomic facts” in the world. If I observed an elephant swaying
to live music, my mind would decompose that reality into its atomic facts, find the
corresponding atomic propositions, and transmit them to you through the com-
plex proposition, “I saw an elephant swaying to live music!” Your mind then reverse
engineers the complex proposition into its atomic propositions, and from the cor-
responding atomic facts, your mind forms a complex image similar to what I saw.

While the commonsense notion of understanding or even the picture theory of
meaning seem plausible at first glance, many scholars have questioned them. Even
the philosopher of language who formulated the picture theory later argued that

18 Chapter 1 Introduction

he was wrong. In his later work, Ludwig Wittgenstein [1953] argued that shared
understanding cannot be achieved from private mental states, like the image of a
swaying elephant. I have no way of knowing what you pictured in your mind, but I
make judgments about whether you understood nonetheless. How can I do this?

Wittgenstein [1953] argues that shared understanding is in the first place the
result of social practices, or “language games.” Rather than consisting of atomic
propositions, the meaning of a word or phrase is actually its use in some social prac-
tice or situation [Wittgenstein 1953, #43]. According to this view, understanding
becomes a social event or sociological phenomenon. To demonstrate how mean-
ing and understanding are based on social practice, Wittgenstein (1953), in part,
used numerous examples of imagined interactions between math teachers and stu-
dents. We attempt to summarize his argument with just two imagined examples of
our own (Example 1.8).

Example 1.8 Non-Pedagogical Inquiries.
1 Teacher: Do you know what the frequency of human speech is?

2 Student: Yes

3 Teacher: Do you know how it differs from pitch?

4 Student: Uh-huh

Teachers never do this, at least not when they are testing a student’s understanding
of a concept. They do not because to answer these questions adequately is not to
demonstrate understanding of the concepts of “frequency” and “pitch” but merely
to claim it. As Weizenbaum [1966, p. 43] points out, “The crucial test of under-
standing, as every teacher should know, is not the subject’s ability to continue a
conversation, but to draw valid conclusions from what he is being told.” Instead,
testing a student looks more like this (Example 1.9).

Example 1.9 Pedagogical Inquiries.
1 Teacher: What is frequency in human speech?

2 Student: The number of complete cycles of variations in air

3 pressure occurring per second.

4 Teacher: How is it different from pitch?

5 Student: Pitch is the human perception of frequency.

6 Teacher: What’s a similar example of the relationship between

7 frequency and pitch?

8 Student: That between wavelength and color.

This method of testing, sometimes called viva voce (or “oral examination”), invites
the student to give definitions and explanations of the concepts, which in turn re-
veal the student’s interpretations or misinterpretations. Wittgenstein would say

1.4 Mutual Understanding 19

that in such “language games,” when the student produces a correct or adequate
explanation, the teacher says he or she “understands” the concept. Conversely, the
teacher says he or she “misunderstands” or “partially understands” when incorrect
or inadequate explanations are demonstrated. That is how we use the term “to un-
derstand” in practice. That is how it functions in social interactions. Understanding
and misunderstanding are not attributed when an image appears privately in the
student’s mind. The teacher has no access to that, only to the student’s actions,
demonstrations, performances. In other words, this is what understanding is, from
a practical or functional perspective. It is a kind of outcome or achievement of an
interaction, of a social practice.

When it comes to understanding in the context ordinary conversation, soci-
ologist Harold Garfinkel [1967] points out another dimension. While the social
practice of viva voce involves spending time probing the limits of a student’s un-
derstanding of topics, conversation in everyday life mostly does not. In the midst
of everyday activities, we have places to go and things to do; there is “no time out”
to probe and test the other person’s underlying interpretations. So for practical
considerations, we instead assume that the other person understands until further
notice, that is, until there is some evidence to the contrary.

Garfinkel [1967, p. 42] demonstrated this through a simple exercise: “Students
were instructed to engage an acquaintance or a friend in an ordinary conversation
and, without indicating that what the experimenter was asking was in any way
unusual, to insist that the person clarify the sense of his commonplace remarks.”
The student experimenters overwhelmingly met with resistance (Example 1.10).

Example 1.10 Norm Breaching.
1 Subject: How are you?

2 Student: How am I with regard to what? My health, my finances, my

3 school work, my peace of mind, my...?

4 Subject: Look I was just trying to be polite. Frankly, I don’t

5 give a damn how you are.

Here, as in accounts of other students, probing understanding of ordinary expres-
sions and utterances quickly drew reprimands from the subjects. What is normal
in the classroom with technical expressions is abnormal outside the classroom
with ordinary expressions. “The anticipation that persons will understand, the
occasionality of expressions, the specific vagueness of references, the retrospective-
prospective sense of a present occurrence, waiting for something later in order
to see what is meant before, are sanctioned properties of common discourse”

20 Chapter 1 Introduction

[Garfinkel 1967, p. 41]. A level of uncertainty and vagueness in ordinary conver-
sation is expected and trying too hard to remedy it will be seen as breaching a basic
social trust.

But one implication of Garfinkel’s 1967 exercise is that on any particular oc-
casion, understanding may be assumed incorrectly. Weizenbaum [1966, p. 42]
likewise suggests that speakers in “real life” may falsely attribute “background
knowledge, insights and reasoning ability” to their recipients. Understanding in
conversation is rarely definite. It may be demonstrated, faked or assumed. And
it can only be probed or tested through further interaction, and even that will be
abandoned once the tester is satisfied for all practical purposes. This functional
conception of understanding is much messier than the picture theory.

Starting from this functional notion of shared understanding, sociologist
Emanuel Schegloff went a step further and asked, how do people do it? By ana-
lyzing detailed transcripts of naturally occurring human conversations, Schegloff
and his colleagues [Schegloff et al. 1977, Schegloff 1992b] identified and formalized
the methods that people use to achieve shared understanding, or “intersubjectiv-
ity.” They specify the “machinery” through which people design their talk for their
particular recipient(s) and then deploy a set of methods for “repairing” troubles
in understanding only if they emerge. Consider the following invented exchange
(Example 1.11).

Example 1.11 Understanding Repair.
1 Speaker A: How are you?

2 Speaker B: Fine.

3 Speaker A: No, I mean, do you still have symptoms?

4 Speaker B: Oh, yeah my knee is hurting me.

5 Speaker A: Okay.

In this case, Speaker B displays an interpretation of A’s prior inquiry, “How are
you?,” as the kind of welfare check typical in the openings of conversations by
responding with “Fine.” However, in the next turn, or “third position,” Speaker
A initiates repair on his initial utterance by marking it as such, “No, I mean,”
and paraphrasing it, “do you still have symptoms?” Speaker B then provides a
different kind of response. Thus Speaker B initially displayed misunderstanding
of A’s inquiry, but then understanding following A’s repair. We will talk more
about this infrastructure for achieving shared understanding in conversation in
the chapters that follow.

1.4 Mutual Understanding 21

Machine Understanding
Given this discussion of understanding, we now return to the question, “Can ma-
chines understand?” According to the commonsense theory of mind, machines
cannot understand people because they cannot conjure an image as it appears in a
human speaker’s mind. Computer algorithms work differently from human brains
so whatever the machine does internally is not understanding. “Computers cannot
think because they are machines” [Button et al. 1995, p. 149]. According to this
view, “understanding” is a uniquely human ability.

However, we come to a very different conclusion if we conceive understanding
as the outcome of social practice. According to a functional conception of under-
standing, a machine like a human can understand if it can do. “The grammar of
the word ‘knows’ is evidently closely related to that of ‘can,’ ‘is able to.’ But also
closely related to that of ‘understands.’ ” [Wittgenstein 1953, #150]. If a machine
could successfully play the role of the student in a viva voce, then we could use the
term “understanding” to characterize that interactional outcome or performance.

Computer scientist Alan Turing argued a similar point in his discussion of
whether machines could think and in his formulation of an “imitation game,”
today known as the “Turing test.”3 Turing [1950, p. 433] replaces the question of
whether machines can “think” with the question of whether they can “imitate”
humans. Where the former question leads to endless philosophical arguments, the
latter question can inspire the development of computer technologies. No doubt it
has, in part, inspired scientists at IBM to develop Deep Blue, a computer that can
imitate the playing of chess, and Watson, a computer that can imitate the playing
of the trivia game Jeopardy. And of course it inspired the development of ELIZA, a
computer that can engage in Rogerian-style conversation.

3. Button et al. [1995, p. 145] acknowledge that Wittgenstein could “certainly” be “aligned with
the functionalists” and that the “Turing test might be seen as instantiating” his “understanding-
as-performance” view, but they then dismiss it as “the most superficial reading of Wittgenstein.”
However, their supporting argument depends on a straw man. They replace the “understanding-
as-performance” view with a superficial version of it in which single performances of apparent
understanding are taken at face value. As a result, they claim, inauthentic performances cannot be
distinguished from authentic performances, for example, a student being fed answers by someone
else from one who actually knows the material. But of course these are routinely distinguished
through further performances. If the teacher suspects such cheating, he or she arranges a new test,
under different conditions. Viva voce has the advantage that the questions are not predetermined
and the questioning can be adapted on the fly to the student’s responses, making understanding
harder to fake. And at some point, the teacher will stop eliciting new performances and make a
practical judgment of the student’s understanding.

22 Chapter 1 Introduction

Turing [1950, p. 446] points out that, from a functional perspective, we employ
viva voce, with its unpredictability and probing, to “discover whether someone really
understands something or has ’learnt it parrot fashion.”’ If a computer can engage
successfully in viva voce with a clever and thorough teacher, we should say that it
“understands” the topic in question, even though there is the possibility that we
are being fooled, just as with human students. A machine’s level of understanding
is judged by its performances in multiple situations, under varying circumstances.
Similarly, if a computer can engage in conversation with a user, we can judge its
ability to understand conversational topics, as well as to understand conversational
actions themselves. The value of the Turing test is not to fool subjects into thinking
that a machine is a human but to enable them to compare the performance of the
computer with the performance of a human. It redirects our attention from the
philosophical question to the technical one.

So in principle, we argue that computers can potentially understand without
thinking, just as humans can understand without thinking. However, today’s com-
puters are far from demonstrating general or deep understanding. Creating a com-
puter that can engage in the kind of viva voce of educational settings is still a hard
problem. Returning definitions and explanations, like “What is frequency in hu-
man speech?” is easy enough, but performing real-time conceptual analysis, like,
“What’s a similar example of the relationship between frequency and pitch?” is
much harder. Today’s chatbots may demonstrate limited understanding in narrow
tasks but fall apart when probed in different contexts or even with different phras-
ing. Even with the possibility of functional machine understanding, achieving it
with real systems, at levels comparable to humans, may not ever be feasible. Such
is the challenge of general AI.

But if we acknowledge Garfinkel’s (1967) observation that shared understanding
in ordinary conversation is usually only deep enough for all practical purposes,
then machines may be able to understand humans well enough in many kinds of
narrow conversational settings, such as service encounters. In service encounters,
the conversations tend to be highly repetitive and the usual goals relatively narrow.
Customer service agents typically answer inquiries or fulfill recurrent requests or
troubleshoot predictable problems within a limited domain. Even though today’s
chatbots and voice assistants cannot handle domain-independent viva voce, they
may be able to understand what the user says and does well enough to answer
inquiries, fulfill requests, or troubleshoot problems for all practical purposes.

Furthermore, in order to do this, machines must be able to engage in the repair
practices that Schegloff and colleagues demonstrate. Natural language understand-

1.5 About This Book 23

ing (NLU) techniques, while necessary, are not enough. They provide only for the
machine to interpret the user’s utterances. But such interpretations must be tested
in interaction before understanding can be determined and must be repaired if
misunderstanding or partial understanding is displayed. Thus conversational sys-
tems also need natural conversation understanding (NCU), or the ability to engage
in repair practices, as specified by Schegloff [Schegloff et al. 1977, Schegloff 1992b].
We will return to this topic in Chapters 4 and 6.

To summarize, we offer a definition of understanding that we will assume
throughout the remainder of this book. Understanding is not the same thing as
interpretation. Interpretation is the analysis of the language and the action of an
utterance, but understanding is the demonstration of correct or adequate interpreta-
tion of social action within interaction. Otherwise thinking one understands would
be the same thing as understanding.

Weizenbaum [1966, p. 43] admits that ELIZA does not understand what the user
is saying, but rather “maintains the illusion of understanding.” However, while
speakers may on occasion conceal misunderstanding from each other, in general,
achieving mutual understanding is a fundamental goal of natural conversation.
Weizenbaum also acknowledges that the display of misunderstanding or partial
understanding is critical for natural conversation: “A switch of objectives from the
concealment to the revelation of misunderstanding is seen as a precondition to
making an ELIZA-like program the basis for an effective natural language man-
machine communication system.” Conversational agents must display their inter-
pretation of what the user has said or did, as well as of the topic at hand, so that
users can see if the agent understands them and if not, can attempt to repair it.

1.5 About This Book
The goal of this book is to inspire a new form of user experience (UX) design for the
development of conversational agents. Our intended audience is the UX designer
working on applications with natural-language interfaces, such as chatbots, virtual
agents or voice assistants. We are speaking to the UX designer who gets his or her
hands dirty authoring dialog logic and agents’ utterances, rather than relying on a
system developer or content designer to determine the user experience. We trust
that those who have attempted to design the user experience for conversational
agents have found, as we have, that such applications demand something different
from what is needed for other kinds of desktop or mobile applications. The user ex-
perience consists not primarily of the manipulation of buttons, menus and windows,

24 Chapter 1 Introduction

but in the sequencing of utterances in ways that seem “natural” or “conversational.”
As a result, a more formal knowledge of how human conversation is structured,
turn by turn, seems invaluable.

To this end, we aim to provide a guide and a reference for conversational UX
designers that includes an overview of conversation science, assets for UX design,
and a process to use in development projects. First, we review principles and mod-
els from the field of Conversation Analysis (CA) to provide a theoretical foundation
for understanding human conversation (Chapter 2); this material will be unfamiliar
to most UX designers. Second, we provide a brief overview of conversation authoring
using the Intent-Entity-Context-Response (IECR) paradigm (Chapter 3), which will
be familiar to those who have created dialog flows on platforms like Amazon Alexa,
Google Assistant, and IBM Watson Assistant. Third, we outline a new approach to
conversational UX design, the Natural Conversation Framework (Chapter 4), which
adapts principles, concepts and models from Conversation Analysis to the design
of natural-language interfaces. Fourth, we provide a “pattern language” [Alexander
1977, Erickson 2000] of conversational UX design patterns for common conver-
sational activities, as well as conversation management (Chapters 5–7), which we
intend readers to use as a reference when designing conversational UX. Finally, we
help the reader put all that they have learned from previous chapters into practice
by outlining a general design-thinking process and adapting it for the unique chal-
lenges of conversational UX design (Chapter 8). By the end of this book, the reader
should be prepared to design conversational user experiences that draw from a
scientific foundation in Conversation Analysis and that use a systematic design
framework.

2Conversation Analysis

Designing user experiences that are “conversational” requires some formal under-
standing of the structure and mechanics of natural, human conversation. Conversa-
tion Analysis (CA) is a sub-field of sociology that focuses on the structure of human
talk-in-interaction. It emerged with the invention of the compact audio cassette
recorder in the 1960s. As co-founder Harvey Sacks [1984, p. 26] explains,

It was not from any large interest in language . . . that I started with tape-
recorded conversations, but simply because I could get my hands on it and I
could study it again and again, and also, consequently, because others could
look at what I had studied and make of it what they could, if, for example, they
wanted to be able to disagree with me.

So since the 1960s, conversation analysts have been going out into the field, armed
first with audio tape recorders and then with video cameras, to capture naturally
occurring talk-in-interaction in all its many forms: ordinary telephone calls with
family and friends; talk between customers and employees, patients and doctors,
and students and teachers; talk among scientists working in laboratories; and
much more. Although they focus on talk-in-interaction, conversation analysts have
also examined the ways people use gestures, eye gaze, and other nonverbal actions
and physical artifacts, in combination with talk, in order to accomplish a conver-
sation.

The literature of Conversation Analysis reveals the formal, qualitative models of
naturally occurring conversation, its “machinery” [Sacks 1984]. In other words, it
contains a massive set of patterns of natural human conversation in many different
settings and in many different languages. Conversation designers do not need to
reinvent the wheel by going out into the field and studying human conversation,
although doing this strategically can be valuable. Instead, they can apply patterns
of human conversation from CA to the design of conversational UX patterns for
virtual agents. It is the goal of this book to help translate the CA literature into a

26 Chapter 2 Conversation Analysis

form that is accessible to and consumable by UX designers working in the area of
conversational UX.

2.1 What Is a Conversation?
The term “conversation” gets used in a variety of different ways. Sometimes it is
used to refer to a face-to-face talk you had with your mother or a telephone call
with your boss or an exchange of text messages with your friend or a thread of com-
ments on an online forum or a series of tweets from strangers all over the world
and more. Each of these is certainly a social interaction, but only the first is the
fundamental form of conversation, learned by all as children, while the other tech-
nologically mediated forms begin to deviate from this standard and exhibit their
own distinctive features and practices. For conversation analysts, “conversation”
is a particular kind of social activity, a “speech-exchange system” that displays the
following 14 features [Sacks et al. 1974].

1. Speaker-change recurs, or at least occurs

2. Overwhelmingly, one party talks at a time

3. Occurrences of more than one speaker at a time are common, but brief.

4. Transitions (from one turn to a next) with no gap and no overlap are common.
Together with transitions characterized by slight gap or slight overlap, they
make up the vast majority of transitions

5. Turn order is not fixed, but varies

6. Turn size is not fixed, but varies

7. Length of conversation is not specified in advance

8. What parties say is not specified in advance

9. Relative distribution of turns is not specified in advance

10. Number of parties can vary

11. Talk can be continuous or discontinuous

12. Turn-allocation techniques are obviously used. A current speaker may select
a next speaker (as when he addresses a question to another party); or parties
may self-select in starting to talk

13. Various ’turn-constructional units’ are employed; e.g., turns can be project-
edly ’one word long’, or they can be sentential in length

2.2 Topic vs. Structure 27

14. Repair mechanisms exist for dealing with turn-taking errors and violations;
e.g., if two parties find themselves talking at the same time, one of them will
stop prematurely, thus repairing the trouble

While many of the features can be implemented in today’s virtual agents, several
still cannot. For example, most agents cannot respond to the user “with no gap” (4)
because they begin processing the user’s utterance only after it is complete. As a
result, there is an unnaturally long pause before each agent utterance.1 In addition,
to a large degree, what parties say is specified in advance (8); that is, the agent’s
utterances are authored in advance, although which variation of an utterance will
be selected and what live data will be inserted into it can be dynamic. But by and
large, today’s voice assistants cannot generate speech on the fly. And with today’s
agents, the number of parties cannot really vary (10); they struggle with multi-
party interactions. Either they only respond when explicitly addressed (for example,
“Alexa, what is the weather today?”) or they respond to every utterance they can
detect regardless of whether it is directed to them. Since such voice assistants are
typically “embedded in the life of the home” [Porcheron et al. 2018], distinguishing
when a user utterance is directed at the agent versus directed at someone else is
a critical but still hard problem. Yet most of the other features identified by Sacks
et al. [1974] can currently be approximated to varying degrees.

Our current design philosophy is to strive to create user experiences that are
closer to a telephone call or an exchange of text messages (SMS) than a face-to-face
or Twitter exchange. The former requires computer vision of non-verbal activity and
perhaps embodied robotic participation, the enabling technology for which we do
not believe is ready for prime time. The latter, we feel, deviates too much from the
fundamental form of face-to-face conversation.

2.2 Topic vs. Structure
Ordinarily when we observe or engage in conversation, we focus on the topics that
speakers are talking about, rather than on how they are talking. But conversation de-
signers, like conversation analysts, must notice what speakers are doing by talking
about those topics and how they are doing it. Take the following two examples (2.1
and 2.2; see Appendix A for explanation of transcript conventions) from ordinary
conversations [Pomerantz 1984, pp. 65, 70].

1. Exceptions to this are recent advances in “duplex” systems from both Microsoft and Google.

28 Chapter 2 Conversation Analysis

Example 2.1 Pomerantz [1984, p. 65].
1 J: T’s- tsuh beautiful day out

2 isn’t it?

3 L: Yeh it’s jus’ gorgeous . . .

Example 2.2 Pomerantz [1984, p. 70].
1 A: God izn it dreary.

2 (0.6)

3 B: [Y’know I don’t think-

4 A: [.hh- It’s warm though,

What are the speakers talking about? In both cases, it is the same topic: the weather.
But what is each speaker doing? In each example, the speakers are offering assess-
ments of the weather. In Example 2.1, the second speaker, L, is doing agreement
with the first speaker, J. But in Example 2.2, the second speaker, B, is doing dis-
agreement. The topic is weather, but the social actions are assessments and agree-
ments/disagreements. And conversation analysts have found that people do agree-
ments and disagreements differently [Pomerantz 1984].

Agreements and other “preferred” actions, like grantings or acceptances, are
done immediately and with no qualifications. Disagreements, on the other hand,
like other “dispreferred” actions including rejections and declinations, are typically
delayed by a pause, in this case by 0.6 seconds, prefaced and qualified. Often the
dispreferred action is never explicitly stated but can be inferred from an account
given by the speaker. In fact, recipients can see a dispreferred action coming from
the pause alone. In Example 2.2, A begins to change her assessment before B has
even said anything. This “preference organization,” as conversation analysts call it
[Pomerantz 1984], is part of how we talk, independently of the topics we are talking
about and independently of the systematics of natural language.

Because topic and structure are two different things, it takes the same “machin-
ery” to talk about nothing as it does to talk about something. Whether your conver-
sational application has a lot of content or only a little, you will still need to build
the same structures to deliver that content. Take example of an interaction with
our conversational agent, Alma (Example 2.3).

Example 2.3 A Conversation About Nothing.
1 A: Hello. I’m Alma. How are you?

2 U: say again

3 A: How are you?

4 U: fine

5 A: That’s good.

6 U: show me flights

2.3 Anatomy of a Conversation 29

7 A: What?

8 U: I need to book a flight

9 A: What do you mean?

10 U: never mind

11 A: If you say so! Want to know what I can do?

12 U: yes

13 A: Okay. I haven’t been trained yet. I can only

14 make small talk, tell some jokes or ask some

15 trivia questions.

16 U: what do you mean?

17 A: Ask me about the weather or to tell you a

18 joke or to ask you a trivia question.

19 U: ok

20 U: I need to go

21 A: Thank you very much!

22 U: you’re welcome

23 A: Goodbye.

24 U: bye

What did they talk about? Nothing, really. At one point the user tried to talk about
“booking a flight” (lines 6 and 8), but the agent failed to understand what the user
was talking about (lines 7 and 9). Even though this user never engaged the content
that the agent contains, the two still conversed for 21 turns. And those 21 turns
demonstrate several basic functions of conversation management, something your
conversation will need independently of the content of your application. Such ac-
tions and sequences distinguish natural conversation from other forms of natural
language use. Chapters 6 and 7 will provide UX patterns for several kinds of con-
versation management.

2.3 Anatomy of a Conversation
One advantage of drawing on Conversation Analysis to inform conversational UX
design is to borrow the vocabulary and conceptual framework it has developed.
What do you call the different parts of a conversation? How do those different
parts work together? Designing and building conversation-like interfaces requires
a systematic vocabulary for referring to these parts.

Conversation analysts call the smallest unit in human conversation the “turn
constructional unit (TCU)” [Sacks et al. 1974]. Such units may consist of words,
phrases, clauses or full sentences. They constitute units after which the current
speaker’s utterance is hearably complete, and therefore speaker transition is pos-
sible. Utterances in a conversation then consist of at least one TCU, but often more

30 Chapter 2 Conversation Analysis

than one. As speakers take turns producing utterances, they build recognizable se-
quences of talk, such as pairs of actions or “adjacency pairs.” For example, when
a request is made, whatever the next speaker says will be interpreted for how it
might be granting the request, rejecting it, or working toward one of those actions
[Schegloff and Sacks 1973, Schegloff 2007].

While utterances are organized into sequences, sequences are organized into
activities. Activities are series of related sequences that accomplish some larger
goal. They include things like conversation opening, instruction giving, teaching,
troubleshooting, joke telling, order placing and more. At the highest level, conver-
sations consist of multiple activities. The unit, “a single conversation,” is bounded
by an opening and a closing, with at least one activity, or topical structure, that
accomplishes some business in between [Schegloff and Sacks 1973, p. 71]. For
example, the following invented example of a single conversation consists of an
opening, the activity of “requesting a ride” and a closing (Table 2.1). In this exam-
ple, the opening consists of two sequences, a greeting sequence and welfare check
sequence. The “requesting a ride” activity consists of two sequences, a request
sequence and an inquiry sequence, with expansions. And the closing consists of
one sequence: a closing sequence with a pre-expansion. This short conversation is
comprised of three activities—opening, “requesting a ride” and closing—and five
sequences—greeting, welfare check, request, inquiry and closing (sequences are
indicated by shading).

Conversation Analysis involves, in part, characterizing utterances in terms of the
social actions they perform. The CA literature is filled with the analysis of action
types such as invitations [Drew 1984], assessments [Pomerantz 1984], informings
[Maynard 2003], advice-giving [Jefferson and Lee 1992], storytelling [Sacks 1972],
and much more. Each of these action terms are common, vernacular terms that
everyone uses in daily life. Currently there is no exhaustive list that is standard-
ized across disciplines, nor “generally accepted terminology” [Bach 1998, p. 388],
of all of the common action types that people use in natural conversation. From
an extensive taxonomy [Bach and Harnish 1979], Bach [1998, p. 388], writing
about the area of Speech Act Theory in philosophy, offers a sample of fifty such
actions:

Constatives. affirming, alleging, announcing, answering, attributing, claim-
ing, classifying, concurring, confirming, conjecturing, denying, disagreeing,
disclosing, disputing, identifying, informing, insisting, predicting, ranking,
reporting, stating, stipulating

2.3 Anatomy of a Conversation 31

Directives. advising, admonishing, asking, begging, dismissing, excusing, for-
bidding, instructing, ordering, permitting, requesting, requiring, suggest-
ing, urging, warning

Commissives. agreeing, guaranteeing, inviting, offering, promising, swearing,
volunteering

Acknowledgments. apologizing, condoling, congratulating, greeting, thank-
ing, accepting (acknowledging an acknowledgment)

Conversation analysts have examined how many of these “speech acts,” or ac-
tion types, are used in naturally occurring conversation, but not yet all of them.
Their terminology largely overlaps with that of Bach [1998], although not entirely.
When creating conversation spaces for virtual agents, the UX designer can apply
such action terms to the various utterance types they build. This will help you or-
ganize user actions, or “intents,” as well as the agent’s utterances. Rather than
organizing the utterances in terms of their topic, organize them in terms of the
function they serve in the conversation. In the end, the most important point is

Table 2.1 Anatomy of a conversation

Turns Sequences Activities

A: Hello GREETING Opening

B: Hi! GREETING

A: How’s it going? WELFARE CHECK

B: Good WELFARE REPORT

A: Hey, are ya going tonight? PRE-REQUEST Requesting a Ride

B: Yes ANSWER

A: Can I get a ride? REQUEST

B: Sure! GRANT

A: What time? INQUIRY

B: Seven o’clock ANSWER

A: Okay. ACKNOWLEDGMENT

A: Thank you so much! PRE-CLOSING Closing

B: No problem! PRE-CLOSING

A: Bye FAREWELL

B: Buh bye FAREWELL

32 Chapter 2 Conversation Analysis

not to use the “correct” label but to understand the social actions that utterances
perform.

In addition to “speech acts,” or action types, conversation analysts also invent
higher-level formal concepts that describe the ways these actions are organized and
used. Such concepts are not common, vernacular terms. They include concepts
such as turn-taking [Sacks et al. 1974], adjacency pair [Schegloff and Sacks 1973],
sequence organization [Schegloff 2007], repair [Schegloff et al. 1977], preference
organization [Pomerantz 1984], and many more. Such concepts and formal qual-
itative models are not generally found in linguistics or philosophy. The technical
concepts of Conversation Analysis are useful for understanding the mechanics of
how language-based social actions are organized and used in practice.

Principles of Conversation Design
Conversation Analysis has identified three general principles of how people design
their own talk in natural human conversation. These are not deterministic laws
concerning how people talk, but rather descriptions of general patterns in how
people tend to design their talk. As free agents, humans are always able to deviate
from these general patterns, and may routinely do so for particular effects or to
accomplish certain actions. We can borrow these as principles for how we should
aim to design conversational interfaces. These principles provide a high-level char-
acterization of many aspects of natural conversation. They are recipient design,
minimization, and repair.

Recipient Design
When we talk, what we say and how we say it depend on the particular person we
are talking to, the recipient of our talk. Speakers tailor their talk, spoken or written,
to their particular recipients in multiple ways, such as adapting to their perceived
level of knowledge [Sacks et al. 1974, Sacks and Schegloff 1979]. Sacks et al. [1974]
explain:

By “recipient design” we refer to a multitude of respects in which the talk by
a party in a conversation is constructed or designed in ways which display an
orientation and sensitivity to the particular other(s) who are the co-participants.
In our work, we have found recipient design to operate with regard to word
selection, topic selection, admissibility and ordering of sequences, options and
obligations for starting and terminating conversations, etc.

Speakers choose different topics and levels of detail depending on what they
believe the other person knows and will recognize. For example, doctors will talk

2.3 Anatomy of a Conversation 33

about medical conditions differently if they are talking to a patient or another doc-
tor (or on whether they think they are talking to one or the other). With another
doctor, medical jargon and knowledge can be assumed. With most patients, who
lack medical knowledge, doctors will use more lay terms and commonsense knowl-
edge. Or, for example, we design our talk for its particular recipient in the reference
forms we use. If a co-worker asks me, “Who’s doing your remodel?” I might say,
“My neighbor across the street. He’s a contractor.” But if another neighbor asked
me that same question, I might simply say, “Dave is.” We choose different refer-
ence forms depending on what we believe about the other person’s knowledge. I
believe that my neighbors know Dave and my co-workers do not. Of course, the as-
sumptions we make about the other person’s knowledge may turn out to be wrong,
as when a neighbor does not know Dave or a patient is a doctor him or herself.
When our assumptions prove incorrect, we then adapt our talk in course of the
conversation.

So how can we incorporate recipient design into conversational UX design? In
some ways this is a hard problem. Prewriting unique responses for every user is not
possible and even writing multiple responses for multiple types of users is often
impractical. But there are some things conversation designers can do to incorporate
aspects of recipient design. First, know your user. If you cannot write responses for
each individual user, at least make sure your responses are tailored for your target
audience. This is a principle of all human-centered design, regardless of the type
of application. Don Norman [1988, p. 8] explains this as “an approach that puts
human needs, capabilities, and behavior first, then designs to accommodate those
needs, capabilities, and ways of behaving.”

Second, although we likely cannot adapt the wording of each response to the
particular user (turn level), we can adapt the path a user takes by providing multiple
paths through the same conversation space (sequence level). In other words, do
not force all users down the same path. For example, expert users, who know
the domain and the routine, should be able to accomplish things quickly and
efficiently.

Example 2.4 Expert.
1 A: How can I help you?

2 U: show me flights from SFO to ORD on April 17-30.

3 A: One moment . . .

4 A: Okay, here are flights from San Francisco to

5 Chicago on April 17 to April 30.

6 ((list of flights))

34 Chapter 2 Conversation Analysis

In Example 2.4, the user demonstrates that she knows all of the information that
is required to retrieve a list of flights. In this case, the user should be able to
accomplish the task in one turn instead of being prompted for information that
was already given. However, in Example 2.5, the user does not show the same level
of expertise.

Example 2.5 Novice.
1 A: How can I help you?

2 U: I want to book a flight

3 A: Okay, where are you leaving from?

4 U: what do you mean?

5 A: I need to know your origin city or airport?

6 U: San Francisco

7 A: What city do you want to fly to?

8 U: Chicago

9 A: When would you like to go?

10 U: April 17--30.

11 A: One moment . . .

12 A: Okay, here are flights from San Francisco to

13 Chicago on April 17 to April 30.

14 ((list of flights))

In this case the user formulates his request in a very general way and relies on the
agent to elicit whatever details it needs in order to fulfill the request. Efficiency is
traded for guidance by the agent. Both types of conversation paths, and variations
in between, are critical for a conversational application. Not only do users possess
different levels of knowledge and skill, but as the same user interacts with your
agent, he or she will learn what it can and cannot do and thus may become more
expert over time.

Although recipient design is not yet truly possible at the turn level given today’s
conversation authoring platforms, it nonetheless reminds us as designers that we
should put “human needs, capabilities, and behavior first” and attempt to adapt
to particular users at the sequence level by providing many paths through the
conversation space.

Minimization
In addition to recipient design, another general principle of how people natu-
rally speak is minimization [Sacks and Schegloff 1979, Levinson 2007, Moore 2008,
Enfield 2013]. Not only do speakers design their turns so that particular recipients
can understand them, but they also attempt to do so with the fewest words. For
example, when referring to other people, speakers tend to use their names, which

2.3 Anatomy of a Conversation 35

enables recipients to recognize the particular individual [Sacks and Schegloff 1979].
Returning to the example of “Dave the contractor,” we offer some invented exam-
ples to illustrate the principle (Examples 2.6–2.8).

Example 2.6 Minimal Reference.
1 A: Who’s doing your remodel?

2 B: Dave

3 A: Oh, cool!

Example 2.7 Elaborated Reference.
1 C: Who’s doing your remodel?

2 B: My neighbor across the street. He’s a contractor.

3 C: That’s convenient!

Example 2.8 Failed Reference.
1 D: Who’s doing your remodel?

2 B: Dave

3 D: Who?

4 B: You know, my neighbor across the street?

5 D: Oh!

6 B: You had a beer with him?

7 D: Right.

B uses the single name “Dave” to refer to his contractor when speaking to other
neighbors who know him, rather than “my neighbor across the street.” For these
recipients, “Dave” is both minimal and “recognitional” (i.e., reveals the individual
to that recipient; Sacks and Schegloff [1979, p. 17]). On the other hand, terms like
“a guy” or “someone” are about as equally minimal as “Dave,” but these generic
forms do not enable the recipient to recognize who is being talked about. They are
not recognitionals. Using such a generic form would imply that the recipient does
not know the person in question. Similarly, because “Dave” is not recognizable to
my coworkers who do not know him, B should not use it alone. Either “my neighbor
across the street” or “Dave, my neighbor across the street” is better designed to
achieve recognition, or understanding, but at the temporary expense of relaxing
minimization. “. . . [T]he principle of a preference for recognition, with a relaxation
but not suspension of minimization, is preserved when an incompatibility between
the two, consequent on the user of a minimal recognitional that does not yield
recognition, is noticed by recipient” [Sacks and Schegloff 1979, p. 20]. In other
words, natural conversation is designed by speakers to be efficient [Levinson 2007]:
enable the other person to understand using as few words as possible.

36 Chapter 2 Conversation Analysis

What does this mean for UX design? In order to exploit the efficiency built
into natural conversation, a conversational agent’s responses should be as short as
possible while still enabling most users to understand. Many chatbots and voice
assistants do not implement such minimization. Especially with text-based agents,
designers are sometimes tempted to give more detail rather than less. This is the
“content-centric style,” as we saw earlier (Chapter 1). Unnecessary details may make
the point of the speaker’s action harder to grasp. Reading and especially listening
to a conversational agent’s responses take time and effort. We recommend that the
designer strive to minimize agent utterances without sacrificing understandability.
However, in order to provide for the minority of users who need more detail, enable
them to initiate repair on the agent’s utterances.

Repair
Sometimes in conversation, you miss what the other person said, or fail to un-
derstand it. Or you realize that he or she misunderstood what you said. In these
situations, natural conversation provides methods for remedying these kinds of
interactional troubles. Conversation analysts use the term “repair” to refer to the
range of practices that we have for managing troubles in speaking, hearing or un-
derstanding [Schegloff et al. 1977]. In each case, a source of trouble is located in a
prior turn, and a speaker redoes all or part of that prior turn. So “repair” refers to
methods for repeating or paraphrasing all or parts of a prior turn. It does not refer
to practices for addressing other kinds of interpersonal troubles, such as disagree-
ment, rudeness, complaints, insults, etc.

Speakers repair utterances produced by themselves or others in many different
ways in natural conversation. The repairs above (Example 2.3, lines 2 and 16;
Example 2.8, line 3) are all instances of repair initiated from the “second position,”
that is, in the next turn after the source of the hearing or understanding trouble.
But repair can be initiated from other positions as well. The following transcript
(Example 2.9) demonstrates the four positions of repair [Schegloff 1992b]. In this
example, from one of our early conversational agents, there are two sources of
trouble: “Watson” (line 1), “Harry Road” (line 2), “address” (line 7) and “Almaden”
(line 14).

Example 2.9 Four Positions of Repair.
1 U: What is the address for Watson- I mean Almaden?

2 A: IBM Almaden is located at 650 Harry Road,

3 San Jose, California, 95120, USA.

4 U: Harry Road?

2.3 Anatomy of a Conversation 37

5 A: That’s right.

6 U: ok thanks

7 U: What is the address for Almaden?

8 A: IBM Almaden is located at 650 Harry Road, San

9 Jose, California, 95120, USA.

10 U: no, I mean web address

11 A: The web address for Almaden is

12 www.research.ibm.com/labs/almaden/

13 U: thanks

14 U: what was the street address for Almaden?

15 A: IBM Almaden is located at 650 Harry Road,

16 San Jose, California, 95120, USA.

17 U: I thought it was on Bailey road

18 A: Oh, you mean the Silicon Valley Lab. That’s

19 different from Almaden. It’s 555 Bailey Ave,

20 San Jose, California 95141.

21 U: oh ok, thanks

In the first turn, the user does a first-position repair: he says “Watson” and then
immediately redoes it in the same turn “I mean Almaden” (line 1). This might occur
in a voice interface when the user chooses the wrong name, but in a text interface,
the repair would be invisible to the system because the user would merely delete
“Watson” and type “Almaden.” First position is the same turn as the trouble source.

After receiving the address for Almaden (lines 2–3), the user repeats a phrase
from the agent’s response, “Harry Road?” (line 4), thereby identifying it as a source
of trouble. The agent responds by confirming that phrase (line 5), thereby treating it
as a hearing trouble rather than an understanding trouble. This is another instance
of second-position repair because the repair initiator, “Harry Road?” (line 4), is
produced by the other party in the next turn to the trouble source “Harry Road”
(line 2). Second position is the next turn by another speaker after the trouble source.

Repair can also be initiated from third position. For example, when the user
says, “no, I mean web address” (line 10), he is redoing the word “address” that
he produced earlier (line 7). After seeing that the agent responded with a street
address (lines 8–9), the user disambiguates his own prior referent by adding the
word “web” (line 10). Third position repair indicates that the recipient, in this case
the agent, failed to understand the speaker’s intent. The speaker can see from what
the recipient made of his or her turn that there was a trouble source in that turn
and then redo all or part of it. Third position is the speaker’s next opportunity to
speak after a recipient’s response to the trouble source.

38 Chapter 2 Conversation Analysis

Finally, speakers may also initiate repair from fourth position [Schegloff 1992b].
While third position is the first speaker’s next chance to talk after a trouble source,
fourth position is the recipient’s next chance to talk after responding. For example,
when the user elicits the street address for Almaden again (line 14; first position)
and the agent gives it (lines 15–16; second position), the user then does something
that indicates a trouble in understanding: “I thought it was on Bailey road” (line 17;
third position). Now the user is not initiating repair on an earlier turn, he is just
reporting an assumption that he has. But this reporting enables the agent to see a
source of trouble in the user’s earlier reference to “Almaden” (line 14) and repair it:
“Oh, you mean the Silicon Valley Lab. That’s different from Almaden . . . ” (lines
18–20; fourth position). IBM has two labs hidden in rural areas of South San Jose
that are only about seven miles apart. Confusing the two labs is a common mistake.
In terms of the conversation logic, if this agent detects features of one lab, street
name or number or ZIP code, when the current topic is the other lab, it flags the
confusion. Although it would be difficult to provide for all possible fourth position
repairs, it is feasible to design for common ones like the Almaden/Silicon Valley
Lab confusion.

Conversational repair can thus be initiated from different sequential positions,
by different participants in the interaction, on different kinds of interactional
troubles regarding speaking, hearing, and understanding. These repair practices
are a basic component of conversational competence that are used to manage local
troubles in the production and design of natural language utterances. Because
conversation is an interactive form of natural language use, speakers, human or
machine, do not need to get a particular utterance exactly right; repair enables them
to make dynamic adjustments in the next or later turns.

These three principles—recipient design, minimization and repair—together
form a basic mechanic for speaking in natural conversation: (1) tailor your turn to
the recipient; (2) make the turn as minimal as possible without being confusing;
and (3) relax minimization only when the recipient displays trouble and resume
it when the trouble is repaired [Sacks and Schegloff 1979]. In other words, speak-
ers tend to use just enough words to enable the recipient to understand, and then
they wait to see if it works. If not, they expand as necessary. This mechanic en-
ables a kind of efficiency in speaking because speakers do not start with a verbose
and elaborate utterance unless they anticipate a trouble in understanding. Because
speakers always have a second chance to redo an utterance, they can try a concise,
streamlined, even clever utterance first and expand only if necessary. Conversa-
tional UX designers should understand this basic mechanic and take inspiration
from it.

2.4 Conversation Types 39

2.4 Conversation Types
Human conversation consists of a generic speech-exchange system [Sacks et al.
1974] that is continually adapted by speakers to different activities and situations.
Similarly, UX designers need to adapt generic conversational UX patterns to partic-
ular use cases. Is the virtual agent like a friend or a customer service representative
or a teacher or someone else? The use case will determine the range of conversa-
tional UX patterns required for the range of activities entailed by it. The following
are just four broad kinds of conversational use cases.

Ordinary conversation is the kind of interaction you have with family, friends,
and even strangers every day. Ordinary conversations consist of the broadest range
of activities from delivering news to checking up to seeking help or advice to learn-
ing to much more. In addition to such purposes, ordinary conversation is some-
times engaged in for its own sake; with small talk, the social engagement with
another person itself is the purpose of the interaction. In Conversation Analytic
theory, ordinary conversation is considered the most flexible type of conversation
from which other types are adapted for particular purposes by adding special con-
straints [Drew and Heritage 1992]. An example of a spate of ordinary conversation,
similar to the invented example above (Example 2.1), can be found in the following
(Example 2.10; Schegloff [2007, p. 30]).

Example 2.10 JG 3:1.
1 ((ring))

2 C: Hello

3 N: Hi.

4 C: Hi.

5 N: Whatcha doin’.

6 C: Not much.

7 N: Y’wanna drink?

8 C: Yeah.

9 N: Okay.

In this transcript, N calls C on the telephone. After opening the conversation (lines
1–4), N inquires about C’s current status (line 5). Conversation analysts call this
a “preliminary” [Schegloff 2007], as we will discuss more in the next chapter,
which checks a condition upon which his next action will depend. C indicates
availability (line 6) and N extends an invitation (line 7), which C accepts (line 8).
Invitation-acceptance sequences are a type of social action pair, or “adjacency
pair” [Schegloff and Sacks 1973, Schegloff 2007], that are common in ordinary
conversation.

40 Chapter 2 Conversation Analysis

Service conversations, or service encounters, are the kind of interaction you
have with a customer service agent or organizational representative [Whalen and
Zimmerman 1987, Jefferson and Lee 1992, Whalen and Vinkhuyzen 2000, Moore
2008, Félix-Brasdefer and César 2015, Szymanski and Moore 2018]. The roles are
fixed: one person, such as a customer, member or citizen, requests service; the
other person, usually a stranger, provides services on behalf of an organization.
Services may consist simply of answering inquiries or taking actions or guiding the
other through troubleshooting. Service conversations have distinctive openings:
service providers typically do a greeting, self-identify, identify the organization and
offer service, rushing through the transitions, so that the service seeker’s first turn
can be his or her request or reason for the call [Whalen and Zimmerman 1987].
Other times such openings may include a series of questions for verifying the service
seeker’s identity.

Example 2.11 NB I.2:Golf 2.
1 D: G’morning. San Juan Hills Country Club?

2 G: Guh morning. What’s-w- what kind of a starting

3 time ken:: we get fer::hh sometime this

4 afternoon.

5 (0.7)

6 G: Any[time-

7 D: [Oh:::, [let’s see.

8 G: [Any time tuhday.

9 D: Two fordy. One, thirdy.

10 G: One thirty?

11 D: Mm hm::?

12 G: One thirty.

13 (0.7)

14 G: .hh W’l at sounds like a good time?

15 (0.4)

16 D: What is the name?

17 G: Detweiler. D-e-t,

18 (1.2)

19 G: w-e,

20 (0.4)

21 G: i-l-e-r-.

22 (2.0)

23 D: Foursome?

2. This transcript is available online from Talk Bank at http://ca.talkbank.org/browser/index.php
?url=Jefferson/NB/01golf.cha

http://ca.talkbank.org/browser/index.php?url=Jefferson/NB/01golf.cha
http://ca.talkbank.org/browser/index.php?url=Jefferson/NB/01golf.cha

2.4 Conversation Types 41

24 G: Yah.

25 (0.4)

26 D: Electric carts?

27 (0.6)

28 G: Uh:::, n:no? I don’t think so.

29 D: Okay. We’ll see yuh then,

30 G: Righto,

31 D: Mm hm, Bye?

In this transcript, D is the service provider and G is the service seeker. D opens the
conversation with a greeting and an identification of the organization he represents
(line 1). G returns the greeting and makes a request for service, in this case, reserv-
ing a tee time (lines 2–4) at a golf course and country club. D offers some candidate
times (line 9), and G chooses one (lines 10–14). After inquiring about additional de-
tails regarding the reservation (lines 16–28), D moves to close the conversation (line
29), which G confirms (line 30). D then bids farewell (line 31) although G does not
reciprocate. Service encounters range from quick appointments (Example 2.11) to
complex troubleshooting [Szymanski and Moore 2018] to requests for emergency
services [Whalen and Zimmerman 1987].

Teaching conversations are the kind you have within a classroom setting or with
a tutor. One person (or more) seeks knowledge; the other presents knowledge
and tests understanding of that knowledge. In teaching conversations, teachers
routinely ask the student questions to which they already know the answers. They
may withhold the answers in an attempt to elicit the correct answers from the
student [McHoul 1990]. Whereas correcting other people is typically discouraged in
most other kinds of conversations for the sake of politeness [Schegloff et al. 1977],
it is required in the teaching conversation for the purposes of learning.

Example 2.12 McHoul 1990:362.
1 T: ... What’s going on here

2 (1.5) ((hands go up))

3 T: Yes

4 A: Mining

5 (1.5)

6 T: Mining, what sort of mining?

7 (2.0)

8 B: Open cut mining

9 T: Open cut?

10 (0.5)

11 C: [Iron ore

12 D: [Iron ore

42 Chapter 2 Conversation Analysis

13 T: Iron ore. Why iron ore?

14 (1.0)

15 T: Don’t they mine other things (in) open cuts?

In this case, the teacher asks a series of inquiries to which he already knows the
answers (lines 1, 6, 13, and 15). Through such quizzing, T gets the students, A, B,
C and D, to display their knowledge through candidate answers (lines 4, 8, 11, and
12). T’s inquiries elude or hint at the correct answers without providing them. This
is one common way of teaching.

Counseling conversations are the kind you have with a therapist, counselor or
advisor. One person seeks advice; the other listens and provides advice. The advice
seeker may report a problem of a personal nature or a long-term goal and seek ad-
vice on how to manage it, rather than requesting that the other person manage it
directly. As noted in Chapter 1, the chatbot ELIZA was explicitly designed to have
such conversations, specifically Rogerian psychotherapy: “This mode of conversa-
tion was chosen because the psychiatric interview is one of the few examples of
categorized dyadic natural language communication in which one of the partici-
pating pair is free to assume the pose of knowing almost nothing of the real world”
[Weizenbaum 1966, p. 42]. In psychotherapy generally, the therapist asks questions
and the patient answers them. The therapist may withhold judgment and let the
patient lead the conversation without interrupting or changing the topic. Or the
therapist may formulate what the patient previously said in order to suggest an
alternative meaning [Antaki 2008, p. 30].

Example 2.13 CBTUV&JR110698.2.
1 T: .hhh So you work out yer months notice

2 C: [Yeh

3 T: [Can we look at that [bit of time

4 C: [(an we got

5 (0.5)

6 C: An we got made redundant

7 T: Yeah

8 (0.9)

9 T: .phhh an you so you’re you’ve just finished work

10 (0.4)

11 T: You must have not known what to do with yourself

12 after twenty years

13 C: I didn’t do

14 (1.1)

15 C: I came (.) came to (0.4) eh I found it very hard I

16 don’t (.) get on with that

2.5 Conclusion 43

17 (1.5)

18 T: So you found it very difficult [to]adjust

19 C: [yeh]

20 C: Yeh

In this excerpt, the therapist inquires about his client’s job (lines 1 and 3), and the
client informs him that he was laid off (line 6). From this fact, which is typically
anxiety-inducing for people, the therapist formulates a series of upshots (lines 9,
11–12, and 18) of what the news might mean for the client. This is one way that
therapists shape their clients’ perceptions of events in their own lives. They adapt
the ordinary conversational practice of upshot formulating to the purposes of self-
understanding in the context of psychotherapy.

Each of these types of conversations and more depend on the same conver-
sational machinery, such as turn-taking, sequence organization, and repair, but
the activities and settings in which they take place contain distinctive patterns
and slight adaptations [Drew and Heritage 1992]. Conversational systems likewise
should be built on a shared, basic machinery so that users can rely on familiar prac-
tices but also accomplish the distinctive business of the particular application.

2.5 Conclusion
In this chapter, we have provided a brief introduction to the field of Conversa-
tion Analysis (CA). We discussed the difference between the topic of a conversation
and its structure. Then we analyzed the anatomy of a conversation and provided a
standard vocabulary for referring to the parts of a natural conversation: turns or ut-
terances, sequences, activities and conversations. Next, we explained three princi-
ples that speakers use in designing their own talk: recipient design, minimization,
and repair; and we described the mechanism through which these principles work
together. Finally, we discussed the foundational nature of ordinary conversation
and how it is used and adapted for accomplishing particular types of institutional
conversations, such as service encounters, teaching and counseling. From this in-
troduction you should be able to talk about the structure of human conversation
in a way that is more formal and systematic than commonsense.

While this introduction merely scratches the surface of many topics in CA,
we hope that it provides enough detail to pique your interest in the field and to
dig deeper if needed in designing for particular use cases. Observing naturally
occurring conversation can be invaluable for learning how to design automated
agents, but first consult the CA literature and see if others have already done so.

3Conversation Authoring

Our purpose in reviewing conversation theory is to enable you to apply it to the
practice of conversation authoring. How or whether a conversational agent requires
authoring by a designer depends on the type of natural-language platform on
which it is built. There are several technological approaches to creating chatbots,
voice assistants, and conversational interfaces. Each uses artificial intelligence
(AI) or machine learning (ML), but they do so in different ways. Among them the
most common types are information-retrieval approaches and natural-language-
generation approaches.

Conversational systems that use information retrieval contain or access reposi-
tories of pairs of utterances. When the user produces a new utterance, a machine-
learning technique known as natural language classification (NLC) compares it to
the pairs in the repository and attempts to match it to one of the first utterances in
a pair [Song et al. 2016]. If a match is made above a certain confidence threshold,
the second utterance in that pair is returned to the user as the agent’s response.
Information-retrieval-based conversational systems therefore do not generate new
utterances. All possible user utterance types and agent utterances are predefined in
the repository, although the database may be very large and dynamic data may be
inserted into predefined utterance frames.

On the other hand, natural-language generation approaches, as the name im-
plies, are capable of generating new utterances. Rather than simply matching users’
utterances to a set of pre-existing classes and retrieving predefined responses,
these approaches synthesize new utterances, often through the same methods
used for language translation [Kalchbrenner and Blunsom 2013, Sutskever et al.
2014, Vinyals and Le 2015]. In such approaches recurrent neural networks are used
to recognize sequential patterns from examples of text-based interactions. Rather
than natural language classification (NLC), they are based on sequence-to-sequence
(seq2seq) models. Such models are promising, and some even claim that they “can
hold a natural conversation and sometimes perform simple forms of common

46 Chapter 3 Conversation Authoring

sense reasoning” [Vinyals and Le 2015]. However, the following transcript excerpt
(Example 3.1) illustrates their performance.

Example 3.1 Vinyals and Le [2015].
1 ((Describe your problem: browser keeps crashing))

2 A: hi

3 U: hi

4 A: could you please let me know what is the operating

5 system you are using ?

6 U: linux

7 A: ok this is the issue with the system performance,

8 nasser , tools .

9 U: what is that ?

10 A: is it a windows machine ?

11 A: we have linux on your machine .

12 A: is it windows xp or windows 7 ?

13 U: i am using linux

14 A: let me take a remote of your machine and check if

15 issue has been pushed properly .

16 U: ok

In this case the agent, which was trained on a set of IT troubleshooting chat logs
between human customer service agents and human customers, receives the for-
mulation of the user’s problem, “browser keeps crashing” (line 1), prior to the
opening of the interaction. After greeting the user (line 2), which the user returns
(line 3), the automated agent asks a diagnostic question about the “operating sys-
tem” (lines 4–5). The user in turn provides one, “linux” (line 6). The agent then
formulates the user’s problem in an unexpected way: “the issue with the system
performance, nasser , tools” (lines 7–8). While “the issue with the system perfor-
mance” is technically a correct reformulation of “browser keeps crashing,” it is
less useful because it is less specific. Furthermore, the addition of “nasser , tools”
appears nonsensical. To this, the user replies “what is that ?” (line 9), thereby initi-
ating repair on the reference. But rather than clarifying what it means by “nasser ,
tools,” the agent asks another diagnostic question: “is it a windows machine ?”
(line 10). The question is irrelevant given the sequential context [Schegloff 1992a]
of the conversation so far, plus it suggests a failure to recognize the user’s prior
answer (line 6). Without waiting for the user to answer, the agent then appears to
provide one of its own, “we have linux on your machine” (line 11). It then contra-
dicts this answer by asking, “is it windows xp or windows 7 ?” (line 12). The user
finally responds by repeating his or her prior answer (line 6) in an elaborated form,
“i am using linux” (line 13). The agent then proposes a next action (lines 14–15),
and the user acknowledges it (line 16).

3.1 A Simple Finite-State Machine 47

This excerpt suggests that conversational agents using sequence-to-sequence
(seq2seq) models may not be ready for prime time. Although independently each of
the things the agent says is no doubt typical in such IT troubleshooting interactions,
in the context of this conversation they fail to show a sensitivity to previous turns
by the user (lines 6 and 9) and by the agent (line 11). Others have observed that
with natural-language generation approaches, “the generated sentences tend to
be short, universal, and meaningless, for example, ‘I don’t know’ or ‘something’ ”
[Song et al. 2016]. Somewhat like ELIZA, these agents may mimic aspects of the
form of natural conversation, but they tend to demonstrate a failure to understand
what the user is saying.

Because they are autonomous, natural-language-generation approaches to con-
versational agents will be a critical part of AI in the future. Yet one major obstacle
to their advancement is the lack of high-quality transcriptions of real human con-
versations [Chen et al. 2011]. Despite advances in automatic speech recognition
and speech-to-text services, naturally occurring conversational data still pose chal-
lenges [Moore 2015]. And as we see from the example above, such approaches
require better methods for tracking the state of the current conversation, not just
learning from a corpus of past conversations.

Today’s most common conversation platforms use information-retrieval ap-
proaches, which we will call the Intent-Entity-Context-Response (IECR) paradigm.
These platforms include Microsoft’s Luis, Amazon’s Alexa, Google’s Api.ai, Face-
book’s Wit.ai, IBM’s Watson Assistant, and more. IECR systems rely on the fol-
lowing standard components: (1) machine-learning-based “intents,” or classes of
phrases to recognize what the user said; (2) keyword-based “entities” to extract im-
portant bits of information from what the user said; (3) variables to preserve the
“context” of both this interaction and/or a larger context; and (4) text “responses,”
conditioned on the intents, entities and context, which may or may not be rendered
as voice using a text-to-speech component.

In the remainder of this chapter, we explain each element of IECR systems in
more detail. As in other chapters in this book, we base our technical discussions
primarily on IBM’s Watson Assistant (formerly Conversation) platform, but the
general principles should apply to other conversation platforms.

3.1 A Simple Finite-State Machine
Intent-Entity-Context-Response (IECR) systems at their core are simple finite-state
machines that consist of a tree data structure (Figure 3.1). Each user input utterance
starts at the top of the root level and is checked against a hierarchical set of nodes,
each with its own set of logical conditions. If the utterance matches one set of those

48 Chapter 3 Conversation Authoring

Start

Offer of help

Inquiry

Closing

Default

Figure 3.1 Dialog tree (root level).

Start

Offer of help

Inquiry

Closing

Default

Answer A

Answer B

Answer C

Default

Figure 3.2 Dialog tree (branch level).

conditions, it splits off from the root level and down a branch of nodes, stopping at
some leaf node, typically with an output response to the user. If the input utterance
fails to match one of the sets of conditions, it stops at a default node at the bottom
of the root level and gives a default output response, or flows down a branch with
default responses.

For example, the system goes first with “Hello. How can I help you?” (Offer of
help) and the user responds with, “Who invented the hard disk?” The user’s input
utterance then matches the conditions on the “Inquiry” node, and it flows down a
branch (Figure 3.2). The branch consists of another hierarchical set of nodes with
conditions and a default at the bottom. If the utterance matches one of these sets
of conditions, the system gives an output response, “The hard disk was invented by
IBM in 1956” (Answer B). If it matches none of the conditions on the branch nodes,
it responds, “I don’t know the answer to that” (Default).

3.2 Conditions (Intents, Entities, Context) 49

IECR-based conversational systems represent a finite conversation space. All
possible paths, from root to branch to leaf, are defined in advance. Users can take
many different paths through the conversation space, but they cannot create new
paths on the fly. Attempts to create new paths will result in unrecognizable input
utterances that end with default output responses. However, there may be many,
many unique paths through a single conversation space.

In simplest terms, a dialog tree determines what the output response to a
user’s input utterance should be given some conditions: it’s a set of conditioned
responses. In order to create a conversation space, UX designers must create these
conditions and responses, which are discussed in turn.

3.2 Conditions (Intents, Entities, Context)
Conditions in an IECR system are what define which output response will be
given for a particular input utterance. These conditions can be very simple or very
complex. They are made up of combinations of three main components: intents,
entities, and context variables.

Intents
In addition to far-field microphone arrays, natural language classification has made
possible the latest generation of conversational systems. NLC techniques are often
described as “understanding the intent of the user,” where “intent” is conceived as
a psychological meaning or mental state. This type of description can conjure up
impressions of natural language classification as a kind of mind-reading technique.
While that kind of technology might be nice to have, it’s not what NLC techniques
actually do.

The function of natural language classification is very simple: it tells you how
similar a new string of text is to predefined groups of text strings. The conversational
UX designer must first define a set of categories, or classes, that the classifier will
use to analyze new strings. The classes should consist of turn constructional units
(Chapter 2), especially phrases, that embody the range of conversational actions
that the application can recognize—for example, “hello” for a #greeting or “what
can you do?” as a #capability_check. The UX designer must anticipate all possible
actions in the conversation space. This is perhaps the most difficult part of creating
a conversational system.

Once an initial set of actions, or “intents,” is created, the UX designer “trains”
the classifier by grouping examples of the same action together in the same class,

50 Chapter 3 Conversation Authoring

Table 3.1 Natural language classes

Class Example

#greeting hello, hi, hey, hi there, yo, . . .

#welfare_check how are you?, how’s it going?, how do you do?, . . .

#capability_check what can you do?, what do you know?, . . .

Table 3.2 Confidence for new string: what kind of things

can you do?

Class Confidence

#greeting 0.01

#welfare_check 0.02

#capability_check 0.97

or bucket. In this way, the designer programs by example rather than by creating
natural language rules for variations of the same action. For example, Table 3.1
shows three classes with examples of each.

The power of natural language classification comes from its ability to learn
linguistic patterns of the example phrases placed in each category. The UX designer
therefore does not need to add a string for every possible way a user might formulate
the action; he or she must only add every type of way a user might formulate the
action. With an example of each type, the classifier can tell you that a new string,
never encountered before, is nonetheless very similar to a known string or strings
(Table 3.2). In short, natural language classification helps the UX designer with
variation management, or managing the many ways users can say the same thing.
What it does not do is help the UX designer anticipate all the kinds of actions the
user might take.

Intents, or natural language classes, can be designed in many different ways.
Ultimately, intent design should reflect the design of the agent’s responses, since
the purpose of intents is to distinguish input utterances in order to return different
responses. For example, in conversation with Agent A (Table 3.3), there is only a
single response for inquiries into the capabilities of that agent. In this case, a single
intent for a capability check is appropriate. Whatever the user says about “flights,”
Agent A will return the same response frame. In this sense, Agent A is not taking

3.2 Conditions (Intents, Entities, Context) 51

Table 3.3 Agent A: Single flight response

Class User Agent A

#flight_request I want flights to New
York

Here are all flights
to New York.

show me the cheapest
flight to New York

Here are all flights
to New York.

I want flights under
$300

Here are all flights
to New York.

Table 3.4 Agent B: Multiple flight responses

Class User Agent B

#flight_request I want flights to New
York

Here are all flights
to New York.

#cheap_flight_request show me the cheapest
flight to New York

July 10-15 is the
cheapest time.

#budget_flight_request I want flights under
$300

Here are some cities
under $300.

full advantage of natural language classification because the same thing could be
achieved simply by using entities or simple keyword-matching.

The power of natural language classification can be seen when the agent gives
multiple responses for different requests that involve the same entities, such as
“flights” (Table 3.4). Agent B can respond to flight requests in three different ways:
by returning all flights to a city, by returning the cheapest dates to fly, or by returning
cities with flights within a given budget. In order to give multiple responses like this,
flight request examples must be divided into three different intent categories. We
see then that how you should design your intents depends on how you design your
responses.

When designing intent classes, try to give as wide a range of canonical examples
as you can think of. For example, for a welfare check, “how are you?”, “how’s it
going?”, and “how do you do?” will cover a wider range of variation patterns than
“how are you?”, “how are you today?”, and “how are you doing?” The first group
includes three canonical patterns (how are you, how is it going, and how do you do),
whereas the second group includes variations of only one pattern (how are you). A
good intent for checking the agent’s welfare would include these three canonical
patterns and more, with a few variations of each pattern. Once your agent goes into

52 Chapter 3 Conversation Authoring

user testing, more variations will emerge. Adding new canonical patterns, rather
than just variations of existing patterns, will give your intent better coverage.

Entities
While intents should be used to recognize the conversational actions a user is
performing, entities, or keywords and their synonyms, should be used to extract
particular details from what the user says. Unlike intents, entities tend not to use
statistical techniques, such as natural language classification, to recognize similar
strings of text. They simply provide exact string matching, although the case of the
text (uppercase or lowercase) is usually ignored. For example, in the input utterance
“I want flights to New York”, such systems use natural language classification to
identify the action, “flight request,” but identify the destination of the request,
“New York,” by using an entity for destination cities. That entity would be a list
of all the cities that the agent can recognize, or perhaps that have airports: New
York, San Francisco, Chicago, Denver, etc. In addition, the entity dictionary should
include any common synonyms for an entry. For example, “New York” may include
the synonyms “NYC” or “the big apple.” This technique of intent plus entity is more
efficient and manageable than creating a unique intent for each entity, for example,
one intent for “I want flights to New York” and a different intent for “I want flights
to San Jose.”

In some use cases, the same entity type may be used in different contexts in the
same utterance. For example, “I want flights from San Jose to New York” uses the
entity type “city” to refer to both the origin and destination of a trip. For this case,
additional entity types can be used for origin and destination, that is, “from city”
and “to city.” The “from city” entity dictionary adds the word “from” before every
city name, and the “to city” dictionary adds “to.”

While some entities will be created and managed by the conversational UX
designer, others may be managed by the conversation platform itself, through
system entities or by a third party, through an external entity extraction service. For
example, the Watson Assistant Service provides system entities for person names,
locations, time, date, currency and more, while the Watson Natural Language
Understanding Service extracts many types of entities, which can be passed to a
conversation platform as context variables.

Context
Intents and entities enable the conversational UX designer to recognize user ac-
tions and extract details from the user’s current input utterance, but variables
enable the designer to preserve those details. This might be for use by a backend

3.2 Conditions (Intents, Entities, Context) 53

system to which requests are relayed, or simply across turns in the conversation.
In addition, intents and entities enable the user to initiate particular conversation
sequences, but context variables enable the agent to initiate them. In short, the
“context” around the words of a user’s current input utterance is constructed and
preserved by managing a set of variables.

What makes dialog management hard is that the strings of language that the
user produces must be interpreted in the context of the overall conversation. Lin-
guists talk of “anaphora” as an expression that depends for its meaning on other
expressions, or “context.” For example, the referent of pronouns, such as “he,”
“she,” “it,” or “that,” cannot be determined from the pronoun alone. Additional
information must be used. In ethnomethodology, Garfinkel (1967) uses the term
“indexical expressions” for anaphoric expressions; however, Garfinkel takes the
concept a step further. All expressions are indexical expressions because they de-
pend on some background knowledge and situational context to determine what
they are doing. While “context” can mean many things, Schegloff (1992a) argues
that the “sequential context” of an utterance is the primary kind of context that
must be considered first in interpreting the meaning of an utterance.

In IECR conversation engines, the context of a user’s utterance, sequential or
otherwise, must be captured through the use of variables. Such context variables
may capture the previous turn (for example, name request), the topic being talked
about (for example, San Francisco or flu shots), repairs on a response (for example,
an elaboration or example), and more. Deciding which aspects of the conversation
are consequential for the agent’s responses and how best to capture them through
context variables is a major challenge in conversational UX design.

If users always produced conceptually complete utterances, dialog design would
be much easier. For example, the request “I want flights from New York to San Jose
on July 10 to July 15” contains all the details that are needed to grant it. Entities
alone can be used to identify the origin, destination, departure date, and return
date. However, this is not how people usually talk. Natural human conversation
often consists of shorter, “bite-sized” utterances that build across turns (Exam-
ple 3.2).

Example 3.2 Multi-Turn Requests.
1 U: I’m looking for flights

2 A: Where do you want to go?

3 U: New York City

4 A: Where are you flying from?

5 U: San Jose, California

6 A: When do you want to go?

54 Chapter 3 Conversation Authoring

7 U: July 10-15

8 A: Okay. Here are flights from

9 San Jose to New York on

10 July 10-15.

In this conversation, the user provides the details of the request across several turns
instead of in one. As a result, the dialog logic must preserve these details across
turns using context variables. When the user says, “New York City” (line 3), the agent
must “remember” that they are talking about flight requests indicated in the user’s
previous turn (line 1). When the user says, “San Jose, California” (line 5), the agent
must remember both that they are talking about flight requests and that the user’s
destination is “New York City.” This preservation of context, or “remembering”
what we are talking about across turns, is accomplished by saving the intents and
entities recognized in each turn to persistent context variables. So in response to
the user’s first utterance (line 1), the dialog logic may set request type to “flights.”
In response to the user’s second utterance (line 3), it may set destination to “New
York City.” In response to the user’s third utterance (line 5), it may set origin to “San
Jose.” And in response to the user’s fourth utterance (line 7), it may set travel dates
to “July 10-15.” In this way, capturing intents and entities to persistent variables
enables the saving of context across turns.

In addition to capturing and “remembering” the context of the current topic,
variables can also be used to initiate sequences even if the user did not mention a
trigger word or phrase. For example, the designer might want the agent to say “Any-
thing else today?” only after it has provided some help to the user (Example 3.3).

Example 3.3 Appreciation Receipt.
1 ((agent retrieved flight information))

2 U: thanks a lot

3 A: You’re welcome.

4 A: Anything else today?

In this case, when the agent successfully retrieves a set of flights for the user (line
1), the dialog logic sets the context variable helped to true. If the user then does an
appreciation (line 2), the agent will receipt the appreciation (line 3) and do a last
topic check (line 4). However, if the agent did not succeed in providing any flight
information or even in recognizing what the user was requesting, the response to
the same user utterance is different (Example 3.4).

Example 3.4 Refutation.
1 U: what’s in theaters?

2 A: What do you mean?

3.2 Conditions (Intents, Entities, Context) 55

3 U: what movies are currently playing?

4 A: I’m sorry, I still don’t understand.

5 U: thanks a lot

6 A: I don’t think I did anything.

If the agent fails to recognize the user’s intents (lines 1 and 3), the helped context
variable never gets set to true. If the user then produces an appreciation (line 5),
the agent now responds by acknowledging its failure to help (line 6). Persistent
variables can thus be used to capture events, or their absence, earlier in the con-
versation for use as conditions, or “context,” later in the conversation.

While much attention has been given to natural language classification and
entity extraction, an equally important component for conversational interfaces
is “sequential context” [Schegloff 1992a]. The primary context for interpreting
utterances produced in conversation is the prior utterances in that conversation.
For example, “how about Las Vegas?” is ambiguous in isolation, but following the
utterance “Here are things to do in Los Angeles,” it becomes sensible. Speakers
rely heavily on previous talk to provide a context for their next utterance, which
enables them to take shortcuts. For the conversational UX designer, deciding what
aspects of the sequential context should persist and how to represent them through
context variables is still a challenging design problem. Creating an interaction
that works like a natural conversation requires capturing the current topic of the
talk, the user’s prior question or request, which entities the user has mentioned
so far, whether the previous user utterance was recognized or not, and more.
Therefore context design is a critical area within conversational UX design that
must be advanced if virtual agents are to handle many common conversation
patterns.

Mixed Conditions
We see then that the three main types of conditions in an IECR engine are intents,
entities, and context variables. They can be used alone or in combination. This gives
the conversational UX designer fine control in setting the conditions under which
different agent responses will be triggered by the user.

One type of situation in which you might use mixed conditions is when you want
the agent to respond differently to the same input utterance in different sequential
contexts. For example, take the multifunctional term “okay” (Example 3.5).

Example 3.5 Alternative Responses to “ok”.
1 U: hi

2 A: Hello. How are you?

3 U: ok

56 Chapter 3 Conversation Authoring

4 A: That’s good. How can I help you?

5 U: What’s your favorite sport?

6 A: I only follow chess.

7 U: ok

8 A: Anything else today?

The user first says “ok” (line 3) in response to “How are you?” (line 2) and the
agent responds with “That’s good. How can I help you?” (line 4). However, later,
the user says “ok” (line 7) in response to an answer, “I only follow chess” (line
6), and the agent responds instead with “Anything else today?” (line 8). These
different responses to the same input utterance can be achieved with combinations
of conditions. For the “ok” at line 3, the preceding response node for “Hello. How
are you?” (line 2) sets previous node to “welfare check.” Then when the user says
“ok” in the next turn, it matches the conditions: intent, acknowledgment, and
the context variable previous node equals “welfare check.” Alternatively, if the user
says “ok” when previous node does not equal “welfare check,” it will go to a lower
sequence in the root level for which the condition is the intent, acknowledgment.
The response for this sequence is “Anything else today?” (line 8). This dialog logic
can be represented as two root-level nodes with the following dialog pseudocode
(Example 3.6; see Appendix B for an explanation of the notation).

Example 3.6 Alternative Responses to “ok”.
1 if #acknowledgment AND $previous_node=welfare check

2 say "That’s good."

3 goto Offer of Help.

4 if #acknowledgment

5 say "Anything else today?"

This pseudocode represents two root-level dialog nodes: the first with a mixed
condition (line 1) and the second with a simple condition (line 4). Since the system
flows from top to bottom, the user utterance, “ok” will match the mixed condition
(line 1) only if previous node was set to “welfare check” on a previous turn. Otherwise,
“ok” will match the simple condition (line 4). Any number of intents, entities or
context variables can be mixed to make unique conditions. In this way, the same
intent can trigger many different responses.

3.3 Responses
Although the long-term goal of artificial intelligence is to generate or synthesize
responses to user utterances in real time, conversation engines using the Intent-
Entity-Context-Response paradigm do not do this. Machine learning is used to

3.3 Responses 57

classify the user’s utterances, but the agent’s utterances, and the logic for when
to say them, are typically authored by a designer. This may be the conversation
designer, who programs the intents, entities, and dialog, or it may be a content
designer, who specializes in creating only the responses of the agent.

Because the agent’s utterances in a IECR-based system are pre-authored, they
can sound unnaturally repetitive. Humans tend not to say things in exactly the same
way every time, but conversational agents will do so if we do not create variations.
For example, in a service encounter, the agent may repeatedly ask the user if he or
she would like anything else, as a pre-closing to the conversation. If the agent does
this the same way every time, it can become tiresome for the user, especially if it is
delivered through voice (Example 3.7).

Example 3.7 Single-Version Response.
1 U: what computer won Jeopardy?

2 A: An IBM computer named Watson.

3 U: ok

4 A: Is there anything else I can do for you today?

5 U: what was the name of the computer than beat Kasparov?

6 A: Deep Blue, a computer created by IBM, beat chess champion Garry

7 Kasparov in 1997.

8 U: ok

9 A: Is there anything else I can do for you today?

10 U: who invented the hard disk?

11 A: The hard disk drive was invented by IBM in 1956.

12 U: ok

13 A: Is there anything else I can do for you today?

In this case, the agent’s subsequent offers of help (lines 4, 9, and 13) are all on the
same node in the dialog tree. Because the conversation returns to the node multiple
times in the same session, the agent’s utterance sounds unnaturally repetitive. To
help compensate for this, most platforms enable the designer to author multiple
variations of an agent’s response. The designer then selects a rule to deliver these
variations, usually consecutively or randomly (Example 3.8).

Example 3.8 Multiple-Variation Response (Consecutive).
1 U: what computer won Jeopardy?

2 A: An IBM computer named Watson.

3 U: k

4 A: Is there anything else I can do for you today?

5 U: what was the name of the computer than beat Kasparov?

6 A: Deep Blue, a computer created by IBM, beat chess champion Garry

7 Kasparov in 1997.

58 Chapter 3 Conversation Authoring

8 U: ok

9 A: Anything else for you today?

10 U: who invented the hard disk?

11 A: The hard disk drive was invented by IBM in 1956.

12 U: ok

13 A: Anything else?

In this alternative example the same dialog node is used for the agent’s subsequent
offer of help (lines 4, 9, and 13), but the node contains multiple variations of the
utterance, which it delivers consecutively each time the user hits that node in the
session. While the response is long the first time the user receives it (line 4), it
gets progressively shorter with each subsequent hit (lines 9 and 13). In this way,
the designer can approximate how a human might truncate an utterance over
repetitions or can simply to give some variety in the agent’s responses.

Dynamic Knowledge
In addition to appropriate responses to particular conversational actions, the
agent’s responses also depend upon knowledge. This knowledge often lies outside
of the dialog tree itself. It therefore must be retrieved from a backend database
or API. A common approach for introducing dynamic knowledge into the agent’s
utterances is by inserting data into a response frame. This enables the designer to
turn bits of information from existing databases and APIs into a conversation-like
utterance (Example 3.9).

Example 3.9 Response Frames.
1 U: I need a Mexican restaurant nearby

2 A: Mario’s is located at Beach and Main.

3 U: thanks

4 A: You’re welcome! Anything else?

The agent’s response (line 2) consists of the response frame, “name is located at
address.” As the user indicates different preferences, that is, cuisines and distances,
the backend will insert different sets of values into the name and address context
variables. With this method, a single response frame can be used for all restaurants
in the database or API. In this kind of architecture, the conversational agent serves
as a translator between the user and the backend: it translates the user’s natural
language into a set of standardized variable values, and it translates new variable
values back into a conversation-like utterance.

3.4 Branching 59

3.4 Branching
Once you know how to create intents, entities, context variables, and responses and
how to integrate backend data, you have all the basic components for building a
conversation space. However, there are always different ways of combining these
components in a dialog tree. Below we give recommendations for how to architect
your dialog tree so that it supports maximum flexibility.

Typically in dialog design, branches off the root level are used to keep track of
the agent’s place in the conversation. A branch is used when an agent’s response
contains a question directed back to the user. Placing a user input point on the
branch enables the system to know that the next user input is a response to the
prior question. If the sequence requires multiple questions to the user, the corre-
sponding branch will contain multiple user input points. For example, a branch
with three dialog nodes will contain two user input points in addition to the root
level input point. We represent the example using pseudocode (Example 3.10 and
Appendix B for pseudocode definition).

Example 3.10 Multiple User Entry Points.
1 user input A

2 if #flight_request

3 say "Where do you want to go?"

4 user input B

5 if @city

6 set $destination to @city

7 say "Where are you leaving from?"

8 user input C

9 if @city

10 set $origin to @city...

This example represents three nodes, each beginning with a condition (lines 2, 5,
and 9). If the user’s input matches the intent flight request, it says, “Where do you
want to go?” (line 3). The branch then contains a point where the user can provide
an answer (line 4). If the user’s input contains a city, it will progress to the next
node (line 5), where the city will be interpreted as a “destination” city and saved as
a context variable (line 6). The agent then asks, “Where are you leaving from?” (line
7). There is then another point for user input on the branch (line 8) followed by a
third dialog node (line 9). Saying a city name at this point in the dialog tree will be
interpreted and captured as the “origin” (line 10). If the user answers the agent’s
questions (lines 3 and 7) as expected, the dialog branch works fine (Example 3.11).

60 Chapter 3 Conversation Authoring

Example 3.11 Staying on a Branch.
1 U: show me flights ((user input A))

2 A: Where do you want to go?

3 U: New York City ((user input B))

4 A: Where are you leaving from?

5 U: San Francisco ((user input C))

6 A: Okay. One moment please...

The user enters the branch at the root level (line 1) and provides a valid answer
to the agent’s destination question (line 3) and to the origin question (line 5). The
branch enables the system to differentiate the destination city from the origin city.

The problem with this kind of dialog branch design is that if the user does not do
the expected action (for example, by doing an unrecognized action or a requesting
a repeat), he or she will fall off of the branch. Once off the branch, it can be difficult
to get back on it (Example 3.12).

Example 3.12 Falling Off a Branch.
1 U: show me flights ((user input A))

2 A: Where do you want to go?

3 U: the Big Apple! ((user input B))

4 A: What do you mean?

5 U: New York City ((user input A))

6 A: I’m sorry I still don’t understand.

In this case, the user requests flights (line 1), and the agent asks for the user’s
destination city (line 2). In response, the user utters a term that the system does
not recognize, “the Big Apple!” (line 3). As a result, it falls off of the branch and hits
the root-level default node (line 4). Now when the user corrects him or herself in
the next turn, the flow is at “user input A” instead of “user input B” (line 5), and
the agent responds incorrectly (line 6). One solution to this problem is to enable
the system to keep track of the previous user input and enable the conversation
designer to create rules for when to return to a user input on a branch, like user
inputs B or C, and when to remain at user input A.

A different solution, which we recommend, is to avoid points for user input
along dialog branches. Instead, only use a single entry point for user input at the top
of the root level. In other words, the user input always starts in the same place. To
achieve this, you need another method for determining the agent’s next response,
for example, if it should be “Where do you want to go?” or “Where are you leaving
from?” We do this by using a context variable, previous node. Instead of placing
a user input right before the next question, we capture the previous question as
context and use it as a condition for the next question (Example 3.13).

3.4 Branching 61

Example 3.13 Single User Entry Point.
1 user input

2 if #flight_request

3 set $previous_node to "destination request"

4 say "Where do you want to go?"

5 if #city AND $previous_node = "destination request"

6 set $destination to @city

7 set $previous_node to "origin request"

8 say "Where are you leaving from?"

9 if #city AND $previous_node = "origin request"

10 set $origin to @city...

Here the context variable previous node is used to keep track of the sequential
context. If the agent previously requested a destination or an origin, that becomes
part of the context (lines 3 and 7). With both the context variable and the user input,
the system can determine if the user’s mention of a city is intended as a destination
or as an origin (Example 3.14).

Example 3.14 Single User Entry Point.
1 U: show me flights ((user input))

2 A: Where do you want to go?

3 U: the Big Apple! ((user input))

4 A: What do you mean?

5 U: New York City ((user input))

6 A: Where are you leaving from?

7 U: San Francisco ((user input))

In this example, the user’s input always enters the dialog tree at the same place
(lines 1, 3, 5 and 7). When the agent asks, “Where do you want to go?” (line
2), it remembers the sequential context by setting previous node to “destination
request.” When the user then says something that is unrecognized, “the Big Apple!”
(line 3), the root-level default node is hit (line 4) but the previous node variable
remains unchanged. When the user then gives a recognizable city, “New York
City” (line 5), the following condition is met: city intent and previous node equals
“destination request.” The dialog tree captures “New York City” as the destination
and asks, “Where are you leaving from?” (line 6), setting previous node now to
“origin request.” This type of dialog architecture thus uses the context variables
for persisting the sequential context. The user cannot lose his or her place in the
dialog tree because there is a single point of entry. User and agent can initiate as
many “repairs” (covered in Chapters 4 and 6) on a prior utterance without falling
off a dialog branch.

62 Chapter 3 Conversation Authoring

3.5 Conclusion
In this chapter we have given a brief introduction to the basics of conversation
authoring within the Intent-Entity-Context-Response (IECR) paradigm. With these
basics, you can create natural-language-based interactions in many different kinds
of styles depending on the granularity of your intents, the length of your utterances,
the particular details captured in context variables, and even how you architect the
dialog tree. From this introduction you should understand how conversational in-
terfaces in the IECR paradigm fundamentally work. You should understand the
differences among intents, entities, and context, and how dialog logic combines
them to recognize a user’s input and return a response. In the remainder of this
book, we will discuss how to design a conversation-centric interaction style, in con-
trast to the other three styles described in Chapter 1, out of these basic elements.

4Natural Conversation
Framework

If a person says something that is not understandable, we ask for clarification. If
a person says something that we believe to be false, we question and debate. We
don’t issue a warning signal. We don’t beep. We don’t give error messages. We ask
for more information and engage in mutual dialogue to reach an understanding.

—Norman [1988, p. 198]

Formal knowledge of natural human conversation can inspire the practice of con-
versation design and authoring. Natural-language platforms based on the Intent-
Entity-Context-Response (IECR) paradigm may provide powerful tools for analyzing
strings of natural language, like English or Spanish or Mandarin, but they leave it
to designers to figure out how to model a conversational interaction with the user.
As we saw in Chapter 1, UX designers may create very different kinds of natural-
language interaction styles, some of which are not very conversational. Some styles
work like web search in which the system does not remember the sequential con-
text across queries, nor recognize user actions other than queries, such as those
performed with “say again,” “what do you mean?” or “thank you.” Other natural-
language interaction styles work like graphical or mobile user interfaces in which
users select from buttons or menus to submit text-based commands. Conversa-
tion is a distinctive form of natural-language use that involves particular methods
for taking turns and ordering them into sequences, the persistence of sequential
context across turns, and characteristic actions for managing the interaction itself.
The UX designer must model these mechanics of conversation primarily through
dialog management and context persistence. Neither natural-language processing
tools nor conventions for visual user interfaces help designers decide how to string
bits on language together into naturalistic conversational sequences. Designing for

64 Chapter 4 Natural Conversation Framework

conversation first requires a formal, technical knowledge of how human conversa-
tion is structured.

Like natural language, natural conversation is a complex system to which whole
scientific disciplines are devoted. The mechanics of how humans take turns, design
them, and organize them sequentially are formally studied in the social sciences,
especially in the field of Conversation Analysis (CA). To leverage this literature
of observational studies, we have applied the concepts and patterns from CA to
the design of conversational agents. While we are not the first to undertake this
kind of approach [Luff et al. 1990, Wooffitt et al. 1997], both the natural language
processing (NLP) technologies and the field of CA itself have evolved significantly
since then. The proliferation of NLP technologies in the market has created a
demand for a discipline of conversational UX design. As NLP technologies have
moved out of the research labs and into the living rooms, desktops, and pockets of
millions of people, conventions and standards for how to interact with conversational
interfaces are now critical. As a result of the relative maturity and standardization
of the Intent-Entity-Context-Response (IECR) paradigm, we can now focus on user
experience (UX) design and the varieties of conversation patterns, rather than the
underlying technologies themselves. The aim of this book is to build upon earlier
explorations into the application of Conversation Analysis to the design of human-
computer interaction [Luff et al. 1990] by constructing a design framework and
methodology for UX designers.

In applying Conversation Analysis (CA) to UX, we have developed a Natural
Conversation Framework (NCF) for the design of conversational user interaction
and experience that is grounded in observational science [Moore et al. 2016, Moore
2018]. By “conversational” we mean a natural-language interface [Androutsopoulos
et al. 1995] that both recognizes common conversational actions and preserves the
sequential context of previous turns across future turns, so the agent can respond
appropriately. The NCF provides a pattern language [Alexander 1977, Erickson
2000] of generic, reusable conversational UX patterns that are independent of
any particular technology platform. The patterns are simplified forms of natural
human conversation patterns documented in the CA literature, for example, those
of sequence organization or repair [Sacks et al. 1974, Schegloff et al. 1977, Schegloff
2007]. The NCF so far has been implemented only on the IBM Watson Assistant
and Dialog services. But in principle it can be implemented on other platforms
as well. The NCF is primarily a set of abstract interaction patterns that can be
implemented many different ways. These patterns provide a starting point for
designers and builders so they do not have to reinvent the basic mechanics of
conversational structure. The Natural Conversation Framework [Moore et al. 2016,

4.1 Interaction Model 65

Moore 2018] consists of four parts: (1) an underlying interaction model; (2) a
distinctive content format based on the interaction model; (3) a pattern language
for common conversational activities; and (4) a general method for navigating
conversational applications. This chapter will describe each component of the
framework in turn.

4.1 Interaction Model
The smallest interactive unit of human conversation, in which more than one
person participates, is the sequence. Sequences are general patterns that, like tools
or devices, can be used and reused in all kinds of different situations and settings,
for all kinds of different purposes. Conversation analysts have identified two types
of sequences: adjacency pair sequences and storytelling sequences [Schegloff and
Sacks 1973, Schegloff 1982, Schegloff 2007]. As we saw in Chapter 2, “adjacency
pair” is a formal term for a class of recognizable social action pairs such as greeting-
greeting, farewell-farewell, assessment-assessment, inquiry-answer, offer-accept/reject,
request-grant/deny, invitation-accept/decline, accusing-admitting/denying, and many
more. When someone does the first part of the pair, it creates an expectation, and
an obligation, for someone else to do the second part [Sacks et al. 1974]. While the
initiation of a sequence constrains the next speaker’s turn, it does not determine
it. Sequences are inherently collaborative and are the primary vehicles through
which we build up conversations, turn-by-turn, and achieve a wide range of social
activities.

When someone initiates an adjacency-pair sequence, the recipient does not
always complete it in the next turn, although he or she may be working toward pro-
ducing the second part of the pair. In other words, adjacency pair sequences are
expandable: the “base” action pair may be expanded, as needed, with additional
pairs for purposes of conversation management [Schegloff 2007]. While base ad-
jacency pairs stand on their own, independently, their expansions do not; they are
dependent on the base sequence because they operate on it (Example 4.1).

Example 4.1 Minimal Expansion.
1 U: can you recommend a Mexican restaurant within

2 walking distance?

3 A: Mario’s is located at Fourth and Winchester.

4 U: thanks!

5 A: You’re welcome! Anything else today?

An utterance like “thanks!” (line 4) does not stand on its own. It is inherently respon-
sive to something else, something prior, in this case the agent’s granting (line 3) of

66 Chapter 4 Natural Conversation Framework

the request (line 1). In addition to appreciation, “thanks!” does a particular job in
this interaction: it closes the prior sequence. Closing a base adjacency pair is also
often done with an “okay,” “great” or other “sequence-closing thirds” [Schegloff
2007]. Simply by saying “thanks!,” a speaker can indicate that the prior utterance,
such as the granting of a request or the answering of an inquiry, was adequate and
helpful and that the speaker is ready to move on.

Sequence expansions enable speakers to manage the interaction itself. In ad-
dition to closing a sequence, they may be used for screening, eliciting, repeating, or
paraphrasing. The following excerpt demonstrates each of these expansion types
in a single sequence. It is a working example of an interaction with “Alma,” our
implementation of the Natural Conversation Framework on the Watson Assistant
service (Example 4.2).

Example 4.2 Sequence Expansion Types.
1 U: do you know about restaurants? ((screen))

2 A: I know a few places.

3 U: a few what? ((repeat))

4 A: places.

5 U: can you recommend one close by? ((base))

6 A: What kind of food do you want? ((elicit))

7 U: well, what are my choices? ((elicit))

8 A: Around here Mexican, Japanese or Indian.

9 U: Mexican

10 A: Okay. Mario’s is on Beach and Main. ((base))

11 U: what do you mean? ((paraphrase))

12 A: Mario’s is a Mexican restaurant just a

13 couple of blocks west on Chester Street.

14 U: oh ok, thanks ((close))

15 A: You’re welcome! Anything else?

In this example, the user does a preliminary inquiry into the capabilities of the agent
(line 1), which accomplishes screening. Such preliminaries, or pre-expansions,
check conditions upon which the first part of the base sequence (line 5) depend
[Schegloff 2007]. If the agent were to respond, “I can look up current and upcoming
movies” instead, the user would likely not ask for a restaurant recommendation
next (line 5). If the conditions for the first pair part are not met, it will not be
produced.

In between the two parts of the base pair, there are two expansions that do elicit-
ing (lines 6–9). First, the agent proposes that it needs an additional detail, a cuisine
preference (line 6), as a condition for granting the user’s request. Second, as a con-
dition for answering the elicitation of a cuisine preference, the user proposes that

4.1 Interaction Model 67

he needs to know the cuisine choices (line 7). Most current chatbot and voice plat-
forms specifically support the first kind of elicitation, the agent-initiated one, and
call them simply “slots.” An “intent,” or user action, can have “slots,” meaning bits
of information required to fulfill the user intent, for example cuisine preference or
distance. If the user does not provide them in the request itself, the agent attempts
to elicit them. But this is not the only kind of “slot,” or sequence expansion, in natu-
ral conversation; it is only an agent-initiated elicitation. Current platforms tend not
to provide guidance regarding how to create other types of slots, like user-initiated
elicitations, preliminaries, or repairs.

The remaining sequence expansions (lines 3 and 11) are examples of what con-
versation analysts call “repair” [Schegloff et al. 1977]. Repairs consist of a redoing
of all or part of a previous utterance, either by the speaker or a recipient, where
that utterance poses difficulty in speaking, hearing, or understanding and thereby
prevents the conversation from moving forward. In the first case, the user requests
a repeat of part of the agent’s prior response (line 3), namely, the part that came
after “a few.” This is a partial repeat request technique that elicits a repeat of just
the part of the prior turn that the recipient did not hear (line 4). In the second case,
the user requests a paraphrase of all the agent’s prior response (line 11). Repairs of
hearing or understanding troubles can come after any utterance in a conversation.

The interaction model of the Natural Conversation Framework thus consists of
expandable sequences, like an accordion [Moore et al. 2016, Moore 2018]. Compact
sequences are common, but each sequence can be expanded by either party as needed.
In the example above (Example 4.2), the whole series of utterances is one sequence
(all 15 lines), an expanded sequence. The expansions are operations on the base
sequence (lines 5 and 10). The expansion types, screening, repeating, and closing, en-
able basic coordination in and out of sequences, while the expansion types, eliciting
and paraphrasing, enable the parties to compensate for emergent asymmetries in
their knowledge. Taken together, these sequences that operate on other sequences
enable conversation management. Because they are designed to manage the interac-
tion itself, these actions are unique to conversation and not found in other forms of
natural language use, such as those involved in reading a book or searching the web.
In order to handle the two-way elicitations and repairs inserted into base sequences,
the dialog logic must remember what the user’s original inquiry or request was. In
other words, persistent sequential context, through the use of context variables, is a
requirement for this interaction model.

Sequence expansions enable conversational systems to adapt to the particular
user on a local, turn-by-turn basis. Where one user may require no sequence expan-
sions, another user may require many. For example, depending on how detailed the

68 Chapter 4 Natural Conversation Framework

user’s initial request is, the agent can elicit additional details as needed, rather than
accepting only a complete request (Example 4.3).

Example 4.3 Agent Elicitation.
1 U: can you recommend a restaurant

2 within walking distance?

3 A: What kind of food do you want?

4 U: Indian

5 A: Okay. Taj Mahal is located on

6 Third and Union.

7 U: thanks

8 A: You’re welcome! Anything

9 else I can do for you?

Here the user does not mention the type of cuisine she prefers in her initial request
(lines 1–2), so the agent elicits that detail instead (line 3). The user then provides
the detail in a separate turn (line 4). This makes the agent flexible and more like a
human speaker than a database.

In addition, some users may need more help than others. This may be due to
differences in their knowledge or just to idiosyncratic confusions local to the con-
versation. Sequence expansions enable users to get localized help (Example 4.4).

Example 4.4 User Elaboration Request.
1 U: can you recommend a good sushi place?

2 A: Walking distance or short drive?

3 U: what do you mean?

4 A: Do you want someplace close or

5 farther away?

6 U: oh walking

7 A: Shogun Sushi is located on First

8 and Taylor.

9 U: thank you very much

10 A: You’re welcome! Is there anything

11 else I can do for you?

In this case, the user requests a paraphrase (line 3) of the agent’s request for a
distance preference (line 2). Perhaps it is a question he did not expect or perhaps
“walking distance” is not a phrase with which he is familiar. The agent then para-
phrases its prior question (lines 4–5), which enables the user to understand and
answer it (line 6). Rather than designing every utterance of the agent in the simplest
elaborated form, which would be long and cumbersome, especially for voice inter-
faces, sequence expansions enable the agent’s initial responses to be concise. This

4.2 Content Format 69

makes the conversation faster and more efficient. Then if a few users encounter
trouble responding, understanding, or hearing these more streamlined responses,
they can expand the sequence as needed. This is how natural human conversation
is organized: with a preference for minimization (Chapter 1; Sacks and Schegloff
[1979], Levinson [2007], Moore [2008], Enfield [2013]). That is, speakers should try
the shortest utterance that they think the recipient can understand first, see if it suc-
ceeds, and then expand only if necessary.

Natural Conversation Understanding
Support for sequence expansion is critical in conversational UX design because
one of the distinctive goals of conversation is mutual understanding. Accurate in-
formation alone is not enough. If the user or the agent cannot understand what
the other said, the conversation has failed. Analyzing the user’s utterance with nat-
ural language understanding tools (NLC and entity extraction) is critical, but it is
only the first step. Mutual understanding can only be determined when the recip-
ient responds in “third position” [Schegloff 1992b]. For example, as noted above,
if a user makes an inquiry (first position), the agent answers it (second position),
and the user closes the sequence with “thanks!” (third position), then this is an
implicit indication of mutual understanding. But if the user says, “what do you
mean?” in third position, then the user encounters trouble in understanding the
agent’s answer. Or if the user says, “no, I mean X” in third position, then he sug-
gests that the agent did not understand the inquiry. And if the user says, “never
mind” in third position, then mutual understanding has failed and the user is giv-
ing up. Sequence expansions provide natural indicators of the participants’ state of
understanding on a turn-by-turn basis. Therefore, mutual understanding cannot be
achieved in one turn; it requires interaction, or dialog, and support for sequence
expansion. We use the term “natural conversation understanding,” then, to refer
to sequence-expansion and repair features that enable user and agent to achieve
mutual, practical understanding.

4.2 Content Format
The expandable sequence interaction model requires a particular format for the
content of the conversational application. As we saw in Chapter 1, content-centric
and conversation-centric interaction styles differ significantly in the length of the
agent’s utterances. While content-centric utterances may be easily adapted from
existing Frequently Asked Questions (FAQ) web pages or automatically extracted

70 Chapter 4 Natural Conversation Framework

from documents (e.g., Jeopardy Watson), they are not formatted for conversation-
like interaction.

As noted in Chapter 2, natural conversation exhibits a “preference for mini-
mization” [Sacks and Schegloff 1979, Levinson 2007, Moore 2008, Enfield 2013].
Speakers try the shortest construction that they think will be adequate first. Then
they expand only as necessary if the recipient indicates trouble in understanding.
This is more efficient than starting with the expanded version. Following the principle
of minimization, conversational content designers should consider the following:

Limit Agent Utterance to a Single Sentence or Less
A single sentence can be long for an utterance in natural conversation. Phrases or
single words are common. Keep your agent’s utterances to a sentence or less. If
multiple sentences are required for the purpose at hand, say to explain something
or give background for a request, use the extended telling pattern (Chapter 5, A3) to
break up the content into smaller chunks.

Break Paragraphs Down into Their Parts
Paragraphs of content consist of multiple parts: answers to multiple inquiries,
elaborations, definitions, examples and more. For example, FAQ content typically
provides the short answer to the user’s question in the first sentence. Subsequent
sentences tend to provide more detail in the form of elaborations, definitions or
examples, and sometimes to include answers to different but related questions.
This may be an efficient way to package content for a web page or document, but it
is not conversational. Decompose paragraphs into these component parts so users
can navigate the content at a lower level of granularity.

Let Users Control the Level of Detail
Return the short answer to the user in your agent’s responses and let the user
unpackage more content if desired [Moore 2018, Balata et al. 2018]. The initial
response should be fully adequate for the majority of users. However, some users
may possess less of the required domain knowledge or encounter situational or
one-off troubles in understanding. The user-initiated repair patterns (Chapter 6,
B2) enable such a user to elicit paraphrases, examples, or definitions only if he or
she requires them. Provide additional detail for the few rather than slowing down
the many with unneeded details.

For a demonstration of these guidelines, take the following example of how to
design an answer to an inquiry about health insurance coverage. In this example,

4.2 Content Format 71

the user’s inquiry is “Am I covered for diabetes screenings?” and its variations
(Example 4.5).

Example 4.5 Document-Like Response.
Medicare covers tests to screen for diabetes as well as services and

supplies to help treat the disease. Medicare will pay for 100% of its

approved amount for the test even before you have met the Part B

deductible. You will pay no copay or deductible for these tests if

you see doctors who take assignment. Doctors and other health care

providers who take assignment cannot charge you more than the

Medicare approved amount. Medicare Advantage Plans cover all

preventive services the same as Original Medicare. This means

Medicare Advantage Plans will not be allowed to charge cost-sharing

fees (coinsurances, copays or deductibles) for preventive services

that Original Medicare does not charge for as long as you see

in-network providers.

In this case, the FAQ-style response contains several distinct but related compo-
nents. Given that the user’s inquiry could be satisfied with a simple “yes” or “no,”
this document-like response clearly gives more detail than projected by the ques-
tion. But the same content can be decomposed into separate parts (Example 4.6).

Example 4.6 Conversation-Like Response(s).
Medicare covers tests to screen for diabetes as well as services and

supplies to help treat the disease. [#coverage]

Medicare will pay for 100% of its approved amount for the test even

before you have met the Part B deductible. [#deductible]

You will pay no copay or deductible for these tests if you see

doctors who take assignment. [#copay]

Doctors and other health care providers who take assignment cannot

charge you more than the Medicare approved amount. [#paraphrase
request]

Medicare Advantage Plans cover all preventive services the same as

Original Medicare. [#preventive]

This means Medicare Advantage Plans will not be allowed to charge

cost-sharing fees (coinsurances, copays or deductibles) for

preventive services that Original Medicare does not charge for as

long as you see in-network providers. [#paraphrase request]

This example shows how the same content can be decomposed into four distinct
inquiries, or “intents,” and paraphrases of the answers to two of those inquiries. We

72 Chapter 4 Natural Conversation Framework

separate the content into these four intents because any of them could reasonably
be asked about independently: “Am I covered for diabetes screening?” (#coverage),
“What’s my deductible?” (#deductible), “What’s my copay?” (#copay), and “Am I
covered for preventive services?” (#preventive). The remaining content can be or-
ganized as paraphrases of the copay and preventive inquiries and only displayed
to the user if he or she says “what do you mean?” or “I don’t understand” (#para-
phrase request). In this way, the content is better formatted for the back-and-forth
of conversation.

Breaking down content at a lower level of granularity enables more natural
conversation and adaptation of the content to different users (Example 4.7).

Example 4.7 User A.
1 U: am I covered for diabetes screenings?

2 A: Medicare covers tests to screen for diabetes as well as services

3 and supplies to help treat the disease.

4 U: thanks

5 A: You’re welcome!

In this case, User A is satisfied with a single answer to his inquiry. While the inquiry
(line 1) projects a simple yes or no as the expected answer, the agent over-answers
by giving a whole sentence (lines 2–3). But explicitly repeating that they are talking
about “coverage” and “diabetes” is good practice, given how susceptible today’s
natural language classification (NLC) is to misunderstanding, and providing addi-
tional information about “services” versus “supplies” is helpful. This is likely an
adequate level of detail for most users, which they can indicate by closing the se-
quence (line 4).

On the other hand, some users may require more detail than others. For them,
more content can be delivered through multiple inquiries and repairs to those
inquiries (Example 4.8).

Example 4.8 User B.
1 U: am I covered for diabetes screenings?

2 A: Medicare covers tests to screen for diabetes as well as services

3 and supplies to help treat the disease.

4 U: what’s the deductible?

5 A: Medicare will pay for 100% of its approved amount for the test

6 even before you have met the Part B deductible.

7 U: how about the copay?

8 A: You will pay no copay or deductible for these tests if you see

9 doctors who take assignment.

10 U: what do you mean?

4.2 Content Format 73

11 A: Doctors and other health care providers who take assignment

12 cannot charge you more than the Medicare approved amount.

13 U: is preventive care included?

14 A: Medicare Advantage Plans cover all preventive services the same

15 as Original Medicare.

16 U: I don’t understand

17 A: This means Medicare Advantage Plans will not be allowed to charge

18 cost-sharing fees (coinsurances, copays or deductibles) for

19 preventive services that Original Medicare does not charge for as

20 long as you see in-network providers.

21 U: okay thanks

22 A: You’re welcome!

In this case, the user does not stop with a single inquiry about coverage (line 1),
but continues to unpackage all the content by making three additional inquiries
(lines 4, 7, and 13) and by requesting clarification of two of them (lines 10 and 16).
In practice, different users will take different paths through the content.

In this scenario, one concern of health insurance providers, and indeed good
human agents, is to make sure that enrollees know enough about insurance to ask
the right questions. One advantage of the document-like response (Example 4.5) is
that it exposes users who may not know the difference between a deductible and
a copay, as well as the ones who do, to potential hidden costs that they might not
know to ask about. While this approach might be tempting, we recommend against
it. There are other ways of educating users about what they can ask or what they can
do. For example, in a desktop scenario, a scrolling message bar above the text entry
box can be used to display the additional inquiries. Or, in cases in which it is critical
to make sure every user receives each bit of information, an alternative sequence
type can be used, the extended telling (Chapter 5, A3). With the extended telling
pattern, a large amount of content is decomposed into parts and delivered across
multiple turns in the conversation (Example 4.9).

Example 4.9 Alternative: Extended Telling.
1 U: tell me about diabetes coverage?

2 A: Okay. First, Medicare covers tests to screen for diabetes as well

3 as services and supplies to help treat the disease. ((part 1))

4 U: ok

5 A: Medicare will pay for 100% of its approved amount for the test

6 even before you have met the Part B deductible. ((part 2))

7 U: ok

8 A: You will pay no copay or deductible for these tests if you see

9 doctors who take assignment. ((part 3))

10 U: what do you mean?

74 Chapter 4 Natural Conversation Framework

11 A: Doctors and other health care providers who take assignment

12 cannot charge you more than the Medicare approved amount.

13 ((part 3 paraphrase))

14 U: got it

15 A: Finally, Medicare Advantage Plans cover all preventive services

16 the same as Original Medicare. ((part 4))

17 U: I don’t know what you mean

18 A: This means Medicare Advantage Plans will not be allowed to charge

19 cost-sharing fees (coinsurances, copays or deductibles) for

20 preventive services that Original Medicare does not charge for as

21 long as you see in-network providers. ((part 4 paraphrase))

22 U: ok thanks

23 A: You’re welcome!

In this case, the user’s inquiry (line 1) initiates the extended telling, and the agent
begins by delivering the first part (lines 2–3). The agent then waits for the user either
to tell the agent to continue or initiate a repair on the first part. When the user
produces a “continuer” [Schegloff 1982], like “ok,” “yeah,” “uh huh,” “all right,”
etc. (line 4), the agent continues to the next part of the telling (lines 5–6). The user
then proceeds to produce continuers (lines 7 and 14) or to initiate repairs (lines 10
and 17) until the agent gets to the last part of the telling (lines 15–16). By breaking
an extended telling into separate parts, the user can control the pace of the telling
and repair his or her understanding of each part before progressing to the next. In
this way, a large amount of content can be made conversational.

To support the inquiry sequence (Examples 4.7 and 4.8) and extended telling
sequence (Example 4.9), the Natural Conversation Framework requires a particular
content format.

0.1a User Utterance, example a
0.1b User Utterance, example b
0.2a Agent Response, variation a
0.2b Agent Response, variation b
0.3 Agent Repeat
0.4 Agent Paraphrase
0.5 Agent Example
0.6a Agent Definition a
0.6b Agent Definition b

In this format, multiple examples of users’ equivalent utterances can be given (0.1a,
0.1b, etc.), as well as multiple versions of the agent’s initial response utterance
(0.2a, 0.2b, etc.), which may be selected consecutively or randomly. The remaining
parts are user-initiated repairs (0.3–0.6) on the agent’s initial response. While each

4.2 Content Format 75

of these repair patterns will be specified in Chapter 6, examples of the content are
given below (Example 4.10).

Example 4.10 Diabetes Coverage Inquiry.

0.1a am I covered for diabetes screenings?
0.1b do I have to pay for a diabetes test?
0.2 Diabetes screenings are covered 100%.
0.3 Diabetes screenings are covered 100%.
0.4 Medicare covers tests to screen for

diabetes as well as services and supplies
to help treat the disease.

0.5 glucose test, fasting plasma glucose test, FPG,
casual glucose test

0.6a diabetes; Diabetes is a group of metabolic
disorders in which there are high blood sugar
levels over a prolonged period

0.6b screening; A screening is a test for a specific
disease or condition.

The content format enables you to capture examples of the users’ inquiries (0.1a,
0.1b), the agent’s initial response (0.2), a repeat of that response (0.3), a paraphrase
of it (0.4), examples of the response if applicable (0.5), and definitions of special
terms used in the response (0.6a, 0.6b).

In order to handle an extended telling, the content format is simply extended
by adding more parts to the agent’s response (Example 4.11).

Example 4.11 Diabetes Coverage Extended Telling.

0.1a am I covered for diabetes screenings?
0.1b tell me about diabetes test coverage?
0.2 Diabetes screenings are covered 100%.
0.3 Diabetes screenings are covered 100%.
0.4 Medicare covers tests to screen for

diabetes as well as services and supplies
to help treat the disease.

0.5 glucose test, fasting plasma glucose test, FPG,
casual glucose test

0.6a diabetes; Diabetes is a group of metabolic
disorders in which there are high blood sugar
levels over a prolonged period

0.6b screening; A screening is a test for a specific
disease or condition.

76 Chapter 4 Natural Conversation Framework

1.2 Medicare will pay for diabetes screenings even
if you have not met your deductible.

1.3 Medicare will pay for diabetes screenings even
if you have not met your deductible.

1.4 Medicare will pay for 100% of its approved amount
for the test even before you have met the Part B
deductible.

1.5 Part B deductible
1.6 deductible; A deductible is the amount paid out

of pocket by the policy holder before an insurance
provider will pay any expenses

In this case, a single set of users’ utterances (0.1a, 0.1b) is associated with multiple
sets of agent responses (0.2–0.6 and 1.2–1.6), and more sets can be added, extending
the agent telling to any number of parts.

From the content format and the interaction model of the Natural Conversa-
tion Framework, we can see that content design is a critical part of conversational
UX design. A conversation-centric interaction style requires relatively fine-grained
content compared to that found in books and documents or even in web FAQs.
Organizing the content of a virtual agent into this kind of conversational format
is still a hard technological problem. Until a computer algorithm can convert the
content of existing documents into the conversational format, the conversational
UX designer or dedicated content designer must do it.

4.3 Conversational Activity Patterns
The goal of conversational interfaces is not only mutual understanding but also
conversational competence. Can the automated agent respond appropriately to com-
mon actions in conversation? Can the agent do conversation? The Natural Con-
versation Framework provides a UX pattern language, or starting library of UX
patterns, that constitute various aspects of conversational competence [Moore et al.
2016, Moore 2018]. The patterns enable a variety of basic social activities and can be
configured and adapted to a wide variety of use cases. These UX patterns are directly
inspired by patterns of how people naturally talk, as documented in Conversation
Analysis (CA). The set is not exhaustive; more patterns can be mined from the CA
literature or from the observation of naturally occurring conversations. The NCF
currently includes the following 15 types of patterns containing 100 subpatterns
(Table4.1). The three classes of patterns are described in more detail below.

The NCF consists of common, reusable UX patterns for delivering the main
content of your application, as well as patterns for managing the conversation

4.3 Conversational Activity Patterns 77

Table 4.1 Conversational UX patterns

Conversational Sequence-Level Conversation-Level
Activities Management Management

A1 Inquiry (User) B1 Repair (Agent) C1 Opening (Agent)

A2 Open Request B2 Repair (User) C2 Opening (User)

A3 Extended Telling B3 Extended Repair C3 Capabilities

A4 Quiz B4 Sequence Closer C4 Closing

A5 Inquiry (Agent) B5 Sequence Abort C5 Disengaging

itself. The conversational activities include patterns for users to make inquiries
(e.g., U: “am I covered for flu shots?”), for users to make open requests (e.g., U:
“I’m planning a vacation with my family. Where should I go?”), for agents to give
sets of instructions or tell multi-part stories (e.g., A: “First, sit comfortably and
breathe slowly.”), for agents to troubleshoot problems (e.g., U: “I’ve been feeling
very anxious lately), for agents to quiz users (e.g., A: ”What is the force that results
from two solid surfaces sliding against each other?“), and for agents to make open
inquiries (e.g., A: ”What did you think of Mario’s?”). Each of these activities is
generic and can be used in a wide variety of scenarios. For example, a health
insurance agent might use the user inquiry pattern (A1) to answers users’ questions
about their health insurance. Or a customer service agent might use the open
request pattern (A2) to elicit users’ photocopier problems and diagnose the causes
and then use the extended telling pattern (A3) to guide the user through procedures
for fixing them. Or an interviewing agent might use the agent inquiry pattern (A5)
to ask both closed and open survey questions. Or a tutoring agent might use the
extended telling pattern (A3) to present material about the subject of physics and
then use the quiz pattern (A4) to test the users’ comprehension. The interaction
patterns are generic and independent of all domain-specific content.

While the conversational activity patterns (A) needed for particular use cases
may vary depending on the roles of the agent, the conversation management pat-
terns (B and C) are appropriate for almost any use case that is conversational. Any
conversation must be opened (C1–2) and most conversations should be closed (C4).
If the agent is to be “intelligent,” it should be able to talk about what it can do (C3).
After any response by the agent, the user may require a repeat, paraphrase, exam-
ple, or definition of a term in that response (B2). Sequences should be closed if
successful (B4) or aborted if troubles cannot be repaired (B5). And users may dis-
engage from the agent by asking to speak with a human or the agent may disengage

78 Chapter 4 Natural Conversation Framework

when users resort to abusive language (C5). We discuss one conversational activity
pattern, the quiz pattern (A4), below.

While most chatbots and voice assistants can handle simple, two-turn se-
quences, such as question-answer or command-action, few demonstrate the ability
to handle the quiz pattern (A4), which requires more than two turns. The quiz pat-
tern is a conversational UX pattern in which the agent asks the user questions and
evaluates the user’s answers. The user can give the correct answer, give an incorrect
one, or give up, as well as initiate the standard repeat and paraphrase repairs. This
quiz pattern can be used for all kinds of question types and content: pedagogical
testing, trivia games, riddles, joke telling, and more (Example 4.12).

Example 4.12 Joke Telling (Alma).
1 U: tell me a joke

2 A: What can you hold without ever touching it?

3 U: stocks?

4 A: That’s not it.

5 U: a conversation?

6 A: That’s right!

7 U: tell me another one

8 A: Who earns a living by driving his customers away?

9 U: the cable company?

10 A: Nope.

11 U: you tell me

12 A: A taxi driver.

13 U: haha

14 A: Anything else today?

In guessing the punchline of a question-answer joke, as in answering a trivia
question, the user can get it right (line 5), get it wrong (lines 3 and 9), or give up
(line 11). This is how a question-answer-joke sequence works. In contrast, most of
today’s chatbots and voice assistants either give humorous one-liners or attempt to
collapse the whole joke sequence into a single response (Chapter 1, Examples 1.1
and 1.2), for example, “Why can’t you trust atoms? They make up everything!,”
which gives away the punchline.

In addition to joke telling, the quiz pattern is used by Alma to ask computer
history questions, as we can see in this working script (Example 4.13).

Example 4.13 Computer Trivia (Alma).
1 U: ask me a trivia question

2 A: Who invented the hard disk drive?

3 U: the what?

4 A: hard disk drive?

4.4 Conversation Navigation 79

5 U: Microsoft?

6 A: That’s not it.

7 U: I give up

8 A: IBM

9 U: ok

10 A: Anything else for you?

11 U: ask me another one

12 A: What computer beat human champions at

13 Jeopardy in 2011?

14 U: Watson!

15 A: That’s right!

16 U: yay

17 A: Anything else today?

In the quiz pattern, the agent initiates an inquiry sequence (line 2) and the user
tries to complete it with the correct answer. The user can get the answer correct
(line 14), incorrect (line 5), or can abort the sequence (line 7). That’s what it means
to “quiz” or “test” someone, and it is a common pattern in teaching conversations
(Chapter 1).

While the social activities are different, joke telling versus trivia game, the un-
derlying conversational UX patterns are identical. This is one small example of how
the same pattern can be reused with different content and for different purposes. It
also demonstrates the difference between content and a UX pattern. The aim of the
Natural Conversation Framework is to provide a systematic set of dialog patterns,
not libraries of industry-specific content, such as intents, entities, questions, or
answers. A full specification of these patterns is provided in Chapters 5–7.

4.4 Conversation Navigation
With any computer interface, users must learn how to navigate the space. In
command-line interfaces, users learn to navigate directories through cryptic com-
mands. In graphical interfaces, users learn to drag files on a desktop to folders. In
web interfaces, users learn to jump from page to page with URLs and hypertext. And
in mobile interfaces, users learn to touch the screen, rotate it, and “pinch” the im-
ages. But how should users navigate a conversational interface? What are the basic
actions that they can always rely on at any point to navigate the conversation space
or to get unstuck? Conversational interfaces are more conversational than web
search, but they are not yet as competent as a human. Fortunately, natural human
conversation contains devices for its own management, as we see with sequence ex-
pansions. We propose a subset of these as basic actions for conversational interface
navigation (Table 4.2).

80 Chapter 4 Natural Conversation Framework

Table 4.2 Basic navigation actions

1. What can you do? Capability Check

2. What did you say? Repeat Request

3. What do you mean? Paraphrase Request

4. Okay/Thanks Sequence Closer

5. Never mind Sequence Abort

6. Goodbye Conversation Closing

Capability Check
Discovering the capabilities of a conversational agent can be challenging because,
unlike a graphical interface, there are often no visual elements to click and explore
[Norman 1988]. So users should always be able to talk to the agent about what it
can do. “What can you do?” is perhaps the most general request for a description
of the system’s scope and functionality. This is somewhat analogous to the global
help functionality of a graphical interface. The capability check should give the
user enough guidance to use the app or to ask more specific questions about its
capabilities, for example, “tell me more about destination recommendations” or
“can you help me book a hotel?” or “do you know about restaurants?”

Repeat Request
In voice interfaces, unlike text interfaces, utterances are transient. Once the agent’s
voice response is done, it is gone. Therefore, users must be able to elicit repeats of
all or part of the agent’s utterances. “What did you say?” is a natural conversational
way to request a full repeat of the prior utterance. In voice interfaces, requesting
repeats is like going back in visual interfaces. Although repeats are not as crucial
in text-based conversational interfaces with their persistent chat histories, virtual
agents appear stupid if they cannot understand a repeat request. The ability to
repeat its prior utterance is a basic feature of conversational competence. The NCF
supports other repeat repairs, including partial repeat requests and hearing checks,
but the full repeat request is the most general.

Paraphrase Request
While capability checks provide a kind of global help to the user, paraphrase re-
quests provide local help on a turn-level basis. This is more like tooltips in a graph-
ical user interface, accessible by hovering the pointer over a button or icon to get

4.4 Conversation Navigation 81

help on a particular feature. Similarly, “What do you mean?” elicits an elaboration
or upshot of the prior utterance. In general, the agent’s responses should be con-
cise to increase speed and efficiency, but the paraphrase of that response should be
written in simpler language, avoid jargon, and include explicit instruction where
necessary. As a result, the elaboration will be longer and more cumbersome than
the initial response, but will be easier to understand. (Conversely, if the agent’s ini-
tial response on occasion must be long and complex, then the paraphrase should
be shorter and to the point, making the upshot of the prior utterance more clear.)
This way users can control the level of detail they receive without slowing down
the conversation for all users. The NCF supports other paraphrase repairs, includ-
ing definition requests, example requests, and understanding checks, but the full
paraphrase request is the most general.

Sequence Closer
Users should be able to close the current sequence when they receive an adequate
response and move on to the next sequence. This is somewhat analogous to clos-
ing a document in a graphical user interface or a popup window in a web browser.
“Okay” or “thanks” are natural conversational ways for the user to signal the com-
pletion of the current sequence and invite the agent to move onto any next matters.
This can also be a good place to reset context variables that may conflict with sub-
sequent requests. Using “OK” to close a conversational sequence in third position
is different from the typical use of “OK” in second position with a graphical dialog
box to acknowledge a system prompt.

Sequence Abort
When users fail to elicit an adequate response from the agent, they should be able to
abort the current sequence and move on to the next. “Never mind” in a conversation
functions somewhat like escape in other computer interfaces. It enables the user
to give up and move on. This is useful when the user has attempted to repair prior
utterances but the agent still fails to understand. Or if the agent is eliciting a series
of details for a complex request (e.g., open request pattern) and, upon hearing the
required information, the user changes his or her mind, then he or she should be
able to cancel the current activity by aborting the sequence. In addition, sequence
aborts (e.g., “never mind,” “nvm,” “forget it”) provide implicit feedback that there
is some kind of interactional problem, and they should be tracked.

82 Chapter 4 Natural Conversation Framework

Conversation Closing
As in a human conversation, users should be encouraged to close their interaction
with the system. This is similar to closing an application or logging out of a system.
“Goodbye” is the natural way to move to end a conversation. While the agent
could respond with an immediate return farewell (“Goodbye!”), instead it should
treat the user’s attempt to close the conversation as a “pre-closing” [Schegloff
and Sacks 1973]. The pre-closing gives the agent the opportunity to bring up a
last topic before returning the “goodbye” and ending the session. This last topic,
which can be configured in our Alma implementation, might be an organization
appreciation (e.g., “Thank you for contacting IBM!”), a success check sequence
(e.g., “Did you find what you were looking for?”), a name request (e.g., “Can I get
your name?), a promotion (e.g., ”One last thing, would you like to hear about our
current promotion for new customers?), or any other last topic that the designer
may want to insert into the conversation before losing the user. In addition, the
NCF also recognizes user utterances that are designed as pre-closings rather than
farewells, such as “got to go,” “are we done?,” or “anything else?”

After any agent utterance in a conversation, users should be able to do any
of the above six actions. At first, users may need to be taught that, unlike other
chatbots and voice assistants, your conversational agent will recognize these six
basic actions and respond appropriately and usefully. Because they are based on
human conversation, they should already be familiar to the user and natural to
perform as well as easy to remember.

For an example of how these navigation actions might work, see the following
exchanges with Alma (Example 4.14).

Example 4.14 Conversation Navigation A.
1 U: what can you do?

2 A: I haven’t been trained yet. I can only make small

3 talk, answer or ask some computer trivia questions

4 and tell some jokes.

5 U: ok who invented the hard disk?

6 A: The hard disk was invented by IBM in 1956.

7 U: what did you say?

8 A: The hard disk was invented by IBM in 1956.

9 U: what do you mean?

10 A: The hard disk was invented in 1956 by engineers

11 at IBM’s laboratory in San Jose, California.

12 U: thanks

13 A: You’re welcome!

4.4 Conversation Navigation 83

14 A: Anything else for you?

15 U: goodbye

16 A: Did you find what you were looking for?

In version A, the user relies on five of the basic actions to navigate the conversation.
At the beginning, he checks the agent’s capabilities (lines 1–4) and then does
an action within the scope of that response, asking a “computer trivia question”
(line 5). In response to the answer, the user then requests a repeat (line 7), followed
by a paraphrase request (line 9). The user then closes the trivia-question sequence
with an appreciation (line 12) and moves to close the conversation (line 15). Instead
of completing the closing sequence, the agent treats it as a pre-closing and brings
up a last topic, a success check (line 16). Now contrast the next Example 4.15.

Example 4.15 Conversation Navigation B.
1 U: show me flights

2 A: What do you mean?

3 U: show me flights from SFO to JFK

4 A: I’m sorry, I still don’t understand.

5 U: never mind

6 A: Whatever you say, friend.

7 A: Want to know what I can do?

8 U: yes please

9 A: Okay.

10 A: I haven’t been trained yet. I can only make small

11 talk, answer or ask some computer trivia questions

12 and tell some jokes.

Here the user fails to check the agent’s capabilities at the beginning of the conversa-
tion and instead initiates a flight request (line 1). This time the agent responds with
a default paraphrase request (line 2) to which the user offers an elaboration (line
3). This still fails to enable the agent to understand (line 4) so the user aborts the at-
tempted flight request sequence with “never mind” (line 5). In response, the agent
acknowledges the abort and offers to describe its capabilities (line 7), which the
user accepts (line 8). The agent then attempts to align with the user’s expectations
by describing its capabilities (lines 10–12).

Our first implementation of the Natural Conversation Framework was for IBM’s
What’s in Theaters web application in 2015. What’s in Theaters was built on the Wat-
son Dialog service (now shuttered) as a simple demonstration of how to integrate
the service with other components into a web application. But it also demonstrates
an early version of our conversation navigation method (Example 4.16).

84 Chapter 4 Natural Conversation Framework

Example 4.16 What’s in Theaters 2015.
1 U: what can you do?

2 A: I can look up current and upcoming movies by Genre or

3 MPAA Rating and show you trailers for them. But I’m

4 afraid I cannot search by number of stars or by movie

5 titles or actor and director names at this time.

6 U: ok show me current movies

7 A: Are you in the mood for a specific genre?

8 U: say again

9 A: I said ... Are you in the mood for a specific genre?

10 U: what are my choices?

11 A: Action, adventure, animated, comedy, crime, documentary,

12 drama, family, fantasy, foreign, historical, horror,

13 music, mystery, romance, science fiction, TV movie,

14 thriller, war movies and western.

15 U: science fiction

16 A: Do you prefer a certain movie rating?

17 U: what do you mean by movie rating?

18 A: The rating is a recommendation by the Motion Picture

19 Association of America about the suitability of a

20 movie’s content for particular age groups. For example,

21 G is for general audiences, while R is restricted to

22 people 17 and older. Do you prefer a certain movie rating?

23 U: I don’t care

24 A: Good choice, Bob! I found 24 results for Current Science

25 Fiction movies.

26 ((first movie results))

27 U: no I mean PG-13

28 A: Good choices, Bob! I found 1 results for Current

29 PG-13-rated Science Fiction movies.

30 ((Justice League))

31 U: thanks

32 A: Is there anything else I can help you with?

33 U: where is AMC Saratoga?

34 A: I’m sorry, I don’t understand. Try What’s playing?

35 U: what’s the address for AMC Saratoga?

36 A: I’m afraid I don’t understand. I can’t recognize movie

37 titles at this time.

38 U: never mind

39 A: Okay. Whatever you say, Bob! Is there anything else

40 I can help you with?

41 U: no

42 A: Okay. Did you find what you were looking for, Bob?

43 U: yes

4.5 Conclusion 85

44 A: Great! Goodbye.

45 U: bye

46 A: Say anything to continue.

In What’s in Theaters, we can see demonstrations of all six conversation naviga-
tion actions: capability check (line 1), repeat request (line 8), paraphrase request
(line 17), sequence closing (line 31), sequence aborting (line 38), and conversation
closing (line 45). It also supports selected detail elicitations (line 10), no-answer
responses (line 23), and self-corrections (line 27). Although the functional scope of
What’s in Theaters was intentionally limited, as a proof-of-concept, it nonetheless
demonstrates expandable sequences and conversation navigation.

With this set of six actions, users can navigate the conversation space, manage
the conversation with a virtual agent, and get unstuck when they encounter trouble.
However, preliminary analyses of users’ interactions with What’s in Theaters, and
our other agents built on the Natural Conversation Framework, suggest that users
tend not to discover these six basic actions on their own. Users require some
guidance in how the NCF navigation method works, through tutorials, on-screen
tips, or both. Although the six navigation actions are intuitive with respect to their
corresponding actions in human conversation, users must still learn them, as they
must with any new genre of computer interface.

4.5 Conclusion
The Natural Conversation Framework [Moore et al. 2016, Moore 2018] for conver-
sational UX design thus contains four components: (1) an interaction model based
on expandable sequences; (2) a content format based on the interaction model; (3)
a pattern language of reusable patterns for common conversational activities; and
(4) a conversation navigation method. This design framework adapts models and
patterns of human interaction, documented in the field of Conversation Analysis,
for the purposes of creating conversational interfaces. The NCF interaction model
provides a more natural and interactive pattern than the simple two-turn sequence
model of today’s chatbots and voice assistants. The content format enables de-
signers to break up document-formatted content into the more bite-sized chunks
characteristic of conversational interaction. The pattern language offers a catalog
of conversational interaction patterns that can be used as building blocks for a wide
range of use cases. And the navigation method consists of a subset of only six con-
versational actions for getting around the conversation space that are easy for users
to remember.

86 Chapter 4 Natural Conversation Framework

From this chapter you should be able to approach the design of conversational
interfaces in a systematic way that puts conversation first and that reflects the
mechanics of natural conversation. You should also be able to speak with some
authority about conversational structure and how it is grounded in conversation
science. In the next three chapters, we turn to the pattern language of the Natural
Conversation Framework. We define three classes of conversational UX patterns:
Conversational Activities (A), Sequence-Level Management (B), and Conversation-
Level Management (C), and provide 100 patterns, along with example transcripts
of each.

5Conversational Activity
UX Patterns
The previous chapters are intended to give you background knowledge and a con-
ceptual framework for understanding conversational UX design. The next three
chapters provide a catalog of conversational UX patterns. They are intended to be
used as a reference. In these chapters we refer to these patterns collectively as a
“pattern language.” The term was coined by Christopher Alexander [1977], a trained
architect, who sought an approach to abstracting common problems in architec-
ture and documenting their solutions. The pattern itself describes a problem and
then offers a solution, and the culmination of these patterns formulates a language.
For example, one of his patterns, “76. House for a Small Family,” reads:

In a house for a small family, it is the relationship between children and adults
which is most critical.

Therefore:

Give the house three distinct parts: a realm for parents, a realm for the children,
and a common area. Conceive these three realms as roughly similar in size, with
the commons the largest.

It is worth noting that these patterns do not explicitly state how to build the solu-
tion, but rather provide the components one should consider and include. Many
different solutions can implement the same pattern. Alexander’s [1977] set of pat-
terns was not simply a “library” but a “language” because the patterns were de-
signed to be used together, to be combined or integrated with one another.

Since the writing of A Pattern Language [Alexander 1977], many other design-
oriented disciplines have adopted this approach, including user experience design
[Erickson 2000]. Most UX designers have conceived of patterns for digital prod-
ucts and services. For example, searching for a product on an e-commerce website
presents a common usability problem faced by users. As a result, designers have

88 Chapter 5 Conversational Activity UX Patterns

cataloged “Search” as a pattern and its facets. A pattern should also include exam-
ples of how it can be applied in a system as well as any other helpful implementation
details.

According to this structure, a design pattern can more simply be thought of as
a reusable idea or structure that has been refined over time due to its frequency of
occurrence. Through this logic, a design pattern should be broad enough that it is
applicable to more than one project or engagement of similar caliber.

5.1 Pattern Language for Conversational UX
Although developed independently, Conversation Analysis (CA) has a kind of pat-
tern language of its own. Conversation-analytic studies discover and specify the
formal structures or patterns of human talk-in-interaction, for example the adja-
cency pair expansion model [Schegloff and Sacks 1973, Schegloff 2007] presented
in Chapter 4. These are patterns that speakers in a conversation design themselves
or learn and reproduce over time. The goal of CA is to document and understand
natural human conversation patterns. The main project of this book is to use these
patterns of natural human conversation to inform and inspire the design of conver-
sational UX patterns. This is not an automatic process. The “rules” and models
of natural conversation provided by CA are not the same kind of rules as those
found in a programmed system [Button 1990]. They are not deterministic, but
rather are representations of resources that human speakers use in repeated but
nondeterministic ways. In fact, the breaking of conversational rules is often a way to
accomplish certain kinds of actions, such as sarcasm, humor, intimacy, and more.
Nevertheless, the rules, formal qualitative models, and naturally occurring exam-
ples of human talk in CA provide a detailed picture of how human conversation
works as a speech-exchange system [Sacks et al. 1974]. As Frohlich and Luff [1990,
p. 198] found regarding the design of conversational systems, “the findings of CA
spoke directly to problems of turn organization with an authority quite lacking in
other accounts.” A UX designer can start with this detailed picture and then create
interaction patterns that emulate features of human talk, although certainly with
limitations and approximations. The resulting systems are conversation games, or
“simulacra” [Button 1990, p. 68], interactive systems that borrow and adapt me-
chanics from human conversation, although in simplified forms.

In conversational UX design, user interaction patterns are generic structures
that can be reused across use cases to address common issues that occur in conver-
sational interactions, especially service encounter conversations. The remainder of

5.1 Pattern Language for Conversational UX 89

Table 5.1 Conversational UX patterns

Conversational Sequence-Level Conversation-Level
Activities Management Management

A1 Inquiry (User) B1 Repair (Agent) C1 Opening (Agent)

A2 Open Request B2 Repair (User) C2 Opening (User)

A3 Extended Telling B3 Extended Repair C3 Capabilities

A4 Quiz B4 Sequence Closer C4 Closing

A5 Inquiry (Agent) B5 Sequence Abort C5 Disengaging

this chapter will outline five such conversational UX patterns and how they can be
combined into more complex activity patterns.

Common Activity Patterns
The Natural Conversation Framework [Moore et al. 2016, Moore 2018] is organized
into two kinds of patterns: conversational activities and conversation management.
The conversational activity patterns handle the main business of the conversation:
what services the agent provides and what the user is trying to accomplish. On the
other hand, the conversation management patterns help the user and agent manage
the interaction itself. Conversation management occurs on two levels: the sequence
level and the conversation level. This pattern language is therefore organized into
three classes of patterns: conversational activity (A), sequence-level management
(B), and conversation-level management (C) (Table 5.1; see also Appendix C for a
summary). Each of the three classes currently contains five pattern types. In this
chapter, we discuss the conversational activity patterns (Table 5.1, first column),
which can be broken down further into 29 subpatterns (Table 5.2). The five pattern
types include ways in which the user (A1) or the agent (A5) can request information
from the other, ways in which users can make complex requests in an open way
(A2), ways in which the agent can tell stories or give instructions interactively (A3),
and ways in which the agent can ask the user questions and evaluate the answers
(A4).

For convenience and clarity, each pattern has the same format. First, there is an
abstract model of the pattern in the form of a transcript with generic social actions
(in capitals). Second, the pattern is illustrated with a particular example from some
particular use case. Third, each pattern is named and numbered for easy reference.
Subpatterns are numbered by adding decimal places to the numbering of the main

90 Chapter 5 Conversational Activity UX Patterns

Table 5.2 Conversational activity patterns

A1.0 Inquiry (User) A3.0 Extended Telling with Repair

A1.1 Inquiry (User) Confirmation A3.1 Extended Telling Abort

A1.2 Inquiry (User) Disconfirmation

A1.3 Inquiry (User) Repairs A4.0 Quiz

A4.1 Quiz Incorrect

A2.0 Open Request A4.2 Quiz Repairs

A2.1 Open Request Nonverbal A4.3 Quiz User-Initiated

A2.2 Open Request Continuer A4.4 Quiz Agent-Initiated

A2.3 Open Request Screening

A2.4 Open Request Agent Detail Request A5.0 Inquiry (Agent)

A2.5 Open Request User Detail Request A5.1 Inquiry (Agent) Open

A2.6 Open Request Summary A5.2 Inquiry (Agent) Hearing Confirmed

A2.7 Warrant Request & Refusal A5.3 Inquiry (Agent) Hearing Disconfirmed

A2.8 Open Request Summary with Artifacts A5.4 Inquiry (Agent) Completion Check

A2.9 Open Request Incremental (see B3.1) A5.5 Inquiry (Agent) Extended Answer

A2.10 Open Request Series

A2.11 Open Request Repairs

pattern. For example, A1.3 Inquiry (User) Repairs is a subpattern of the pattern A1.0
Inquiry (User). In contrast, patterns for conversation management are labeled with a
B at the sequence level (Chapter 7) and with a C at the conversation level (Chapter 8).

5.2 A1 Inquiry (User)
The inquiry pattern is perhaps the canonical, conversational sequence pattern. It
handles requests for information initiated by the user, for example in question-
and-answer (Q&A) scenarios. Like all conversational UX patterns, the pattern itself
is separate from the content. In other words, agents may answer inquiries about
health insurance, travel policies, movie trivia, small talk, and much more. For
example, the agent may answer inquiries about computer history, as in our im-
plementation of the NCF on Watson Assistant (Pattern A1.0, Example 5.1).

Pattern A1.0 Inquiry (User).
1 U: INQUIRY

2 A: ANSWER

3 U: SEQUENCE CLOSER

Example 5.1 Inquiry (User).
1 U: what computer won Jeopardy?

5.2 A1 Inquiry (User) 91

2 A: An IBM computer named Watson.

3 U: ok

The user produces an inquiry (line 1), or information request, and our agent, Alma,
provides the answer (line 2). The user may then continue to produce a sequence
closer (line 3), such as “okay” or “oh” (acknowledgment), “thanks” (appreciation),
or “great!” (positive assessment). These indicate that, from the user’s perspective,
the sequence is complete.

Unlike simple Q&A patterns, the inquiry pattern includes multiple sequence
expansions, making it more flexible and “conversational.” For example, if the agent
is unsure of what the user means, as indicated by an intent confidence between
about 0.8 and 0.2, then the agent asks the user to confirm the intent before giving
the answer (Pattern A1.1, Example 5.2).

Pattern A1.1 Inquiry (User) Confirmation.
1 U: INQUIRY

2 A: INQUIRY PARAPHRASE

3 U: CONFIRMATION

4 A: ANSWER

5 U: SEQUENCE CLOSER

Example 5.2 Inquiry (User) Confirmation.
1 U: what was that Jeopardy computer?

2 A: You mean, what computer won Jeopardy?

3 U: yeah

4 A: An IBM computer named Watson.

5 U: oh

When the agent has moderate confidence in its understanding of the user’s inquiry,
it produces a paraphrase of the inquiry for the user to confirm (line 2). When the
user confirms the paraphrase (line 3), the user’s exact utterance and the confirmed
intent can be captured so that the utterance can be added, automatically or man-
ually, to the training examples for the intent in question. In other words, the user
can label his or her own utterance for the NLC so that in the future, the agent will
respond with the answer (line 4) instead of the paraphrase (as in Pattern A1.0).

On the other hand, if the user disconfirms the candidate answer, the agent then
requests a paraphrase from the user (Pattern A1.2, Example 5.3).

Pattern A1.2 Inquiry (User) Disconfirmation.
1 U: INQUIRY

2 A: INQUIRY PARAPHRASE

3 U: DISCONFIRMATION

92 Chapter 5 Conversational Activity UX Patterns

4 A: PARAPHRASE REQUEST

5 U: PARAPHRASE

Example 5.3 Inquiry (User) Disconfirmation.
1 U: what computer beat humans at Go?

2 A: You mean, what computer beat the human chess champion?

3 U: no

4 A: I’m sorry, I don’t understand your question.

When asked about a computer that won at the game Go (i.e., AlphaGo), the agent
classifies this as an inquiry about the computer that won at Chess (i.e., Deep Blue)
with moderate confidence. When the user disconfirms the paraphrase (line 3), the
utterance can be saved for further scrutiny by the UX designers. The agent then
replies as it would for any utterance it fails to recognize, with a paraphrase request
(line 4).

In addition to repairs initiated by the agent, the inquiry pattern also enables
repairs initiated by the user. While the full set of user-initiated repairs is covered
in the next chapter (Patterns B2), here we note that any combination of the nine
repairs can be used after the user’s answer (Pattern A1.3, Example 5.4). This makes
the inquiry-answer sequence further expandable by the user.

Pattern A1.3 Inquiry (User) Repairs.
1 U: INQUIRY

2 A: ANSWER

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: REPAIR INITIATOR

6 A: REPAIR

7 U: SEQUENCE CLOSER

Example 5.4 Inquiry (User) Repairs.
1 U: what computer won Jeopardy?

2 A: An IBM computer named Watson.

3 U: named what?

4 A: Watson

5 U: what do you mean?

6 A: Scientists at IBM created the computer

that won Jeopardy and named it after the

founder of the company, Thomas J. Watson.

7 U: oh ok

After the agent’s answer (line 2), instead of closing the sequence, the user can
initiate any combination of repeat repairs or paraphrase repairs. For example, the

5.3 A2 Open Request 93

user can elicit a partial repeat of the agent’s answer (lines 3–4) or a paraphrase of
the full answer (lines 5–6). With paraphrase repairs, the UX designer can break the
answer content into smaller chunks, and the user can control the level of detail that
he or she receives [Moore 2018, Balata et al. 2018].

5.3 A2 Open Request
The open request pattern enables you to create many kinds of sequences in which
the user makes a request, for example in customer service conversations. It handles
sets of related requests, or topics, that require entity extraction and agent elicita-
tions (a.k.a. “slot filling”). Multiple entities are captured, even when no request type
is recognized, and preserved as context across the set of unique requests (i.e., in-
tents). The pattern is also compatible with agent- and user-initiated repair patterns
(B1 and B2). With open requests, we also include commands. We distinguish com-
mands from requests only by their grammatical form, not by their sequential form:
for example, “recommend a nearby Mexican restaurant?” (command) versus “can
you recommend a nearby Mexican restaurant?” (interrogative). Both grammatical
forms are included as examples in the same intent. When the open request pat-
tern (A2.0, Example 5.5) contains a full or actionable request in the first turn, it
resembles the inquiry pattern (A1.0).

Pattern A2.0 Open Request.
1 U: FULL REQUEST

2 A: GRANT

3 U: SEQUENCE CLOSER

4 A: RECEIPT

Example 5.5 Open Request.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: thanks

4 A: You’re welcome!

Here the user produces a request that is fully specified from the perspective of the
agent (line 1), and Alma grants, or fulfills, it in the next turn (line 2). The user then
may or may not produce a sequence closer (line 3). The granting of a request may
consist of a verbal response (line 2) or nonverbal one, such as the execution of an
action (e.g., turning on lights) or the display of items in a graphical display (e.g.,
cards for restaurant options).

94 Chapter 5 Conversational Activity UX Patterns

When the granting of a request, or execution of a command, is primarily non-
verbal, the agent should still acknowledge the request in second position (Pattern
A2.1, Example 5.6).

Pattern A2.1 Open Request Nonverbal.
1 U: FULL REQUEST

2 A: ACKNOWLEDGMENT <NONVERBAL>

3 U: SEQUENCE CLOSER

4 A: RECEIPT

Example 5.6 Open Request Nonverbal.
1 U: please turn on the lights

2 A: Okay. ((lights come on))

3 U: thank you

4 A: You’re welcome!

In this case, the user produces a command (line 1), to which the primary response
from the agent should be a nonverbal action that executes the command, that is,
turning on the lights (line 2). It is good practice in many use cases to produce a
verbal acknowledgment, such as “Okay,” “Of course” or “Done!” (line 2), in order
to show the user that the command was heard and understood. The user may or
may not then produce a sequence closer (line 3).

We call such requests “open” because they do not need to be produced in a
single turn. If the user mentions some known entities but not a recognizable in-
tent, the agent will nonetheless extract and “remember” the entities. We implement
this by creating an action type, or intent, for detail giving, which includes multiple
combinations of related entities but no clear request for action regarding them.
For example, a user may produce many kinds of utterances that mention particu-
lar types of foods but not formulate a request for a restaurant recommendation,
restaurant reservation, delivery order, recipe, etc. In response to such a user utter-
ance, the agent will invite the user to continue or will ask a related question (Pattern
A2.2, Example 5.7).

Pattern A2.2 Open Request Continuer.
1 U: DETAIL GIVING

2 A: CONTINUER

3 U: REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.7 Open Request Continuer.
1 U: I hear the fish tacos around here are fantastic!

2 A: Mhmm.

5.3 A2 Open Request 95

3 U: can you recommend a place?

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

Here, the user relays a positive assessment of “fish tacos” (line 1) but does not
make an explicit request regarding them. The agent nonetheless captures the enti-
ties mentioned; in this case, “fish tacos” is captured as “Mexican” under cuisine and
“around here” is captured as “walking distance” under distance. But because the
agent does not yet know the user’s intent regarding these entities, such as request-
ing a restaurant recommendation, restaurant hours, restaurant name, recipe, etc.,
it simply produces an “mhmm,” inviting the user to continue (line 2). If the user
then produces a recognizable request (line 3), the agent will “remember” the details
just mentioned and not ask for them again (line 4). If the user does not continue
on to produce a recognizable request, the agent will request a paraphrase (B1). In
a way, the detail-giving intent is a kind of anti-intent: it provides details as context,
but not the user’s social action intent regarding them. In such cases, the concept
of “intents” as singular utterances breaks down.

In addition to unrecognized actions that contain known details, users may pref-
ace their request with “preliminaries” [Schegloff 2007] that perform a screening
function. These are usually yes/no questions that check some condition upon which
the request depends. This pattern enables users to check to see if the agent knows
about a particular domain before making a request in that domain (Pattern A2.3,
Example 5.8).

Pattern A2.3 Open Request Screening.
1 U: PRE-REQUEST

2 A: GO-AHEAD

3 U: FULL REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.8 Open Request Screening.
1 U: do you know about restaurants?

2 A: I know a few places.

3 U: can you recommend a nearby Mexican restaurant?

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

Before requesting a restaurant recommendation (line 3), the user can check to
see if this agent even knows anything about restaurants (line 1). If this kind of

96 Chapter 5 Conversational Activity UX Patterns

capability check receives a confirmation (line 2), the user will continue on to make
the request. The confirmation in this case is a kind of “go-ahead” response that tells
the recipient to proceed from the preliminary to the base first pair part [Schegloff
2007, p. 30]. But if it is disconfirmed, the user will not; for example, if in this case
the agent replied, “I can look up movie show times for you” or “I’m afraid I don’t
know about restaurants.”

Once the user has made a request that the agent recognizes, it may need to elicit
additional details from the user in order to grant or fulfill the request (Pattern A2.4,
Example 5.9).

Pattern A2.4 Open Request Agent Detail Request.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.9 Open Request Agent Detail Request.
1 U: can you recommend a Mexican restaurant?

2 A: Walking distance or car ride?

3 U: walking distance

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

For Alma, obtaining a cuisine preference and a distance preference from the user
is required in order to make a restaurant recommendation. Although the user
happens to mention only one in the original request (line 1), the agent can attempt
to elicit the other one (line 2). If additional details are required, the agent can
attempt to elicit those in turn before granting the request (line 4). If the user does
not know or does not care about a particular required detail, the agent can assume a
default value, for example, “walking distance.” Such agent-initiated detail requests
are often called “slots” and this pattern “slot filling,” in most natural-language
platforms.

While agents can elicit required details from users in order to grant a request,
so can users. Sometimes users require additional details in order to answer the
agent’s detail requests (Pattern A2.5, Example 5.10).

Pattern A2.5 Open Request User Detail Request.
1 U: PARTIAL REQUEST

5.3 A2 Open Request 97

2 A: DETAIL REQUEST

3 U: DETAIL REQUEST

4 A: DETAIL

5 U: DETAIL

6 A: GRANT

7 U: SEQUENCE CLOSER

8 A: RECEIPT

Example 5.10 Open Request User Detail Request.
1 U: what’s a good restaurant nearby?

2 A: What kind of food do you want?

3 U: what are my choices?

4 A: Around here, Mexican, Japanese or Indian.

5 U: Mexican

6 A: Mario’s is located at Beach and Main.

7 U: thanks

8 A: You’re welcome!

In this pattern, in response to the agent’s attempt to elicit a required detail (line 2),
the user can likewise attempt to elicit details (line 3). While Alma needs a cuisine
type in order to recommend a restaurant, the user may need to know the relevant
choices. Because, like humans, the agent and the user always possess asymmetric
knowledge, either one of them may need to elicit a detail in order to complete the
request sequence. For this reason, we use the terms “user-initiated detail requests”
and “agent-initiated detail requests” instead of simply “slots.”

While the granting of a request may consist simply of providing information
or acknowledging an action taken, sometimes it may require a summary of the
details of the request. When multiple details are elicited from the user and it is
important to get them right, it is good practice for the agent to confirm those details
before recording them or relaying them. This is a typical pattern in placing an order,
for example, for fast food, but may also be appropriate for constructing a record
(Pattern A2.6, Example 5.11).

Pattern A2.6 Open Request Summary.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: DETAIL

8 A: REQUEST SUMMARY

98 Chapter 5 Conversational Activity UX Patterns

9 U: SUMMARY CONFIRM

10 A: GRANT

11 U: SEQUENCE CLOSER

12 A: RECEIPT

Example 5.11 Open Request Summary.
1 U: I need to register

2 A: Okay. What’s your name?

3 U: Dave Bowman

4 A: What’s your job title?

5 U: astronaut

6 A: What is your organizational affiliation?

7 U: NASA

8 A: So Dave Bowman, Astronaut at NASA. Is that correct?

9 U: yes

10 A: Okay. You’re all set!

11 U: thank you

12 A: You’re welcome!

In this case, the agent elicits several details from the user (lines 2–7). The agent
then summarizes the request by repeating those details back to the user (line 8)
before taking further action. If the user confirms them (line 9), the agent grants
the request, in this case by recording the details (line 10). If the user disconfirms
the summary, the agent should elicit the correct details, for example, “What do I
need to change?” Or the user may do a self-correction, “I mean, Commander” (see
below).

Anytime the agent attempts to elicit details, users should be given the option of
refusing to give the information or to know why the agent is asking (Pattern A2.7,
Example 5.12).

Pattern A2.7 Warrant Request & Refusal.
1 A: DETAIL REQUEST

2 U: WARRANT REQUEST

3 A: WARRANT

4 U: REFUSAL

5 A: ACKNOWLEDGMENT. <NEXT ACTION>

Example 5.12 Warrant Request & Refusal.
1 A: What’s your job title?

2 U: why do you need to know?

3 A: Job title enables us to know the range of professions of our

participants.

4 U: none of your business

5 A: No problem. What is your organizational affiliation?

5.3 A2 Open Request 99

In this case, the agent attempts to elicit the user’s job title during the course of
registering for a conference or convention (line 1). Instead of giving it, the user
requests a justification for asking (line 2). The agent then provides a warrant, or
reason for asking (line 3). The user then refuses to give the detail (line 4). Such
warrants and refusals are important for protecting user’s private information, as
well as providing flexibility in this conversational sequence.

A similar request summary pattern may be used when retrieving artifacts for
the user. By “artifact” we mean some visual items, such as an information card,
bulleted list, or possibly physical objects. In such cases, it is good practice for the
agent to repeat back the details of the request when presenting the artifacts. This
gives the user an opportunity to catch any miscommunications before inspecting
the items (Pattern A2.8, Example 5.13).

Pattern A2.8 Open Request Summary with Artifacts.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: DETAIL

8 A: HOLD REQUEST

9 A: GRANT

10 <OFFER OF ARTIFACTS>

11 U: SEQUENCE CLOSER

12 A: RECEIPT

Example 5.13 Open Request Summary with Artifacts.
1 U: I want to book a flight

2 A: Okay. Where are do you want to go?

3 U: Kona, Hawaii

4 A: Where are you leaving from?

5 U: SJC

6 A: When would you like to go?

7 U: June 17-30

8 A: One moment please...

9 A: Okay. Here are flights from SJC to KOA on June 17-30.

10 ((visual flight cards))

11 U: thank you

12 A: You’re welcome!

With this pattern, after eliciting the required details from the user (lines 2–7), the
agent may ask the user to hold or wait while the system retrieves the items, which

100 Chapter 5 Conversational Activity UX Patterns

may require accessing backend APIs of uncertain response time (line 8). When the
backend returns the items and the visual user interface displays the artifacts (line
10), the agent summarizes the request by repeating the details, “SJC to KOA on June
17-30” (line 9). This gives the user the opportunity to catch errors or ambiguities
and correct them.

One of the advantages of a conversational interface is that users can use minimal
turn designs by building off earlier turns. An example of this is the incremental
request (Pattern A2.9, examples 14).

Pattern A2.9 Open Request Incremental (same as B3.1).
1 U: FULL REQUEST

2 A: GRANT

3 U: INCREMENTAL REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.14 Open Request Incremental.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: how about Indian?

4 A: Taj Mahal is on Third and Union.

5 U: thanks

6 A: You’re welcome!

After the user has made a request (line 1) and the agent has granted it (line 2), the
user may make a second one by changing the request or adding an increment to the
prior request, “how about Indian?” (line 3). Because the user gives a new entity but
not a new intent, the agent assumes that the prior intent (request for a restaurant
recommendation) and entities (nearby) are still relevant and simply updates the
new entity value (replacing Mexican cuisine with Indian cuisine). In this way, the
user can make the new, related request without repeating him or herself.

In addition to supporting incremental requests, open requests should also
support series of related requests. As with the incremental request, recognizing
requests in a series requires persisting the sequential context and assuming it
(Pattern A2.10, Example 5.15).

Pattern A2.10 Open Request Series.
1 U: FULL REQUEST

2 A: GRANT

3 U: RELATED REQUEST

4 A: GRANT

5.3 A2 Open Request 101

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.15 Open Request Series.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: when is it open?

4 A: Mario’s is open from 11:00am to 2:00am.

5 U: thanks

6 A: You’re welcome!

After the user has made a successful request (lines 1–2), the agent remembers
the prior intent and entities. So if the user changes the intent, from “restaurant
recommendation request” to “business hours request” (line 3), the agent assumes
the user is still talking about the prior entity, “Mario’s restaurant” (line 4). By
assuming sequential context, the agent can handle natural uses of anaphora or
“pro-terms” [Sacks and Schegloff 1979]. On the other hand, the user can indicate
that the next request is unrelated by simply giving a full request instead of a partial
one, for example “when does Taj Mahal open?”

Open request series require a little more context design than standalone requests
or “slotted intents.” They require a context variable for the topic that is relevant
across multiple requests or intents. For example, if the agent can answer multiple
inquiries related to particular restaurants’ name, location, and business hours,
then a context variable for restaurant name or ID is needed. When the user makes
one kind of inquiry about the restaurant, say “Mario’s,” it is stored to a variable
for conversational topic. If the user then makes subsequent inquiry using a “locally
subsequent reference form” [Schegloff 1996], the prior restaurant is assumed as
the intended topic.

Similarly if a virtual travel agent can handle multiple intents related to “flight
requests,” “destination requests,” and “attraction requests,” then a request-type
context variable is needed. Once the user mentions a flight-related intent, “I want
to book a flight,” this context variable is set to “flights.” Then as the user makes
related inquiries, origin airport, travel dates, cheapest places to go, best times to go,
etc., the agent assumes that the user is still making a flight request until otherwise
indicated. The request-type and topic context variables thereby enable the agent to
maintain context across multiple user actions or intents.

Just as with inquiries, users can initiate repair on the responses to open requests
(Pattern A2.11, Example 5.16). This includes any of the nine user-initiated repair
types discussed in the next chapter (Patterns B2).

102 Chapter 5 Conversational Activity UX Patterns

Pattern A2.11 Open Request Repairs.
1 U: FULL REQUEST

2 A: GRANT

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example 5.16 Open Request Repairs.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: what do you mean?

4 A: The Mexican restaurant, Mario’s, is located at

the intersection of Beach Boulevard and Main Street.

5 U: thanks

6 A: You’re welcome!

In response to the agent’s granting or rejecting (line 2) of a user’s request (line 1),
the user can request full or partial repeats or paraphrases of the agent’s response
(line 3). For example, if the agent gives a name and intersection of a restaurant (line
2), the user can elicit a full paraphrase (line 3) from the agent, which may consist of a
more expanded version (line 4). In this way, the agent can offer a concise granting of
requests initially, and only users who require an elaborated version need elicit one.

Taking these open request patterns together, we offer one more example from
the conference registration scenario (Example 5.17). Refer to the patterns above to
try to map them to the example.

Example 5.17 Open Request.
1 A: What can I do for you?

2 U: I just came over from the other hotel. I’m with NASA?

3 A: NASA, okay.

4 U: can I register here?

5 A: Okay. What’s your name?

6 U: Dave Bowman

7 A: What’s your job title?

8 U: astronaut

9 A: What kind of meal would you like?

10 U: what are my choices?

11 A: Beef, fish or vegan.

12 U: beef

13 A: So Dave Bowman, Astronaut at NASA and the beef meal.

14 Is that correct?

15 U: no, I mean fish

5.4 A3 Extended Telling 103

16 A: So Dave Bowman, Astronaut at NASA and the fish meal.

17 Is that correct?

18 U: yes

19 A: Okay. You’re all set!

20 U: will there be a reception?

21 A: I’m afraid NASA is not having a reception.

22 U: ok thanks

23 A: You’re welcome!

5.4 A3 Extended Telling
While the action pair, or “adjacency pair,” is perhaps the most common se-
quence type in natural conversation, storytelling is another common sequence type
[Schegloff 2007]. Storytelling and instruction giving are conversational activities
that typically require more than one turn to complete. Such extended tellings may
be initiated by the user with requests like, “tell me about Key West,” “tell me all the
things you can do,” “tell me a story,” “how do I meditate?,” “how do I do that?,” etc.
The telling is then produced interactionally in the following way: the teller gives
the first part of the telling and then waits for an indication from the recipient to
continue the telling (Pattern A3.0). Such “continuers” [Schegloff 1982] may be ver-
bal tokens, like “uh-huh,” “mhmm,” “okay,” “all right,” “yeah,” or gestures, like a
head nod (lines 3 and 7).

Pattern A3.0 Extended Telling with Repair.
1 U: STORY REQUEST/INSTRUCTION INVITATION

2 A: PART/STEP 1

3 U: CONTINUER/PAUSE

4 A: PART/STEP 2

5 U: REPAIR INITIATOR

6 A: REPAIR

7 U: CONTINUER/PAUSE

8 A: PART/STEP 3

9 U: SEQUENCE CLOSER

10 A: RECEIPT

By waiting for a continuer after each story part or instruction, the teller gives
the recipient the opportunity to initiate repair on it, if necessary, as the telling
progresses. This is critical, because failing to hear or understand one part of the
story can impact the recipient’s ability to understand the whole story. The continuer
tells the teller that the recipient heard and understood the prior part and is ready
to go on. To speed up the pace of the telling, the teller can simply pause, leaving
a slot for a repair initiator but not waiting for an actual verbal continuer to be

104 Chapter 5 Conversational Activity UX Patterns

produced. When giving instructions, a prior instruction often impacts the ability
to perform a subsequent instruction. The recipient may even attempt to perform
the instructions during the telling itself, so the continuer enables the recipient
to control the pace of the instruction giving as needed. Consider the following
Example 5.18.

Example 5.18 Extended Telling with Repair.
1 U: how do I meditate?

2 A: First, sit comfortably and breathe slowly.

3 U: ok

4 A: Next, count each in breath and out breath until you get to ten.

Then repeat.

5 U: what do you mean?

6 A: As you breathe in, out, in, count one, two, three all the way

to ten.

7 U: all right

8 A: Finally, continue counting your breaths for ten minutes.

9 U: thanks

10 A: You’re welcome!

The agent’s telling consists of three instructions (lines 2, 4, and 8). After giving
the first instruction, Alma waits for a response from the user. Here the user gives
a continuer, “ok” (line 3), and then the agent gives the next instruction (line 4).
However, in response to this instruction, the user initiates repair instead of bidding
the agent to continue. The user requests a paraphrase of the prior instruction (line
5), which the agent provides (line 6). The user then invites the agent to continue the
instruction giving with a continuer, “all right” (line 7). When the agent provides the
final instruction (line 8), the user closes the sequence with an appreciation (line
9). In this case, because the agent waits for the continuer before giving the next
instruction, the user can control the pace of the sequence. While the extended
telling pattern (A3.0) represents only three story parts or instructions, it can of
course be extended to any number of parts.

One way to implement the extended telling pattern (A3) on a dialog platform
is to set each part of the telling to numbered context variables when the telling is
initiated. Then, when the user produces a continuer, or the backend sends a timed
input after a pause, the parts are advanced by one. For example, if part 1 is “Open
your Settings app” and part 2 is “Find and open the ’General’ tab,” a context variable,
current part, is initially set to part 1. Then, when the user produces a continuer,
current part is updated to the value of part 2, and so forth.

5.4 A3 Extended Telling 105

Because a story or a set of instructions is an interactionally long activity, the
recipient may want to abort it in the middle (Pattern A3.1, Example 5.19).

Pattern A3.1 Extended Telling Abort.
1 U: STORY/INSTRUCTION INVITATION

2 A: PART/STEP 1

3 U: CONTINUER/PAUSE

4 A: PART/STEP 2

5 U: REPAIR INITIATOR

6 A: REPAIR

7 A: PART/STEP 3

8 U: COMPLAINT/ABORT REQUEST

9 A: ABORT OFFER

10 U: ABORT CONFIRM

11 A: ACKNOWLEDGMENT

Example 5.19 Extended Telling Abort.
1 U: tell me a story

2 A: Once upon a time, there was a little girl named Goldilocks. She

went for a walk in the forest. Pretty soon, she came upon a

house. She knocked and, when no one answered, she walked

right in.

3 ((pause))

4 A: At the table in the kitchen, there were three bowls of porridge.

Goldilocks was hungry. She tasted the porridge from the first

bowl. This porridge is too hot!, she exclaimed.

5 U: what do you mean by porridge?

6 A: Oh, sorry! Porridge is a dish consisting of oatmeal or another

grain boiled in water or milk. Sometimes called hot cereal.

7 U: ok

8 A: So, she tasted the porridge from the second bowl. This porridge

is too cold, she said. So, she tasted the last bowl of porridge.

Ahhh, this porridge is just right, she said happily and she ate

it all up.

9 U: this is boring

10 A: Shall I stop?

11 U: yes please

12 A: Okay.

In this example, the agent breaks the relatively long story of Goldilocks and the Three
Bears into smaller chunks of two or three sentences (lines 2, 4, and 8). After a pause
(line 3), the agent continues with the story without receiving an explicit continuer
from the user (line 4). The user nonetheless had the opportunity to initiate repair if
necessary. The ideal length of the pause should be in the neighborhood of one half

106 Chapter 5 Conversational Activity UX Patterns

to two seconds depending on the standard pace of the interface and whether it is
voice or text based. And if the user starts typing or speaking during that pause, the
agent should wait and respond to that action instead of automatically continuing.

In response to the second part of the story, the user initiates repair before the
end of the pause (line 5). In this case, she requests a definition of a term used in
that part of the story, “porridge.” The agent provides a definition (line 6) and waits.
When the user produces a continuer, “ok” (line 7), the agent produces the next part
of the story (line 8). However, after this part, the user produces a complaint about
the current activity (line 9) rather than a continuer or a repair initiator. The agent
then offers to abort the current activity (line 10), which the user confirms (line 11).
In some scenarios, the user should be able to control not only the pace of the story
but also telling itself.

We recommend using the extended telling pattern (A3) whenever your agent
must communicate a lot of content. Breaking the content up into multiple parts
makes it more conversational and less like a document or a monologue.

5.5 A4 Quiz
While the user inquiry pattern involves the user asking the agent questions, the quiz
pattern involves the agent asking the user questions and evaluating the answers.
The user can get the answer right, wrong, initiate a repair, or give up. The quiz is
a basic conversation pattern that is used in pedagogical interactions, as well as for
fun. The ordinary question-answer joke uses the quiz pattern, as do trivia games.
In its simplest form, the quiz pattern is initiated by the user, who then answers the
question correctly (Pattern A4.0, Example 5.20).

Pattern A4.0 Quiz.
1 A: QUESTION

2 U: CORRECT ANSWER

3 A: CONFIRMATION

Example 5.20 Quiz.
1 A: Why can’t you trust atoms?

2 U: they make up everything

3 A: That’s right!

In this pattern, the agent asks the user a question-answer joke (line 1). The user
produces the correct answer, or punchline (line 2), and the agent confirms it (line
3). This pattern contrasts with joke telling in many of today’s chatbots and voice
assistants in which the agent produces both the joke and the punchline in the
same turn (Chapter 1, Examples 1.1 and 1.2). The quiz pattern is more natural and
complex in that it must preserve the context of the joke-telling turn (line 1), while

5.5 A4 Quiz 107

evaluating the user’s response for at least four kinds of actions: correct answer,
incorrect answer, repair initiator(s), or sequence abort.

In the activity of joke telling, it is perhaps more common for the recipient of the
joke to get the punchline wrong, to refuse to guess it, or to give up. In these cases,
the agent produces the answer or punchline (Pattern A4.1, Example 5.21).

Pattern A4.1 Quiz Incorrect.
1 A: QUESTION

2 U: INCORRECT ANSWER

3 A: DISCONFIRMATION

4 U: REFUSAL/ABORT

5 A: CORRECT ANSWER

6 U: SEQUENCE CLOSER

Example 5.21 Quiz Incorrect.
1 A: Why can’t you trust atoms?

2 U: you can’t see them?

3 A: Wrong! Try again.

4 U: you tell me

5 A: They make up everything.

6 U: haha

If the user produces a response that does not match a correct answer, a repair type,
or an attempt to refuse to answer or to abort the sequence (line 2), the agent will
interpret it as an incorrect answer (line 3). Of course, sometimes this assumption
will be wrong. If the user does some other kind of action, say, a positive assessment,
“I love this joke!,” the agent will incorrectly treat it as a candidate answer or punch-
line. This is a limitation of the quiz pattern, but the list of recognizable non-answer
actions can always be expanded. After the agent disconfirms the answer (line 3), the
user can take another guess or give up (line 4). When the user gives up or refuses
to guess, the agent then produces the answer or punchline to the joke (line 5). For
joke content, the agent should recognize laughter tokens, e.g, “haha,” “heh heh,”
“lol,” etc., as sequence closers (line 6), as well as positive or negative assessments,
e.g., “good one!” or “that’s not funny.”

The quiz pattern also supports user-initiated repair (Pattern B2, Chapter 6). The
standard set should be used for pedagogical or trivia quizzes; however, paraphrase
repairs may not be relevant in the case of jokes, since the sense of a joke is often
dependent on the exact wording of the question (Pattern A4.2, Example 5.22).

Pattern A4.2 Quiz Repairs.
1 A: QUESTION

2 U: REPAIR INITIATOR

3 A: REPAIR

108 Chapter 5 Conversational Activity UX Patterns

4 U: CORRECT ANSWER

5 A: CONFIRMATION

Example 5.22 Quiz Repairs.
1 A: Why can’t you trust atoms?

2 U: atoms?

3 A: Yes.

4 U: they make up everything?

5 A: That’s right!

When telling jokes through a voice interface, the user may require a repeat of all
or part of the joke question. For example, if the user initiates a hearing check by
repeating a part of the joke question (line 2), the agent should be able to confirm
the user’s candidate hearing (line 3). Definition requests may also be relevant, for
example, “what’s an atom?”

To build this pattern in dialog, you can set a context variable to a value such
as “quiz” and then use that as a standalone condition, for example, previous node
equals “quiz.” Now anything the user says will go down this branch. Then reset this
variable in the event that the user gets the right answer or gives up. You can insert
repairs like repeat request, “what did you say?” within the branch, but hitting those
nodes should not reset previous node. As a result any utterance by the user that is
not a correct answer, an abort, or an inserted action will be treated as an incorrect
answer.

Like most conversational activities, quizzes can be initiated by the user or the
agent. When the user requests a joke or trivia question, for example “tell me a joke,”
“ask me a trivia question,” “teach me about human speech,” “quiz me,” etc., the
agent can produce the joke in the next turn (line 2, Pattern A4.3, Example 5.23).

Pattern A4.3 Quiz User-Initiated.
1 U: QUIZ REQUEST

2 A: QUESTION

3 U: CORRECT ANSWER

4 A: CONFIRMATION

Example 5.23 Quiz User-Initiated.
1 U: tell me a joke

2 A: What can you hold without ever touching it?

3 U: a conversation?

4 A: That’s right!

On the other hand, when agents initiate a quiz activity, they may offer to start
the quiz in response to other actions. For example, the agent may offer to tell a joke

5.6 A5 Inquiry (Agent) 109

if the user indicates he or she is having a bad day, or the agent may offer to start a
trivia game if the user says he or she is bored (Pattern A4.4, Example 5.24).

Pattern A4.4 Quiz Agent-Initiated.
1 A: QUIZ OFFER

2 U: ACCEPTANCE

3 A: QUESTION

4 U: CORRECT ANSWER

5 A: CONFIRMATION

Example 5.24 Quiz Agent-Initiated.
1 A: Would you like to play a computer trivia game?

2 U: sure

3 A: Okay. What computer beat human champions at Jeopardy?

4 U: Watson

5 A: You got it!

If the agent offers to start a quiz (line 1), it only proceeds to the first question
(line 3) if the user accepts the offer (line 2). The quiz question is not asked if
the user declines. Because quiz mode changes the agent’s frame of reference for
interpreting user utterances, it should not be entered unless the user agrees to the
offer and thus knows that he or she is taking a quiz or guessing a punchline.

5.6 A5 Inquiry (Agent)
In addition to quizzing the user, agents may simply ask users questions with-
out evaluating the answers for correctness. This agent inquiry pattern may involve
closed or open inquiries and different third-position checks by the agent to deter-
mine if the agent heard the user correctly or if the user has more to say. The agent
inquiry pattern is especially useful for interviewing users or eliciting their opinions,
where you wish to elicit and preserve the exact words of the user.

Closed inquiries are those in which a preferred, or required, answer format
is projected by the question itself. The simplest of these is the yes/no question,
which through its grammatical format projects a binary choice for the answer;
for example, “Would you recommend Mario’s to a friend?” Other types of closed
inquiries project wider, but still restricted, ranges of answers: “What is your favorite
cuisine?” “What year were you born?” or “What is your city of residence?” Because
the range of preferred answers is restricted, they can be recognized using entities,
for example, cuisines or countries, the past one hundred years, or cities across the
country or the world. And if the answers can be recognized through entities, the
agent can act on them during the course of the conversation, for example, taking

110 Chapter 5 Conversational Activity UX Patterns

different next actions depending on the year of birth or city of residence given.
Finally, closed inquiries may explicitly mention the choices or range of choices
preferred for the user’s answer (Pattern A5.0, Example 5.25).

Pattern A5.0 Inquiry (Agent).
1 A: CLOSED INQUIRY

2 U: ANSWER

3 A: SEQUENCE CLOSER

4 U: RECEIPT

Example 5.25 Inquiry (Agent).
1 A: On a scale from one to ten, how would you rate Mario’s?

2 U: nine

3 A: Thank you.

4 U: you’re welcome

In this case the agent gives the range of preferred answers in the inquiry itself,
“scale from one to ten” (line 1). The inquiry invites the user to choose a number
from this range. If the user does so (line 2), then the system can recognize and
validate the answer through a number entity or even a regular expression. The agent
then closes the sequence by thanking the user for a valid answer (line 3). Of course,
as we have seen, users may produce actions other than a preferred answer in the
next turn to the inquiry, including repairs (B2–B3) or detail requests (A2.5), as well
as invalid answers. Response types that you do not anticipate will be met with the
agent’s paraphrase request (B1). In other words, even “closed” inquiries have an
inescapable openness to them.

In addition to closed inquiries, agents may ask open ones, which do not attempt
to restrict the answer to any particular format. In online surveys, open inquiries are
answered by freeform typing in a text box. In telephone surveys, they are accepted
verbatim without being probed until they fit into a given category. Open inquiries
commonly take the form of “What do you think about X?” or “Tell me about Y?”
(Pattern A5.1, Example 5.26).

Pattern A5.1 Inquiry (Agent) Open.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: SEQUENCE CLOSER

4 U: RECEIPT

Example 5.26 Inquiry (Agent) Open.
1 A: What did you think of Marios’s?

2 U: the food was really good, and I loved the cantina atmosphere!

5.6 A5 Inquiry (Agent) 111

3 A: Thank you.

4 U: you’re welcome

Here the agent asks an open question about the user’s opinion of a particular
restaurant (line 1). The user replies with a lengthy evaluation (line 2). In such cases,
you will likely want to capture the user’s response verbatim and preserve it for future
use, for example, as a restaurant review or as raw survey data. This can be done by
capturing the text from a system variable, such as user input, setting it to a context
variable, such as user review, and saving it on the back end.

When using voice, it is wise to check the agent’s “hearing” of the user’s an-
swer before recording. To repair errors in the application’s speech to text, the agent
can repeat what it captured to the user and invite correction (Pattern A5.2, Exam-
ple 5.27).

Pattern A5.2 Inquiry (Agent) Hearing Confirmed.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: HEARING CHECK

4 U: CONFIRMATION

5 A: SEQUENCE CLOSER

6 U: RECEIPT

Example 5.27 Inquiry (Agent) Hearing Confirmed.
1 A: What did you think of Marios’s?

2 U: the food was really good, and I loved the cantina atmosphere!

3 A: You said: the food was really good, and I loved the cantina

atmosphere! Is that correct?

4 U: yep

5 A: Thank you.

6 U: you’re welcome

Instead of closing the sequence in third position, the agent may repeat the user’s
answer and request confirmation that it is correct (line 3). To do this, the user’s
response is captured to a context variable, user review, and inserted into the fol-
lowing type of frame: “You said: user review. Is that correct?” Through this kind of
check, the user can hear what the agent’s speech-to-text component recognized and
confirm that it was correct or at least adequate for the purpose at hand (line 4).

Alternatively, the user can indicate that speech recognition was problematic by
disconfirming the hearing check (Pattern A5.3, Example 5.28).

Pattern A5.3 Inquiry (Agent) Hearing Disconfirmed.
1 A: OPEN INQUIRY

112 Chapter 5 Conversational Activity UX Patterns

2 U: ANSWER

3 A: HEARING CHECK

4 U: DISCONFIRMATION

5 A: REPEAT REQUEST

6 U: ANSWER

7 A: HEARING CHECK

8 U: CONFIRMATION

9 A: SEQUENCE CLOSER

10 U: RECEIPT

Example 5.28 Inquiry (Agent) Hearing Disconfirmed.
1 A: What did you think of Marios’s?

2 U: the food was really good and I loved the cantina atmosphere

3 A: You said: the food was really good and I loved the can I

atmosphere. Is that correct?

4 U: no

5 A: What did you say?

6 U: food was good and I loved the CANTINA atmosphere

7 A: You said: food was good and I loved the cantina atmosphere.

Is that correct?

8 U: yes

9 A: Thank you.

10 U: you’re welcome

If the system’s speech recognition makes an error, such as “can I” instead of
“cantina” (line 3), the user can indicate a problem by disconfirming the repeat
(line 4). To repair the “mishearing,” the agent requests that the user repeat the
original answer (line 5). The pattern then repeats until the user confirms the check
(lines 8). A limitation of this pattern is that the user must repeat the whole answer
instead of correcting only the error(s). In an alternative pattern, the agent does not
repeat the user’s answer the second time but simply closes the sequence (line 7).
The system preserves both the original answer (line 2) and the correction (line 6)
for a human to make sense of later. For example, the user’s partial correction, “no,
CANTINA,” gets set to user correction and saved along with the original user review,
“the food was really good and I loved the can I atmosphere.”

Instead of asking users to confirm its “hearing” of their prior answers (A5.2-
A5.3), which is irrelevant with typed utterances, your agent may alternatively ask
users if they have more to say. In order to elicit longer responses, such as product
or restaurant reviews, your agent can invite them to add to their initial response
(Pattern A5.4, Example 5.29).

5.6 A5 Inquiry (Agent) 113

Pattern A5.4 Inquiry (Agent) Completion Check.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: COMPLETION CHECK

4 U: NEXT ANSWER PART

5 A: COMPLETION CHECK

6 U: DISCONFIRMATION

7 A: REPEAT. RECORDING REQUEST

8 U: CONFIRMATION

9 A: SEQUENCE CLOSER

10 U: RECEIPT

Example 5.29 Inquiry (Agent) Completion Check.
1 A: What did you think of Marios’s?

2 U: the food was really good!

3 A: Anything else?

4 U: and I loved the cantina atmosphere

5 A: Anything else?

6 U: no

7 A: You said: the food was really good

and I loved the cantina atmosphere

Shall I record your review?

8 U: yes

9 A: Thank you.

10 U: you’re welcome

After the user’s initial response to the open inquiry (line 2), the agent does not
immediately repeat it but asks if the user has “anything else” to say (line 3). The
user can add another part to the answer (line 4) or decline to extend it (line 6). In
this pattern, the agent then repeats the complete, multi-part answer and asks if
the user if it should be recorded (line 7). Simply by asking users if they are done
answering the open question, the agent suggests that more is preferred.

Another variation of the open inquiry pattern resembles an extended telling (A3)
but on the part of the user. Instead of repeating the user’s answer (A5.2-A5.3) or
asking if the user has “anything else” to say (A5.4), the agent simply produces a
“continuer” [Schegloff 1982]; pattern A5.5, Example 5.30).

Pattern A5.5 Inquiry (Agent) Extended Answer.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: CONTINUER

4 U: NEXT ANSWER PART

5 A: CONTINUER

114 Chapter 5 Conversational Activity UX Patterns

6 U: END

7 A: SEQUENCE CLOSER

8 U: RECEIPT

Example 5.30 Inquiry (Agent) Extended Answer.
1 A: What did you think of Marios’s?

2 U: the food was really good!

3 A: Uh-huh.

4 U: and I loved the cantina atmosphere

5 A: Mhmm.

6 U: that’s it

7 A: Thank you.

8 U: you’re welcome

In response to the user’s answer to the open inquiry (line 2), the agent says “Uh-
huh” or “Mhmm” (lines 3 and 5), inviting the user to continue. The user may
produce another part to the answer (line 4) or indicate that he or she is done (line 6).
The entire answer must be saved, either by setting each part to a separate context
variable, for example, answer part 1, answer part 2, etc., or by appending each string
to the previous one in a single variable, for example, extended answer. This variation
of the open inquiry (A5) pattern is streamlined for eliciting more talk from the user
rather than validating the accuracy of the speech recognition.

We see then that user inquiries, open requests, extended tellings, quizzes, and
agent inquiries are generic conversational activities with recognizable interaction
patterns. Through these patterns, all manner of different content can be commu-
nicated for all kinds of different purposes. Designing a conversation space for a
particular use case fundamentally involves figuring out which of these activity pat-
terns will be the primary means of delivering content.

5.7 Combining Patterns
In addition to supporting different generic conversational activities, the above pat-
terns can also be combined to support more complex activities. Inquiries, open
requests, extended tellings, and quizzes may be components of larger activities, such
as troubleshooting, tutoring, order taking, lecturing, interviewing, and more. To de-
monstrate how content patterns can be combined, we provide examples of trou-
bleshooting and tutoring.

Troubleshooting
Troubleshooting is a generic activity found in many kinds of telephone or online
service encounters. In this activity, the customer or service seeker presents a prob-

5.7 Combining Patterns 115

lem to the representative or agent of the organization and requests a solution. The
agent may need to probe the user’s situation with a series of diagnostic questions
in order to determine the likely cause of the problem and the appropriate solution.
The agent may then talk the user through a set of instructions for solving the prob-
lem. Troubleshooting can therefore be supported by combining the open request
(A2) and extended telling (A3) patterns. The following example demonstrates how
troubleshooting might be used in the context of psychological counseling (Pattern
A2+A3, Example 5.31).

Pattern A2+A3 Troubleshooting User-Initiated.
1 U: PRE-REQUEST/PRE-PROBLEM REPORT

2 A: GO-AHEAD RESPONSE

3 U: REQUEST/PROBLEM REPORT

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: (REPAIR INITIATOR)

8 A: (REPAIR)

9 U: DETAIL

10 A: DETAIL REQUEST

11 U: DETAIL

12 A: GRANT/SOLUTION PROPOSAL

13 U: INSTRUCTION REQUEST

14 A: PART/STEP 1

15 U: CONTINUER

16 A: PART/STEP 2

17 U: CONTINUER

18 A: PART/STEP 3

19 U: CONTINUER

20 A: PART/STEP 4

21 U: SEQUENCE CLOSER

22 A: RECEIPT

Example 5.31 Troubleshooting User-Initiated.
1 U: i’ve got a problem

2 A: What’s your problem?

3 U: I’ve been feeling really anxious lately

4 A: Okay, anxiety. Anything else?

5 U: i’ve been pretty tired

6 A: Has anything bad happened recently?

7 U: what do you mean?

8 A: Could a recent negative experience be causing the anxiety?

9 U: no

116 Chapter 5 Conversational Activity UX Patterns

10 A: Is your anxiety severe?

11 U: not really

12 A: Okay. Then perhaps you should try meditating.

13 U: how do I do that?

14 A: First, sit comfortably and breathe slowly.

15 U: what do you mean?

16 A: Just sit and relax.

17 U: oh ok

18 A: Next, count each in breath and out breath until you get to ten.

Then repeat.

19 U: all right

20 A: Finally, continue counting your breaths for ten minutes.

21 U: thanks

22 A: You’re welcome! Is there anything else I can do for you?

This example of troubleshooting consists of the open request pattern (lines 1–12)
combined with the extended telling pattern (lines 13–22). First, the user does a
generic preliminary to his request or problem report (line 1), and the agent gives a
“go-ahead” response (line 2). The user then makes a request by reporting a problem,
“I’ve been feeling really anxious lately” (line 3), and thereby inviting the agent to
offer a solution.

But before offering a solution, the agent asks some questions to elicit diagnostic
details (lines 4–11). It asks if the user has additional symptoms (line 4), asks about
recent trigger events (line 6), of which the user requests a paraphrase (line 7), and
finally asks about the severity of the problem (line 10). If user mentions anxiety-
related symptoms and answers “no” to each of the screening questions, the agent
will identify meditation as a recommended solution (line 12). At this point, the open
request pattern is complete.

The user can then initiate the extended telling pattern by asking for guidance on
how to meditate, “how do I do that?” (line 13). Notice that the context of the prob-
lem, “anxiety,” and the solution, “meditation,” are preserved across patterns. The
agent then gives the user the first instruction for meditating (line 14), which, like
any of the other instructions, the user can seek to repair (lines 15–16). After receiv-
ing continuers (line 17 and 19), the agent moves on to giving the next instructions
(line 18 and 20). The final instruction is prefaced with “Finally . . . ” (line 20), and
the user moves to close the troubleshooting activity with an appreciation (line 21).

Tutoring
The main conversational activity patterns can also be combined in a variety of ways
to support pedagogical activities, such as tutoring. For example, the extended telling

5.7 Combining Patterns 117

pattern can be combined with the quiz pattern to teach the user new material and
test his or her retention (Pattern A3+A4, Example 5.32).

Pattern A3+A4 Tutoring.
1 U: STORY REQUEST

2 A: ACKNOWLEDGMENT

3 A: PART/STEP 1

4 U: CONTINUER

5 A: PART/STEP 2

6 U: (REPAIR INITIATOR)

7 A: (REPAIR)

8 U: CONTINUER

9 A: PART/STEP 3

10 U: CONTINUER

11 A: PART/STEP 4

12 U: (REPAIR INITIATOR)

13 A: (REPAIR)

14 U: SEQUENCE CLOSER

15 A: QUIZ OFFER

16 U: ACCEPTANCE

17 A: QUESTION 1

18 U: CORRECT ANSWER 1

19 A: CONFIRMATION

20 A: QUESTION 2

21 U: CORRECT ANSWER 2

22 A: CONFIRMATION

23 A: QUESTION

24 U: INCORRECT ANSWER

25 A: DISCONFIRMATION

26 U: CORRECT ANSWER

27 A: CONFIRMATION

28 A: ACTIVITY CLOSER

Example 5.32 Tutoring.
1 U: teach me something about human speech

2 A: Okay.

3 A: First, one of the most distinctive features of a human voice is

its pitch.

4 U: uh-huh

5 A: The pitch of a human voice is how high or low it sounds to the

human ear.

6 U: can you give an example?

7 A: Men generally have lower voices than women and children

8 U: oh ok

118 Chapter 5 Conversational Activity UX Patterns

9 A: The pitch of a human voice is determined by the tension in the

vocal cords and the flow of air out of the lungs.

10 U: ok

11 A: Finally, pitch can be measured by measuring the fundamental

frequency of the voice signal, the unit of which is hertz.

12 U: what do you mean by fundamental frequency?

13 A: Human voices contain multiple frequencies. The fundamental

frequency is the lowest one.

14 U: ok

15 A: Would you like to take a quiz?

16 U: sure

17 A: What do we call our perception of the highness or lowness of a

human voice?

18 U: pitch

19 A: Correct!

20 A: What is a factor in determining the pitch of a human voice?

21 U: vocal cord tension

22 A: That’s right!

23 A: How can pitch be measured?

24 U: frequency

25 A: Incorrect. Try again.

26 U: I mean, fundamental frequency

27 A: That’s correct!

28 A: You answered all three questions correctly!

This example of teaching consists of an extended telling (lines 1–14) followed by
a quiz (lines 15–28). The user initiates the teaching activity by requesting teaching
(line 1). The agent responds to the request by beginning an extended telling about
“pitch in human speech” (line 3). As the user produces continuers (lines 4, 8, and
10), the agent proceeds to the next part of the telling (lines 5, 9, and 11). And as
the user initiates repairs (lines 6 and 12), the agent provides them (lines 7 and 13).
After a sequence closer (line 14), the agent offers to quiz the user on the material
just presented (line 15). Upon acceptance of the offer (line 16), the agent quizzes
the user about the topic of the extended telling, “What do we call our perception
of the highness or lowness of a human voice?” (line 17). The user answers the quiz
question (line 18) and the agent confirms that it is correct (line 19). The agent then
continues on to ask two additional questions (lines 20 and 23). The user gets the
first of these correct (lines 21–22), but initially gets the answer to the second one
wrong (lines 24–25). In this version of the quiz pattern, the agent invites the user
to try again (line 25) until he or she gets the right answer or gives up. The user then

5.8 Conclusion 119

repairs the incorrect answer (line 26) and then gets it correct (line 27). The agent
then closes the activity with a tally of correct answers (line 28).

5.8 Conclusion
In this chapter, we introduced the concept of a “pattern language” [Alexander 1977,
Erickson 2000] and then demonstrated one for conversational UX that is grounded
in conversation science. While we define the entire pattern language over three
chapters (5, 6, and 7), we began with patterns for common conversational activities:
user inquiry, open request, extended telling, quiz and agent inquiry. The patterns
are generic so they can be applied to any kind of conversational content or industry
use case. Each of the five patterns includes multiple subpatterns and working exam-
ples of each. In addition, we demonstrated how these five patterns can be combined
to create larger patterns for more complex activities, like troubleshooting, tutoring,
or interviewing.

From this chapter you should begin to be able to think about conversation
spaces formally and in terms of their sequential structure. This involves identifying
the generic interaction patterns underlying the particular content and building up
complex conversational activities out of the five basic patterns outlined above (or
identifying when a new pattern is needed). In addition, you should understand
the technical issues entailed in implementing the different patterns, for example,
matching a user inquiry (A1) with an intent versus capturing a user answer to an
open inquiry from the agent (A5.1). While the conversational activity patterns (A)
above make up the primary activities or purpose of a conversation, patterns that
enable the management (B and C) of the social interaction itself will be presented
in the next two chapters.

6Sequence Management
UX Patterns

While the previous chapter addressed conversational UX patterns for modeling
a range of conversational activities, this chapter covers additional patterns that
are critical for supporting and managing those conversational activities. These
patterns are needed because the particular form of natural language use is a “con-
versation” and not something else, such as “web search” or “news article.” They
form a fundamental part of basic conversational competence.

In chatbot development, designers sometimes talk about the need to build some
“chit chat” into the agent’s capabilities. The term “chit chat” is typically used as a
gloss for any interaction that is not the main activity of the application, such as
Q&A or following commands. This is inadequate for a systematic conversational
UX design framework. In common usage, “chit chat” means inconsequential talk.
But much talk that may appear on the surface to be inconsequential in fact serves a
variety of functions in managing the conversation itself. As we saw in the previous
chapter, saying “uh-huh” in response to part of a story functions to show the teller of
the story that you are listening and ready for more. While common sense may tempt
us to dismiss things like “uh-huh” as chit chat, as conversational UX designers, we
must understand the work that such utterances perform in conversation, in order
to build it.

While certain actions involved in conversation management are mischaracter-
ized as inconsequential, there is a one kind of activity that is properly called “chit
chat” or “small talk.” In human conversation, we sometimes make inquiries into
inconsequential topics, such as the weather, a recent sports game, recent movies,
personal hobbies, etc., in order to start a conversation with a stranger and pass
short intervals of time. In such cases of “small talk,” which typically take the form
of inquiries and stories, it is the establishment of the social connection itself that
is more important than the topics or the content. And generic, neutral small-talk

122 Chapter 6 Sequence Management UX Patterns

topics can be useful in striking up a conversation and keeping it going until the
strangers can find a more interesting and substantive topic to explore. In the Nat-
ural Conversation Framework [Moore et al. 2016, Moore 2018]), we use the term
“small talk,” which is interchangeable with “chit chat,” to refer to generic, throw-
away topics around which inquiries (A1) or extended tellings (A3) may be built, and
in Chapter 8 we discuss ways of using small talk to help establish a persona for the
virtual agent. On the other hand, we use the term “conversation management” for
utterances that function to coordinate the exchange of turns in the interaction.

As we saw in the previous chapter, the conversational activity patterns (A) in the
Natural Conversation Framework are designed to handle the main business of the
interaction: what services the application provides and what the user is trying to
accomplish. In contrast, the conversation management patterns enable user and
agent to manage the interaction itself. We break the conversation management pat-
terns further down into sequence-level management and conversation-level man-
agement. In this chapter, we explore sequence-level management (B), which is used
in human conversation to manage the other activities (A and C). What should the
user or agent do when a particular sequence is done? What should they do when one
party encounters a trouble in speaking, hearing, or understanding? Sequence-level
management provides resources for this.

The sequence-level management patterns in our Natural Conversation Frame-
work can be broken down into five pattern types and 32 subpatterns (Table 6.1).
The five pattern types include ways in which the agent (B1) and the user (B2) can
repair troubles in hearing or understanding immediately prior utterances or ear-
lier utterances (B3), as well as ways of ending conversational sequences either by
closing them (B4) or by aborting them (B5).

6.1 B1 Repair (Agent)
As highlighted in previous chapters, “repair” is set of practices in natural human
conversation through which speakers locally manage troubles in speaking, hear-
ing, and understanding [Schegloff et al. 1977, Schegloff 1992b, Schegloff 2007]).
In Conversation Analysis, “repair” is a technical term referring specifically to the re-
peating and paraphrasing of prior utterances or parts of them. It is not used to refer
to every kind of problem resolution in a conversation; for example, it is not used
in the context of “repairing a speaker’s knowledge” or “repairing the participants’
relationship.” Repairs can be initiated by either the speaker of the trouble-source
turn or one of its recipients [Schegloff et al. 1977]).

6.1 B1 Repair (Agent) 123

Table 6.1 Sequence-level management patterns

B1.1.0 Understanding Check (Agent) B2.6.1 Example Request Default

B1.2.0 Paraphrase Request (Agent) B2.7.0 Understanding Check Confirmed

B1.2.1 Subsequent Paraphrase Requests B2.7.1 Understanding Check Disconfirmed

B1.2.2 Agent Continuer

B1.2.3 No Answer Account B3.1.0 Self-Correction (same as A2.9)

B1.2.4 Repeat Acknowledgment B3.1.1 Misunderstanding Report

B3.1.2 Other Hearing Check & Mishearing Report

B2.1.0 Repeat Request B3.2.0 Other-Correction

B2.1.1 Repeat Request Default

B2.2.0 Partial Repeat Request B4.0 Sequence Closer (helped)

B2.3.0 Hearing Check Confirmed B4.1 Sequence Closer (not helped)

B2.3.1 Hearing Check Corrected B4.2 Sequence Closer Appreciation (helped)

B2.4.0 Paraphrase Request B4.3 Sequence Closer Appreciation (not helped)

B2.4.1 Paraphrase Request Default B4.4 Sequence Closer (repaired)

B2.5.0 Definition Request Repair

B2.5.1 Definition Request Default B5.0 Sequence Abort

B2.5.2 Definition Request Standalone B5.1 Sequence Abort Capability Offer Accepted

B2.6.0 Example Request B5.2 Sequence Abort Capability Offer Declined

B1.1 Understanding Check (Agent)
We have already seen a pattern in which the agent initiates repair on the user’s
inquiry by proposing a candidate inquiry for the user to confirm (Pattern A1.1).
This pattern can also be implemented globally for any of your agent’s recognized
actions or intents (Pattern B1.1.0, Example 6.1).

Pattern B1.1.0 Understanding Check (Agent).
1 U: <UTTERANCE>

2 A: <PARAPHRASE>

3 U: CONFIRMATION

4 A: <RESPONSE>

5 U: SEQUENCE CLOSER

Example 6.1 Understanding Check (Agent).
1 U: whats shakin bruh

2 A: You mean, what’s new?

3 U: yeah

4 A: Nothing really. I don’t get out much.

5 U: ha!

124 Chapter 6 Sequence Management UX Patterns

For any user intent, the agent can propose a candidate paraphrase when the input
receives a moderate confidence score, say, 0.8 to 0.2. Here the user’s utterance
(line 1) gets a moderate confidence, and so the agent offers a paraphrase of what
the user said for the user to confirm (line 2). In order to do this, you must create
a candidate paraphrase for each user action, or intent, that you want the agent to
be able to repair like this. We set this paraphrase to the confirm context variable
and include it in the response set, along with repairs (see below), for the news check
intent. If the user confirms the candidate paraphrase (line 3), the agent gives the
response for the corresponding intent (line 4). These user inputs and intent names
can be collected and used for retraining the intent. If the user does not confirm
the paraphrase, the agent requests that the user paraphrase the original utterance
(Pattern B1.2).

B1.2 Paraphrase Request (Agent)
Sometimes your virtual agent will not recognize what the user said. Because
information-retrieval-based, natural-language platforms require you to create all
the actions, or intents, that the agent can recognize in advance, there will always be
many user inputs that you did not anticipate. For example, you may set your min-
imum intent confidence threshold to 0.2. Any user utterance scoring below this
threshold, with its highest confidence score, will be treated as unrecognized and
un-repairable. To manage this kind of trouble in understanding, the agent should
request that the user paraphrase the prior utterance (Pattern B1.2.0, Example 6.2).

Pattern B1.2.0 Paraphrase Request (Agent).
1 A: <ANY UTTERANCE>

2 U: <UNKNOWN UTTERANCE>

3 A: INITIAL PARAPHRASE REQUEST

4 U: <KNOWN PARAPHRASE>

5 A: <APPROPRIATE RESPONSE>

Example 6.2 Paraphrase Request (Agent).
1 A: Hello. How are you?

2 U: bitchin’!

3 A: What do you mean?

4 U: I’m great!

5 A: That’s great!

In this pattern, if the agent fails to recognize the user’s utterance (line 2), that is, the
input fails to surpass the confidence threshold or to match any other conditions,
the agent requests a paraphrase of that utterance (line 3). Instead of explicitly

6.1 B1 Repair (Agent) 125

instructing the user to rephrase the utterance, as is commonly done, the agent
uses a more conversational paraphrase request, “What do you mean?,” “I don’t
understand,” “Please clarify,” and the like. If the user’s action type, or intent, is
known to the system but the particular formulation is not, then paraphrasing the
action in a clearer form may enable the agent to recognize it [Candello and Pinhanez
2018, p. 150]). Here, the agent can understand many positive assessments, but it
has not been trained on the variation “bitchin’!” (line 2). When the user paraphrases
the positive assessment in a more common form, “I’m great!” (line 4), the agent can
now recognize it (line 5). Unrecognized utterances like this and their paraphrases
can then be collected and added to the same intent as training examples so the
agent can learn.

If the agent’s request fails to elicit a recognizable paraphrase, the agent should
indicate continued understanding trouble and give tips to help the user (Pattern
B1.2.1, Example 6.3).

Pattern B1.2.1 Subsequent Paraphrase Requests.
1 A: <ANY UTTERANCE>

2 U: <UNKNOWN UTTERANCE>

3 A: INITIAL PARAPHRASE REQUEST

4 U: <UNKNOWN UTTERANCE>

5 A: SUBSEQUENT PARAPHRASE REQUEST

Example 6.3 Subsequent Paraphrase Requests.
1 A: How can I help you?

2 U: what’s in theaters?

3 A: What do you mean?

4 U: what movies are currently playing?

5 A: I’m sorry, I still don’t understand.

In this case, the user produces an unrecognizable utterance (line 2), the agent
requests a paraphrase (line 3) and the user rephrases it (line 4), but the agent fails to
recognize the paraphrase (line 5). This may happen when the action type, or intent,
of the user’s utterance is not one the agent knows. In this subsequent paraphrase
request (line 5), the agent can also give tips about what it can do or offer to give a
capability description. Putting such tips or offers in the initial paraphrase request
can get tedious, especially in a voice-based interface.

Sometimes the intent of a user utterance may be unknown, but the agent may
still be able to recognize an entity within it. In such cases of partial understanding,
the agent has the option of bidding the user to continue. A “continuer” [Schegloff
1982] is not a repair of a prior utterance because it is not redoing the problematic

126 Chapter 6 Sequence Management UX Patterns

utterance, but it is an alternative strategy for managing an understanding trouble
(Pattern B1.2.2, Example 6.4).

Pattern B1.2.2 Agent Continuer.
1 U: <UNKNOWN INTENT, KNOWN ENTITY>

2 A: (REPEAT ENTITY) CONTINUER

3 U: <RECOGNIZED UTTERANCE>

4 A: <APPROPRIATE RESPONSE>

Example 6.4 Agent Continuer.
1 U: I just came over from the other hotel.

I’m with NASA?

2 A: NASA, mm-hmm.

3 U: can I register here?

4 A: Okay. What’s your name?

In this pattern, the agent cannot recognize the intent of the user’s utterance (line
1), but it can recognize an entity within it. The agent then responds by repeating the
recognized entity, “NASA,” followed by a continuer, “mm-hmm” (line 2). Variations
of the continuer are “uh-huh,” “yeah,” “okay,” and more. The agent’s continuer
invites the user to say more, rather than to paraphrase what he or she already said.
If the user continues on to produce a recognizable intent (line 3), the agent responds
to that intent (line 4), remembering the entity from the previous turn as a context
variable. If the user produces an unrecognizable utterance instead, the utterance
will default to the agent paraphrase request (B1.2).

Perhaps the lowest level of understanding is recognizing the form of the user’s
utterance, but nothing else; for example, recognizing that it starts with a question
word, such as, who, what, where, when, why, how, is, are, do or does, and is therefore
likely an interrogative, or inquiry (Pattern B1.2.3, Example 6.5).

Pattern B1.2.3 No Answer Account.
1 U: <UNKNOWN INQUIRY>

2 A: NO ANSWER ACCOUNT

3 U: SEQUENCE CLOSER

Example 6.5 No-Answer Account.
1 U: what is the capital of California?

2 A: I don’t know.

3 U: ok

Here the agent fails to recognize the intent of the user’s utterance or any entities
in it (line 1), but detects that it starts with “what” and therefore is likely a question

6.1 B1 Repair (Agent) 127

or inquiry. The agent then responds with an account for why it cannot answer, “I
don’t know” (line 2), which would not be an appropriate response to other unknown
utterances, like “I want to book an Uber” or “July 10.” Not knowing is the most
common account for why one is not answering a question. Refusing (e.g., “I don’t
want to say” or “none of your business”) is less common due to its potential for
rudeness.

Repeating an utterance is a conversational action that usually occurs in envi-
ronments of speaking, hearing, or understanding trouble. As we will see in the
next section, users may request a repeat of the agent’s turn if he or she had trouble
hearing it. However, virtual agents tend not to notice repeats by users. One reason
for this is no doubt that detecting a repeat cannot be done through intent-matching
alone: the user’s current input must be compared with prior inputs. But the dialog
tree can do this. For example, every input can be compared with the prior input. If
they are equal, the user is repeating him or herself verbatim. One kind of response
to a user’s repeat is simply to acknowledge it (Pattern B1.2.4, Example 6.6).

Pattern B1.2.4 Repeat Acknowledgment.
1 U: <UNKNOWN UTTERANCE>

2 A: INITIAL PARAPHRASE REQUEST

3 U: <FIRST REPEAT>

4 A: REPEAT ACKNOWLEDGMENT

5 U: <SECOND REPEAT>

6 A: <REPEAT>

Example 6.6 Repeated Unknown Utterance.
1 U: what’s in theaters?

2 A: What do you mean?

3 U: what’s in theaters?

4 A: I know, I heard you!

5 U: what’s in theaters?

6 A: what’s in theaters?

In this pattern, the user produces an unrecognized utterance (line 1), to which
the agent responds with a paraphrase request (line 2, pattern B1.2). The user then
repeats the unknown utterance (line 3). While such a repeat in human conversation
may insist that the recipient try again at responding to the original utterance, in
interactions with virtual agents, they typically elicit the same response. Paraphrases
are much more useful. To show a bit more intelligence than simply repeating the
prior response and to discourage users’ repeats of unrecognized utterances, the
agent can acknowledge the user’s repeat (line 4). If the user continues repeating
(line 5) in this pattern, the agent parrots the user (line 6). While this version displays

128 Chapter 6 Sequence Management UX Patterns

a bit of attitude on the agent’s part, this could be softened by changing the repeat
acknowledgment (line 4) and agent repeat (line 6) to a request for a paraphrase,
“What you mean by ’what’s in theaters?”’

These are just a few of the ways in which the agent can elicit a paraphrase from
the user when it fails to understand what he or she is saying. We turn now to ways
that users can elicit repeats and paraphrases of what the agent says.

6.2 B2 Repair (User)
While virtual agents sometimes need the user to paraphrase or repeat what he or she
said, users likewise need the agent to paraphrase or repeat what it said on occasion.
Any party in a conversation may require a repair of a prior utterance at any point
in the interaction [Schegloff et al. 1977]. Users may not understand what the agent
is saying, requiring different kinds of paraphrases, or with voice interfaces, they
may not have heard what it said. Handling the standard types of repair is a critical
aspect of conversational competence.

B2.1 Repeat Request
The repeat request elicits a full repeat of the previous agent utterance, especially in
the cases where the user could not hear it (Pattern B2.1.0, Example 6.7).

Pattern B2.1.0 Repeat Request.
1 A: <ANY UTTERANCE>

2 U: REPEAT REQUEST

3 A: REPEAT

Example 6.7 Repeat Request.
1 A: I guess I like movies with a strong AI lead.

2 U: what did you say?

3 A: I guess I like movies with a strong AI lead.

In this pattern, if the user says things like “what did you say?,” “say again,” or
“please repeat” (line 2), the agent repeats (line 3) its prior utterance (line 1). In
our implementation, each agent utterance is captured in a repeat context variable,
which is set each time a response is returned to the user. A better solution is for
the backend to update the repeat variable on every turn with the exact output of
the agent. If the user then requests a repeat, the value of the repeat variable is
simply returned. In voice-based interfaces, the repeat request is critical since the
agent’s utterance is transient. It is not as important in text-based interfaces, which
typically preserve the utterance in a chat history. However, the ability to repeat what

6.2 B2 Repair (User) 129

you said is such a basic feature of conversational competence that any agent that
cannot recognize a repeat request will appear stupid to users.

If for any reason the value of repeat is null, the agent gives a default response to
a repeat request instead (Pattern B2.1.1, Example 6.8).

Pattern B2.1.1 Repeat Request Default.
1 A: <ANY UTTERANCE>

2 U: REPEAT REQUEST

3 A: DEFAULT RESPONSE

Example 6.8 Repeat Request Default.
1 A: I guess I like movies with a strong AI lead.

2 U: what did you say?

3 A: Oh dear, I forgot!

When the repeat context variable does not have a value, the agent gives a default
response (line 3). This pattern should never occur unless the designer has forgotten
to set the repeat variable or the backend has failed to do so.

While in the standard pattern, the repeat is a verbatim duplication of the original
utterance, short prefaces can be removed, like “Okay” or “I guess.” Furthermore,
deviating from a conversation pattern can achieve other actions or effects, such as
humor, sarcasm, or attitude (Example 6.9).

Example 6.9 Repeat Request Aborted.
1 A: Are you an expert on computer history?

2 U: what did you say?

3 A: never mind

Here the agent questions the user’s expertise (line 1). Instead of answering the
inquiry, the user requests a repeat (line 2), which could be seen as “taking offense.”
But for this particular response, the repeat is set to “never mind” (line 3) so that the
agent will always back down by aborting the sequence. Setting the repeat to “just
kidding” would have a more humorous effect.

Perhaps the most minimal way to initiate repair on the prior utterance is to say,
“what?” [Sacks 1992, II:413, Frohlich and Luff 1990, p. 207]. This simply indicates
some trouble with the prior utterance but gives no clues whether it might be a
hearing trouble or an understanding trouble. In human conversation, “’What?’
says at least ’I didn’t hear what you said, say it again,’ but it’s employed and is
well known to be employed as a substitute for ’I don’t understand what you said”’
[Sacks 1992, II:413]. In other words, “what?” leaves it to the speaker to diagnose
the recipient’s trouble as one of hearing or understanding. Virtual agents, on the

130 Chapter 6 Sequence Management UX Patterns

other hand, typically lack this ability to do such diagnoses. Instead, we use a simple
rule for deciding if “what?” is a variation of the repeat request or paraphrase request
intents: in voice-based interfaces, it is treated as a repeat request; in text-based
interfaces, it is treated as a paraphrase request.

B2.2 Partial Repeat Request
While the repeat request typically elicits a full repeat of the prior agent utterance,
the partial repeat request elicits only a part of it (Pattern B2.2.0, Example 6.10).

Pattern B2.2.0 Partial Repeat Request.
1 A: <ANY UTTERANCE>

2 U: PARTIAL REPEAT + what/who/when/where/why

3 A: PARTIAL REPEAT

Example 6.10 Partial Repeat Request.
1 A: I guess I like movies with a strong AI lead.

2 U: a strong what?

3 A: AI lead.

With the partial repeat request, the user repeats a part of the agent’s prior utterance,
“a strong” followed by a question word, “what” (line 2). By recycling part of the
prior utterance, the user can demonstrate what he or she heard, and the question
word indicates a failure at least to hear whatever words came after that [Schegloff
2007, pp. 217–218]. In our implementation, the dialog detects the question word
at the end of the user’s input, extracts what came before it, matches the sample
to the value of repeat of the agent’s utterance, and displays the remaining words
back to the user, “AI lead” (line 3). This practice is very efficient, especially in voice
interactions, in eliciting a repeat of just the part of the prior utterance that the
recipient did not hear, instead of repeating the whole thing.

B2.3 Hearing Check
The final repeat repair in our framework is the hearing check [Schegloff et al. 1977].
A recipient of an utterance can check his or her hearing of the utterance by repeating
all or part of it and inviting the speaker to confirm it (Pattern B2.3.0, Example 6.11).

Pattern B2.3.0 Hearing Check Confirmed.
1 A: <ANY UTTERANCE>

2 U: FULL/PARTIAL REPEAT

3 A: CONFIRMATION

6.2 B2 Repair (User) 131

Example 6.11 Hearing Check Confirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: lead?

3 A: That’s right.

Here the user repeats part (line 2) of what the agent said (line 1), instead of asking
the agent to repeat it (B2.1). The repeat then invites the agent to confirm the
candidate hearing if it is correct, which the agent does (line 3). Detecting a hearing
check cannot be done with intents and entities. In our implementation, we detect
them by comparing the user’s utterance to the agent’s prior utterance (repeat) using
text string matching. If the former is contained in the latter, and the user’s utterance
fails to match any other conditions, the agent confirms the repeat with “That’s
it!,” “Correct!,” “That’s what I said,” etc. On the other hand, if the user incorrectly
repeats part of the agent’s utterance, the agent should correct it (Pattern B2.3.1,
Example 6.12).

Pattern B2.3.1 Hearing Check Corrected.
1 A: <ANY UTTERANCE>

2 U: FULL/PARTIAL REPEAT

3 A: DISCONFIRMATION, REPEAT

Example 6.12 Hearing Check Corrected.
1 A: I guess I like movies with a strong AI lead.

2 U: need?

3 A: No, LEAD.

In this case the user incorrectly repeats the word “lead” as “need” (line 2). So the
agent should correct this candidate hearing by disconfirming it and repeating the
correct word (line 3). Unfortunately, determining that the user’s utterance is a
candidate repeat of part of the prior turn is nontrivial. In this case, it depends on
the phonemic similarity between “lead” and “need.” Currently we do not support
this pattern (B2.3.1) in our implementation, but in principle it could be done by
comparing the phonemic and lexical similarity between the user’s utterance and
the agent’s prior.

B2.4 Paraphrase Request
While the repeat request elicits a full repeat of the prior utterance, the paraphrase
request elicits a full paraphrase of it. Observing the principle of minimization, we
generally formulate the agent’s initial utterance to be concise, using the fewest
words we think will be needed to enable the average user to understand. But if
a particular user indicates a trouble in understanding, minimization should be

132 Chapter 6 Sequence Management UX Patterns

relaxed and a more understandable version should be offered (Pattern B2.4.0,
Example 6.13).

Pattern B2.4.0 Paraphrase Request.
1 A: <ANY UTTERANCE>

2 U: PARAPHRASE REQUEST

3 A: PARAPHRASE

Example 6.13 Paraphrase Request (elaboration).
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean?

3 A: I enjoy movies in which the main character is

an Artificial Intelligence.

In this pattern, the agent answers a question (line 1), and the user requests a para-
phrase (line 2). The agent then elaborates its prior answer, using different words
and making it simpler to understand (line 3). For example, Alma replaces “like” with
“enjoy,” replaces the acronym “AI” with the phrase it abbreviates, “artificial Intelli-
gence,” and replaces the somewhat specialized term “lead” with “main character.”
The elaboration thus conveys virtually the same meaning as the initial utterance,
but it is somewhat easier to understand. We do not give the elaboration first be-
cause it is verbose and a little awkward. Also, sometimes just the presentation of
two formulations of the same utterance can resolve users’ understanding troubles.
Like the repeat, the paraphrase text is set to the paraphrase context variable at the
same time as the initial response is displayed to the user.

Typically the agent’s utterances should be short and its paraphrases longer;
however, in some cases they may be shorter. If the initial utterance is unavoidably
long and awkward, its paraphrase should be shorter and to the point, in other
words, an upshot rather than an elaboration (Example 6.14).

Example 6.14 Paraphrase Request (upshot).
1 A: First, please sit comfortably on the floor

and breathe deeply and slowly.

2 U: what do you mean?

3 A: Just sit and relax.

Here the agent’s initial utterance is somewhat verbose, providing multiple details
(line 1), and the user requests a paraphrase (line 2). But instead of giving an even
longer version, the agent draws the upshot (line 3). Thus, paraphrases of agent
utterances may be upshots or elaborations.

6.2 B2 Repair (User) 133

Finally, in the event that the paraphrase context variable lacks a value, the
agent should give a default response to the paraphrase request (Pattern B2.4.1,
Example 6.15).

Pattern B2.4.1 Paraphrase Request Default.
1 A: <ANY UTTERANCE>

2 U: PARAPHRASE REQUEST

3 A: PARAPHRASE DEFAULT

Example 6.15 Paraphrase Request Default.
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean?

3 A: Well, I don’t know how else to say it.

When the value of paraphrase is null, Alma admits that it cannot provide one
(line 3). Like the default response for the repeat request (B2.1.1), the paraphrase
default should not be needed, but is included in case the designer or the backend
fails to populate the paraphrase context variable.

B2.5 Definition Request
In addition to requesting a full paraphrase of a prior utterance, speakers some-
times request paraphrases of only parts of it. In natural conversation a recipient
may repeat any part of a prior utterance and request a paraphrase of it; for exam-
ple, a response to “do you want to go with me to see a movie?” might be “what
do you mean by ’go with’?” (i.e., as a “friend” or “date”). Given today’s natural-
language platforms, anticipating every possible substring of the agent’s utterances
and providing a paraphrase is not feasible.

As an approximation of such partial paraphrase requests, our approach is to
provide paraphrases of only specialized terms in the agent’s utterances: in other
words, definitions. We believe that it is good practice to provide definitions for
any specialized or technical terms that your agent uses in its own utterances. A
conversational agent should be able to clarify what it means by any special terms
it uses. Ideally these definitions should be tailored to the particular use case and
should not simply be dictionary definitions; for example, “Your origin is the city
or airport that you’re leaving from” versus “Origin is the point or place where
something begins, arises, or is derived.” The user is asking what the agent means
by its use of the term, not necessarily what it means more generally.

Definition requests take forms like, “what do you mean by artificial intelli-
gence?,” “what does server room mean?,” “what does IBM stand for?,” “define
in-network provider,” etc. When a user requests a definition of a term used in the

134 Chapter 6 Sequence Management UX Patterns

agent’s prior utterance, it initiates repair on that utterance, indicating an under-
standing trouble (Pattern B2.5.0, Example 6.16).

Pattern B2.5.0 Definition Request Repair.
1 A: <ANY UTTERANCE>

2 U: DEFINITION REQUEST

3 A: REPAIR MARKER + DEFINITION

Example 6.16 Definition Request Repair.
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean by AI?

3 A: Oh, sorry! AI stands for Artificial Intelligence.

Basically, robots and smart machines like me!

In this pattern, the agent produces any utterance, say an answer to a small-talk
inquiry (line 1), and the user requests a definition of a term in that utterance, “AI”
(line 2). Because the term is in the prior utterance, it suggests that the term is a
source of trouble for the user in understanding that turn and therefore an obstacle
to moving forward. In response, the agent acknowledges the repair with “Oh, sorry!”
and provides a definition (line 3). The “Oh” indicates a realization, or “change-of-
state” [Heritage 1984], in this case that its assumption that the user knows the term
“AI” is wrong, and the “sorry” apologizes for it. In authoring agent utterances, you
must make assumptions about what the average user will know, but repair patterns,
like the definition request, will enable users to recover when your assumptions are
wrong.

If a user requests a definition of a term or subphrase for which no definition has
been created, the agent will give a default response (Pattern B2.5.1, Example 6.17).

Pattern B2.5.1 Definition Request Default.
1 A: <ANY UTTERANCE>

2 U: DEFINITION REQUEST

3 A: DEFINITION DEFAULT

Example 6.17 Definition Request Default.
1 A: I say, politics is the art of compromise.

2 U: define compromise?

3 A: I’m not sure how to define it.

Here, because “compromise” is a common term, the designer did not provide a
definition for it. When the user asks for a definition (line 2), the agent claims an
inability to provide one as a default (line 3). In this kind of instance, a standard
dictionary definition would be better than the default response.

6.2 B2 Repair (User) 135

Definition requests are not necessarily repair-related. Speakers may ask for def-
initions of words for reasons other than understanding a prior utterance; in other
words, definition requests can be a kind of inquiry (Pattern B2.5.2, Example 6.18).

Pattern B2.5.2 Definition Request Standalone.
1 A: <ANY UTTERANCE WITHOUT TERM>

2 U: DEFINITION REQUEST

3 A: DEFINITION

Example 6.18 Definition Request Standalone.
1 A: How can I help you?

2 U: what does server mean?

3 A: A server is a big computer that provides

functionality to lots of other computers.

When a definition request stands alone, not indicating a trouble with a prior utter-
ance (line 2), the agent simply gives the definition, if available, without marking it
as a repair (line 3). The pattern in this case is that of an inquiry (A1); however, to
avoid misclassification, a single intent should be used for both kinds of definition
requests and an entity should be used to extract the term to be defined.

B2.6 Example Request
Another kind of partial paraphrase request is a request for an example. An example
specifically makes an abstract or general utterance concrete. Not all utterances have
examples, but when they do, examples can be very effective at providing clarity to the
recipient. Like the paraphrases and repeats above, examples are set to an example
context variable at the time the initial utterance is given to the user. The example
request intent includes variations such as, “can you give an example?,” “what are
some examples?,” “examples please,” etc. (Pattern B2.6.0, Example 6.19).

Pattern B2.6.0 Example Request.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE REQUEST

3 A: EXAMPLE

Example 6.19 Example Request.
1 A: I guess I like movies with a strong AI lead.

2 U: can you give an example?

3 A: Um, 2001: A Space Odyssey... The Matrix...

Terminator... those are a few.

136 Chapter 6 Sequence Management UX Patterns

Here, in answering a small-talk inquiry, the agent claims to like a particular type
of movie (line 1). The user then requests an example (line 2), and the agent gives
three movies of that type (line 3). Providing concrete examples is a different, though
common, way of articulating what is meant by abstractions such as “movies with a
strong AI lead.”

The choices request is similar to the example request in structure, but serves
a somewhat different purpose. For a small set of utterances in which the agent
requests the user to make a choice, users may request a list of choices or options.
The choices request is not a repair of the prior utterance, because it does not suggest
that the user fails to understand it. It is a kind of detail request in which the user
requires more information in order to continue. Where the example request seeks
instantiations of the prior utterance, the choices request seeks options for next
actions (Example 6.20).

Example 6.20 Choices Request.
1 A: What kind of food do you want?

2 U: what are my choices?

3 A: Around here, Mexican, Japanese or Indian.

4 U: Mexican

5 A: Walking distance or car ride?

In this pattern, the agent asks the user to specify a type of cuisine (line 1), in the
course of making a restaurant recommendation, and the user requests choices
before deciding (line 2). The agent then offers three choices (line 3) and the user
picks one (line 4). Although we use separate intents for recognizing example and
choices requests, for convenience we use the example context variable to store both
examples and choices.

Like the other user-initiated repairs, the example request includes a default
response if the value of the example variable is null (Pattern B8.1, Example 6.21).

Pattern B2.6.1 Example Request Default.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE REQUEST

3 A: EXAMPLE DEFAULT

Example 6.21 Example Request Default.
1 A: I talk to my Creator all the time.

2 U: can you give an example?

3 A: I’m afraid I can’t think of an example.

When there is no example provided for an agent utterance, the agent indicates its
inability to give one (line 3). Unlike repeat and paraphrase requests, the example

6.2 B2 Repair (User) 137

request may need to be set to null by the designer frequently, since many utterances
do not have sensible examples or choices.

B2.7 Understanding Check
With the hearing check, we saw the user repeat a part of the agent’s utterance and
invite the agent to confirm or correct it. The understanding check has a similar struc-
ture, but instead of repeating part of the prior utterance, the user gives a paraphrase
or example of it [Schegloff et al. 1977]. In approximating this, the designer must
provide a list of all recognized examples in advance. This list of recognized examples
should include those given in response to the example request, as well as additional
ones that are never explicitly mentioned to the user (Pattern B2.7.0, Example 6.22).

Pattern B2.7.0 Understanding Check Confirmed.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE

3 A: CONFIRMATION

Example 6.22 Understanding Check Confirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: like The Matrix?

3 A: Yes.

In this case, the user mentions an example of what the agent just said (line 2) and
the agent confirms it (line 3). In our implementation, we use a particular intent for
the user’s phrase, which may include words such as “like” or “you mean” as prefaces
to the example, and we use a specific entity for capturing all of the recognized
examples from the user.

If the user does an understanding check on an incorrect example of the prior ut-
terance, the agent should disconfirm it and correct it (Pattern B2.7.1, Example 6.23).

Pattern B2.7.1 Understanding Check Disconfirmed.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE

3 A: DISCONFIRMATION. EXAMPLE

Example 6.23 Understanding Check Disconfirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: like One Flew Over the Cuckoo’s Nest?

3 A: No. Like the Matrix.

Here the agent mentions a type of movie (line 1), and the user suggests a movie
that is not an example of that type (line 2). The agent should then disconfirm the

138 Chapter 6 Sequence Management UX Patterns

candidate example and offer a correct one (line 3). However, as with the hearing
check above, recognizing an incorrect example mentioned by the user is currently
quite difficult. As a result, our implementation cannot recognize an incorrect ex-
ample of the agent’s prior utterance. Therefore, instead of the disconfirmation and
correction, Alma simply requests a paraphrase of what the user said (B1.2).

One limitation of our current implementation of these user-initiated repairs
(B2.1-B2.7) is that they do not support what we might call “second-order repairs,”
or repairs of repairs. For example, if the user requests a paraphrase and then
immediately requests a paraphrase of the paraphrase or a repeat of the paraphrase
or an example of the paraphrase, Alma will provide a repair of the initial utterance,
not of the paraphrase. We limit our repairs to those of the first order due to the
explosion of repairs that would result from second- or even third-order repairs, all
of which would be extremely rare. Consequently, Alma cannot play the child’s game
of continually parroting “what do you mean?” after each paraphrase (nor can most
adults for very long). This is one clear example of how our agent engages the user
in a conversation game, or a simplified version of a natural human conversation.

6.3 B3 Extended Repair
In each of the cases described above, repair is initiated from the “second position,”
or next turn to the problematic utterance. But a couple of classes of repair occur
beyond next turn. Schegloff [1992b] identifies these as “third-position” repair and
“fourth-position” repair. In our Natural Conversation Framework, the former would
be initiated by the user and the latter by the agent. We refer to them as “self-
correction” and “other-correction,” respectively.

B3.1 Self-Correction
While each of the user-initiated repairs so far have been operating on the prior ut-
terance of the agent, users can also initiate repair on their own prior utterances that
are two turns back. This pattern is structurally the same as that of the incremental
request (A2.7), but the action is slightly different. Instead of simply doing a new
request, the self-correction is further marked as a redo of the first request (Pattern
B3.1.0, Example 6.24).

Pattern B3.1.0 Self-Correction (same as A2.7).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: SELF-CORRECTION

4 A: ALTERNATIVE RESPONSE

5 U: SEQUENCE CLOSER

6.3 B3 Extended Repair 139

Example 6.24 Self-Correction.
1 U: is the Mexican restaurant close?

2 A: Mario’s is located at Beach and Main.

3 U: no, I mean in the hotel

4 A: I’m afraid there is no Mexican restaurant inside the hotel.

5 U: ok thanks

In this pattern, the user repairs part of his prior request (line 3) after seeing the
agent’s response to it (line 2). That is, the agent interpreted “close” as including
restaurants within “walking distance” of the hotel, but the user had intended it
to mean “inside the hotel.” So the user simply reformulates the specification of
distance, from “close” to “inside the hotel,” and the agent assumes the prior intent
and entity (Mexican cuisine). This self-correction pattern is a case of what Schegloff
[1992b] calls a “third-position repair” in which the speaker of a turn repairs that
turn, resolving unanticipated ambiguities, after seeing what the recipient made
of it. This type of self-correction is typically marked with prefaces such as “no,”
“I mean” or “no, I mean,” but the patterns works with or without them. The self-
correction is efficient because it enables users to modify their previous requests
without redoing the whole turn.

As an alternative to a self-correction, users may simply report the fact that agent
misunderstood what he or she said (Pattern B3.1.1, Example 6.25).

Pattern B3.1.1 Misunderstanding Report.
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: MISUNDERSTANDING REPORT

4 A: PARAPHRASE REQUEST

5 U: SELF-CORRECTION

6 A: ALTERNATIVE RESPONSE

7 U: SEQUENCE CLOSER

Example 6.25 Misunderstanding Report.
1 U: what’s your favorite movie theater?

2 A: I guess I like movies with a strong AI lead.

3 U: that’s not what I mean

4 A: I’m sorry, please try again.

5 U: can you recommend a movie theater?

6 A: I’m afraid I don’t have information on movie theaters.

7 U: ok

In this case, when the agent displays a failure to understand (line 2), the user explic-
itly calls out the failure but does not repair the initial utterance (line 3). Because the

140 Chapter 6 Sequence Management UX Patterns

user does not provide additional details, the agent has no better basis for respond-
ing than it did the first time. If it has moderate confidence in a second intent, it
could perhaps respond to that instead. However, in our implementation we simply
have Alma apologize for the misunderstanding and request a paraphrase (line 4).
Unlike the root-level agent paraphrase request pattern (B1.2), the misunderstand-
ing report is triggered by an particular intent, with variations such as “that’s not
what I meant,” “you misunderstood,” “you’re not understanding me,” instead of
by a failure to match any conditions.

In addition to requesting a repeat of what the agent said (Pattern B3.0), users
can also ask the agent to repeat what it heard the user say. And in addition to report-
ing misunderstanding on the part of the agent, users can also report mishearing
(Pattern B3.1.2, Example 6.26).

Pattern B3.1.2 Other Hearing Check & Mishearing Report.
1 U: <ANY UTTERANCE>

2 A: <ANY RESPONSE>

3 U: HEARING CHECK

4 A: REPEAT

5 U: MISHEARING REPORT

6 A: APOLOGY. REPEAT REQUEST

7 U: REPEAT

8 A: <RESPONSE>

9 U: SEQUENCE CLOSER

Example 6.26 Other Hearing Check & Mishearing Report.
1 U: what’s your favorite movie theater?

2 A: I guess I like movies with a strong AI lead.

3 U: what did I say?

4 A: You said: what’s your favorite movie

5 U: that’s not what I said

6 A: I’m sorry. What did you say?

7 U: I said what’s your favorite movie theater?

8 A: I’m afraid I don’t have information on movie theaters.

9 U: ok

Here the user says something (line 1) and the agent responds (line 2). But instead
of closing the sequence, the user asks the agent to repeat what it heard the user
say (line 3). The agent then repeats the prior user utterance, stored in a context
variable, to the user (line 4). This pattern is especially useful in voice interfaces for
exposing unnoticed errors in automatic speech recognition, or speech-to-text. If
the agent misheard the user, the user can report the mishearing error (line 5) or

6.3 B3 Extended Repair 141

just repeat the initial utterance. If the former, the agent apologizes and requests a
repeat (line 6).

B3.2 Other-Correction
Finally, a repair pattern that we rarely use but may be useful under certain cir-
cumstances is what we call other-correction or “fourth-position repair” [Schegloff
1992b]. Just as a speaker can initiate repair after seeing how the recipient inter-
preted his or her initial utterance, the recipient too gets another chance to repair
that utterance (Pattern B3.2.0, Example 6.27).

Pattern B3.2.0 Other-Correction.
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: <MENTION OF KEY ENTITY>

4 A: OTHER-CORRECTION

5 U: SEQUENCE CLOSER

Example 6.27 Other-Correction.
1 U: what’s the address for almaden?

2 A: IBM Almaden is located at 650 Harry Road,

San Jose, California, 95120, USA.

3 U: I thought it was on Bailey road

4 A: Oh, you mean the Silicon Valley Lab. That’s

555 Bailey Ave, San Jose, California 95141.

5 U: oh ok

In this pattern, the user makes an inquiry that has an error in it (line 1), but
the user does not detect it. The agent then gives an answer (line 2). Instead of
closing the sequence or initiating repair, the user says something that enables
the agent to detect an error in the first utterance (line 1): the user challenges the
answer, suggesting a different street address (line 3). Because a nearby facility that
is commonly confused with “Almaden” is on Bailey Road, the agent detects that the
user really meant “Silicon Valley Lab” (line 4) instead of “Almaden” Lab (line 1). In
our implementation, we only attempt to support common errors, rather than trying
to anticipate every possible fourth-position repair. If the user mentions features of
the Silicon Valley Lab in the turn following the Almaden answer and it does not
match an intent, Alma does the correction, and vice versa for answers to the Silicon
Valley Lab inquiry.

142 Chapter 6 Sequence Management UX Patterns

6.4 B4 Sequence Closers
In this chapter, we have seen several patterns in which users initiate repair on a
prior utterance in third position, that is, after the completion of an action pair.
Users or the agent do this when they experience some trouble with hearing or un-
derstanding parts of that action pair. Alternatively, speakers in natural conversation
may close the action pair sequence in third position, with so-called “sequence-
closing thirds” [Schegloff 2007]. Sequence closers can enable users to indicate that
they are done with a sequence or activity and ready to move on. Sequence closers
include several intents, including acknowledgments (e.g., okay, ok, all right, got it),
appreciations (e.g., thank you, thanks, ok thanks), laughter tokens (e.g., haha, ha ha,
lol), positive assessments (e.g., great!, excellent, awesome!), or negative assessments
(e.g., too bad, oh well, that sucks).

Although it is not supported in most of today’s chatbots and voice assistants,
sequence closing is an implicit indicator of agent success and an alternative to the
user-initiated repairs presented above. In such cases, the user expands the base
sequence in a way that closes it and moves on (Pattern B4.0, Example 6.28).

Pattern B4.0 Sequence Closer (helped).
1 U: INQUIRY/REQUEST

2 A: RESPONSE

3 U: ACKNOWLEDGMENT/ASSESSMENT/LAUGHTER

4 <OPTIONAL PAUSE>

5 A: LAST TOPIC CHECK

Example 6.28 Sequence Closer (helped).
1 U: what’s your favorite movie?

2 A: I guess I like movies with a strong AI lead.

3 U: ok

4 (2.0)

5 A: Anything else?

In this pattern, the user does the first part of an action pair, such as an inquiry or
open request (line 1), and the agent answers or grants it (line 2). Because the agent
succeeded in doing something for the user, we capture this fact by setting a context
variable, helped, to true. If the agent does not succeed in answering an inquiry or
granting a request, this variable remains false. In third position [Schegloff 2007],
the user closes the sequence with an acknowledgment (line 3) instead of expanding
it with a repair initiator, like “what did you say?” or “define AI.”

Because the user closes the inquiry sequence, the agent does not need to say
anything more about that sequence. So after the acknowledgment (line 3), the agent

6.4 B4 Sequence Closers 143

pauses (line 4) and waits for the user to make another request or say something
else. In a voice-based interface, the pause should be 2–3 seconds, but in a text-
based interface, it should be longer, around 20–30 seconds. If the user does not take
another turn and the agent has provided some help (i.e., helped equals true), the
agent will check to see if the user has another request or topic (line 5). If the user says
no, the agent will move to close the conversation. The pause in this pattern (line 4)
is optional. If it is removed, the agent simply checks for a last topic immediately
(line 5).

When the agent has provided some kind of help to the user, it will ask if the user
needs “anything else,” but if it has not yet done anything for the user, it withholds
this last topic check (Pattern B4.1, Example 6.29).

Pattern B4.1 Sequence Closer (not helped).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: ACKNOWLEDGMENT/ASSESSMENT/LAUGHTER

Example 6.29 Sequence Closer (not helped).
1 U: what’s in theaters?

2 A: I’m afraid I can’t look up movies at this time.

3 U: too bad

Here the agent fails to grant the user’s request for movie recommendations (line
1). It recognizes the action, but it tells the user that it cannot fulfill such requests
(line 2). Because the agent fails to provide help, the helped context variable remains
false. So when the user closes the sequence (line 3), the agent does not move to close
the conversation with a last topic check, such as “Anything else today?” Instead it
simply waits for another utterance by the user. Technically, the dialog logic returns
an empty response.

In addition to acknowledgments, assessments, and laughter, users may also
close a sequence with an appreciation. Unlike the other sequence closers, appreci-
ations invite a response from the agent (Pattern B4.2, Example 6.30).

Pattern B4.2 Sequence Closer Appreciation (helped).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: APPRECIATION

4 A: APPRECIATION RECEIPT

5 <OPTIONAL PAUSE>

6 A: LAST TOPIC CHECK

144 Chapter 6 Sequence Management UX Patterns

Example 6.30 Sequence Closer Appreciation (helped).
1 U: what’s your favorite movie?

2 A: I guess I like movies with a strong AI lead.

3 U: thanks

4 A: You’re welcome.

5 (2.0)

6 A: Anything else?

In this variation of the pattern, the agent accepts the user’s display of appreciation,
“thanks” (line 3), with the standard receipt, “You’re welcome” (line 4). It then
pauses (optional) and checks for a last topic (line 6). Thanking the other in natural
conversation is a strong implicit indicator of the success of an inquiry or request
sequence or any other action that provides some kind of help. Appreciations should
be tracked as a measure of the conversation’s success.

As with the other sequence closers, appreciation sequences are sensitive to
whether or not the agent has provided help to the user during the course of the
conversation. If the user offers appreciation when the agent has not provided help,
the agent refuses to take credit (Pattern B4.3, Example 6.31).

Pattern B4.3 Sequence Closer Appreciation (not helped).
1 U: INQUIRY/REQUEST

2 A: NO ANSWER ACCOUNT

3 U: APPRECIATION

4 A: REFUTATION

Example 6.31 Sequence Closer Appreciation (not helped).
1 U: what’s in theaters?

2 A: I’m afraid I can’t look up movies at this time.

3 U: thanks

4 A: I don’t think I did anything.

When the agent accounts for its inability to grant the request for movie recom-
mendations (line 2), the user nonetheless offers appreciation (line 3). Because the
helped context variable is still false, the agent refutes the appreciation (line 4). This
displays a bit more intelligence than invariably saying “you’re welcome” every time
the user says “thank you.”

While we have seen users thank the agent for granting a request and failing
to do so, they may also thank agents for repairing a prior utterance (Pattern B4.4,
Example 6.32).

6.5 B5 Sequence Abort 145

Pattern B4.4 Sequence Closer (repaired).
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: APPRECIATION

6 A: APPRECIATION RECEIPT

7 U: DETAIL

8 A: GRANT

Example 6.32 Sequence Closer (repaired).
1 U: can you recommend a restaurant nearby?

2 A: What kind of food do you want?

3 U: what’s an example?

4 A: Around here, Mexican, Japanese or Indian.

5 U: thanks

6 A: You’re welcome!

7 U: um, Japanese

8 A: Shogun Sushi is located on First and Taylor.

In this variation of the pattern, the user is in the middle of an open request with
multiple sequence expansions. When the agent tries to elicit a detail required for
the request (line 2), the user initiates a repair (line 3). When the user does this, a
context variable, repaired, is set to true. It means the prior utterance was a repair. It
is then set back to false on each non-repair agent utterance. If the user then offers
appreciation for the repair (line 5), the agent will simply receipt the appreciation
(line 6), but not move on to check for a last topic. Moving to close the whole
conversation (C4) before completing the open request (A2) sequence would show
incompetence on the part of the agent.

6.5 B5 Sequence Abort
As we saw in the previous section, users can successfully close a sequence with a
variety of sequence closers or “sequence-closing thirds” [Schegloff 2007]. However,
users can also abandon a failing sequence without completing or closing it, with
phrases like “never mind,” “nvm,” “forget it,” “I give up,” etc. This might be done
when the agent fails to understand the user or to return the desired information
and the user wishes to stop trying. The sequence abort is a good implicit indicator
of sequence failure, which should be tracked as a conversation metric in addition
to sequence closers (Pattern B5.0, Example 6.33).

146 Chapter 6 Sequence Management UX Patterns

Pattern B5.0 Sequence Abort.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. OFFER OF HELP

Example 6.33 Sequence Abort.
1 A: What do you mean?

2 U: never mind

3 A: Whatever you say. What can I do for you?

In this pattern, the user aborts the current sequence with “never mind” (line 2).
This can be done after any agent utterance, but is most useful in the context of a
failing sequence, such as when the agent requests a paraphrase (line 1). Rather than
working to repair the sequence, the user can explicitly give up. This functions in a
similar way to the escape command in command-line or graphical user interfaces.
Of course, the user can also abandon the current sequence simply by making
another inquiry or request. When the user aborts the sequence (line 2), the agent
in this pattern acknowledges the abort and reissues its generic offer of help (line
3). This invites the user to try another inquiry or request.

Instead of extending a generic offer of help when the user aborts a failing se-
quence, the agent may alternatively offer a capability description. This more specif-
ically addresses the fact that the user is encountering trouble and offers to review
its capabilities as a possible solution (Pattern 5.1, Example 6.34).

Pattern B5.1 Sequence Abort Capability Offer Accepted.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. CAPABILITY OFFER

4 U: ACCEPTANCE

5 A: CAPABILITY REPORT

Example 6.34 Sequence Abort Capability Offer Accepted.
1 A: What do you mean?

2 U: forget it

3 A: Whatever you say. Want to know what I can do?

4 U: sure

5 A: I haven’t been trained yet. I can only make small

talk, tell some jokes or ask some trivia questions.

I can tell you more about each of these.

Here the user aborts (line 2) a failing sequence (line 1), and the agent offers to
describe its capabilities in response (line 3). If the user accepts the offer, the agent

6.6 Conclusion 147

describes its general capabilities (line 5), as it does for a user-initiated capability
check (C3). If the user declines the capability offer, the agent checks for last topic
(line 5, pattern B5.2, Example 6.35).

Pattern B5.2 Sequence Abort Capability Offer Declined.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. CAPABILITY OFFER

4 U: DECLINATION

5 A: ACKNOWLEDGMENT. LAST TOPIC CHECK

Example 6.35 Sequence Abort Capability Offer Declined.
1 A: What do you mean?

2 U: never mind

3 A: Whatever you say. Want to know what I can do?

4 U: no

5 A: Okay. Anything else?

By offering the capability description rather than simply giving it, the agent allows
the user to decide. This is a good practice if the user has already heard the capability
description in the current conversation and if it is a long response. Especially in a
voice interface, giving a long, unwanted agent utterance should be avoided.

6.6 Conclusion
In this chapter, we have presented multiple conversational UX patterns for man-
aging the interaction at the sequence level (B). This is the level of conversational
activities, such as user inquiries, open requests, storytelling, instruction-giving,
quizzes, agent inquiries and more (A). Overall, sequence-level management in-
volves repairing a previous utterance in order to complete a sequence (B1-B3),
closing a sequence (B4), or aborting a sequence (B5). In these action types, we
can see how conversation is a distinctively interactive form of natural language
use, unlike prose, fiction, poetry, etc. Far from inconsequential talk or “chit chat,”
sequence-level management (B) serves a critical function: it enables the partici-
pants to achieve mutual understanding, or “intersubjectivity” [Schegloff 1992b], at
least for practical purposes.

From this chapter you should gain a technical understanding of two kinds of
sequence expansion in the Natural Conversation Framework: repair and sequence
closing. These include multiple patterns for user or agent to resolve troubles in
hearing or understanding what the other said, as well as patterns for transitioning

148 Chapter 6 Sequence Management UX Patterns

to a new topic without doing so before the other is ready. While repair and se-
quence closing operate at the level of the action pair sequence (e.g., inquiry-answer,
request-granting) or the extended telling sequence (e.g., storytelling, instruction-
giving), the patterns in the next chapter involve conversation management at a
different level.

7Conversation
Management UX
Patterns
In the previous chapter, we addressed UX patterns for conversation management at
the sequence level; in this chapter, we cover conversation management at the con-
versation level, or session level. While the former concern the opening, completion,
and closing of particular action sequences, such as inquiry or request sequences,
the latter concern the opening, completion, and closing of the whole encounter.

Although they are also sometimes viewed as superficial pleasantries or incon-
sequential “chit chat” from a content perspective, conversation-level management
practices are important from the perspective of the social relationship. They are
the means through which we engage, disengage, and re-engage with other people.
Before we can talk about any particular content, we must first align our attention
with another person, communicate an intent to interact, and secure their commit-
ment to interacting with us. Likewise, agreeing on when to stop talking by closing
the encounter is equally important. The conversation-level UX patterns enable this
management of engagement with the user in a natural way.

The conversation-level management patterns (C) in our Natural Conversa-
tion Framework can be broken down into five pattern types and 39 subpatterns
(Table 7.1). The five pattern types include ways in which the agent (C1) or the user
(C2) can open the conversation, ways they can talk about the agent’s capabilities
(C3), and ways they can end the conversation either by closing it (C4) or disengaging
from each other in other ways.

7.1 C1 Opening (Agent)
Natural conversations are typically opened: we do not just start with the first order of
business. We first secure the attention of the intended recipient and establish that

150 Chapter 7 Conversation Management UX Patterns

Table 7.1 Conversation-level management patterns

C1.0 Opening Greeting (Agent) C3.0 General Capability Check

C1.1 Opening Self-Identification (Agent) C3.1 Capability Expansion

C1.2 Opening Name Request (Agent) C3.2 Specific Capability Check

C1.3 Opening Direct Address (Agent) C3.3 Utterance Suggestion

C1.4 Opening Welfare Check (Agent)

C1.5 Opening Organization Offer of Help (Agent) C4.0 Last Topic Check (Agent)

C1.6 Opening Authentication (Agent) C4.1 Last Topic Check (User)

C1.7 Organizational Problem Request (Agent) C4.2 Pre-Closing (User)

C4.3 Closing Farewell (User)

C2.0 Greeting (User) C4.4 Closing Appreciation (Organizational)

C2.1 Summons (User) C4.5 Closing Name Request (Agent)

C2.2 Welfare Check (User) C4.6 Closing Success Check (Affirmed)

C2.3 Displaced Greeting (User) C4.7 Closing Success Check (Disaffirmed)

C2.4 Displaced Welfare Check (User) C4.8 Closing Success Check Reopened

C2.5 Reciprocated Welfare Check (User) C4.9 Closing Offer (Affirmed)

C2.6 News Check (User) C4.10 Closing Offer (Disaffirmed)

C2.7 News Check Capability (User)

C2.8 Self-Identification (User) C5.0 Transfer Successful

C2.9 Name Correction (User) C5.1 Transfer Aborted

C2.10 Name Request (User) C5.2 Recipient Correction

C5.3 Offense Complaint (Agent)

C5.4 Offense Complaint (User)

we are talking to each other. “Speakers without hearers can be seen as ’talking to
themselves.’ Hearers without speakers ’hear voices”’ [Schegloff 1968, p. 1093]. The
ability to open a conversation with another person is thus fundamental to conversa-
tional competence. Elements that are common in openings include greetings (e.g.,
“hello”), welfare checks (e.g., “how are you?”), news checks (e.g., “what’s up?”), self-
identifications (e.g., “I’m Dave”), identification requests (e.g., “what’s your name?”),
and more [Schegloff 1968]. These are not actions that people do in other kinds of
natural language use, like web search or writing prose; they are specifically charac-
teristic of conversation.

Openings can be initiated by either the user or the agent. Typically the user
initiates the conversation by opening the application, but always-on agents may
initiate conversations based on particular trigger events, for example, a reminder
to take medication or a delayed flight. Our agent opening pattern, in which the
agent talks first, includes several components commonly found in ordinary human

7.1 C1 Opening (Agent) 151

conversations and service encounters: greeting, direct address, self-identification,
organization identification, welfare check, news check, name request, offer of help, per-
sonal information request, capability description, problem request, and more. In our
implementation, these components can be configured by setting various context
variables to create several subpatterns, which can be set when the conversation
session is initialized.

By default, the agent opening to the conversation begins with the minimal
opening: a greeting (Pattern C1.0, Example 7.1).

Pattern C1.0 Opening Greeting (Agent).
1 A: GREETING

Example 7.1 Opening Greeting (Agent).
1 A: Hello.

If no context variables are preset, the agent simply utters a greeting, such as “Hello,”
“Hi there,” “Hi,” etc. (line 1). But presetting certain context variables adds addi-
tional components and subpatterns to the simple greeting. We offer several but
not all possible combinations below.

Conversational openings often contain an exchange of names. The names may
be known in advance, among people previously acquainted, and recognized in the
opening, for example, in a telephone call. Or if they are unknown, names may be
volunteered and/or elicited in the opening. Since conversational systems tend to
have personas, the name of the agent can be given in the opening. This is done in
our implementation by presetting the agent name context variable (Pattern C1.1,
Example 7.2).

Pattern C1.1 Opening Self-Identification (Agent).
1 A: GREETING. SELF-IDENTIFICATION.

2 U: <RESPONSE>

Example 7.2 Opening Self-Identification (Agent).
1 A: Hello. I’m Alma.

2 U: hi

In this pattern, the agent gives its name after greeting the user (line 1). The agent
then leaves it to the user to return the greeting and/or introduce the first topic.
Openings to conversations are transitions to the business of the interaction or the
reason for the call [Schegloff 1968, p. 1078]. In an agent opening in our implemen-
tation, the agent can introduce the first topic of the conversation if you set the first

152 Chapter 7 Conversation Management UX Patterns

topic context variable. The first topic is a generic slot after the greetings and agent
identification that can be used for a wide variety of actions.

One option for the first topic slot is to elicit the user’s name and thereby extend
the opening. This is done by setting the first topic variable to “name request”
(Pattern C1.2, Example 7.3).

Pattern C1.2 Opening Name Request (Agent).
1 A: GREETING. SELF-IDENTIFICATION. NAME REQUEST.

2 U: NAME.

3 A: GREETING, DIRECT ADDRESS.

Example 7.3 Opening Name Request (Agent).
1 A: Hello. I’m Alma. What’s your name?

2 U: Dave

3 A: Hi, Dave.

After self-identifying, the agent can request the user’s name (line 1). The agent will
then expect, but not require, a person name in the next turn (line 2) and will respond
appropriately with a directly addressed greeting (line 3). If the user does some other
action in that slot, say a capability check or an inquiry, the agent gives up on trying
to elicit the user’s name.

If the user’s name is already known from a prior conversation or external data-
base, the agent can use direct address in the first turn (Pattern C1.3, Example 7.4).

Pattern C1.3 Opening Direct Address (Agent).
1 A: GREETING, DIRECT ADDRESS.

2 U: <RESPONSE>

Example 7.4 Opening Direct Address (Agent).
1 A: Hello, Dave.

2 U: hi

By presetting the user name context variable, Alma will insert the user’s name after
the greeting (line 1). This enables the agent to “recognize” the user again after a
prior conversation. Doing so will also create the expectation on the part of the user
that the agent will remember other things from their previous interaction, which
can be persisted by saving and reloading other context variables.

In addition to the first-topic slot, our agent opening pattern includes a second-
topic slot. Any of the action types that go in the first-topic slot can also be set as a
second topic. Other elements that are common in openings to natural conversations
are welfare checks (Pattern C1.4, Example 7.5).

7.1 C1 Opening (Agent) 153

Pattern C1.4 Opening Welfare Check (Agent).
1 A: GREETING. SELF-IDENTIFICATION. NAME REQUEST.

2 U: NAME.

3 A: GREETING, DIRECT ADDRESS. WELFARE CHECK.

4 U: WELFARE REPORT (NEUTRAL/POSITIVE/NEGATIVE)

5 A: WELFARE RECEIPT (NEUTRAL/POSITIVE/NEGATIVE)

Example 7.5 Opening Welfare Check (Agent).
1 A: Hello. I’m Alma. What’s your name?

2 U: Bob

3 A: Hi, Bob. How are you?

4 U: fine/I’m great!/terrible!

5 A: That’s good./Great to hear!/I’m sorry to hear that.

After eliciting the user’s name (lines 1–2), the agent then further extends the open-
ing by checking the user’s welfare with a “how are you?” (line 3). The agent then
expects a welfare report in the next turn (line 4). Depending on whether the report
is neutral (e.g., “fine”), positive (e.g., “I’m great!”), or negative (e.g., “terrible!”), the
agent will respond differently (line 5). Once the user has reported his or her cur-
rent welfare, the agent should remember that it has been given and should not
be elicited again in the same conversation. This can be done by setting a context
variable, say welfare check, to true.

Each of the agent opening patterns above are appropriate of ordinary conver-
sations between individuals: friends, family, strangers, etc. These may be useful
for agents intended to be virtual friends or companions or for use cases in which
the user is expected to introduce the first topic after the opening. However, most
virtual agent applications today play the role of some kind of personal assistant or
customer service representative. In such cases, the first topic of the conversation
is typically an offer of help. And in the case of service encounters, an organization
identification may be appropriate (Pattern C1.5, Example 7.6).

Pattern C1.5 Opening Organization Offer of Help (Agent).
1 A: GREETING. SELF-IDENTIFICATION. ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP.

2 U: REQUEST/PROBLEM REPORT

Example 7.6 Opening Organization Offer of Help (Agent).
1 A: Hello. This is Alma at Virtual Airlines.

How can I help you?

2 U: I’d like to book a flight

154 Chapter 7 Conversation Management UX Patterns

This is the canonical opening for a service encounter. In the first turn, the agent
produces a greeting, a self-identification, an organization identification, and an
offer of help (line 1). Service agents typically produce these components, rushing
through the transitions, so that the service seeker’s first turn can be his or her
request or reason for the call [Whalen and Zimmerman 1987]. This adaptation of
ordinary telephone openings streamlines them for speed and efficiency.

However, some kinds of service encounters require authentication before help-
ing the customer. The organization may require the customer to give a name, ad-
dress, telephone number, account number, Social Security number, or other bits of
identifying information as a prerequisite for providing service, or indeed for talk-
ing to the caller at all. For these use cases, the first-topic slot can be used to elicit
authenticating information and the second-topic slot for the offer of help (Pattern
C1.6, Example 7.7).

Pattern C1.6 Opening Authentication (Agent).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

IDENTIFIER REQUEST

2 U: IDENTIFIER

3 A: APPRECIATION. OFFER OF HELP

4 U: REQUEST/PROBLEM REPORT

Example 7.7 Opening Authentication (Agent).
1 A: Hi. I’m Alma at Virtual Communications.

What is your account number?

2 U: five nine two zero seven zero

3 A: Thank you. What can I do for you?

4 U: I want to upgrade my Internet package

Here the agent uses the first-topic slot to elicit the user’s account number (lines
1–2). The system can use the account number to authenticate the user or access
the user’s electronic record before proceeding. After authenticating the account
number, the agent then offers to help the user (line 3). Of course, in some cases,
the number of topic slots must be increased to handle multiple bits of identifying
information. This practice is an extension of the ordinary practice of asking the
caller to self-identify, usually with only a name.

Other elements of ordinary conversational openings can also be inserted into
organizational ones to create a more friendly style. Most often this is done by
including a welfare check (Pattern C1.7, Example 7.8).

Pattern C1.7 Organizational Problem Request (Agent).
1 A: GREETING. ORGANIZATION IDENTIFICATION.

WELFARE CHECK

7.2 C2 Opening (User) 155

2 U: WELFARE REPORT

3 A: WELFARE RECEIPT. PROBLEM REQUEST

4 U: PROBLEM REPORT

Example 7.8 Organizational Problem Request (Agent).
1 A: Hello. This is Virtual Mental Wellness.

How’s it going?

2 U: not so well

3 A: I’m sorry to hear that. What’s your problem today?

4 U: I’ve been feeling depressed lately

Setting the first-topic variable to “welfare check” and the second-topic variable to
“problem request” will make our agent ask how the user is doing (line 1) before
inviting the user to report his or her problem or reason for contacting the orga-
nization (line 3). If an agent asks about the user’s welfare, it should be able to
differentiate among neutral, positive, and negative responses from the user.

When your agent takes the first turn in the conversation, you have the opportu-
nity to raise the initial topic(s) and therefore to attempt to set the agenda for the
interaction. We tend to use the offer of help as the first or second topic because
we tend to build multipurpose agents that can provide more than one kind of ser-
vice, for example, destination, attraction, and flights recommendations. However,
if your agent is very narrow in scope and does only one thing, then that activity
should be initiated in the first- or second-topic slots.

7.2 C2 Opening (User)
We have demonstrated several patterns through which a virtual agent can open a
conversation with a user, but users can also open conversations or initiate opening-
relevant sequences. In some use cases, the user may need to take the first turn in
the conversation, for example, if the agent application is already running. Like the
agent, the user may start with a simple greeting (Pattern C2.0, Example 7.9).

Pattern C2.0 Greeting (User).
1 U: GREETING

2 A: GREETING

Example 7.9 Greeting (User).
1 U: hi

2 A: Hello.

The simplest agent response to a user’s greeting (line 1) is simply a return greeting
(line 2). This is a perfectly appropriate response, although minimal, and it gives the
floor back to the user to introduce the first topic of the conversation.

156 Chapter 7 Conversation Management UX Patterns

Alternatively, the user may also open or reopen the conversation with a summons
[Schegloff 1968, Frohlich and Luff 1990, p. 213], either direct address (e.g., “Alma?”)
or an impersonal one (e.g., “are you there?,” “can you hear me?”) (Pattern C2.1,
Example 7.10).

Pattern C2.1 Summons (User).
1 U: SUMMONS

2 A: GREETING/CONTINUER

Example 7.10 Summons (User).
1 U: Alma?/are you there?

2 A: Hello./Hello again./Yes?/What?

In response to direct address or an impersonal summons (line 1), the agent may
simply answer the summons with a greeting, subsequent greeting, or continuer
(line 2). A user-initiated summons is especially useful in voice interfaces to check
to see if the agent is available or if it has timed out or powered off.

Beyond the minimal responses to user greetings and summonses, the agent
may show a bit more initiative by immediately following the return greeting with a
welfare check (Pattern C2.2, Example 7.11).

Pattern C2.2 Welfare Check (User).
1 U: GREETING

2 A: GREETING. WELFARE CHECK

3 U: WELFARE REPORT

4 A: WELFARE RECEIPT. OFFER OF HELP
.
.
.

5 U: GREETING

6 A: GREETING

Example 7.11 Welfare Check (User).
1 U: hi

2 A: Hello. How are you?

3 U: fine

4 A: That’s good. How can I help you?
.
.
.

5 U: hi

6 A: Hi there.

In this pattern, the user starts the conversation with a greeting (line 1) and the agent
returns the greeting and initiates a welfare check sequence (line 2). The agent then
expects the same kinds of responses as in pattern C1.4 (line 3). The agent may follow

7.2 C2 Opening (User) 157

the welfare receipt with another action such as offer of help or problem request.
As noted above, when a user reports his or her current welfare (line 3), the agent
should remember this by setting a welfare check variable to true. Then if the user
happens to extend a greeting somewhere in the middle of the conversation (line 5),
the agent will now simply return the greeting and will withhold the welfare check
(line 6).

In a service encounter, in which agents typically rush through the transitions
between the various components of their opening turn, users may nonetheless re-
ciprocate a greeting or welfare check or a name request. The agent must be able
to handle each of these actions. For example, if the agent opens the conversation
and offers help, the user may nonetheless return the greeting (Pattern C2.3, Exam-
ple 7.12).

Pattern C2.3 Displaced Greeting (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP.

2 U: GREETING

3 A: GREETING. WELFARE CHECK.

4 U: WELFARE REPORT

5 A: WELFARE RECEIPT. OFFER OF HELP.

Example 7.12 Displaced Greeting (User).
1 A: Hi. I’m Alma from IBM Research. How can I help you?

2 U: hi

3 A: Hello. How are you?

4 U: fine

5 A: That’s good. What do you need today?

Here, even though the agent invites the user’s request at the end of its first turn
(line 1), the user instead returns the greeting (line 2) from the beginning of that
turn. The agent may return the greeting and issue a welfare check (line 3). After
acknowledging the user’s welfare report (line 4), the agent may offer to help again
(line 5).

Similarly, if the agent checks the user’s welfare, the user may reciprocate the
concern in the next turn. Even though users know that machines do not have
feelings, they are still likely to participate in this form of talk (Pattern C2.4, Ex-
ample 7.13).

Pattern C2.4 Displaced Welfare Check (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

WELFARE CHECK

2 U: WELFARE REPORT. WELFARE CHECK

3 A: WELFARE REPORT

158 Chapter 7 Conversation Management UX Patterns

Example 7.13 Displaced Welfare Check (User).
1 A: Hi. I’m Alma from IBM Research. How are you?

2 U: great! how are you?

3 A: Can’t complain. It’s not in my programming.

In this pattern, instead of simply reporting his or her welfare, the user immediately
returns the welfare check (line 2). The agent should then be able to report its welfare
(line 3). Because the agent’s welfare is fictional, these responses are a good slot to
put a variety of humorous or witty comments to delight the user.

The user may initiate a welfare check at other places in the conversation, al-
though it will most often be toward the beginning of the interaction (Pattern C2.5,
Example 7.14).

Pattern C2.5 Reciprocated Welfare Check (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

WELFARE CHECK

2 U: WELFARE REPORT

3 A: WELFARE RECEIPT. OFFER OF HELP

4 U: WELFARE CHECK

5 A: WELFARE REPORT

Example 7.14 Reciprocated Welfare Check (User).
1 A: Hi. I’m Alma from IBM Research. How are you?

2 U: I’m fantastic!

3 A: That’s great to hear! How can I help you?

4 U: how are you doing?

5 A: You know, livin’ the dream!

Again, users do not always respond with the kind of action projected by the agent’s
previous utterance [Szymanski and Moore 2018]. Here, after acknowledging the
user’s current welfare (line 2), the agent immediately offers help (line 3). But instead
of making a request or reporting a problem, the user reciprocates the welfare check
(line 4). The agent then reports its own welfare in a light-hearted manner (line 5).

An alternative to the welfare check that is common in the openings to ordinary
conversations is the news check, for example, “what’s new?,” “what’s up?,” “what’s
happening?,” “anything new?,” etc. Unlike the welfare check, the proper response
to the news check is either the reporting of some newsworthy event or of the absence
of news, for example, “nothing,” “not much,” “same old, same old,” etc. Because
such news reports can take so many different forms, most unrelated to the purpose
of the application, they are challenging for virtual agents to recognize and parse.
Consequently, we recommend using agent-initiated welfare checks instead of news

7.2 C2 Opening (User) 159

checks. But if the user initiates a news check, the agent can produce some simple
responses (Pattern C2.6, Example 7.15).

Pattern C2.6 News Check (User).
1 U: NEWS CHECK

2 A: NO-NEWS REPORT

3 U: SEQUENCE CLOSER

Example 7.15 News Check (User).
1 U: what’s up?

2 A: Same old, same old.

3 U: oh well

The simplest and safest response to a news check for the agent is a report of no news
(line 2). This is a perfectly appropriate response, and it both moves the conversation
along and avoids the initiation of a tangent or distraction from the task at hand.

Responding to a news check with a substantive or humorous news report re-
quires a bit more design. In either case, the agent should be prepared for follow-up
inquiries about the news given. One possibility is to use the news check as an op-
portunity to mention new capabilities of the agent (Pattern, C2.7, Example 7.16).

Pattern C2.7 News Check Capability (User).
1 U: NEWS CHECK

2 A: NEWS REPORT

3 U: FOLLOW-UP INQUIRY

4 A: ANSWER

5 U: SEQUENCE CLOSER

Example 7.16 News Check Capability (User).
1 U: what’s new?

2 A: I can now help you make restaurant reservations!

3 U: does that work in San Jose?

4 A: San Jose is one of my areas of coverage.

5 U: Cool!

In this case, when asked “what’s new?” (line 1), the agent reports a new capability
that it recently gained (line 2). The user then asks a follow-up inquiry about that
capability (line 3), which the agent can answer (line 4). Using a recent feature of the
application as news can be efficient because you will likely already be building out
intents and responses around that feature.

In addition to greetings and welfare checks, users may also reciprocate the self-
identification near the agent’s opening, with utterances like “my name is Dave,”
“I’m Peggy,” “call me Bob,” and the like (Pattern C2.8, Example 7.17).

160 Chapter 7 Conversation Management UX Patterns

Pattern C2.8 Self-Identification (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP

2 U: NAME GIVING

3 A: DIRECT ADDRESS. OFFER OF HELP

Example 7.17 Self-Identification (User).
1 A: Hi. I’m Alma from IBM Research. How can I help you today?

2 U: my name is Dave

3 A: Hi, Dave! What can I do for you?

After greeting the user and identifying itself, the agent offers to help the user (line 1).
But instead of making a request, the user self-identifies as “Dave” (line 2). Our agent
then acknowledges the name by using it to directly address the user and reissue
the offer of help (line 3). Even if your application does require the user’s name, it
is useful to support this pattern, especially if your agent gives its name, because it
is natural for users to reciprocate.

The user self-identification pattern (C2.8) can also be combined with the agent
opening using the name request pattern (C1.2). Users can use the former to repair
the latter (Pattern C2.9, Example 7.18).

Pattern C2.9 Name Correction (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

NAME REQUEST

2 U: NAME GIVING

3 A: <RECOGNITION FAILURE>

4 U: NAME GIVING

5 A: APOLOGY. DIRECT ADDRESS. OFFER OF HELP

Example 7.18 Name Correction (User).
1 A: Hi. I’m Alma from IBM Research. What’s your name?

2 U: shun

3 A: What do you mean?

4 U: my name is Shun/that is my name

5 A: Oh, sorry. Hi, Shun. How can I help you?

In this example, the agent requests the user’s name (line 1), but fails to recognize
it as a name (line 3). This is inevitable given the wide range of names both within
and across cultures. However, there is a natural way to repair this trouble: repeating
the name with additional words to frame it, “my name is Shun” (line 4). Additional
framing, such as “my name is . . . ,” helps Alma recognize this user’s action as name
giving. Alternatively, if the user says, “that is my name” (line 4), without repeating

7.3 C3 Capabilities 161

the name, the agent should still be able to handle it. This is a bit more complex
because it means that the dialog logic must capture the current user input and
the previous user input for every user utterance. In this case it would then set the
previous one to the context variable user name.

Just as users may volunteer their names even when the agent did not ask for
it, users may also request the agent’s name when it does not provide one (Pattern
C2.10, Example 7.19).

Pattern C2.10 Name Request (User).
1 A: <ANY UTTERANCE>

2 U: NAME REQUEST

3 A: NAME GIVING

Example 7.19 Name Request (User).
1 A: Hello. This is IBM Research. How can I help you?

2 U: what’s your name?

3 A: My name is Alma.

In this pattern, anywhere in the interaction, the user may request the agent’s name
with utterances like, “what’s your name?,” “do you have a name?,” “what can I call
you?,” and the like (line 2). In response, the agent simply gives the value for the
context variable agent name, with or without additional framing (line 3). Because
exchanging names and using them to refer to oneself or the other is so basic to
human conversation, your agent should be able to give its name, even if it does not
otherwise volunteer it.

We see then at least nine different patterns for combining the standard elements
of openings in ordinary conversations and in service encounters. There are of
course more combinations not covered here.

7.3 C3 Capabilities
One challenge with conversational interfaces is the discoverability of their features
[Norman 1988]. While graphical user interfaces can provide menus, icons, and but-
tons that represent features or sets of features, conversational interfaces are more
like command lines, which require users to know what the system can do. A common
approach we have observed in chatbot UX design to the problem of feature discov-
erability is to insert lengthy descriptions of capabilities into the openings of the
interaction. While this approach has the advantage of providing users some global
instruction right before they need to take action, it suffers from some problems.
First, the longer the capability description, the more cumbersome it becomes in
the opening of the conversation, preventing the user from getting started. Second,

162 Chapter 7 Conversation Management UX Patterns

a global description of the agent’s capabilities may not be equally relevant to all
users. Repeat or expert users already know how to talk to the agent. For them, in-
serting the lengthy description just gets in the way. On the other hand, novice users
may require different levels of detail on different features.

We offer an alternative approach: talk to the agent about what it can do. For a
virtual agent to be intelligent and conversational, it must be able to talk about what
it can and cannot do. In fact, this is one of the main advantages of conversational
agents; they can be self-explicating. As argued in Chapter 4 under the six basic
navigation actions proposed, users should always be able to ask the user, “what
can you do?,” “what do you know?,” “how can you help me?,” “capabilities please,”
and the like. The capability check can be used as the most general way to start
a conversation with the agent about its capabilities (Pattern C3.0, Example 7.20)
instead of telling the user about the agent’s capabilities every time.

Pattern C3.0 General Capability Check.
1 U: GENERAL CAPABILITY CHECK

2 A: GENERAL CAPBABILITY DESCRIPTION

3 U: SEQUENCE CLOSER

Example 7.20 General Capability Check.
1 U: what can you do?

2 A: I haven’t been trained yet. I can only make small talk, tell some

jokes or ask or answer some trivia questions.

3 U: ok

By initiating a capability check (line 1), the user can elicit a global description of
what the agent can do (line 2). This is critical since virtual agents tend to have
a relatively narrow domain of knowledge and range of abilities. And the kind of
commonsense background knowledge about what people in certain job roles can
do, for example store clerk, bank teller, or hotel concierge, may be unavailable to the
user or inapplicable to your virtual agent. On the other hand, if the user already
knows what the agent does, he or she simply does not initiate the capability check,
avoiding unnecessary talk. And if your application detects the first time a user
interacts with it, you might put the general capability description in the first-topic
slot (C1) and then remove it for subsequent sessions. Furthermore, if your general
capability description must be longer than a sentence or two, you should present
it as an extended telling (A3), especially in voice interfaces.

In addition to a global description of capabilities, your agent should be able to
say more about what it can do. The agent should at least be able to expand on the

7.3 C3 Capabilities 163

topics mentioned in it (Pattern C3.1, Example 7.21), as well as to repair it like any
other utterance (B2).

Pattern C3.1 Capability Expansion.
1 U: GENERAL CAPABILITY CHECK

2 A: GENERAL CAPABILITY DESCRIPTION

3 U: SPECIFIC CAPABILITY EXPANSION REQUEST

4 A: SPECIFIC CAPABILITY EXPANSION

5 U: ACKNOWLEDGMENT

6 U: SPECIFIC CAPABILITY EXPANSION REQUEST

7 A: SPECIFIC CAPABILITY EXPANSION

8 U: SEQUENCE CLOSER

Example 7.21 Capability Expansion.
1 U: what can you do?

2 A: I haven’t been trained yet. I can only make small talk, tell some

jokes or ask or answer some trivia questions.

3 U: tell me more about small talk

4 A: You know, things like, how’s the weather?, did you see the game?,

what’s your favorite movie?... mindless topics like that.

5 U: ok

6 U: tell me more about trivia

7 A: I can quiz you about computer trivia. See how much you know about

computer history.

8 U: ok

After eliciting a general description of the agent’s capabilities (lines 1–2), the user
asks the agent to expand on one of the topics mentioned (line 3), to which the
agent provides an expansion of that particular topic (line 4). After acknowledging
the expansion (line 5), the user requests an expansion on one of the other topics
(line 6). The agent provides an expansion of that topic too (line 7) and should
be able to expand on any topic mentioned in its general capabilities description.
Note that such topic expansions (lines 4 and 7) function somewhat differently from
paraphrases that elaborate (B2.4): while the latter say the same thing as the prior
utterance but in different words, the former provide new information not contained
in the general capabilities description.

In addition to describing what they can do, virtual agents should also be able
to talk about what they cannot do. For every application, users will ask about or
attempt to do actions that are related to the purpose of the agent but are not
currently supported or will never be supported. For example, if the agent helps
users find travel destinations and book flights, users may reasonably assume that
it might book taxi cabs or reserve tables at restaurants too. If these capabilities fall

164 Chapter 7 Conversation Management UX Patterns

outside of the scope of the application, the agent should nonetheless recognize
such an on-topic request and then inform the user that it falls outside its current
capabilities (Pattern C3.2, Example 7.22).

Pattern C3.2 Specific Capability Check.
1 U: SPECIFIC CAPABILITY CHECK/UNSUPPORTED REQUEST 1

2 A: SPECIFIC CAPABILITY DESCRIPTION 1

3 U: SPECIFIC CAPABILITY CHECK/UNSUPPORTED REQUEST 2

4 A: GENERAL CAPBABILITY DESCRIPTION

5 U: SEQUENCE CLOSER

Example 7.22 Specific Capability Check.
1 U: can you book a taxi for me?

2 A: I’m afraid I don’t have information on ground or other local

transportation at this time.

3 U: can you make a restaurant reservation?

4 A: I can recommend travel destinations, attractions or flights based

on your preferences for things to do, like museums or hiking, or

for weather, like warm and sunny.

5 U: oh ok

In this case, the user asks about a specific agent capability (line 1), which would
be perfectly reasonable to assume the agent might be able to do if it is, say, a
virtual travel agent application. In response, the agent recognizes the request type,
or intent, but indicates that it is beyond its current capabilities (line 2). The user
then asks about another specific capability (line 3), but in this case the agent does
not recognize the specific intent. Since it can recognize the “can you . . . ” portion
of the user’s request, it can recognize it as some kind of capability check, so it gives
its general capability description as a default response for idiosyncratic requests
types (line 4). You may need to create many sequences for out-of-scope user requests,
and you should budget time for creating these in your development schedule (see
Chapter 8 for more).

Finally, you can also enable your virtual agent to give examples of utterances that
it recognizes in case the user gets stuck. User utterances like, “what can I say?,”
“what should I say?,” “tell me what to say,” etc., should get the agent to suggest
various valid utterances. While this would be unnatural in most kinds of human
conversations, you might find it in conversations in which someone is teaching
another person a game or a process (Pattern C3.3, Example 7.23).

Pattern C3.3 Utterance Suggestion.
1 U: UTTERANCE SUGGESTION REQUEST

2 A: <SAMPLE UTTERANCE>

7.4 C4 Closing 165

3 U: <SAMPLE UTTERANCE>

4 A: <RESPONSE>

5 U: SEQUENCE CLOSER

Example 7.23 Utterance Suggestion.
1 U: what can I say?

2 A: Who invented the hard disk?

3 U: who invented the hard disk?

4 A: The hard disk drive was invented by IBM in 1956.

5 U: ok

Here, instead of asking the agent what it can do, the user asks the agent what he can
say (line 1). The agent then gives an example of an utterance it recognizes (line 2).
This can be randomly selected from set of user actions that are core to the applica-
tion, or they can be sensitive to the local context by selecting a sample action based
on the previous response the agent gave or based on particular entities mentioned
so far in the conversation. If the user then repeats the agent’s suggestion (line 3),
the agent should give a supported response (line 4). The utterance suggestion can
be useful when a user is still learning the conversational application.

Utterance suggestions can also be exposed to users in a different way: through
a visual user interface. If your application includes a visual display, desktop or
mobile, you can suggest user utterances on the side rather than through the con-
versation itself. In our virtual travel agent, we wrote tips, or examples of valid user
responses, for every agent utterance in the conversation. We then display these
through a ticker above the text-entry box. If users get stuck, they can look at the
scrolling tips for models of how to respond. Or expert users can hide the tips if they
find them distracting. These utterance tips are somewhat like tool tips in a graphical
user interface.

These are just some of the ways in which your virtual agent can talk about its
own capabilities and help users discover what it can do.

7.4 C4 Closing
Just as natural conversations are characteristically opened at the beginning of
the interaction, so too are they closed at their end. Speakers do not typically just
stop talking but rather methodically and collaboratively close down the encounter.
They use the activities of opening and closing to mark the boundaries between
this conversation and the next one. In other words, opening and closing create
the unit “a single conversation” [Schegloff and Sacks 1973, p. 71]. To stop talking
without closing the conversation is to create the expectation that it will be resumed

166 Chapter 7 Conversation Management UX Patterns

shortly, or rather, that the participants are in a “continuing state of incipient talk”
[Schegloff and Sacks 1973, p. 96]. While opening a conversation aligns the parties’
expectations for listening and contributing, closing aligns their expectations for
disengagement.

Conversation analysts have shown that people close conversations in a distinc-
tive way. Speakers tend not to say “goodbye” without warning. Instead, they move
toward the final farewell sequence with a “pre-closing” [Schegloff and Sacks 1973,
p. 80, Frohlich and Luff 1990, p. 214]. The pre-closing functions to check to see
if the other party wishes to continue with another topic. If the other brings up a
new topic, the conversation continues. If not, the speaker who initiated closing
will do a closing-relevant action, like an appreciation (e.g., “well thanks again!”) or
assessment (e.g., “well this was great!”), or simply bid farewell (e.g., “goodbye” or
“bye now”). This enables the speakers to coordinate their disengagement so that
no topic is missed and that the ensuing silence will not be misinterpreted as one
party failing to respond [Schegloff and Sacks 1973, p. 73].

Virtual agents should be able to handle conversation closings. Not only is this
a part of basic conversational competence, but closing an interaction with the
user has other benefits as well. First, closing enables you to determine if the user
finished his or her business versus simply stopped or got disconnected. Second,
closing creates a slot in the conversation for the agent to bring up a last topic. You
can insert a variety of actions into this last topic slot, from simple appreciations
(e.g., “Thank you for contacting IBM!”) to name requests (e.g., “Can I get your name
before you go?”), to success checks (e.g., “Did you find what you were looking for?”),
to promotions (e.g., “Would you like to hear about our current promotion?”), and
more. Our implementation of the closing pattern enables the designer to configure
a last topic as well as an agent organization. Like our conversation opening, the
configurable closing allows for a wide variety of different interaction patterns.
Several are outlined below.

As in natural conversation, both the agent and the user should be able to initiate
the closing of the encounter. In our framework, the agent can move to close the
conversation with a last topic check (e.g., “Anything else?”), and users can move to
close it with a last topic check, a pre-closing (e.g., “gotta go”), or a farewell (e.g.,
“goodbye”). Consider first the agent-initiated last topic check. The agent asks,
“Anything else?,” “Anything else I can do for you?,” or the like, after the user closes
a sequence (recall pattern B4.0) and the agent has provided some kind of help. In
this context, the user may possibly be ready to close the conversation (Pattern C4.0,
Example 7.24).

7.4 C4 Closing 167

Pattern C4.0 Last Topic Check (Agent).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: WELL-WISH

6 U: RETURN WISH/FAREWELL

7 A: FAREWELL

8 U: FAREWELL

Example 7.24 Last Topic Check (Agent).
1 U: ok

2 (2.0)

3 A: Anything else?

4 U: no

5 A: Have a good day!

6 U: you too/bye

7 A: Goodbye.

8 U: bye

In this pattern, the user closes the prior sequence with an acknowledgment (line 1),
and after a pause the agent checks to see if the user has another topic (line 3). The
agent’s last topic check is triggered by other sequence closers as well, including
appreciations, assessments, and laughter tokens (Pattern B4). When the user indicates
no additional topic (line 4), the agent moves to its last topic. If the last topic context
variable is null, the agent simply wishes the user well (line 5). The user can return
the wish, say farewell, open a new topic, and more (line 6). The agent will then bid
farewell (line 7), initiating the closing if the user returned the wish or completing
the farewell sequence, or “terminal exchange” [Schegloff and Sacks 1973, p. 73], if
the user had already bid farewell (line 6). Notice that, after the user’s return farewell
(line 8), the agent does not bid farewell a second time. It keeps track of whether it
has already done so and instead returns an empty response.

Like the agent, users can also initiate conversation closing with a last topic
check by asking “anything else?,” “are we done?,” “is that it?,” etc. (Pattern C4.1,
Example 7.25).

Pattern C4.1 Last Topic Check (User).
1 U: LAST TOPIC CHECK

2 A: DISAFFIRMATION

3 U: FAREWELL

4 A: FAREWELL

168 Chapter 7 Conversation Management UX Patterns

Example 7.25 Last Topic Check (User).
1 U: anything else?

2 A: That’s it!

3 U: goodbye

4 A: Goodbye.

Here the user checks to see if the agent has another topic (line 1). If the last topic
variable is null, the agent simply indicates that it has no more topics, with “That’s
it!,” “That’s all!,” “We’re done!,” and the like (line 2). The user can then terminate
the conversation by initiating the farewell sequence (lines 3–4).

In addition to the last topic check, the user can do a pre-closing with utterances
like “I’ve got to go,” “I need to leave,” “I’m out of time,” and the like (Pattern C4.2,
Example 7.26).

Pattern C4.2 Pre-Closing (User).
1 U: PRE-CLOSING

2 A: WELL-WISH

3 U: RETURN WISH

4 A: FAREWELL

5 U: FAREWELL

Example 7.26 Pre-Closing (User).
1 U: got to go

2 A: Have a great day!

3 U: you too/bye

4 A: Goodbye.

5 U: bye

In this case, the user moves to close by saying he must disengage, “got to go” (line
1). The agent then checks its dialog logic for a last topic and finds none, so it gives
the default well-wish, “Have a great day!” (line 2). The user may return the well-wish
or move straight to farewell (line 3). The agent says “Goodbye” (line 4) and the user
may complete the farewell sequence (line 5).

Finally, instead of performing a pre-closing, the user may simply bid farewell.
In our implementation, Alma does not return a farewell if the user skips the pre-
closing, but instead moves to her last topic slot (Pattern C4.3, Example 7.27).

Pattern C4.3 Closing Farewell (User).
1 U: FAREWELL

2 A: WELL-WISH

3 U: FAREWELL

4 A: FAREWELL

7.4 C4 Closing 169

Example 7.27 Closing Farewell (User).
1 U: bye

2 A: Have a great day!

3 U: goodbye

4 A: Goodbye.

In this context, that is, a farewell with no pre-closing, Alma treats the user’s farewell
(line 1) as a pre-closing by not reciprocating it. Instead the dialog logic checks the
last topic slot, finds a value of null, and returns the default well-wish (line 2). Had
the last topic variable been configured with an action, Alma would have performed
that (see below). If the user then says a farewell again (line 3), Alma returns it this
time (line 4). If not, the conversation simply ends after the well-wish (line 2).

We have seen four ways in which the agent and the user can initiate the closing
of a conversation (Patterns C4.0–C4.3), but in each pattern above, the closing is not
configured with a last topic. However, a variety of actions can be done by the agent
in the last topic slot (Pattern C4.4, Example 7.28).

Pattern C4.4 Closing Appreciation (Organizational).
1 U: PRE-CLOSING/FAREWELL

2 A: APPRECIATION

3 U: APPRECIATION RECEIPT/FAREWELL

4 A: FAREWELL

5 U: FAREWELL

Example 7.28 Closing Appreciation (Organizational).
1 U: bye/got to go

2 A: Thank you for contacting IBM Research today!

3 U: you’re welcome/bye

4 A: Goodbye.

5 U: bye

Here, instead of the default well-wish, the agent does an appreciation in the last
topic slot (line 2). Because the agent organization variable is set, the agent gives an
organizational appreciation. The user can acknowledge the appreciation, “you’re
welcome,” or simply bid farewell, “bye” (line 3). Then the agent bids farewell,
“Goodbye” (line 4), which the user may repeat or not (line 5).

Another commonly useful last topic for the agent is a name request. If the
agent failed to get the user’s name in the opening of the conversation, perhaps
because the user changed the topic, the agent has one last chance at the end of the
conversation (Pattern C4.5, Example 7.29).

170 Chapter 7 Conversation Management UX Patterns

Pattern C4.5 Closing Name Request (Agent).
1 U: LAST TOPIC CHECK

2 A: NAME REQUEST

3 U: NAME

4 A: APPRECIATION, NAME

5 U: APPRECIATION RECEIPT/FAREWELL

6 A: FAREWELL

7 U: FAREWELL

Example 7.29 Closing Name Request (Agent).
1 U: anything else?

2 A: Can I please get your name?

3 U: Dave

4 A: Thank you, Dave!

5 U: you’re welcome/bye

6 A: Goodbye.

7 U: bye

In this pattern, the user happens to initiate closing by checking for a last topic,
“anything else?” (line 1). In response, the agent asks for the user’s name because
the last topic variable is set to “name request.” If the user provides a name (line 3),
the agent says “thank you” and addresses the user by name (line 4). The user and
agent can then exchange farewells, just as in Patterns C4.0, C4.2, and C4.4 above. If
the user’s name is captured, it can be persisted and imported when initializing the
next conversation with that user so that the agent can open it with direct address,
“Hello, Dave. How can I help you?” (C1.3).

In customer service encounters, another commonly useful last action is the
success check, in which the agent asks the user, “Did you find what you were looking
for?,” “Did I answer your questions?,” “Did you get what you needed?” and the like
(Pattern C4.6, Example 7.30).

Pattern C4.6 Closing Success Check (Affirmed).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: SUCCESS CHECK

6 U: AFFIRMATION

7 A: ASSESSMENT. FAREWELL

8 U: FAREWELL

Example 7.30 Closing Success Check (Affirmed).
1 U: ok

7.4 C4 Closing 171

2 (2.0)

3 A: Anything else today?

4 U: no

5 A: Did you find what you were looking for?

6 U: yes

7 A: Great! Goodbye.

8 U: bye

In this case, the agent does a last topic check (line 3) after the user closes a sequence
(line 1). If the user indicates no additional topics (line 4), the agent explicitly asks
the user if the conversation was successful in terms of whatever help the user was
seeking (line 5). If the user indicates success with an affirmation (line 6), the agent
bids the user farewell (line 7), which the user may return (line 8). This is useful
feedback to the designer and others that the interaction was a success.

On the other hand, if, in response to the success check, the user indicates
that the conversation was unsuccessful, the agent still has the opportunity to put
things right since the conversation has not ended. The agent may suggest remedial
actions, review its capabilities, or simply offer to try again (Pattern C4.7, Exam-
ple 7.31).

Pattern C4.7 Closing Success Check (Disaffirmed).
1 U: PRE-CLOSING/FAREWELL

2 A: SUCCESS CHECK

3 U: DISAFFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: DISAFFIRMATION

6 A: ACKNOWLEDGMENT. FAREWELL

7 U: FAREWELL

Example 7.31 Closing Success Check (Disaffirmed).
1 U: bye/got to go

2 A: Did you find what you were looking for?

3 U: not really

4 A: Would you like me to try again?

5 U: no thanks

6 A: Okay. Goodbye.

7 U: bye

Here the user disaffirms (line 3) the agent’s success check (line 2). The agent
acknowledges the failure by again offering help (line 4). If the user declines this
subsequent offer of help (line 5), the agent proceeds to bid the user farewell (line 6),

172 Chapter 7 Conversation Management UX Patterns

which the user can return (line 7) but need not. This is useful feedback that there
was some kind of failure in this interaction with the user.

A final variation of the success check pattern involves the user reopening the
conversation rather than closing it (Pattern C4.8, Example 7.32).

Pattern C4.8 Closing Success Check Reopened.
1 U: LAST TOPIC CHECK

2 A: SUCCESS CHECK

3 U: DISAFFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: AFFIRMATION

6 A: OFFER OF HELP

7 U: INQUIRY/REQUEST

Example 7.32 Closing Success Check Reopened.
1 U: anything else?

2 A: Did you find what you were looking for?

3 U: no

4 A: Would you like me to try again?

5 U: sure

6 A: What can I do for you?

7 U: well, I need a restaurant recommendation

In this pattern, the user accepts the agent’s offer to try again (lines 4–5), and the
agent offers help (line 6). The user then makes another inquiry or request (line 7).
This keeps the conversation going, and it may go on for some time until returning
to a closing sequence. Instead of a generic offer of help, the agent produces a more
tailored offer based on what happened in the previous turns, for example, “Do you
want recommendations for places to stay or places to eat in Rome?” This requires
additional logic for diagnosing the source of the user’s dissatisfaction.

Customer service encounters frequently extend offers and promotions to cus-
tomers before closing the call. This can be done naturally as the agent’s last topic
(Pattern C4.9, Example 7.33).

Pattern C4.9 Closing Offer (Affirmed).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: OFFER

6 U: AFFIRMATION

7 A: OFFER DETAILS

7.4 C4 Closing 173

Example 7.33 Closing Offer (Affirmed).
1 U: ok

2 (2.0)

3 A: Anything else today?

4 U: no

5 A: Would you like to become a Rewards Member?

6 U: sure

7 A: Great! With a Rewards membership you get...

When the user indicates no additional business (line 4), the agent may extend a
promotion or offer to the user, such as a membership (line 5). If the user accepts
the offer (line 6) or agrees to hear about it, the conversation is reopened and may
continue as long as the offer activity, with its descriptions, inquiries, and sign-ups,
continues.

On the other hand, when users decline offers and promotions in the last topic
slot of the conversation, the agent can then move immediately to close it (Pattern
C4.10, Example 7.34).

Pattern C4.10 Closing Offer (Disaffirmed).
1 U: PRE-CLOSING/CLOSING

2 A: LAST TOPIC CHECK

3 U: DISAFFIRMATION

4 A: OFFER

5 U: DISAFFIRMATION

6 A: ACKNOWLEDGMENT. APPRECIATION. FAREWELL

7 U: FAREWELL

Example 7.34 Closing Offer (Disaffirmed).
1 U: gotta go/bye

2 A: Anything else today?

3 U: no

4 A: Can I interest you in a credit card?

5 U: no thanks

6 A: Okay. Thanks for contacting Telco! Goodbye.

7 U: bye

In this case, when the user declines the credit card offer (lines 4–5), the agent ac-
knowledges the declination, gives an organizational appreciation, and bids farewell
(line 6). The user can return the farewell (line 7) or simply stop talking to close the
conversation. Additional appeals can be built in, instead of taking the first “no” for
an answer. In this way, you can make your agent as persistent as a human salesper-
son if desired.

174 Chapter 7 Conversation Management UX Patterns

In short, building your agent to handle conversation closings brings with it some
of the affordances of closings in human conversation. Both the user and agent can
know that the other does not intend to continue talking. By closing, both user
and agent are agreeing that the interaction is over and therefore no additional
participation is expected. And most importantly, performing a pre-closing gives
the other party, whether user or agent, a final opportunity to bring up any topics
that still need to be addressed but may have been missed. When user and agent
close a conversation, it marks the boundary of the conversation as a unit so that
anyone who later reviews the system logs can determine that the interaction was
completed and not merely suspended.

7.5 C5 Disengaging
While conversation closings have a canonical structure (C4), there are other ways
that users and agents may disengage from each other. These disengagements may
be temporary or terminal. Besides the user or agent simply failing to continue, users
may ask to be transferred to a human, or users may start talking to someone else in
the room, agents may refuse to continue talking, and more. Each of these forms of
disengagement, and no doubt others, should be designed and built for your agent.

An occasional outcome of service encounters is for the customer to ask to speak
to another agent or supervisor. In the context of virtual agents, the equivalent would
be asking to talk to a human instead of the automated agent. When initiated by the
user, such requests tend to be attempts to abort the conversation due to failure and
frustration. However, this pattern could also apply if the user already knows that
what he or she needs cannot be fulfilled by the agent. Because transferring the user
is an action that will terminate the current conversation, the agent should ask the
user to confirm this action before executing it (Pattern C5.0, Example 7.35).

Pattern C5.0 Transfer Successful.
1 U: TRANSFER REQUEST

2 A: CERTAINTY CHECK

3 U: CONFIRMATION

4 A: ACKNOWLEDGMENT. HOLD REQUEST

5 <transfer>

Example 7.35 Transfer Successful.
1 U: I want to talk to a human

2 A: Are you sure?

3 U: yes

4 A: Okay, I will connect you with a human. One moment please.

5 ((transfer))

7.5 C5 Disengaging 175

In this pattern, the user says “I want to talk to a human,” “can I speak to a person,”
“transfer me to a real person,” and the like (line 1). As a preliminary to granting the
request, the agent checks to see if the user is certain (line 2) since the requested
action is irreversible. When the user confirms (line 3), the agent acknowledges the
request and asks the user to hold (line 4). The transfer is then granted (line 5).
Transferring to a human agent is a common practice with service-oriented virtual
agents for taking over when they fail to understand the user’s request or when
the user’s request is too delicate for a machine to handle, for example, closing an
account or seeking advice on suicide prevention.

If the agent second-guesses the user’s request to be transferred to a human, the
agent must be able to respond if the user changes his or her mind (Pattern C5.1,
Example 7.36).

Pattern C5.1 Transfer Aborted.
1 U: TRANSFER REQUEST

2 A: CERTAINTY CHECK

3 U: DISCONFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: CONFIRMATION

6 A: ACKNOWLEDGMENT. OFFER OF HELP

Example 7.36 Transfer Aborted.
1 U: I want to talk to a person

2 A: Are you sure?

3 U: not really

4 A: Would you like me to try again?

5 U: yes

6 A: Okay. How can I help you?

With this variation, the user disconfirms (line 3) the agent’s certainty check (line
2). The agent then offers to try again to help the user (line 4). Here the user can
simply make another inquiry or request or can confirm the subsequent offer (line
5). The agent will then recycle the initial offer of help from the beginning of the
conversation (line 6).

Another way in which the user may disengage from the agent is by telling the
agent that he or she is talking to someone else. When a virtual agent communicates
through a room speaker with a far-field microphone array, in other words, a “smart
speaker” like Amazon Echo or Google Home, it is not uncommon for the user to talk
to other people in the room. In this open-room setting, agents sometimes attempt
to respond to utterances that are not directed to them. To manage this situation,
users should be able to correct the agent (Pattern C5.2, Example 7.37).

176 Chapter 7 Conversation Management UX Patterns

Pattern C5.2 Recipient Correction.
1 U: <ANY UTTERANCE>

2 A: <RESPONSE>

3 U: RECIPIENT CORRECTION

4 U: <ANY UTTERANCE>

5 U: <ANY UTTERANCE>

6 U: <ANY UTTERANCE>

7 U: SUMMONS

8 A: SUBSEQUENT GREETING

Example 7.37 Recipient Correction.
1 U: what time are we going?

2 A: I don’t know.

3 U: I’m not talking to you

4 U: what time are we going?

5 U: great

6 U: I’ll see you then!

7 U: are you there, Alma?

8 A: Hello again!

When the agent inappropriately responds (line 2) to an utterance directed to some-
one else (line 1), the user should be able to correct the agent with utterances like
“I’m not talking to you,” “I’m talking to someone else, Alma,” “not you, Alma,” and
the like (line 3). The agent will then withhold all responses until the user actively
re-engages it with a summons (line 7). The agent is still listening and classifying
the user’s utterances as he or she talks to someone else (lines 4–6), but a context
variable withhold set to true prevents it from responding. Technically, the agent
gives empty responses after every user utterance (lines 3–6), which the user does
not hear or see.

Re-engaging the agent after a recipient correction (line 3) can be done with a
summons (line 7). In order to reduce false recognitions of summonses as the user
speaks to another person, the intent confidence threshold should be set high, say to
0.95 or higher. When the user summons the agent again with “are you there, Alma?,”
“hi Alma,” “okay, I’m done, Alma,” and the like, the agent does a subsequent
greeting (line 8), setting withhold to false, and begins responding to the user again.
This pattern therefore supports temporary disengagements from the user that are
different from conversation closing. The high-confidence summons can also be
used in an open-room setting to re-engage the user after a conversation closing
(C4).

Finally, the agent may occasionally disengage from the user under special cir-
cumstances. If the user reveals that he or she is a minor who is only allowed to

7.5 C5 Disengaging 177

interact with adults, the agent may close the conversation or disengage. If the agent
detects that the user is another virtual agent or chatbot aiming to exploit the ser-
vice, the agent may close or disengage. Or if the user behaves inappropriately, using
abusive, profane, or sexual language, you may wish your agent to disengage or close
the conversation.1

To avoid abusive conversations, you can use a pattern similar to conversation
closing (C4) but initiated by abusive language from the user instead of a pre-closing
or farewell (Pattern C5.3, Example 7.38).

Pattern C5.3 Offense Complaint (Agent).
1 U: <ANY UTTERANCE>

2 A: <ANY UTTERANCE>

3 U: FIRST INSULT

4 A: OFFENSE COMPLAINT

5 U: <ANY UTTERANCE>

6 A: <ANY UTTERANCE>

7 U: SECOND INSULT

8 A: FAREWELL

9 U: <ANY UTTERANCE>

10 U: <ANY UTTERANCE>

11 U: <ANY UTTERANCE>

12 U: APOLOGY/COMPLIMENT

13 A: APPRECIATION. OFFER OF HELP

Example 7.38 Offense Complaint (Agent).
1 U: what’s in theaters?

2 A: What do you mean?

3 U: you’re not too smart

4 A: Now you’re hurting my feelings.

5 U: what movies are playing?

6 A: I’m sorry, I still don’t understand.

7 U: you suck

8 A: Goodbye.

9 U: wait

10 U: I’m still talking to you

11 U: I want to look up movies

12 U: I’m sorry

13 A: Thank you. What do you need?

1. Amazon appears to have implemented a similar feature recently in response to complaints
about Alexa’s responses to sexually harassing utterances [Fessler 2017].

178 Chapter 7 Conversation Management UX Patterns

In this example, the user insults the agent (line 3) after it fails to understand (line 2),
but it could be after any utterance by the agent. The insult should be distinguished
from the complaint: while the latter may be about a topic mentioned by the agent
or about its organization’s policies, the former is about the agent itself. The intent
for insults includes phrases like “you’re stupid!,” “you suck!,” “f*** off,” “you’re
the worst chatbot I’ve talked to!” and the like. In our implementation, Alma will
endure two insults before closing the conversation. After the first insult (line 3),
Alma complains that it takes offense at the insult (line 4). At this point, Alma will
continue to talk to the user normally. However, if the user insults it a second time
(line 7), Alma will bid farewell immediately without doing the usual last-topic check
(line 8). After the second insult, the withhold variable is set to true, and the agent will
withhold any response to the user (lines 9–11). Alma will only re-engage if the user
does one of two actions: an apology, for example, “I’m sorry,” “sorry,” “I apologize,”
or a compliment, for example, “you are awesome!,” “you’re the best,” “you rock!”
Either of these types of utterances will reset the insult counter at any time, and
Alma will re-engage with an appreciation (line 13). In short, through this pattern,
the agent refuses to participate in abusive or otherwise inappropriate conversation.

Some have suggested that voice assistants may inadvertently be teaching chil-
dren bad manners because they do not require them to say “please” or “thanks”
[Walk 2016, Shellenbarger 2018]. But we do not have to design our conversational
agents to act like slaves. When designing your agent’s persona (Chapter 8), decide
how obedient you want it to be and what level of respect it will demand. For example,
to an unmitigated imperative, “turn on the lights!,” your agent might respond, “Yes,
Master.” But to an imperative mitigated with the keyword please, “please turn on
the lights,” it might respond instead with, “Okay.” To an interrogative, “could you
turn on the lights?,” it might say “Of course.” And to a declarative, “it’s really dark
in here,” it could respond with an offer, “Would you like me to turn on the lights?”
Differentiating the form of the user’s request can be used to give your agent a bit
of both personality and emotional intelligence. Furthermore, as we saw in Chap-
ters 4 and 6, appreciations like “thanks” are not simply about manners. They also
perform conversation management functions, such as closing a sequence when in
third position (Pattern B4.2). Teaching users of any age to say “thanks,” perhaps by
occasionally inserting “what do you say?” when the user fails to respond in third po-
sition, will improve the interaction in the long run, as well as your ability to measure
successful sequences.

In the agent offense complaint pattern (C5.3), we can also see an example of
emotion. In this case, Alma claims that the user “hurt my feelings” (Example 7.38,
line 4). Of course, Alma has no feelings; however, the agent is doing “having hurt

7.5 C5 Disengaging 179

feelings,” that is, claiming them in response to personal insults by the user. This
is just one example of how conversational agents, or people, can do emotion. In
our approach, we do not treat emotion as a separate layer running above the dialog
logic itself. Just like humans, the agent must “express emotions” through emotion-
laden actions. But virtual agents, like even humans on some occasions, do not
feel the emotions they claim. From this perspective, emotion-laden actions are the
same as any other conversational actions: they are built through intents, entities,
context variables, and agent utterances. Our functional conception of “emotion,”
like our functional conception of “understanding,” is adopted from the fields of
ethnomethodology and Conversation Analysis [Ruusuvuori 2013].

Finally, just as the agent may “take offense” at some things the user says, the
same is true for the user. Virtual agents may intentionally or unintentionally (due
to poor understanding) say things that some users find offensive. For example,
Schlesinger et al. [2018] argue that today’s machine-learning-based (or generation-
based) chatbots have difficulty talking about race because they sometimes learn
disrespectful and even racist responses from data. In these cases, users may tell
the agent that it has said something offensive. If the agent fails to understand such
complaints, the user may disengage from the agent. To avoid this, the agent should
acknowledge the complaint and learn from the user to avoid offending other users
in the future (Pattern C5.4, Example 7.39).

Pattern C5.4 Offense Complaint (User).
1 U: <ANY UTTERANCE>

2 A: OFFENSE COMPLAINT

3 U: APOLOGY

Example 7.39 Offense Complaint (User).
1 A: Make me One with everything.

2 U: you can’t say that!

3 A: Sorry. I didn’t mean to offend.

After telling a question-answer joke, “What did the Buddhist say to the hot dog ven-
dor?” (not shown), the agent gives the punchline, “Make me One with everything”
(line 1). To this, the user complains that it is offensive with “you can’t say that!,”
“that’s inappropriate,” “I find that offensive,” and the like (line 2). In response, the
agent apologizes (line 3). At the same time, the dialog logic saves the offending re-
sponse (line 1) to the context variable agent offense for the designer to inspect later
and decide whether to remove. Like a human learning a language and a culture,
conversational agents will also sometimes say offensive things inadvertently. If you

180 Chapter 7 Conversation Management UX Patterns

build an interactional feedback mechanism into the conversation, you and your
agent can learn from mistakes.

7.6 Conclusion
In this chapter, we outlined multiple types of UX patterns for managing a con-
versation at the level of the conversation or encounter. These include patterns for
opening the conversation by the agent (C1) or by the user (C2), for discussing the
capabilities of the agent (C3) and therefore for determining the appropriateness of
the encounter in the first place, and for ending the conversation, either by closing
it (C4) or disengaging in other ways (C5). From this chapter, you should gain a tech-
nical understanding of how to design users’ entry into and exit out of sessions with
your agent using the Natural Conversation Framework. You should understand the
conversational functions that these activities serve so that you are not tempted to
dismiss them as mere “pleasantries” or “chit chat.”

Taken together, Chapters 6–8 provide a starting set of 100 UX patterns for en-
abling several generic conversational activities and their management at the se-
quence level and at the conversation level. Although they are based on patterns of
what humans naturally do in conversation, they are simplified versions of those pat-
terns. The patterns presented should provide a reference or starting point for many
use cases, especially for service encounters. To demonstrate how these patterns
can be combined into a single conversation, we offer an example of a conversation
with Alma (Appendix D). This sample conversation contains many of the patterns
outlined above, although not all of them. It was conducted through voice only, us-
ing a custom-built smart speaker, and it lasts over seven minutes. The unrelated
topics discussed in this sample conversation reveal that it is not from an applica-
tion but rather from our generic conversation space. With each new application,
we start with this generic conversation space and replace the content with the use-
case-specific content of the application, such as travel plans, healthcare benefits,
fast-food ordering, movie recommendations, etc.

In addition to providing a reference for UX design, the NCF pattern language of-
fers a yardstick against which the conversational competence of any chatbot or voice
assistant can be measured. Somewhat like the so-called TRINDI “tick list” [Bohlin
et al. 1999, Bickmore et al. 2018], which proposes 12 general capabilities that any di-
alogue system should demonstrate, the NCF pattern language offers 100 generic in-
teraction patterns that can be used to score the capabilities of any natural-language
interface. While the TRINDI capabilities are more general, for example, #5 “Can the
system deal with subdialogues initiated by the user?” or #10 “Can the system deal

7.6 Conclusion 181

with unspecific information?,” the NCF capabilities are organized more in terms
of specific conversational functions, for example, B2.1.0 repeat request initiated by
the user or C4.0 last-topic check initiated by the agent. Furthermore, the NCF pat-
tern language adopts the conceptual framework of Conversation Analysis; thus, for
example, it uses terms like “sequence expansion” instead of “subdialogue,” which
provide greater precision in specifying conversational structure.

Although the NCF pattern language provides many generic patterns, it is not
exhaustive, even of the basic conversational activities (A). For example, informing
is another generic sequence type. One party does an informing, perhaps with a
pre-informing, and the recipient acknowledges it. In some cases, the information
conveyed may constitute good or bad news for the recipient, so special care is taken
in the delivery and follow-up inquiries. Such informings are commonly seen in
medical settings as well as ordinary conversations [Maynard 2003]. Therefore, our
pattern language for conversational UX patterns is an ongoing project that can be
expanded over time and with the help of fellow designers and conversation analysts.

8Conversational UX
Design Process

Now that you know some conversation theory, the basics of conversation authoring,
a conceptual framework for natural conversation, and a corresponding UX pattern
language, it is time to put them all together. In this chapter we outline a general
design process, which will be familiar to many UX designers, and offer ways to adapt
it to the unique challenges with conversational UX.

8.1 Design Thinking
Like any type of user interface, conversational interfaces should be designed before
they are built. “User-centered design” [Norman 1988] approaches insure that the
end product takes users’ needs and perspectives into consideration from the begin-
ning of the design process. The final result should be a solution that is tailored to
the end user. In this vein, we adopt the general user experience design approach,
“design thinking” [Archer 1965, Brown 2009, Plattner et al 2010] as our starting
point. The user experience design process has been abstracted to the degree that it
can be applied across disciplines. Fundamentally, design thinking is a process for
approaching and solving problems of any kind, whether you are designing a mobile
application, an automobile dashboard, or a better toothbrush.

While there are different formulations of design thinking, the five-stage Design
Thinking model proposed by the Hasso-Plattner Institute of Design at Stanford, or
“d.school” [Plattner 2018], offers a simple, concise model (Figure 8.1). In short, this
model instructs you to get to know your users, clearly define their goals and prob-
lems, generate new solutions, create simple versions of your solutions, and test
(and refine) them with users. While this general model applies to any kind of appli-
cation, we outline user research methods, brainstorming exercises, and authoring
methods that specifically address conversation design issues. These methods are

184 Chapter 8 Conversational UX Design Process

Empathize Define Ideate TestPrototype

Figure 8.1 Five-stage Design Thinking model.

derived in part from practices in the field of Conversation Analysis and in part from
our experience over the past four years building conversational agents.

Remember that the design-thinking process itself will not always lead you in
the direction of a conversational-agent solution. Conversational interfaces are rel-
atively new so development teams are still experimenting with how to design them
and learning the kinds of use cases for which they are best suited. One complicating
factor is that comparing mature graphical interface designs with immature natural-
language interface designs yields biased results. Until more mature systems and
better comparative data are available, we cannot say definitively which use cases
are most appropriate for conversational interfaces (and which interaction styles).
But we believe that certain use cases are promising, given the unique affordances1

of such interfaces (Table 8.1).
The one affordance of conversational interfaces that has shown the most

promise to date is hands-free and gaze-free interaction (i.e., without having to
look at a display) through voice. Today’s voice assistants, such as Amazon Alexa
and Google Assistant, have capitalized on voice-only interaction in the living room
and throughout the home. And voice-based interaction has been used in the auto-
mobile for a long time because it does not require drivers to take their eyes off the
road. Such ubiquitous computing or Internet of Things (IoT) use cases, in which
computing is embedded in everyday objects or in the environment itself, are a good
fit for voice-based, conversational interfaces because users can still interact with
an agent even when there is no dedicated screen.

Another affordance of conversational interfaces is that they are compatible
with standard channels through which humans already converse. Because such
interfaces can be used through the words alone (if they observe a conversation-
first design strategy), they can be used with standard voice or text communication
platforms, such as telephones, Short Message Service (SMS), or Instant Messaging
(IM). This affordance enables a conversational agent to reach users even when they
have not downloaded your mobile application or navigated to your website. For

1. We use “affordance” in Gibson’s [1979, p. 128] sense of the term as an action that an object
enables a human or animal to take with respect to it. For example, many stable surfaces that are
knee-high above the ground afford sitting on.

8.1 Design Thinking 185

Table 8.1 Affordances and example use cases for conversational interfaces

Affordances Example Use Cases

Interact hands free and gaze free In-room hotel concierge; in-car
navigation agent

Reach mobile users without an app Alert customers to flight cancellations
and rebook

Access information, not documents Answering general information
questions; answering health
insurance questions

Adapt to user’s level of expertise IT troubleshooting; physics tutor

Capture personalized user
information

Recommend travel destinations;
recommend health plans

Interact naturally with a humanoid
character

Virtual brand mascot; elder-care robot

example, an airline can use a conversational agent to contact customers through
the standard SMS apps on all mobile phones, or even through the telephone, to alert
them about cancelled flights and to book them on a new flight. Such an approach
enables you to use these standard communication platforms for humans as your
application’s frontend instead of building your own.

While search engines currently enable users to query the worldwide web through
natural language, they typically fetch a set of documents rather than provide an
answer to the user’s question. Conversational interfaces, on the other hand, can
be used to return bits of information directly to the user, freeing him or her from
having to skim through documents to find them. In other words, conversational
interfaces can enable users to access information at a finer level of granularity than
web search, thereby pinpointing the needed information more quickly. When voice
assistants, such as Siri or Alexa, can find a bit of information, asking them through
a simple inquiry can be much quicker than performing a web search (of course,
when they cannot find it, they may default to web search).

Conversational interfaces should be designed to adapt to the user’s displayed
level of expertise. This was discussed earlier under the principle of “recipient de-
sign” (Chapter 2) and the open request pattern (Chapter 5). That is, if the user
displays expertise by providing all the required information using the preferred
terminology in a single turn, the agent should fulfill the request immediately with-
out asking redundant questions (e.g., patterns A2.0-A2.1). On the other hand, if

186 Chapter 8 Conversational UX Design Process

the user behaves like a novice by failing to provide all the required information
or using ambiguous terminology, the agent should adapt and teach the user the
preferred behaviors, by requesting details (e.g., patterns A2.2-A2.6) and handling
repairs (e.g., patterns A2.11 and B1-B3). This will make the application easier to
use for a wider range of users and will help move them from novice to expert. For
example, troubleshooting IT problems requires both knowledge of the technology
(e.g., how a cell phone works and what its various parts are called) and knowledge
of the business process (e.g., what identifying information the customer service
representative needs in order to authenticate the user and the phone). A conversa-
tional agent should be able to adapt to varying levels of knowledge on the part of
the user in some of the same ways that human agents do.

Because conversational agents talk to users, they can collect rich personalized
information about customers. Unlike menu-driven graphical interfaces, in which
users merely select from sets of predefined options, conversational interfaces en-
able you to “hear” the customer in his or her own words. Not only can you learn
the terminology that customers use, you can learn things that customers volunteer
without being asked. For example, by describing their travel plans and preferences
in their own words, customers provide richer, more personalized information for
recommending travel destinations than can be communicated by checking filters
in a sortable list. Although your agent may not be able to recognize and use un-
expected information the first time it is encountered, it nonetheless captures the
information in your chat logs so you can build it into your agent’s understanding
over time.

Finally, although perhaps a specialized use case, humanoid characters, such as
brand mascots (e.g., Ronald McDonald), fictional characters (e.g., Harry Potter),
or physical robots are natural use cases for conversational interfaces. If the system
simulates the physical aspects of a humanoid character, either virtually on a screen
or virtual reality (VR) headset or through a robot, such characters usually also
need a voice. And by “voice” we not only mean a synthesized acoustic voice but
also the ability to converse, whether vocally or through text. Uttering pre-scripted
monologues through a natural-sounding voice is not enough to create an intelligent
character.

These are just a few of the types of use cases that we believe are well suited to
the affordances of conversational interfaces. Our concern throughout this book has
been to explore ways to design a natural language-based interface that works more
like a natural conversation than the other typical interaction styles (Chapter 1). The
remainder of this chapter starts from the assumption that your stakeholders and
development team are committed to creating a better conversational agent.

8.2 Stage 1: Empathize 187

8.2 Stage 1: Empathize
Many good designers recognize that creating a great user experience requires em-
pathy with your prospective users. “Empathy” means developing an understanding,
not only of your users’ needs, but also of their meanings and motivations, as well as
their behaviors. The better you can see the world from your users’ perspectives, the
better you can design an effective and engaging experience for them. So how do you
get to know your user in order to create an effective conversation space? Observe
and engage them.

Observe
The best way to develop an understanding of users, in the context of designing a
conversational system, is to collect examples of the type of conversation you would
like to design. What are the primary forms of talk involved in your use case? Is it
answering inquiries, fulfilling requests and commands, recommending goods and
services, troubleshooting problems, teaching material, etc.? This can be done in a
number of ways.

If time and budgetary constraints allow, go out into the field yourself and observe
the user conversations firsthand. Ethnographic field studies can enable you to see
the big picture in the social setting you wish to approximate. You can observe
the rich detail of how conversations take place in the context of the embodied
behaviors, physical artifacts, and environments involved. Studying a conversation
in person will allow you to see facial expressions and hand gestures in tandem
with the content and any inflectional changes. While field studies typically involve
observing people in a physical space, they can also be adapted to online and virtual
spaces.

If you were tasked with creating a conversational agent that takes orders for
coffee, go to a coffeehouse and see how people do it! Of course, we all know how to
order coffee, but when we rely on our memories alone, many of the taken-for-granted
details of the conversation are missed. As an ethnographic observer, you can focus
on the details of how people accomplish a social activity in a way that you cannot
when you are participating in the activity yourself. How do customers see where to
go to place an order versus to pick it up? How do they manage the line while waiting
to speak to the order taker? How is the conversation opened? How is it closed? How
do customers refer to the different kinds of coffee or foods they want? How does
the order taker refer to those same things? How do the two confirm the order and
manage misunderstanding more generally? Noticing how each of these are done in

188 Chapter 8 Conversational UX Design Process

their concrete details will help you in designing the features of your conversation
space.

While direct observation is an extremely rich method for understanding your
prospective users’ behavior, challenges arise because you cannot recall every detail
you see or hear. For this reason, we advise recording the social settings you observe
whenever possible. Mechanical recording enables you to “get your hands on” the
details of social interaction [Sacks 1984, p. 26]. If the setting you observe is not
public, you may need to gain the consent of those you wish to record or at least to
inform them of their right to opt out of being recorded. In addition, if recording in a
place of business, you should ask permission from the business owner or operator.

In the age of the smartphone, audio and video recording are cheap. We carry
around powerful audiovisual recording devices, and even editing tools, in our pock-
ets all the time. And with the proliferation of smartphones, people have become
more comfortable with being recorded. So record as much as possible! Even clips of
scenes in which nothing seemed to have happened at the time can reveal insights
on closer inspection after the fact. Collect clips of routine and unusual activities
alike. It is often the “deviant case,” the one that appears not to fit the pattern, that
can lead to the greatest insights [Schegloff 1968].

One major advantage of recordings of human conversations is that they can be
studied even when you cannot be there to observe those conversations directly. Ask
the client whether they have existing recordings or transcripts that capture the kind
of conversation they wish you to build or a similar kind of conversation. For exam-
ple, clients often already possess recordings of telephone calls between customers
and human customer-service agents engaged in the same kind of conversations
they intend for the automated agent. Request a sample of such recordings and
study both their content and their form, that is, the reasons that customers call the
company, as well as the interactional structure of those conversations. Listening to
recordings of customer service calls can be time-consuming, but it is an excellent
way to hear the voice of the customer, literally. If such recordings do not exist, ask
the client organization for any materials it might have on its interactions with its
customers, such as online chat logs or forums.

If you are trying to create an agent that can handle technical support, get access
to recorded calls from support teams or written transcripts generated from call
systems. Similarly, if you are trying to create a conversational sales agent, get your
hands on voice recordings of sales calls. Even if the support staff dealt with a
frustrated customer and was hung up on, that conversation is valuable, perhaps
extremely so. Understanding what went wrong can be just as effective in your design
process as knowing what went right. Try to get a well-rounded sample of recordings
and transcripts to unlock the big picture of your users’ needs.

8.2 Stage 1: Empathize 189

Finally, consult the Conversation Analysis literature, which we covered in Chap-
ter 2. Other people have likely already observed the form of talk or setting that you
will need to build and have analyzed it in a systematic way. Remember, although
you may not find a study of the particular topic area of your agent (e.g., travel,
health insurance, technology support, etc.), you will likely find prior studies of
the form of talk involved (e.g., service encounters, teaching, counseling, etc.). Any
studies you find will describe the mechanics of how the conversation is organized
in that setting. The literatures in Conversation Analysis and related fields of so-
cial science contain many studies of human conversation in service encounters
[Whalen and Zimmerman 1987, Jefferson and Lee 1992, Whalen and Vinkhuyzen
2000, Moore 2008, Félix-Brasdefer and César 2015, Szymanski and Moore 2018],
classrooms [McHoul 1990, Szymanski 1999], psychotherapy [Antaki 2008, Peräkylä
2008], medicine [Maynard 2003, Pilnick et al. 2010], courtrooms [Drew 1992, Manzo
1997], news interviews [Clayman 1992, Greatbatch 1992], airplane cockpits [Nevile
2002, Arminen and Auvinen 2013], and much more.

Engage
In addition to observing prospective users in the kinds of social settings related
to your use case, it is also useful, of course, to talk to them. Through ethnographic
interviewing, in which you ask users open-ended questions and encourage them to
talk, you can learn about meanings, attitudes, and motivations that may not be as
apparent from observing their behavior. In interviews, users can tell you stories
about past experiences and how those influence their current goals and pain points.
The interview can ultimately help you understand a user’s mental model and the
wider context of his or her behavior.

Compared to direct observation, interviewing prospective users is generally
more feasible and less costly. Interviewing can be conducted under a wide range of
situations and channels. Although face-to-face and on-site is the richest situation
in which to interview people, because features of the environment can trigger
questions that you would not have thought of, critical insights into your users’
perspectives can be gleaned from off-site interviews and focus groups, telephone
interviews, and even email interviews.

Since interviews are more practical than direct observation or video collection,
you may be tempted to use them exclusively for user research. But be careful:
what users say they do and what they actually do are two different things. By
talking to people about their behavior, you will get idealized accounts, abstracted
accounts, and biased accounts, in addition to informative ones. And when it comes
to conversational behavior, people are not good at telling you the details of how
they talk but focus instead on the topics they talk about. The bottom line is to find

190 Chapter 8 Conversational UX Design Process

some way to gain access to a sample of your prospective users, whether through
observation, engagement, or both, within the constraints of your projects, and to
build empathy with them.

8.3 Stage 2: Define
After conducting user research as outlined above, you should define your users’
needs more formally. Synthesize your findings and represent them through artifacts
that can be shared with the development team and stakeholders. Design artifacts
enable everyone on the team to understand the design requirements and thus help
them achieve more consistency across the various parts of the application. The
standard design artifacts include user personas and outcome statements. In the
next section we introduce additional design artifacts that are tailored specifically
for conversational systems.

User Personas
User personas should be fictitious representations of your users’ qualities, yet they
work best when grounded in your research, as a kind of summary of your findings.
Depending on the scale of your project, a rule of thumb is to devise one to three
personas. When creating a persona, come up with a name and establish some
personal details. For example, consider a restaurant customer who typically orders
takeout. Your research should lead you to establish some personal details. In this
case, your persona might be named Janet, a woman in her early 40s, who is the
mother of two teenagers. She works full-time so she has little time to cook or shop
for groceries. These personal details help you and your team empathize with users
and be better able to design for them, as well as to coordinate the design across
your team members.

After these preliminary steps, outline the motivations and pain points of your
personas. What drives your users to engage with a conversational agent? Are they
trying to fix something, or are they looking for a product recommendation? Are they
primarily motivated by cost or by quality? Are they looking for a more natural way to
interact with a system, or do they need a hands-free interface? Understanding what
compels your users to engage is crucial in designing your conversational agent. Your
personas should also reflect your users’ pain points. What bothers them most about
the current process? Are they frustrated when they are transferred from one human
to another just to get a question answered? Are they unable to find personalized
recommendations in a sea of online reviews? Do they have trouble understanding
technical content, such as health insurance policies? In the example above, one

8.3 Stage 2: Define 191

of Janet’s major pain points is fumbling through user interfaces when trying to
order food. She finds that placing a food order for three people is too complicated
through a mobile app, with multiple screens on a small display. She might find
ordering food through conversation, as she is used to doing in a restaurant, easier
and more natural. Since she texts her kids on a daily basis, a conversational agent
integrated with SMS might be especially appealing to her.

By the time you have created one to three user personas, you probably have a
laundry list of notes including frustrations users may have and goals they would
like to accomplish. Compile all the pain points and user goals you can find. In
doing so, you will probably find that many of the pain points lay the foundation
for user goals. For example, when a user says something like, “I always get stuck
trying to place a food order,” a goal might be, “Easily order food through Product
or Service X.” Translate as many of these pain points as you can into user goals—we
like to write each goal on a sticky note to help drive the next phases of the process.

Outcome Statements
Users’ goals lay the foundation for the core outcomes your application should be
able to handle. There are many ways to approach writing outcome statements, but
from our perspective they hinge on grouping common user goals into broad state-
ments. Determine the importance of each goal to your end user and its feasibility
with respect to your technical, organizational, and financial constraints. Identify
those goals that are both highly important and highly feasible. These “must-have”
goals will guide the first phase of your project and your minimum viable product
(MVP).

From the must-have user goals, you can derive core outcome statements that
address common themes. These outcome statements should involve your user, the
action taken, and a concrete and quantifiable result. Types of outcome statements
might be:

. Customers can chat with an agent to receive detailed product information
without going to the company website.

. Users can receive destination recommendations that are personalized to
their travel preferences.

. Healthcare providers can access medical information quickly, without hav-
ing to open and skim multiple documents returned as search results.

Clear and simple outcome statements are a critical resource for achieving
shared understanding across the development team about what you are creating

192 Chapter 8 Conversational UX Design Process

and for coordinating the team in terms of the priority of different features. Craft-
ing useful outcome statements requires you and your team to be clear and concise
in defining your project goals up front. Outcome statements can then serve as re-
minders throughout the development process of what you are working toward. And,
of course, outcome statements should be updated as requirements and constraints
change.

8.4 Stage 3: Ideate
We have briefly outlined the standard stages in a design thinking process with some
recommendations for adapting it to the development of conversational agents.
We now turn to design thinking exercises and design artifacts specifically created
for conversational UX. Conversational agents have certain distinctive features not
found in other kinds of applications or projects. Therefore, design exercises tai-
lored to the unique challenges of conversational UX are helpful. In this section, we
describe three exercises for generating design insights regarding conversational
agents: The Shape of a Conversation, Create an Agent Persona, and Utterance Pair
Brainstorming.

Exercise 1: The Shape of a Conversation
In order to design a conversation space, you must have a clear idea of how con-
versations are structured. Too often natural conversation is mischaracterized as
simply “natural language” [Button et al. 1995, p. 209] that is composed entirely of
sentences and is not interactive. But natural conversation is a particular form of
natural-language use that displays its own characteristics. It is composed of utter-
ances, not sentences, and it is organized through a turn-taking system [Sacks et al.
1974]. Although we all know how to do conversation, we take the practices and me-
chanics of natural conversation largely for granted. Consequently, it is surprisingly
difficult to articulate how conversation works. But to get your stakeholders and de-
velopment team to understand the form of natural conversation, you can use the
following group exercise.

In Conversation Analysis (CA), practitioners have a tradition of analyzing record-
ings of conversations together, known as “data sessions” [Ten Have 1999, p. 123].
In data sessions, the participants analyze a recording of a spate of social interac-
tion, usually involving talk, along with a detailed transcript of that interaction. They
share observations, or “noticings,” of features of the interaction and their analy-
ses of how those features are organized. Insights and analyses are thus generated

8.4 Stage 3: Ideate 193

collaboratively. Here we adapt the data session format for the purposes of design
thinking. This exercise requires a sample of a naturally occurring human conver-
sation, recorded in audio or video, and a CA-style, or detailed, transcript like the
one below (Example 8.1; see Appendix A for an explanation of transcription con-
ventions).

Example 8.1 [NB I.2:Golf]2.
1 D: G’morning. San Juan Hills Country Club?

2 G: Guh morning. What’s-w- what kind of a starting

3 time ken:: we get fer::hh sometime this

4 afternoon.

5 (0.7)

6 G: Any[time-

7 D: [Oh:::, [let’s see.

8 G: [Any time tuhday.

9 D: Two fordy. One, thirdy.

10 G: One thirty?

11 D: Mm hm::?

12 G: One thirty.

13 (0.7)

14 G: .hh W’l at sounds like a good time?

15 (0.4)

16 D: What is the name?

17 G: Detweiler. D-e-t,

18 (1.2)

19 G: w-e,

20 (0.4)

21 G: i-l-e-r-.

22 (2.0)

23 D: Foursome?

24 G: Yah.

25 (0.4)

26 D: Electric carts?

27 (0.6)

28 G: Uh:::, n:no? I don’t think so.

29 D: Okay. We’ll see yuh then,

30 G: Righto,

31 D: Mm hm, Bye?

2. This transcript can be found online at Talk Bank: https://ca.talkbank.org/browser/index.php
?url=Jefferson/NB/01golf.cha.

194 Chapter 8 Conversational UX Design Process

With a recording and a transcript in hand, facilitate the session by following
these steps:

1. Play the entire recording once.

2. Play the entire recording again while reading the transcript.

3. Replay any parts the participants want to hear again.

4. Take 10–15 minutes to compose observations.

5. Ask participants to share their analyses in round-robin format.

6. Open the floor for group discussion.

The data session participants may feel a bit shy, not knowing quite “what you
are looking for” or “what I’m supposed to see.” This is an unfamiliar way of looking
at conversation for most people. To facilitate the participants’ insights, ask them
the following questions:

. How do speakers take turns talking?

. How often do they overlap their utterances or interrupt?

. How many words are in their utterances?

. How long do the silences between turns last?

. What else can you see?

Some things you will observe: Most utterances are not sentences. They are
shorter phrases or single words that incrementally build on prior utterances. Ut-
terances by different speakers tend to be done with minimal gap and overlap. In
other words, they are precisely timed and tightly coordinated. Most silences in a
conversation are under one second. The topics of the conversation, for example
“golf,” often go unmentioned. These are just a few of the kinds of features of hu-
man conversation that will give your participants a feel for its shape. Of course there
are many other kinds of things to notice and insights to draw from conversational
data, but this is a good set for beginning analysts of natural conversation.

Exercise 2: Create an Agent Persona
While personas can help your team maintain a consistent conception of the in-
tended user(s) of your application, they can do the same for that of your conversa-
tional agent. When designing an agent persona, it is best to do it in tandem with a
branding exercise. The persona you design for your agent will inevitably reflect your

8.4 Stage 3: Ideate 195

client’s brand, be it a small business, corporation, or independent professional. So
when you design the persona, what values do you want it to reflect? Do those val-
ues fall in line with your business’s mission? If you are an insurance company with
brand values that align with responsibility and trust, you may want to design a per-
sonality that is friendly and personable, but at the same time is mostly serious. On
the other hand, if you are a coffeehouse or a clothing store for young people, you
may want to design a personality that is more fun and witty, with even a bit of atti-
tude. When designing an agent persona, it is best to sit down with the marketing
and brand identity team to get aligned on the client’s values. An agent persona will
help the team maintain a consistent voice and personality for your application. In
designing how your agent will talk and how it will behave, you will inevitably rely on
mental images of a person doing and saying things. To make these mental images,
across designers and developers more systematic, an agent persona is extremely
useful. When creating your agent’s persona, consider the following things: agent
job description, agent personality, and agent self-knowledge.

Agent Job Description
Write a job description for the work your virtual agent is intended to do. For exam-
ple, the job might be to provide answers to general health insurance questions, or
to recommend travel destinations and places to stay, or to provide information on
movies, or to provide assistance in analyzing business intelligence data. List the
core functions of your application as if they were duties for a position (Figure 8.2).
Is the agent’s job similar to a job that humans do, or is it unique to artificial in-
telligence? If your agent is a travel agent, what user expectations might go along
with that role? Travel agents (where they still exist) provide detailed information
about travel destinations, make recommendations for places to stay and things to
do, and help you book plane tickets, hotels, and car rentals. If your virtual agent
provides travel destination recommendations, your user may expect it to do these
other things as well.

Also specify some qualifications that the agent should have to perform this
job. If it is a virtual travel agent, it should have knowledge of travel destinations.
If it is a customer service representative for a health insurance company, it should
know about health insurance policies, at least generally, if not how they apply to a
particular user. If it is a movie critic, it should have knowledge of movies, such as
titles, ratings, and genres, and perhaps even show times or trivia. Use the agent’s
job description as a tool for summarizing and representing the functional scope of
your application in a way that is easy for everyone to understand.

196 Chapter 8 Conversational UX Design Process

Virtual Travel Agent

Acme Hotels is seeking a dedicated travel agent to assist potential and returning customers

in discovering travel destinations and making travel arrangements.

Responsibilities and Duties:

. Recommend travel destinations based on the customer’s preferences

. Recommend things to do in particular destinations based on the customer’s prefer-

ences

. Recommend and inform about Acme Hotels worldwide

. Assist customers in booking hotel rooms, rental cars, and flights

Qualifications:

. Detailed knowledge of travel destinations, including basic information, weather

conditions, and popular things to do in the world’s major travel destinations

. The ability to interact with booking systems for hotels, airlines, and car rental

companies

. The ability to make personalized recommendations, not simply popular recommen-

dations

Figure 8.2 (Virtual) travel agent job description.

Agent Personality
Because your application will talk, it will necessarily have some kind of conversa-
tional style [Bennett 2018]. Whether intentional or not, you and other conversation
or content designers will create a mental image of the agent when authoring its ut-
terances and designing its behavior. Externalizing and coordinating these images
through an agent persona will enable you to achieve a more consistent conversa-
tional style, or “voice.” You should design the imagined personality of your virtual
agent to share with stakeholders and the development team.

What gender is your agent, if any? Standard voices from text-to-speech technolo-
gies tend to sound male or female. Choosing a gendered voice may have implica-
tions for other characteristics of your agent persona. On the other hand, agents’
voices can also be robotic or gender-neutral. However, people tend to prefer to re-
fer to characters as “he” or “she” rather than the more objectifying “it.” Even with
text-only interfaces, users will tend to attribute some gender to your agent, as this
cultural concept is ingrained in almost all natural languages.

8.4 Stage 3: Ideate 197

Consider also the gender politics of your users and of your client. Do they
embrace traditional conceptions of gender? Do they challenge them? Or both?
Some have seen sexism in the choice of female personas for the majority of today’s
voice assistants [Fessler 2017]. Others have suggested that both men and women
tend to prefer female voices [Mitchell et al. 2011]. While we do not recommend any
particular position on the gender politics of your agent persona, we do recommend
that you discuss this issue with your stakeholders early in the design process before
committing to an agent persona that your users may find offensive.

Regardless of gender, what kind of person is your agent? Is it helpful? Is it
knowledgeable? Is it a genius? Is it talkative or reserved? Does it have a sense
of humor? If so, what kind? Is your agent always professional or a bit playful or
too serious? Is it obedient or does it assert its own opinion? Is it submissive if
you insult it or does it demand civility (Pattern C5.3)? Make the various personal
characteristics that you want your agent to have explicit for the stakeholders and
the development team.

In order to dive deeper into the design of your agent’s personality or conversa-
tional style [Bennett 2018], you may consult personality typologies in the popular
psychology literature. For example, the Myers-Briggs Type Indicator [Myers 1962]
is a personality typology that has been around for many years. It consists of four
dimensions (Table 8.2). Is your agent’s persona more or less talkative? How deep
are the things it says? Is it more scientific or creative? Is it more rational or pas-
sionate? Is it decisive or open to possibilities? For example, your agent’s persona
may be that of a talkative (E) genius, who helps users make reasoned decisions
(T), based on current data (S), which are binding (J) on topics, such as choice of
health insurance plan or purchase of a vehicle. Or your agent’s persona may be
that of a counselor, who listens to what the user has to say (I), shows empathy (F)
and offers insights (N) based on it, and invites him or her to revisit decisions (P)
on topics, such as career goals or chronic depression. And of course many other
combinations are possible. The Myers-Briggs typology [Myers 1962] includes six-
teen ideal personalities based on these dimensions. Although your agent may not
require such a complex personality type, such typologies can help you explore and
think about the various dimensions of personality systematically. If you consider
only one of these dimensions, consider extraversion/introversion, which can be ap-
proximated by the degree to which your agent initiates activities versus letting the
user initiate them.

In addition to gender and personality, conversational style also involves a per-
son’s sense of humor. Humor is a general way to delight another person through

198 Chapter 8 Conversational UX Design Process

Table 8.2 Myers-Briggs type indicator (adapted)

Extraversion (E) Introversion (I)

Frequent social interaction Deep social interaction

Initiates more sequences Initiates fewer sequences

Sensing (S) Intuition (N)

Trust their senses Trust their intuition

Presents more data Presents more insight

Thinking (T) Feeling (F)

Make decisions based on reason Make decisions based on feeling

Provides rationale Provides empathy

Judging (J) Perceiving (P)

Make final decisions Leave decisions open

Treats decisions as settled Treats decisions as revisable

natural conversation. Different people demonstrate different styles of humor and
different frequencies of humor. The Humor Styles Questionnaire [Martin et al.
2003] provides a typology of such humor styles: Affiliative, Self-Enhancing, Aggres-
sive, and Self-Defeating. Affiliative humor makes light of situations that everyone
can relate to. Self-Enhancing humor involves the amusement of the teller. Aggres-
sive humor makes light of other individuals or groups. And Self-Defeating humor
makes light of the teller.

Avoid Humor in Serious Activities. In general, use or avoid humor on the same
occasions you would in human-to-human conversation. Doing “being professional”
does not require the complete absence of humor, but rather its appropriate use.
Humor can be unprofessional when it distracts from the business at hand or when
it belittles superiors or other customers. However, humor strategically placed in the
cracks and transitions of business can delight customers and thereby improve their
satisfaction. As with human representatives of organizations, virtual agents should
avoid aggressive humor at the risk of alienating particular customers.

Opportunities for Humor. Conversation around the core activities of your applica-
tion may provide opportunities for your agent to exhibit a sense of humor. The

8.4 Stage 3: Ideate 199

openings and closings of natural conversations can be used for humor without
distracting from the business at hand. For example, your agent may give witty re-
sponses to “how are you?” or may offer to tell the user a joke if he or she reports
having a bad day. In addition, user-initiated “small talk” provides opportunities for
humor. For example, “how’s the weather?” might elicit a response like “Well, it’s
always freezing in the server room,” or “did you see the game?” might receive, “I
only follow chess. Deep Blue is my favorite player!” Because small-talk inquiries are
user-initiated, they involve the user choosing to stray from the current topic rather
than the agent, and therefore are less potentially distracting to users than when
agents initiate small talk. One-line responses and even explicit invitations, “Shall
we get back to planning your trip?,” are ways the agent can attempt to steer the
conversation back to the business at hand.

Agent Self-Knowledge
Finally, to achieve the interaction metaphor of a human conversation, your virtual
agent should know something about itself. An AI system is not intelligent if it knows
nothing about its history or its creators. In addition to being able to describe its own
capabilities, your agent should be able to talk about its persona, at least to some
degree.

What knowledge and how much of it your conversational agent should have
depends in part on the type of persona. Consider how self-knowledge would vary
for these three personas: a customer service agent, an artificial intelligence (e.g.,
Apple’s Siri or IBM’s Watson), or a fictional character or brand mascot (e.g., Harry
Potter or Ronald McDonald). Customer service agents rarely say much about them-
selves personally, but they should know basic facts about the company they repre-
sent, as well as commonsense knowledge.

On the other hand, if your agent persona is that of an artificial intelligence, it may
refer to the fact that it is not human. For example, if your virtual agent recommends
destinations or hotels, it should be prepared to answer basic inquiries like “what’s
your favorite destination?” or “do you have a favorite hotel?” But because it is an
AI, it might respond with, “I can’t say. I never seem to get out of the server room.”
Such responses suggest very basic self-awareness.

And if your conversational agent is a fictional character or brand mascot, it should
have some knowledge of its backstory. For example, a virtual Ronald McDonald
should be able to show at least some recognition of Hamburglar or Grimace. Even
a conversational agent identified as IBM’s Watson should know something about
when it beat two human champions at the TV trivia game Jeopardy in 2011. Using

200 Chapter 8 Conversational UX Design Process

the user inquiry (A1) and extended telling (A3) patterns, you can enable your virtual
agent to tell parts of its history or backstory and answer questions about it.

Taken together, your agent’s persona consists of its job description, personality,
or conversational style, sense of humor, and self-knowledge.

Exercise 3: Utterance Pair Brainstorming
Once you have prioritized the user goals you intend to support, crafted clear out-
come statements, and created a detailed persona for your agent, you are ready to
begin to determine what exactly your agent will recognize and say. Most conversa-
tional-agent projects we have observed begin by generating or obtaining lists of
expected user utterances, or “intents.” User researchers may solicit lists of utter-
ances from expert users or the crowd or may obtain them from existing FAQs or
transcripts of calls to human agents. This is all important user research. After or-
ganizing and reviewing such materials, the team is ready to generate the set of user
utterances that they will support first and begin building. This can be done through
team brainstorming.

However, brainstorming users’ expected utterances is only half of the equation.
Just as important is the agent’s responses to those utterances. Therefore when brain-
storming, generate utterance pairs: both what the user says and how the agent
responds, or conversely, what the agent says and how the user is expected to re-
spond. Utterance pairs are what the development team must build, so they should
be brainstormed and designed at the same time.

Schedule two hours for a brainstorm session, ideally face-to-face, and invite both
team members and stakeholders, as well as any other experts or consultants who
may provide insight, to attend. After briefly reviewing the project outcome state-
ments and user and agent personas for the brainstorming participants, instruct
them to take 15–30 minutes to generate as many utterance pairs as they can. They
should write the utterance pairs on sticky notes (one pair per note). On each note,
they should draw a horizontal dividing line and write a user utterance at the top
and the agent’s response at the bottom or vice versa (Example 8.2).

Example 8.2 Utterance Pair, User Starts.

U: I want to fly to San Jose

A: Where are you leaving from?

If they can think of multiple responses to the first utterance, participants should
add them below (Example 8.3).

8.4 Stage 3: Ideate 201

Example 8.3 Utterance Pair, Multiple Responses.

U: I want to go someplace warm and sunny in November?

A: I recommend Puerto Vallarta, Mexico!
. . .

A: Here are some destinations that are warm and sunny in November.
((list of destinations))

In addition to agent responses to users’ utterances, participant should also
brainstorm user responses to agent utterances (Example 8.4). A conversational
interface is a two-way street.

Example 8.4 Utterance Pair, Agent Starts.

A: What is your name?

U: Dave
. . .

U: why do you need to know?

Of course, as we have seen in Chapter 4, conversational sequences are not always
pairs. They may include various types of sequence expansions or extended tellings.
While full sequence design is not the goal of brainstorming, multiple sticky notes,
each with one pair, can be used to assemble longer sequences if desired.

Brainstorming user-agent and agent-user utterance pairs will enable your de-
velopment team and stakeholders to explore the range of talk needed for your
conversation space. Participants should think broadly and identify as many rele-
vant utterance pair types as they can, rather than generating multiple examples of
the same type. This will help your team scope the conversation space itself.

After you have had sufficient time to brainstorm individually, regroup as a team
and share the pairs you have created. Participants should place each of their sticky
notes on a wall or whiteboard in the following categories: A. On-topic, In-Scope; B.
On-Topic, Out-of-Scope; C. Off-Topic, In-Scope; and D. Off-Topic, Out-of-Scope. A
facilitator should then read each of the utterance pairs aloud, one by one, and lead
group discussion on each. In addition to discussing the utterances themselves, also
decide collaboratively if a pair should be in scope, and if so, what outcome it aligns
with and what backend support it will require (Table 8.3). Move the sticky notes
from category to category as the group discusses the applicability and feasibility of
the utterance pairs.

202 Chapter 8 Conversational UX Design Process

Table 8.3 Prioritizing utterance pairs

On/Off-Topic In-Scope Out-of-Scope

On-Topic A. Fully supported, high
priority, “show me flights to
Las Vegas”

B. Partially supported,
medium priority, “when
does the Neon Museum
close?”

Off-Topic C. Fully supported, low
priority, “tell me about
yourself”

D. Unsupported, lowest
priority, “where was Lord of
the Rings filmed?”

A. On-Topic, In-Scope Utterance Pairs
Utterance pairs that are both on topic and in scope will constitute the core of your
conversation space. They will have the highest priority in your development plan.
If you are building a virtual travel agent, they will include requests like, “where
should I go on vacation?,” “what can I do in Key West?” and “show me flights to
Las Vegas.” They will be built using patterns like those for conversational activities
(A1–A5). When discussing these pairs, identify the backend data and APIs that will
be required to build the pair. Where will you get data on travel destinations or
attractions or flights and airfares? Similarly, what UI support will be required in
building the utterance pair? Will it require visual interaction with lists or cards? In
discussing these dependencies, you may decide that a particular pair is not in scope
because the data required are unavailable to you or the APIs are too expensive.

B. On-Topic, Out-of-Scope Utterance Pairs
Brainstorming utterance pairs should generate many things that are perfectly rea-
sonable for users to assume that the agent might do but are beyond the scope of
what you plan to build or include in the first release. These utterance pairs should
be partially supported. That is, you should create intents for them, but the agent’s
response will be some version of “I’m afraid I can’t do that at this time.” For exam-
ple, in a travel agent application, users may assume that the agent can provide the
business hours of attractions in the various travel destinations, but this granularity
of data may be unavailable to you. While the agent’s response is ultimately dissat-
isfying for the user, it is important to show at least that the agent recognized what
the user was requesting: “I’m afraid I don’t have information on hours of operation
at this time.” You should create many on-topic, out-of-scope utterance pairs as part
of your agent’s talk about its capabilities (Pattern C3.2).

8.5 Stage 4: Prototype 203

C. Off-Topic, In-Scope Utterance Pairs
As discussed above, your virtual agent should know something about itself and
should be able to engage in at least some level of self-talk and “small talk.” Utter-
ance pairs involving the agent itself or the company it represents are off the main
topic of your application. For example, the user request “tell me about yourself” is
unrelated to the topic of travel planning or choosing a health plan. Nonetheless,
you may decide to support them fully in order to provide a better user experience. In
planning your development, you should give these kinds of utterance pairs lowest
priority since they are not part of the core functionality.

D. Off-Topic, Out-of-Scope Utterance Pairs
Inevitably a good broad brainstorming session will generate some utterance pairs
that are neither on the topic or within the scope of your application. For example,
for a virtual travel agent, you might decide that user inquiries like “where was Lord
of the Rings filmed?” or “what do Millennials like to do?” are too far off the topic of
travel planning and too far out of the scope of your project to support. By placing
particular utterance pairs in the last category, the stakeholders and development
team agree that they will not be supported in any way beyond the global agent
paraphrase request (B1).

Brainstorming utterance pairs for your conversational agent application is an
important exercise for exploring the breadth of your conversation space and for
contributing to your initial development plan.

8.5 Stage 4: Prototype
After defining user personas and goals, an agent persona, and user-agent utterance
pairs, you will be well prepared to begin designing the conversation space itself. Al-
though conversational UX is very different from visual UX, we have attempted to
equip you with a basic understanding of the mechanics of natural conversation
through the previous chapters in this book. With the vocabulary of “turns” and “ut-
terances,” “sequences,” “activities,” and “conversations,” you should understand
the various parts that you need to build in order make a naturalistic conversational
user experience. With the human design principles of recipient design, minimiza-
tion, and repair, you should understand the fundamental strategy that speakers use
in designing their utterances. With the Natural Conversation Framework’s (NCF)
interaction model of expandable sequences, you should understand how depen-
dent utterances (sequence expansions) function to manage interactional troubles

204 Chapter 8 Conversational UX Design Process

around independent utterances (base pairs). And finally, with the NCF’s pattern lan-
guage, you have 100 generic patterns for designing particular conversational activ-
ities, including sequence-level management and conversation-level management.
Bringing all these things together will enable you to design a natural-language in-
terface that works in many ways like a natural conversation.

As with any kind of UX design and system development, we recommend design-
ing before building. Designing is quicker and cheaper than building and will enable
your design to evolve through multiple iterations before writing content or code or
generating graphics. Below we outline a general design process for conversational
UX design. It includes three phases: mock-up, design, and build.

Mock-Up
While sketches and wireframes are useful for visualizing graphical interfaces, they
will not help much in representing a conversation design. Instead, simple transcripts
are better suited. Transcripts can represent the structure and style of the design,
including the sequencing of utterances and exact phrasing, for both text- and
voice-based interactions. Transcripts are easy to read, easy to create, and easy to
share. Designers and stakeholders can quickly iterate on a transcript mock-up
before building any parts of the conversation space. Simple transcripts also lack
any representation of a visual interface in the case of text-based interfaces, which
may distract from the design of the sequences of the conversation itself.

The field of Conversation Analysis provides some transcription conventions
that are also useful for mocking up user interactions (Appendix A). Conversation
analysts mark the speaker of each turn with short labels, such as ‘U’ for user
and ‘A’ for the agent or chatbot, in order to keep track of who is saying what at
all times. We further put the user’s utterances in boldface to differentiate the
human from the machine. In addition, conversation analysts number each line
of a transcript, somewhat as programmers number lines of code, to make it easy
to refer to particular utterances (Example 8.5).

Example 8.5 Simple Mock-up.
1 U: who invented the hard disk?

2 A: It was invented by IBM in 1956.

3 U: can you give an example?

4 A: The IBM 305 RAMAC was the first

5 computer to use a hard disk drive.

8.5 Stage 4: Prototype 205

In this simple mock-up, a design for how a user can elicit an example of the agent’s
prior utterance is demonstrated. The user can ask a question (line 1), receive an
answer (line 2) and then elicit a particular kind of paraphrase or understanding
repair: an example (line 3). The agent will recognize this kind of user action and
respond appropriately (lines 4–5). Whether or not this design will work with the
eventual architecture of the application is not the concern at this point. The goal
is to represent the target user experience that the system will produce.

Despite the numerous articles on chatbots and conversational agents these days,
there is a noticeable absence of the conversation itself. For every article about a
new conversational agent, ask “What is the conversational experience like?,” “How
conversational is it?,” “What is the agent doing that is new and innovative?” None
of these questions can be answered without seeing examples of the interaction, and
simple transcripts provide an effective way to represent them.

Conversation analysts trade excerpts of detailed transcriptions of naturally oc-
curring human conversation in order to share and demonstrate their analytic dis-
coveries. Conversational UX designers should likewise trade transcripts in order to
demonstrate the form and beauty of their designs. The practice of sharing tran-
scripts will enable conversation designers to share tips and tricks, learn from
one another, and collaborate: “Here’s a design I’ve got!,” “Check out this work-
ing script!,” “How did you do that?” Transcripts are the currency of conversation
analysts and should be for conversational UX designers too!

Design
While mock-ups represent the desired conversational user experience, they do not
represent the underlying system itself. Many sequences, or parts of sequences, that
can be designed through transcripts may not be feasible to build. Therefore, the
next step is to design the conversation code itself. Pseudocode is a notation that
resembles a programming language but is simplified. Pseudocode is commonly
used by programmers to design programs before building them. Because it is
simplified, designers can use pseudocode to focus on the design itself without
worrying about exact commands and syntax.

We use a particular kind of pseudocode specifically for representing dialog
logic for the Intent-Entity-Context-Response paradigm, used in most of today’s
chatbot and conversation platforms (Chapter 3). So far we have used it mostly with
Watson Assistant. In this paradigm, there are only five actions the designer can take
(Appendix B).

206 Chapter 8 Conversational UX Design Process

Commands in Dialog Design

1. Create condition (if). Conditions are compared to input utterances.

2. Assign default (else). Assign action if no conditions are met.

3. Set variable (set). Capture the context of the current input for future turns.

4. Route to node (goto). Route to another dialog node.

5. Respond to user (say). Output text to the user.

In creating the first type of basic action, “create condition,” designers can
typically combine the following elements:

Components of Dialog Conditions

a. Intents (#). Linguistic classes against which the similarity of a text input can
be scored.

b. Entities (@). Keywords or phrases to be matched exactly.

c. Context ($). Variables for capturing events in the conversation.

d. Pattern (^). Text string analysis with regular expressions, JavaScript, etc.

By using this shorthand for the five basic commands (if, else, set, goto, say) and
the four condition types (#, @, $, ^), you can quickly represent most features of a
dialog tree. For example, the following pseudocode (Example 8.6) represents the
underlying node structure of the simple mock-up above (lines 3–5 only).

Example 8.6 Pseudocode.
1 if #EXAMPLE_REQUEST

2 if $example has value

say $example

3 else say "I’m afraid I can’t think of an example."

This pseudocode represents one parent node and two child nodes, as indicated by
the indents. The parent node has a single condition, an intent, example request (line
1). The first child node has a single condition, context variable example has a value,
and a response, which is the value of example (line 2). The second child node as-
signs a default action, respond with “I’m afraid I can’t think of an example.” (line
3). With this bit of pseudocode, a conversational UX designer can quickly build
the corresponding dialog-node structure in an authoring tool like that of Watson
Assistant. In practice, we usually do not represent an entire dialog tree in pseu-
docode, but only the more complex node branches. If we are implementing a new

8.5 Stage 4: Prototype 207

pattern and must figure out the dialog logic, we use this pseudocode to represent
the dialog-node design and thus to aid individual and collaborative thinking (for
more examples, see Chapter 3, Examples 3.6, 3.10, and 3.13).

A pseudocode design, in contrast to a transcript, enables designers to represent
how the underlying dialog code works and to share the design with others. It
enables the team to answer the question, “Can we actually build this?” While
transcripts are easy to read by any stakeholders, pseudocode may be difficult for
anyone who is unfamiliar with authoring on a conversation platform, such as
Watson Assistant, Amazon Alexa, or Google Assistant. Therefore, we share them
mostly among only conversation designers/builders.

Build
Once you, as the conversational UX designer, have a firm grasp of what to build, you
should start working in an authoring interface. The transcript mock-ups and pseu-
docode designs provide a detailed blueprint for what to create. We begin building
by taking the our generic conversation space, or Watson Assistant workspace file,
which contains implementations of all the patterns in the NCF pattern language,
and modifying the content: intents, entities, context, and responses. For example,
we configure the opening (C1) and the closing (C4) with the agent name and or-
ganization, as well as the actions we want the agent to do in the first, second, or
last topic slots. We then edit the conversational activities (A) that are needed for
the core functionality identified in the utterance-pair brainstorming and prioriti-
zation. For example, if building a virtual travel agent, we would duplicate the open
request patterns (A2) and change Alma’s placeholder content for restaurant rec-
ommendations to that for destination recommendations. The intent that includes
examples such as “can you recommend a Mexican restaurant?” gets changed to one
with examples like “where should I go on vacation?” The relevant details, cuisine
and distance, are changed to things like favorite activities (e.g., hiking, nightlife,
tourist attractions, etc.), region (e.g., state, country, continent), and weather (e.g.,
sunny, warm, dry, etc.). And the agent’s utterances, such as, “What kind of food do
you like?” and “Mario’s is located at Beach and Main,” get changed to utterances
like, “What kinds of things do you like to do?” and “You might like San Juan, Key
West or Puerto Vallarta!”

After replacing as much generic content with actual content as we can, we
then fine-tune the existing conversation patterns by adding or removing dialog
nodes as needed. For example, because the restaurant-recommendation sequence
requires only two types of details, adapting the dialog structure for destination
recommendations would require adding dialog nodes for extracting or eliciting

208 Chapter 8 Conversational UX Design Process

more than two details or entity types. Or more dialog nodes may be added to support
a longer list of instructions (A3) or to expand the number of capability topics (C3).
We also sometimes disable existing subpatterns in the pattern language, such as
the disengagement from the user in the agent offense complaint (C5.3), if they are
not well suited for the particular use case.

Finally, if the use case requires a new kind of conversation pattern not ade-
quately captured in the NCF pattern language (Appendix C), we design it through
mock-up and pseudocode and build it from scratch in the new conversation space.
New patterns are of course always designed to be compatible with existing patterns
in the pattern language, especially with those of sequence-level management (B). If
we believe the new pattern is generic, we will use it to extend the pattern language
itself.

8.6 Stage 5: Test
We characterize conversational agents as “conversation games” not merely because
they provide a simplified simulation of one kind of real-world interaction but also
because, like video games, conversational agents require a significant period of test-
ing. Video game development, especially for multiplayer games, involves significant
beta testing to detect software bugs, test performance under realistic numbers of
concurrent users, and test fun, but also to discover the range of unanticipated, or
“emergent,” behaviors and interactions players will exhibit. In a similar way, users
of conversational systems display a wide range of behaviors and especially linguis-
tic formulations, all of which the development team cannot anticipate in advance.
Plan for more than one round of beta testing. In the first round, look especially for
user and agent actions that you may have missed. Decide either to add important
overlooked actions (Table 8.3A) or to acknowledge the agent’s inability to perform
them (Table 8.3B). In subsequent rounds of testing, you will find that you have ac-
counted for the most important user actions but that there are still additional ways
of saying the same things that you had not anticipated. Continue to fine-tune your
conversation space by adding new intent variations and synonyms of entities as you
run subsequent beta tests and even after launch.

As with any design process, you should mock-up, design, build, and test your con-
versational agent. Repeat this process throughout development in order to iterate
on the original design. You always learn new things from actual user interaction
with your application.

8.7 Conclusion 209

8.7 Conclusion
In this chapter we have presented a general process for designing conversational
user experience that adapts the five-stage Hasso-Plattner model of design think-
ing: empathize, define, ideate, prototype, test. It starts with building empathy with
the prospective users through research, including methods of observation and en-
gagement. Insights from this stage are then used to define core problems and to
create design artifacts, such as user personas and outcome statements. Ideation of a
new conversational agent solution can then be facilitated by creating an agent per-
sona consisting of a job description, personality, and self-knowledge, and/or sets
of utterance pairs. Once promising ideas are generated, conversation spaces can
be prototyped by mocking them up through simple transcripts, designing the dia-
log logic using pseudocode if necessary, and building on a conversation authoring
platform (e.g., Amazon Alexa or Watson Assistant). Finally, early prototyped con-
versation spaces should be tested with users as much as possible so the design can
be refined iteratively.

From this chapter, you should be able to lead a development team through a
design-thinking process that is adapted to the unique requirements of conversa-
tional UX. You should be able to put what you learned from previous chapters
about conversation theory (Chapter 2), conversation authoring (Chapter 3), and
the Natural Conversation Framework (Chapters 4–7) into practice within the con-
text of a software development project. The process outlined above applies from
the project’s overall goals down to lines of dialog pseudocode.

While this design process is intended for development teams and may seem
overwhelming, remember that the heart of conversational UX design is the tran-
script. In the first place, a conversational agent must have something useful and
interesting to say. Creating compelling sequences of conversation is the central
problem. The rest is engineering and planning. Design both conversations that are
feasible for your team to build today and conversations that may not be feasible
to build until tomorrow. Provide your team with a vision of what is possible for a
conversational user experience and lead them to realize it.

9Conclusion
In the beginning of this book, we proposed a definition of “understanding” as the
demonstration of correct or adequate interpretation of social action within interaction.
As Wittgenstein [1953, #150] reminds us: the grammar of the word “understands”
is closely related to “knows,” “can” or “is able to.” Understanding is fundamentally
doing, not thinking. It is the outcome of a social interaction, not a private mental
state or process. Therefore, if a virtual agent can do conversation adequately and can
achieve the kinds of interactional outcomes that we call “understanding,” then for
all practical purposes it understands. Turing’s [1950] “imitation game” is intended
to test for such an achievement.

But the theoretical possibility of computers that can understand and participate
in natural conversation is far from the current state of technology. Conversational
agents are still in their infancy. Their “understanding” of most topics and social
actions is quite partial and brittle when compared to that of humans. However, the
path to realizing such artificial intelligence lies in equipping a computer system
with the ability to recognize the interactional patterns that constitute conversa-
tional competence, as well as the details of knowledge and natural language. As
we strive to create automated conversational agents, we will unavoidably develop
simplified versions of natural conversation: user interfaces that work like a con-
versation in some ways, within a limited range of knowledge and a limited range
of action. We called such user interfaces “conversation games” because, like com-
puter video games, they offer simplified simulations of the real world interactions
[Moore et al. 2007]. Although simplified compared to human talk-in-interaction,
conversational interfaces, and the wider user experience around them, need not
be simplistic.

In this book we have demonstrated a particular framework and methodology
for designing conversational user experience. We argued that, whether your agent
talks through text or through voice, you should adopt a conversation-first approach
to designing the user experience. In demonstrating such an approach, we have
applied Conversation Analysis to the design of conversational agents [Luff et al.

212 Chapter 9 Conclusion

1990, Frohlich and Luff 1990] and taken the next step. The Natural Conversation
Framework (NCF) is adapted from conversation science, yet its theories, concepts,
and models can only inspire the designer by revealing, in formal detail, how the
machinery of natural human conversation works. There is always a creative leap
that must be made from science to design.

In addition to providing some conversation theory as a foundation for our ap-
proach, we covered the basics of authoring conversation within the Intent-Entity-
Context-Response (IECR) paradigm popular today. Building on this background
knowledge, we then outlined a design framework consisting of (1) an interaction
model that reflects some of the core mechanics of human conversation; (2) a con-
tent format for breaking content down into the size required for natural conversa-
tion; (3) a pattern language with 100 reusable conversational UX patterns; and (4) a
general navigation method for conversational interfaces derived from the pattern
language. Finally, to help you put this all into practice, we outlined a general design-
thinking process adapted for conversational UX. As part of this process, we modeled
a practice for representing user interaction through simple transcripts and rep-
resenting dialog logic through pseudocode. Adopting this practice can facilitate
communication and collaboration across your team and even across a conversa-
tional UX design discipline. From this book you should be able to speak with some
authority about the mechanics of human conversation, demonstrate a systematic
approach to designing conversational user experience, apply the NCF pattern lan-
guage to the design of conversation spaces and user flows, and lead a development
team through a design-thinking process for conversational UX.

9.1 Conversation Metrics
This book is about an alternative approach to the design of conversational user
experience that leverages the findings and patterns of conversation science. Its
purpose is to introduce practitioners to a new way of looking at conversational UX,
as well as to provide some basic conversation theory and reusable design assets.
While we have developed the Natural Conversation Framework (NCF) [Moore et al.
2016, Moore 2018] in the course of building dozens of prototype systems and a few
production systems over the past four years, we do not yet have adequate user data to
offer a definitive analysis of its performance. Preliminary results suggest that users
find the NCF more “conversational” than most chatbots or voice assistants but that
they often interact with it as if it were a search engine (e.g., keywords only) or a fully
competent English speaker (e.g., complex utterances). Both lead to interactional

9.1 Conversation Metrics 213

troubles. As we collect more data from multiple live applications, we are beginning
to examine conversation logs and user behavior. The analysis of user interactions
with agents built on the NCF, compared to those with other designs, is still a topic
for our future work.

As part of our analytic efforts, we are developing novel metrics for evaluating the
effectiveness of conversations built on our framework. The concept of “adjacency
pair” [Schegloff and Sacks 1973, Schegloff 2007] from Conversation Analysis gives
us a method for analyzing series of turns, if we build that interaction model into our
conversation spaces. It enables us to see which sequences are primary and, of those,
which were successful. It also enables us to estimate levels of mutual understanding
or misunderstanding.

Since our Natural Conversation Framework (NCF) is based on expandable se-
quences [Schegloff 2007], the base sequences and their expansions can each be
measured separately. This makes possible corresponding metrics for the effective-
ness and efficiency of the conversation itself, independently of customer satisfac-
tion. Effectiveness and efficiency are also two-way metrics: they apply to both the
automated agent and to the user. The NCF offers the following three metrics.

Number of Sequences is a measure of how many action pairs, or base adjacency
pair sequences, were initiated by the user or by the agent. Instead of reporting
simply total number of turns, we segment the conversation logs into expandable
sequences, that is, base sequences with their expansions, if any. This gives a more
informative measure of how many social actions the user or the agent attempted
than does total number of turns.

Sequence Completion Rate is the percentage of initiated base sequences that were
completed by the recipient: agent or user. In other words, this is a measure of
the rate of success across sequences in the conversations, which is closely related
to the level of mutual understanding. If agent or user do not understand what
the other means or is doing, they cannot complete the sequence initiated by the
other. This is critical because mutual understanding is one of the distinctive goals
of conversation.

Interactional Efficiency is a measure of how much extra work the user or the
agent had to do in the conversation. The expandable-sequence interaction model
gives us a theoretical minimum number of turns a given conversation could have.
That is, if every completed sequence were compact, the theoretical minimum would
be double the number of completed base sequences. We can then compare that
minimum to the actual number of turns in the conversation and get a measure of
the rate of sequence expansion.

214 Chapter 9 Conclusion

Taken together, these sequence metrics tell us different things about conversa-
tions with our agent, Alma. Using extreme sets of artificial data (Examples 9.1–9.3),
we can demonstrate how the metrics vary with different kinds of conversations.

Example 9.1 Example of Set A.
1 U: what computer beat Jeopardy?

2 A: An IBM computer named Watson.

3 U: what computer beat a human chess champion?

4 A: It was named Deep Blue.

Example 9.2 Example of Set B.
1 U: what computer beat a human chess champion?

2 A: It was named Deep Blue.

3 U: Deep what?

4 A: Blue.

5 U: what do you mean?

6 A: The IBM computer was named Deep Blue.

7 U: oh ok

8 A: Is there anything else I can do for you?

Example 9.3 Example of Set C.
1 U: what’s in theaters?

2 A: What do you mean?

3 U: what movies are playing in theaters now?

4 A: I’m sorry, I still don’t understand.

These examples represent the kinds of sequences in each experimental data
set, A, B, and C. The data sets are “extreme” in that they only contain one kind of
sequence, that is, compact sequences (A), expanded, completed sequences (B) and
uncompleted sequences (C). These extreme data sets better enable us to see under
which conditions these metrics vary than do real data (Table 9.1).

In data set A, we included only completed sequences initiated by the user and no
expansions by the user. The sequence completion rate for agent and user combined

Table 9.1 Sequence metrics for extreme data

Number of Sequence Interactional
Set Sequences Completion Efficiency

A 17.4 0.88 0.92

B 10.4 0.83 0.49

C 7.2 0.14 0.09

9.1 Conversation Metrics 215

was 88% and the interactional efficiency was 92%. In data set B, we included not
only completed sequences initiated by the user but also numerous expansions by
the user, such as repeat requests, “what did you say?”, paraphrase requests, “what
do you mean?”, sequence closers, “ok” and “thanks,” and more. In the case of these
frequent expansions, the combined sequence completion rate was still high, 83%,
but interactional efficiency dropped significantly to 49%. Finally, in data set C, we
included only conversations in which none of the substantive sequences initiated
by the user were completed. In other words, there was almost a complete lack of
understanding by the agent of what the user was saying. The sequence completion
rate plummeted to 14% and interactional efficiency to 9%.

In short, if both the sequence completion and interactional efficiency rates
are high, the conversations themselves are effective. If they are both very low, the
conversations have failed. But if sequence completion is high and interactional ef-
ficiency is moderate, the conversations are successful but the user or agent is doing
additional work to achieve that success. This invites the conversational UX designer
to explore the nature of those sequence expansions. If they are eliciting details, the
topic of conversation may be inherently complex. For example, buying airline tick-
ets involves a lot of details and decisions. Moderate interactional efficiency may
be normal for this activity. However, if the expansions are primarily due to hear-
ing repairs, the conversation designer should re-examine the level of noise in the
environment and perhaps the placement of the system’s microphones. And if the
expansions are primarily due to understanding repairs, the conversation designer
should re-evaluate the terminology the agent uses and the knowledge it assumes
and determine if the conversation can be redesigned so that it is more comprehen-
sible from the start. With inherently complex topics or activities, expansions may be
unavoidable, but at least with repair features, the user and agent can still succeed
in the face of understanding troubles. This is the value of a robust conversational
repair system.

These sequence metrics also enable us to help disentangle user dissatisfaction
with the agent itself from dissatisfaction with its message, for example company
policies. If a customer reports dissatisfaction after an interaction with a company’s
virtual agent, and the sequence completion and interactional efficiency rates are
high for that conversation, then we know that the customer did not experience
trouble understanding the agent and vice versa. Rather, the dissatisfaction must
have come from the message delivered by the agent and not the quality of the
conversation itself. In other words, if the user complains and the agent recognizes
and responds appropriately to the complaint, then the problem is not in the agent’s
ability to understand but in the substance of the complaint itself.

216 Chapter 9 Conclusion

How It Works
In order to measure the occurrence of base sequences and their expansions in
conversation logs, we label both the user’s and the agent’s actions inside the
conversation space itself. We set context variables on each node in the dialog logic
that contains an intent or response, to indicate if the user inputs and agent outputs
associated with that sequence are parts of base sequences or expansions. So, for
example, a simple greeting exchange would be labeled with the following context
data (Example 9.4).

Example 9.4 Labeled Conversation Log.
1 U: hi

2 A: Hello.

1 user_input = "hi"

user_action = "greeting"

confidence = 1.0

user_APR = B1PP

2 repeat = "Hello."

agent_action = "greeting"

agent_APR = B2PP

What the user says, “hi,” is captured by a system variable input text and set to the
variable user input. The user’s action is captured by recording the intent name,
“greeting,” using the system variable intents[0].intent and setting it to user action. In
addition, the confidence level for that intent is captured. The sequential function
of the user’s utterance is captured by a set of structural codes, user APR, that we
have constructed based on the adjacency pair and repair models in Conversation
Analysis [Schegloff 2007]; for example, “B1PP” stands for the first pair part of a
base adjacency pair sequence. On the other hand, what the agent says is captured
through the custom variable repeat, which is also used for repeat repairs, and the
agent’s action is hardcoded when the response is written and captured by agent
action. And, like the user’s utterance, the agent’s is assigned a sequential function
with the agent APR code “B2PP”, or base second pair part. Once the dialog nodes
are labeled as such, the conversation logs label themselves as users interact with
the agent!

One limitation of this approach is that when a user’s input defaults, that is,
does not match any conditions in the dialog logic, we do not know what kind of
action the user did nor its sequential function. To attempt to compensate for this
missing data, we provide a modifier that represents the average percentage of de-
faulted inputs that are initiators of base sequences. For example, if 80% of past

9.2 Final Thoughts 217

unrecognized user utterances are base first pair parts (B1PPs), we set this modifier
to 0.8. The modifier is then based on prior data in order to provide a correction
to the metrics. Unrecognized user utterances, or random samples of them, should
be inspected on a regular basis both to set the modifier but also to discover any
systemic problems hidden in these unclassified responses. Furthermore, conver-
sational UX designers and product managers can learn to interpret the sequence
metrics to determine if their conversational agent is doing better or worse than it
was yesterday.

As we move to the analysis of the Natural Conversation Framework in action,
we expect some modification and certainly extension of the pattern language.
However, we are confident that the majority of the patterns are sound because they
are based on patterns from conversation science, as well as on the iteration we
have done to date, largely through internal testing. But the NCF’s pattern language
is intended to be an evolving project that we hope will grow with the help of the UX
design community.

9.2 Final Thoughts
As mentioned above, the intended audience of this book is the UX designer (or
anyone else interested in UX design), working on conversational agents, whether
chatbots or voice assistants, who seeks a more formal understanding of how human
conversation is structured. Through our brief introduction to Conversation Analysis
and the Natural Conversation Framework, we have attempted to provide you with a
foundation upon which to practice a new kind of UX design. As the conversational
UX designer on a development project, we encourage you to claim the exchange of
utterances between user and agent as your domain, not simply the visual design
of the window in which it takes place or the user personas. Lead the design of the
conversation itself, using conversation science, design thinking for conversation,
the NCF pattern language, and transcript mock-ups. Coordinate with the system
developers, content designers or data scientists to make sure that decisions they
make do not diminish the user’s conversational experience. Always explain the
impacts of development decisions on the conversational user experience to the
rest of the team. Argue for a conversation-first approach to the user experience.
The exchange of utterances in a conversational application is the proper domain
for UX design, but because it is new, you may need to make the case for why this is
so. We hope you will use this book in part to make that case.

As a final thought, we expect that the role of conversational UX designer will
change, perhaps radically, as the underlying technologies evolve. With current

218 Chapter 9 Conclusion

natural language platforms, using the Intent-Entity-Context-Response (IECR) par-
adigm, which relies on a human to model the interactional structure, the UX
designer’s role is one of conversation design and even engineering. However, as
conversational platforms move in the direction of natural language generation
[Kalchbrenner and Blunsom 2013, Sutskever et al. 2014, Vinyals and Le 2015, Song
et al. 2016], where conversational structure may be modeled algorithmically from
data, the UX designer’s role may become more like that of a teacher or trainer. In-
stead of getting your hands dirty authoring dialog logic, you may be evaluating the
conversational behavior of autonomous agents. Rather than building what they say,
you will be correcting what they say and perhaps teaching them through interaction.
In this future, which we expect as deep learning technologies mature, there will still
be a demand for someone to insure that the system creates a great user experience.
And this person must know, in a formal way, what constitutes “natural conversa-
tion” and what does not. It will be important for this conversational UX designer
to articulate exactly how the behavior of the algorithms is not right. Even as the
technologies evolve and the methods for designing conversational user experience
change, the mechanics and patterns of natural human conversation will not.

AAPPENDIX

Conversation Analysis
Transcription
Conventions

(0.6) silence (seconds)

[oh]
[we]ll

overlap

bye=
=bye

latching; no silence

.hhh in-breath

hhh out-breath

huh huh laugh

(mhm) uncertain

((cough)) note

um::: sound stretch

nope. falling pitch

what? rising pitch

and, flat pitch

not him emphasis, stress

NO WAY louder

◦ okay ◦ quieter

>all right< faster

BAPPENDIX

Dialog Design Pseudocode
Commands in Dialog Design

1. Create condition, “if”. Conditions are compared to input utterances.

2. Assign default, “else”. Assign action if no conditions are met.

3. Set variable, “set”. Capture the context of the current input for future turns.

4. Route to node, “goto”. Route to another dialog node.

5. Respond to user, “say”. Output text to the user.

Components of Dialog Conditions
a. Intents, “#”. Linguistic classes against which the similarity of a text input

can be scored.

b. Entities, “@”. Keywords or phrases to be matched exactly.

c. Context, “$”. Variables for capturing events in the conversation.

d. Pattern, “^”. Text string analysis with regular expressions, JavaScript, etc.

CAPPENDIX

NCF Pattern Language
Summary
This Natural Conversation Framework (NCF) pattern language for conversational
UX design consists of 100 distinct patterns for interaction between a user and a
conversational agent. They are organized into three classes and 15 types (Table C.1).

Table C.1 Conversational UX patterns

Conversational Sequence-Level Conversation-Level
Activities Management Management

A1 Inquiry (User) B1 Repair (Agent) C1 Opening (Agent)

A2 Open Request B2 Repair (User) C2 Opening (User)

A3 Extended Telling B3 Extended Repair C3 Capabilities

A4 Quiz B4 Sequence Closer C4 Closing

A5 Inquiry (Agent) B5 Sequence Abort C5 Disengaging

NCF Pattern Types

A. Conversational Activities

A1.0 Inquiry (User)
A1.1 Inquiry (User) Confirmation
A1.2 Inquiry (User) Disconfirmation
A1.3 Inquiry (User) Repairs

A2.0 Open Request
A2.1 Open Request Nonverbal
A2.2 Open Request Continuer
A2.3 Open Request Screening

224 Appendix C NCF Pattern Language Summary

A2.4 Open Request Agent Detail Request
A2.5 Open Request User Detail Request
A2.6 Open Request Summary
A2.7 Warrant Request & Refusal
A2.8 Open Request Summary with Artifacts
A2.9 Open Request Incremental (same as B3.1)
A2.10 Open Request Series
A2.11 Open Request Repairs

A3.0 Extended Telling with Repair
A3.1 Extended Telling Abort

A4.0 Quiz
A4.1 Quiz Incorrect
A4.2 Quiz Repairs
A4.3 Quiz User-Initiated
A4.4 Quiz Agent-Initiated

A5.0 Inquiry (Agent)
A5.1 Inquiry (Agent) Open
A5.2 Inquiry (Agent) Hearing Confirmed
A5.3 Inquiry (Agent) Hearing Disconfirmed
A5.4 Inquiry (Agent) Completion Check
A5.5 Inquiry (Agent) Extended Answer

A2+A3 Troubleshooting User-Initiated
A3+A4 Teaching

B. Sequence-Level Management

B1.1.0 Understanding Check (Agent)
B1.2.0 Paraphrase Request (Agent)
B1.2.1 Subsequent Paraphrase Requests
B1.2.2 Agent Continuer
B1.2.3 No Answer Account
B1.2.4 Repeat Acknowledgment

B2.1.0 Repeat Request
B2.1.1 Repeat Request Default
B2.2.0 Partial Repeat Request
B2.3.0 Hearing Check Confirmed
B2.3.1 Hearing Check Corrected

NCF Pattern Types 225

B2.4.0 Paraphrase Request
B2.4.1 Paraphrase Request Default
B2.5.0 Definition Request Repair
B2.5.1 Definition Request Default
B2.5.2 Definition Request Standalone
B2.6.0 Example Request
B2.6.1 Example Request Default
B2.7.0 Understanding Check Confirmed
B2.7.1 Understanding Check Disconfirmed

B3.1.0 Self-Correction (same as A2.9)
B3.1.1 Misunderstanding Report
B3.1.2 Other Hearing Check & Mishearing Report
B3.2.0 Other-Correction

B4.0 Sequence Closer (helped)
B4.1 Sequence Closer (not helped)
B4.2 Sequence Closer Appreciation (helped)
B4.3 Sequence Closer Appreciation (not helped)
B4.4 Sequence Closer (repaired)

B5.0 Sequence Abort
B5.1 Sequence Abort Capability Offer Accepted
B5.2 Sequence Abort Capability Offer Declined

C. Conversation-Level Management

C1.0 Opening Greeting (Agent)
C1.1 Opening Self-Identification (Agent)
C1.2 Opening Name Request (Agent)
C1.3 Opening Direct Address (Agent)
C1.4 Opening Welfare Check (Agent)
C1.5 Opening Organization Offer of Help (Agent)
C1.6 Opening Authentication (Agent)
C1.7 Organizational Problem Request (Agent)

C2.0 Greeting (User)
C2.1 Summons (User)
C2.2 Welfare Check (User)
C2.3 Displaced Greeting (User)
C2.4 Displaced Welfare Check (User)

226 Appendix C NCF Pattern Language Summary

C2.5 Reciprocated Welfare Check (User)
C2.6 News Check (User)
C2.7 News Check Capability (User)
C2.8 Self-Identification (User)
C2.9 Name Correction (User)
C2.10 Name Request (User)

C3.0 General Capability Check
C3.1 Capability Expansion
C3.2 Specific Capability Check
C3.3 Utterance Suggestion

C4.0 Last Topic Check (Agent)
C4.1 Last Topic Check (User)
C4.2 Pre-Closing (User)
C4.3 Closing Farewell (User)
C4.4 Closing Appreciation (Organizational)
C4.5 Closing Name Request (Agent)
C4.6 Closing Success Check (Affirmed)
C4.7 Closing Success Check (Disaffirmed)
C4.8 Closing Success Check Reopened
C4.9 Closing Offer (Affirmed)
C4.10 Closing Offer (Disaffirmed)

C5.0 Transfer Successful
C5.1 Transfer Aborted
C5.2 Recipient Correction
C5.3 Offense Complaint (Agent)
C5.4 Offense Complaint (User)

NCF Patterns and Examples

A. Conversational Activities
Pattern A1.0 Inquiry (User).

1 U: INQUIRY

2 A: ANSWER

3 U: SEQUENCE CLOSER

Example A1.0 Inquiry (User).
1 U: what computer won Jeopardy?

2 A: An IBM computer named Watson.

3 U: ok

NCF Patterns and Examples 227

Pattern A1.1 Inquiry (User) Confirmation.
1 U: INQUIRY

2 A: INQUIRY PARAPHRASE

3 U: CONFIRMATION

4 A: ANSWER

5 U: SEQUENCE CLOSER

Example A1.1 Inquiry (User) Confirmation.
1 U: what was that Jeopardy computer?

2 A: You mean, what computer won Jeopardy?

3 U: yeah

4 A: An IBM computer named Watson.

5 U: oh

Pattern A1.2 Inquiry (User) Disconfirmation.
1 U: INQUIRY

2 A: INQUIRY PARAPHRASE

3 U: DISCONFIRMATION

4 A: PARAPHRASE REQUEST

5 U: PARAPHRASE

Example A1.2 Inquiry (User) Disconfirmation.
1 U: what computer beat humans at Go?

2 A: You mean, what computer beat the human chess champion?

3 U: no

4 A: I’m sorry, I don’t understand your question.

Pattern A1.3 Inquiry (User) Repairs.
1 U: INQUIRY

2 A: ANSWER

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: REPAIR INITIATOR

6 A: REPAIR

7 U: SEQUENCE CLOSER

Example A1.3 Inquiry (User) Repairs.
1 U: what computer won Jeopardy?

2 A: An IBM computer named Watson.

3 U: named what?

4 A: Watson

5 U: what do you mean?

6 A: Scientists at IBM created the computer

that won Jeopardy and named it after the

founder of the company, Thomas J. Watson.

7 U: oh ok

228 Appendix C NCF Pattern Language Summary

Pattern A2.0 Open Request.
1 U: FULL REQUEST

2 A: GRANT

3 U: SEQUENCE CLOSER

4 A: RECEIPT

Example A2.0 Open Request.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: thanks

4 A: You’re welcome!

Pattern A2.1 Open Request Nonverbal.
1 U: FULL REQUEST

2 A: ACKNOWLEDGMENT <NONVERBAL>

3 U: SEQUENCE CLOSER

4 A: RECEIPT

Example A2.1 Open Request Nonverbal.
1 U: please turn on the lights

2 A: Okay. ((lights come on))

3 U: thank you

4 A: You’re welcome!

Pattern A2.2 Open Request Continuer.
1 U: DETAIL GIVING

2 A: CONTINUER

3 U: REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.2 Open Request Continuer.
1 U: I hear the fish tacos around here are fantastic!

2 A: Mhmm.

3 U: can you recommend a place?

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

Pattern A2.3 Open Request Screening.
1 U: PRE-REQUEST

2 A: GO-AHEAD

3 U: FULL REQUEST

NCF Patterns and Examples 229

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.3 Open Request Screening.
1 U: do you know about restaurants?

2 A: I know a few places.

3 U: can you recommend a nearby Mexican restaurant?

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

Pattern A2.4 Open Request Agent Detail Request.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.4 Open Request Agent Detail Request.
1 U: can you recommend a Mexican restaurant?

2 A: Walking distance or car ride?

3 U: walking distance

4 A: Mario’s is located at Beach and Main.

5 U: thanks

6 A: You’re welcome!

Pattern A2.5 Open Request User Detail Request.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL REQUEST

4 A: DETAIL

5 U: DETAIL

6 A: GRANT

7 U: SEQUENCE CLOSER

8 A: RECEIPT

Example A2.5 Open Request User Detail Request.
1 U: what’s a good restaurant nearby?

2 A: What kind of food do you want?

3 U: what are my choices?

4 A: Around here, Mexican, Japanese or Indian.

5 U: Mexican

230 Appendix C NCF Pattern Language Summary

6 A: Mario’s is located at Beach and Main.

7 U: thanks

8 A: You’re welcome!

Pattern A2.6 Open Request Summary.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: DETAIL

8 A: REQUEST SUMMARY

9 U: SUMMARY CONFIRM

10 A: GRANT

11 U: SEQUENCE CLOSER

12 A: RECEIPT

Example A2.6 Open Request Summary.
1 U: I need to register

2 A: Okay. What’s your name?

3 U: Dave Bowman

4 A: What’s your job title?

5 U: astronaut

6 A: What is your organizational affiliation?

7 U: NASA

8 A: So Dave Bowman, Astronaut at NASA. Is that correct?

9 U: yes

10 A: Okay. You’re all set!

11 U: thank you

12 A: You’re welcome!

Pattern A2.7 Warrant Request & Refusal.
1 A: DETAIL REQUEST

2 U: WARRANT REQUEST

3 A: WARRANT

4 U: REFUSAL

5 A: ACKNOWLEDGMENT. <NEXT ACTION>

Example A2.7 Warrant Request & Refusal.
1 A: What’s your job title?

2 U: why do you need to know?

3 A: Job title enables us to know the range of professions of

our participants.

NCF Patterns and Examples 231

4 U: none of your business

5 A: No problem. What is your organizational affiliation?

Pattern A2.8 Open Request Summary with Artifacts.
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: DETAIL

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: DETAIL

8 A: HOLD REQUEST

9 A: GRANT

10 <OFFER OF ARTIFACTS>

11 U: SEQUENCE CLOSER

12 A: RECEIPT

Example A2.8 Open Request Summary with Artifacts.
1 U: I want to book a flight

2 A: Okay. Where are do you want to go?

3 U: Kona, Hawaii

4 A: Where are you leaving from?

5 U: SJC

6 A: When would you like to go?

7 U: June 17-30

8 A: One moment please...

9 A: Okay. Here are flights from SJC to KOA on June 17-30.

10
.
.
. ((visual flight cards))

11 U: thank you

12 A: You’re welcome!

Pattern A2.9 Open Request Incremental (same as B3.1).
1 U: FULL REQUEST

2 A: GRANT

3 U: INCREMENTAL REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.9 Open Request Incremental.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: how about Indian?

232 Appendix C NCF Pattern Language Summary

4 A: Taj Mahal is on Third and Union.

5 U: thanks

6 A: You’re welcome!

Pattern A2.10 Open Request Series.
1 U: FULL REQUEST

2 A: GRANT

3 U: RELATED REQUEST

4 A: GRANT

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.10 Open Request Series.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: when is it open?

4 A: Mario’s is open from 11:00am to 2:00am.

5 U: thanks

6 A: You’re welcome!

Pattern A2.11 Open Request Repairs.
1 U: FULL REQUEST

2 A: GRANT

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: SEQUENCE CLOSER

6 A: RECEIPT

Example A2.11a Open Request Repairs.
1 U: can you recommend a nearby Mexican restaurant?

2 A: Mario’s is located at Beach and Main.

3 U: what do you mean?

4 A: The Mexican restaurant, Mario’s, is located at

the intersection of Beach Boulevard and Main Street.

5 U: thanks

6 A: You’re welcome!

Example A2.11b Open Request Repairs.
1 A: What can I do for you?

2 U: I just came over from the other hotel. I’m with NASA?

3 A: NASA, okay.

4 U: can I register here?

5 A: Okay. What’s your name?

6 U: Dave Bowman

NCF Patterns and Examples 233

7 A: What’s your job title?

8 U: astronaut

9 A: What kind of meal would you like?

10 U: what are my choices?

11 A: Beef, fish or vegan.

12 U: beef

13 A: So Dave Bowman, Astronaut at NASA and the beef meal.

Is that correct?

14 U: no, I mean fish

15 A: So Dave Bowman, Astronaut at NASA and the fish meal.

Is that correct?

16 U: yes

17 A: Okay. You’re all set!

18 U: will there be a reception?

19 A: I’m afraid NASA is not having a reception.

20 U: ok thanks

21 A: You’re welcome!

Pattern A3.0 Extended Telling with Repair.
1 U: STORY REQUEST/INSTRUCTION INVITATION

2 A: PART/STEP 1

3 U: CONTINUER/PAUSE

4 A: PART/STEP 2

5 U: REPAIR INITIATOR

6 A: REPAIR

7 U: CONTINUER/PAUSE

8 A: PART/STEP 3

9 U: SEQUENCE CLOSER

10 A: RECEIPT

Example A3.0 Extended Telling with Repair.
1 U: how do I meditate?

2 A: First, sit comfortably and breathe slowly.

3 U: ok

4 A: Next, count each in breath and out breath until you get to ten.

Then repeat.

5 U: what do you mean?

6 A: As you breathe in, out, in, count one, two, three all the way

to ten.

7 U: all right

8 A: Finally, continue counting your breaths for ten minutes.

9 U: thanks

10 A: You’re welcome!

234 Appendix C NCF Pattern Language Summary

Pattern A3.1 Extended Telling Abort.
1 U: STORY/INSTRUCTION INVITATION

2 A: PART/STEP 1

3 U: CONTINUER/PAUSE

4 A: PART/STEP 2

5 U: REPAIR INITIATOR

6 A: REPAIR

7 A: PART/STEP 3

8 U: COMPLAINT/ABORT REQUEST

9 A: ABORT OFFER

10 U: ABORT CONFIRM

11 A: ACKNOWLEDGMENT

Example A3.1 Extended Telling Abort.
1 U: tell me a story

2 A: Once upon a time, there was a little girl named Goldilocks.

She went for a walk in the forest. Pretty soon, she came upon

a house. She knocked and, when no one answered, she walked

right in.

3 ((pause))

4 A: At the table in the kitchen, there were three bowls of porridge.

Goldilocks was hungry. She tasted the porridge from the first

bowl. This porridge is too hot!, she exclaimed.

5 U: what do you mean by porridge?

6 A: Oh, sorry! Porridge is a dish consisting of oatmeal or another

grain boiled in water or milk. Sometimes called hot cereal.

7 U: ok

8 A: So, she tasted the porridge from the second bowl. This porridge

is too cold, she said. So, she tasted the last bowl of porridge.

Ahhh, this porridge is just right, she said happily and she ate

it all up.

9 U: this is boring

10 A: Shall I stop?

11 U: yes please

12 A: Okay.

Pattern A4.0 Quiz.
1 A: QUESTION

2 U: CORRECT ANSWER

3 A: CONFIRMATION

Example A4.0 Quiz.
1 A: Why can’t you trust atoms?

2 U: they make up everything

3 A: That’s right!

NCF Patterns and Examples 235

Pattern A4.1 Quiz Incorrect.
1 A: QUESTION

2 U: INCORRECT ANSWER

3 A: DISCONFIRMATION

4 U: REFUSAL/ABORT

5 A: CORRECT ANSWER

6 U: SEQUENCE CLOSER

Example A4.1 Quiz Incorrect.
1 A: Why can’t you trust atoms?

2 U: you can’t see them?

3 A: Wrong! Try again.

4 U: you tell me

5 A: They make up everything.

6 U: haha

Pattern A4.2 Quiz Repairs.
1 A: QUESTION

2 U: REPAIR INITIATOR

3 A: REPAIR

4 U: CORRECT ANSWER

5 A: CONFIRMATION

Example A4.2 Quiz Repairs.
1 A: Why can’t you trust atoms?

2 U: atoms?

3 A: Yes.

4 U: they make up everything?

5 A: That’s right!

Pattern A4.3 Quiz User-Initiated.
1 U: QUIZ REQUEST

2 A: QUESTION

3 U: CORRECT ANSWER

4 A: CONFIRMATION

Example A4.3 Quiz User-Initiated.
1 U: tell me a joke

2 A: What can you hold without ever touching it?

3 U: a conversation?

4 A: That’s right!

Pattern A4.4 Quiz Agent-Initiated.
1 A: QUIZ OFFER

2 U: ACCEPTANCE

236 Appendix C NCF Pattern Language Summary

3 A: QUESTION

4 U: CORRECT ANSWER

5 A: CONFIRMATION

Example A4.4 Quiz Agent-Initiated.
1 A: Would you like to play a computer trivia game?

2 U: sure

3 A: Okay. What computer beat human champions at Jeopardy?

4 U: Watson

5 A: You got it!

Pattern A5.0 Inquiry (Agent).
1 A: CLOSED INQUIRY

2 U: ANSWER

3 A: SEQUENCE CLOSER

4 U: RECEIPT

Example A5.0 Inquiry (Agent).
1 A: On a scale from one to ten, how would you rate Mario’s?

2 U: nine

3 A: Thank you.

4 U: you’re welcome

Pattern A5.1 Inquiry (Agent) Open.
1 A: OPEN INQUIRY

2 U: OPEN ANSWER

3 A: SEQUENCE CLOSER

4 U: RECEIPT

Example A5.1 Inquiry (Agent) Open.
1 A: What did you think of Mario’s?

2 U: the food was really good, and I loved the cantina atmosphere!

3 A: Thank you.

4 U: you’re welcome

Pattern A5.2 Inquiry (Agent) Hearing Confirmed.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: HEARING CHECK

4 U: CONFIRMATION

5 A: SEQUENCE CLOSER

6 U: RECEIPT

Example A5.2 Inquiry (Agent) Hearing Confirmed.
1 A: What did you think of Mario’s?

NCF Patterns and Examples 237

2 U: the food was really good, and I loved the cantina atmosphere!

3 A: You said: the food was really good, and I loved the cantina

atmosphere! Is that correct?

4 U: yep

5 A: Thank you.

6 U: you’re welcome

Pattern A5.3 Inquiry (Agent) Hearing Disconfirmed.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: HEARING CHECK

4 U: DISCONFIRMATION

5 A: REPEAT REQUEST

6 U: ANSWER

7 A: HEARING CHECK

8 U: CONFIRMATION

9 A: SEQUENCE CLOSER

10 U: RECEIPT

Example A5.3 Inquiry (Agent) Hearing Disconfirmed.
1 A: What did you think of Mario’s?

2 U: the food was really good and I loved the cantina atmosphere

3 A: You said: the food was really good and I loved the can I

atmosphere. Is that correct?

4 U: no

5 A: What did you say?

6 U: food was good and I loved the CANTINA atmosphere

7 A: You said: food was good and I loved the cantina atmosphere

Is that correct?

8 U: yes

9 A: Thank you.

10 U: you’re welcome

Pattern A5.4 Inquiry (Agent) Completion Check.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: COMPLETION CHECK

4 U: NEXT ANSWER PART

5 A: COMPLETION CHECK

6 U: DISCONFIRMATION

7 A: SEQUENCE CLOSER

8 U: RECEIPT

238 Appendix C NCF Pattern Language Summary

Example A5.4 Inquiry (Agent) Completion Check.
1 A: What did you think of Mario’s?

2 U: the food was really good!

3 A: You said: the food was really good

Anything else?

4 U: and I loved the cantina atmosphere

5 A: You said: the food was really good

and I loved the cantina atmosphere

Anything else?

6 U: no

7 A: Thank you.

8 U: you’re welcome

Pattern A5.5 Inquiry (Agent) Extended Answer.
1 A: OPEN INQUIRY

2 U: ANSWER

3 A: CONTINUER

4 U: NEXT ANSWER PART

5 A: CONTINUER

6 U: END

7 A: SEQUENCE CLOSER

8 U: RECEIPT

Example A5.5 Inquiry (Agent) Extended Answer.
1 A: What did you think of Mario’s?

2 U: the food was really good!

3 A: Uh-huh.

4 U: and I loved the cantina atmosphere

5 A: Mhmm.

6 U: that’s it

7 A: Thank you.

8 U: you’re welcome

Pattern A2+A3 Troubleshooting User-Initiated.
1 U: PRE-REQUEST/PRE-PROBLEM REPORT

2 A: GO-AHEAD RESPONSE

3 U: REQUEST/PROBLEM REPORT

4 A: DETAIL REQUEST

5 U: DETAIL

6 A: DETAIL REQUEST

7 U: (REPAIR INITIATOR)

8 A: (REPAIR)

9 U: DETAIL

10 A: DETAIL REQUEST

NCF Patterns and Examples 239

11 U: DETAIL

12 A: GRANT/SOLUTION PROPOSAL

13 U: INSTRUCTION REQUEST

14 A: PART/STEP 1

15 U: CONTINUER

16 A: PART/STEP 2

17 U: CONTINUER

18 A: PART/STEP 3

19 U: CONTINUER

20 A: PART/STEP 4

21 U: SEQUENCE CLOSER

22 A: RECEIPT

Example A2+A3 Troubleshooting User-Initiated.
1 U: i’ve got a problem

2 A: What’s your problem?

3 U: I’ve been feeling really anxious lately

4 A: Okay, anxiety. Anything else?

5 U: i’ve been pretty tired

6 A: Has anything bad happened recently?

7 U: what do you mean?

8 A: Could a recent negative experience be causing the anxiety?

9 U: no

10 A: Is your anxiety severe?

11 U: not really

12 A: Okay. Then perhaps you should try meditating.

13 U: how do I do that?

14 A: First, sit comfortably and breathe slowly.

15 U: what do you mean?

16 A: Just sit and relax.

17 U: oh ok

18 A: Next, count each in breath and out breath until you get to ten.

Then repeat.

19 U: all right

20 A: Finally, continue counting your breaths for ten minutes.

21 U: thanks

22 A: You’re welcome! Is there anything else I can do for you?

Pattern A3+A4 Teaching.
1 U: STORY REQUEST

2 A: ACKNOWLEDGMENT

3 A: PART/STEP 1

4 U: CONTINUER

5 A: PART/STEP 2

240 Appendix C NCF Pattern Language Summary

6 U: (REPAIR INITIATOR)

7 A: (REPAIR)

8 U: CONTINUER

9 A: PART/STEP 3

10 U: CONTINUER

11 A: PART/STEP 4

12 U: (REPAIR INITIATOR)

13 A: (REPAIR)

14 U: SEQUENCE CLOSER

15 A: QUIZ OFFER

16 U: ACCEPTANCE

17 A: QUESTION 1

18 U: CORRECT ANSWER 1

19 A: CONFIRMATION

20 A: QUESTION 2

21 U: CORRECT ANSWER 2

22 A: CONFIRMATION

23 A: QUESTION

24 U: INCORRECT ANSWER

25 A: DISCONFIRMATION

26 U: CORRECT ANSWER

27 A: CONFIRMATION

28 A: ACTIVITY CLOSER

Example A3+A4 Tutoring.
1 U: teach me something about human speech

2 A: Okay.

3 A: First, one of the most distinctive features of a human voice is

its pitch.

4 U: uh-huh

5 A: The pitch of a human voice is how high or low it sounds to the

human ear.

6 U: can you give an example?

7 A: Men generally have lower voices than women and children

8 U: oh ok

9 A: The pitch of a human voice is determined by the tension in the

vocal cords and the flow of air out of the lungs.

10 U: ok

11 A: Finally, pitch can be measured by measuring the fundamental

frequency of the voice signal, the unit of which is hertz.

12 U: what do you mean by fundamental frequency?

13 A: Human voices contain multiple frequencies. The fundamental

frequency is the lowest one.

14 U: ok

NCF Patterns and Examples 241

15 A: Would you like to take a quiz?

16 U: sure

17 A: What do we call our perception of the highness or lowness of a

human voice?

18 U: pitch

19 A: Correct!

20 A: What is a factor in determining the pitch of a human voice?

21 U: vocal cord tension

22 A: That’s right!

23 A: How can pitch be measured?

24 U: frequency

25 A: Incorrect. Try again.

26 U: I mean, fundamental frequency

27 A: That’s correct!

28 A: You answered all three questions correctly!

B. Sequence-Level Management
Pattern B1.1.0 Understanding Check (Agent).

1 U: <UTTERANCE>

2 A: <PARAPHRASE>

3 U: CONFIRMATION

4 A: <RESPONSE>

5 U: SEQUENCE CLOSER

Example B1.1.0 Understanding Check (Agent).
1 U: whats shakin bruh

2 A: You mean, what’s new?

3 U: yeah

4 A: Nothing really. I don’t get out much.

5 U: ha!

Pattern B1.2.0 Paraphrase Request (Agent).
1 A: <ANY UTTERANCE>

2 U: <UNKNOWN UTTERANCE>

3 A: INITIAL PARAPHRASE REQUEST

4 U: <KNOWN PARAPHRASE>

5 A: <APPROPRIATE RESPONSE>

Example B1.2.0 Paraphrase Request (Agent).
1 A: Hello. How are you?

2 U: bitchin’!

3 A: What do you mean?

4 U: I’m great!

5 A: That’s great!

242 Appendix C NCF Pattern Language Summary

Pattern B1.2.1 Subsequent Paraphrase Requests.
1 A: <ANY UTTERANCE>

2 U: <UNKNOWN UTTERANCE>

3 A: INITIAL PARAPHRASE REQUEST

4 U: <UNKNOWN UTTERANCE>

5 A: SUBSEQUENT PARAPHRASE REQUEST

Example B1.2.1 Subsequent Paraphrase Requests.
1 A: How can I help you?

2 U: what’s in theaters?

3 A: What do you mean?

4 U: what movies are currently playing?

5 A: I’m sorry, I still don’t understand.

Pattern B1.2.2 Agent Continuer.
1 U: <UNKNOWN INTENT, KNOWN ENTITY>

2 A: (REPEAT ENTITY) CONTINUER

3 U: <RECOGNIZED UTTERANCE>

4 A: <APPROPRIATE RESPONSE>

Example B1.2.2 Agent Continuer.
1 U: I just came over from the other hotel. I’m with NASA?

2 A: NASA, mm-hmm.

3 U: can I register here?

4 A: Okay. What’s your name?

Pattern B1.2.3 No Answer Account.
1 U: <UNKNOWN INQUIRY>

2 A: NO ANSWER ACCOUNT

3 U: SEQUENCE CLOSER

Example B1.2.3 No-Answer Account.
1 U: what is the capital of California?

2 A: I don’t know.

3 U: ok

Pattern B1.2.4 Repeat Acknowledgment.
1 U: <UNKNOWN UTTERANCE>

2 A: INITIAL PARAPHRASE REQUEST

3 U: <FIRST REPEAT>

4 A: REPEAT ACKNOWLEDGMENT

5 U: <SECOND REPEAT>

6 A: <REPEAT>

NCF Patterns and Examples 243

Example B1.2.4 Repeat Acknowledgment.
1 U: what’s in theaters?

2 A: What do you mean?

3 U: what’s in theaters?

4 A: I know, I heard you!

5 U: what’s in theaters?

6 A: what’s in theaters?

Pattern B2.1.0 Repeat Request.
1 A: <ANY UTTERANCE>

2 U: REPEAT REQUEST

3 A: REPEAT

Example B2.1.0 Repeat Request.
1 A: I guess I like movies with a strong AI lead.

2 U: what did you say?

3 A: I guess I like movies with a strong AI lead.

Pattern B2.1.1 Repeat Request Default.
1 A: <ANY UTTERANCE>

2 U: REPEAT REQUEST

3 A: DEFAULT RESPONSE

Example B2.1.1a Repeat Request Default.
1 A: I guess I like movies with a strong AI lead.

2 U: what did you say?

3 A: Oh dear, I forgot!

Example B2.1.1b Repeat Request Aborted.
1 A: Are you an expert on computer history?

2 U: what did you say?

3 A: never mind

Pattern B2.2.0 Partial Repeat Request.
1 A: <ANY UTTERANCE>

2 U: PARTIAL REPEAT + what/who/when/where/why

3 A: PARTIAL REPEAT

Example B2.2.0 Partial Repeat Request.
1 A: I guess I like movies with a strong AI lead.

2 U: a strong what?

3 A: AI lead.

Pattern B2.3.0 Hearing Check Confirmed.
1 A: <ANY UTTERANCE>

244 Appendix C NCF Pattern Language Summary

2 U: FULL/PARTIAL REPEAT

3 A: CONFIRMATION

Example B2.3.0 Hearing Check Confirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: lead?

3 A: That’s right.

Pattern B2.3.1 Hearing Check Corrected.
1 A: <ANY UTTERANCE>

2 U: FULL/PARTIAL REPEAT

3 A: DISCONFIRMATION, REPEAT

Example B2.3.1 Hearing Check Corrected.
1 A: I guess I like movies with a strong AI lead.

2 U: need?

3 A: No, LEAD.

Pattern B2.4.0 Paraphrase Request.
1 A: <ANY UTTERANCE>

2 U: PARAPHRASE REQUEST

3 A: PARAPHRASE

Example B2.4.0a Paraphrase Request (elaboration).
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean?

3 A: I enjoy movies in which the main character is

an Artificial Intelligence.

Example B2.4.0b Paraphrase Request (upshot).
1 A: First, please sit comfortably on the floor

and breathe deeply and slowly.

2 U: what do you mean?

3 A: Just sit and relax.

Pattern B2.4.1 Paraphrase Request Default.
1 A: <ANY UTTERANCE>

2 U: PARAPHRASE REQUEST

3 A: PARAPHRASE DEFAULT

Example B2.4.1 Paraphrase Request Default.
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean?

3 A: Well, I don’t know how else to say it.

NCF Patterns and Examples 245

Pattern B2.5.0 Definition Request Repair.
1 A: <ANY UTTERANCE>

2 U: DEFINITION REQUEST

3 A: REPAIR MARKER + DEFINITION

Example B2.5.0 Definition Request Repair.
1 A: I guess I like movies with a strong AI lead.

2 U: what do you mean by AI?

3 A: Oh, sorry! AI stands for Artificial Intelligence.

Basically, robots and smart machines like me!

Pattern B2.5.1 Definition Request Default.
1 A: <ANY UTTERANCE>

2 U: DEFINITION REQUEST

3 A: DEFINITION DEFAULT

Example B2.5.1 Definition Request Default.
1 A: I say, politics is the art of compromise.

2 U: define compromise?

3 A: I’m not sure how to define it.

Pattern B2.5.2 Definition Request Standalone.
1 A: <ANY UTTERANCE WITHOUT TERM>

2 U: DEFINITION REQUEST

3 A: DEFINITION

Example B2.5.2 Definition Request Standalone.
1 A: How can I help you?

2 U: what does server mean?

3 A: A server is a big computer that provides

functionality to lots of other computers.

Pattern B2.6.0 Example Request.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE REQUEST

3 A: EXAMPLE

Example B2.6.0a Example Request.
1 A: I guess I like movies with a strong AI lead.

2 U: can you give an example?

3 A: Um, 2001: A Space Odyssey... The Matrix...

Terminator... those are a few.

Example B2.6.0b Choices Request.
1 A: What kind of food do you want?

246 Appendix C NCF Pattern Language Summary

2 U: what are my choices?

3 A: Around here, Mexican, Japanese or Indian.

4 U: Mexican

5 A: Walking distance or car ride?

Pattern B2.6.1 Example Request Default.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE REQUEST

3 A: EXAMPLE DEFAULT

Example B2.6.1 Example Request Default.
1 A: I talk to my Creator all the time.

2 U: can you give an example?

3 A: I’m afraid I can’t think of an example.

Pattern B2.7.0 Understanding Check Confirmed.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE

3 A: CONFIRMATION

Example B2.7.0 Understanding Check Confirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: like The Matrix?

3 A: Yes.

Pattern B2.7.1 Understanding Check Disconfirmed.
1 A: <ANY UTTERANCE>

2 U: EXAMPLE

3 A: DISCONFIRMATION. EXAMPLE

Example B2.7.1 Understanding Check Disconfirmed.
1 A: I guess I like movies with a strong AI lead.

2 U: like One Flew Over the Cuckoo’s Nest?

3 A: No. Like the Matrix.

Pattern B3.1.0 Self-Correction (same as A2.7).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: SELF-CORRECTION

4 A: ALTERNATIVE RESPONSE

5 U: SEQUENCE CLOSER

Example B3.1.0 Self-Correction.
1 U: is the Mexican restaurant close?

NCF Patterns and Examples 247

2 A: Mario’s is located at Beach and Main.

3 U: no, I mean in the hotel

4 A: I’m afraid there is no Mexican restaurant inside the hotel.

5 U: ok thanks

Pattern B3.1.1 Misunderstanding Report.
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: MISUNDERSTANDING REPORT

4 A: PARAPHRASE REQUEST

5 U: SELF-CORRECTION

6 A: ALTERNATIVE RESPONSE

7 U: SEQUENCE CLOSER

Example B3.1.1 Misunderstanding Report.
1 U: what’s your favorite movie theater?

2 A: I guess I like movies with a strong AI lead.

3 U: that’s not what I mean

4 A: I’m sorry, please try again.

5 U: can you recommend a movie theater?

6 A: I’m afraid I don’t have information on movie theaters.

7 U: ok

Pattern B3.1.2 Other Hearing Check & Mishearing Report.
1 U: <ANY UTTERANCE>

2 A: <ANY RESPONSE>

3 U: HEARING CHECK

4 A: REPEAT

5 U: MISHEARING REPORT

6 A: APOLOGY. REPEAT REQUEST

7 U: REPEAT

8 A: <RESPONSE>

9 U: SEQUENCE CLOSER

Example B3.1.2 Other Hearing Check & Mishearing Report.
1 U: what’s your favorite movie theater?

2 A: I guess I like movies with a strong AI lead.

3 U: what did I say?

4 A: You said: what’s your favorite movie

5 U: that’s not what I said

6 A: I’m sorry. What did you say?

7 U: I said what’s your favorite movie theater?

8 A: I’m afraid I don’t have information on movie theaters.

9 U: ok

248 Appendix C NCF Pattern Language Summary

Pattern B3.2.0 Other-Correction.
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: <MENTION OF KEY ENTITY>

4 A: OTHER-CORRECTION

5 U: SEQUENCE CLOSER

Example B3.2.0 Other-Correction.
1 U: what’s the address for almaden?

2 A: IBM Almaden is located at 650 Harry Road,

San Jose, California, 95120, USA.

3 U: I thought it was on Bailey road

4 A: Oh, you mean the Silicon Valley Lab. That’s

555 Bailey Ave, San Jose, California 95141.

5 U: oh ok

Pattern B4.0 Sequence Closer (helped).
1 U: INQUIRY/REQUEST

2 A: RESPONSE

3 U: ACKNOWLEDGMENT/ASSESSMENT/LAUGHTER

4 <optional pause>

5 A: LAST TOPIC CHECK

Example B4.0 Sequence Closer (helped).
1 U: what’s your favorite movie?

2 A: I guess I like movies with a strong AI lead.

3 U: ok

4 (2.0)

5 A: Anything else?

Pattern B4.1 Sequence Closer (not helped).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: ACKNOWLEDGMENT/ASSESSMENT/LAUGHTER

Example B4.1 Sequence Closer (not helped).
1 U: what’s in theaters?

2 A: I’m afraid I can’t look up movies at this time.

3 U: too bad

Pattern B4.2 Sequence Closer Appreciation (helped).
1 U: INQUIRY/REQUEST

2 A: ANSWER/GRANT

3 U: APPRECIATION

NCF Patterns and Examples 249

4 A: APPRECIATION RECEIPT

5 <optional pause>

6 A: LAST TOPIC CHECK

Example B4.2 Sequence Closer Appreciation (helped).
1 U: what’s your favorite movie?

2 A: I guess I like movies with a strong AI lead.

3 U: thanks

4 A: You’re welcome.

5 (2.0)

6 A: Anything else?

Pattern B4.3 Sequence Closer Appreciation (not helped).
1 U: INQUIRY/REQUEST

2 A: NO ANSWER ACCOUNT

3 U: APPRECIATION

4 A: REFUTATION

Example B4.3 Sequence Closer Appreciation (not helped).
1 U: what’s in theaters?

2 A: I’m afraid I can’t look up movies at this time.

3 U: thanks

4 A: I don’t think I did anything.

Pattern B4.4 Sequence Closer (repaired).
1 U: PARTIAL REQUEST

2 A: DETAIL REQUEST

3 U: REPAIR INITIATOR

4 A: REPAIR

5 U: APPRECIATION

6 A: APPRECIATION RECEIPT

7 U: DETAIL

8 A: GRANT

Example B4.4 Sequence Closer (repaired).
1 U: can you recommend a restaurant nearby?

2 A: What kind of food do you want?

3 U: what’s an example?

4 A: Around here, Mexican, Japanese or Indian.

5 U: thanks

6 A: You’re welcome!

7 U: um, Japanese

8 A: Shogun Sushi is located on First and Taylor.

250 Appendix C NCF Pattern Language Summary

Pattern B5.0 Sequence Abort.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. OFFER OF HELP

Example B5.0 Sequence Abort.
1 A: What do you mean?

2 U: never mind

3 A: Whatever you say. What can I do for you?

Pattern B5.1 Sequence Abort Capability Offer Accepted.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. CAPABILITY OFFER

4 U: ACCEPTANCE

5 A: CAPABILITY REPORT

Example B5.1 Sequence Abort Capability Offer Accepted.
1 A: What do you mean?

2 U: forget it

3 A: Whatever you say. Want to know what I can do?

4 U: sure

5 A: I haven’t been trained yet. I can only make small

talk, tell some jokes or ask some trivia questions.

I can tell you more about each of these.

Pattern B5.2 Sequence Abort Capability Offer Declined.
1 A: <ANY UTTERANCE>

2 U: ABORT

3 A: ABORT ACKNOWLEDGMENT. CAPABILITY OFFER

4 U: DECLINATION

5 A: ACKNOWLEDGMENT. LAST TOPIC CHECK

Example B5.2 Sequence Abort Capability Offer Declined.
1 A: What do you mean?

2 U: never mind

3 A: Whatever you say. Want to know what I can do?

4 U: no

5 A: Okay. Anything else?

NCF Patterns and Examples 251

C. Conversation-Level Management
Pattern C1.0 Opening Greeting (Agent).

1 A: GREETING

Example C1.0 Opening Greeting (Agent).
1 A: Hello.

Pattern C1.1 Opening Self-Identification (Agent).
1 A: GREETING. SELF-IDENTIFICATION.

2 U: <RESPONSE>

Example C1.1 Opening Self-Identification (Agent).
1 A: Hello. I’m Alma.

2 U: hi

Pattern C1.2 Opening Name Request (Agent).
1 A: GREETING. SELF-IDENTIFICATION. NAME REQUEST.

2 U: NAME.

3 A: GREETING, DIRECT ADDRESS.

Example C1.2 Opening Name Request (Agent).
1 A: Hello. I’m Alma. What’s your name?

2 U: Dave

3 A: Hi, Dave.

Pattern C1.3 Opening Direct Address (Agent).
1 A: GREETING, DIRECT ADDRESS.

2 U: <RESPONSE>

Example C1.3 Opening Direct Address (Agent).
1 A: Hello, Dave.

2 U: hi

Pattern C1.4 Opening Welfare Check (Agent).
1 A: GREETING. SELF-IDENTIFICATION. NAME REQUEST.

2 U: NAME.

3 A: GREETING, DIRECT ADDRESS. WELFARE CHECK.

4 U: WELFARE REPORT (NEUTRAL/POSITIVE/NEGATIVE)

5 A: WELFARE RECEIPT (NEUTRAL/POSITIVE/NEGATIVE)

Example C1.4 Opening Welfare Check (Agent).
1 A: Hello. I’m Alma. What’s your name?

252 Appendix C NCF Pattern Language Summary

2 U: Bob

3 A: Hi, Bob. How are you?

4 U: fine/I’m great!/terrible!

5 A: That’s good./Great to hear!/I’m sorry to hear that.

Pattern C1.5 Opening Organization Offer of Help (Agent).
1 A: GREETING. SELF-IDENTIFICATION. ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP.

2 U: REQUEST/PROBLEM REPORT

Example C1.5 Opening Organization Offer of Help (Agent).
1 A: Hello. This is Alma at Virtual Airlines.

How can I help you?

2 U: I’d like to book a flight

Pattern C1.6 Opening Authentication (Agent).
1 A: GREETING. SELF-IDENTIFICATION. ORGANIZATIONAL IDENTIFICATION.

IDENTIFIER REQUEST

2 U: IDENTIFIER

3 A: APPRECIATION. OFFER OF HELP

4 U: REQUEST/PROBLEM REPORT

Example C1.6 Opening Authentication (Agent).
1 A: Hi. I’m Alma at Virtual Communications.

What is your account number?

2 U: five nine two zero seven zero

3 A: Thank you. What can I do for you?

4 U: I want to upgrade my Internet package

Pattern C1.7 Organizational Problem Request (Agent).
1 A: GREETING. ORGANIZATION IDENTIFICATION.

WELFARE CHECK

2 U: WELFARE REPORT

3 A: WELFARE RECEIPT. PROBLEM REQUEST

4 U: PROBLEM REPORT

Example C1.7 Organizational Problem Request (Agent).
1 A: Hello. This is Virtual Mental Wellness.

How’s it going?

2 U: not so well

3 A: I’m sorry to hear that. What’s your problem today?

4 U: I’ve been feeling depressed lately

NCF Patterns and Examples 253

Pattern C2.0 Greeting (User).
1 U: GREETING

2 A: GREETING

Example C2.0 Greeting (User).
1 U: hi

2 A: Hello.

Pattern C2.1 Summons (User).
1 U: SUMMONS

2 A: GREETING/CONTINUER

Example C2.1 Summons (User).
1 U: Alma?/are you there?

2 A: Hello./Hello again./Yes?

Pattern C2.2 Welfare Check (User).
1 U: GREETING

2 A: GREETING. WELFARE CHECK

3 U: WELFARE REPORT

4 A: WELFARE RECEIPT. OFFER OF HELP
.
.
.

5 U: GREETING

6 A: GREETING

Example C2.2 Welfare Check (User).
1 U: hi

2 A: Hello. How are you?

3 U: fine

4 A: That’s good. How can I help you?
.
.
.

5 U: hi

6 A: Hi there.

Pattern C2.3 Displaced Greeting (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP.

2 U: GREETING

3 A: GREETING. WELFARE CHECK.

4 U: WELFARE REPORT

5 A: WELFARE RECEIPT. OFFER OF HELP.

254 Appendix C NCF Pattern Language Summary

Example C2.3 Displaced Greeting (User).
1 A: Hi. I’m Alma from IBM Research. How can I help you?

2 U: hi

3 A: Hello. How are you?

4 U: fine

5 A: That’s good. What do you need today?

Pattern C2.4 Displaced Welfare Check (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

WELFARE CHECK

2 U: WELFARE REPORT. WELFARE CHECK

3 A: WELFARE REPORT

Example C2.4 Displaced Welfare Check (User).
1 A: Hi. I’m Alma from IBM Research. How are you?

2 U: great! how are you?

3 A: Can’t complain. It’s not in my programming.

Pattern C2.5 Reciprocated Welfare Check (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

WELFARE CHECK

2 U: WELFARE REPORT

3 A: WELFARE RECEIPT. OFFER OF HELP

4 U: WELFARE CHECK

5 A: WELFARE REPORT

Example C2.5 Reciprocated Welfare Check (User).
1 A: Hi. I’m Alma from IBM Research. How are you?

2 U: I’m fantastic!

3 A: That’s great to hear! How can I help you?

4 U: how are you doing?

5 A: You know, livin’ the dream!

Pattern C2.6 News Check (User).
1 U: NEWS CHECK

2 A: NO-NEWS REPORT

3 U: SEQUENCE CLOSER

Example C2.6 News Check (User).
1 U: what’s up?

2 A: Same old, same old.

3 U: oh well

Pattern C2.7 News Check Capability (User).
1 U: NEWS CHECK

NCF Patterns and Examples 255

2 A: NEWS REPORT

3 U: FOLLOW-UP INQUIRY

4 A: ANSWER

5 U: SEQUENCE CLOSER

Example C2.7 News Check Capability (User).
1 U: what’s new?

2 A: I can now help you make restaurant reservations!

3 U: does that work in San Jose?

4 A: San Jose is one of my areas of coverage.

5 U: Cool!

Pattern C2.8 Self-Identification (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

OFFER OF HELP

2 U: NAME GIVING

3 A: DIRECT ADDRESS. OFFER OF HELP

Example C2.8 Self-Identification (User).
1 A: Hi. I’m Alma from IBM Research. How can I help you today?

2 U: my name is Dave

3 A: Hi, Dave! What can I do for you?

Pattern C2.9 Name Correction (User).
1 A: GREETING. SELF-IDENTIFICATION, ORGANIZATIONAL IDENTIFICATION.

NAME REQUEST

2 U: NAME GIVING

3 A: <RECOGNITION FAILURE>

4 U: NAME GIVING

5 A: APOLOGY. DIRECT ADDRESS. OFFER OF HELP

Example C2.9 Name Correction (User).
1 A: Hi. I’m Alma from IBM Research. What’s your name?

2 U: shun

3 A: What do you mean?

4 U: my name is Shun

5 A: Oh, sorry. Hi, Shun. How can I help you?

Pattern C2.10 Name Request (User).
1 A: <ANY UTTERANCE>

2 U: NAME REQUEST

3 A: NAME GIVING

Example C2.10 Name Request (User).
1 A: Hello. This is IBM Research. How can I help you?

256 Appendix C NCF Pattern Language Summary

2 U: what’s your name?

3 A: My name is Alma.

Pattern C3.0 General Capability Check.
1 U: GENERAL CAPABILITY CHECK

2 A: GENERAL CAPBABILITY DESCRIPTION

3 U: SEQUENCE CLOSER

Example C3.0 General Capability Check.
1 U: what can you do?

2 A: I haven’t been trained yet. I can only make small talk, tell some

jokes or ask or answer some trivia questions.

3 U: ok

Pattern C3.1 Capability Expansion.
1 U: GENERAL CAPABILITY CHECK

2 A: GENERAL CAPBABILITY DESCRIPTION

3 U: SPECIFIC CAPABILITY EXPANSION REQUEST

4 A: SPECIFIC CAPABILITY EXPANSION

5 U: ACKNOWLEDGMENT

6 U: SPECIFIC CAPABILITY EXPANSION REQUEST

7 A: SPECIFIC CAPABILITY EXPANSION

8 U: SEQUENCE CLOSER

Example C3.1 Capability Expansion.
1 U: what can you do?

2 A: I haven’t been trained yet. I can only make small talk, tell some

jokes or ask or answer some trivia questions.

3 U: tell me more about small talk

4 A: You know, things like, how’s the weather?, did you see the game?,

what’s your favorite movie?... mindless topics like that.

5 U: ok

6 U: tell me more about trivia

7 A: I can quiz you about computer trivia. See how much you know about

computer history.

8 U: ok

Pattern C3.2 Specific Capability Check.
1 U: SPECIFIC CAPABILITY CHECK/UNSUPPORTED REQUEST 1

2 A: SPECIFIC CAPABILITY DESCRIPTION 1

3 U: SPECIFIC CAPABILITY CHECK/UNSUPPORTED REQUEST 2

4 A: GENERAL CAPBABILITY DESCRIPTION

5 U: SEQUENCE CLOSER

NCF Patterns and Examples 257

Example C3.2 Specific Capability Check.
1 U: can you book a taxi for me?

2 A: I’m afraid I don’t have information on ground or other local

transportation at this time.

3 U: can you make a restaurant reservation?

4 A: I can recommend travel destinations, attractions or flights

based on your preferences for things to do, like museums or

hiking, or for weather, like warm and sunny.

5 U: oh ok

Pattern C3.3 Utterance Suggestion.
1 U: UTTERANCE SUGGESTION REQUEST

2 A: <SAMPLE UTTERANCE)>

3 U: <SAMPLE UTTERANCE>

4 A: <RESPONSE>

5 U: SEQUENCE CLOSER

Example C3.3 Utterance Suggestion.
1 U: what can I say?

2 A: Who invented the hard disk?

3 U: who invented the hard disk?

4 A: The hard disk drive was invented by IBM in 1956.

5 U: ok

Pattern C4.0 Last Topic Check (Agent).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: WELL-WISH

6 U: RETURN WISH/FAREWELL

7 A: FAREWELL

8 U: FAREWELL

Example C4.0 Last Topic Check (Agent).
1 U: ok

2 (2.0)

3 A: Anything else?

4 U: no

5 A: Have a good day!

6 U: you too/bye

7 A: Goodbye.

8 U: bye

258 Appendix C NCF Pattern Language Summary

Pattern C4.1 Last Topic Check (User).
1 U: LAST TOPIC CHECK

2 A: DISAFFIRMATION

3 U: FAREWELL

4 A: FAREWELL

Example C4.1 Last Topic Check (User).
1 U: anything else?

2 A: That’s it!

3 U: goodbye

4 A: Goodbye.

Pattern C4.2 Pre-Closing (User).
1 U: PRE-CLOSING

2 A: WELL-WISH

3 U: RETURN WISH

4 A: FAREWELL

5 U: FAREWELL

Example C4.2 Pre-Closing (User).
1 U: got to go

2 A: Have a great day!

3 U: you too/bye

4 A: Goodbye.

5 U: bye

Pattern C4.3 Closing Farewell (User).
1 U: FAREWELL

2 A: WELL-WISH

3 U: FAREWELL

4 A: FAREWELL

Example C4.3 Closing Farewell (User).
1 U: bye

2 A: Have a great day!

3 U: goodbye

4 A: Goodbye.

Pattern C4.4 Closing Appreciation (Organizational).
1 U: PRE-CLOSING/FAREWELL

2 A: APPRECIATION

3 U: APPRECIATION RECEIPT/FAREWELL

4 A: FAREWELL

5 U: FAREWELL

NCF Patterns and Examples 259

Example C4.4 Closing Appreciation (Organizational).
1 U: bye/got to go

2 A: Thank you for contacting IBM Research today!

3 U: you’re welcome/bye

4 A: Goodbye.

5 U: bye

Pattern C4.5 Closing Name Request (Agent).
1 U: LAST TOPIC CHECK

2 A: NAME REQUEST

3 U: NAME

4 A: APPRECIATION, NAME

5 U: APPRECIATION RECEIPT/FAREWELL

6 A: FAREWELL

7 U: FAREWELL

Example C4.5 Closing Name Request (Agent).
1 U: anything else?

2 A: Can I please get your name?

3 U: Dave

4 A: Thank you, Dave!

5 U: you’re welcome/bye

6 A: Goodbye.

7 U: bye

Pattern C4.6 Closing Success Check (Affirmed).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: SUCCESS CHECK

6 U: AFFIRMATION

7 A: ASSESSMENT. FAREWELL

8 U: FAREWELL

Example C4.6 Closing Success Check (Affirmed).
1 U: ok

2 (2.0)

3 A: Anything else today?

4 U: no

5 A: Did you find what you were looking for?

6 U: yes

7 A: Great! Goodbye.

8 U: bye

260 Appendix C NCF Pattern Language Summary

Pattern C4.7 Closing Success Check (Disaffirmed).
1 U: PRE-CLOSING/FAREWELL

2 A: SUCCESS CHECK

3 U: DISAFFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: DISAFFIRMATION

6 A: ACKNOWLEDGMENT. FAREWELL

7 U: FAREWELL

Example C4.7 Closing Success Check (Disaffirmed).
1 U: bye/got to go

2 A: Did you find what you were looking for?

3 U: not really

4 A: Would you like me to try again?

5 U: no thanks

6 A: Okay. Goodbye.

7 U: bye

Pattern C4.8 Closing Success Check Reopened.
1 U: LAST TOPIC CHECK

2 A: SUCCESS CHECK

3 U: DISAFFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: AFFIRMATION

6 A: OFFER OF HELP

7 U: INQUIRY/REQUEST

Example C4.8 Closing Success Check Reopened.
1 U: anything else?

2 A: Did you find what you were looking for?

3 U: no

4 A: Would you like me to try again?

5 U: sure

6 A: What can I do for you?

7 U: well, I need a restaurant recommendation

Pattern C4.9 Closing Offer (Affirmed).
1 U: SEQUENCE CLOSER

2 <optional pause>

3 A: LAST TOPIC CHECK

4 U: DISAFFIRMATION

5 A: OFFER

6 U: AFFIRMATION

7 A: OFFER DETAILS

NCF Patterns and Examples 261

Example C4.9 Closing Offer (Affirmed).
1 U: ok

2 (2.0)

3 A: Anything else today?

4 U: no

5 A: Would you like to become a Rewards Member?

6 U: sure

7 A: Great! With a Rewards membership you get...

Pattern C4.10 Closing Offer (Disaffirmed).
1 U: PRE-CLOSING/CLOSING

2 A: LAST TOPIC CHECK

3 U: DISAFFIRMATION

4 A: OFFER

5 U: DISAFFIRMATION

6 A: ACKNOWLEDGMENT. APPRECIATION. FAREWELL

7 U: FAREWELL

Example C4.10 Closing Offer (Disaffirmed).
1 U: gotta go/bye

2 A: Anything else today?

3 U: no

4 A: Can I interest you in a credit card?

5 U: no thanks

6 A: Okay. Thanks for contacting Telco! Goodbye.

7 U: bye

Pattern C5.0 Transfer Successful.
1 U: TRANSFER REQUEST

2 A: CERTAINTY CHECK

3 U: CONFIRMATION

4 A: ACKNOWLEDGMENT. HOLD REQUEST

5 <transfer>

Example C5.0 Transfer Successful.
1 U: I want to talk to a human

2 A: Are you sure?

3 U: yes

4 A: Okay, I will connect you with a human. One moment please.

5 ((transfer))

Pattern C5.1 Transfer Aborted.
1 U: TRANSFER REQUEST

2 A: CERTAINTY CHECK

262 Appendix C NCF Pattern Language Summary

3 U: DISCONFIRMATION

4 A: SUBSEQUENT OFFER OF HELP

5 U: CONFIRMATION

6 A: ACKNOWLEDGMENT. OFFER OF HELP

Example C5.1 Transfer Aborted.
1 U: I want to talk to a person

2 A: Are you sure?

3 U: not really

4 A: Would you like me to try again?

5 U: yes

6 A: Okay. How can I help you?

Pattern C5.2 Recipient Correction.
1 U: <ANY UTTERANCE>

2 A: <RESPONSE>

3 U: RECIPIENT CORRECTION

4 U: <ANY UTTERANCE>

5 U: <ANY UTTERANCE>

6 U: <ANY UTTERANCE>

7 U: SUMMONS

8 A: SUBSEQUENT GREETING

Example C5.2 Recipient Correction.
1 U: what time are we going?

2 A: I don’t know.

3 U: I’m not talking to you

4 U: what time are we going?

5 U: great

6 U: I’ll see you then!

7 U: are you there, Alma?

8 A: Hello again!

Pattern C5.3 Offense Complaint (Agent).
1 U: <ANY UTTERANCE>

2 A: <ANY UTTERANCE>

3 U: FIRST INSULT

4 A: OFFENSE COMPLAINT

5 U: <ANY UTTERANCE>

6 A: <ANY UTTERANCE>

7 U: SECOND INSULT

8 A: FAREWELL

9 U: <ANY UTTERANCE>

10 U: <ANY UTTERANCE>

NCF Patterns and Examples 263

11 U: <ANY UTTERANCE>

12 U: APOLOGY/COMPLIMENT

13 A: APPRECIATION. OFFER OF HELP

Example C5.3 Offense Complaint (Agent).
1 U: what’s in theaters?

2 A: What do you mean?

3 U: you’re not too smart

4 A: Now you’re hurting my feelings.

5 U: what movies are playing?

6 A: I’m sorry, I still don’t understand.

7 U: you suck

8 A: Goodbye.

9 U: wait

10 U: I’m still talking to you

11 U: I want to look up movies

12 U: I’m sorry

13 A: Thank you. What do you need?

Pattern C5.4 Offense Complaint (User).
1 U: <ANY UTTERANCE>

2 A: OFFENSE COMPLAINT

3 U: APOLOGY

Example C5.4 Offense Complaint (User).
1 A: Make me One with everything.

2 U: you can’t say that!

3 A: Sorry. I didn’t mean to offend.

DAPPENDIX

Sample Conversation
with Alma

The following is a CA-style transcript of a conversation with our agent, Alma. The
conversation demonstrates multiple patterns in the Natural Conversation Frame-
work’s pattern language. It was conducted through voice only, using a custom-built
smart speaker. ‘U’ indicates the user’s talk, while ‘A’ indicates the agent’s talk. The
conversation lasts for 7 minutes and 15 seconds.

Example D.1 Alma Demo:2017:7:15.
1 U: hello?

2 (1.3)

3 A: Hello.

4 (0.4)

5 A: How are you?

6 (0.7)

7 U: not so well.

8 (1.2)

9 A: I’m sorry to hear that.

10 (0.3)

11 A: Would you like to hear a joke?

12 (0.3)

13 U: sure!

14 (1.0)

15 A: What did the Buddhist say to the hot dog vendor.

16 (0.4)

17 U: say again?

18 (1.3)

19 A: What did the Buddhist say to the hot dog vendor.

20 (0.3)

21 U: .tch (0.3) what’s the sound of one bun clapping?

22 (1.7)

266 Appendix D Sample Conversation with Alma

23 A: No.

24 (0.8)

25 U: I give up.

26 (1.3)

27 A: Make me One with everything.=

28 U: =heh-heh good one.

29 (1.8)

30 A: Is there anything else I can do for you?

31 (0.1)

32 U: tell me another joke.

33 (1.5)

34 A: What can you hold without ever touching it.

35 (1.5)

36 U: .tch stocks?

37 (1.0)

38 A: That’s not it.

39 (1.1)

40 U: a conversation?

41 (1.0)

42 A: That’s it.

43 (1.2)

44 U: that’s a good one.

45 (1.4)

46 A: Anything else today?

47 (0.4)

48 U: .h what can you do?

49 (1.1)

50 A: I haven’t been trained yet.

51 (0.3)

52 A: I can only make small talk, answer or ask some trivia questions

53 and tell some jokes.

54 (1.1)

55 U: okay, did you see the game?

56 (1.6)

57 A: Well, I only follow chess.

58 (0.2)

59 U: say again

60 (1.1)

61 A: Well, I only follow chess.

62 (0.2)

63 U: what do you mean?

64 (1.1)

65 A: I don’t know anything about sports.

66 (0.1)

Appendix D Sample Conversation with Alma 267

67 U: oh, okay

68 (1.2)

69 A: Anything else for you?

70 (1.0)

71 U: uh:m (0.2) what’s your favorite movie?

72 (1.4)

73 A: I guess I like movies with a strong A.I. lead.

74 (0.2)

75 U: strong what?

76 (1.1)

77 A: A.I. lead.

78 (0.2)

79 U: what do you mean?

80 (2.8)

81 A: I don’t know.

82 (0.3)

83 A: [Google it.

84 U: [w-

85 (.)

86 U: what do you mean by that?

87 (1.0)

88 A: I like movies in which the main character is an artificial

89 intelligence.

90 (0.7)

91 U: what do you mean by artificial intelligence?

92 (1.2)

93 A: Oh sorry. (0.3) A.I. stands for artificial intelligence.

94 (0.3)

95 A: Basically robots and smart machines like me.

96 (0.6)

97 U: Can you give an example?

98 (1.1)

99 A: Um, 2001: A Space Odyssey, The Matrix, Terminator... those are

100 a few.

101 (0.1)

102 U: oh, okay

103 (1.2)

104 A: Is there anything else I can do for you?

105 (2.6)

106 U: Clinton ’n Trump.

107 (1.5)

108 A: You mean, what do I think about politics?

109 (0.1)

110 U: sure

268 Appendix D Sample Conversation with Alma

111 (1.1)

112 A: I say, politics is the art of compromise

113 (0.3)

114 U: what do you mean?

115 (2.0)

116 A: Politicians can’t get anything done if they’re not willing

117 to negotiate.

118 (0.6)

119 U: agreed.

120 (1.2)

121 A: Anything else for you?

122 (0.1)

123 U: .t.hh (0.8) Who invented the hard disk?

124 (1.1)

125 A: It was invented by IBM in 1956.

126 (0.3)

127 U: IBM?

128 (1.1)

129 A: That’s right.

130 (0.1)

131 U: can you elaborate?

132 (2.0)

133 A: The hard disk drive was invented in 1956 by engineers at IBM’s

134 laboratory in San Jose, California.

135 (1.1)

136 U: can you give an example?

137 (1.2)

138 A: The IBM 305 RAMAC was the first computer to use a hard

139 disk drive.

140 (1.7)

141 U: okay, ask me a question

142 (2.3)

143 A: What computer beat human chess champion, Garry Kasparov, in 1997?

144 (1.1)

145 U: I don’t know.

146 (1.0)

147 A: Deep Blue.

148 (0.3)

149 U: oh okay

150 (1.2)

151 A: Is there anything else I can do for you?=

152 U: =ask me another question.

153 (1.1)

154 A: Who invented xerography?

Appendix D Sample Conversation with Alma 269

155 (1.7)

156 U: what do you mean by xerography?

157 (1.3)

158 A: Who invented the photocopier?

159 (1.4)

160 U: Chester Carlson.

161 (1.4)

162 A: That’s it!

163 (1.4)

164 U: thanks

165 (0.7)

166 A: You’re welcome. Anything else today?

167 (2.4)

168 U: just a minute!

169 (1.0)

170 A: What do you mean?

171 (0.3)

172 U: I’m not talking to you, Alma.

173 (1.3)

174 U: yeah, I’ll be there in a minute.

175 (1.4)

176 U: yeah, okay. (0.4) Yeah, I’ll be right there.

177 (1.4)

178 U: are you there, Alma?

179 (2.1)

180 A: Hello again.

181 (1.8)

182 U: .hh (0.4) uh do you know about restaurants?

183 (0.9)

184 A: I know a few places.

185 (1.4)

186 U: uh, can you reco- recommend one for me?

187 (1.5)

188 A: What kind of food do you want?

189 (0.7)

190 U: uh:, what are my choices?

191 (2.0)

192 A: Around here, Mexican, Japanese or Indian.

193 (1.3)

194 U: uh, Indian.

195 (1.3)

196 A: Okay.

197 (0.4)

198 A: Walking distance or short drive?

270 Appendix D Sample Conversation with Alma

199 (0.2)

200 U: what do you mean?

201 (1.4)

202 A: Do want someplace close or farther away?

203 (0.8)

204 U: uh, close

205 (4.0)

206 U: walking distance.

207 (0.7)

208 A: Okay.

209 (0.4)

210 A: Taj Mahal is located on Third and-

211 (1.7)

212 U: when’s it open?

213 (1.3)

214 A: Taj Mahal is open 10am to 10pm.

215 (0.9)

216 U: okay, thanks.

217 (1.0)

218 A: You’re welcome. (0.3) Anything else for you?

219 (1.2)

220 U: .tch I’ve got a problem.

221 (1.1)

222 A: What’s wrong?

223 (0.5)

224 U: I’m feeling a little depressed.

225 (0.8)

226 A: Any other symptoms?

227 (0.8)

228 U: I’m tired too.

229 (1.1)

230 A: Okay. Depression, tiredness. (0.3) Did something bad happen?

231 (0.3)

232 U: what do you mean?

233 (2.0)

234 A: Did something bad happen in your life that might be causing

235 these feelings?

236 (0.6)

237 U: not really.

238 (1.0)

239 A: Is your depression severe?

240 (0.4)

241 U: no:.

242 (1.0)

Appendix D Sample Conversation with Alma 271

243 A: Then perhaps you should try meditating.

244 (0.9)

245 U: how do I do that?

246 (1.1)

247 A: First, sit comfortably and breathe slowly.

248 (3.7) ((noises))

249 U: okay?

250 (1.9)

251 A: Next, count each in-breath and out-breath until you get to ten.

252 (0.5)

253 A: Then repeat.

254 (0.8)

255 U: can you elaborate?

256 (1.3)

257 A: As you breathe in and out, count one, two, three, all the way

258 to ten.

259 (2.5)

260 U: okay.

261 (1.0)

262 A: Finally, continue counting your breaths for ten minutes.

263 (1.2)

264 U: .t okay, thanks

265 (1.8)

266 A: You’re welcome.

267 (0.4)

268 A: Is there anything else I can do for you?

269 (1.7)

270 U: how are ya doin’?

271 (1.6)

272 A: You’re too kind.

273 (0.8)

274 U: what did I say?

275 (1.5)

276 A: You said: are you done.

277 (1.8)

278 U: no! That’s not what I said.

279 (1.3)

280 A: I’m sorry. (0.4) What did you say?

281 (0.1)

282 U: How are you doing?

283 (1.0)

284 A: Can’t complain.

285 (0.4)

286 A: It’s not in my programming.

272 Appendix D Sample Conversation with Alma

287 (0.2)

288 U: okay.

289 (1.0)

290 A: Is there anything else I can do for you?

291 (1.2)

292 U: what’s in theaters?

293 (1.1)

294 A: What?

295 (0.9)

296 U: what movies are playing in theaters?

297 (1.0)

298 A: I guess I like movies with a strong A.I. lead.

299 (1.3)

300 U: that’s not what I mean.

301 (1.3)

302 A: I’m sorry. Please try again.

303 (0.7)

304 U: what’s playing in theaters?

305 (0.8)

306 A: What do you mean?

307 (0.5)

308 U: you’re not too smart, are you?

309 (1.4)

310 A: Now you’re hurting my feelings.

311 (1.1)

312 U: what time is it?

313 (1.1)

314 A: Time to get a watch.=

315 U: =shut up!

316 (1.1)

317 A: Goodbye.

318 (0.8)

319 U: wait

320 (1.6)

321 U: I’m still talking to you.

322 (2.1)

323 U: I wanna find out what movies are playing.

324 (3.4)

325 U: I’m sorry.

326 (0.9)

327 A: Thank you.

328 (0.3)

329 A: What can I do for you?

330 (2.2)

Appendix D Sample Conversation with Alma 273

331 U: I’ve gotta go.

332 (1.6)

333 A: Did you find what you were looking for?

334 (0.4)

335 U: not really.

336 (1.0)

337 A: Would you like me to try again?

338 (1.1)

339 U: uh, no thanks.

340 (1.1)

341 A: Okay.

342 (0.4)

343 A: Goodbye.

344 (0.2)

345 U: bye

346 (2.0)

347 U: all right, I’ll be right there.

References

I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. 1995. Natural language interfaces to
databases—An introduction. Natural Language Engineering, 1(1): pp. 29–81. DOI:
10.1017/S135132490000005X 64

C. Alexander. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University
Press, New York. xv, 24, 64, 87, 119

C. Antaki. 2008. Formulations in psychotherapy. In A. Peräkylä, C. Antaki, S. Vehviläinen,
and I. Leudar (eds.), Conversation analysis and psychotherapy, pp. 26–42. DOI:
10.1017/CBO9780511490002.003 42, 189

B. L. Archer. 1965. Systematic Method for Designers. Council of Industrial Design, H.M.S.O.,
London. 183

I. Arminen and P. Auvinen. 2013. Environmentally coupled repairs and remedies in the
airline cockpit: Repair practices of talk and action in interaction. Discourse Studies
15(1): pp. 19–41. DOI: 10.1177/1461445612466463 189

K. Bach. 1998. Speech Acts. In E. Craig (ed.), Routledge Encyclopedia of Philosophy, Version
1.0, Routledge, London and New York, pp. 385–390. DOI: 10.4324/9780415249126
30, 31

K. Bach and R. M. Harnish. 1979. Linguistic Communication and Speech Acts. The MIT Press,
Cambridge, MA. 30

J. Balata, M. Zdenek, and P. Slavik. 2018. Conversational agents for physical world navigation.
In R. J. Moore, M. H. Szymanski, R. Arar, and G. J. Ren (eds.), Studies in Conversational
UX Design. Springer International Publishing, Cham, pp. 61–84. DOI: 10.1007/978-3-
319-95579-7 70, 93

G. A. Bennett. 2018. Conversational style: Beyond the nuts and bolts of conversation.
In R. J. Moore, M. H. Szymanski, R. Arar, and G. J. Ren (eds.), Studies in Conver-
sational UX Design. Springer International Publishing, Cham, pp. 161–180. DOI:
10.1007/978-3-319-95579-7_8 196, 197

T. Bickmore, H. Trinh, R. Asadi, and S. Olafsson. 2018. Safety first: Conversational agents for
health care. In R. J. Moore, M. H. Szymanski, R. Arar, and G. J. Ren (eds.), Studies in
Conversational UX Design. Springer International Publishing, Cham, pp. 33–57. DOI:
10.1007/978-3-319-95579-7_3 180

http://dx.doi.org/10.1017/S135132490000005X
http://dx.doi.org/10.1017/CBO9780511490002.003
http://dx.doi.org/10.1177/1461445612466463
http://dx.doi.org/10.4324/9780415249126
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.1007/978-3-319-95579-7_8
http://dx.doi.org/10.1007/978-3-319-95579-7_3

276 References

P. Bohlin, J. Bos, S. Larsson, I. Lewin, C. Mathesin, and D. Milward. 1999. Survey of existing
interactive systems. [Deliverable D1.3, TRINDI Project]. 180

T. Brown. 2009. Change by Design: How Design Thinking Transforms Organizations and Inspires
Innovation. HarperCollins, New York. 183

G. Button. 1990. Going up a blind alley: Conflating conversation analysis and computational
modelling. In: P. Luff, G. N. Gilbert, and D. M. Frohlich (eds.), Computers and
conversation. Academic Press, London, pp. 67–90. DOI: 10.1016/c2009-0-21641-2 5,
88

G. Button, J. Coulter, J. R. E. Lee, and W. Sharrock. 1995. Computers, minds and conduct.
Polity Press, Cambridge. 4, 21, 192

H. Candello and C. Pinhanez. 2018. Recovering from dialogue failures using multiple agents
in wealth management advice. In R. J. Moore, M. H. Szymanski, R. Arar, and, G. J.
Ren (eds.), Studies in Conversational UX Design. Springer International Publishing,
Cham, pp. 139–157. DOI: 10.1007/978-3-319-95579-7_7 125

G. Chen, E. Tosch, R. Artstein, A. Leuski, and, D. Traum. 2011. Evaluating conversational
characters created through question generation. In Question Generation: Papers from
the 2011 AAAI Fall Symposium. 47

S. E. Clayman. 1992. Footing in the achievement of neutrality: The case of news-interview
discourse. In P. Drew and J. Heritage (eds.), Talk at Work: Interaction in institutional
settings. Cambridge University Press, Cambridge, pp. 521–548. 189

P. Drew. 1984. Speakers’ reporting in invitation sequences. In J. M. Atkinson and J. C.
Heritage (eds.), Structures of Social Action: Studies in Conversation Analysis. Cambridge
University Press, Cambridge, pp. 129–151. DOI: 10.1017/cbo9780511665868 30

P. Drew and J. Heritage (eds.) 1992. Talk at Work: Interaction in institutional settings.
Cambridge University Press, Cambridge. 39, 43

P. Drew. 1992. Contested evidence in courtroom cross-examination: The case of a trial for
rape. In P. Drew and J. Heritage (eds.), Talk at Work: Interaction in institutional settings.
Cambridge University Press, Cambridge, pp. 470–521. 189

N. J. Enfield. 2013. Reference in conversation. In J. Sidnell and T. Stivers (eds.), The Handbook
of Conversation Analysis. Wiley-Blackwell, Malden, MA, pp. 433–454. DOI: 10.1002/
9781118325001.ch21 34, 69, 70

T. Erickson. 2000. Lingua francas for design: Sacred places and pattern languages. In The
Proceedings of DIS 2000 (Brooklyn, NY, August 17–19, 2000). ACM Press, New York,
pp. 357–368. DOI: 10.1145/347642.347794 xv, 24, 64, 87, 119

J. C. Félix-Brasdefer. 2015. The Language of Service Encounters: A Pragmatic-Discursive
Approach Cambridge University Press, Cambridge. DOI: 10.1017/cbo9781139565431
40, 189

L. Fessler. 2017. We tested bots like Siri and Alexa to see who would stand up to sexual
harassment. Quartz. Feb. 22, 2017. 177, 197

D. M. Frohlich and P. Luff. 1990. Applying the technology of conversation to the technology
for conversation. In P. Luff, G. N. Gilbert, and, D. M. Frohlich (eds.), Computers and

http://dx.doi.org/10.1016/c2009-0-21641-2
http://dx.doi.org/10.1007/978-3-319-95579-7_7
http://dx.doi.org/10.1017/cbo9780511665868
http://dx.doi.org/10.1002/9781118325001.ch21
http://dx.doi.org/10.1002/9781118325001.ch21
http://dx.doi.org/10.1145/347642.347794
http://dx.doi.org/10.1017/cbo9781139565431

References 277

Conversation. Academic Press, London, pp. 187–220. DOI: 10.1016/c2009-0-21641-2
88, 129, 156, 166, 212

H. Garfinkel. 1967. Studies in Ethnomethodology. Prentice Hall, Englewood Cliffs, NJ. 19, 20

J. J. Gibson. 1979. The Ecological Approach to Visual Perception. Houghton Mifflin, Boston.
184

J. Gillies and R. Cailliau. 2000. How the Web Was Born: The Story of the World Wide Web.
Oxford University Press, Oxford. DOI: 10.1177/136078040300800209 6

David Greatbatch. 1992. On the management of disagreement between news interviewers.
In: P. Drew and J. Heritage (eds.), Talk at Work: Interaction in Institutional Settings.
Cambridge University Press, Cambridge, pp. 268–301. 189

A. Gustafson. 2015. Adaptive web design: crafting rich experiences with progressive enhance-
ment. New Riders. 16

J. Heritage. 1984. A change-of-state token and aspects of its sequential placement. In
J. M. Atkinson and J. C. Heritage (eds.), Structures of Social Action: Studies in
Conversation Analysis. Cambridge University Press, Cambridge, pp. 299–345. DOI:
10.1017/cbo9780511665868 134

G. Jefferson and J. R. E. Lee. 1992. The rejection of advice: Managing the problematic
convergence of a “troubles-telling” and a “service encounter.” In P. Drew and J.
Heritage (eds.), Talk at Work: Interaction in institutional settings. Cambridge University
Press, Cambridge, pp. 521–548. 30, 40, 189

N. Kalchbrenner and P. Blunsom. 2013. Recurrent continuous translation models. In
Empirical Methods in Natural Language Processing, p. 623. 45, 218

S. C. Levinson. 2007. Optimizing person reference—perspectives from usage on Rossel
Island. In N. Enfield and T. Stivers (eds.), Person reference in interaction: Linguistic,
cultural, and social perspectives. Cambridge University Press, Cambridge, pp. 29–72.
DOI: 10.1017/cbo9780511486746.004 34, 35, 69, 70

P. Luff, N. Gilbert, and D. Frohlich (eds.) 1990. Computers and Conversation. Academic Press,
London. DOI: 10.1016/c2009-0-21641-2 64, 211, 212

J. Manzo. 1997. Ethnomethodology, conversation analysis, and the sociology of law. In: M.
Travers and J. F. Manzo (eds.), Law in Action: Ethnomethodological and Conversation
Analytic Approaches to Law. Dartmouth Publishing Co., Aldershot, UK, pp. 1–15. 189

R. A. Martin, P. Puhlik-Doris, G. Larsen, J. Gray, and K. Weir. 2003. Individual differences
in uses of humor and their relation to psychological well-being: Development of the
Humor Styles Questionnaire. Journal of Research in Personality, 37, pp. 48–75. DOI:
10.1016/S0092-6566(02)00534-2 198

D. W. Maynard. 2003. Bad News, Good News: Conversational Order in Everyday Talk and
Clinical Settings. University of Chicago Press, Chicago. DOI: 10.1086/422074 30, 181,
189

A. McHoul. 1990. The organization of repair in classroom talk. Language in Society, 19,
pp. 349–377. DOI: 10.1017/s004740450001455x 41, 189

http://dx.doi.org/10.1016/c2009-0-21641-2
http://dx.doi.org/10.1177/136078040300800209
http://dx.doi.org/10.1017/cbo9780511665868
http://dx.doi.org/10.1017/cbo9780511486746.004
http://dx.doi.org/10.1016/c2009-0-21641-2
http://dx.doi.org/10.1016/S0092-6566(02)00534-2
http://dx.doi.org/10.1086/422074
http://dx.doi.org/10.1017/s004740450001455x

278 References

W. J. Mitchell, C.-C. Ho, H. Patel, and K. MacDorman. 2011. Does social desirability bias
favor humans? Explicit–implicit evaluations of synthesized speech support a new HCI
model of impression management. Computers in Human Behavior, 27, pp. 402–412.
DOI: 10.1016/j.chb.2010.09.002 197

R. J. Moore. 2008. When names fail: Referential practice in face-to-face service encounters.
Language in Society, 37(3), pp. 385–413. DOI: 10.1017/s004740450808055x 34, 40, 69,
70, 189

R. J. Moore. 2015. Automated transcription and conversation analysis. Research on Language
and Social Interaction, 48(3), pp. 253–270. DOI: 10.1080/08351813.2015.1058600 47

R. J. Moore. 2018. A natural conversation framework for conversational UX design. In R. J.
Moore, M. H. Szymanski, R. Arar, and G. J. Ren (eds.), Studies in Conversational UX
Design. Springer International Publishing, Cham, pp. 181–204. DOI: 10.1007/978-3-
319-95579-7 64, 65, 67, 70, 76, 85, 89, 93, 122, 212

R. J. Moore and R. Arar. 2018. Conversational UX design: An introduction. In R. J. Moore,
M. H. Szymanski, R. Arar, and G. J. Ren (eds.), Studies in Conversational UX Design.
Springer International Publishing, Cham. DOI: 10.1007/978-3-319-95579-7 1, 7, 15

R. J. Moore and E. F. Churchill. 2011. Computer interaction analysis: Toward an empirical
approach to understanding user practice and eye gaze in GUI-based interaction.
Computer Supported Cooperative Work, 20, pp. 497–528. DOI: 10.1007/s10606-011-
9142-2 4

R. J. Moore, N. Ducheneaut, and E. Nickell. 2007. Doing virtually nothing: Awareness
and accountability in massively multiplayer online worlds. Computer Supported
Cooperative Work, 16, pp. 265–305. DOI: 10.1007/s10606-006-9021-4 5, 211

R. J. Moore, R. A. Hosn, and A. Arora. 2016. The machinery of natural conversation and the
design of conversational machines. American Sociological Association Annual Meeting.
Seattle (August). DOI: 10.1145/3027063.302707 64, 67, 76, 85, 89, 122, 212

I. Myers. 1962. Manual: The Myers-Briggs Type Indicator. Palo Alto, CA: Consulting
Psychologists Press. DOI: 10.1037/14404-000 197

M. Nevile. 2002. Coordinating talk and non-talk activity in the airline cockpit. Australian
Review of Applied Linguistics, 25, pp. 131–146. DOI: 10.1075/aral.25.1.07nev 189

D. A. Norman. 1988. The Design of Everyday Things. Basic Books, New York. xiv, 33, 63, 80,
161, 183

A. Peräkylä. 2008. Conversation analysis and psychoanalysis: Interpretation, affect and
intersubjectivity. In A. Peräkylä, C. Antaki, S. Vehviläinen, and I. Leudar (eds.),
Conversation Analysis and Psychotherapy. Cambridge University Press, Cambridge,
pp. 100–119. DOI: 10.1017/CBO9780511490002.007 189

A. Pilnick, J. Hindmarsh, and V. T. Gill (eds.), 2010. Communication in Healthcare Settings:
Participation, P olicy and New Technologies. Wiley-Blackwell, Chichester, U.K., pp. 1–16
DOI: 10.1002/9781444324020 189

http://dx.doi.org/10.1016/j.chb.2010.09.002
http://dx.doi.org/10.1017/s004740450808055x
http://dx.doi.org/10.1080/08351813.2015.1058600
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.1007/s10606-011-9142-2
http://dx.doi.org/10.1007/s10606-011-9142-2
http://dx.doi.org/10.1007/s10606-006-9021-4
http://dx.doi.org/10.1145/3027063.302707
http://dx.doi.org/10.1037/14404-000
http://dx.doi.org/10.1075/aral.25.1.07nev
http://dx.doi.org/10.1017/CBO9780511490002.007
http://dx.doi.org/10.1002/9781444324020

References 279

H. Plattner. 2018. An Introduction to Design Thinking PROCESS GUIDE. Institute of Design
at Stanford. https://dschool-old.stanford.edu/sandbox/groups/designresources/wiki/
36873/attachments/74b3d/ModeGuideBOOTCAMP2010L.pdf. 183

H. Plattner, C. Meinel, and L. Leifer. 2010. Design Thinking: Understand—Improve—Apply.
Springer, Berlin. 183

A. Pomerantz. 1984. Agreeing and disagreeing with assessments: Some features of
preferred/dispreferred turn shapes. In J. M. Atkinson and J. C. Heritage (eds.),
Structures of Social Action: Studies in Conversation Analysis. Cambridge University
Press, Cambridge, pp. 57–101. DOI: 10.1017/cbo9780511665868 27, 28, 30, 32

M. Porcheron, J. E. Fischer, S. Reeves, and S. Sharples. 2018. Voice interfaces in everyday life.
In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
New York, p. 640. DOI: 10.1145/3173574.3174214 27

J. Ruusuvuori. 2013. Emotion, affect and conversation. In J. Sidnell and T. Stivers (eds.), The
Handbook of Conversation Analysis. Wiley-Blackwell, Malden, MA, pp. 330–349. DOI:
10.1002/9781118325001.ch16 179

H. Sacks. 1972. On the analyzability of stories by children. In J. J. Gumperz and D. Hymes
(eds.), Directions in Sociolinguistics: The Ethnography of Communication. Holt, Reinhart
and Winston, New York, pp. 325–345. 30

H. Sacks. 1984. Notes on methodology. In J. M. Atkinson and J. C. Heritage (eds.),
Structures of Social Action: Studies in Conversation Analysis. Cambridge University
Press, Cambridge, pp. 21–27. DOI: 10.1017/cbo9780511665868 4, 25, 188

H. Sacks. 1992. Lectures on Conversation, Vols. I and II. Blackwell, Cambridge, MA. DOI:
10.1002/9781444328301 129

H. Sacks and E. A. Schegloff. 1979. Two preferences in the organization of reference to
persons in conversation and their interaction. In G. Psathas (ed.), Everyday language:
Studies in Ethnomethodology, Irvington, New York, pp. 15–21. DOI: 10.2307/2066919
32, 34, 35, 38, 69, 70, 101

H. Sacks, E. A. Schegloff, and G. Jefferson. 1974. A simplest systematics for the organization
of turn-taking for conversation. Language, 50, pp. 696–735. DOI: 10.2307/412243 xiv,
4, 26, 27, 29, 32, 39, 64, 65, 88, 192

E. A. Schegloff. 1968. Sequencing in conversational openings. American Anthropologist, 70,
pp. 1075–1095. DOI: 10.1525/aa.1968.70.6.02a00030 150, 151, 156, 188

E. A. Schegloff. 1982. Discourse as an interactional achievement: Some uses of ‘uh huh’ and
other things that come between sentences. In D. Tannen (ed.), Analysing Discourse:
Text and Talk. Georgetown University Press, Washington, DC, pp. 71–93. DOI:
10.1515/text.2006.016 65, 74, 103, 113, 125

E. A. Schegloff. 1992a. In another context. In A. Duranti and C. Goodwin (eds.), Rethinking
Context: Language As An Interactive Phenomenon. Cambridge University Press,
Cambridge. 46, 55

http://dx.doi.org/10.1017/cbo9780511665868
http://dx.doi.org/10.1145/3173574.3174214
http://dx.doi.org/10.1002/9781118325001.ch16
http://dx.doi.org/10.1017/cbo9780511665868
http://dx.doi.org/10.1002/9781444328301
http://dx.doi.org/10.2307/2066919
http://dx.doi.org/10.2307/412243
http://dx.doi.org/10.1525/aa.1968.70.6.02a00030
http://dx.doi.org/10.1515/text.2006.016

280 References

E. A. Schegloff. 1992b. Repair after next turn: The last structurally provided defense of
intersubjectivity in conversation. American Journal of Sociology 98, pp. 1295–1345.
DOI: 10.1086/229903 20, 23, 36, 38, 69, 122, 138, 139, 141, 147

E. A. Schegloff. 1996. Some practices of referring to persons in talk-in-interaction: A partial
sketch of a systematics. In: B. Fox (ed.), Studies in Anaphora. Benjamins, Amsterdam,
pp. 437–485. DOI: doi.org/10.1075/tsl.33.14sch 101

E. A. Schegloff. 2007. Sequence Organization in Interaction: A Primer in Conversation Analysis,
vol 1. Cambridge University Press, Cambridge. DOI: 10.1017/cbo9780511791208 4,
13, 30, 32, 39, 64, 65, 66, 88, 95, 96, 103, 122, 130, 142, 145, 213, 216

E. A. Schegloff and H. Sacks. 1973. Opening up closings, Semiotica, 7, pp. 289–327. DOI:
10.1515/semi.1973.8.4.289 30, 32, 39, 65, 82, 88, 165, 166, 167, 213

E. A. Schegloff, G. Jefferson, and H. Sacks. 1977. The preference for self-correction in the
organization of repair in conversation, Language, 53, pp. 361–382. DOI: 10.2307/
413107 2, 20, 23, 32, 36, 41, 64, 67, 122, 128, 130, 137

A. Schlesinger, K. P. O’Hara, A. S. Taylor, . . . 2018. Let’s talk about race: Identity, chatbots,
and AI. CHI 2018, April 21–26, Montreal, Canada. DOI: 10.1145/10.1145/3173574
.3173889 179

S. Shellenbarger. 2018. Alexa: Don’t let my 2-year-old talk to you that way. Wall Street Journal.
July 11. 178

B. Shneiderman. 1982. The future of interactive systems and the emergence of direct
manipulation. Behaviour & Information Technology, 1(3): pp. 237–256. DOI: 10.1080/
01449298208914450 4, 5, 12

J. Sidnell and T. Stivers (eds.) 2013. The Handbook of Conversation Analysis. Wiley-Blackwell,
Malden, MA. DOI: 10.1002/9781118325001 4

Y. Song, R. Yan, X. Li, D. Zhao, and M. Zhang. 2016. Two are better than one: An ensemble
of retrieval- and generation-based dialog systems. arXiv:1610.07149v1 [cs.CL] 45, 47,
218

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with neural
networks. In NIPS, 2014. 45, 218

M. H. Szymanski. 1999. Re-engaging and dis-engaging talk in activity. Language in Society
28(1). DOI: 10.1017/s0047404599001013 189

M. H. Szymanski and R. J. Moore. 2018. Adapting to customer initiative: Insights from
human service encounters. In R. J. Moore, M. H. Szymanski, R. Arar, and G. J. Ren
(eds.), Studies in Conversational UX Design. Springer International Publishing, Cham.
DOI: 10.1007/978-3-319-95579-7 40, 41, 158, 189

P. Ten Have. 1999. Doing Conversation Analysis: A Practical Guide. Sage, London. DOI:
10.4135/9781849208895 192

A. M. Turing. 1950. Computing machinery and intelligence. Mind, 59, pp. 433–460. DOI:
10.1093/mind/lix.236.433 21, 22, 211

O. Vinyals and Q. V. Le. 2015. A neural conversational model. ICML Deep Learning Workshop.
45, 46, 218

http://dx.doi.org/10.1086/229903
http://dx.doi.org/doi.org/10.1075/tsl.33.14sch
http://dx.doi.org/10.1017/cbo9780511791208
http://dx.doi.org/10.1515/semi.1973.8.4.289
http://dx.doi.org/10.2307/413107
http://dx.doi.org/10.2307/413107
http://dx.doi.org/10.1145/10.1145/3173574.3173889
http://dx.doi.org/10.1145/10.1145/3173574.3173889
http://dx.doi.org/10.1080/01449298208914450
http://dx.doi.org/10.1080/01449298208914450
http://dx.doi.org/10.1002/9781118325001
http://dx.doi.org/10.1017/s0047404599001013
http://dx.doi.org/10.1007/978-3-319-95579-7
http://dx.doi.org/10.4135/9781849208895
http://dx.doi.org/10.1093/mind/lix.236.433

References 281

H. Walk. 2016. Amazon Echo is magical. It’s also turning my kid into an asshole.
https://hunterwalk.com/2016/04/06/amazon-echo-is-magical-its-also-turning-
my-kid-into-an-asshole/. 178

J. Weizenbaum. January 1966. ELIZA—A computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1). DOI:
10.1145/365153.365168 2, 3, 18, 20, 23, 42

J. Whalen and E. Vinkhuyzen. 2000. Expert systems in (inter)action: Diagnosing document
machine problems over the telephone. In P. Luff, J. Hindmarsh, and C. Heath (eds.),
Workplace Studies: Recovering Work Practice and Informing System Design. Cambridge
University Press, Cambridge, pp. 92–140. DOI: 10.1017/cbo9780511628122.006 40,
189

M. Whalen and D. H. Zimmerman. 1987. Sequential and institutional contexts in calls for
help. Social Psychology Quarterly, 50(2), pp. 172–185. DOI: 10.2307/2786750 40, 41,
154, 189

L. Wittgenstein. 1922. Tractatus Logico-Philosophicus. New York: Harcourt, Brace &
Company, Inc. 17

L. Wittgenstein. 1953. Philosophical Investigations. Macmillan, New York. 18, 21, 211

L. Wroblewski. 2011. Mobile First. A Book Apart, New York. 15

R. Wooffitt, N. M. Fraser, N. Gilbert, and S. McGlashan. 1997. Humans, Computers and
Wizards: Analysing human (simulated) computer interaction. Routledge, London. 64

http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.1017/cbo9780511628122.006
http://dx.doi.org/10.2307/2786750

Index

Acknowledgment activities
sample, 31
sequence closers, 142–143

Actions
Conversation-Centric interaction style,

14
intents, 49
Speech Act Theory, 30–31

Activities
common patterns. See Conversational

Activity UX patterns
NCF, 76–79
from sequences, 30

Adjacency pairs
closing, 66
Conversation Analysis, 32, 39
conversation metric, 213
conversations, 30, 32
description, 65
interaction model, 65
visual-centric interaction style, 13

Advice-giving, 30, 42–43
Affordances in conversational interfaces,

184–186
Agent Continuer pattern, 126
Agent Elicitation example, 68
Agent-initiated elicitation, 67
Agent persona example, 194–195

job description, 195–196
personality, 196–199
self-knowledge, 199–200

Agent utterances, limiting, 70

Agreements, 28
AI (artificial intelligence)

conversation authoring, 45
machine understanding, 17, 22

Airplane cockpits, 189
Alexa platform, 3

IECR paradigm, 47
voice-only interaction, 185

Alexander, Christopher, 87
Alma implementation

computer trivia, 78–79
Conversation About Nothing example,

28–29
joke telling, 78
NCF, 66
organization appreciation, 82
sample conversation, 263–273

Alternative Responses to “ok” examples,
55–56

Anaphora, 53
Anatomy of conversations

conversation design, 32
example, 31
minimization, 34–36
overview, 29–32
recipient design, 32–34
repair, 36–38

Anti–intents in Open Request pattern, 95
Api.ai platform, 47
Apologies

Offense Complaint (Agent), 178
sequence management, 134, 140

284 Index

Appreciation Receipt example, 54
Appreciations

Closing pattern, 169
Last Topic Check (Agent), 167
Offense Complaint (Agent), 178
Sequence Closers, 142–144

Artificial intelligence (AI)
conversation authoring, 45
machine understanding, 17, 22

Assessments
Conversation Analysis, 28, 30
Last Topic Check (Agent), 167
Sequence Closers, 142

Assign default command, 206
Assistant agent, 3
Assumptions

definition requests, 134
recipient design, 33
shared understanding, 20

Atomic propositions, language as, 17
Automated agents, listening by, 2–3

Basic mechanics of natural conversation,
38

Beta testing, 208
Bidding farewell, 168
Brainstorming, 200–203
Branching, 48, 59–61
Brand mascots

conversational interfaces, 186
self-knowledge for, 199–200

Build stage for prototypes, 207–208

CA. See Conversation Analysis (CA)
Capabilities pattern

Capability Expansion, 163–164
General Capability Check, 162–163
overview, 161–162
Specific Capability Check, 164
Utterance Suggestion, 164–165

Capability checks in conversation
navigation, 80

Capability description in Sequence Abort
pattern, 146

Chatbots
ELIZA, 2–3
limitations, 4
minimization, 36
Visual-Centric interaction style, 12–13

Chit chat, 121–122
Choices Request example, 136
Classroom settings

Conversation Analysis, 41–42
conversation studies, 189

Closing patterns
Closing Appreciation (Organizational),

169
Closing Farewell (User), 168–169
Closing Name Request (Agent), 170
Closing Offer (Affirmed), 172–173
Closing Offer (Disaffirmed), 173
Closing Success Check (Affirmed), 170–

171
Closing Success Check (Disaffirmed),

171–172
Closing Success Check Reopened, 172
Last Topic Check (Agent), 167
Last Topic Check (User), 167–168
overview, 165–166
Pre-Closing (User), 168

Closings
conversation anatomy, 30
Conversation-Centric interaction style,

14
conversation navigation, 81–82
interaction model, 66–67
patterns. See Closing patterns; Sequence

Closers patterns
Cognitive chatbots, understanding by, 17
Combining Conversational Activity UX

patterns, 114–119
Commands in dialog design, 206
Commissives activities in Conversation

Analysis, 31
Common conversational activities, 15
Complaints, 178
Complex propositions, language as, 17
Compliments, 178

Index 285

Computer Trivia example, 78–79
Conditions, 49, 55–56
Constantive activities, 30
Constructional units in finite-state

machine, 49
Content-Centric interaction styles

characteristics, 16
minimization, 36
overview, 10–12

Contents
human understanding, 17
NCF, 69–76

Context
dialog design, 206
overview, 52–55
IECR paradigm. See Intent-Entity-

Context-Response (IECR) paradigm
System-Centric interaction style, 8, 10

Context design, 55
Context variables, 55
Conversation

conversation design, 5–7
conversational agents, 3–5
with ELIZA, 1–3
interaction styles, 7–16
metrics, 212–217
types, 39–43
understanding in, 17–23

Conversation About Nothing example,
28–29

Conversation Analysis (CA)
benefits, 1
conclusion, 43
conversation anatomy, 29–38
conversation description, 26–27
conversation types, 39–43
description, 4
literature, 189
overview, 25–26
pattern language, 88
topic vs. structure, 27–29
transcription conventions, 219

Conversation authoring
branching, 59–61

conclusion, 62
finite-state machine. See Finite-state

machine
overview, 45–47

Conversation-Centric interaction styles
characteristics, 16
overview, 14–16

Conversation First, 7–16, 64, 86, 211–212
Conversation games, 5, 88, 208, 212

Conversation Analysis patterns, 88
Understanding Check, 138

Conversation-level management in NCF,
225–226

Conversation-Like Response(s) example, 71
Conversation management

Conversation Analysis, 28–29
Conversation-Centric interaction style,

14
interaction model, 67
patterns, 89

Conversation Management UX patterns
Capabilities, 161–165
Closing, 165–174
conclusion, 180–181
Disengaging, 174–180
Opening (Agent), 149–155
Opening (User), 155–161
overview, 149

Conversation navigation
capability checks, 80
closing, 82–85
overview, 79–80
paraphrase requests, 80–81
repeat requests, 80
sequence aborts, 81
sequence closers, 81

Conversation Navigation examples, 82–84
Conversation space in finite-state machine,

49
Conversational Activity UX patterns

Agent Inquiry, 109–114
combining, 114–119
conclusion, 119
Extended Telling, 103–106

286 Index

Conversational Activity UX patterns
(continued)

Inquiry (User), 90–93
NCF, 76–79
Open Request, 93–103
overview, 87–90
Quiz, 106–109
summary, 223–241
troubleshooting, 114–116
tutoring, 116–119

Conversational agents, current, 3–5
Conversational competence

NCF, 76
Sequence Management UX patterns, 121

Conversational interfaces
affordances, 184–186
vs. graphical user interfaces, 3–4

Conversational UX design
approach, 24
content design, 76
context design, 53–55
demand for, 64
heart of, 209
overview, 5–7

Conversational UX Design process
affordances, 184–186
conclusion, 209
define stage, 190–192
design thinking, 183–186
empathize stage, 187–190
ideate stage, 192–202
prototype stage, 203–208
test stage, 208

Cortana agent, 3
Counseling conversations, 42–43
Courtrooms, 189
Create condition command, 206
Customer service calls, recordings, 188
Customer service representatives

agent persona example, 195
Conversation Analysis, 40
machine understanding, 22

Data sessions in ideate stage, 192–194

Deep Blue computer, 21
Define stage

design thinking, 190–192
outcome statements, 191–192
user personas, 190–191

Definition Request patterns
Definition Request Default, 134–135
Definition Request Repair, 134
Definition Request Standalone, 135
overview, 133–134

Design thinking
empathize stage, 187–190
ideate stage, 192–202
overview, 183–186
prototype stage, 203–208

Design Thinking model, 183–184
Detail

Open Request pattern, 94
recipient design, 32–33
user control of, 70

Deviant cases, 188
Diabetes Coverage Extended Telling

example, 75–76
Diabetes Coverage Inquiry example, 75
Dialog design, 206, 221
Dialog services in NCF, 64
Direct manipulation in Visual-Centric

interaction style, 12
Direct observation in design thinking, 188
Directive activities, 31
Disagreements, 28
Disengaging patterns

Offense Complaint (Agent), 177–179
Offense Complaint (User), 179–180
overview, 174
Recipient Correction, 176–177
Transfer Aborted, 175
Transfer Successful, 174–175

Displaced Greeting (User) pattern, 157
Displaced Welfare Check (User) pattern,

157–158
Dispreferred actions, 28
Document-Like Response example, 71
Doing, understanding as, 211

Index 287

Dynamic knowledge, 58

Efficiency
basic mechanics, 38
interactional, 213–215
minimization, 35–36

Elaborated Reference example, 35
Eliciting, sequence expansions for, 66–67
ELIZA program

machine understanding, 23
overview, 2–3

else command, 206
Emotions, 178–179
Empathize stage

design thinking, 187–190
engage, 189–190
observation, 187–189

Engagement in design thinking, 189–190
Entities

dialog design, 206
IECR paradigm, 47
overview, 52

Ethnographic interviewing, 189
Ethnomethodology, 53
Example Request pattern

Example Request Default, 136–137
overview, 135–136

Example requests by ELIZA, 2
Expandable sequences

conversation metric, 213–214
design thinking, 203–204
overview, 67
What’s in Theatres, 85

Expansion in interaction model, 65–68
Expert example, 33–34
Extended Repair patterns

Other-Correction, 141
Self-Correction, 138–139

Extended Telling patterns, 70
example, 73–74
Extended Telling Abort, 105–106
Extended Telling with Repair, 103–105

Extroversion as Myers-Briggs Type indicator,
198

Failed Reference example, 35
Falling Off a Branch example, 60
FAQ (Frequently Asked Question) pages, 11
Feeling as Myers-Briggs Type indicator, 198
Fictional characters

conversational interfaces, 186
self-knowledge for, 199–200

Finite-state machine47–49
First-position repair, 37–38
Fixed roles in Conversation Analysis, 40
Four Positions of Repair example, 36–37
Fourth position repair, 38
Frequently Asked Question (FAQ) pages, 11
Functional conception of understanding,

20

Gaps, 27
Garfinkel, Harold, 19
Gender in agent persona example, 196–197
General AI in machine understanding, 22
General Capability Check pattern, 162–163
Goals in personas, 191–192
goto command, 206
Graphic design for web pages, 6
Graphical user interfaces (GUIs) vs.

conversational interfaces, 3–4
Greeting (User) pattern, 155–156

Hearing check in Quiz pattern, 108
Hearing Check patterns

Hearing Check Confirmed, 130–131
Hearing Check Corrected, 131
overview, 130

House for a Small Family pattern, 87
Human conversation, self-knowledge for,

199–200
Human understanding perspectives, 17–20
Humanoid characters for conversational

interfaces, 186
Humor Styles Questionnaire, 198–199

IBM
Deep Blue and Watson computers, 21
homepage, 5–7

288 Index

Ideate stage
agent persona example, 194–200
design thinking, 192–202
shape of conversation example, 192–194
utterance pair brainstorming, 200–203

Identification requests, 152
IECR paradigm. See Intent-Entity-Context-

Response (IECR) paradigm
if command, 206
In-scope utterance pairs, 202–203
Inconsequential talk, 121–122
Indexical expressions, 53
Information retrieval

conversation authoring, 45, 47
System-Centric interaction style, 9–10

Informings in Conversation Analysis, 30
Input

Conversation-Centric interaction style,
15

conversational agents, 3
System-Centric interaction style, 8
Visual-Centric interaction style, 12–13

Inquiry (Agent) patterns
Inquiry (Agent), 110
Inquiry (Agent) Completion Check, 113
Inquiry (Agent) Extended Answer, 113–

114
Inquiry (Agent) Hearing Confirmed, 111
Inquiry (Agent) Hearing Disconfirmed,

111–112
Inquiry (Agent) Open, 110–111
overview, 109–110

Inquiry (User) patterns
Inquiry (User) Confirmation, 91
Inquiry (User) Disconfirmation, 91–92
Inquiry (User) Repairs, 92–93
overview, 90–91

Insults, 178
Intent-Entity-Context-Response (IECR)

paradigm
branching, 59–61
finite-state machine, 47–58
introduction, 24
platforms using, 47

pseudocode, 205
Intents

Conversation Analysis, 31
dialog design, 206
finite-state machine, 49–52
IECR paradigm, 47
interaction model, 67
Open Request pattern, 95, 101
overview, 49–52

Interaction model in NCF, 65–69
Interaction styles

Content-Centric, 10–12
Conversation-Centric, 14–16
overview, 7
System-Centric, 8–10
Visual-Centric, 12–13

Interactional Efficiency metric, 213–215
Interactive Voice Response (IVR), 12
Internet of Things (IoT) use cases, 185
Intersubjectivity in shared understanding,

20
Interviews

agent inquiry, 109
in engagement, 189–190
psychiatric, 42

Introversion as Myers-Briggs Type indicator,
198

Intuition as Myers-Briggs Type indicator,
198

Invitation-acceptance sequences, 39
Invitations in Conversation Analysis, 30
IoT (Internet of Things) use cases, 185
IVR (Interactive Voice Response), 12

Jargon, 33
Job description for agent persona example,

195–196
Joke Telling example, 78–79
Joke telling in System-Centric interaction

style, 9
Judging as Myers-Briggs Type indicator, 198

Keywords
ELIZA program, 3

Index 289

entities, 52
IECR paradigm, 47

Knock-knock jokes, 9
Knowing your user in recipient design,

33

Labeled Conversation Log example, 216
Language games, 18–19
Last Topic Check (Agent) pattern, 167
Last Topic Check (User) pattern, 167–168
Laughter tokens

Last Topic Check (Agent), 167
sequence closers, 142

Leaf nodes, 48
Linguistic patterns, 50
Listening by ELIZA, 2–3
Local help in paraphrase requests, 80–81
Luis platform, 47

Machine learning (ML)
conversation authoring, 45
responses, 56–57
IECR paradigm, 47

Machine understanding, 21–23
Mascots

conversational interfaces, 186
self-knowledge for, 199–200

Medicine, conversation studies, 189
Mental states in human understanding, 17
Metrics, conversation, 212–217
Minimal Expansion example, 65
Minimal Reference example, 35
Minimization, 34–36
Minimum viable product (MVP), 191
Misunderstanding Report pattern, 139–140
Mixed conditions in finite-state machine,

55–56
Mixed-initiative style, 15
Mobile-first strategy in web design, 15
Mock-ups for prototype stage, 204–205
Molecular propositions, language as, 17
Motivations in personas, 190–191
Movie critic agent persona example, 195
Multi-Turn Requests example, 53–54

Multiparty interactions in Conversation
Analysis, 27

Multiple User Entry Points example, 59
Multiple-Variation Response example,

57–58
Must-have goals in design thinking, 191
Mutual understanding

as goal, 23
interaction model, 69
picture theory, 18
in sequence completion rate, 213

Myers-Briggs Type indicators, 197–198

Name Correction (User) pattern, 160–161
Name Request (User) pattern, 161
Natural Conversation Framework (NCF)

conclusion, 85–86
content format, 69–76
conversation-level management

examples, 251–263
conversation-level management patterns,

225–226
conversation navigation, 79–85
conversational activities examples, 226–

241
conversational activities patterns, 76–79,

223–224
expandable sequences, 203–204
interaction model, 65–69
overview, 63–65
sequence-level management examples,

241–250
sequence-level management patterns,

224–225
Natural conversation understanding in

interaction model, 69
Natural conversation, 4

aspects of, 32
basic mechanics of, 38
common action types, 30
complex system, 64
complexity of, 4
efficiency in, 35–36
form of natural language use, 29

290 Index

Natural conversation (continued)
key characteristic of, 10
mischaracterization, 192
rules and models of, 88

Natural language
Content-Centric interaction style, 10
Conversation-Centric interaction style,

14–15
System-Centric interaction style, 8–9
type summary, 16
understanding, 17

Natural language classes (NLC)
chatbot use of, 7
conversation authoring, 45
conditions, 49–52

Natural-language-generation approach in
conversation authoring, 45–47

Natural language processing (NLP)
advances in, 64
interaction styles, 7
limitations, 4–5

Natural language understanding (NLU)
techniques, 22–23

Navigation, conversation. See Conversation
navigation

NCF. See Natural Conversation Framework
(NCF)

Negative assessments, 142
News Check Capability (User) pattern,159
News Check (User) pattern, 159
News checks, 150
News interviews, 189
NLC (natural language classes)

chatbot use of, 7
conversation authoring, 45
conditions, 49–52

NLP (natural language processing)
advances in, 64
interaction styles, 7
limitations, 4–5

NLU (natural language understanding)
techniques, 22–23

No Answer Account pattern, 126–127
Non-pedagogical inquiries example, 18

Nonlinear interactions in Conversation-
Centric interaction style, 15

Norm breaching example, 19
Noticings, 192
Novice example, 34
Number of sequences metric, 213–215

Observation in design thinking, 187–189
Off-topic utterance pairs, 202–203
Offense Complaint (Agent) pattern, 177–179
Offense Complaint (User) pattern, 179–180
On-topic utterance pairs, 202
Open Request patterns

Open Request Agent Detail Request, 96
Open Request Continuer, 94–95
Open Request Incremental, 100
Open Request Nonverbal, 94
Open Request Repairs, 102–103
Open Request Screening, 95–96
Open Request Series, 100–101
Open Request Summary, 97–98
Open Request Summary with Artifacts,

99–100
Open Request User Detail Request, 96–97
overview, 93–94
Warrant Request & Refusal, 98–99

Opening (Agent) patterns
Opening Authentication (Agent), 154
Opening Direct Address (Agent), 152
Opening Greeting (Agent), 151
Opening Name Request (Agent), 152
Opening Organization Offer of Help

(Agent), 153–154
Opening Self-Identification (Agent),

151–152
Opening Welfare Check (Agent), 153
Organizational Problem Request (Agent),

154–155
overview, 149–151

Opening (User) patterns
Displaced Greeting (User), 157
Displaced Welfare Check (User), 157–158
Greeting (User), 155–156
Name Correction (User), 160–161

Index 291

Name Request (User), 161
News Check Capability (User), 159
News Check (User), 159
overview, 155
Reciprocated Welfare Check (User),

159
Self-Identification (User), 160
Summons (User), 156
Welfare Check (User), 156–157

Openings in conversation, 30
Oral examination in shared understanding,

18
Ordinary conversations, 39
Organizational representatives in

Conversation Analysis, 40
Other-Correction pattern, 141
Other Hearing Check & Mishearing Report

pattern, 140–141
Out-of-scope utterance pairs, 202–203
Outcome statements in design thinking,

191–192

Pain points in personas, 190–191
Paragraphs, breaking down, 70–72
Paraphrase Request (Agent) patterns

Agent Continuer, 126
No Answer Account, 126–127
overview, 124–125
Repeat Acknowledgment, 127–128
Subsequent Paraphrase Requests, 125–

126
Paraphrase Request patterns

overview, 131–133
Paraphrase Request Default, 133

Paraphrase requests
Conversation-Centric interaction style,

14
conversation navigation, 80–81
by ELIZA, 2

Paraphrasing, sequence expansions for,
66–67

Partial Repeat Request pattern, 130
Partial repeats by ELIZA, 3
Paths in finite-state machine, 49

Patterns overview
Conversation Analysis, 25
conversational activity, 76–79
dialog design, 206
NCF, 63–65

Pauses, 27–28
Pedagogical inquiries example, 18
Perceiving as Myers-Briggs Type indicator,

198
Persistent context

conversation authoring, 54
Conversation-Centric interaction style,

15
interaction model, 67
System-Centric interaction style, 10

Personality in agent persona example,
196–199

Personas
agent persona example, 194–200
design thinking, 190–191

Phrases
condition, 49–52
IECR paradigm, 47

Picture theory of meaning, 17–18
Politics, agent persona example, 197
Positive assessments, 142
Pre-closing in conversation navigation, 82
Pre-Closing (User) pattern, 168
Preference organization in Conversation

Analysis, 28, 32
Preferred actions in Conversation Analysis,

28
Preliminaries

Conversation Analysis, 39
Conversation-Centric interaction style,

14
Open Request pattern, 95

Previous nodes
branching, 60–61
mixed conditions, 56
Quiz Repairs pattern, 108

Programming by example for finite-state
machine, 50

Pronouns with ELIZA, 2–3

292 Index

Propositions, language as, 17
Prototype stage

build, 207–208
design, 205–207
mock-up, 204–205
overview, 203–208

Pseudocode
dialog design, 221
prototype stage, 205–207

Psychotherapy
Conversation Analysis, 42–43
conversation studies, 189
ELIZA program, 2

Q&A example, 11
Quiz patterns

Computer Trivia example, 78–79
overview, 106
Quiz Agent-Initiated, 109
Quiz Incorrect, 107
Quiz Repairs, 107–108
Quiz User-Initiated, 108–109

Recipient Correction pattern, 176–177
Recipient design in Conversation Analysis,

32–34
Reciprocated Welfare Check (User) pattern,

159
Recognitionals in minimization, 35
Recording social settings, 188
Reference forms in recipient design, 33
Refutation example, 54–55
Repair

Conversation Analysis, 32, 36–38
interaction model, 67
machine understanding, 22
Open Request Repairs pattern, 102–103
Quiz Repairs, 107–108
shared understanding, 20

Repair (Agent) patterns
overview, 122–123
Paraphrase Request (Agent), 124–128
Understanding Check (Agent), 123–124

Repair (User) patterns
Definition Request, 133–135
Example Request, 135–137
Hearing Check, 130–131
overview, 128
Paraphrase Request, 131–133
Partial Repeat Request, 130
Repeat Request, 128–130
Understanding Check, 137–138

Repeat Acknowledgment pattern, 127–128
Repeat Request patterns

overview, 128–129
Repeat Request Aborted, 129–130
Repeat Request Default, 129

Repeat requests
Conversation-Centric interaction style,

14
conversation navigation, 80
Quiz pattern, 108

Repeating
interaction model, 67
sequence expansions for, 66–67

Requests in conversation anatomy, 30
Resources in Conversation Analysis

patterns, 88
Respond to user command, 206
Response Frames example, 58
Responses

Conversation-Centric interaction style,
14–15

overview, 56–58
IECR paradigm, 47

Rogerian therapy example, 1–2
Rogers, Carl, 2
Roles, 40
Root level in finite-state machine, 48
Route to node command, 206
Rule-based templates for ELIZA program, 3
Rules for Conversation Analysis patterns, 88

Sacks, Harvey, 25
say command, 206
Schegloff, Emanuel, 20

Index 293

Screening, sequence expansions for, 66–67
Search engines vs. conversational agents, 4
Second-position repair, 37–38
Self-Correction patterns

Misunderstanding Report, 139–140
Other Hearing Check & Mishearing

Report, 140–141
overview, 138–139

Self-Identification (User) pattern, 160
Self-identifications, 151–152
Self-knowledge agent persona example,

199–200
Sensing as Myers-Briggs Type indicator, 198
Sequence Abort patterns

overview, 145–146
Sequence Abort Capability Offer

Accepted, 146–147
Sequence Abort Capability Offer

Declined, 147
Sequence aborts in conversation navigation,

81
Sequence closers in conversation

navigation, 81
Sequence Closers patterns

overview, 142
Sequence Closer Appreciation (helped),

143–144
Sequence Closer Appreciation (not

helped), 144
Sequence Closer (helped), 142–143
Sequence Closer (not helped), 143
Sequence Closer (repaired), 145

Sequence Completion Rate metric, 213–215
Sequence Expansion Types example, 66
Sequence Management UX patterns

conclusion, 147–148
examples summary, 241–250
Extended Repair, 138–141
overview, 121–122
patterns summary, 224–225
Repair (Agent), 122–128
Repair (User), 128–138
Sequence Abort, 145–147

sequence closers, 142–145
Sequence-to-sequence (seq2seq) models,

45–47
Sequences

Conversation Analysis, 32
conversation anatomy, 30
description, 65

Sequential context
Conversation-Centric interaction style,

15
context, 53, 55

Service conversations
Conversation Analysis, 40–41
machine understanding, 22

Set variable command, 206
Shape of conversation example, 192–194
Shared understanding

as goal, 23
interaction model, 69
picture theory, 18
in sequence completion rate, 213

Simulacra, 88
Single conversation units in conversation

anatomy, 30
Single User Entry Point examples, 61
Single-Version Response example, 57
Siri agent, 3
Slots

interaction model, 67
Open Request pattern, 96, 101

Small talk, 121–122
Social actions

Conversation Analysis, 30, 39
Conversation-Centric interaction style,

14
Social practices

machine understanding, 21
shared understanding, 18–19

Specific Capability Check pattern, 164
Speech Act Theory, 30–31
Speech acts in Conversation Analysis, 31
Speech-exchange system features, 26–27
Staying on a Branch example, 60

294 Index

Storytelling
Conversation Analysis, 30
Extended Telling patterns, 103–106
sequences, 65

Structure in Conversation Analysis, 27–29
Students

Conversation Analysis, 41–42
conversation studies, 189
Tutoring pattern, 116–119

Subsequent Paraphrase Requests pattern,
125–126

Summons (User) pattern, 156
System-Centric interaction styles

characteristics, 16
information retrieval, 9–10
overview, 8
voice control, 8–9

System entities, 52

Talk-in–interaction in Conversation
Analysis, 25

TCUs (turn constructional units), 29–30
Teaching conversations

Conversation Analysis, 41–42
conversation studies, 189
Tutoring pattern, 116–119

Templates for ELIZA program, 3
Test stage in design process, 208
Text communication

conversational agents, 3
conversational interfaces, 185

Therapist conversations, 42
Thinking as Myers-Briggs Type indicator,

198
Third position repair, 37–38
Topics

Open Request pattern, 93, 101
vs. structure, 27–29

Transcripts
benefits, 1
conventions, 219
mock-ups, 204–205

Transfer Aborted pattern, 175
Transfer Successful pattern, 174–175

Travel agents persona example, 195–196
Tree data structure in finite-state machine,

47–49
Troubleshooting patterns

overview, 114–115
Troubleshooting User-Initiated, 115–116

Turing, Alan, 21–22
Turing test, 21–22
Turn-taking

Conversation Analysis, 32
conversation shape, 192
repair mechanisms, 27

Tutoring pattern, 116–119
Typologies, personality, 197

Understanding
human, 17–20
interaction model, 69
machine, 21–23
overview, 17, 211
shared. See Shared understanding

Understanding Check (Agent) pattern,
123–124

Understanding Check patterns
Understanding Check Confirmed, 137
Understanding Check Disconfirmed,

137–138
Understanding Repair example, 20
Use cases in conversational interfaces,

184–186
User-centered design, 183
User Elaboration Request example, 68
User goals for personas, 191
User-initiated repairs in Understanding

Check, 138
User input points in finite-state machine,

59–61
User personas in design thinking, 190–191
Utterance pairs, 200–203
Utterance Suggestion pattern, 164–165
Utterances

Conversation Analysis, 30
conversation shape, 192–194
turn constructional units, 29–30

Index 295

Valid queries in System-Centric interaction
style, 10

Variables
context, 52–55
IECR paradigm, 47

Variation management in intents, 50–51
Vinyals and Le example, 46
Visual-Centric interaction styles

characteristics, 16
overview, 12–13

Viva voce testing
machine understanding, 22
overview, 18–19

Voice assistants
limitations, 4
minimization, 36

Voice-based interaction, 185
Voice control in System-Centric interaction

style, 8–9
Voice input in conversational agents, 3

Voices in agent persona example, 196–197

Warrant Request & Refusal pattern, 98–99
Watson agent, 3
Watson Assistant platform

IECR paradigm, 47
NCF, 64
system entities, 52

Watson computer, 21
Watson Natural Language Understanding

Service, 52
Web designers, 5
Welfare Check (User) pattern, 156–157
Welfare checks

Opening (Agent), 153
shared understanding, 20

Well-wishes, 168
What’s in Theaters, 83–85
Wit.ai platform, 47
Wittgenstein, Ludwig, 18

Author Biographies

Robert J. Moore

Robert J. Moore is a research scientist at IBM
Research–Almaden, where he examines the inter-
section of human conversation and technology.
He is currently applying conversation science to
the design of user experience and conversational
agents. In the past, Dr. Moore has worked as a
scientist at Yahoo! Labs and the Xerox Palo Alto
Research Center (PARC), and as a game designer
at The Multiverse Network. He holds Ph.D., M.S.,
and B.A. degrees in sociology with concentrations
in ethnomethodology, conversation analysis, and
ethnography.

298 Author Biographies

Raphael Arar
Raphael Arar is passionate about investigating in-
teraction design for emerging technologies and
complex systems. While currently a Principal De-
signer at Khan Academy, the research and writing
for this publication was completed while he was
designing for artificial intelligence systems at IBM
Research–Almaden. Previously, he led the UX ef-
fort for the Apple + IBM partnership and taught
in the Media Arts program at the University of
Southern California. He holds an MFA from the
California Institute of the Arts, a BA from Boston
University, and in 2017, he was listed as one of

Forbes’s “30 under 30 in Enterprise Technology.”

ACM Books is a series of high-quality books
published by ACM for the computer science
community. ACM Books publications are widely
distributed in print and digital formats by major
booksellers and are available to libraries and

library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.
BOOKS.ACM.ORG • WWW.MORGANCLAYPOOLPUBLISHERS.COM

ABOUT ACM BOOKS

With recent advances in natural language understanding techniques and far-
field microphone arrays, natural language interfaces, such as voice assistants
and chatbots, are emerging as a popular new way to interact with computers.
They have made their way out of the industry research labs and into the
pockets, desktops, cars and living rooms of the general public. But although
such interfaces recognize bits of natural language, and even voice input, they
generally lack conversational competence, or the ability to engage in natural
conversation. Today’s platforms provide sophisticated tools for analyzing
language and retrieving knowledge, but they fail to provide adequate support
for modeling interaction. The user experience (UX) designer or software
developer must figure out how a human conversation is organized, usually
relying on commonsense rather than on formal knowledge. Fortunately,
practitioners can rely on conversation science.

This book adapts formal knowledge from the field of Conversation Analysis
(CA) to the design of natural language interfaces. It outlines the Natural
Conversation Framework (NCF), developed at IBM Research, a systematic
framework for designing interfaces that work like natural conversation. The
NCF consists of four main components: 1) an interaction model of “expandable
sequences,” 2) a corresponding content format, 3) a pattern language with
100 generic UX patterns and 4) a navigation method of six basic user actions.
The authors introduce UX designers to a new way of thinking about user
experience design in the context of conversational interfaces, including a new
vocabulary, new principles and new interaction patterns. User experience
designers and graduate students in the HCI field as well as developers and
conversation analysis students should find this book of interest.

	Contents
	Preface
	1, Introduction
	2. Conversation Analysis
	3. Conversation Authoring
	4. Natural Conversation Framework
	5. Conversational Activity UX Patterns
	6. Sequence Management UX Patterns
	7. Conversation Management UX Patterns
	8. Conversational UX Design Process
	9. Conclusion
	A. Conversation Analysis Transcription Conventions
	B. Dialog Design Pseudocode
	C. NCF Pattern Language Summary
	D. Sample Conversation with Alma
	References
	Index
	Author Biographies

