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Cryptography is concerned with the construction of schemes that 
withstand any abuse. A cryptographic scheme is constructed so as 
to maintain a desired functionality, even under malicious attempts 
aimed at making it deviate from its prescribed behavior. The design of 
cryptographic systems must be based on firm foundations, whereas ad 
hoc approaches and heuristics are a very dangerous way to go. These 
foundations were developed mostly in the 1980s, in works that are all 
co-authored by Shafi Goldwasser and/or Silvio Micali. These works have 
transformed cryptography from an engineering discipline, lacking sound 
theoretical foundations, into a scientific field possessing a well-founded 
theory, which influences practice as well as contributes to other areas of 
theoretical computer science. 
 This book celebrates these works, which were the basis for 
bestowing the 2012 A.M. Turing Award upon Shafi Goldwasser and Silvio 
Micali. A significant portion of this book reproduces some of these works, 
and another portion consists of scientific perspectives by some of their 
former students. The highlight of the book is provided by a few chapters 
that allow the readers to meet Shafi and Silvio in person. These include 
interviews with them, their biographies and their Turing Award lectures.  
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Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018



Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
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Preface

There are no privileges without duties.

—Advocate Klara Goldreich-Ingwer (1912–2004)

Cryptography is concerned with the construction of schemes that withstand any
abuse: A cryptographic scheme is constructed so as to maintain a desired function-
ality, even under malicious attempts aimed at making it deviate from its prescribed
behavior. The design of cryptographic systems must be based on firm foundations,
whereas ad hoc approaches and heuristics are a very dangerous way to go. These
foundations were developed mostly in the 1980s, in works that are all co-authored
by Shafi Goldwasser and/or Silvio Micali. These works have transformed cryptogra-
phy from an engineering discipline, lacking sound theoretical foundations, into a
scientific field possessing a well-founded theory, which influences practice as well
as contributes to other areas of theoretical computer science. The current book
celebrates these works, which were the basis for bestowing the 2012 Turing Award
upon Shafi Goldwasser and Silvio Micali.

♦ ♦ ♦

Cryptography as we know it today is based entirely on concepts, definitions,
techniques, and feasibility results put forward and developed in the works of Gold-
wasser and/or Micali. A significant portion of this book reproduces some of these
works, whose contents is briefly outlined next.

“Probabilistic Encryption” (Chapter 7). The pivot of the aforementioned body of
work is the pioneering work “Probabilistic Encryption,” whose title reflects the real-
ization that a robust notion of secure encryption requires the use of randomization
in the process of encrypting each message (and not only in the process of generating
cryptographic keys). This work of Goldwasser and Micali defined the mind-set of the
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field by establishing conceptual frameworks and demonstrating their usefulness.
In particular:

. This work suggested viewing computationally indistinguishable objects as
equivalent. This revolutionary suggestion has played a key role in all standard
cryptographic definitions and has served as the pivot of the acclaimed theory
of pseudorandomness (to be briefly reviewed below).

. This work suggested interpreting security as the ability to emulate an ideal
setting. This suggestion, further clarified by Goldwasser and Micali in early
versions of “The Knowledge Complexity of Interactive Proof Systems” (briefly
reviewed below), has been adopted as the basic approach to defining security
in almost all cryptographic settings. This approach, known as the simula-
tion paradigm, resolves the Gordian knot that has frustrated previous attempts
to define security by trying to enumerate all desired properties. The simulation
paradigm bypasses this enumeration by asserting that security means that
anything that can be efficiently obtained by an attack on the cryptographic
system can be essentially obtained (as efficiently) without attacking the sys-
tem. Thus, any gain that an attacker claims is actually not due to the use of
the cryptographic system.

. This work demonstrated the fruitfulness of the aforementioned paradigm
shift by providing robust definitions for the most basic cryptographic prim-
itive (i.e., encryption schemes) and by constructing a secure encryption
scheme based on a standard complexity assumption. In addition to demon-
strating the viability of the new-at-the-time approach, this paper set the
standard for the two-step process to be followed by all subsequent works:

First, a robust definition is developed, based on the aforementioned
approach.

Next, schemes satisfying this definition are proven to exist (and ac-
tually explicitly constructed) based on much better understood as-
sumptions.

For example, once defined, it was not a priori clear whether zero-knowledge
proofs exist at all, and thus relating this question to well-known conjectures
demonstrated the viability of zero-knowledge.

. This work also introduced important techniques, one being later termed the
hybrid argument, which found numerous applications in cryptography and
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in the theory of pseudorandomness. Notably, this work also heralded worst-
case to average-case reductions (also known as random self-reducibility).

“The Knowledge Complexity of Interactive Proof Systems” (Chapter 8). The sec-
ond most influential work of Goldwasser and Micali is their joint work on zero-
knowledge, which after not being understood by most researchers for three years,
and being revised several times, appeared in the “formal verification” session of
STOC ’85 (indicating that it was misunderstood even by the program committee
that accepted it for presentation). I can testify to the fact that the lack of under-
standing has not been due to a poor presentation of the ideas, but rather to their
revolutionary nature. (By the way, their earlier work “Probabilistic Encryption” also
faced lack of understanding for a couple of years.)

Nowadays, it is well-understood that this work introduced two fascinating and
highly influential concepts: the concept of interactive proofs and the concept of
zero-knowledge. The concept of interactive proofs had a vast impact on complexity
theory, to be briefly reviewed below. The concept of zero-knowledge, on top of being
very intriguing (once one stops being confused by it), became a central tool in
cryptography and led to fundamental discoveries regarding general secure multi-
party computation. Initial indications to the vast potential impact of these concepts
were provided by the results and discussions in the conference version of this work
(reproduced in Chapter 8).

“How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits” (Chap-
ter 9). This work defined pseudorandom generators as producing a sequence of
unpredictable bits. This definition was later shown to be equivalent to being com-
putationally indistinguishable from the uniform distribution over bit-strings of
adequate length. The notion of computational indistinguishably used here is the
same as the notion introduced in “Probabilistic Encryption,” but subsequent works
introduced a variety of alternative definitions yielding a host of notions of pseudo-
random generators. This work also defined the notion of a hard-core predicate of
a one-way function, and established its existence for the modular exponentiation
function.

“How to Construct Random Functions” (Chapter 10). This work extended the theory
of pseudorandomness to functions, and showed how to construct pseudorandom
functions based on any pseudorandom generator. The notion of a pseudorandom
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function found numerous applications in cryptography, starting from the construc-
tion of message authentication codes and private-key encryption schemes that
withstand chosen ciphertext attacks.

“A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks” (Chap-
ter 11). The result proved by this paper was considered impossible or at least “para-
doxical” at the time, because it was (falsely) believed that a “constructive proof of
unforgeability” (under passive attacks) implies a successful chosen-message attack.

“Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge
Proof Systems” (Chapter 12). This work demonstrated the generality and wide
applicability of zero-knowledge proofs. In particular, assuming the existence of
secure commitment schemes, it showed how to construct zero-knowledge inter-
active proof systems for any set in NP, yielding a powerful tool for the design of
various cryptographic schemes. Loosely speaking, zero-knowledge proofs offer a
way for a party to prove that it has behaved according to a predetermined protocol,
without revelaing its own secrets, and so they can be used to force parties to behave
in “honest-but-curious” manner.

“How to Play any Mental Game—A Completeness Theorem for Protocols with Honest
Majority” (Chapter 13). This work presented constructions of secure protocols for
any multi-party computation problem. In other words, it shows how a trusted party
can be emulated by a set of mutually distrustful parties. This result combines the
construction of “privacy-preserving” protocols for the “honest-but-curious” model
with a method (presented in Chapter 12) of forcing parties to behave in an honest-
but-curious manner. The privacy-preserving protocols rely on the existence of a
public-key encryption scheme and an Oblivious Transfer protocol, which can both
be based on the existence of trapdoor permutations.

“Non-Interactive Zero-Knowledge (NIZK) Proof Systems” (Chapter 14). The model of
noninteractive proof systems introduced in this work includes a common random
string provided from the outside and available to both the prover and the verifier.
The work showed how to provide zero-knowledge (noninteractive) proofs for any
NP-assertion. Such NIZKs have been used as a building blocks in many subsequent
works (e.g., in constructing public-key encryption schemes that withstand chosen-
ciphertext attacks).

“Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-
tion” (Chapter 15). This work obtained general results similar to those of the work
presented in Chapter 13, except that it uses no intractability assumptions. Instead,
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this work presumes the existence of private channels between each pair of parties
(and a larger percentage of honest parties).

“Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions” (Chap-
ter 16). Motivated by the desire to construct zero-knowledge proof systems without
relying on intractability assumptions, this work presented a model of multi-prover
interactive proofs in which the provers cannot interact with one another during
their interaction with the verifier. This model, denoted MIP, turned out to be closely
related to the PCP model, which was introduced later and is briefly reviewed below.

Part II of this book reproduces the conference versions of the ten foregoing
works (while using the titles of their journal versions, which are different in a few
of the cases). These conference versions are extended abstracts that lack many of
the details that support the claims made in them, but they best portray the spirit of
innovation, boldness, and freshness that is characteristic of Shafi Goldwasser and
Silvio Micali.

♣ ♣ ♣

Part III of this book presents scientific surveys of the works of Shafi Goldwasser
and Silvio Micali and of works that were directly inspired by their work. This part
starts with a survey of the foundations of cryptography.

On the Foundations of Cryptography. Before spelling out what these foundations
are, let us briefly reflect on the significance of such theoretical foundations to
cryptographic practice. While the following argument is widely accepted nowadays,
it required a convincing advocation in the 1980s. Needless to say, Shafi Goldwasser
and Silvio Micali provided such advocation when presenting their pioneering work.

Surely, providing sound theoretical foundations is of great importance for any
discipline, but more so for cryptography, since cryptography is concerned with
the construction of schemes that should be robust against malicious attempts
to make these schemes deviate from their prescribed functionality. A heuristic
may make sense when the designer has a very good idea about the environment
in which a scheme is to operate, yet a cryptographic scheme has to operate in a
maliciously selected environment that typically transcends the designer’s view. In
fact, the adversary is likely to take the very actions that were dismissed or ignored
by the designer. Thus, the design of cryptographic systems has to be based on firm
foundations, as provided by the research project lead by Goldwasser and Micali in
the 1980s.
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The foundations of cryptography are the main paradigms, approaches and tech-
niques used to conceptualize, define and provide solutions to natural cryptographic
problems. These foundations will be reviewed in Chapter 17, starting with a presen-
tation of some of the central tools used in cryptography; that is, computational dif-
ficulty (in the form of one-way functions), pseudorandomness, and zero-knowledge
proofs. Based on these tools, the survey treats basic cryptographic applications such
as encryption and signature schemes as well as the design of general secure crypto-
graphic protocols. It is striking to note that the entire exposition is rooted directly
or indirecting in works of Goldwasser and Micali. Indeed, the history of laying the
foundations of cryptography is the story of the works of Goldwasser and Micali.

Impact on Complexity Theory. The revolutionary evolution of cryptography in the
1980s had a great impact on other areas of computer science, most notably on
complexity theory. Some of this impact will be reviewed in Chapter 18. Among the
direct contributions of the cryptographic evolution to Computer Science, I wish
to highlight the theory of pseudorandomness and the study of probabilistic proof
systems. Notably, Goldwasser and Micali played a key role also in the development
of these specific areas.

A fresh view at the “question of randomness” was taken in the theory of com-
puting: It has been postulated that a distribution is pseudorandom if it cannot be
told apart from the uniform distribution by any efficient procedure. This para-
digm, which was introduced in cryptography where efficient procedures were asso-
ciated with polynomial-time algorithms that may be stronger than the (purported
pseudorandom) generator, has been applied also with respect to a variety of lim-
ited classes of such distinguishing procedures, including polynomial-size circuits
that are smaller than the running time of the generator, constant-depth circuits,
space-bounded machines, local tests (cf., limited independence generators), linear
tests (cf., small bias generators), nondeterministic polynomial-time machines, and
more. Indeed, this paradigm has been the basis of a vast body of intriguing research
concerned with the role of randomness in computation. Also worth noting are the
application of pseudorandom functions (e.g., to hardness of PAC learning and to
“Natural Proofs”).

Various types of probabilistic proof systems have played a central role in the
development of computer science in the last decades. Such nontraditional formu-
lations of proof systems, which allow for a bounded probability of error and view
the proof as a dynamic process rather than as a static object, have many advan-
tages over the classical formulation of proof systems (which underlies NP). These
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advantages are demonstrated by the known results regarding interactive proofs,
zero-knowledge proofs, and probabilistically checkable proofs (PCP). The fruitful
connection between PCPs and the complexity of natural approximation problems
was also discovered in such a work. This connection has provided a breakthrough
in the study of approximation algorithms, which has been almost literally stuck for
two decades.

On Some Other Works of Goldwasser and Micali. Although the main topic of this book
is the contributions of Goldwasser and Micali to the foundations of cryptography,
it would be inappropriate not to mention their direct contributions to other ar-
eas within the theory of computation. Some of these contributions are surveyed in
Chapter 18, where the perspective is of the impact of cryptography on complexity
theory. In addition, Chapter 19 surveys a few other contributions, without mention-
ing the relations of some of them to cryptography. The selection of titles includes:

. “An O(
√|V | . |E|)-Time Algorithm for Finding Maximum Matching in Gen-

eral Graphs,” which still holds the record for the fastest algorithm for this
central computational problem.

. “Certifying Almost All Primes Using Elliptic Curves,” which presented a ran-
domized polynomial-time algorithm that produces (absolute) certificates of
primality for almost all primes.

. “Private Coins versus Public Coins in Interactive Proof Systems,” which pro-
vided a transformation of general interactive proof systems into ones in
which the verifier only poses totally random challenges.

. “An Optimal Randomized Protocol for Synchronous Byzantine Agreement,”
which provided a constant-round protocol for this central problem.

. “PCPs and the Hardness of Approximating the Size of Maximum Cliques,”
which provided a PCP system of almost logarithmic randomness and query
complexity for NP, and linked such systems to the complexity of a central
approximation problem.

. “Computationally Sound Proofs,” which presented natural notions of
computationally-sound proof systems.

. “Property Testing and Its Connection to Learning and Approximation,”
which initiated a general study of approximate decision problems that can
be solved in sublinear time, while focusing on testing properties of (dense)
graphs.
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. “Pseudo-Deterministic Algorithms,” which initiated the study of probabilis-
tic algorithms for solving search problems in a consistent manner (i.e., al-
most always return the same canonical solution).

For each of these selected works, the original abstract is reproduced, and a few
additional comments about the work are made. It should be stressed that although
Chapters 17–19 review many of the most influential works of Goldwasser and
Micali, they are far from exhausting this list, as illustrated by Chapters 21, 24 and 26.

Scientific Vignettes by Some of Their Former Students. A few of Goldwasser’s and
Micali’s former students were asked to write chapters about topics of their choice.
Most of them agreed, and some of them delivered. Certainly, Shafi and Silvio do not
educate their students to be timely. In their defense, one may say that they don’t
preach what they don’t practice.

Zvika Brakerski’s survey (Chapter 20), “Fundamentals of Fully Homomorphic
Encryption,” reviews a topic that was not pioneered by Goldwasser and Micali.
In fact, the partial homomorphic property of the Goldwasser–Micali encryption
scheme was considered more as a bug than as a feature, which led them to suggest
using it only for the establishing of a key for a symmetric encryption scheme (see
their “Why and How to Establish a Private Code on a Public Network,” with Po Tong
in FOCS 1982). Nevertheless, perspectives have changed, and the potential benefits
of fully homomorphic encryption, envisioned by Rivest et al. (in 1978), have been
materialized by the surprising discovery of fully homomorphic encryption schemes
whose security are based on computational problems regarding lattices.

Computational problems regarding lattices are also the pivot of Daniele Mic-
ciancio’s survey (Chapter 21), “Interactive Proofs for Lattice Problems.” The starting
point of this survey is a work of Goldreich and Goldwasser that presented perfect
zero-knowledge interactive proof systems for central problems regarding lattices
(in order to demonstrate that they are unlikely to be NP-hard). The survey provides
the basic background for the computational aspects of lattices, and focuses on sev-
eral interactive proof systems for various claims regarding lattices, while exposing
their underlying ideas.

Johan Håstad’s survey (Chapter 22), “Following a Tangent of Proofs,” also starts
with interactive proof systems, but its actual focus is on the non-approximability
results that can be derived from probabilistically checkable proofs (PCPs), which
in turn arised from multi-prover interactive proof systems. Håstad confesses that,
at the time, he considered the multi-prover model to be “artificial” and doubted
the justification of introducing an esoteric complexity class that corresponds to it.
His past reaction was reminiscent of the reactions that other notions introduced
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previously by Goldwasser and Micali have received (e.g., probabilistic encryption
and zero-knowledge). Needless to say, in all cases, these skeptic reactions were
proved wrong.

Rafael Pass’s “Tutorial on Concurrent Zero-Knowledge” (Chapter 23) addresses
the issue of preserving the zero-knowledge feature under “concurrent composi-
tion.” The point is that the original definition of zero-knowledge refers to a stand-
alone execution, and the preservation of security under sequential, parallel, and
even concurrent executions is far from clear. While augmenting the original def-
inition with auxiliary inputs suffices for sequential composition, preservation of
security under parallel and concurrent executions requires some work. Dealing
with concurrent executions is most challenging, and the tutorial presents the sim-
plest known solution, which did not appear is isolation before.

Guy Rothblum’s survey (Chapter 24), “Doubly-Efficient Interactive Proofs,” re-
visits the notion of interactive proof systems with a focus on more strict com-
plexity requirements. In particular, the (honest) prover strategy is required to
run in polynomial time, and the verifier strategy is required to run in almost
linear time. Such interactive proof systems, later termed doubly efficient, were
first defined and constructed by Goldwasser, Kalai, and Rothblum. Interestingly,
this notion was considered by Shafi, Silvio, and myself in the mid-1980s, but we
failed to find any appealing example (i.e., one in which interaction speeds up
verification).

The starting point of Salil Vadhan’s survey (Chapter 25), “Computational En-
tropy,” is the notion of computational indistinguishability, put forward by Gold-
wasser and Micali (see Chapter 7), as applied in the theory of pseudorandomness.
This starting point leads to the introduction of computational analogues of other
statistical notions such as entropy, min-entropy, KL-divergence, and more. These
notions play a major role in the constructions of pseudorandom generators and
statistically hiding commitment schemes, which are surveyed in this chapter.

Deviating for the framework that underlies all the foregoing, Yael Tauman Kalai
and Leonid Reyzin’s “Survey of Leakage-Resilient Cryptography” (Chapter 26) con-
siders cases in which the computing devices used by the honest parties may leak
partial information about the their computation or storage. That is, whereas the
foregoing views algorithms and strategies as functions (which, once feed with in-
puts, return adequate outputs), the leakage models attempt to account for the fact
that computation is taking place on a physical device that may be subject to various
physical measurements, and leakage-resilient schemes attempt to protect against
corresponding physical attacks. As noted in the survey, Goldwasser and Micali have
contributed significantly also to this research direction.
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♠ ♠ ♠
In contrast to this preface, which started with a review of the works of Gold-

wasser and Micali, the book starts with their lives and voices. Specifically, Part I
contains a brief personal biography of each of them, an interview with each of them,
which touches on both the personal and the professional, and revised transcripts
of their Turing Award lectures.

Brief Biographies. Given the timidness of the theory of computation community,
writing personal biographies of its pioneers seems quite challenging. On top of
this, I was quite curious to see how a professional writer, who has no background in
computer science, will view and portray Shafi and Silvio. I feel that both challenges
were well addressed by Michelle Waitzman. It is quite remarkable that Michelle
was able to identify key features of their personalities and link these features to
characteristics of their scientific research. Her success is well reflected in the titles
she choose for the personal biographies: “A Story Behind Every Problem: A Brief
Biography of Shafi Goldwasser” and “One Obsession at a Time: A Brief Biography
of Silvio Micali.”

Interviews. Given that both Shafi and Silvio are very interactive personalities, in-
terviewing them must have been a pleasure. The pleasure was shared among Alon
Rosen, who interviewed Shafi Goldwasser, while building on his expertise in cryp-
tography, and Stephen Ibaraki, who interviewed Silvio Micali (as part of an interview
series with outstanding computer professionals). The interviews refer both to the
personal life and professional work of Goldwasser and Micali, and the former as-
pects have some overlap with the biographies, where a common theme is indeed
the relation of the personal and the professional. Lightly edited extracts from the
two interviews are included in this volume.

The Turing Lectures. Finally, this volume includes lightly edited versions of the
Turing lectures given by Shafi Goldwasser and Silvio Micali during the 46th Annual
Symposium on the Theory of Computing, which took place in New York, in June 2014.
Shafi’s lecture focused on the influence of cryptographic research on the rest of
computer science, whereas Silvio’s lecture focused on the evolution of the notion
of proofs.

♥ ♥ ♥
I believe that the work of Shafi Goldwasser and Silvio Micali is of historical

dimension. Its impact on the development of cryptography and related areas in
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complexity theory has the flavor of a scientific revolution (in Kuhn’s sense). Hence,
whoever performs research in these areas is living in a world created and shaped
by their work. In light of the above, it is our professional and personal duty to
acknowledge our debt to these works. This assertion definitely holds about myself,
having had also the privilege of benefiting from numerous interactions with Shafi
and Silvio.

Oded Goldreich
Tel-Aviv, July 2019

Postscript: The ACM production of this book included re-typing the original papers
(for Part II), rather than using facsimiles of these papers, and changing various as-
pects of the texts of Part III (e.g., the bibliographic conventions and the numbering
of theorem-like environments). These production decisions were forced upon the
editor, who strongly objected them both per merits and due to the likelihood of
errors caused by implementing them.
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1A Story Behind
Every Problem:
A Brief Biography of
Shafi Goldwasser

Shafi Goldwasser has always loved a good story. As a little girl, she couldn’t get
enough of them and sometimes returned to the library several times a day to
exchange one book for another. Early on, she expected that this would lead her
to become a writer, but life had other plans for her.

Discovering that mathematics was even more exciting than literature, Shafi’s
path changed direction and she became a leading theoretical computer scientist.
Her way of seeing the world—connecting ideas that may seem unconnected to most
people—has led to a career full of accomplishments, awards, and admiration. But
the storyteller in Shafi never left. Instead, it has given her a creative approach to
working on mathematical problems. Shafi sees the “story” behind each problem
that she researches. Where some might see a verifier checking a proof, she can
picture a detective questioning a suspect.

Shafi says, “I usually find a problem interesting if there’s a story associated with
it. If I can think of the story of why a problem is interesting, not necessarily an
application—something I could grab onto: a model, a story. I think my love of
stories is kind of the way I think of these models.”

One of Shafi’s former students, Guy Rothblum, summarizes her talents this way:
“Shafi is both incredibly brilliant and creative as a researcher. She makes things
that used to be impossible—or that you would think were impossible—possible.
She makes these incredible leaps between fields and finds these connections and
you think, ‘How in the world did she come up with this?”’
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Fellow researcher Oded Goldreich agrees that Shafi’s ideas can seem so unusual
at first that it’s tempting to dismiss them as impossible. “When Shafi suggests
anything, one should resist the immediate reaction of saying ‘this cannot work’
and examine the core idea carefully,” he says. “Carefully think about the core of
what she said, rather than dismissing it on the spot as being ‘odd.”’

Shafi recognizes that she sees things differently than some of her peers, as she
explained in an interview with technology journalist Stephen Ibaraki. “I don’t think
in narrow ways, I try to see things from a larger perspective. I try to think of a
problem from different perspectives and I see connections to problems I’ve thought
about in the past, or maybe something that other people are working on.”

When Shafi was invited to present an AMS/MRSI congressional briefing on
the topic of data protection in 2017, she explained how theoretical research like
hers can have surprising applications many years later. After all, her early work
on cryptography took place long before we lived in a world of online commerce
and big data. She told the briefing attendees, “A problem that seems unsolvable
actually often has technical solutions that are based on some basic research that
was done 30 or 40 years ago by people who didn’t know about the problem—or care
about it.”

In a field where the value of creativity is often not recognized, Shafi is a living
example of what can be accomplished when a precise mathematical mind and a
creative outlook are combined in one dedicated researcher.

1.1 Beaches and Books: An International Childhood
Shafi’s parents grew up in very different circumstances. Her father, Zvi, was a young
man studying law in Poland when the Second World War interrupted his plans. He
fled to Russia, and eventually returned to Poland to help drive the German army
out. Not knowing whether any of his relatives had survived the war, Zvi moved to
Israel to get a fresh start. He would eventually reconnect with his mother and sister
and bring them to Israel, too.

Rachael, Shafi’s mother, was born in Israel and raised in an agricultural commu-
nity. She was a student during the late 1940s, and returned home from her studies
to find Zvi renting a room in her parents’ house. She began teaching him Hebrew,
and soon he asked her to be his wife. They married in 1948.

Zvi never completed his legal studies, but instead found work with the new
Israeli health service. The young country lacked everything: doctors, hospitals, and
of course funds. Zvi and his family were sent to New York City to try to entice Jewish
Americans to help. Young doctors were encouraged to move to Israel, and wealthy
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members of the community were asked to donate to the health service. The couple
already had a young son, Nathan, when they moved overseas. In 1958, while they
were living in New York, they had a baby girl and named her Shafrira, but she would
be called Shafi by everyone she knew.

From her first day, Shafi had two nationalities. She was American-born to Israeli
parents. She spent her earliest years in a coastal community just outside New York
City, called Seagate. The community is surrounded by beaches and very close to the
famous Coney Island beach and boardwalk. Shafi has fond memories of daily trips
to the beach with her mother. She attended a local kindergarten in New York. In
true urban fashion, the school’s playground was on the roof of the building.

When Shafi was about six years old, her father was transferred back to Israel,
and the family moved to Tel Aviv. They settled in an area known as the “Old North”
of the city, and brought with them a Dodge Dart that they had bought in New York.
It was a common car in the United States at the time, but a real novelty in Israel.
“At that time in Israel they didn’t exist,” says Shafi. “In the United States we had
this car, and it was just a small car. Then it arrived on the ship to Israel and it was
huge—it was like the biggest car ever in the streets.”

She had moved across the world, but Shafi still continued to have a strong
connection to the sea. “My parents used to go to the beach every day in Tel Aviv,
because my father loved swimming, and so did my mother since she grew up in
Kfar Vitkin, which was near the beach. And we used to go every day—six o’clock
in the morning,” Shafi recalls. Her parents’ love of swimming rubbed off on Shafi,
who cherished their daily swims throughout her childhood.

She also had the opportunity to learn about rural life by going to visit her
grandparents. Growing up in the urban surroundings of New York and Tel Aviv, this
rural experience was a precious opportunity. “My grandparents from my mother’s
side, they lived in Kfar Vitkin. They had an agricultural farm or unit—they had cows
and chickens—and I had cousins there. Every weekend we would go there to spend
time with them, have lunch, go to the beach. Sometimes I would spend weeks there
in the summer. So this connection with this farming place, or moshav, is very strong
in my mind. That is really childhood, that and the beach.”

Her family had arrived in Tel Aviv well after the beginning of the school year,
so Shafi had to quickly adapt to a new type of schooling in a new language. She
was a novelty to her fellow students, who were not used to people immigrating
from the United States. “I think that for the rest of my duration at school, which
was eight years—and even today, they remember me as the girl who came from
America. Which shows you how Israel was at that time, that that was such a rare
occurrence. And because I didn’t know Hebrew for the first few weeks, I think they
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sort of remembered me as someone who didn’t know how to speak Hebrew in the
beginning,” she says.

The school was far from her home and she had to take a bus there, but it was
recommended to Shafi’s parents because it was affiliated with the ruling political
party in Israel at the time, and it had long hours and provided a good education
with strong fundamentals. However, not everything there was good, according to
Shafi. “I kind of hated the food. I remember that one day they wanted me to stay
and eat everything, because you’re supposed to clean your plate, especially at that
time in Israel. My mother happened to pass by and she told the teacher that there’s
no need to force me to eat anything. That’s a very strong, protective memory of
my mother, that I knew that I could really do whatever I want, which was always
true.”

It was during these school days that Shafi developed her love of reading and
stories. She read novels, historical dramas, short stories—anything that would
feed her imagination. Her mother was also a great lover of literature and history.
Although writing stories of her own seemed like a natural progression for her,
she was not prolific. “I liked to write essays and short stories, but I didn’t write
that much. With all my fantasies about being a writer, I don’t have a bunch of
manuscripts hidden in my drawers,” she says.

She did team up with one of her friends to create a newspaper. Shafi wrote the
articles and her friend was the business manager. But sales of the first issue were
disappointing (she thinks they sold one or two copies) and the venture didn’t last.

As for those short stories, Shafi was a shy author and didn’t share her creative
endeavors. “I think they were so full of my own desires and fantasies for the future
that I would have considered them extremely personal and I don’t think I would
have shown them to anyone,” she says.

Shafi’s childhood took another turn when at age 11 she became a big sister to
a new baby girl, Ricky. “I remember when she was born. I was in the sixth grade
or something like that. In fact, I remember that I’d made a deal with my parents. I
really wanted a dog, and they said that the dog, I won’t get. So then I said, ‘Okay, so
either a dog or a sister,’ and we wrote this contract. And I have it actually. I found
it a few years ago, when I was cleaning my parents’ apartment. In any case, I got a
sister.”

Given her reluctance to share her writing with the world, it is perhaps fortunate
that she found a new area of interest in high school: mathematics and science. It
became clear to Shafi that she was good at these subjects, and in Israel at that
time they were considered to be very important areas of study. “And that’s still
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true in Israel,” she says. “Those in math and science, those are the people who
are respected. I think it was the combination of finding it interesting, being good
at it, and realizing that this is what was expected of me.”

“I think that growing up in Israel during those times—and it’s maybe not so
much growing up in Israel as growing up as children to a generation of parents
who either came to Israel after the (Second World) War, or grew up during the war
for independence in Israel—there’s a great deal of pragmatism in the education
system and what they teach you, and in terms of your approach to life. There’s
always a goal; you always have the future in mind. There’s a goal you’re working
toward.”

The 1960s and early ’70s was a difficult time to grow up in Israel. The country was
at war at times during Shafi’s childhood, and the threat of war was never far away.
During the Six-Day War, which took place in June 1967, Shafi was in fourth grade
and remembers hiding in a bunker when sirens sounded. Years later, her brother
Nathan was doing his compulsory military service when the Yom Kippur War began
in October 1973, and Shafi recalls that he came home briefly before heading off to
war. “He told us that there’s going to be a war. And my father said to him, ‘What are
you speaking nonsense for?’ Because for Jews that came from the (Second World)
War, the whole idea of talking about death and war—it was something that you just
don’t talk about because it’s just bad luck or you just don’t say things like that. Then
he was called and he left, because he had to go back to the army, and we didn’t see
him for a few weeks.”

Shafi’s parents were worried about their son’s safety. Zvi had lived through
the horrors of the Second World War, and both parents were in Israel during the
country’s war of independence. That war lasted from 1947 to 1949, and a large
number of the young soldiers lost their lives.

The Yom Kippur War also took its toll on Nathan. “I remember when he came
back home the first time, he had a lot less hair. It was amazing that this kind
of traumatic experience can do that. So he went with a full head of hair, and it
receded.”

After the war, Nathan had planned to study mathematics at Hebrew University
in Israel. But Shafi’s parents feared that he might be involved in another war and
wanted him to leave Israel. “My father just wanted him out of Israel as fast as
possible. He was so afraid for his safety that he wanted him to go to school in
the States. And he got accepted to Carnegie Mellon and he left. That affected me
because that started some sort of chain reaction in the family,” says Shafi. In fact,
all three siblings eventually ended up living in the United States as adults.



8 Chapter 1 A Story Behind Every Problem: A Brief Biography of Shafi Goldwasser

Shafi would not join her brother at Carnegie Mellon for several more years.
In the meantime, she was exploring her interest in math and science. At Shafi’s
high school, students specialized for their final two years. “When we went into the
specializations, there was a class that specialized in math and physics. There were
a few girls, not too many. But they were very strong, the ones who were there were
very strong.” Despite being in the minority, Shafi never felt that her teachers treated
her differently because she was a girl. “I was a good student always. And I felt that
the teachers respected me.”

“I enjoyed math, because there’s always a right answer. At least in high school it
seems like there’s always a right answer. But I loved physics even more.” Shafi was
particularly attracted to physics because it gave her the tools to find solutions. “The
understanding from axiomatic or first principles, how you get to a conclusion.”
She also felt that the problems associated with physics had stories associated with
them. Physics was not just about manipulating numbers, it was about understand-
ing how things in the real world affect one another.

Even at this early age, Shafi was looking at problems differently from her peers.
Not many teenagers would describe the derivation from principles as “beautiful,”
but that’s how Shafi felt about it. Her approach to problems was not tied to rote
learning. On exams, she would consider the problems in more creative ways and
come up with answers that took her teachers by surprise. Shafi’s high school physics
teacher may have been the first person to get a glimpse of the talent for making
unexpected connections that has been the hallmark of her research.

Shafi credits her high school math and science teachers for encouraging her
love of these subjects and igniting her curiosity. They sparked an interest in her that
continued to build throughout her studies. What began as a general curiosity about
these subjects in high school had opened her eyes to the excitement of studying and
the pursuit of knowledge, which would lead her to explore fundamental questions
throughout her career. She feels that she was lucky to have had those teachers early
on who fed her curiosity and sent her down that path of investigating problems that
excited her.

Shafi’s parents also had a big influence on her decisions. Throughout her child-
hood, Shafi was encouraged to pursue great things in her life. Her father did not let
traditional gender roles alter his expectations. “You know, there was no difference
between men and women here, and he thought we could do anything. That was very
unusual, and that was true all along. This whole idea that women should behave a
certain way, they should get married, they should have families, that was completely
beside the point for him. And he was very vocal about that. And he thought I was big-
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ger than life. That was a good thing, to grow up having that image of yourself—that
empowerment.”

Although Shafi’s mother was a homemaker, she also encouraged her daughters
to be strong and not depend on anyone else to take care of them. “She would say to
us, both me and my sister throughout growing up, that a woman has to take care of
herself and she has to be independent, it’s extremely important. And I think that
probably was because she wasn’t. My father was the one who was the breadwinner.
And I think in her mind, anything that was a step toward accomplishing that was
a good step.”

At the time, Shafi’s thoughts had not yet turned to the next stage in her educa-
tion. In Israel, compulsory military service normally takes place between graduat-
ing high school and going to university. Students will take their exams at the end
of high school, but applying to universities still seems a long time off. However,
Shafi found herself in an unusual situation. Having her birthday late in the year
meant that she was younger than most of her classmates. So even though she had
completed high school, it would be almost a year before she was due to report for
her military service. She had a substantial amount time on her hands.

“My father wanted me to go to the U.S. to study so that I didn’t waste any time.
This idea of wasting time is something very problematic, or was very problematic
when I was growing up. Now it seems like everybody’s just taking trips around the
world as soon as they finish the army, or before the army, and wasting time is not
called ‘wasting time’ any more but ‘gaining life experience.’ In any case, my father
wanted me to go to the States, and as usual I did what he recommended.”

1.2 The Mind-Blowing World of Computer Science
Sending their 17-year-old daughter overseas did not seem to worry Shafi’s parents.
Not only was she a bright, hard-working student, she was going to be studying
at Carnegie Mellon University, where her older brother Nathan was a graduate
student, and he would be nearby if she needed him.

Her flight landed in New York City and Shafi had her first opportunity to revisit
the home of her early childhood. “I wasn’t there for 11 years, but when I took the
taxi from the airport to the city it seemed extremely familiar.” Her brother met her
in New York and traveled with her to Pittsburgh, where she would move into the
student dorms at Carnegie Mellon and wait for the new academic year to begin.

Her brother knew the math professors at the university, and told them that
his sister was spending a year there and that she was good at math. Based on his
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word alone, Shafi was able to start classes as an undergraduate student in the math
program without ever officially applying to the program.

Shafi’s plan was to spend the year studying and then return to Israel in time
for her military service. However, things didn’t go according to plan. During that
first year, Shafi decided that she’d rather not interrupt her studies, and she applied
to the Israeli government to defer her military service. That deferral took several
months to secure, and in time it became a permanent deferral and Shafi was able
to focus on her education with no interruptions.

Shafi’s first lecture was difficult for her to understand, and she thought perhaps
she’d made a mistake and wasn’t ready for these university-level math courses.
But after telling her brother about her struggles, he realized that her problem
was not with understanding the math, it was simply that she hadn’t learned the
mathematical terminology in English. After she got a rundown of how the Hebrew
words translated into English, everything made much more sense, and Shafi had no
more problems understanding the lectures. But the courses were still a big change
from what she’d been used to at high school.

“When you get to math in college after high school, it’s very abstract. There’s
this gap between the beautiful abstractions and this field (of computer science) that
seems to capture things about life.” Although Shafi felt that these abstract concepts
were interesting, she was not sure that this was the field she wanted to pursue. She
thought that this approach to mathematics was going to take too long to come to
fruition, and that perhaps she should try studying computer science instead. The
undergraduate mathematics program had a computer science specialization that
students could select, and that was what Shafi chose to do.

That turned out to be a life-changing decision for Shafi. Soon, she had her first
computer science classes and her first experience with computers. She recalls, “I
was fascinated by their potential; I was fascinated by the first courses I took on
computer programming, which had a lot of algorithm design. You design a program
to resolve an algorithmic problem and there are many ways to do it and there are
efficiency constraints and technical constraints and then—the program just did it!
Now it’s taken for granted, but that idea that you can use a computer to solve a
mathematical task was sort of mind-blowing to me.”

She had decided to study mathematics at Carnegie Mellon simply because her
brother was there, but that decision was one that likely affected the rest of her
career. She arrived in 1976, when there were few computer science departments
at universities anywhere in the world. Carnegie Mellon was one of the pioneering
institutions in the field and had attracted some of the top academics of the time.
In fact, computer science was already well established at the university by the time
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Shafi arrived. They had introduced their first computer science course in 1958, the
year of Shafi’s birth. By 1961, they had added a Ph.D. in the field, and in 1965 they
established a computer science department.

“I think being at Carnegie Mellon was a godsend,” she told Stephen Ibaraki. “It
was a very exciting time. There were all these greats in the field: I took artificial
intelligence with Raj Reddy, and I took my first algorithms course with Jon Bentley,
and I took a course in software engineering from Anita Jones. All these people were
tremendous lecturers and they taught me a tremendous amount. That made me
realize how exciting computer science was.”

Turing Award–winner Raj Reddy was a leading artificial intelligence researcher
and one of the first academics to explore speech recognition. He sparked a strong
interest in AI for Shafi. “I loved the idea of doing artificial intelligence. I thought
that’s maybe what I would do—understand the brain, understand how people think
and how machines can mimic our thought process.”

Shafi drew on her love of literature to help create a program that could generate
poetry using artificial intelligence. “Compared to what they do today, it’s probably
totally childish,” she said in an interview with the Heidelberg Laureate Forum. “But
at the time, the whole possibility of writing down a sort of linguistic map of how
language can be derived was fascinating.”

The computer programming professors at Carnegie Mellon included Anita
Jones and Mary Shaw. Jones would later become Director of Defense Research and
Engineering for the U.S. Department of Defense and Vice-Chair of the National Sci-
ence Board, which advises the President on science, engineering, and education.
Shaw has been a faculty member at Carnegie Mellon since completing her Ph.D.
there in 1972. She is considered one of the founders of the field of software architec-
ture. Studying in a faculty with female professors who were “figures of importance”
in computer science was empowering for Shafi. Women were far outnumbered
by men in her classes, but Shafi had no trouble demonstrating to her professors
that she was a very capable student. Professor Jones was working at the time with
the university’s 50-processor computer on a project called Cm*. She brought Shafi
onto the project, making her one of the first people to work with a multiprocessor
computer.

Shafi was excited about her newly discovered love of computer science, but she
was still a teenager away from her friends and family for the first time. Most of her
high school friends were doing their military service, and Shafi wrote letters back
and forth with some of them, but they eventually drifted apart. At the same time,
her fellow students in Pittsburgh were very welcoming. “The people I met were very
curious about the world, and they were curious about me.”
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When she’d moved from the United States to Israel at the age of six, she’d grown
up as the girl from America. Now, her American peers thought of her as the girl from
Israel. It seemed as though Shafi was destined to be “exotic” no matter where she
went. She found that her fellow students were more adventurous than she was. “I’d
lived a very sheltered life, I think. At that time kids (in the United States) were much
more adventurous in high school than I was. So that was surprising, to be in this
place where everybody’s exploring different aspects of life.”

During her first year in the United States, Shafi’s only contact with her parents
was through writing letters. “I think in their minds I was capable of this journey.
But really, internally, I was just a kid. I missed my parents very much. At that
time, in Israel, somehow the idea of a phone call to the U.S.—it was like an im-
possibility. It wasn’t really an impossibility, but it seemed so expensive, nobody
called.”

Her family did come to the United States for a visit during summer break, re-
uniting with Shafi and her brother. Her father would later return to attend her
graduation. However, it would be several years before Shafi would have an oppor-
tunity to travel back to Israel. She spent her summers at Carnegie Mellon taking
courses that didn’t fit into her regular studies. Computer science was her pas-
sion, but she hadn’t abandoned her love of a great story. “I found the literature
courses that I took in the summer incredible—of course I was exposed to literature
in school, but all these wonderful English-language plays and writers—I loved it, it
was fabulous.”

1.3 Blue Skies and Green Hills
After completing her bachelor’s degree, Shafi had to decide whether to get a job
in the industry, return to Israel, or further her education in the United States. She
decided the third option was the most appealing and that she should apply to grad-
uate school. Despite having gone through her undergraduate education entirely in
the United States, however, nobody had informed Shafi about the required entrance
exam for U.S. graduate schools. “I decided to apply to grad school and then I found
out you’re supposed to take this exam, the GRE. It’s like the day before. I never
opened a book. I’m not going to say what I got.” Despite her lack of preparation
and the feeling that she hadn’t done well on the test, Shafi was accepted into the
engineering program at Carnegie Mellon and the computer science program at the
University of California, Berkeley.

She decided that she would continue her studies at Carnegie Mellon, but first
Shafi needed to earn some tuition money. Her AI professor, Raj Reddy, recom-
mended her for a job at RAND Corporation and she was offered a position for the
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summer. Spending the summer in Santa Monica, California, was appealing, but
the job itself opened up Shafi’s eyes to the corporate world.

“Being at RAND and seeing that all these Ph.D.s were really running the show,
it became very clear to me that I wanted be able to be in charge and define my own
projects, rather than do what I’m told. I never really had any interest in business or
being on the corporate side,” she says.

During that summer, she met up with a friend who was also working in Southern
California, and the pair took a road trip up the coast to Berkeley. Shafi was struck by
the beauty of the California coastline, and her arrival at Berkeley for the first time
quickly changed her plans for the future. The clear blue skies, the rolling green
hills, and the charming buildings of the Berkeley campus were irresistible. Shafi
decided to attend the university for her graduate studies.

“The computer science department—I loved the building where it was. There
were big windows with a view of the campanile. I thought I was going back to
Carnegie Mellon, but I had a look [at Berkeley] and I fell in love,” she says.

This decision would change more than the scenery and weather for Shafi. She’d
had every intention of pursuing artificial intelligence on her return to Carnegie
Mellon. Once she was at Berkeley, however, she found herself moving in a different
direction.

Shafi told the Heidelberg Laureate Forum, “On Mondays they’d have these
seminars and three professors would get up and talk about their research. And
based on that I decided to go into a master’s with Dave Patterson on the RISC
(restricted instruction set computer) project. The project was to collect statistics
for the Pascal programming language—how often different commands were being
used—because he was trying to optimize the instruction set, and those instructions
would be included in the hardware. So I wrote this very large system and that’s my
master’s.”

It was her first big project and she threw herself into it. The idea of being so
engaged in a project that she would continue working on it day and night was new
to Shafi. As an undergraduate she had done a lot of reading and studying for exams,
but this was different. She was in charge of her own project and deadlines, although
expected to accomplish things and deliver results to her supervisor. It was her first
taste of life as a researcher.

After completing her master’s, Shafi finally returned to Israel for the summer
to visit her family. Her family had come to the United States to see her, but Shafi
had not been back to the country she had called home for most of her life since
her departure after high school. Her sister was growing up quickly, and it had also
been several years since she’d seen her mother. But the reunion was temporary
since Shafi had already decided to return to Berkeley to get her Ph.D.
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1.4 Theory and the Cryptography Revolution
Although her master’s project had been programming based, once she returned
for her Ph.D. Shafi was won over by the theory students and professors. “I meet all
these theory students. And they’re telling me, this Manuel Blum, he’s great, and
Dick Karp, and I should really go and talk to them. So I talked to Manuel Blum, and
we hit it off and he says, ‘Yeah, if you want to work with me, you can work with me.’
The next year he teaches a course on computational number theory and I love it.
It’s clear to me that I’ve found something that I really like. Somehow it’s extremely
appealing to me,” she told the Heidelberg Laureate Forum. “And then in the last
few lectures he talks about RSA (Rivest–Shamir–Adleman) and cryptosystems and
it’s fabulous!” Shafi was fascinated by the combination of algorithms and number
theory, the use of randomization in algorithmic design, and the connection to
cryptography.

It was during that course in computational number theory taught by Manuel
Blum that Shafi and Silvio Micali started down their shared path toward revolu-
tionizing the field of cryptography—the work that would eventually earn them the
Turing Award. Shafi was inspired by Blum’s discussion of a theoretical problem in
one of his lectures. “He presents this problem at the end,” she says, and describes
the story of a couple who are fighting over custody of their dog. One of them lives in
San Francisco and the other in Los Angeles. They decide that flipping a coin would
be a fair way to decide, but they can’t do it in person, and neither one trusts the
other to do it fairly. Can they do it over a distance and be sure of the result? Shafi
was intrigued, as she told the Heidelberg Laureate Forum. “How would they do it
using computational number theory ideas? Silvio Micali’s also taking this class and
I’m telling him this is really the problem. We should work on this. It’s clear—I want
to work on this.”

The question was fascinating mathematically, and there was an added appeal for
Shafi because Manuel Blum had presented the problem as a story, with characters
who needed to resolve their situation. The story behind the problem was easy to
see here, and the same could be said when Shafi and Silvio went on to work on
the problem of playing “mental poker.” The problem could easily be pictured by
imagining someone shuffling nonexistent decks of cards, and having to encrypt
52 different potential cards without letting their opponents know anything about
which cards they’ve been dealt.

When it came to those early research projects at Berkeley, Shafi claims that she
and her peers simply “followed our excitement.” It was not important to find real-
world problems that needed to be solved, or to see commercial applications for
their work. Intellectual curiosity and a challenging problem were enough to inspire
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their work. She has always felt that it is important for researchers to ignore the
current trends or popular problems that other researchers are working on. Only by
getting past the dogma of the time is it possible to do truly innovative work.

Shafi found her place in the areas of cryptography and complexity theory, and
also made some wonderful new friends. The theory students at Berkeley would
become constant companions for the next several years. They would work together,
eat together, relax together, and spend vast amounts of time talking to each other
about theoretical computer science with endless enthusiasm.

This close group of friends included Silvio Micali, who would co-write Shafi’s
first paper with her and remain her close friend throughout their careers. She also
became good friends with Vijay Vazirani, Faith Fich, Joan Plumstead, Mike Luby,
Eric Bach, and Jeff Shallit. The students were also friendly with their professors and
spent a lot of time with them. “The professors like Dick Karp and Manuel Blum and
Eugene Lawler—all three of them were such open personalities and so perceptive
and so wise, and they would go to a coffee shop with a group of graduate students
and we would ask questions and talk about research. It was such a marvelous
intellectual and dynamic and inspiring place,” Shafi says. “Their enthusiasm for
what they were doing and their clarity of thinking were priceless for me.”

While Shafi might have seemed exotic to her American peers, she was equally
fascinated by the other members of her multicultural group of friends, each of
whom was a wonderful new source of stories. Silvio could share his stories about
Italy, and Vijay had stories about India. Her new friends were worldly and colorful,
and they helped to expand her experience of the world. Most were a bit older than
Shafi, and she enjoyed talking about life and work with them when they hung out
on campus and in local restaurants. Shafi also had good friends at Carnegie Mellon,
but at undergraduate school there was a different atmosphere. People came to
graduate school at Berkeley from all around the world and they had very different
backgrounds and stories, which was an ideal atmosphere for Shafi.

Shafi and Silvio submitted their paper on playing mental poker to a confer-
ence held by STOC (Symposium on the Theory of Computing), which was attended
by members of the theoretical computer science community. Their paper was ac-
cepted, and it was Shafi’s first opportunity to talk about her research to her peers
outside of Berkeley. STOC is one of the two main conferences for theoretical com-
puter science. In those days there were no parallel sessions; only one presentation
was given at a time, so all of the attendees could see every presentation. Other stu-
dents might have been intimidated in this situation, but Shafi remembers feeling
good about it. “Somehow I had confidence as a presenter, maybe unjustified to
begin with.”
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According to former MIT graduate student Guy Rothblum, her confidence was
not misplaced. “Both Silvio and Shafi have this sort of magnetic field where, when
you’re listening to what they’re thinking about, it’s clear that it’s the most interest-
ing thing in the world.”

For Shafi, it was an eye-opening experience as a graduate student to attend and
give presentations at conferences during her studies. “I realized that there was a
community of theoretical computer science at large that was very excited about
research we were doing. And I realized that there was this whole world out there
of people who were really intensely dedicated to this, and that I was part of it as a
graduate student and as a researcher; being able to present at these things, being
able to be respected and listened to, to realize that my work was important.”

This enlightening experience came just two years into Shafi’s Ph.D. studies. She
would continue down this research path until she completed her thesis, “Proba-
bilistic Encryption: Theory and Applications,” in 1983.

1.5 A Mecca for Cryptography
With her studies complete, Shafi headed to the east coast to take up a postdoctoral
position at the Massachusetts Institute of Technology (MIT). She felt that there as
no better place for a cryptography researcher, describing it as a “Mecca for cryptog-
raphy,” in particular because pioneering cryptography researcher Ron Rivest was
on the MIT faculty, and because the RSA cryptographic system, invented by Rivest,
Adi Shamir, and Leonard Adleman, was associated with MIT, since all three were
members of the MIT community at the time. But MIT’s commitment to the field
of cryptography would soon become even more apparent. Within months of arriv-
ing as a postdoc, Shafi would be offered a staff position in the computer science
department, and within a year, they would add Silvio Micali to their staff. In addi-
tion, Adi Shamir and Michael Ben-Or were visiting professors for a year, and Oded
Goldreich started his postdoc there and eventually stayed for three years. In a brief
period, MIT built one of the leading cryptography groups in the world. “When I
came to MIT from Berkeley, it was just an explosion of research and research free-
dom. There was a very active group of researchers who I collaborated with and who
made everything very exciting,” she told Stephen Ibaraki.

This atmosphere enabled Shafi and Silvio to enjoy more of the productive col-
laboration that had begun between them back at Berkeley, and they continued to
work on papers together, sometimes with other collaborators. Silvio reflected on
what makes Shafi such an interesting research partner. “I sometimes joke that she
has multiple personalities! So it’s great to interact with her because it’s like in-
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teracting with more than one person. For example, she will advocate A, then the
opposite of A, then B, then C. I find her unpredictable. I think unpredictability is a
good thing in research,” he says. “With some people, you talk to them and you get
what you’re going to get from them, but with Shafi you keep on going because she
changes, and that’s crucial.”

Shafi agrees that one of the reasons she and Silvio are such productive collabo-
rators is the differences in how they approach problems. “We don’t have the same
kind of mind. I think that collaboration between people with the same kind of mind
is sort of useless. Silvio is very ‘extrematic,’ he’s very abstract, and I’m much more
intuitive.”

Other colleagues at MIT can confirm Silvio’s description of Shafi’s unpredictable
nature, and it’s one of the things they enjoy most about spending time with her.
According to Ronitt Rubinfeld, a professor in MIT’s computer science department
since 2004, Shafi’s spontaneity extends beyond the research realm into her social
life. Nights out with Shafi are such an adventure that her friends never turn down
the chance to see what will happen next.

“They drop anything to be with her,” Ronitt says, “knowing that if she suggested
to go to a movie, once arriving at the theatre, the plan may change to going for a
walk, but as soon as the walk starts, it changes to going to a cafe, and after five
minutes at the cafe, who knows what would be next. But they don’t really care
what exactly they are doing when they are with her, they just care about being
in her presence, because there is something about being with her that makes life
exciting.”

Shafi’s tendency to act on her intuition can also be seen in the seemingly random
ways that she finds problems she’d like to work on. Oded Goldreich has seen this
in practice. “I believe that in most cases, she hears an idea (mostly in a talk) and
takes it to a totally different place, which would make little sense to the person who
communicated the idea but makes sense to her,” he explains. “I think one should
think of the ideas she hears and processes as raw material for her spontaneous
imaginative processes.” Oded also feels that Shafi’s creative nature plays a huge
role in her abilities as a researcher. “What is stunning with Shafi is her intuitive
creativity—her spontaneous nature. She just sees things that nobody does. Her
insights are totally out of the box.”

Shafi and her peers continued to produce research that would change the study
of cryptography going forward. They hadn’t necessarily set out on a mission to
revolutionize the field, but their approach to solving theoretical problems led to
just such a revolution and laid the groundwork for many eventual applications.
She told the Heidelberg Laureate Forum, “Nobody aims for revolutionary impact. I
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believe that basic research is the only way that this type of impact will come about. I
don’t believe that there’s anything that can be done that will have such fundamental
implications if you already know the applications, because everybody else can do
it. It can be interesting and good, but it’s not revolutionary.”

In addition to her research, Shafi was now teaching courses at MIT. During her
first experiences, she had the support of more experienced professors. “Nobody
really teaches you how to teach. At least in my time they didn’t. The lucky part was
that when they were teaching big undergraduate courses there were other people
teaching with me.”

Her teaching evolved over time, and she has developed her own courses over the
years that cover her research topics. “I used to really go through the process of how
you get to a result, especially if I was talking about my own research.”

As a former graduate student who was supervised by Shafi, Guy Rothblum found
Shafi’s lectures on her own work very compelling. “She has a grasp of the big picture
and she always knows how to explain what’s revolutionary about the work. She’s
good at explaining the conceptual aspects of the work, and not just the technical
part. In her talks, what she really homes in on and what she really gets across are
what the big, new, important ideas are: what’s exciting about this problem,” he
recalls. “It’s unbelievably exciting to be talking with someone like that, who’s sort
of fearless, not only in terms of the kinds of problems she approaches, but who has
also shown the right way, or the right direction to take in order to make progress
on these sorts of very basic, big problems.”

Creativity has continued to be a big part of Shafi’s motivation, whether applied
to her own work or to the students she is supervising. “The best part about be-
ing at a university is you meet new students and people are so talented and you
never know where their talents lie,” she says. “This creativity or this ability, it never
ceases to amaze you. And that’s one thing that I love about mentoring graduate stu-
dents. Some people are very creative mathematically. And some people are creative
in terms of finding problems. And some people are creative in seeing connections
between different kinds of mathematics. And some people understand the connec-
tions between mathematics and other fields of science.”

Because she puts so much value on creativity and individual talents, Shafi’s
students don’t all follow in her footsteps or work closely with her on her current
area of research. She has collaborated with several of her students on research
projects, but with others she has provided more hands-off guidance. Guy Rothblum
observed the range of research that has been produced by her students. “You
look at her students and every student has done something different. She’s an
extraordinary mentor in that way—she teaches you a lot about how to think. And
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she’s fearless about what kinds of problems to approach. It’s a type of environment
where any problem is fair game if you’re intellectually curious. Shafi was really good
at guiding, but also letting students determine how to follow their own taste, their
own curiosity.”

Guy says that Shafi has a natural talent for seeking out the right problems to
work on. “Shafi has this thing that can’t really be taught—but it seems to rub off
on some of her students—which is having this intuition or taste for problems. Just
intuitively knowing what’s a good problem to think about and being able to make
a connection between two different areas.”

The field of cryptography has developed beyond what Shafi might have imagined
in the early 1980s, and she is now considering questions that were not on anyone’s
mind, perhaps even ten years ago. For example, how can a society balance the
power of big data to create solutions that improve people’s lives with the threats to
personal privacy that can come from the use of that data? And should governments
or law enforcement be able to override encryption protections in name of law and
order?

The ethical questions may remain for a long time to come, but according to
Shafi some technical solutions in the area of privacy already exist, they just need to
become more widely available. She told the BBVA Foundation that she feels it is vital
that people learn to value their personal data, and stop giving them away for free.
She believes that using the cryptographic tools that are available today, privacy and
security are compatible concepts. “We have effective cryptographic methods that
are still not being used,” she says, encouraging IT firms to “do more to build systems
to make use of the beautiful ideas we have come up with in the cryptographic field
that have never been implemented.”

1.6 The Traveling Professor
While Shafi was very happy to be part of the faculty at MIT, she still had a strong
attachment to Israel and her parents were still living there. In 1987 she became a
visiting professor at Hebrew University. It was an opportunity to spend time back in
the country of her childhood. Her stay there would also have a profound influence
on the rest of her life because it was during this visit that she met the man who
would become her husband: fellow computer scientist Nir Shavit. From that point
on, Shafi would have a foot in two worlds.

The added complexity of her renewed attachment to Israel didn’t slow down
Shafi’s progress as a respected researcher. She received the NSF (National Scientific
Foundation) Presidential Young Investigator Award from 1987 to 1996, and the NSF
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Award for Women in Science from 1991 to 1996. In 1993, she received her first Gödel
Prize for outstanding papers in the area of theoretical computer science (which was
the first one ever awarded) along with Silvio Micali and their collaborators in the
field of interactive proof systems. She would win the prize again in 2001 with a
group of researchers who worked on the PCP theorem in the area of complexity
theory. The Gödel Prize is presented jointly by the ACM Special Interest Group on
Algorithms and Computation Theory (SIGACT) and the European Association for
Theoretical Computer Science (EATCS).

When Shafi and Nir decided to get married, Shafi sought out a position at a
university in Israel in order to put down more enduring roots there. She received
several offers, and decided to join the prestigious Weizmann Institute in 1993.
“Shimon Ullman was there and Adi Shamir and David Harel,” she recalls. “Every
single person there was very interesting—the top of their field—and that’s still true
about them. They hire the best and the brightest.”

As a professor at two universities, Shafi split her time between Cambridge and
Tel Aviv. Her family, which would eventually include her two children, Yonadav and
Lior, moved from one place to the other every few years. Raising children is always
a big adjustment, and raising them in two countries added to the challenge. “Being
a parent is different than being a scientist. It’s all-consuming and the well-being of
these children is everything. It becomes everything. But having children and having
these sort of dual homes academically meant that we lived our life in a certain way
where we all spend a few years in Israel, then a few years in Boston, and then in
Israel, and then in Boston. The good side was that we always went to the same place
and the kids had the same schools. But the fact that it was kind of a predestined
departure gave an alternative structure to our life which I think is unique. But you
know what, they came out pretty good!”

It’s not a lifestyle that all academics would seek out, but Shafi believes that work-
ing in two respected institutions gave her the best of both worlds in terms of her
career. “Both at Weizmann and at MIT there’s a very strong group for cryptography
and complexity theory. There’s probably more focus on complexity theory at Weiz-
mann and maybe more focus on applications at MIT. But both places are among
the best in the world,” Shafi told the Heidelberg Laureate Forum.

The two universities are quite different when it comes to the overall environ-
ment. The Weizmann Institute is a more intimate campus with only graduate-
level students, and a smaller number of them than MIT. (Weizmann currently has
around 1000 graduate students enrolled, while MIT has almost 7000, plus an un-
dergraduate program.) Most of the students at the Weizmann Institute are Israeli,
although they do attract some students from overseas. MIT, on the other hand, is
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a large, bustling campus. The students there, especially those pursuing postgrad-
uate degrees, come from all over the world. It’s a very stimulating and energetic
environment, but also one that can be distracting for a researcher.

“MIT is very intense. There’s a lot of people, a lot of graduate students. And
there’s continuous seminars and meetings, and you really feel like you’re in the
midst of it,” Shafi explains. “Weizmann has fantastic faculty members, very, very
good graduate students, but fewer. So there’s more time to think, but there’s less
intensity, and I think that they’re very different that way. So I think that after a few
years in Weizmann, I was very eager to go back to MIT, and after a few years at MIT,
I was very eager to rest a little bit and just kind of be able to think [at Weizmann].”

As her career has progressed, Shafi’s contribution to computer science has been
recognized in several ways. In 1996, she won the ACM Grace Murray Hopper Award,
which is awarded to the outstanding young computer professional of the year, for
her early work relating computation, randomness, knowledge, and proofs.

In 2006, she was named a distinguished alumna at the University of California,
Berkeley. Shafi’s position as a woman in a leading computer science role was rec-
ognized by ACM’s Committee on Women in Computing with their Athena Lecturer
Award in 2008.

In 2010, Shafi received the Benjamin Franklin Medal from the Franklin Institute.
The Franklin Institute’s Awards date back to 1824 and provide public recognition
and encouragement of excellence in science and technology. As one of their hon-
orees, she is in the company of some of the biggest names in science, including
Nikola Tesla, Pierre and Marie Curie, Albert Einstein, Jane Goodall, and Stephen
Hawking.

Shafi was one of the final recipients of the IEEE (Institute of Electrical and
Electronics Engineers) Emanuel R. Piore Award for outstanding contributions in
the field of information processing in relation to computer science. The award was
established in 1977 and discontinued in 2012; Shafi received the award in 2011.

Shafi and her longtime friend and collaborator Silvio Micali won the ACM Turing
Award in 2012 for their work together. She joins a very exclusive list: Only three
women have received the Turing Award in its history of more than 50 years. The
award is considered to be the pinnacle of achievement in the field of computer
science, and she told Stephen Ibaraki that her peers were very supportive when
they found out about it. “The reaction from my colleagues was really overwhelming.
As soon as it was announced I heard from people who were graduate students with
me at the time—many, many years ago—my own ex-students, my colleagues around
the world, my friends, and everyone was extremely well-wishing. It seemed like they
were truly happy for us. It’s a wonderful feeling.” This recognition also confirmed
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to Shafi that her wide-ranging approach to research can pay off. “I certainly will feel
more confident giving my students the kind of advice I’ve always given them: that
they should work on risky projects, they should work on more general problems
rather than trying to solve a specific problem that was posed by other people.
Because in a sense that’s what the award is for—that’s the kind of work we did
that has been awarded.”

Her awards are not just recognition of her past achievements; they also help
Shafi to establish her authority as a researcher. “I’m not sure that they have a direct
impact on how I do research. I assume that they will affect my influence on the
directions of computer science. Maybe in some sense it does allow one to work on
more open-ended research.”

All of this recognition puts Shafi in the position of many famous scientists who
came before her: as someone who will inspire future generations of researchers.
However, Shafi did not draw inspiration from these kinds of legendary scientists
and mathematicians for her own career. She told Stephen Ibaraki, “I was inspired
by my mentors, my colleagues, and my students. If you’re looking for historical
figures—that speaks less to me. Those who inspire me are people I was in contact
with, not people I read about in books.”

1.7 New Perspectives
Despite her many years of commitment to her research and her students, Shafi still
sees the value in removing herself from her day-to-day routines to work in a new
environment and get a fresh perspective. During the 2017–18 academic year, she
was a fellow at the Radcliffe Institute for Advanced Study, which is part of Harvard
University. The goal of the institute is to create an interdisciplinary, international
community of 50 fellows each year across the arts, humanities, sciences, and social
sciences. During her Radcliffe fellowship, Shafi turned her attention to applying
encrypted computation methods to the analysis of social science data. She also
took advantage of the time to work on a couple of projects that allowed her to flex
her creative muscles in a completely different way: a book on pasta and protocols
and a photography series on the women of New England.

Even when she’s working in more familiar surroundings, Shafi finds unique
approaches to expanding her way of looking at the world and to discovering new
connections to explore. She explains, “A few years ago I was on sabbatical at Weiz-
mann and I took this course about the connection between dance and science. It
sounds like an unlikely connection, but there was a dance group, and a bunch of
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scientists who loved them, who were meeting once a week. Each scientist would
describe their research and a dance was choreographed about it.”

Shafi’s love of creative expression attracted her to this unconventional method
of bringing scientific research to life. She even found inspiration in it for her own
research. “There was a scientist whose research was about clocks and biological
processes; how every cell has a clock. It intrigued me, this issue about clocks and
individual cells. And after that I went on to start this research on how to model
biological cells as computer cells, maybe having a little memory, maybe having an
internal clock. How would they be communicating with each other?”

While biology and computer science are fields that have not had much interac-
tion in the past, this is beginning to change. It’s thanks to researchers like Shafi,
who can make these creative connections between the two fields, that new areas of
research are able to gain momentum.

In 2018, Shafi took her career in a new direction when she became the director of
the Simons Institute for the Theory of Computing at Berkeley, returning to her alma
mater (and the beautiful California campus) after more than three decades away.

The Simons Institute was founded in 2012 as a venue for collaborative research
in theoretical computer science. Its founding director was Richard Karp, one of
Shafi’s former professors from her graduate school days at Berkeley. She felt com-
pelled to move into this new leadership role that would put her wide experience in
the field to use by making her a guiding force in the current and future directions
of theoretical computer science research.

“I want to have impact, and the kind of impact that I’m talking about now is
impact as the director of the Simons Institute or someone who directs—someone
who has some influence about where the field is going in the sense of what’s
important and what’s not important. I feel I have an intuition to serve me, and
also a lot of experience.”

Shafi believes that theoretical computer science is a field of fundamental im-
portance in human society at this point, on equal footing with chemistry, physics,
and biology. When Shafi’s appointment to the Simons Institute was announced in
2017 she told the Berkeley News, “Algorithms govern our computing-based world
in the same way that the laws of nature govern the physical one. Their mathemat-
ical underpinnings are thus as important to modern society as the periodic table,
relativity or the genome.”

As she told Stephen Ibaraki, the fact that she has already accomplished so much
in her field does not mean that she is planning to slow down. “I’ve achieved some
of my life goals already, but this is not going to change my passion for science and
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the kind of problems I’ve been working on. I still hope that I have some important
work to do.”

As computers become a part of more and more human endeavors and interac-
tions, it is crucial to have researchers like Shafi involved in the ongoing evolution
of computer science. Seeing the connections between computer science and other
important fields of knowledge may take society in unexpected directions, or prevent
potential disasters. Her ability to identify ideas that others dismiss as impossible,
and to see how to make them possible, is a unique gift with the potential to con-
tribute to the advancement of society for years, and possibly generations, to come.

Shafi’s sphere of influence continues to grow, and there is no doubt that she is
creating a valuable legacy in the fields of cryptography and complexity theory, and
perhaps many others.



2One Obsession at a Time:
A Brief Biography of
Silvio Micali

Obsession can be a debilitating problem for some people, but for Silvio Micali it’s
his modus operandi. “I’m a monomaniac,” he explains. “I pursue one thing at a
time, for a long time.” In Silvio’s world, a long time generally equates to about five
years. That’s how long he tends to spend investigating a subject and working on a
problem. Of course, some problems are solved more quickly than others, but for the
most part a field of research will hold his attention for about five years. Rather than
delving deeper and deeper into the same topic, or finding related problems that
still need resolving, Silvio prefers to walk away and find something new to obsess
over. “I’m leaving behind beautiful problems that ought to be solved. And they will
be solved—they are being solved—but not by me.”

Silvio’s tendency to become obsessed with a problem can be traced back to
his childhood anxieties. The first huge, theoretical problem he tried to tackle was
whether the world in which he lives exists at all, or whether it is just a construct of
his mind. This question plagued him, at times making it difficult to carry on with
the everyday activities and interact with people who suddenly were possibly just
figments of his imagination. It’s actually a condition known commonly as solipsism
syndrome, which calls into question whether reality is objective or subjective.
Clearly, staring into the unknown and looking for provable answers is something
that has intrigued Silvio throughout his life. This was the starting point for a
career spent asking, and attempting to answer, some of the biggest questions in
cryptography and beyond.

Natural curiosity is a big part of any great researcher’s personality. Looking back,
it may seem obvious that Silvio was born to be a researcher. But pursuing a career
in theoretical computer science was far from a given for a young Sicilian man who
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would not even encounter his first computer until graduate school. His journey
has involved a mixture of purposeful focus and serendipity. He has had the good
fortune to sometimes be in the right place at the right time, and the wherewithal
to realize it.

Silvio Micali the researcher is well known in the computer science community.
Less well known is Silvio Micali the devoted son and big brother, the husband and
father, the mentor and teacher to many, and the colleague and treasured friend to
a fortunate few.

2.1 A Childhood Among the Ruins
Sicily is a large island that lies just to the west of Italy’s southern “toe.” It is rich in
history and culture, having been alternately occupied by the Phoenicians, Greeks,
Carthaginians, Romans, Byzantines, Arabs, Normans, Germans, Spaniards, French
and others before uniting with Italy in the 19th century. In the 1950s, however, Sicily
was economically poor and underdeveloped. In October 1954, Silvio was born in the
island’s largest city, Palermo. It was his father’s hometown, while his mother hailed
from a nearby area.

His family soon relocated to Agrigento, a town perched on a hilltop near the
island’s southern coast. Silvio’s father, Giovanni, was a judge, following in the
footsteps of his own father, who’d been a lawyer and a judge as well. Silvio’s mother,
Franca, was a homemaker who looked after Silvio and his sister, Aurea, who was
born one-and-a-half years after Silvio.

Agrigento is best known for its historical importance as home to the “valley of
the temples”—a collection of ancient Greek temple ruins. In the 1950s, there was
no real industry in the town apart from some agriculture and a small but important
tourist trade. The town’s tourists gave Silvio a strong sense of place, as he watched
people from around the world who came to his town to see the temples. “You cannot
appreciate history if you’re Sicilian,” he says, “because you are smack in the middle
of it with so many cultures all around you.” The present cannot be separated from
the past there.

To this day, Sicily’s population reflects its diverse history. Its people are de-
scended from the large number of different ethnicities that each dominated the is-
land at times. This was certainly true in Agrigento, where remnants of the past could
be seen everywhere. This immersion in his town’s multifaceted culture helped
Silvio to forge a strong identity as a Sicilian, which has remained with him even
after he adopted additional identities as an Italian and eventually as an American.
Agrigento’s much-admired ruins also instilled in him the idea that if you create
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something beautiful, it will be recognized and appreciated for a long time. He be-
gan to understand the concept of leaving a legacy.

Silvio spent his early years attending the local primary school, and fighting with
his sister the way only siblings can fight. “We’re very close now, but we fought like
cats and dogs until we were eighteen,” he says.

His education was taken very seriously from the beginning. The teachers in
Agrigento were very dedicated, and with little industry in the town, education was
a high priority. “It’s hard for people to understand, because we now live in a society
which is much more diversified in achievements. But I lived in a society where
[education] was the only possible level of achievement—perhaps to study the past,
or to do something cultural or scientific—there were no other venues available,”
Silvio says. Although the town was economically depressed, its residents had an
appreciation for education and culture that he has not experienced anywhere else—
not even in Rome, where he spent the later part of his youth.

A good education was considered to be not just the first step to a better life,
but the most noble pursuit. Education for the sake of education, and culture for
the sake of culture, were valued in Silvio’s upbringing. This idea, that the pursuit
of knowledge for its own sake was a noble endeavor, would certainly influence his
decisions later in life. “Education is the only thing that you can always keep with
you,” he says. “It’s completely portable. I had a sense of its intrinsic value. Your own
understanding of the world, your appreciation for research, nobody can take that
away from you.” In a town where there was little to do, discussion and debate were
favorite pastimes, and great training for anyone going into groundbreaking fields
of research where new ideas and theories must be fiercely defended.

Teachers were Silvio’s early role models for his future career in academia. In
fact, Silvio considers some of his middle school teachers to be among the most
influential mentors in his life. They instilled in him an appreciation of the past
and tradition, while preparing him for the road ahead. From an early age, he was
attracted to mathematics and science, and also to the idea of having a job where he
could discuss scholarly, important things. He felt that would be the best job in the
world! At an age where many young people are still hoping to become sports stars
or superheroes, Silvio was already dreaming of a career as a researcher.

Silvio’s father also played a large role in his education. Silvio describes him
as a “force of nature”—an influential man who liked to philosophize and debate.
Silvio, however, grew tired of philosophy and felt he should focus on something
else. Following the family tradition and becoming a lawyer was not something that
appealed to him, and his father did not push him in that direction. It was only
when Silvio was ready to enter university that his father urged him to consider
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law as a more practical choice than becoming a mathematician, fearing that his
son would find himself without a job. Having no experience with academic careers
and research himself, Giovanni Micali was understandably nervous about Silvio’s
prospects. By that time, however, Silvio has fallen in love with mathematics and the
legal profession was simply not an option for him.

While his mother was not as outwardly forceful as his father, she was at least
as influential in Silvio’s upbringing. Perhaps embodying a stereotype of Italian
mothers, she held “heroic” expectations of her children. So while his father set
a high bar in terms of educational achievement, his mother set a far higher bar,
“in another dimension” according to Silvio, in terms of what her children should
achieve in their lives. Since no child wants to disappoint his mother, Silvio took
these expectations to heart, realistic or not, and felt compelled to do something
great with his life.

It wasn’t all work and no play during Silvio’s childhood. During the summer
breaks, he would spend his time playing sports and doing other outdoor activities.
But during the school year his attention was on his schoolwork, and so he didn’t
really mix his summer activities into the rest of the year. Work time and play time
were kept separate from an early age, perhaps indicating that Silvio was already
developing the intense focus that would eventually make him such a dedicated
researcher.

2.2 Rome: The World as a Museum
At the age of twelve, Silvio was thrown into an entirely new environment. His father
was transferred to Rome to work for the Tribunale di Rome. He would be moved up
later to Rome’s Court of Appeals before eventually being offered a position at the
Corte Suprema di Cassazione (Supreme Court of Cassation), Italy’s highest court.

For a young boy from a Sicilian town with a population of around 50,000, Rome
was another world—a large, cosmopolitan city where school was no longer just
down the road and the sheer size of the city and the number of people were almost
incomprehensible to him. The family lived in an area called Nuovo Salario, north
of the city center.

Once he was in Rome, Silvio began to appreciate the legacy of the Romans in a
way he hadn’t in Sicily. Agrigento’s ruins are mainly Greek, so although the Romans
had ruled Sicily for a time, they hadn’t left their mark on Silvio’s childhood the way
the Greeks had. In addition to adapting to a new, larger city, he was absorbing the
new culture and history that it represented.
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Silvio began attending high school in Rome, which involved traveling into the
city center. High schools in Italy at that time took a classical approach to education.
Students did not specialize according to their interests or abilities; they all focused
on the same basic areas of study to give them the fundamentals of learning. “If you
wanted to become a scientist, that’s fine,” Silvio says, “but you started by studying
Latin, Greek, philosophy, history . . . and a little bit of Euclidean geometry.” De-
spite the lack of focus on science and mathematics, that bit of continued exposure
was enough to keep the flame lit under Silvio in his pursuit of a career in math and
science.

Learning about the classics wasn’t limited to the classroom. Living in Rome,
the classics were all around him on the streets—in the architecture, the ruins, the
fountains. “You’re walking down the street and you see the place where Galileo’s
trial was held,” he recalls. “It was really a fabulous time and it had a very, very big
impact on me.”

Silvio’s father was also a big influence when it came to appreciating the historical
treasures of Rome. “My father was an absolute maniac when it came to museums,”
he says. “I was fourteen or fifteen and we were living in Rome—all of a sudden it’s
like you’re a kid in a candy store. There are museums everywhere!”

Every Sunday the pair would wake up early in order to be the first visitors to
arrive at their museum of choice. They loved having the museum to themselves
for a little while, when most people lingered in bed. They would stay all day,
forgoing lunch (since museum cafes and snack shops were not common at the
time), and clutching a book with descriptions of each piece in the collection.
“Painting, painting, painting—stone, stone, stone—statue, statue, statue, until
your legs would crumble under you,” he recalls. At the end of the day they would
leave exhausted.

This activity continued even beyond the city’s many museums as Silvio’s seem-
ingly insatiable appetite for art and history drew him into Rome’s churches to see
famous works on display in their original settings. Masterpieces that appeared in
his art history books could be seen up close. He loved the idea of touring the city
on foot and enjoying art where it was meant to be displayed.

At the same time, Silvio was cultivating his mental capacity by trying to come
up with theories. The fact that he did not have the necessary data or skills to prove
any of his theories at the time was not an issue for him. Influenced by the study of
classical philosophers, he would devote much of his time to an attempt to extract
meaning from things and answer the most basic questions about life. “These basic
questions never left me,” he says.
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When he was introduced to basic proofs for geometric concepts like the con-
gruence of triangles in his classes at school, he would wonder how the proof was
created. He was very intrigued by statements like “two triangles are equal.” What
does that mean? How can you deduce more by starting with less? It seemed almost
magical to him. He felt like, as with the conservation of energy, you could not create
something (a meaning) that wasn’t already there. “Questions like ‘What is a proof?’
and these sorts of things fascinated me even when I was very young.” It would be
a while before Silvio had the mathematical and intellectual tools to start properly
addressing these problems, but his awareness of them can be traced back to his
teen years, when he began to question things that other students were willing to
accept as axiomatic.

This questioning of the world around him could be quite challenging for Silvio’s
teachers. Now and then he would present them with some incomprehensible pages
outlining his physical theory of the universe or other equally ambitious theories. His
teachers were very patient and took his ambitions seriously, rather than dismissing
them out of hand. It seems they had the foresight to understand that encouraging
a curious young mind, even if he was attempting things far beyond his current
abilities, was worthwhile and could build his confidence. If his early theories had
been mocked or dismissed by his teachers, it is possible that Silvio would have
become more cautious about attempting to answer those big questions he loves so
much, and that have been such an important part of his career.

2.3 Preparing for a Nobel Prize . . . Or Not
When it came time to begin his college education, Silvio was already quite sure that
his future would involve research. Silvio chose to attend La Sapienza University of
Rome. It was the early 1970s, and at the time it was common for Italian students
to attend a nearby university (if they lived in a major center) and continue living
with their parents. The campus culture of the United States had not caught on in
Europe, so the fully immersive student lifestyle that some of his future colleagues
were already experiencing at that time was unknown to Silvio. Because he was still
living in the family home, it was easy for Silvio to devote his time completely to
study and not have to worry about the burdensome details of living on his own, like
making his own food, doing laundry, or paying rent.

Despite his strong interest in mathematics, Silvio enrolled in the college’s phys-
ics program. Why physics? He was swayed by the fact that there was a Nobel Prize
for physics but none for mathematics. An ironic line of reasoning for a man who
would eventually enter the field of computer science—in which it is also impossible
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to win a Nobel Prize—and who would go on to win a number of prestigious prizes in
his field. These would include the Turing Award, which has earned the nickname
“the Nobel Prize of computer science.”

Silvio experienced his first research-oriented courses at the age of nineteen. His
classical high school education had perhaps left him behind some of his peers in
terms of this type of study. He was starting from scratch on his understanding of
advanced mathematics. But his enthusiasm for the subject made up for his lack of
knowledge, and he felt strongly that this was what he wanted to do with his life. He
wanted to become an academic and do theoretical research.

Although he was enrolled as a physics student, the Italian universities had
discovered that the students emerging from the typical high schools of the time,
where only the basics of mathematics were taught, were ill-equipped to understand
advanced physics; they simply couldn’t follow the calculations involved. So during
his first semester at college, before his physics education began in earnest, Silvio
spent his time learning about calculus and geometry. The following semester they
began to learn physics. This was a departure from the normal course structure at
the university, which generally involved full-year courses.

What was meant to be preparatory work for Silvio’s study of physics ended
up changing the direction of his education. “After six months of learning about
mathematics I began to think, who cares about physics?” he says. He had decided
that mathematics was a more interesting field and there was no looking back. Silvio
changed his course of study and pursued a degree in mathematics, abandoning his
dream of one day winning a Nobel Prize in physics.

Once he was learning math a higher level, Silvio was better equipped to explore
some of the questions that had begun to dog him during high school. This first
emerged when he began to study calculus during that fateful first semester of his
degree. The rigorous reasoning and impressive information architecture left an
impression on him.

Silvio considers his first calculus teacher, Luciano De Vito, a real gift and a big
influence on his love of mathematics. He did all of his teaching using problems.
He would come up with a sequence of problems that would push his students to
reconstruct the definitions to use in the theorems, helping them to arrive at the
definitions themselves rather than just presenting them to the students. This was
much more work than simply learning the curriculum out of a textbook.

For some of his classmates, studying calculus was simply a means to an end,
and they may not have valued a deeper understanding of it. But for someone with
an inclination toward research, this type of learning was quite inspiring. It was
a totally different approach to teaching than Silvio had experienced in the past,
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and it gave him a much greater appreciation for the subject. It also helped him to
see how having the right tools could help him to prove what he wanted to prove.
Since Silvio already had a long history of exploring difficult questions, it was a
revelation to understand that through his education he could obtain the tools to
finally start discovering the answers. Silvio would later use a similar approach to
teaching course material to his own graduate students.

During his mathematical studies, Silvio anticipated using the education he re-
ceived in this area to undertake mathematical analysis. Professor De Vito was disap-
pointed that Silvio had abandoned the idea of pursuing a career in physics, but felt
that if was determined to pursue mathematics instead, the most interesting field
was theoretical computer science. He thought that analysis was not a good pursuit
for someone young and ambitious, despite the fact that he was a mathematical ana-
lyst himself. De Vito told Silvio about the work of Alan Turing and others, and as far
as he was concerned, this was the only worthwhile area of research in mathematics.

At first, Silvio rejected this advice and pursued his interest in mathematical
analysis. But in his final year of undergraduate study, he got his first glimpse into
his future. He took a course in logic and one in lambda calculus, which functions
as a kind of abstract programming, with Professor Corrado Böhm. Silvio enjoyed
these courses more than many of the others he’d taken to date.

After those courses, he was convinced that he should pursue further studies in
computer science. For his undergraduate thesis, he worked under Professor Böhm,
who was one of the fathers of computer science in Italy and whom Silvio credits with
“discovering” him and seeing his potential. He gave Silvio a lot of encouragement
to pursue his interest in computer science, and they two wrote an article together,
marking Silvio’s first academic publication. Böhm advised Silvio to leave Italy for
his graduate studies. In the 1970s there was no Ph.D. program in computer science
available in Italy.

The Italian college system was quite different from the system he later experi-
enced in the United States. Part of this contrast was due to the difference in campus
culture. Many American students lived on campus in student residences or frater-
nities, while in Italy most students continued to live with their families. But the
college itself took a different approach—less structured than the American system.
Most courses were year-long courses, four per year, and exams could be taken when-
ever he felt he was ready for them. He didn’t have to deal with the pressure of exam
week or sitting in a lecture hall full of his classmates while everyone wrote the exam
together. Instead, he could prepare at his own pace, and spread out his exams over
several months if he wanted to. For someone who prefers to focus on one problem
at a time, this was an ideal arrangement. Sometimes he would learn new concepts
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very quickly and progress through the curriculum at a fast pace once he was “on
the scent” of things. In other situations, he’d have the opportunity to kick ideas
around for longer and to make sure he was confident about his understanding of
a problem before moving on. For Silvio, the absence of time pressure was funda-
mental to absorbing material and to thinking deeply about a topic. Throughout his
education and career, he has continued to consider unstructured time an absolute
necessity.

Now that he has the benefit of his experience with students at MIT, he can see
that the Italian system suited him very well. The American classes involve assigning
problem sets one after the other, each of which is graded, and culminating in a final
exam. For students who fall behind at the beginning, it can be very difficult to catch
up. The more self-paced Italian system allowed him to study at his own natural
rhythm. The notion of learning on a schedule was quite foreign to him when he
eventually arrived in the United States, and quite terrifying as well.

Silvio completed his undergraduate program in 1978. Despite his enthusiasm
to continue his studies, Silvio’s timing was off. He missed the application deadline
for the following year’s academic intake and found himself forced to wait.

To keep himself busy and productive, he took a course in computer science over
the summer. During this course, Silvio studied under another wonderful mentor
who introduced him to the use of algorithms. Silvio had never seen an algorithm
before (or a computer, for that matter). The teacher was Shimon Even, who hailed
from Israel. Silvio became fascinated with algorithms, which cemented his decision
to do a Ph.D. in theoretical computer science. Shimon Even would later refer to
Silvio as “the brightest student I ever met.”

If he’d wanted to remain in Italy and become an academic there, Silvio would
have entered a system with three levels: He would have started as a researcher, then
become an assistant professor, and eventually reached the level of full professor. By
this point he had a couple of publications on lambda calculus under his belt and
was considered a bit of an expert in this area. He did, in fact, take up a researcher
position for a while after completing his undergraduate degree. But this did not
seem like the right path for him, and he ended up resigning his position before
long in order to become a student again. He would leave behind lambda calculus
and forge ahead with algorithms.

Silvio applied to the University of California at Berkeley, and was accepted
conditionally. His English was not at an acceptable level, and he needed to raise
his score on the TOEFL (test of English as a foreign language) before he could
be admitted to the Ph.D. program. The test was only administered once every six
months, so if he failed again it would lead to another long delay in his plans. This
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was a challenge quite different from those Silvio was used to. He is not a natural
when it comes to languages. He studied French in middle school, and was able to
make himself understood in that language years later when he presented one of
his lambda calculus papers at a conference in France. However, French is closely
related to Italian. English is a different story.

Silvio was not starting from scratch when it came to learning English. His father
had had the foresight to decide that his children should learn English, long before it
was considered the “universal language.” They attended an English school in Rome
to learn the language. It was far from where they lived and required a one-hour
bus trip in each direction to attend the one-hour lesson. But half a day of sacrifice
seemed worthwhile to Mr. Micali, who wanted to give his children the opportunity
to embrace the world beyond Italy. However, it was not enough to prepare Silvio for
graduate studies in the United States, and he had to work hard on this English in
order to improve his test scores.

2.4 California, Here I Come!
Moving to America was a big decision, but it was one that Silvio was ready for. He’d
always planned on leaving Italy at some point. Not because he disliked Italy, or
wanted to leave it behind—in fact he still considers himself to be a “quintessential
Italian” who loves his home country and his culture, and he has always visited
regularly. He felt strongly, however, that leaving behind what he knew was essential
to being innovative. He had to shake off the past in order to move forward.

He felt that this was especially important for someone who grew up in Italy,
which is so steeped in history, tradition, and culture. The responsibility for preserv-
ing the past, this great history of Western civilization, weighs heavily on the Italian
population—especially in Rome. Silvio likens it to living in a house full of expensive
and delicate artwork. You aren’t allowed to run around because you might break
something. You have to show great respect for what is around you, and so your
freedom is limited. It’s easy to fall in with a uniform way of thinking in such an
environment, which makes it difficult to do something truly new. “You cannot be
disruptive and respectful at the same time,” he says. Great research, Silvio believes,
is disruptive. He confesses that his literary hero was Ulysses. He explores the world,
taking years to return to his family. Silvio needed to find his own path, and to go on
his own heroic journey of sorts, so that he could move beyond his roots.

Silvio arrived in Berkeley in March 1979. Despite his improved English scores
on the TOEFL, he soon discovered that his language skills were going to make
life in America difficult for him. Landing at the airport in San Francisco, he tried
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asking people how to find the shuttle that would take him to Berkeley. Nobody could
understand what he was trying to say.

He felt completely isolated in his new home. The language barrier was a major
setback, but that was only part of the problem. Compared with the American
students, Silvio had no real background in computer science. His undergraduate
work had been in mathematics, while his American peers had been learning about
the basics of computer science. Silvio’s experience was limited to the one summer
course he’d taken, so he found that he did not have the prerequisites for the courses
he wanted to take. In fact, he found himself enrolled in “CS1”—the introductory
course in computer science. Silvio, at 24 years old, was surrounded by 18-year-
old students, and some as young as 16, with whom he had little in common.
With no friends and a limited ability to have conversations in English, Silvio had
practically no social life outside of his lectures. Not long after embarking on his
great adventure, Silvio felt ready to pack up and go home. He spent a lot of time
coming up with reasons that he should leave, convincing himself that this wasn’t
what he was meant to be doing. He wanted to create a narrative that justified his
decision without admitting that he was doing it for purely emotional reasons.

When it looked like Silvio was ready to give up on Berkeley, it took just one
person to change his mind, and to redirect the remainder of his education and
possibly his career. He met a graduate student named David Lichtenstein, who
was almost finished his Ph.D., and who was much closer in age to Silvio than his
classmates in CS1. His new friend started to give him the helpful advice he needed
in order to break out of his downward spiral and take control of his situation. The
two remained friends for many years after David completed his doctorate.

David’s first recommendation to Silvio was to forget about the rules and enroll
in advanced courses even though he didn’t have the prerequisites. He figured it was
better to beg forgiveness later than to ask for permission. This one piece of advice
changed everything for Silvio. When he returned to Berkeley after the summer
break, he took courses with his graduate-level peers and began to make friends
who had similar interests. It was the turning point in what could otherwise have
been a very short career in computer science.

During that challenging first year at Berkeley, Silvio was on a fellowship provided
by the Italian National Council of Research. He was given in advance half the money
for the year; the other half he would receive in travelers checks that he collected at
the Italian consulate, the preferred method in the days before electronic money
transfers.

It was Silvio’s first time living away from home, and so it was the first time he’d
had to pay his own way and budget for himself. It was also the first time he had
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to eat on his own, without his mother’s delicious cooking. He hated the food at
the university cafeteria, calling it “cruel and unusual punishment,” and decided he
could not eat it. Instead he found a local restaurant that served very good food and
proceeded to eat there practically every night.

Soon enough, he ran out of money, having spent far too much on food. Rather
than return to the school cafeteria, Silvio decided to try cooking for himself. Al-
though he had sometimes helped his mother out in the kitchen, he hadn’t really
absorbed what she was doing in detail. He could remember many of the dishes
she’d made but was unsure how to cook them, so he was forced to experiment.
He made occasional (expensive) long distance calls home, sometimes waking
his mother in the middle of the night, to find out what ingredients went into
his favorite recipes. Even with her help, cooking Sicilian specialties was not easy
since many of the ingredients were simply not available in California in the late
1970s.

Necessity became the mother of invention as Silvio struggled to creatively sub-
stitute ingredients in the recipes from home. Even mozzarella cheese, a staple in
today’s American supermarkets, was not to be found. In the end, the recipes ended
up being his own, since if you keep substituting one ingredient after another you
eventually end up with a different dish altogether. His substitutions were hit and
miss, and some of Silvio’s friends were subject to failed experiments where the
recipes didn’t turn out as planned. But he developed a love of cooking, believing
it to be a “great aggregator” to bring his friends together. Silvio still enjoys having
people over to share a home-cooked meal. He also still believes that there’s no rea-
son to eat badly, food being one of the necessities of life. Later on, Silvio’s parties
would become a highlight for his friends and colleagues, and his cooking always
featured prominently.

It was also at Berkeley that Silvio finally had his first interaction with a computer.
Even then, he never actually saw the computer. After all, this was before the era of
desktop computing. He was able to use a console with a keyboard and a monitor,
but the computer itself was located in another part of the building, hardwired to
his console and those of other users. The one computer had to be shared among
the students and faculty at Berkeley.

2.5 The “Perfect Storm” of Cryptography
After spending the summer in Italy with his family, Silvio returned to Berkeley in
the fall and began to take the research courses he’d been missing out on during his
first year. He took an algorithm course under Professor Richard Karp, and along
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with Vijay Vazirani, who was a classmate, he developed an algorithm for maximum
matching. This would be presented at the 21st Foundations of Computer Science
(FOCS) conference in 1980. And so, in less than a year, he had evolved from taking
introductory computer science classes to doing research that he would present in
front of his academic peers in the field.

Vijay also would go on to a highly respected career as a researcher in the de-
sign of algorithms, as well as computational complexity theory, cryptography, and
algorithmic game theory. The two would spend a lot of time together during their
studies at Berkeley, along with a tight-knit group of their peers that included Shafi
Goldwasser and Mike Luby. He also got to know Michael Sipser, who would even-
tually become the Dean of Science at MIT. It was an exciting and inspiring time
for Silvio as he realized that he had found his “tribe” and was not alone in his love
of research and his fascination with mathematics. The group became friends and
supported one another. It finally seemed like enrolling at Berkeley had been the
right choice after all. Any doubts about his choice disappeared during his second
year on campus.

Silvio and his friends were a diverse group who had come together through a love
of problem solving and a keen interest in computer science. Silvio had come from
Italy, of course, while Shafi was from Israel, Vijay from India, and Mike from the
United States. They all had different experiences and perspectives to share. There
was much to discuss about each other’s backgrounds and views on the world, but
in the end most conversations would eventually steer themselves toward computer
science, such was their enthusiasm for the subject.

This led to an atmosphere of complete immersion in computer science for
Silvio. Whether he was attending lectures, doing research, or just hanging out with
his friends, his whole life revolved around computer science and the problems
that fascinated this group of budding researchers. They would strategize about the
direction their careers should take, what problems they ought to work on, and what
fields would be the most rewarding. Like students in every field of study, they were
anxious about the future and concerned about making the right choices. They felt,
even thought they were young and still learning, that they had important things to
say, and that they carried a big responsibility.

Perhaps the atmosphere at Berkeley exacerbated these feelings of responsibility.
Their studies during the early 1980s took place not long after the tumultuous
student protest movements that were triggered by the war in Vietnam, the civil
rights movement, and the free speech movement. Berkeley had been at the center
of American counterculture and social reform during the 1960s and 70s. Although
less famous, there were protests at Berkeley in response to earlier political issues as
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well. In 1950, students rallied in support of their professors, who were being forced
to take a McCarthy-era anti-communist loyalty oath.

The students of Berkeley had always felt that they could make a difference in the
world and should speak out about injustice. It was a legacy of youth empowerment
that would have been palpable to Silvio and his classmates. Perhaps computer
science was not a political hot topic at the time, but since the field was still young
and establishing itself, the sense of being responsible for its future direction was
not misplaced. But the excitement of the seemingly endless possibilities in the field
outweighed any anxiety on Silvio’s part. In fact, he believes that if you’re not a bit
anxious about your decisions, you’re not pushing yourself hard enough. Beginning
with his early research at Berkeley, Silvio has always done his best work outside his
comfort zone.

One of the courses Silvio took at Berkeley was in computational number theory,
taught by Professor Manuel Blum. The course included a few lectures on cryptog-
raphy, since it was not yet offered as a course of its own. Silvio was fascinated with
cryptography right away. For him, it created a “perfect storm” because he had dis-
covered an emerging field where there were a lot of things still to be done, and at
Berkeley nobody had really embraced this area yet. There was a need for notions,
for definitions, for tools. It fed his desire to theorize about a field and to start things
from scratch, rather than simply applying the work of others. At last he found the
field of study he’d been searching for. Blum would become Silvio’s thesis advisor,
supervising his work on cryptographically strong pseudorandom generation.

Manuel Blum’s lectures were also the inspiration for Silvio and Shafi Goldwasser
to begin collaborating on research projects. They were both very interested in a
problem that Blum had described to the class: How do you toss a coin over the
phone? The two found themselves compelled to solve this problem—obsessed, as
Silvio would say. They would eventually move on from flipping coins over the phone
to playing mental poker.

Although it was the first problem they explored together, the coin problem would
be far from the last. The pair have worked together on and off for decades, and since
they are both professors at the same university, they have the opportunity to discuss
their research with one another even when they are not collaborating. Silvio enjoys
the fact that Shafi is unpredictable and can approach a problem from very different,
perhaps even conflicting, points of view.

In those early days, when doing something completely new was a big risk,
teamwork was essential to Silvio. “You need the companionship and, particularly
if you want to do something unusual, somebody else must believe in it too. It was
very important to have her on my side.”
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The pair’s paper “Probabilistic Encryption” was presented at a STOC (Sympo-
sium on Theory of Computing) conference in 1982, just as their time at Berkeley
was coming to an end. It would prove to be a landmark paper in the field of cryptog-
raphy. The Association for Computing Machinery (ACM) describes it as “one of the
most influential papers in the history of computer science. It set the foundations
on which thousands of researchers base their work.”

The friendship that was born at Berkeley has stood the test of time. In fact, when
Silvio got the call that he and Shafi were to receive the 2012 ACM Turing award, the
two already had plans for their families to spend the day together skiing.

“She is my best friend, and that’s really a gift,” he says. The fact that they have
a shared interest in the same field of research has contributed to their friendship,
because it can be difficult to find friends who can truly understand you, but Shafi
has an in-depth understanding of Silvio’s work as well as supporting him as a friend.

The field of computer science was exciting to Silvio during his studies because
it was so nascent at the time, and there seemed to be so much fundamental work
to be accomplished. To advance science, he felt, one needs a portfolio of different
approaches and different people putting ideas forward. Silvio admits that it is very
difficult to do great research in a field that looks like a desert, “with no structure
and everything looking the same in every direction.” It’s hard to know where to go.
And yet this was exactly the type of research landscape that appealed to him—he
aspired to tame the desert and unearth the structure on which future researchers
could build their innovations. Anything less would not keep his interest.

Although Silvio’s time at Berkeley was very focused on computer science once
he surrounded himself with his fellow graduate students, the summers were a time
to completely disconnect from this intense focus and return to his family and his
Italian home. This break was much needed in order to refresh his mind and allow
him to go back and be innovative. In his three months of leisure time, he would not
just relax, but also have a chance to mull over what to work on next.

Silvio spent every summer break in Italy, partly in Rome, and partly at a flat
that his parents rented on a quiet beach the Agrigento region of Sicily, in a town
called Siculiana Marina. There were miles of protected beach along the harbor, in
pristine natural condition. During the winter, the tiny fishing village was home to
only twenty people or so; in the summer it was a little busier, but far from crowded.
It was a perfect place to get away from it all, and certainly a contrast to the hot,
busy streets of Rome. His father had a small fishing boat, and for one month of
the year this respected judge would transform into an avid fisherman. Silvio would
wake up long before dawn to help him set the nets. Silvio remembers that when
he was younger these duties would keep him from socializing with the other kids
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his age, since he’d have to go to bed early just as the others were heading out to
have fun. As a graduate student who lived overseas for most of the year, he was able
to appreciate this precious time with his father. As his father grew older and Silvio
was rarely around to help, Mr. Micali eventually gave up fishing because it was too
dangerous to go out alone. Instead, he took up mushroom hunting in the Alps as a
new obsession. But Silvio still visits Sicily once in a while to see a childhood friend
who owns a farm near Palermo.

Siculiana Marina was certainly a world away from the academic world, and
this unstructured time was indispensable to Silvio. Perhaps because of his Italian
upbringing, he maintained this very “European” attitude toward vacations while his
American peers and professors seemed to feel more pressure to put their summers
to productive use. But Silvio did sometimes convince a friend or two to join him in
Italy. Silvio maintained these three-month breaks for as long as he could, until the
demands of his work, and his assimilation into the American schedule, gradually
reduced the time he was able to get away. Nonetheless, Silvio continues to visit Italy
regularly, twice per year if he can, to see his parents. Both of Silvio’s parents are
still enjoying life in their nineties, but they are no longer able to make the journey
to the United States for visits, so it’s up to Silvio and his family to make the trip
to Italy.

2.6 I Have a Ph.D., Now What?
After completing his Ph.D. in 1982, Silvio found himself heading to another new
country—Canada. He decided to do a post-doctoral fellowship at the University of
Toronto. The university had a strong theory group at that time, and Silvio would find
new mentors in Steve Cook, Charlie Rackoff, and Allan Borodin. Silvio had already
met both Steve and Allan, and it was Allan who had invited Silvio to pay them a
visit in Toronto and convinced him to join their research group. It turned out to
be a momentous decision for Silvio, and one that would have a great influence on
his career. He began working with Charlie Rackoff, “a first-class researcher—very
creative and also very obsessed about definitions,” Silvio recalls. The two would go
on to work together on many research collaborations over the years.

Thanks to the encouragement he received from the members of this group,
Silvio felt that the environment was perfect for someone like him who was just
beginning his career, and therefore had reason to be a bit nervous about putting
forward his theories. “If you really want to do something that is always at the point
of failure, you need support all the time,” he says. In Toronto, he found the kind
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of kinship and support that enabled him to undertake risky and uncertain work
that would attempt to break new ground. The more he pushed himself, the more
important it became to have this kind of support. From Steve Cook especially, Silvio
found intellectual support in addition to emotional support.

This intellectual support was invaluable in boosting Silvio’s confidence to pur-
sue his ideas. He had so much regard for Steve’s judgment that if Steve thought
he was onto something, he felt he could move forward with much less worry. The
result of all this was Silvio’s early work on zero-knowledge proofs, including his ex-
plorations of how to define a proof. Once again, it appeared that Silvio had found
himself in the right place, surrounded by the right people. While he considered
Manuel Blum to have been very influential when he undertook his first forays into
encryption at Berkeley, when Silvio moved onto this next phase of his research,
Steve Cook and Charlie Rackoff proved to be equally influential.

Intellectual support has been a key factor in Silvio’s success, but it was not
always a given. Any researcher looking to push the boundaries of his field will meet
with resistance, and Silvio was no exception. He calls the rejection of his theories
“devastating,” but at the same time rejection can be the impetus to commit to a
high standard of research and fight for what he believes to be true. In fact, he feels
that if a theorem is worth proving, it should be difficult to convince people of its
importance. Otherwise, you are dealing with a widely accepted concept already, not
something truly innovative. Silvio’s paper on zero-knowledge proofs, for example,
was rejected several times. But in the end, this made it a more thorough paper. If
you struggle because your peers don’t agree with you when you first argue your
theory, you need to have the stamina to keep yourself on target until you have
convinced them.

According to Silvio, great research requires the conviction to keep on your path
when everyone else seems to be heading in the opposite direction. When it comes
to being a researcher, Silvio believes that being stubborn is a prerequisite, but if
you are too stubborn you can end up committed to something that ends up being
wrong—it’s a delicate balance. There were times when Silvio feared that he had
taken an incorrect path in his research, and he had to make contingency plans in
case his theory turned out to be incorrect or he was unable to solve the problem he
had decided to tackle. He has had several occasions where he was close to admitting
defeat, but has been able (and stubborn enough) to keep trying until he worked
through the problem that was holding him back.

Along with being stubborn, Silvio is extremely focused when he’s involved in
a research project. He’s the sort of researcher who will work day and night on an
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interesting problem unless someone is there to make him stop. And even when he
is compelled to put his work on hold by family or friends, it remains at the back of
his mind while he is doing other things. He finds it very hard to step back from a
problem he’s trying to solve.

This is a tendency that was easier to indulge in his early days as a graduate stu-
dent, and as a young researcher at the beginning of his career at the Massachusetts
Institute of Technology (MIT). However, it became harder and harder as his life
filled with other priorities, like a wife and children.

And MIT was in fact Silvio’s next stop. In 1983, after his year in Toronto, a
position opened up at MIT, where his friend Shafi Goldwasser was already doing
post-doctoral work. It was a bold strategic move on the part of MIT. They already
employed cryptographer Ronald Rivest, and decided to hire on Shafi, who was also
doing research in cryptography. Creating an additional position for Silvio may have
seemed like a large commitment to what was a relatively minor field of computer
science—at the time, there were almost no cryptography courses offered at any
university other than MIT, and to some degree at Berkeley. But MIT was willing
to bet on cryptography becoming an important field, and they were setting their
university up to be the leader in this research area. Little did they know that it would
be essential to the security of the internet one day, making possible many of the
online activities that people now take for granted.

When Silvio was offered the position, he took a road trip with his mother to
make his way to his new home. Mrs. Micali had made the trip from Italy to Toronto
(Mr. Micali was not able to get away from his work at the time) and the two trav-
eled through Quebec and Maine, eventually arriving in Cambridge. It was a rare
opportunity to spend time together without the distractions of work or the other
members of the family.

2.7 Professor Micali of MIT
On arrival at MIT in 1983, Silvio became part of their growing cryptography group.
At that time, fellow cryptographer Oded Goldreich also arrived to do postdoctoral
work, and he would remain there until 1986. Oded had already been introduced
to Silvio and Shafi’s work on probabilistic encryption through Richard Karp. He
had immediately realized that the pair were redefining the field, and that their
work would form the basis of all future work in cryptography. Oded was even more
captivated once he had the opportunity to get to know Silvio personally at MIT.
“He was extremely charming and outstandingly inspiring and empowering,” Oded
recalls. The pair have worked together many times, and they also remain good
friends.
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Thanks to this team of enthusiastic and dedicated researchers, the atmosphere
in the cryptography group was friendly and lively. Silvio, Shafi, and Oded were
all young and single, and they spent much of their time together even outside of
work—dining together, going to movies, and chatting for hours. At work, Silvio
and Shafi had neighboring offices, and the whole department was an “open-door”
environment where discussions with a student or visitor would end up involving
multiple people. Research discussions would also bounce around the offices, which
made for an open and enthusiastic exchange of ideas.

In 1990, when he was well settled in his role at MIT and his life in Cambridge,
Silvio’s life took a new turn: Silvio met Daniela, the woman who would eventually
become his wife. The two met at a party in Cambridge. She is also Italian born, but
she spoke English so well that Silvio believed her to be British when they first met.
In his first attempts to engage this interesting woman in conversation, he found
himself tripping over his words and sounding less than impressive. Finally, after
an hour of difficult conversation, she interrupted him to tell him that it was fine
if he wanted to speak Italian. It was the beginning of a beautiful and enduring
relationship.

Daniela is a legal scholar and law professor at Boston University. When she and
Silvio first met, she had completed her master’s in law at Harvard and was attending
university in Florence to complete her Ph.D. This made for a very long-distance
relationship for the two at first. Nonetheless, after about a year and a half they
married.

Having a law professor as a daughter-in-law was, of course, welcome news to
Silvio’s father, the respected judge who’d reluctantly accepted that his son would
not be following in his footsteps. And to add to the irony, Daniela’s parents were
mathematicians, so they were equally pleased to find their daughter marrying
someone with a love of mathematics that she did not have herself.

The couple now have two adult sons, Stefano and Enrico. Enrico is currently
studying at MIT, with a keen interest in both biology and computer science. He’s
tackling computer science first, which is a brave decision considering the large
shoes he may be expected to fill.

The children are well acquainted with their Italian roots. Until the age of five,
they spoke only Italian at home. This has enabled them to have a stronger relation-
ship with their grandparents back in Italy, who don’t speak much English. In fact,
the boys have a facility with languages that Silvio finds very impressive. Apart from
fluent English and Italian, they can also speak French and Spanish.

Long before he had sons to think about, Silvio had to deal with other young
minds—his students. Taking on an assistant professor position (which would lead
to a full professorship in 1991) meant that Silvio was responsible for teaching and
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supervising both undergraduate and graduate students, along with doing his own
research. For someone who prefers to focus completely on one task at a time, this
was rather inconvenient. He was expected to teach one course per semester, so at
least he did not have to divide his attention between multiple courses. He typically
teaches undergraduates during one semester, and graduate students during the
other.

Silvio believes that his strength is teaching research courses because the mate-
rial is all in his head and he simply has to share it with his students. His theory is
that in order to understand a topic, one has to completely exhaust all of the possi-
ble ways to misunderstand it. He therefore examines all of the detours that can be
taken, and that the students would perhaps be tempted to take. He has great empa-
thy for the students who are exploring a new subject for the first time, because it’s a
journey he has already taken. Rather than just feeding the students his own results
and conclusions, he invites them to experience the entire process that was required
for him to reach those results. They see how he changed his mind at certain points
and arrived at his conclusions, and he feels that it gives them a more complete
understanding of the topic. As a side effect, it may also make them feel that their
own doubts and struggles are not unusual, or a sign that failure is imminent, as
they undertake their own original research. Surely if their eminent professor ex-
periences these struggles, it should not be surprising that they are going through
similar struggles themselves.

Leo Reyzin was a graduate student at MIT in the 1990s, and he took Silvio’s
course “Cryptography and Cryptoanalysis” during his first year at the university. He
recalls Silvio’s lectures with great admiration. “He’s very inspiring. He treats every
lecture as a performance. There’s drama, there’s tension—every lecture has to tell
a story and draw the audience in. You don’t give away the plot at first, you hold the
audience in suspense,” Leo says. “There’s the bad way to do things and the right way
to do things. And he deliberately misleads you and then says, ‘Aha! That’s what’s
wrong!’ and you really have to stay on top of it to follow him. He does it to keep you
thinking, to keep you on your toes.”

Courses on basic topics outside his field of expertise are a different matter. These
are the courses that Silvio is less confident about teaching. The textbooks explain
how things should be done, but they don’t reflect on the genesis of the ideas behind
the lessons. The subjects he feels he teaches best are the ones he has struggled with
himself, because then he understands how to explain them to students who may
be struggling as well. To make up for this, he prepares more for the courses that are
outside his expertise. He’s also a terrible procrastinator when it comes to doing this
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because he’s usually involved in some research at the same time that is his main
focus. Yet somehow it all comes together.

Because Silvio’s path to understanding a topic involves an in-depth examination
of the process that was taken to reach a particular conclusion, he likes to undertake
this type of examination with his students so that the knowledge becomes an
integral part of their psyche—they own it. To Silvio’s dismay, the course curricula
are not designed with this kind of detailed analysis in mind. So Silvio struggles to
get through everything he is supposed to be teaching, and would much rather cover
less material in greater depth. His students are sometimes expected to cover certain
topics on their own using the course books, while they learn others in impressive
detail during Silvio’s lectures. In a system that relies on prerequisite courses as the
students progress, covering everything in the course outline is taken for granted.
Silvio must find a way to make that happen and to teach at a pace that does not
always come naturally.

As a supervisor, Silvio sees his students not as young minds to be molded but as
research peers. He will only take on a student who has taken a research course with
him, so that he has a good idea of that student’s understanding of his research and
the field in general. This prevents students from coming to him with preconceived
ideas about his research that aren’t necessarily accurate. It also helps students to
self-select as people who are fond of Silvio’s style and his personality.

Leo Reyzin was one of those students who wanted to work under Silvio even
before he arrived at MIT. He’d seen Silvio present at a seminar and a conference and
was very interested in what Silvio had to say. “He seemed creative and energetic,”
Leo recalls.

Since the relationship will be a close one, and will last for several years, personal
and professional compatibility are important. Together Silvio and his student will
find a subject that they are really interested in and then jointly “obsess” over the
research. He doesn’t look for topics that are specifically “suitable” for a first major
research project; he expects his students to take on the same kinds of big questions
and innovative research that have always attracted him. Silvio won’t hand off a piece
of research to a student that he doesn’t have the patience to look at himself, as a sort
of outsourcing project. He takes an all-or-nothing approach, and the research takes
as long as it takes until they solve the problem. Because he doesn’t advocate lower-
level research, there’s a greater chance that his students may experience failure, but
Silvio feels that the lessons learned from this process are valuable and will help his
students to succeed going forward. Although they may have less experience, Silvio
believes his students to be just as intelligent as any colleague he works with.
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Because of this fully immersive approach to working with his students, Silvio
generally only supervises one student at a time. He doesn’t believe that he has the
capacity to properly participate in the research of more than one student. “If you
are obsessed about two different things,” he says, “you are not really obsessed.”
They work together until the thesis is almost complete, and then Silvio will begin
to look at another student to begin a new round of research with. This is another
reason that it’s so important that the pair find a topic they are both truly excited
about. For the duration of the project, this will be Silvio’s only research focus. He
does not undertake his own individual research at the same time.

Leo Reyzin says, “He’s very much goal and project oriented. It’s not like there’s
a weekly hour-long meeting. If we’re working on something then it’s very intense.
Silvio is all-consumed by things. When he’s consumed by something he’s really
consumed by it.”

During their time working together, both he and Silvio were at one point each
expecting a child (Leo’s first and Silvio’s second). Knowing that fatherhood would
soon be making more demands on their time, Silvio wanted to get as much work
done as possible before that happened. “He said, ‘I’m about to have a kid, you’re
about to have a kid, let’s get to work now!”’

Leo says that during the times the two worked on separate projects, it was
a challenge to get Silvio’s attention, since he’d be focused on something else.
“When he had time for you, he really did. He had hours and hours and hours.
But when he didn’t, he didn’t. The only way to communicate with him at the time
was to leave physical notes on his office door. He didn’t do email; calling him was
pointless.”

Leo recalls the long hours spent working together on a research project. “We’d
pace the halls and work on the whiteboard, and when the time came to write up
the results we’d actually sit at the computer together and write, which is a very rare
treat—to work with someone at one keyboard and just take over who’s driving. We
kind of completed each other’s sentences.”

This type of approach fits in well with Silvio’s preference for collaborative re-
search. Collaboration has been Silvio’s preferred research method since his early
work with Vijay Vazirani and Shafi Goldwasser at Berkeley. Of the more than 100 pa-
pers listed on Silvio’s curriculum vitae, only a handful were written alone. Whether
he was working with his fellow students during his graduate school days, with pro-
fessional colleagues, or with his own graduate students as a supervisor, Silvio has
almost always taken a team-based approach to research.

In fact, he traces his preference for working with others all the way back to his
childhood anxiety about whether the outside world really existed, or whether he
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was simply imagining it. Interacting with his parents and schoolmates helped him
to overcome his doubts at the time. As a researcher, his collaborators play a similar
role; they help to assure him that he’s not making things up and that the research
they’re undertaking is rooted in reality.

Silvio also feels that when you are coming up with a new theory, you’re going out
on a limb and could be there for quite a long time as you work to confirm it. It can be
a very uncomfortable place to remain alone, and it’s easy to start doubting yourself.
Talking things out is an important part of the process for Silvio, and he prefers to
learn about new subjects through discussion rather than by reading about them.
When working with a partner (or several), there is thoughtful discussion about the
theory right from the beginning, and he believes that this makes the chances of
heading down the wrong path much lower. It is no accident that Silvio’s Turing
Award honors his collaborative work with Shafi Goldwasser.

Although the collaborative process involves a lot of mutual support, that doesn’t
mean that it’s all about agreement. “Argument is the essence of life!” Silvio pro-
claims. Perhaps this is another way in which his Italian upbringing comes through
in his work. He grew up with a very forceful father, who was skilled in the art of
argument through his legal training. Silvio describes their arguments as “incen-
diary,” although there was great love and respect between them. His sister Aurea
is also skilled at arguing, likely for the same reasons. As a result, Silvio grew up
learning that he would have to be persuasive in order to get his way, and that ar-
gument is not antithetical to friendship or respect. Instead, he feels that opposing
forces and clashes of opinions are required if you want to forge something new
and great. When it comes to his research, he has at times felt that opinions were so
divided that perhaps he and his partner should stop collaborating, but somehow
they always end up on the same page in the end.

Oded Goldreich, who has collaborated extensively with Silvio, feels that “Silvio’s
collaborators are presented with such forceful and beautiful arguments that they
do not feel bad when arguing with him. So tension does not arise, because one is
compelled by his arguments and captured by his charm. Later, one may find a flaw
in Silvio’s arguments, but one finds it hard to be annoyed at him even then, since
the charm stays and the beauty of the arguments stays too.” Oded can also attest to
Silvio’s steadfastness in defending his point of view. “As to changing Silvio’s mind
or making him do anything he does not want to do—this is definitely impossible.”

Oded offers support for the idea that Silvio’s facility for argument has its roots
in his earlier learning about philosophy. “I think that what Silvio talks about is not
arguing, but rather the articulation of views. Indeed, the articulation of views is a
key ingredient in interaction with him. Silvio does not just say ‘let’s do X,’ but rather
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articulates why it is a good idea to do X. Silvio’s articulations are always grounded
in philosophical considerations, and are richly framed in a wide context.”

In addition to collaborating on research, Silvio mentors his graduate students
in a variety of ways. One of his specialties is teaching his students how to present
their work at conferences and seminars. Silvio is well known for his compelling
“performances” when he lectures, and he tries to help his students to master “the
Silvio method.”

Leo Reyzin explains the process he went through with Silvio before his first big
presentation. “He makes you prepare your slides, and you give the talk, and by slide
five I can see he’s just not there, he’s tuning out. I say ‘This is not working, is it?’
and he says ‘No, it’s not, do you know why?”’ The student then needs to go off and
figure out what’s wrong, fix it, and present to Silvio again and again until all of the
problems are fixed and they are finally able to get through the whole presentation. If
a student needs more specific feedback about what’s not working, Silvio will provide
it, but he prefers to let his students find the problems themselves. “I don’t know
how many times we rehearsed my first talk,” says Leo. “It was over and over and
over and every time we’d get a little farther into it. A lot of his former students are
now faculty at various universities and I know them pretty well, and they’re all good
presenters—so it works.”

Silvio also develops a strong personal relationship with his students. “He’s a
wonderful mentor,” says Leo. “The number of conversations we had about life and
career, and balancing what one wants out of an academic and nonacademic career,
and how to balance having kids and your family obligations. He was so generous
with his time and advice.” He was also generous in other ways. “He never let me
pay for our lunch while I was a student. Until you get your Ph.D. you can’t pay for
lunch. I guess I owe him a lot of lunches!”

Silvio’s time at MIT is divided between teaching and research, making for a full
schedule. Schedules and Silvio simply do not get along well. “If you don’t get bored
and spend time figuring out what to do, you cannot do original work,” he says.
During the month of January, he has no scheduled classes to teach. This gives Silvio
time to think about things more deeply, with no distractions. He thinks that this
time is crucial if you want to do something different; idleness and creativity go
together. Nothing happens for a while and then something clicks. For Silvio, it is
necessary to have unstructured time on your hands that you can shape any way
you want.

In addition to his work at MIT, Silvio’s career has taken him around the globe,
presenting his research at conferences and universities. It’s an inevitable part of
being a researcher, and the more successful one is, the more requests are made
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for this type of presentation. Silvio enjoys the opportunities to talk with his peers,
although the fact that he describes these pleasant talks as “confrontations” is
perhaps indicative of his argumentative conversational style. Rather than attending
scheduled sessions at conferences, he prefers to sit down with people to have a
discussion about a topic of interest.

While Silvio is never one to back away from an argument, his interactions
with his peers in his own field and others are always gracious. According to Oded
Goldreich, “Silvio is very generous. One may forget this when seeing him fight for
some cause or interest of his; when he is doing anything, he does it full-heartedly.
But when the fight is over, he is the most generous winner one can imagine. In the
rare cases that he loses, he is also graceful about it.”

When he is putting together a conference presentation about his research,
Silvio tries to imagine himself in the audience, because he considers himself to
be the worst kind of person to present to. When he attends another researcher’s
presentation, he often gets lost by the second slide. A complex illustration will
draw his focus, causing him to stop listening to the presenter and get completely
off track. He figures if he can understand a presentation, anyone can understand
it. For his own talks, he tries to distill everything down to the simplest terms,
which takes a lot of time and preparation. He uses his own hand-drawn cartoons
to illustrate concepts because he finds them less distracting than more complex
representations. He claims that he will use any trick in the book to make things
easier to understand. In a field like theoretical computer science, as many scholars
and interested laypersons can attest, this is no easy task.

2.8 Kudos and Companies
Another sign of his long and distinguished research career is the number of awards
and honors that Silvio has received. In 1993, work on interactive proof systems that
he did with Shafi Goldwasser and Charlie Rackoff was awarded the inaugural Gödel
Prize. This prize is given jointly by European Association for Theoretical Computer
Science (EATCS) and the Association for Computing Machinery for outstanding
papers in the area of theoretical computer science.

In 2003, Silvio was elected to the American Academy of Arts and Science’s
Computer Science section. The Academy’s members include more than 250 Nobel
Prize laureates. Silvio was also elected to the National Academy of Sciences and the
National Academy of Engineering in 2007. Both of these honors illustrate the high
regard in which Silvio’s peers hold him. These academies only bestow membership
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on leaders in their fields and to be recognized by three such organizations shows
an exceptional level of achievement.

Silvio was also the winner of the RSA Conference Award in Mathematics in 2003.
His 2004 paper, co-written with his student Leo Reyzin, “Physically Observable
Cryptography” won the inaugural TCC Test-of-Time Award in 2015. This award is
presented at the Theory of Cryptography Conference (TCC) for a paper published
at TCC at least eight years earlier that made a significant contribution to the theory
of cryptography, preferably with influence in other areas of cryptography, theory,
and beyond. Silvio was also named Berkeley Distinguished Alumnus of the Year in
2006 by the Electrical Engineering and Computer Science department of his alma
mater.

Adding to this already impressive list of achievements, Silvio received the ACM
Turing Award with Shafi Goldwasser in 2012, in recognition of their “transformative
work that laid the complexity-theoretic foundations for the science of cryptography,
and in the process pioneered new methods for efficient verification of mathemati-
cal proofs in complexity theory.”

It is true that Silvio abandoned the hope of winning a Nobel Prize one day when
he changed his undergraduate major from physics to mathematics, but perhaps
his collection of other prestigious prizes has made up for that loss, at least in part.
While recognition from his peers is always welcome, Silvio believes that winning
major awards has additional benefits, both to himself and to computer science in
general. He feels that the awards bring more attention to certain fields of research
that might otherwise go unnoticed in the mainstream, and they invite outside
observations on the work.

This type of judgment from outside one’s field, although it might make some
researchers uncomfortable, is necessary according to Silvio. He thinks that there is
a danger to conducting research in a “bubble” where there is no outside judgment
of what you are doing. Diverse opinions provide the necessary perspective to help
researchers decide which paths to pursue.

Awards also help to introduce researchers in other fields to one’s work. Cer-
tainly, Silvio was well known among the cryptography community long before he
won the Turing Award, but afterward, researchers in other fields learned about him
and his work. It has given him an opportunity to become a sort of ambassador in
his areas of expertise, to answer questions, and to facilitate connections between
scholars in different areas.

Another benefit he sees in winning awards is the permission it gives him to
explore new areas of research that are not currently well recognized. These awards
give him the credibility he needs in order to take on more risk, because there is
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an implicit recognition that he is a top researcher and unlikely to be pursuing a
frivolous idea. The idea of taking bigger risks is also easier from his own perspective,
because the confidence boost of a major award makes him feel more energized
about doing something new and innovative.

Groundbreaking research can lead to awards, certainly, but it can also find its
way into the commercial realm. Silvio and Shafi’s early work in cryptography has
laid the groundwork for a number of online security features that are widely used
today.

While you might expect that this in-depth knowledge of online security would
make Silvio extremely cautious when it comes to his own online life, he does not
actually practise what he preaches. “I’m extremely suspicious as a cryptographer
when I’m doing research,” he explains, “but then I don’t even lock my door!” He
doesn’t use the best practices for creating passwords or lock his front door because
he’s more concerned about locking himself out than keeping his property safe. The
work itself, however, he takes very seriously.

The practical applications of Silvio’s work have continued throughout his career.
He often sets out to solve a purely theoretical question—to change the way that
an entire field is viewed or approached—but in the end the solutions usually have
practical implications. Silvio believes that technology transfer is crucial, whether
he is involved in the transfer himself or whether it is left to others who pick up
where he has left off and develop applications for his research. “Knowledge has to
be transferred to society,” he says. “I really believe that this is important.” Silvio
owns dozens of patents covering several different areas of his research.

Silvio finds that actually achieving technology transfer is a challenge. The types
of technologies he develops, such as digital signatures and simultaneous electronic
transactions, require a shift in the way large numbers of people do business. The
benefits of the technology must be so compelling that everybody is convinced to
make the change in a short period of time. He uses fax machines as an example of
this type of challenge. If you thought fax technology was interesting when it first
emerged and purchased a fax machine, it was useless unless everyone you wanted
to send faxes to also had one. The technology could only succeed if a certain level of
market penetration took place. The timing can be as important as the technology
itself. Introduce your technology to society before they’re ready for it, and it will be
passed by. Introduce it too late, and there will be a large number of competing
technologies on the market. So while the chances of coming up with the next
big thing are small, Silvio believes that in some cases, the benefit to society of a
technological shift are so great that it’s worth the risk.
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Despite these challenges, Silvio has delved into the commercial side of research.
He worked with a team in 2003 to develop CoreStreet, a credential validation
technology, while on sabbatical from MIT. He also worked with Ronald Rivest on
a micropayment system called Peppercoin. This type of endeavor is quite different
from academic research, and Silvio is well aware of his limitations. He tries to
bring in the best possible developers and engineers, plus those who can handle
the fundraising and other business aspects of a startup.

Among other challenges, Silvio had to present the products to venture capital-
ists. Accustomed to audiences of computer scientists, Silvio needed to find non-
technical ways to explain the products—a true test of Silvio’s dramatic presentation
style. Both of these companies were later acquired, and Silvio returned to his posi-
tion at MIT. Silvio recently took another sabbatical from MIT to focus on a business
called Algorand, which has created a new type of distributed ledger. Although the
field is already competitive, he thinks his product is superior and is optimistic about
convincing others that it is the right choice. It seems that his powers of persuasion
are strong, since in early 2018 he convinced venture capitalists to invest $4 million
in the company.

2.9 The Road Ahead
Now in his sixties, Silvio has no plans to take it easy. When asked about retirement,
he reacts as though it was the most absurd idea he’s ever heard. “Retire from what?”
he asks. “From life? It makes no sense to me.” He believes that if there comes a time
that he can no longer indulge his research obsessions, he will find something else
that he can do well and he will become obsessed with that instead. He thinks that
we all have an obligation to continue to contribute in our own way for as long as we
are able, and to be fully engaged in life.

Although he is certain that many more projects lie in his future, Silvio has no
idea what they might be. It’s part of his obsessive, in-the-moment nature that he
does not make long-term plans. Whatever comes up when his current project winds
down, he’ll decide on a direction at that time. Retrospectively, he can see that every
five years or so he tends to switch to a new project, but it’s not a timeline that he
plans in advance, and the next project is never intentionally lined up and waiting
in the wings.

What is clear is that Silvio will continue to commit himself completely to his
undertakings, to enjoy time with his friends and family, to cook his mother’s
wonderful recipes, and to live his life one obsession at a time.



3An Interview with
Shafi Goldwasser

This is a partial transcript of an interview of Shafi Goldasser by Alon Rosen. The
interview took place on November 23, 2017. The transcript was lightly edited for
clarity.

Rosen: Hi. My name is Alon Rosen. I am a professor of computer science at the
Herzliya Interdisciplinary Center in Israel. Today is the 23rd of November 2017
and I’m here in Rehovot at the Weizmann Institute of Science together with Shafi
Goldwasser, who is being interviewed as part of the ACM Turing Award Winners
project.

Hi, Shafi. We are here to conduct an interview about your life, about your achieve-
ments. Generally speaking, we will go chronologically and we will talk at two levels.
The first level will be a general audience type of level and the second level will be
more specific, more oriented towards people that specialize in the subject and are
interested in the details. So let’s begin with your high school experience.

Goldwasser: Okay. Well, first of all, thank you Alon for taking this opportunity to
interview me.

High school. Right. Those years I remember quite vividly. The orientation
changed a bit for me from sort of being interested in the sort of more human-
ity subjects to more the mathematical subjects. You know, mathematics, and the
sciences. I remember I loved physics. I didn’t really like life sciences, but physics
and math I liked quite a bit. And I had a great math teacher from eleventh and
twelfth grade. Somehow I did well and I think that was part of why I wanted to do
it. I also had a great teacher for physics, and physics in my mind was just fantastic.
You know, things made sense, you could derive things. I think early on that’s what
I wanted to study.

Rosen: What about mathematics?
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Goldwasser: In mathematics, again I was good at it, but mathematics itself at that
time was not described as mathematics with some sort of motivation. It was more
the method, you know? So taking derivatives, integrals, and it was in trigonometry
and all that. And I could perform it well, but it didn’t have the stories associated
with them that physics did.

Rosen: So it was more about the technique and less about . . . ?

Goldwasser: About technique rather than about motivation.

Rosen: And did you already then have the sense that you missed the concepts and
the . . . ?

Goldwasser: I had no idea that there were concepts, you know? All I knew was that
I liked the concepts in physics. The whole derivation from principles was beautiful
in my eyes. And I remember questions on the exam and then you would have to
think. And I have the impression of some memory where my [laughs] answer was
different than others and he was surprised, the professor. But I cannot, for the life
of me, remember what the question was or what the derivation was.

Rosen: So it sort of sounds like this professor, he had an encouraging influence
on you.

Goldwasser: Yes, both of them. Yes.

Rosen: Okay. How significant do you think it is to have a good professor? To have
someone who influences you that early?

Goldwasser: Extremely significant. I think if you’re very lucky, there is someone
early on—and that could be high school, it could be maybe college, but better in
high school—that awakens something in you, a spark, an interest, so that maybe
later you’re not going to do exactly that but you know there’s something about
studying and about pursuing knowledge that is exciting. I think it’s fundamental,
and I don’t think that it has to be more than one.

I had other good teachers there, you know. The literature, I remember the
teacher. The history teacher. I remember learning Shakespeare in English class.
But something about . . . there was some spark there in the science classes and in
the math classes that I recall.

Rosen: So by then, your self-image was sort of that you were set towards studying
scientifically oriented subject?

Goldwasser: No, not at all. [laughs] I loved to write, and I think that my inner image
was that I was going to be a writer. But I guess—you’re right—by the time we got to
the eleventh and twelfth grade, my parents, or especially my father was very kind
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of insistent that I should follow the realistic . . . this is what we call in Hebrew
“realistic studies,” or mathematics and physics studies. Because as people of his
generation, and maybe people of the current generation in Israel as well, there was
a real emphasis on pragmatism and the exact sciences, and that everything else is
a bit less . . . It might be enjoyable, but it’s not as real as what one must do in life.

Rosen: I’d be interested to hear now about your view on the global experience of
Israel at the time.

Goldwasser: Sure. Yeah, I do have the tendency to talk about the personal stuff, but
it’s what I know best. But let me tell you a little bit about my memories about Israel.
First of all, I lived here through a few wars, right? I remember the Six-Days War [of
June 1967]. I think I was in fourth grade. I remember that. And I remember we went
down to the bunker. I remember the sirens. And I remember right after the war, my
family and I, we drove to Jerusalem. I remember still seeing the Wailing Wall before
they kind of opened up the huge square. It was somewhat of a euphoria. Who knew
that this would be a “tragedy forever.”

But in any case, this is fourth grade. Then I remember Yom Kippur [October
1973] War. Yom Kippur War is a different story. Then I’m already in tenth grade I
think and my brother was a soldier. I remember the first phone call that he made.
My father asked him how was his commander, who was someone that my father felt
that was going to protect him. And he said, “He is no longer.” And I remember my
father just burst out crying. He was just so worried about him. Then I remember
when he came back home the first time . . . I don’t know how long it was really,
because he stayed in the army for about six months afterward. He was supposed to
be released but he stayed longer because of the war. But I remember that he had a
lot less hair. He had like those two sides of his forehead, his hair receded quite a
bit. It was amazing that this kind of traumatic experience can do that.

Rosen: Do you think any of this had any effect on you in the long term, on your
personality, outlook?

Goldwasser: I think it had an effect on my father. I think that when my brother
came back from the army, he joined the Hebrew University, because he was going
to go and study mathematics, and he went right away. They postponed the semester
because of all these soldiers. They started a new semester in January, like a new
school year. But my father just wanted him out of Israel as fast as possible. He was
so afraid for his safety that he wanted him to go to school in the States. And within
a year, like the second year he just sort . . . he somehow arranged . . . he kind of
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made him apply abroad. And he got accepted to Carnegie Mellon and left. That
affected me because that started some sort of chain reaction in the family.

Rosen: And okay, you said your brother wanted to study mathematics. What did he
end up doing and how did it all affect you?

Goldwasser: He studied mathematics as his first degree, and then he went to busi-
ness school at Carnegie Mellon. It’s called GSIA, Graduate School of Industrial
Administration. And then he went to work.

And I, when I arrived at Carnegie Mellon, I had like a year or so before my military
service, since my father wanted me to go to the U.S. to study so that I don’t waste
any time. This idea of wasting time is something very problematic, or was very
problematic when I was growing up. Now it seems like everybody in Israel is taking
trips around the world as soon as they finished the army, or before the army, and
wasting time is not called “wasting time” anymore but “gaining life experience.”
In any case, my father wanted me to go to the States, and as usual I did what he
recommended and went to Carnegie Mellon, and I went to study mathematics.

So I arrive to the U.S., it’s summer 1976. I land in the U.S. and my brother comes
and picks me up in New York, and we spend a few days in New York. Then we took
a bus to Pittsburgh. I knew nothing about Pittsburgh. I spent the summer in the
dorms waiting for the school year to start. I actually never applied to the school. Just
my brother told his professors that his sister is coming for a year and she’s good
at math. And since he was good at math and they knew that he was a talent, they
said, “Does she want to come and study here?” and he said, “Yes,” and they said,
“Okay.” And that was it. I became an undergraduate in mathematics, in applied
mathematics.

But then it was applied mathematics and computer science. Now there’s a
undergraduate computer science program at Carnegie Mellon. At the time, there
wasn’t. And the truth is that I actually loved studying. This was a revelation. When
you go to high school, you sort of do what you’re told, right? But I found it really
interesting. I found the math interesting, I found the computer science interesting.
I took this introduction class in FORTRAN programming. In the beginning, I had no
idea. There were these cards where you put an instruction on every card and it goes
through a machine and then it executes each instruction. I’ve never seen a computer
before, I haven’t really heard about computers before, but it was fascinating. It was
really marvelous.

Rosen: Okay, I have two questions now about the admissions, you said the admis-
sions process was unorthodox in your case?
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Goldwasser: I would say. [laughs]

Rosen: Now, I want to ask what would have happened today with admissions?

Goldwasser: Ah, today. Today, no, the whole college admissions in the U.S. is some-
thing bordering on insane. You know, there are standardized tests, there’s grades,
there’s extracurricular activities, there are huge committees that sit and deal with
every case. They accept legacy and people with talents that supplement whatever
the needs of the school are, and who knows what else. And there’s also a big mys-
tery about this. All, in my opinion, geared toward making money on the admissions
process. So, is the outcome any better? I believe serendipity is a big part of one’s life
trajectory, and maybe some of the serendipity is lost with this whole process that
is very meticulous. But they’re talking these days about having machine learning
take over the admissions process, so we are in for a whole new era if that’s going to
be the case.

Rosen: Okay, so undergrad years?

Goldwasser: Right. Undergrad years I’m in Carnegie Mellon. I start in mathematics.
There is even this program called Math Studies, which only a few kids go to, where
there are these two professors who teach a handful of kids. It’s supposed to go
through all mathematics, you know, topology, geometry, algebra of course, logic,
and everything in two years. And they spend essentially the first semester arguing
with each other how to define each concept, definition, back and forth, back and
forth. It’s abstract beyond anything that I’ve ever seen because in Israeli high
school, things are very method-oriented. They are teaching you how to perform,
how to solve exercises. They don’t really teach you . . . at least at that time, they
didn’t teach you about the concept of a limit or why are you taking derivatives and
why you’re integrating. Here, we are completely . . . it’s all axiomatic.

So I go through this semester, maybe a year, and the whole thing is a two-year
program, and after a year I quit. And I think to myself, “This is going to take too
much time and I’m not the best at the class,” and I decided I’m going to go and do
computer science, sort of the computer science specialty within the math. So I take
this class on—I think—combinatorics or data structures or algorithms, whatever,
and it’s trivial because my mind of course was so sharpened by this one year of
dealing with abstractions and dealing with definitions that even if you don’t think
you’re understanding them, you’re completely in a different level. Then when you
go back to something of a lower level, it’s a triviality.

This is an interesting experience that I have seen time and again with myself,
with my kids. You push yourself to a place which is much more abstract and much
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more formal than maybe you care to be, and inevitably you start thinking more
clearly, and you are able to sort of verbalize and conceptualize and define and
understand. It’s a fabulous discovery. Somebody has to prove a theorem about it
explaining why is it that being able to verbalize, being able to define, and using
precise concepts and precise thinking makes everything else simpler.

Rosen: So now you defend the very same thing that caused you to quit, like the
abstraction?

Goldwasser: I know, I know. I mean in retrospect, maybe I should have stuck it out
for another year, but that’s what I did.

Rosen: Okay, so then you moved to computer science?

Goldwasser: I moved to computer science. I remember a lot of my professors at
Carnegie Mellon. I remember Raj Reddy, who taught AI. He was the founder of
real speech recognition. At the time, it was the Harpy project. And I remember
Anita Jones. She taught software engineering. She was one of my recommenders
to graduate school later. So was Raj Reddy. And I remember there was another
professor, Nico Habermann, who taught us compilers and I had a compiler project
that I did with a friend. I remember we wrote this compiler which never compiled.
[laughs] I remember writing this program for generating poetry. Today, they talk
in machine learning about GANs, these things that can generate let’s say poetry in
a way that’s indistinguishable from let’s say poetry of a particular poet. But at the
time, the way these programs generating poetry would work is that you would have
some sort of a notion of a verb and a noun and how a sentence is structured, then
you would have a dictionary and you would form a poem. I loved that.

Rosen: How large were the classes back then?

Goldwasser: The classes were small. I would say there were like about twenty kids.
Again, very few women. That I do remember, that I was one of two and the professor
also treated us a little bit with, you know, half . . . I was going to say “forgiveness,”
but “forgiveness” might not be the right word. A little bit, you know, like we were
silly, even though we weren’t really. And that, after I start doing very well in the
class, he realized that. But that was my feeling. It didn’t matter to me much because
I didn’t think of myself that way, but I do remember that.

I remember coming from Israel, my command of English was not perfect to say
the least, and on every program that I wrote there always were these comments
where he says, “Indent, indent, indent.” I didn’t know what word “indent” meant
until the end of the term, but then I realized that “indent” meant that I was
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supposed to like, you know, indent the “for loops” and the different commands. So
now I know what that means. But it was these silly things.

It was like. I remember the first lesson of calculus when you come from Israel
to America, and I remember telling my brother, who was in school at that time, I
said, “I can’t do this. It’s too difficult.” So he sat down with me. This is the first class
ever in calculus, and he said, “Okay, so what didn’t you understand?” and then it
turned out that I didn’t know the words “multiply” and “divide” and “integrated”
and “differentiate.” Then he told me what they all meant in Hebrew and I said “Ah.”
That was it. Then it wasn’t difficult.

Then I had to make a decision at the end of that year whether to go back to Israel
to my army service or ask for a deferral. I asked for a deferral, because I actually kind
of liked studying and I kind of wanted to continue.

Rosen: Happy moments?

Goldwasser: Oh, lots of happy moments. I made lots of new friends and also I
became a young woman, so there’s also like personal relationships that you develop
which happen when you are a young woman, and that regardless of where you’re at
is very exciting, right? You’re coming of age. And I came of age in Carnegie Mellon
during those years, between the age of 17 and 20.

Rosen: Okay. Just to be a bit more specific about those years, any particular topics
that you related to, specific ones, beyond the aspect of . . . ?

Goldwasser: Yeah. I was very interested in artificial intelligence at the time, I think
because of the class that I took, because of this poetry generation, because of the
whole concept of speech understanding and so forth, and also I think because this
whole idea of understanding the brain and how we think and how we dream and
why we dream, what we dream. That was fascinating to me.

So it was very clear to me when I finished that I would like to study this further.
That’s why I applied to graduate school. And I applied to graduate school at the
same time that I applied for jobs, because I wasn’t very clear about what I was going
to do. There were sort of three options. In fact, this is the story of my life—there’s
always at least three options, sometimes four, but never one. And the options then
were to go back to Israel or to go to graduate school or to get a job. The idea of
going back to Israel was complex: I wanted to go back to Israel, but I was very afraid.
Because at this point I was kind of distanced from it, and furthermore, I felt that I
would like to go back to Israel, but at least I’d like to show something for all these
years that I was away.
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And I felt like I think a lot of people feel when they finish undergraduate school.
At least I think they feel. That I knew nothing. Even though I studied for . . . I did
my degree in three years in the States, although usually it’s four. I studied during
the year and I studied during the summers because I wanted to finish quickly so I
could go back to Israel. At the end, you feel like, “What do I know more than anybody
else? I want to own something. It’ll be something that I’ll understand better than
anybody.” It’s not even so much the idea of understanding better than anybody, but
actually going into some subject in depth. At that point, it could have been related
to artificial intelligence or algorithms. I remember also an algorithms course that
was taught by Jon Bentley, and it was fascinating. I loved that as well.

So I wanted to know, understand something really well. I was told that there is
this thing called graduate school. You have to understand, I didn’t come from an
academic family, it wasn’t something that was standard, but . . .

In any case, I was told that there was this thing called graduate school. I think
that like a day or two before, they said that I’m supposed to take this exam called
the GRE. I didn’t prepare at all, but I signed up and I went to the GRE. I didn’t even
know you were supposed to prepare, you know? It seems ridiculous how naive I
was. So I took the GRE. I don’t think I did very well. But in any case, I applied to
graduate school and I got accepted to Carnegie Mellon in engineering and Berkeley
in computer science. First, I said to Carnegie Mellon that I’m going to go there,
and I went for the summer to the RAND Corporation, where Raj Reddy actually
recommended me as an intern. This was in Santa Monica, in California on the
beach. And I remember this California. Wow. The beach. Fantastic, you know? I
lived in Venice Beach and there’s the roller skaters and the bikers and . . .

Rosen: Mellon . . . ?

Goldwasser: So I was admitted to Carnegie Mellon, which was the place I spent my
undergraduate, and I was debating between the two, and I also had a bunch of job
offers, but it was clear that I wasn’t going to get a job. I was going to go to graduate
school. And I decided I’ll go to Carnegie Mellon. I mean I wasn’t sure, but I decided
I’ll go to Carnegie Mellon, because I had friends there. You know, I had a boyfriend,
whatever, you know the kind of things that people have, and friends.

But I had the summer job at RAND. And I remember that summer. I cannot tell
you what I worked on, but I do remember that I was thinking to myself that the
supervisors were all Ph.D.s, and they were telling me what to do. It was some sort of
AI-related project. I remember thinking to myself, “Why should they tell me what
to do? I should get a Ph.D. and I should tell somebody else what to do.” [laughs]
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In any case, so that summer was a fabulous summer. First of all, there was
research and it was interesting, although I can’t tell you what it was about because
I really have no recollection whatsoever. And second of all, all of a sudden it was,
you know, I had an apartment of my own on the beach, it was California as I said
before. You know, there were the roller skaters and the bikes. And then one day
me and [a friend of mine from CMU], we decided to take a drive up the coast,
up the California coast and go and see Berkeley, and go visit somebody that she
knew in Palo Alto. Anyway, we drove up the coast. And I remember driving into the
Berkeley exit on University Avenue, and it was just blue skies that like you’ve never
seen and the green hills in the background. I’m just sort of driving to campus. It’s
such a glorious image. I can’t tell you . . . This is something you don’t forget. And
it was “Wow, California, Berkeley.” Then I told CMU that I’m not coming and I told
Berkeley that I’m coming, because it was just captivating.

Rosen: What year was that?

Goldwasser: This was 1979. So I arrived at Berkeley. I had to find an apartment, the
usual things that graduate students do. I lived with a bunch of astronomer graduate
students. In any case, I wanted to do artificial intelligence. At the time, there were
few people at Berkeley doing artificial intelligence, but as I told you, serendipity
is the name of the game. I was a TA, I had to support myself, so I had a teaching
assistantship. Then I actually somehow got to work with Dave Patterson on the RISC
project, reduced instruction set computer.

Rosen: Maybe you can tell a bit about that.

Goldwasser: About the RISC project? At the time, the RISC project was this idea of
Patterson and other people at Intel at the time that the thing to do is to figure out
which of the instructions are used most often, let’s say programs in Pascal and C,
and those are the instructions that should be put in hardware in order to speed
up computation. My part of the project was to figure out which instructions in fact
are being used most often in Pascal programs. So I was quite the programmer at
the time. And I worked on this very large system, which I think adapted an existing
Pascal compiler, a sort of thing that collects dynamic statistics, and I modified it
sort of extensively to figure out which instructions should really be optimized or put
in hardware. And that was my master’s thesis, which I got at the end of that year.

Rosen: Did you enjoy it?

Goldwasser: Actually, it was Professor Powell and Professor Patterson. Did I enjoy
it? Yeah, it was interesting. You know, it was a lot of work. It was very intense. This
whole idea of being incredibly focused on a project and being in the office from day
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to night was born at that time. I mean as an undergraduate, you spend a lot of time
in libraries and studying for exams, but this idea that you have your own project
and you set your own deadlines, although you know the professors expect things of
you, it really comes from that time.

But at that time also, all of a sudden I wanted to go back . . . after I had the
master’s, I wanted to go back to Israel. I wanted to see Israel again. It’s been four
years. And I went for the summer. That was one of the highest . . . After four years
not being in Israel, just being around here and with my mother and my sister. My
sister was already a big girl. I remember taking a bus to Yamit. This was a time
when they were actually withdrawing from the Sinai Desert. So I was in Israel then
for three weeks, and then I came back to Berkeley and I continued to my Ph.D.

Rosen: Is there something about the initial time in Berkeley that you recall that is
worthy of mentioning?

Goldwasser: I remember the professors. There were the theory professors. There
was Manuel Blum and Dick Karp and Gene Lawler. And I remember meeting theory
students, the theory graduate students. There was Silvio, which later on became a
very close friend and a close colleague of mine. There was Vijay Vazirani. There
was Faith Fich. There was Joan Plumstead. There was Mike Luby. They were all
contemporaries of mine and I liked them. You know, I liked some of them more
than others [laughs] as things are, and they’re interesting characters. I took a class
I think from Gene Lawler on scheduling, and there was a TA there called Chip
Martel. Anyway, and I did some projects on scheduling with Vijay and Silvio. I
remember that.

Rosen: That was your first collaboration with Silvio?

Goldwasser: It was a project—right—in class. Yeah, that was the first collaboration.
Then I met . . . I took a . . . I met Manuel Blum, and Manuel offered me to be his
student. I spent the summer working with him, and that was fantastic because he
was such an unusual thinker, and he wanted to work with me, or he suggested that
I would be his graduate student. It was a huge compliment.

Rosen: You felt like it’s a compliment at the time?

Goldwasser: Yeah, sure. It was a huge compliment.

Rosen: Who were his other graduate students at the time?

Goldwasser: I think that Vijay and Silvio were his graduate students. I think before
that it was Mike Sipser and Dana Angluin, and we were sort of the new wave. There
was the three of us, maybe Joan too, Plumstead.
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Rosen: What was it about them that you liked at the time, do you remember?

Goldwasser: They were extremely intense. They really loved what they were doing.
They would talk about this incessantly, but they were a lot of fun too. You know,
Silvio was from Italy and Vijay was from India, and they were so colorful and they
had fabulous sense of humor. And they went out to restaurants all the time and
talked about work and told stories. It was really just somehow these were people of
the world. So as much as I liked Carnegie Mellon and had a lot of good friends, this
was like a different dimension of personalities. If you think about it, people come
to graduate school from foreign countries. They have lived a different life, each of
them. They’re older, they’re sort of more worldly, and I was taken by it.

Rosen: Any particular memories, events from that or before . . . ?

Goldwasser: Yeah. There is actually a memory or an event . . . I think it was after
about maybe like six months in or almost close to a year in Berkeley, I’m like a
graduate student, I had a down period. It was like it’s too hard and I don’t have any
original ideas and I’m never going to get through this, and I’m lonely, I don’t know
anybody, because I didn’t have friends yet, close friends. And who do I think I am?
And I was torturing myself continuously. What do I think about going to graduate
school? Who do I think I am that I can just do this?

You know, I decided to leave Carnegie Mellon where I had lots of friends and just
kind of conquer this new place totally on my own. I remember going through this
cycle again and again and again, and then I had this realization that okay, maybe
it’s all true. Maybe I will amount to nothing and maybe I know nothing, and maybe
I’m a failure. But if I’m going to be against myself and I’m not going to be my own
friend, then who else? I’m going to have to like myself whatever I am. I got to accept
that. And some of that was like a very kind of deep, decisive moment, that from then
on, everything became better.

Because I think it’s very important to realize that, for graduate students espe-
cially, which have moments like this, I’m sure it’s universal, where you go, you’ve
decided on this big adventure, and then it’s very unclear, right? Are you going to
succeed? Are you not going to succeed? There’s a lot of competition. Everybody
seems better than you. And there’s a—I think—tendency for self-beating, at least
for some people, and it’s very important to realize that it is what it is, you know you
got to like yourself, because at the end of the day, this is what you’ve got.

Rosen: Okay. Grad school, research, Manuel Blum.

Goldwasser: Research, grad school, right. Manuel Blum. Okay. Manuel Blum took
me as a student, but as things go, it takes time to find a research project. Then
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Manuel taught this class on algorithmic number theory. In this class, he taught
us about, first of all, the basic elements of number theory, primes and composite
numbers and quadratic residues and quadratic nonresidues and generators and
cyclic groups and all these things, and all from an algorithmic point of view. That
is, how to test that a number is prime, how to generate a prime, how to find the
quadratic residue, how to test that something is a quadratic residue, modular
arithmetic, and so forth, and always from an algorithmic perspective and analyzing
running times. I found it fascinating. I really loved it. You know, it’s very basic. I
like this stuff.

Rosen: I remember you teaching me this.

Goldwasser: That’s right. So I really love this material. And at the end, he had a few
lectures where he talked about cryptography. At that point, there was essentially
[only] RSA encryption scheme, a public-key encryption scheme, which is a way to
send messages between people who have never met before, secret messages. It all is
based on the fact that it’s hard to factor composite numbers which are a product of
let’s say of two primes, but it’s easy to generate prime numbers. And that was nice.
Then there was another lecture on another method by Merkle–Hellman which Adi
Shamir broke. And he did some cryptanalysis. That was interesting as well.

And then he asked the question, which was I think really defining for the rest of
my career. He said there is an Alice and Bob, and they are deciding to get a divorce.
Alice is in Boston and Bob is in San Francisco, or vice versa, and they have to decide
who gets the dog. And they want to be fair, so they decide to toss a coin, except
they’re not in the same place and they have to toss a coin over the phone, except
neither one wants a dog. Or both want the dog, whichever is the case. And the idea
that Alice just tosses the coin and then she says to Bob “It’s heads” doesn’t exactly
work because they don’t trust each other. So he asked, “How would you do that?
Can you use number theory to do that?”

So what’s the connection? You know, why number theory? And that was sort of
fascinating. Can you use sort of number theory? The idea that let’s say factoring
numbers is a hard problem, is there a way to toss coins over the telephone?

And I start thinking about it, and I had an idea. The idea was . . . that there
was this function, which is a modular exponentiation function, like gx mod p. The
idea was to essentially hide . . . for Alice to pick like a random x and send gx mod
prime p to Bob and have him guess what x is. This is a function which is hard to
invert: From gx mod p (and g) it’s hard to find x. And Bob tries to guess x, or actually
to be more precise, he tries to guess something about x, like whether x is odd or
even or greater than p over 2 or smaller than p over 2. And he makes a guess, then
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she tells him what x is and both can check if the guess is correct or not. If the guess
is correct, it’s like heads has been tossed, and if the guess is incorrect, it’s like tails.

And Silvio and I talked about it. I told Silvio about this. Then you needed to prove
something, right? You needed to prove that this is like a coin toss, that really it’s
impossible for Bob to guess better than 50–50 whether x was greater than p over
2 or smaller than p over 2. And we had some proof, but there was a bug in it. And
that was sort of the beginning of a lot of cryptography.

Rosen: And I want to ask at this point how much context about cryptography did
you have at the time beyond what Manuel [taught in the class]?

Goldwasser: Nothing. Zero. Uh . . . Zero.

Rosen: Did you know about Shannon’s work?

Goldwasser: Nothing. That was not part of the class. The class was about number
theory and applications of number theory. I think that’s what interested Manuel.

Rosen: Yeah, so why did Manuel Blum teach that class at that time?

Goldwasser: Because we’re talking about 1980. Was it 1980 or 1981? And the inven-
tion of public-key cryptography was 1976 and then the RSA . . .

Rosen: Maybe you can give some context to the general . . . ?

Goldwasser: Right. So 1976, there was this incredible paper by Diffie and Hellman
which suggested this idea that we are having this possibility of digital communi-
cation, that eventually everybody’s going to be communicating with everybody else
over the digital network. This is the case today. It wasn’t the case in ’76, but the
possibility was there. And they were asking, “How can we utilize this in order to
kind of shift the world into this mode of electronic commerce?” I think they even
talked about these things explicitly in this paper. And they brought up these two
suggestions.

One is what they call public-key encryption, which is a way for let’s say an Alice
and a Bob who’ve never met before to communicate secretly. Somehow there would
be a directory where Alice would publish something that they called a public key,
and Bob could read Alice’s public key and use that in order to send her coded
messages that only she, who knew also a corresponding private key, would be able
to read, but no one else could. This was one thing.

Another thing that they suggested is this idea of a digital signature, which is that
people could sign documents so that everybody can verify that, say, Shafi signed
it, but only Shafi could sign it. As you know, a handwritten signature, if I have
a signature, it looks the same no matter which document I put it on. Here the
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case was that you would take a document and you would do a transformation to
a new document which is called a signed document, and the ability to perform the
transformation would be something that each user in the system, Shafi or Alon,
could do in a way unique to them, because they knew some information or some
private key that enabled them to do so and yet there was a matching verification key
that would be able to verify that this was signed by Shafi or alternatively something
was signed by Alon. In any case, they proposed these two things. They didn’t give
ways to do it.

A year later, there was a paper by Rivest, Shamir, and Adleman where they
showed how to do it using number theory. Around the same time, there was also
a paper by Michael Rabin who showed yet a different way to do it also based on
number theory.

And Manuel taught those three papers, because they were just mind-boggling.
This whole idea, very tantalizing. Not only that; I think that Len Adleman was a
student of Manuel’s, so there was some affinity there as well. But one would have
to ask Manuel why he taught that class. I think it was the first time he did teach
that class, in any case. I think. You know what, maybe not. Maybe he has taught it
before. Maybe, because there are these notes, these lecture notes on number theory
by Dana Angluin. So he must have taught it before when Dana was a student, but I
don’t think he taught the public-key cryptography part of it.

Rosen: Who else was in the class besides you and Silvio?

Goldwasser: Me, Silvio, Vijay, Mike Luby. You know, the usual suspects. I mean all
of the crowd at Berkeley was there. Jeff Shallit was another good friend at Berkeley,
and Eric Bach.

Rosen: They went on to do computational number theory.

Goldwasser: That’s right. You know, that’s right. Eric has this very famous paper
about how to generate primes in factored form, which is an important paper for
generating generators for the multiplicative group mod a prime. Jeff Shallit also
had very interesting work, and they later wrote a book together on computational
number theory. And we were all colleagues, and friends. And we’re still friends.

Rosen: Okay, so now it begins?

Goldwasser: Now it begins. Right, so okay. So Silvio and I decided to work on the
following problem, and the problem was how to play mental poker. Because there
was one other paper that Manuel mentioned, and that was a paper by Shamir,
Rivest, and Adleman where they used their encryption scheme in order to show
how to play mental poker.
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What is mental poker? People probably know what poker is, although I didn’t
because my parents didn’t play cards and the whole idea of card playing was
supposed to be this thing that you did not do, somehow there was something
improper about it. Anyway, so this mental poker protocol by Shamir, Rivest, and
Adleman, the idea is again, we are two players, we don’t have a physical deck, we
want to play poker over the phone, over the computer line, and how are we going
to do that? How are we going to deal cards in such a way that you’re going to get a
random hand, I’ll get a random hand, and once we get the cards they’re not in the
deck anymore without knowing what each other’s decks are? They had an ingenious
idea where there was a way to deal cards in such a way . . . I mean it seemed like you
don’t know what my cards are, that I did choose random cards, and same for you.

But Lipton noticed that this protocol, there was a problem with it, that there was
something about the implementation of this protocol that they proposed where
it’s true that you couldn’t tell what my cards were, but you could possibly tell
some information about my cards. For example, let’s say that you could identify
something was a high card versus a low card. So there was something about the
encoding of the cards that did not hide all information about the card. Now for a
card game, that’s detrimental, right? If you know that I have a high versus a low
card, then this changes your strategy completely.

So the problem we set out to solve was how are you going to play mental poker
hiding all partial information about the cards? I remember that we’re thinking
about this problem and what do we need, and Silvio had this idea that we need
to have some encryption scheme that . . . Not encryption scheme. We didn’t talk
about encryption. I think it was Silvio’s idea that we needed a decision question,
like a yes/no question, where it’s hard to tell whether it’s a “yes” or a “no” better
than 50–50. But this was like an abstraction, right? And a little bit like the Diffie–
Hellman.

Because I loved the number theory, I remember sitting in a seminar where
some people were talking about something else . . . and in fact I must say that
this repeats in my career over and over again. I get ideas while I sit in seminars
when people talk about something else, which is probably a good reason to go to
seminars. [laughs] And all of a sudden, I had this idea about quadratic residues. I
said, “You know what . . . ” I think to myself that the way to encode the zero and
one, the decision question would be to decide whether the number is a quadratic
residue or quadratic nonresidue modulo a composite number n, and this was a
hard problem. I mean Manuel told us this was a hard problem, a hard problem in
the sense that there were no efficient algorithms to solve it. And the reason why I
thought it was a good idea is because it seemed to be a problem which is hard on
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the average. In fact, not only that you cannot tell whether something is a quadratic
residue or nonresidue, but you couldn’t really do better than 50–50. And one would
have to prove that, right?

But there was something about this problem, which is a notion . . . later on
defined formally, which is called random self-reducibility. It was sort of a way of
showing that if you had one number, if it was a quadratic residue you can generate
lots of [random] quadratic residues, or if it was a quadratic nonresidue you could
generate lots of [random] quadratic non-residues. And then that means that if you
could sort of distinguish one sample from the other even a little bit, then you will
be able to distinguish whether your original number was a quadratic residue or a
quadratic nonresidue.

Rosen: How did you feel at that moment, or . . . ?

Goldwasser: That moment of thinking about the quadratic residuosity being the
right problem and then telling Silvio? God, excitement. It’s just incredible. Because
pretty quickly, we could sort of come up with a proof.

And then, just to come back to the mental poker, the idea was that this would be a
way to write down a card. Let’s say the card is five of diamonds, okay. Then you write
this down in binary, the five of diamonds—so that’s in zero/ones—and now you
want to encrypt the zero, encrypt the one, encrypt a zero, encrypt a one, each time
encoding it by a different quadratic or nonquadratic residue. Quadratic residue for
zeros let’s say, nonresidues for one. You choose them at random. And now you have
an encoding of the card, which is what we would call later probabilistic encryption.

Rosen: At the time, did you realize it’s public-key encryption, or . . . ?

Goldwasser: We didn’t even realize it was encryption. We had a card. We had a way
to encode cards so that we could prove that there is no way you can distinguish one
card from any other, because you couldn’t distinguish zeros from ones better than
50–50.

Then, we went to Dick Karp, I think because Manuel was on leave at MIT for
a semester, and we told him about this. He asked us, “What about other partial
information, not just with a zero/one?” These questions professors ask you are
incredibly significant, because you don’t think this way, right? I mean now it’s an
immediate question, but at the time it was a very fundamental question. And then
we went away and proved that if you could tell any partial information regarding
(the sequence of bits that encodes) the card—and you had to define what partial
information is—then you could actually reconstruct the individual bits of the card.
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Which implied that you could tell whether a number was a quadratic residue versus
a quadratic nonresidue, which was a hard problem.

Rosen: Can you tell something about the process of figuring out the right defini-
tion?

Goldwasser: The way I’m telling it to you, it’s really derived from the goal. The goal
was to play mental poker in such a way that it hides all partial information. In order
to do that, it was clear that you had to encode every bit individually, and furthermore
it was clear that you would have to encode them in a probabilistic manner, because
otherwise you couldn’t hide all partial information. Then there was that question
of Karp’s, so we arrived to the question “What is partial information?” It should be
any function that kind of divides the world of cards into two parts. So any function
that partitions the cards into sort of the left and the right, you know?

The process was just . . . it was like being in some kind of a mad state of cre-
ativity. And working with Silvio was just a very intense experience, as anybody who’s
worked with him knows. I mean there’s no day and no night. And I think he’s still
that way. I’m not, but at the time I was. He was very intense, it was very exciting.
And of course we didn’t do it completely in isolation. There were these questions
that Karp asked us, and then I think maybe it was him or maybe we understood
already there was a way to encrypt here, that it doesn’t have to do with card games.
There’s a way to encrypt the zero and encrypt the one.

That’s something that was not known, because the public-key encryption of
Rivest, Shamir, and Adleman or even the Diffie–Hellman concept, it really was
intended for encrypting long messages which are unknown. And here zero and one,
you know that everybody knows you’re either encrypting a zero or a one, but they
can’t tell which is which. So this was a completely new way to encrypt information.
We understood this is much bigger than our original goal, but . . .

And we went to consult people in number theory, you know, in the math de-
partment. There was Lehmer and he was the expert. We were supposed to talk to
him and ask him, “Is it really the case that you cannot tell apart quadratic residues
from nonresidues? Maybe not just perfectly, but better than 50–50?” And I remem-
ber this quote. He said . . . We told him the whole story and we asked him what
would he do if he needed to distinguish whether a number was a square or a non-
square mod n. He said that if it was less than n over 2, he would bet it was a square.
We asked him why, and he said, “Because there’s a lot of small perfect squares.”
But he said he’s not a betting man. Then it turned out that this is okay because this
doesn’t give much of an advantage.

Rosen: When you came to him, did you feel the stakes are high?
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Goldwasser: No. We came to him as two young graduate students and he was very
accepting. A little bit maybe I thought he was a little humorous, because it’s such
a frivolous question, right? Playing cards, using quadratic residues. But I think the
whole attitude of mathematicians to computer science has changed radically. Not
to say that he wasn’t helpful. He was extremely helpful. But in general I think, at the
time, mathematics was this hard science and it was serious, right? And the whole
computer scientists and the algorithm aspects and using it for cryptography was
considered more of—I think—a toy activity. I think this is very, very different now.
If I look at the mathematicians at MIT, and I’m sure it’s true all over the world, they
have respect because we are studying hard questions, we are studying important
questions, we’ve made impact on the world. Cryptography certainly has made a lot
of impact. It’s making a lot of impact today. And only more so, as you well know
as well.

Rosen: And I’m asking again about the stakes because I am curious to know, when
did you realize how big your discovery is at the time?

Goldwasser: Right. So we realized that we have actually a scheme for encrypting
single bits, something that was an open question that nobody addressed. And when
you encrypt a single bit, obviously it’s going to have to be a randomized method,
because it is a public-key encryption, so everybody can encrypt a zero and a one.
If all encryptions of zero were the same, when you see the encryption, you can just
yourself try to encrypt zero or try to encrypt one, and if it’s the same as what was sent,
you know what was sent. So it has to be the case that there’s lot of encryptions of zero
and lots of encryptions of one, and an adversary shouldn’t be able to distinguish
whether we’re encrypting zeros or ones. You cannot actually have any better than
50–50 plus negligible probability of success in guessing which random bit was
encrypted.

Now, in the context of a protocol, if you think about this mental poker example,
not only that you’re encrypting the cards but there’s a lot of other information going
around. There’s the dealing of the cards where many cards that are being encrypted.
You could ask the question whether, having been part of this game, playing the
cards, maybe you gain more and more knowledge as you go along so that now you
are able to guess something about the unrevealed cards better than what can be
inferred from the revealed cards. The definition, which we called semantic security,
covers this too.

In order to prove semantic security, we came up with this idea of a proof by
reduction, the idea being that you say . . . well, let’s suppose that your goal in the
world really, you have no interest in mental poker, but what you want to distinguish
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is quadratic residues, quadratic nonresidues. Okay? And somebody tells you that
there is this mental poker game that’s built on encoding cards with quadratic
residue and quadratic nonresidues, and they know how to cheat in this game. So
what you say to yourself, “Okay, I’m going to show a reduction now. I’m going to
show that if in fact there is this person”—or this adversary, which we usually call
them—“who is able to cheat in the mental poker game, even by slightly better than
he should, then there is a way to use this strategy and turn it into an algorithm that
can distinguish quadratic residues from nonresidues.”

Since you believe that quadratic residues and nonresidues cannot be distin-
guished in polynomial time, it means that such strategy does not exist. But how
do you show such a reduction? In a sense you need to simulate everything, the en-
tire view of the adversary—that is, the encoding of the cards and the dealing and
everything that went on and was available to him to enable his cheating strategy.
This is what’s called proof by simulation, which later has become a big paradigm in
cryptography, in how to actually give security proofs. You can prove security if you
can sort of recreate the real world in which cryptography is used and its security is
supposedly violated. And if you can simulate it although distinguishing quadratic
residues from nonresidues is hard, then it means that this violation must have not
been that useful, because you could have simulated this violation anyway.

Rosen: In hindsight, you can view Shannon’s security as being the information-
theoretic sort of analogue of semantic security. Did you see that at the time, or you
came up . . . ?

Goldwasser: No, we didn’t really know about Shannon’s paper, because we were
ignoramuses, [chuckles] which helped us actually. Shannon’s information theory
in fact, if you look at the definition, essentially says that the probability of two
messages is the same given the ciphertext. That’s one way to think of Shannon’s
security. An equivalent definition is the a posteriori and a priori probability of a
message is the same, where the a priori is without given the ciphertext, and the a
posteriori is given the ciphertext. In other words, the ciphertext gives no information
about the message. Or, if you think about the first definition, given ciphertext for
the bit zero or ciphertext for the bit one, there is no information in there that can
tell you whether it was a zero or one.

If you think about semantic security, it’s the computational analogue of it. That
is, in principle, information theoretically you actually do have enough information
to tell whether you’re seeing an encryption of a zero or a one, because it’s a public-
key encryption scheme. But computationally within polynomial time, you don’t,
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if distinguishing quadratic residues from nonresidues is a hard problem, or if
factoring integers is hard.

Of course, it could be that factoring integers is easy. We know that for quan-
tum algorithms, factoring integers is easy. So if quantum computers can be built,
then this whole tower of cards collapses. But this is only for the first probabilis-
tic encryption scheme. Today we have a lot of other problems, not just quadratic
residues versus quadratic nonresidues, not just the factoring problem, but also
problems on integer lattices, which are problems essentially from geometry. Now,
we can apply this idea of a decision question which is hard to solve in the sense that
it is infeasible to decide better than 50–50, and encode zero by this decision ques-
tion where the answer is yes and one by a decision question where the answer is no.
And these lattice problems, I mention them because they are quantum-resilient. In
other words, we don’t know any quantum algorithms that can solve them efficiently.
They are what we call post-quantum cryptographic candidates.

Rosen: Okay, so at the time, the idea of basing something on an unproven assump-
tion, it was in the air, or was it kind of a bold move?

Goldwasser: Right. Well, if you think about RSA, they’re also basing it on an un-
proven assumption. They are the first. They are assuming that factoring integers
is a hard problem. We took another problem, which was distinguishing squares
from nonsquares. But obviously that’s an assumption, and you know mathematics
prides itself by having proofs, and proofs are proofs and not conjectures. So there’s
an underlying conjecture here, and that is that there’s a problem which we don’t
know how to solve efficiently. But if you think about it, all of complexity theory is
predicated on the conjecture that the class P of polynomial-time problems and the
class NP of problems which you can verify the correctness of the solution in poly-
nomial time are different. So to give meat to the entire field, there is an underlying
conjecture which is widely believed but not proven, and then one builds on that
conjecture.

Rosen: And at the time, what was the atmosphere? Did you experience any resis-
tance to this idea?

Goldwasser: To this probabilistic encryption? We submitted it to a conference and
it got in the first time. This was a conference in San Francisco, in 1982. I think it
was a STOC conference and I gave the paper, and the name of the paper was “How
to Play Poker Hiding All Partial Information and Probabilistic Encryption.” It was
a long title. And I think that people were genuinely very positive, but speaking with
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people afterwards, I think they had no idea what I was talking about. [laughs] But
certainly in the cryptographic crowd, there was excitement.

Rosen: Was it your first talk in the conference?

Goldwasser: Yes.

Rosen: And how did you feel?

Goldwasser: I felt on the top of the world.

Rosen: How well attended was it, just . . . ?

Goldwasser: Oh. In that time, the conferences were very well attended. There were
no parallel sessions and people came to the entire conference, and it was a fairly
small community.

Rosen: Can you tell us a bit more about the atmosphere at the conferences back
then?

Goldwasser: I think that, you know, very intimate, very informed people. They were
already people who were working on different fields—you know, algorithms and
complexity theory, here’s a cryptography example, and distributed computing.
People started talking then about Byzantine Agreement. A lot of these big ideas that
are still around as sort of fundamental problems were being discovered at the time.

Rosen: Were you attending all talks?

Goldwasser: Yeah, I was. Everybody was.

Rosen: And was it accessible to everybody, to a wider audience than it is today? How
do you compare?

Goldwasser: I think so. But it’s natural. When a field is young and not overburdened
by definitions and history and background, it’s easier to understand. On the other
hand, people give much better talks today. People have learned how to simplify
their talks—PowerPoint has helped quite a bit—and people have more respect to
distilling the essence rather than giving all details.

Rosen: And what happened next? How did things evolve?

Goldwasser: Then, I had been to Berkeley at that point for three and a half years,
and I had a very strong urge to get a job and leave. Somehow, I think about it now,
I don’t know why it was so urgent to leave, but Berkeley seemed to me then like
this small place and it’s time to go. I applied for a postdoc and I got a postdoc with
Ron Rivest at MIT. I was there for half a year actually. Then, they were looking for
faculty members and I started interviewing for faculty positions all over the country
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and also at MIT, and I got an offer for a faculty position and I started on the faculty
in ’83.

Rosen: After having published what results at that time?

Goldwasser: There was this probabilistic encryption paper. Then there was another
paper which we start realizing that it’s not just this particular quadratic residues
versus nonresidue, but you can take actually any function which is what we call a
one-way function. That is a function which is easy to compute but hard to invert.
And in particular the RSA function. We asked what bit about it is well-hidden . . .
The RSA function is you take an x and you take it to some power modulo a com-
posite number n, like x3 or x5 mod n. The question is “What about x is really well-
hidden?”—well-hidden in the sense that you can guess better than 50–50. So the
paper was on that, looking at the bits of x and showing, proving that they are as
hard to guess as it is to invert.

Rosen: And this was still at Berkeley, or . . . ?

Goldwasser: This was still at Berkeley, yeah.

Rosen: With who was the paper, do you remember?

Goldwasser: This was Silvio and Po Tong, who was another graduate student. I think
that those were the two papers that I had, yeah.

[Editor: Actually, there were another couple of papers on signatures, both with
Silvio Micali and Andy Yao. So, at that time, there were four conference publications
altogether, and no journal publications at all.]

Rosen: Okay, so you start as faculty at MIT?

Goldwasser: I started as faculty at MIT and Silvio came a semester later. He was
at University of Toronto and he also got a faculty position at MIT. It was like an
incredibly intellectually exciting time. Oded Goldreich, who is now at Weizmann,
came as a postdoc. There was Benny Chor, who was a graduate student there. Later
also Yoram Moses came. I think Michael Ben-Or was there for some period of time.
And all these people, they were young, they were brilliant, they were enthusiastic.
We would work from day to night and then we would have dinners and talk about
work and go to movies. And cryptography was starting to march along.

So I think that the next thing that I did was this paper on pseudorandom
functions. There was an early paper by Manuel Blum and Silvio Micali on how
to generate pseudorandom numbers in a way that you cannot distinguish these
pseudorandom numbers from truly random. And the next question was how do
you actually generate not just a polynomial-sized list of numbers but a very, very
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long list of numbers, an exponentially long list of numbers, in a way that you could
sort jump in the middle. Another way to think of it is a function. So . . .

Rosen: And what was the motivation for this specific question, given that you can
generate a polynomially long?

Goldwasser: The motivation was that there are a lot of applications where you
want to sort of random access. For example—I think this is one of the original
motivations we had in the paper—is what we called an “identify friend or foe”
system. We were saying, let’s say that we are in a group, and we want to identify
ourselves to each other, but there are some enemies that come along, and we don’t
want to use this password system where they ask, “What’s the password?” I tell them
what the password is, and now they know. Instead, I want them to ask me a random
sort of question, which I can answer. And if we are from the same group, they can
verify my answer is correct, but anybody else, really as far as they’re concerned it’s a
random answer. So if you had what we call a pseudorandom function, there is a way
for all of us who’ll know the secret of this function—or what we call the seed of this
function—to be able to compute this function f on any x, and then the random
challenge would be x and I will tell you what f of x is. But being pseudorandom
means that for anybody else, they can’t tell it apart from a random function, so
when they are asked x, to them f of x is like totally random. That’s an application.

Rosen: So on that thread, I’m curious to hear how much of a role did practical
motivation play in coming up with these notions?

Goldwasser: With these notions? That’s a very good question, because it’s not clear
what you mean by practical. When you say “practical” today, you mean there’s going
to be a startup that’s going to implement it. No such thing, no startups. Nobody
implementing. So the level of practical that made any sense at that time was to
say that there is a story, like identify friend-or-foe or people sending encrypted
messages or people trying to authenticate themselves. And somehow I think those
stories were important for narrative, because I’ve always liked stories, like the
biblical stories. And in general I think people have an easier time to read, especially
in a new field where there it isn’t a mathematical problem that’s been defined for
many years and that people are interested in and they don’t need any motivation.
In a new field, you need to compel people, and stories are helpful.

But for us, it was really more of an intellectual story. The pseudorandom-number
generator was just a polynomial sequence of numbers. Then the question about
being able to kind of have an exponential sequence where you can sort of jump in
the middle and just generate a polynomial number of them or this abstraction of a
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pseudorandom function is what interested us. And once you had it, you could tell
a story, many stories.

Rosen: So you didn’t feel any pressure to practically motivate any of your . . . ?

Goldwasser: No, no. None.

Rosen: And what do you think about this versus the alternative? The need to find
practical motivation.

Goldwasser: I think that every once in a while I have graduate students, and they
come up with a question. For example, I have these two students now, they asked
about pseudorandom functions, what happens if somebody knows the secret of
how to generate these pseudorandom values? Does it still possess some crypto-
graphic hardness? This is a very technical question. But some of the reactions they
got is that “What is the application?” And they came to me and they asked me if
they should work on it or stop, what’s my opinion, is it interesting? I said, “It’s very
interesting.” It’s intellectually interesting. They had a beautiful sort of approach
to it. They had a beautiful proof. And at the end, that’s the nugget, right? It’s sort
of something that captivates you, you have to use some ingenuity to solve it, and
you have insight. And if it’s important, even for applications, it will emerge, but it’s
not necessarily obvious in the moment that you start. And sometimes if it is very
obvious, first of all, lots of people work on it, and you know competition is good but
only to a certain extent. If everybody’s working on the same problem, there’s some
kind of . . . I don’t know. I don’t like to be in a space that’s very crowded.

Rosen: How did it feel back then in the early MIT days in terms of competition?

Goldwasser: Right. As I said, we were a big, happy family, but [laughs] a big, happy
family of a lot of people who wanted to do well. So we worked collaboratively, we’ve
got a lot of joint papers, also with Benny on this thing called verifiable secret sharing
and with Oded on pseudorandom function. But we each started, within a couple
of years everybody started going in their own way as well, because you are in an
academic system, they compare you, they promote you at different times, they tell
you that you should kind of shine individually.

And I personally . . . You asked how I felt. Remember we talked about the crisis
of becoming a graduate student. That was again a time which was extremely diffi-
cult, because you’re trying to do something new, you’re trying to do it on your own,
you are always comparing yourself to the people around you who are always bril-
liant, and more brilliant than you are, and you don’t know that they’re all feeling
the same thing. You know this imposter feeling? Apparently they’re all feeling it.
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Some admit it, some don’t admit it. [laughs] But once you realize that this is the
name of the game, I think again it’s these moments of realization.

Rosen: So did you have such a moment?

Goldwasser: Yes, yes.

Rosen: When was that?

Goldwasser: I think I was talking to somebody . . . and I told them about how I feel
and they told me about the imposter syndrome. Now everybody knows it, but then
I never . . . I asked what it was and they explained, and it was like, “Ah, okay.”

Rosen: That was a person external to the . . . ?

Goldwasser: Yeah. Like a friend, yeah.

Rosen: Okay. What about teaching? Do you have any memories?

Goldwasser: Yeah. Teaching we really started . . . I started and then Silvio also to-
gether teaching this class on cryptography. It was the course of Manuel Blum but
with a lot more, because at this point the cryptography was a big part of it. There
was the definition of bit security and the semantic security of an encryption and
the mental poker, and the partial information, pseudorandom functions, pseudo-
random number generator. It started being a field. And we haven’t talked about
zero-knowledge yet.

Rosen: That was before zero-knowledge?

Goldwasser: Around the same time. It was before it got in, but . . .

Rosen: Before we get to zero-knowledge, who were the students in this class that
you remember?

Goldwasser: The students, yeah. There was Johan Håstad, there was Joe Kilian,
there was Bill Aiello. I think in the early years there was Yishay Mansour, but I think
he was a little bit later. Those are the students . . . there’s Paul Feldman, who was
a student of Silvio’s. The others were student of mine. And they’re all big names,
fantastic researchers in their own right.

Rosen: How did the other MIT faculty treat the young field of cryptography? How
did they perceive it?

Goldwasser: MIT is an incredible place. I think that they really have had the fore-
sight of hiring people who were not necessarily in the mainstream of theoretical
computing, but sort of doing something with the tools of theoretical computing
which is a little bit on the fringes. Rivest was like that. Public-key cryptography
after all was exciting, but it was unusual, right? And Silvio and I certainly, and
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Charles Leiserson was doing also things which were, you know, with applications.
At that time, I think it was data structures and stuff like that. Nancy Lynch was doing
distributed computing and Byzantine Agreement and lower-bounds on Byzantine
Agreement.

So I felt that they were incredibly proud of all achievements, and especially
Ron Rivest, who was a major mentor. Because now that I think of it, he wasn’t
really much older than we were. Maybe 5, maybe 10 years, no more. And he was
extremely supportive of us. We have a paper joined with him, digital signatures.
But by and large, we each did our own thing, and I think Ron started working
on computational learning fairly quickly, so he kind of left the cryptography field,
except for its commercial aspects, for a few years.

Rosen: What other faculty do you remember from the time being supportive?

Goldwasser: Albert Meyer was very supportive. I think he was really a very significant
mentor in his own way, sort of in the background. I mean Ron was in my field, so it
was sort of more of a daily advice or monthly advice. But Albert was at the head of
the theory group and he saw something in me and put me up for the Grace Murray
Hopper Award, which made me feel good, made me be recognized.

Rosen: Okay. Is it time for zero-knowledge?

Goldwasser: Yeah, I think so. So zero-knowledge. Alright. So this whole idea of
having a protocol where let’s say two people are sending messages back and forth
and there’s a goal for the protocol usually. The goal might be to . . . In the context
of going back to that mental poker, say you want to prove that the cards that you
encoded were encoded properly, but you don’t want to say what the encoding was.
So there’s a statement here, and that is that all 32 . . . sorry, all 52 cards have been
encrypted and no two cards are the same, but you’re not going to tell me which card
is which. Then there is apparently a way to do it. Apparently. We showed a way to do
this, which amounts to actually showing whether something is a quadratic residue
or a quadratic nonresidue, so that I can prove to you that something is a quadratic
residue or that something is an encryption of zero, or let’s say the two things are
encrypting different bits, in such a way that you will have learned nothing else.

Rosen: So you had a protocol?

Goldwasser: So we had a protocol. And now we had to have a definition. What does
it mean, “prove so that you learn nothing else”? The definition went back to the
simulation paradigm and it is called zero-knowledge. Let me explain what it means.
So I’m a prover. I know something and I’m proving it to you. I’m proving you some
mathematical statement without actually giving you the proof, which seems a bit
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weird, so at the end you’ll be convinced that the statement is correct. But what do I
want? I want you not to be able to prove it to a third party. In fact, I want you to learn
nothing from it. So how do you define it? The way you define it is that whatever you
can compute after you interacted with me, that’s no different than what you could
have computed before you interact with me. And an equivalent definition to that
is that you could essentially simulate the entire interaction between us. And if you
could indeed do so, it means that interacting with me was useless to you, assuming
the theorem statement is correct.

Rosen: And the name “simulator,” when did it come about?

Goldwasser: Who remembers?

Rosen: At what stage? There’s a story about multiple rejections?

Goldwasser: Ah, okay. Right. So this paper, we started. We didn’t actually call it “sim-
ulation,” I don’t think. I think it had some other definition. They were many names
for this paper. It started, it was “Participatory proofs . . . ” “Interactive proofs such
that they hide all partial information.” There were many, many names until we
got to the final name, which was “Interactive proofs and zero knowledge” or “The
Knowledge Complexity of Interactive Proof.” And the paper was rejected three
times. God knows. But we were very persistent, you know?

Rosen: How did you feel with each rejection? What’s the . . .

Goldwasser: Well, you know there were three of us. I mean in the beginning there
were two of us actually on this paper, Silvio and I. And then Charlie Rackoff joined.
He improved the paper, but it also got rejected. Because there were three of us, we
could sort of build each other up. And how did we feel? We felt like everybody else
was an idiot. [laughs]

Rosen: You had this confidence back then that you’re onto something?

Goldwasser: But this concept was so interesting and we liked them, and it was clear
that this is a great paper.

Rosen: And Charlie Rackoff was at the time where?

Goldwasser: He was in Toronto.

Rosen: In Toronto, so how did the interaction work back then?

Goldwasser: I think Silvio and Charlie interacted when Silvio was in Toronto. They
had some paper on coin tossing or something. Then Silvio came to MIT and we
continued working on the interactive proofs, but I think there must have been some
interaction between them. I wasn’t . . . It really wasn’t a three-way interaction.
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Rosen: But how was communication with people from other institutions working
in general?

Goldwasser: Well, there was email, but there certainly wasn’t the World Wide Web,
or it wasn’t immediate. There were phone calls, a lot of phone calls. There were
visits.

Rosen: Do you remember any notable visits, visitors and/or visits from the time or
from . . . ?

Goldwasser: Adi Shamir used to come to work with Ron. Again, I told you that Oded
Goldreich was around. And that’s about it.

Rosen: Okay. So zero-knowledge was rejected and you said the manuscript im-
proved over time with the rejection?

Goldwasser: It did improve over time. Sort of in the beginning, I think the simula-
tion was under computational assumption, then it became without an assumption.
Finally, it got in. We were mighty happy. And we went to the conference. I’m trying
to remember who gave that talk, if it was me or Silvio. I don’t remember.

[Editor: Silvio gave the talk.]
But in any case, at the same time, at the same conference there was another

paper, which was called “Arthur–Merlin Games.” This was a paper by Babai, who
introduced this concept where there was a prover and a verifier like we had, except
the prover’s name was Merlin and the verifier’s name was Arthur. And the difference
between a verifier and Arthur was that Arthur was just tossing coins, he was very
näıve, and Merlin then, based on Arthur’s coins, he would kind of teach him things
or prove to him things, such that if he was proving a correct statement, Arthur would
believe it, which we call completeness, and if he was proving an incorrect statement,
it doesn’t matter what strategy Merlin would employ, Arthur would not believe it.
That was the same as interactive proofs, except our verifier didn’t just toss coins.
He tossed coins and did computations, and based on these computations would
send messages.

Rosen: And his motivation was totally . . .

Goldwasser: His motivation, there was some group-theoretic problems that he
wanted to show were in NP, but he couldn’t, so he allowed this extension . . . In NP,
you also can think of it as a proof system where there is an all-powerful prover and
he writes down a string which is a short proof that can be checked in polynomial
time. An interactive proof, it can go back and forth, back and forth, so the prover
can send the string, the verifier asks the question based on some coin tosses, the
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prover sends another string, go back and forth, back and forth, and in the end the
verifier says, “I’m convinced.”

Rosen: So essentially in your paper, there are two main topics . . .

Goldwasser: Yes, there were the interactive proof systems and the zero-knowledge
ones, which are an important special case.

But, just to finish the previous thought: As I was saying, what Babai was trying
to show, some problem, some group-theoretic problem was in NP, but he couldn’t,
so what he did is he added this Arthur that was able to toss coins. And for an Arthur
that could toss coins, there was a short interaction by which you could show some
group membership problem.

Rosen: And when did you realize that it’s a similar related concept? At the confer-
ence? Was it at the time of the conference?

Goldwasser: I think it was at the conference.

Rosen: And did you already realize back then, view it as a generalization of proof
systems?

Goldwasser: Yeah, we did. I don’t know if he did, because for him it was really a
way to show a complexity bound, the complexity of certain problems. He defined a
complexity class and showed that these problems are in this complexity class. For
us, it was always a proof system, because we were coming from the cryptographic
setting. So there were parties. There were these Alice and Bob, where Alice was the
prover, say, and Bob was the verifier.

Rosen: To what extent did you understand the important open problems that
emerged from this new concept at the time?

Goldwasser: Yeah, they were abundant. One question was whether this system of
Babai and interactive proofs were the same. He had this system of Arthur–Merlin.
We had this verifier–prover. Arthur could only toss coins, the verifier could actually
toss coins and compute on them, and that seemed to be a very important feature
that enabled you to prove things you couldn’t do just with coin tossing. So that was
a clear question. Then Mike Sipser and I, we proved that those two classes were
the same.

Interestingly, it all started again from the quadratic residue question, which
was a question that kind of followed my career, because it seemed like to prove
that something was a quadratic nonresidue required, without sort of revealing
information, required a verifier’s power to hide the results of his coin tosses. And I
was talking to Mike about this, and then he had this idea that we could look at
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the set of all quadratic residues and the set of quadratic nonresidues, and talk
about what are the union of those sets. Anyway, we talk about size of sets and relate
that to the question of whether a number was a quadratic residue or quadratic
nonresidue, which is related in turn to the question whether Arthur–Merlin games
and interactive proofs are the same class or not.

Rosen: Did you have any applications in mind beyond the original mental poker
application?

Goldwasser: Not really. It was again a concept. How do you prove a theorem in such
a way that you will believe the statement but you will learn nothing else, with the
definition that I gave you, and that you won’t be able to prove the theorem to a third
party?

But very quickly after, as soon as the paper came out, Adi Shamir pointed out
the application for preventing identity theft. Here in this situation, you would think
about me. What identifies me is the fact that I know how to prove some theorem and
nobody else knows, because it’s a difficult theorem to prove. But I have the proof.
How do I have the proof? Maybe the proof is something like I know the factorization
of some number. How do I know it? Because I took two primes and I multiplied
them, so of course I know how to factor it. Now I want to prove to you that I know
this factorization or something about this factorization that only I will know. That
would identify Shafi: that there’s this composite number and she knows how to
factor it. He realized that this is an identification method, and he took actually a
protocol that we have for proving that something is a quadratic residue and made
it more efficient in terms of how many rounds you need to accomplish it, and it . . .
This is the work of Fiat and Shamir, and this became an identification scheme.

But the interesting thing about zero-knowledge is that is really the tip of the
iceberg. Really, “the tip of the iceberg” is the wrong analogy. In any case, that’s
just scratching the surface, because it turned out that even though we showed
the applications of zero-knowledge in the sense of particular number-theoretic
questions you could do in zero-knowledge, like whether something is a square or a
nonsquare, it had a much wider applicability.

There’s a follow-up paper by Silvio Micali, Oded Goldreich, and Avi Wigderson
where they showed how a prover can prove to a verifier that a graph is three-
colorable, and that’s an NP-complete problem, and what follows from this is that
you can actually show any NP statement in zero-knowledge. So I can prove to you
any statement that has a short proof in such a way that at the end, you’ll believe
the statement but you will have no idea of the proof. In order to do that, they
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used computational assumptions, so this was under the assumption that one-way
functions exist.

What this means—okay, going a little bit into the field—is that essentially we
can take any protocol, any protocol between let’s say multiple people, not just two,
where there’s a program say that specifies what messages I’m supposed to send to
Alon and what messages Alon has sent to a third party and so forth. The thing is that
the messages that I’m supposed to send are based, let’s say, on my passwords or
some private information I have. The messages you have, you’re supposed to send
are based on what you have received from me and your private information . . . So
I do my computation, I send the message. If we’re all honest, everything’s fine.

But suppose I’m a liar. I’m an adversary. We’re in a cryptographic setting. We’re
all liars in some sense, or we have to protect ourselves in any case. How do you know
I’m sending the right message? How do you know I did the computation correctly,
based on my private information and all the messages I receive? Well, that’s an NP
statement, right? So there’s a statement to prove, and that is that I am sending the
correct message. If I can prove that in zero-knowledge, it means that I can actually
transform all protocols that work when people behave properly to protocols that
work when people behave improperly, because essentially every message I send is
accompanied with the proof that it is the correct message, and it’s a zero-knowledge
proof so I’m not revealing anything about my secrets.

Rosen: What about other applications?

Goldwasser: Lots of other applications. The next application is something called
multi-party computation, which is a little related to what I just said, but it’s actually
much more relevant to today. So let’s talk about the fact that we are now living
in this data-driven society and different parties, it might be different hospitals or
different national agencies, and they have a lot of data. If you think about hospitals,
it could be one hospital has my genomic information and another hospital has my
blood type, my blood test over the years. Another hospital might know something
about illnesses that I have experienced. And they would like to compute something
based on this data, but they don’t want to reveal to each other the data. Another
example might be that I am the tax authorities and you are the immigration office
and somebody else is, I don’t know, another governmental agency. And because of
regulations, they’re not allowed to share their information. Still, they would like to
compute some function that’s based on all of the data together.

That’s what we call multi-party computation. There’s multiple parties, each one
has data which is confidential, and they want to compute some function that de-
pends on all the data without revealing it to each other. It turns out that it can be
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done. And it can be done partially . . . there’s a little bit of algebra involved, it’s
beautiful theory, but what does zero-knowledge have to do with it? If everybody’s
honest, it can be done. It’s an interesting method of how. But what if somebody’s
not honest? Maybe they’re not following the protocol. Well, you just tag on zero-
knowledge proofs to each one of their messages, and then even if they are poten-
tially dishonest, you will be guaranteed correctness because they will be caught if
they deviate from the protocol.

Rosen: Did you foresee the generality of the method at the time?

Goldwasser: No, no. It’s way . . . way ahead of its time.

Rosen: And again, what was the reaction back then?

Goldwasser: About multi-party computation?

Rosen: Yeah, to these new revolutionary ideas.

Goldwasser: First, there was a paper by Goldreich, Micali, and Wigderson, who did
this multi-party computation based on the existence of Oblivious Transfer. That
got in. I think it had strong reaction. I mean good reaction. But then there was a
follow-up paper that is by myself, Miki Ben-Or, and Avi Wigderson which happened
at a time that I was visiting Hebrew University on sabbatical, and that did not have
computational assumptions.

So there was a sort of a partition, within theoretical computer science, maybe
less so these days. Some of them are so intrigued by the concepts and they’re willing
to make assumptions like the existence of one-way functions or that it’s hard to
factor integers and so forth. Others, such assumptions discount results for them, so
when you can prove an information-theoretic result without assumptions, they’re
happier. So I think that the fact that there were information-theoretic analogues
was very helpful for this whole theory to be adopted.

Rosen: Okay. Before we move on, I’d like to ask more about applications.

Goldwasser: Actually, I want to say something more about zero-knowledge.
First, it was intellectual curiosity. Then Fiat and Shamir realized this is impor-

tant for preventing identity theft. Next step was that this enabled a conversion of
protocols from honest parties to potentially misbehaving parties. But then all of a
sudden in recent years, it had some very unusual usages.

One of them was by some researchers in Princeton together with Boaz Barak
where they talked about the use of zero-knowledge for nuclear disarmament. Now it
sounds like, you know, out of nowhere. The idea there is that you want to be able . . .
let’s say the Russians and the Americans want to make sure that they are disarming
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nuclear warheads, but they don’t want to show each other the technology. How
do you prove that a nuclear warhead is in fact a nuclear warhead without looking
inside? It sounds like you want to prove a statement but give zero-knowledge. And
it’s not just by association. There’s actually a concrete method that they use which
uses a lot of underlying principles from the mathematics of zero-knowledge.

Another example, which Moni Naor from Weizmann came up with, is suppose
you are a suspect in a crime and you want to prove that you did not commit it, so
they are asking you to give some DNA so that they can compare it to the forensic.
The point is you don’t want to give it because maybe you are planning on doing
a crime in the future or your children are. So how do you prove that you were not
in the crime scene, or your DNA does not match without actually giving the DNA?
Again, zero-knowledge is the answer.

So there’s all these applications all over the place. The last application is the
blockchains. Today, as you know, there’s this whole idea of Bitcoin, blockchains,
how do we put transactions out on a blockchain so that they are serialized in
time? And some of the questions are, okay, so you want to put transactions, or
transactions meaning things you’ve done, you want to have records that everybody
can see. But sometimes you don’t want everybody to know the details of the records.
You might want to prove that two records are the same, or other properties of the
records, and you want to do that in zero-knowledge. So it has actually become very
well known to people in the trade these days and there are even companies that
specialize in zero-knowledge.

Rosen: And also digital signatures?

Goldwasser: Yes, also digital signatures. Yes. So what are you asking about that?

Rosen: Fiat–Shamir, the standards digital signatures over the Web is based on ideas
going back to zero-knowledge, the ones that started in the late ’80s.

Goldwasser: So digital signatures were invented, as I said, in Diffie–Hellman’s
paper. Then RSA had implementation, but there was really no definition of secu-
rity. So obviously . . . it shouldn’t be forgeable. But what would that mean exactly?
Let’s say someone’s a notary public, so they’re able to sign. You want to make sure
that even though I can go to the notary public and give him documents at will for
them to sign, that I am not able to learn how they sign and be able to sign any other
document in the future. This is what we call digital signature secure against chosen
message attack. In other words, I can choose the documents that I feed the notary
public to sign and yet, even though I see polynomial number of signatures, I’m not
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able to produce yet one more document for which I sign it without the help of the
notary public.

Rosen: And you came up with the first definition of what this means.

Goldwasser: Definition and construction, we had a way to do it.
[Editor: At the time, this notion of “existential forgery” was considered paradox-

ical and it was not clear if it could be achieved. Indeed, as in the case of encryption
and zero-knowledge, the utmost robust notion of security was coupled by a proof of
feasibility under better understood assumptions. That is, robust definitions were
coupled with constructions that achieve them under widely believed assumptions
such as the infeasibility of factoring.]

Rosen: And then eventually it became crucial to the development of electronic
commerce over the Internet.

Goldwasser: Absolutely.

Rosen: Okay, so moving onto information-theoretic and unconditional results.
Maybe first we talk about geographically, where are you located now, your area?

Goldwasser: Yeah, so this is 1986 and I . . . Actually, we should talk about primality
then before.

Rosen: Right. So let’s talk first about primality?

Goldwasser: Yeah. Okay, so as I told you, interactive proofs, or maybe I didn’t men-
tion it, but we were talking about the fact there’s a prover and there’s a verifier. The
verifier is tossing coins. They go back and forth. The big distinction of interactive
proofs from classical proofs is that there is a probability of error. I proved to you
something and with very, very high probability you know it’s correct. Or another
way to say that, there’s a very small probability that I managed to cheat and prove
an incorrect statement. That’s what enables zero-knowledge.

So, as I told you, I was always interested in number theory, and there was this
problem around, which was how do you test numbers for being prime? And a
beautiful old result by Solovay and Strassen and Rabin are algorithms for testing
numbers whether they’re primes or not, fast algorithms that have a probability of
error. So at the end, you run this algorithm, you know with very good probability
that your number is prime. In fact, what it is, is that if it’s composite, you’re likely
to detect that it’s composite, and if you don’t detect that it’s composite, you say,
“It’s probably prime.” So an interesting question was can you have a primality test
that doesn’t have any probability of error? Can we test that a number is prime or
composite and be 100% correct? And can you do that without actually factoring
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the number? That was work that I really enjoyed tremendously and did with my
graduate student Joe Kilian at the time.

Rosen: And do you want to tell us more a bit about it . . . the story?

Goldwasser: Yeah. I was in a conference again. As I told you, sitting in lectures
really works well for me. I was in a conference, and René Schoof gave a talk about
some algorithm he had for taking square roots mod p for small numbers. It had
something to do with elliptic curves over finite fields, which was something I knew
nothing about, but he described what an elliptic curve was and he had some
algorithm for counting how many points are on a curve. And this whole elliptic
curve was defined with respect to a prime. So there was some equation, you know,
like y2 is equal to x3 plus ax plus b mod p, and you could count the number of
solutions (y , x) in this defined group, and he was doing some operations on the
group.

In any case, he had an algorithm. And when I was sitting in this lecture, I started
thinking to myself, “What if you’d run this algorithm mod p, except you didn’t know
whether p was a prime or composite? How would the algorithm perform? Would it
work? Would it not work?” And I asked him that question. I think it sounded like
a really weird question and he was like, “Well, it probably would be garbage if you
ran it mod p where p was composite.”

So then I went back to Cambridge and I think I invited Schoof to come and give
the talk at MIT. And he came and gave the talk again, so I understood a bit more.
Then I start talking to Joe about the question of what if this prime was a composite,
and we start talking about how to use these elliptic curves working mod a modulus
which we’re trying to tell whether it’s a prime or composite, and then the rest is
history. We had a primality test based on elliptic curves that was randomized but
there was no error probability.

Rosen: That was in ’86?

Goldwasser: That was in ’86, yeah.

Rosen: Okay. And then what?

Goldwasser: Then what? So then just, you know, it was ’86 or ’87 and I haven’t been
in Israel for many years. I used to come visit, but I was really pining away in some
sense to being in Israel for some extended period of time. And I had a sabbatical
and I decided to spend it in Israel. And I came to the Hebrew University and there,
there was Avi Wigderson and Nati Linial and Michael Ben-Or. I didn’t know what I
was going to work on. I was teaching a course about primality and elliptic curves,
and they were very excited because elliptic curves were creatures that they didn’t
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use in computer science. They haven’t been used that much either since, but in
any case, I was teaching this class.

Then I remember that I was in Avi’s office and he asked me this question.
He says, “What else is there to do in cryptography? Because we’ve already done
encryption and we had like good definitions and signatures and identification
schemes and zero-knowledge, and what else is there?” So this is a question for
some reason people ask many times, many years later. At that time sort of under the
pressure of the moment, which was always very good for me to be asked questions
under the pressure of the moment, [laughs] I answered like, “Well, you know, we
make assumptions, and maybe we could make some sort of physical assumptions
rather than computational assumptions like that factoring is hard, and we could
prove results absolutely.”

Somehow that conversation led to two different papers. One of them was, when
I told you about interactive proofs, I told you that there was that result that said that
you can actually prove any statement in zero-knowledge using an interactive proof
if one-way functions exist. If you like, if factoring is hard. And that’s a conditional
result, right? So one question is, can you do it without any assumptions? Well, what
we came up with at the time, and this was with Joe Kilian also, was this model where
there wasn’t a single prover and a single verifier, but there were two provers. Now
that sounds weird. Like, why two? You know, anyway this prover is supposedly very
powerful. Why does he need another powerful friend?

So there was this idea that these two provers, they are like committing a crime.
What’s the crime? The crime is that they are trying to convince you of an incorrect
theorem. And just like the police, the police is like the verifier, it’s interrogating
these provers. In order to check that their alibi holds up, they put them in separate
rooms. They ask some questions from one, you know, potential criminal, and then
they go and they ask the other, and they compare the answers. Now, this defines a
model. What’s the model? We have two provers. We have one verifier. The verifier
can ask questions from each one depending on the question he asked the other,
and the restriction on the two of them is they can’t speak to each other.

That’s a new definition of a proof system. We still want there should be proofs
for correct statements, and there shouldn’t be proofs for incorrect statements no
matter what these two guys. But now we have an assumption, except it’s not that
factoring is hard but that these two guys are isolated from each other. And of course
I had some idea that it’s not so bizarre, because we can think of an ID card, because I
was thinking about Adi’s motivation—that instead of having one ID card, you would
have two of them and you put them into a bank machine. There were already bank
machines at that point. Which might not sound interesting to you, but ATMs are
also an invention that occurred during that time. [laughs]
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Rosen: I’m not that young.

Goldwasser: You’re not that young. [laughs] Okay. Neither one of us. In any case,
so there are two cards, and you think about there’s two cards, there’s two provers,
they’re proving that they are Shafi. And the ATM is the verifier and it could make
noise so they can’t talk to each other, they can’t see what questions are being asked.
We had a patent on this.

Rosen: Okay, so I think maybe now maybe we can actually go down the line with
this line of research and then I’ll go back to the other area later.

Goldwasser: Right, right. In any case, we had this model, the two provers. Why
did we invent this model? Because it turned out that you could prove that every
theorem that has a short proof, can be proved in this model in zero-knowledge. That
is, there is a two-prover interactive proof, where these two provers are in separate
rooms, and they’re going to convince the verifier of the correctness of the statement
without giving him the proof in zero-knowledge, no assumptions. Okay, so there
was a system. We did it for zero-knowledge in order to remove the assumptions like
factoring is hard.

Then there was a paper by I think Fortnow, Rompel, and Sipser where they asked
how many rounds you needed for this two-prover system. Then a whole bunch of
results started to follow.

And then there was this incredible, incredible result by Noam Nisan, who was
a postdoc at the time at MIT. What he showed was you can, with a two-prover
system, prove the value of a permanent to a verifier. Now I don’t want to get into
the technical definition, but this is a very, very hard problem. It is extremely . . .
It’s beyond NP. And all of a sudden it seemed like. . . . And additionally it’s a
complete problem for counting sharp-P class and it seems like the two provers
were extremely powerful. And what followed after that is that using the techniques
that Noam used, within sort of a whirlwind of results it has been shown that
this class of interactive proofs with a single prover was as powerful as polynomial
space. And then again, within months or weeks, it was shown that this class of
two-prover interactive proofs was as powerful as non-deterministic exponential
time. All of a sudden, these weird creatures that we’ve introduced with provers
and verifiers and interactions and people locked in different rooms were sort of
grounded in the traditional complexity theory with classes like polynomial space
and nondeterministic exponential time and equivalences were shown.

Rosen: And how did you feel at that time?
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Goldwasser: I thought it was . . . first of all, the mathematics was fantastic. It was
really new matter . . . It was arithmetization, expressing decision problems using
polynomials. So the math was fascinating and I thought that . . .

Rosen: You were pleased?

Goldwasser: I was pleased. Yes, I was very pleased.

Rosen: Okay. Let’s continue on that line and then we’ll rewind back.

Goldwasser: Yeah, then I had a couple of years later, I think it was like 1990, I
was in Princeton for a sabbatical and I think Joe Kilian gave a talk there about
something about . . . I can’t remember anymore. Some two-prover proof system in
nondeterministic exponential time. And there was something about his talk that
made me think that you could sort of simulate nondeterministic . . . you could do
all nondeterministic exponential time in exponential time. Which like you would
show collapse of these deterministic and nondeterministic classes. And I told Muli
Safra about that, who was actually my postdoc at the time I think, and he was also
in Princeton.

We started talking about it and then it turned out that that would be true if—
now it seems like a rabbit out of a hat—if some graph-theoretic problem was easy
to approximate. The graph-theoretic problem is called the clique problem. It’s like
you have a graph and you would like to find a subset of the graph where all vertices
have edges between them. It turned out that if you could approximate the size of
the largest clique in a graph, then you could have showed that nondeterministic
exponential time was equal to exponential time. Turning this on its head, it says that
it’s hard to approximate the size of the largest clique in a graph if nondeterministic
exponential time is not equal to exponential time. Then when you sort of downsize
this, you get essentially a result that says that it’s hard to approximate clique if P is
different than NP. So there’s an NP-hardness result hiding in there.

Rosen: So you sort of started with complexity, went to cryptography, and came back?

Goldwasser: And came back, yeah. And this whole idea of using multi-prover inter-
active proofs, something that then morphed to something called probabilistically
checkable proofs, PCPs, started with that work, and how to use that in order to prove
hardness of approximation started with that work. That’s become a complete field,
which I’m very proud of.

Rosen: Rightfully so. So, okay. So now you want to continue a bit on this thread or
go back to the other paper with the . . . ?
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Goldwasser: Let me just say a few more things about this. We’ve talked about
interactive proofs, right? Single prover and verifier. We’ve talked about this multi-
prover interactive proof. What is this probabilistically checkable proof? So far,
everything was just very general, right? There are these two provers, there’s a verifier,
they exchange messages, at the end the verifier accepts the proof, doesn’t accept
the proof, there’s some probability of error. But now we start quantifying things
a bit. So you can talk about how much randomness is the verifier using? How
many coins does it have to toss? You can talk about the length of the messages
that are being sent. You can talk about how many questions are being asked and
you can talk about the probability of error. And once you start quantifying this,
I mean these are parameters, and if you change these parameters, they can be
sort of very tightly coupled to the problems that you can either approximate or
nonapproximate.

But let me say it in a different way. There’s this third creature, which I men-
tioned, probabilistically checkable proof. What is that? There the idea is much
easier to understand. In a sense, it doesn’t require the stories of provers and ver-
ifiers and so forth, even though I love stories and I would never have got into any
of this without stories. So probabilistically checkable proof, the idea is the follow-
ing. Usually people think of proofs, mathematicians think a proof is a string that
you can read in a book, right? It starts from statement one, statements follow, and
then QED. Probabilistically checkable proof is a way to write a proof in such a way
that you can actually . . . you don’t have to read the entire proof. You can probe it
at some locations, not in all of them, and you should think of it as if I’m choosing
these locations at random, and make some check on those locations you’ve probed,
some local checks, and if there is a mistake in the original proof, there’s a very good
chance you’ll find a mistake in the local check.

So it’s these proofs which are probabilistically checkable because you’re sort of
choosing the locations at random, and furthermore you have to read a lot less than
reading the entire proof. Of course, you don’t get certainty. You get probability of
error. And now the kind of parameters that I talked about a minute ago come into
play. How many places in the proof do you have to look at? What is the probability of
error? What are the sizes of the questions and answers? And these are parameters
that, in the original paper that I had with Muli, and then with Lovasz and Feige who
joined . . . , we joined forces, these parameters were improved, and subsequently
more by work by Arora and Safra and then by the well-known paper by Arora, Lund,
Motwani, Sudan, and Szegedy to be sort of optimal, where you really need just log
n randomness and look at constant number of bits of the proof and you will catch
a mistake if it exists.
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Rosen: Now let’s rewind back to the late ’80s to the second result you were allud-
ing to.

Goldwasser: Right. That’s a result with Ben-Or and Avi, and that’s about how to
do multi-party computation, the same problem I told you about with the different
hospitals that want to compute some function of their data without sharing it. What
we showed was how to turn this problem into an algebraic problem where the data
that you have is represented as essentially shares of a polynomial. This is called
secret sharing that was invented by Adi Shamir. It is a way to take a piece of data and
share it among n people so that only looking at some of the shares you have no idea
what the data is, but if you have sufficient number of shares you can reconstruct it.

But Adi’s secret sharing was just a way to share data. What we were asking is
how do you compute on data? So now we have these three hospitals. Let’s say each
one of them has shared their data, secret-shared among all three. But that’s not
enough. They want to do a computation on it, like they want to do maybe some
linear regression or they want to find out how many patients are there whose DNA
is of a specific type and it had infections in the past and their blood test is in a certain
range. So they want to do maybe set intersection or something like that. You can
write any such function as essentially a sequence of operations on the data, which
essentially looks like summing and multiplying.

What we realized is how you can take these shares of secrets, which were essen-
tially values of polynomials, and compute with them. How can we add them and
multiply them where each of us only has their shares? I have the shares of your
data, I have shares of everybody else’s data, and using these shares I can essentially
compute a share of the sum of the data, a share of the product of the data. I can
keep doing this iteratively, so essentially any program that we want to run on this
data can be run in such a way that at the end I will only have a share of the result
and I will have learned nothing about the data except for that share of the result.
And since all of us have shares of the result, now we can reconstruct the result. That
means that I knew my input, I’m going to know the result, and I can tell whatever is
implied by knowing my input and the result, but nothing else. And this is . . . It’s
important. [laughs] Yeah.

Rosen: Why is it important?

Goldwasser: Again, for lots and lots of applications these days. If you want to con-
nect it, if we kind of zoom to 2017, you know all the rave now is machine learning,
right? Everybody’s talking about these neural nets and logistic regression and how
it is going to change our lives, for medical, for actual medicine, precision medicine,
for targeting consumers, for making decisions on who to set on bail and so forth.
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But there is a question, and that is a lot of this is driven by the fact that we have tons
and tons of data about people, and this data sometimes should not be shared. And
it’s held let’s say by either individuals or by entities that even are bound by regula-
tion not to share it. So how are you going to get them to use their data for running
a machine learning algorithm without sharing it; that is, in a way that respects the
privacy of individuals?

The technique of multi-party computation is essential for that, because you may
think of coming up with a machine learning algorithm, let’s say in the training
phase, taking the data, training on it and figuring out a model that can do pre-
dictions as a protocol that has access to data toward the end of coming up with a
prediction algorithm, but not for seeing the data explicitly. And multi-party com-
putation because of its generality can be used.

Now there’s a difference here between theory and practice. On paper all is good.
That is, we wrote papers and we proved theorems. But in order to use it in practice
in a way that’s efficient enough, you need to do a lot of optimization, you need to
improve, you need to implement. Only time will tell if these methods will be used
as they are or they will be modified, and hopefully not modified to such an extent
that they will be insecure.

Rosen: Well, they are already being deployed in a commercial context.

Goldwasser: Yes.

Rosen: Okay. Now I’d like to ask you about some retrospective about advising stu-
dents throughout the years. You’d had many great students, well known, very suc-
cessful, and in several ways, in several generations.

Goldwasser: Alright. First of all, I have had incredible students, and these students,
I am thankful for that every day. Early in my career I worked with my colleagues.
You know, I worked with Silvio and Oded and Avi and others, so I did not write
papers with my students. But now I do. In any case, then the students were really
more doing their own thing and I was advising them in the sense that they would
tell me about their stuff, and sometimes questions came from me, sometimes
questions came from them. Now it’s more that I’m in an advisory role, that most of
the questions come from me, but the students do a lot of the work. I think that my
advising style must have changed because it became much more working together
with the students than it was before.

I’m always in awe at the fact that there’s a new student and there’s a new talent
and that they really make something out of nothing. Not in the sense that they
are nothing. In the sense that they come up with new ideas and new questions,
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and where does it come from? That’s the incredible thing of working in university.
There’s this young generation one after the other, and they are so excited about
what they do and they are remarkable. So that’s really a gift of being able to be in
university.

Rosen: Okay. Can you mention different styles of students, of researchers that you
encountered? Different characters?

Goldwasser: Different characters. I’ve met lots of characters. [laughs] I remember
Joe Kilian was really into limericks and a great sense of humor and a very creative,
unusual researcher. Then there are people who are very like technically extremely
sharp, right? Like Johan, but so was Joe too. I’m mentioning them in the beginning,
because at my advanced age [laughs] it’s easy to remember the past rather than the
present. No, but I’ve had amazing students really all along. Some of my students are
faculty members at Weizmann where we’re sitting right now, like Zvika Brakerski
and Guy Rothblum, who’ve both done amazing things. Then some of my students
are faculty members at MIT, like Vinod Vaikuntanathan. Then there’s Yael Kalai.
And I have former students all over Israel, like Yishay Mansour and Adi Akavia, and
many others all over the world.

Rosen: So now let’s talk about the property testing and delegation?

Goldwasser: Sure. Okay, so property testing.

Rosen: How did it all start?

Goldwasser: How did it all start? I actually think that my first thoughts in the direc-
tion of property testing come again to a talk that I attended in Hebrew University,
of Michael Kearns’ actually, where he talked about learning. He had some model
of statistical query learning. In any case, and then I drove back with him to Tel Aviv
and we had some conversation in the car that made me start thinking about the
question of not learning where you have examples and you’re trying to predict a
label of a future example, but more about being able to tell a property of whether
the examples you are seeing belong to one distribution or another distribution.

Or another way to say about it . . . What do I mean by examples? Let’s say that
you have a function and you can’t look at the function table. You actually don’t have
a description of the function, but you can query the function in different places.
And what you would like to find out is a property of this function. So what could be
an example of a function? An example could be . . . let’s say there’s a graph and I
actually can’t look at the whole graph because the graph might be extremely large,
but what I could apply a function to two vertices and the function will say one if
there’s an edge between them and zero otherwise.
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So that’s a description of the graph. It’s a function. So there’s sort of an indirect
description. Now I’d like to ask questions about this graph. Does this graph have a
large clique? Is this graph connected? Can this graph be partitioned into two sets
of vertices that there’s only edges going between the sets and not between vertices
within the two sets? It’s called a bipartite graph. So that’s a property. And obviously
some of these questions you have to look at the entire graph. You have to sort of
ask the function, the entire function table for every pair of vertices, what the edge
is and then solve the problem.

Then property testing paradigm says, “You know what, let’s relax the question,
because we really cannot write down the whole graph, we cannot query the function
in all places. We’d like to tell whether the graph that’s being described by this
function which I can sort of query is close to a graph that has that property.” So if we
think . . . Let’s look at a specific graph property that’s say bipartite. This graph that
the function is describing, is it bipartite or is it far from being bipartite? But what
do I mean by far from being bipartite? It means that if you look at the closest graph
to it by removing edges or adding edges, let’s say it’s epsilon apart, you have to add
epsilon or subtract epsilon fraction of the edges. So there’s a fraction of edges that
you have to insert or delete, and I’d like to tell which is the case. Is it a bipartite
graph or is it far from any bipartite graph? And I’d like to do that by querying the
function in very few places.

So for the layman, let’s think of it this way. We are not living in the age of
dinosaurs anymore, right? We find bones of dinosaurs. Can we just by looking at
bones of dinosaurs tell whether the entire dinosaurs was a tyrannosaurus? Was it
a meat-eater or herbivore? Apparently people make conjectures based on very little
data. So the question here is if I can only look at very little places in the graph, either
given or I can query the graph at places of my choice, can I tell something about
the graph more globally, like being bipartite or being far from bipartite?

This is the way I like to describe property testing, and that’s a field that was
kind of started in a paper together with Oded Goldreich and Dana Ron. We wrote
on testing properties of graphs and more generally testing properties of natural
structures. You know, graphs as a natural structure or other functions are possible
too, not just to describe graphs. And we would like to find out whether a function
let’s say is monotone and we can’t write down the whole function table. We can
just query the function in a few places. Can you tell if it’s monotone or far from
monotone? This is a direction that’s become a whole field. I mean that paper, I
think, was fairly influential.

And then you asked me about delegation?

Rosen: And lattices, if you want to mention some more about lattices.
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Goldwasser: So time moves on and people start talking about different models of
computation like cloud computing. And the idea of cloud computing is that there
are these computers out there and I’m a client, and I’d like to use the computers
and they will do all the computation for me and then give me the results. So the clear
question is how do I know they are even computing it correctly? I am delegating my
computation to an outside computer. I want to get some proof that the result has
been correctly computed. We call this a delegation problem, and that’s a problem
that is a little bit similar to interactive proofs because this computer proves a
statement to me. The statement is that it did the computation correctly. That’s
been a problem that I’ve been very interested in.

And the delegation paradigm isn’t just delegating computation, but you can
think about it in other contexts, like you want to delegate in the context of error-
correcting codes. Let’s say I want to code a message in such a way that even if there’s
noise on the line, you can detect it. Then there’s the question of how much work
you have to invest in order to encode and how much work do you have to invest to
decode, and you can talk about delegating work of the encoder to the decoder or vice
versa. So this whole delegation paradigm is something that I’ve been interested in
in the last, I don’t know, 15 years already. And that’s been fascinating. This is work
with my students Yael Kalai and Guy Rothblum. So that’s something that I’m still
interested in. I think that this delegation paradigm is very powerful in today’s sort
of modern computational world.

And you asked about lattices. As I mentioned, the theory of lattices has become
a source of hard computational problems. Like if you define some sort of integer
lattice via basis, find the short vector in the lattice . . . This theory and these hard
problems have become the basis of what we call post-quantum cryptography. And
implementing sort of essentially cryptographic primitive based on these type of
problems is a fascinating field which I’ve been involved in.

Rosen: And you were very early on.

Goldwasser: Yeah. This was work with Oded Goldreich, where we sort of asked this
question of interactive proofs to show that a shortest vector in a lattice is not so
short and we introduced some new methods in this field.

Rosen: You actually, yeah, introduced a method to show that it’s unlikely to be as
hard to approximate as other approximations.

Goldwasser: Yeah. But in any case, the method is more important than actually
the result, because the method is essentially what underlies a lot of proofs of
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security in modern cryptographic systems that are the basis of this post-quantum
cryptography.

And I want to mention actually one more student, Daniele Micciancio, who was
one of my students, which I love very much. He started working on logic actually
with Albert Meyer, this was his master thesis, then he came and worked with me
about digital signatures. And for his exam . . . There are these exams at MIT which
don’t exist anymore where you’re supposed to give a student a few papers and then
they are supposed to read it and do some original contribution within three weeks.
So I gave him some papers on lattices and he came up with some beautiful new
result proving the hardness of approximation of shortest vector in a lattice, and
that became his field of research. I feel privileged to have suggested the problem to
him, or the papers to him. I think he’s one of the sort of guiding lights in the field
of lattice-based cryptography.

Rosen: Okay. You want to mention something more about students?

Goldwasser: I think that I have a new crop of students which are wonderful, and
they’re doing . . . Today it’s actually interesting. A lot of the students are not only
interested in sort of the science, but they’re actually interested also in impact on
society. So this is sort of a modern wave. I mean as you see people, you know there is
this generation that’s just interested in going to startups and the generation that’s
just interested in doing complexity theory and then doing cryptography. And the
new generation that I have at least, they’re very interested in the impact of the
methods on today’s world. And when I say impact, I don’t mean just implementing
systems that are run efficiently, but really questions of like how is this going to
change the world from a society point of view?

Rosen: So for them, the application might be more of a guideline?

Goldwasser: The application might be more of a guideline but it’s not an applica-
tion that is necessarily only having to do with utility. It actually also has to do with
doing good. I mean privacy anyway is doing good, in my book, but it’s beyond that.

Rosen: And what’s your take on privacy, whether it’s doing good, whether it helps?

Goldwasser: Of course it’s doing good. I mean, you know the line that I think they
attribute to Judge Brandeis, but I think it was Brandeis and another lawyer that they
were in a law firm together. This is after the original cameras were invented, the kind
of cameras, portable cameras that you could take out of the camera shop. And they
wrote this paper about “What about the right to be left alone?” You know, it’s very
nice that you can take photographs, but now I could have my pbotograph taken
without my permission. Now imagine where we are at. Right? Everything we do on
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our iPhone, every Google query we make, every email we send is being recorded
by these giant companies and they are deriving conclusions from it, like giving
us advertising for us. So the right to be left alone is something nobody imagines
anymore, you know with all these sensors and the cameras. It really alters our reality
and I think we need to think about it.

Rosen: And you don’t think it’s too late by now to do anything about it?

Goldwasser: You know, it’s just like talking about the environment, right? So with
the environment, we have a lot of pollution, but somehow it’s self-regulating. Not
as well as it should be, but there are climate agreements and people don’t sell the
kind of cars they used to. There’s emission controls. So my feeling is that every
revolution has at some point people realize that there are some things to fix. And I
don’t see why the lack of privacy is not going to be the same, because the methods
exist. And we can develop more methods. But people have to be aware, people have
to kind of pull back, people have to implement these methods on top of the existing
ability to spy or to have sensors and . . .

Rosen: And what about the negative implications of the ability to encrypt data and
hide it from others?

Goldwasser: I guess the negative implications is that we could go dark, right? This
idea that now that the encryption methods are being developed and they’re so
strong and they’re so well known, that we won’t be able to pursue criminals, right?
So being able to read messages, being able to wiretap, being able to listen to digital
communication is a police tool. It is a national security tool. We all know there’s
more and more threats. So by enabling this encryption for the public, you are in a
sense making it more difficult for law enforcement to behave. I buy it, but it’s a very
thin line, right?

On one hand, privacy has so many good outcomes. It’s enabled electronic com-
merce. It’s enabled a use of remote computers for delegating computation. It’s
going to enable doing machine learning on data while keeping it private. On the
other hand, there are these criminals who should be caught and we should enable
law enforcement to catch them.

How do you reconcile the two? One opinion is that you just say, “Well, tough.
Let the law enforcement figure out other methods to catch criminals and don’t
give up on privacy.” And another point of view, which is the other extreme, is let
the law enforcement have all the keys to all the encryption algorithms out there.
And maybe there’s a third sort of economic model where you sort of think of cost–
benefit analysis and you’re able to trade it off, so you can sort of trade off privacy
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in policing. I don’t think people have looked at it, but just again, if we go back to
the example of environmental science, there is sort of a cost–benefit analysis of
putting regulations, and there are resources that are renewable, resources that are
not renewable, and there’s measures. So this is not really my expertise, but I can
imagine a world where that kind of theory is developed also with respect to privacy.

Rosen: What about the future?

Goldwasser: That’s the thing about the future, you don’t know do you? As we say in
Israel, “all will be well.” [laughs] No, you’re asking about the scientific future.

Rosen: Not necessarily.

Goldwasser: Not necessarily. The future is that I’d love to continue doing research.
I love interacting with young people, with postdocs, with graduate students. I’m
still inventing new questions. We haven’t talked about them, but that might be in
another interview. And I still get excited from new questions and new answers.

I’m looking at what has happened to cryptography. It’s kind of amazing in terms
of the number of people and the impact and the excitement, so this is sort of a
future which is inevitable. There’s no question that cryptography has a future. And
personally I hope to do more. I hope the field will do more. I’m very optimistic.

Rosen: Where do you see yourself five years from now?

Goldwasser: You know what, I think that’s the one question I can’t answer. [laughs]
I don’t know.

Rosen: In terms of aspirations, just . . . ?

Goldwasser: I want to keep on working. I want to keep on creating. I want to have
ideas. I want to have impact, and the kind of impact that I’m talking about now
is also impact as let’s say the director of the Simons Institute or someone who
directs . . . someone who has some influence about where the field is going in the
sense of what’s important and what’s not important. I think that I’ve had a good
hunch and I feel I have an intuition to serve me and also a lot of experience. So if
I have made impact in the next five years both in terms of research and in terms
of leadership, if my kids do well and they’re happy, then I will be very happy in five
years.

Rosen: Okay. Thank you very much, Shafi.

Goldwasser: Okay. Thank you.
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Ibaraki: Welcome today to our interview series with outstanding professionals. I’m
Stephen Ibaraki, and I’m conducting an exclusive interview with Professor Silvio
Micali, ACM Turing Award recipient in 2012. The Turing Award is widely considered
the Nobel Prize of computing. Professor Silvio Micali is also a world-renowned,
distinguished researcher, and a professor at MIT.

Now, Silvio, you have a lifetime of outstanding research contribution with last-
ing significant global impact. Thank you for coming in today and sharing your
considerable expertise, deep accumulated insights, and wisdom with our audience.

Micali: Thank you, Stephen. It is a pleasure talking to you and your audience.

Ibaraki: Now, Silvio, you have this extraordinary honor now. When did you hear
about this, and how did you feel at the time? What was the reaction of your col-
leagues and your family?

Micali: Well, I heard about it on a Friday afternoon. We were planning to leave for
a family ski trip with my colleague Shafi, my co-recipient of the Turing Award. And
then the telephone rang . . . So it was quite a coincidence, you might say.

How did I feel about winning the Turing award? What can I say? I felt good. I felt
good in particular to have won it with Shafi. You must know that we were graduate
students together. We worked for many years and overcame many difficulties, even
multiple rejections of our work, before we got an award. And so I was very happy
to get the award together with her. Shafi and I had good interaction. You know, we
were trying to develop a theory of interaction, it takes two to interact, and when
you interacted with Shafi you were actually interacting with at least seven people,
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(laughter) depending on which of her multiple personalities were in charge on that
day. So that was how I personally felt.

About the feelings of my colleagues, I actually was very happy to see that there
was a very large, positive reaction. You must know that we are a very interactive
community. We collaborate a lot across institutions, so, what can I say? I put a
premium on their opinion and I’m glad to see that it was positive. Some of my
colleagues were actually so kind, almost happier than we were. Of course, some
of them did not react at all. So, some may have disagreed on the importance of
our results, or taken them for granted. Whatever the case, it’s important to have
dissenting opinions, right?

In sum, I felt that the overall response was very positive. And my family was
ecstatic.

Ibaraki: Well, I can see how your family would be very pleased, because you’re a
legend, you’re an icon in the industry, and, of course, you’re part of the historical
record forever. [laughter]

Micali: Well, maybe not forever. But it’s good enough for us, right?

Ibaraki: Now, Silvio, how will the ACM Turing Award impact your work, your influ-
ence, and your thinking?

Micali: Oh well, to tell you the truth, on the one side we should strive for absolute
truth and novelty. But on the other side, you know, we should strive, or at least
I do strive, also for universal recognition. Somehow, the coexistence of these two
goals is good, in my opinion. If the pursuit of absolute truth required disregarding
social judgment, then we would have a lot of trouble on our hands. OK, greater
recognition and strife for truth can be antagonistic. In the short term, somehow,
if you choose universal recognition, then you have to work on problems everybody
perceives to be important. In other words, that choice requires pursuing a more
established and conservative line of research. So: What do I hope from the Turing
Award? That, taking care of some of my desire for recognition, it leaves me free to go
on a limb and take some more scientific risk, to go and explore new wildernesses,
so to speak. This is the impact that, I hope, the Turing Award will have on my work.

As for my influence, let’s see . . . First of all, you know, I have nothing against
recognition or having some influence. After all, we work very hard to increase our
reputation. This said, my peers [laughter] will continue to judge my work according
to strict standards, as they should. However, I do see that the Turing Award can
actually give me some additional influence on researchers outside my field. So, I
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hope I can use this additional influence wisely when interacting with scientists from
other disciplines.

Finally, if I may add another thing, awards tend to make us feel good. And if
we feel good, we can do more things, have more energy. So I hope to put this extra
energy to work in my thinking, my teaching, and everything else.

Ibaraki: Now, again, you have this amazing body of work, and you’ve got this sig-
nificant achievement in the ACM Turing Award. From that, then, what are your life
goals that you want to achieve, and how will you achieve them?

Micali: Oh, wow, life goals? . . . This is a hefty and difficult question, Stephen. In
fact, it’s so personal that if I answer it truthfully I will be a little bit enigmatic, OK?

My goals essentially are to understand the world and to be understood. And
these, in my mind, actually are quite the same goal. So how to achieve understand-
ing myself and understanding others? By really getting into the minds of others, and
letting them into mine, if I can. And through a combination of supreme confidence
and supreme doubt.

Ibaraki: OK, we’re now going to talk about your work that led to the Turing Award.
And the first question is: What led you to co-write one of the most influential papers
in computing science as a graduate student in 1983?

Micali: All right, if you want me to outline [laughter] the story of that work, I’ll tell
you, it is a tale of fearlessness and shamelessness, luck and ignorance, everything
combined, OK?

Let me start with luck. You know, I’m not ashamed to start with luck, because
nothing substantial can be accomplished without it. My good luck was to be in
Berkeley, in a wonderful atmosphere, with fantastic teachers and great fellow stu-
dents. In particular, I was lucky to be in a course taught by Manuel Blum on
computational number theory, whose last three lectures—maybe four, no more,
actually—were on public-key cryptography. Cryptography at that point was not that
developed, at least in academia. Manuel was an absolutely inspiring teacher, and
cryptography was an incendiary material. So it was a match made in heaven. [Laugh-
ter] If you’ll allow me the pun, the match lit.

So that was how we started. A problem mentioned in class was that of mental
poker. In other words, can you and I play cards over the phone, or by email? There
was an approach to this problem proposed in the past, but it did not quite work. So
Shafi and I decided to solve it. That’s where fearless and shameless come in, right?
Because the problem was actually very hefty, and a satisfactory solution would’ve
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taken years of further development and many more techniques than we had at
the time. And we ultimately built those techniques, but at the time our youth and
inability to properly size the problem were a big help in taking on this challenge.
Simplifying things, we essentially thought first about encrypting the cards, and
then about implementing the dealing, the random shuffling of the cards. The first
step was actually challenging enough to make us understand that we needed a new
encryption scheme and a new notion of security.

OK, without getting into too many details, encryption at that time was deter-
ministic. This means that every encryption method used to have a single ciphertext
corresponding to a given message. What made a ciphertext hard to understand was
the “length” (technically speaking, I should say the “entropy,” but never mind) of
its corresponding message. In fact, you can imagine that it is hard to guess a long
message in its entirety, right? Yet, with deterministic encryption, if you were lucky,
if you guessed the message in its entirety, then, being encryption deterministic, you
could actually verify the correctness of your guess. What makes mental poker really
challenging is that the possible “messages” are only 52, because there are only 52
cards. So, in this application, it’s easy to guess the intended message, because it is
easy to cycle through all 52 of them, right? In other words, in this application, the
message space, so to speak, is very, very sparse. And so we decided that if we wanted
to encrypt such few messages, then we had to encrypt them probabilistically. That
is, we had to flip coins to choose a ciphertext of a given message.

Think of it like this. I have not just one way to encrypt a message, but I have
many, many, many, many, many ways, exponentially many ways (in the number
of coins you toss), and I flip coins to choose which one to use and then send you
the corresponding ciphertext. Now, a fundamental property should be that, even
though every message can be ciphered in so many ways, from every single one of
its ciphertexts, you can actually retrieve the original message that I send you. That,
essentially, is the idea.

Actually, we decided to further generalize the problem at hand and considered
a worse situation. How about having only two possible messages: say, 0 and 1?
That is, if you want to encrypt a single, randomly selected, bit? What should we
want from encryption in such a case? We should want to make sure that, from a
ciphertext, one should not be able to guess the corresponding bit with probability
better than 50–50. Mind you, that everybody can always get the bit correctly with
probability 50%, right? Indeed, even if you don’t know anything about encryption
at all, when you see a ciphertext, you flip a coin and say, “If heads, I predict zero;
if tails, I predict one.” You flip the coin, and you’ll be right with probability one-
half. So to claim that you are “breaking” the encryption scheme, you must at least
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do a tiny, teeny better—“epsilon better”, as we say—than 50%. Perhaps, you must
be able to correctly guess the bit with probability 51%, or 50.1%, or 50.001%, or
something like this. A one-bit encryption scheme should be considered secure only
when it is practically impossible to have even such small advantages over random
guessing. (This essentially started our development of the notion of computational
indistinguishability, as we called it later on.)

We then proved the following theorem: Namely, if we can encrypt a single bit
in this way, then we can as securely encrypt arbitrarily many multi-bit messages.
The underlying proof technique came to be known as the hybrid argument. Thanks
to this theorem, to the hybrid argument, all that remained was finding a candidate
scheme for encrypting a single bit. The ability to securely encrypt arbitrary message
spaces would automatically follow.

Here is where ignorance actually came to the rescue. And not only ignorance,
but luck again, of course, because knowing a lot of things is tantamount to having
a haystack in your mind, right? And among so many, many, many, many pieces
of straw, you look for a special one, “the needle.” This means trouble because you
might never find the needle among so many pieces of straw, or you may find it when
it’s too late. Shafi and I were lucky, because we wanted to construct a candidate
one-bit cryptosystem based on computational number theory, and we didn’t know
much computational number theory. So, if some facts at all could be put together
to construct our cryptosystem, we had to choose them from the very few facts we
knew. We got lucky, because the needle was possible to find in our small stack. The
needle we zeroed in was the quadratic residuosity problem.

Essentially the problem is distinguishing squares from nonsquares modulo N ,
where N is a large integer whose prime factorization you do not know. I will not
bother you with the details, but you can easily disregard some numbers from being
squares modulo N , but for another half of the numbers modulo N , when N is of
a certain form, it is not at all clear how to distinguish squares from nonsquares.
Thus, we thought that the difficulty of making such a distinction might be useful
to encrypt a single bit. But: Was the quadratic residuosity problem really computa-
tionally difficult?

We started by asking our advisor, then we started asking our other authorities,
and somehow nobody knew how to solve the quadratic residuosity problem. So
we said, what the heck? Let’s assume it is computationally hard and build on it
our candidate cryptosystem. We took a risk. The danger was that, after publishing
our system, somebody could come up the next day and say, “What are you talking
about, quadratic residuosity? Here is how to solve it.” But we took the risk. Again,
we were young, so we didn’t have a reputation to maintain yet, or perhaps we
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disregarded our reputations, or whatever. So, with ignorance, luck, and risk taking,
things worked out.

By the way, today we know much more, and if quadratic residuosity were to
become easy tomorrow, it would not be a problem, because at this point we have
enough candidates to base our cryptosystem on (in fact, we have a way to distill
them). So, in some sense, timing was crucial, and timing is another form of luck,
right? Again, I think I made it abundantly clear, I strongly believe that, never mind
all our good deeds and whatever we do to deserve our successes, luck has a major
part. I am Italian, right? My ancestors, the Romans—I mean, were very determined
people. They conquered a lot of the then-known world, but at the end they really
knew whom to thank, and they built a monumental temple to luck, to Fortune.
If you go to Rome, take a trip to nearby Palestrina. There is an entire mountain
transformed into a temple, the temple of the Fortuna Primigenia. In the end, luck
matters.

But then, you know, you have to work for your luck. So, Shafi and I developed
various techniques, in particular random self-reducibility, to help us prove that qua-
dratic residuosity, the problem we selected, really had all the properties we wanted.
We came up with the hybrid argument and with computational indistinguishabil-
ity. These actually were techniques that we introduced in our work on probabilistic
encryption for a particular context, but that also proved crucial in subsequent and
harder contexts. So in some sense, we were wise, or lucky again, to use them in a
simpler problem to begin with.

Ibaraki: Well, it’s a particularly amazing piece of work. It reflects an inflection point
in history, the work that you did. And when you talk about luck, I guess that’s where
preparation and opportunity meet, so . . . [laughter]

Micali: Absolutely. Luck favors the prepared, [laughter] but luck is needed anyway.

Ibaraki: Now, can you provide added details behind your approach, the simulation
paradigm?

Micali: Sure. I actually find the simulation paradigm the most natural thing. Let
me forget mathematics for a minute and put you in the right mood. It’s a simple
concept, really. It’s a very human concept. So let me recall a personal episode, which
I’m sure is actually common to all of us, and yet is very personal to all of us. Here
we go.

I remember, when I was a kid, of somehow getting an acute attack of classic
solipsism, which is a fancy way to say that I started being fearful that there was
no outside reality, that it was all in my head, that I was alone, that the world was
a product of my imagination, etc., etc. You know, it could very well have been a
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power trip. I’m sure it was. But somehow, at the time, I recall the feeling to be
one of loneliness and despair. So my mother got to work: You know, it lasted a
few days . . . She sat next to me on my bed and said, “I listen to what you say, but
I’m here. I do exist. Let me help you.” And I said, “No! You’re not here! I place you
next to me on my bed, I’m letting you say these things,” and so on and so forth. I
eventually got out of it, but somehow I was able to positively turn all these feelings
into science.

What impressed me at the time—I remember this distinctly—was how impossi-
ble it was to break that symmetry, I mean, to decide which was virtual and which was
real. And, if I cannot distinguish the real from the virtual, then in what sense could
they be considered different? Somehow that thought stuck with me. Fast-forward
a few decades, and we have the simulation paradigm.

So what is the simulation paradigm? Essentially, it is the technique that ensures
that no information, or not much information, is leaked in a cryptographic inter-
action. In cryptography, there is no you, Stephen, or me, Silvio. What distinguishes
you from anybody else is a secret that only you have. It’s called a secret key in cryp-
tographic lingo. It is a secret number that only you know, and you use it to send
your messages in a cryptographic transaction. Of course, nobody’s going to be so
dumb to send his own secret key along with his messages in a cryptographic proto-
col. But you use your secret key to generate the messages you send. In some sense,
somebody who sees the messages you send essentially sees a kind of shadow of
your secret, projected on an imaginary wall, a hypothetical wall. And perhaps, if an
adversary sees enough shadows of your secret key—say, from many angles—then
he could reconstruct it.

Indeed, I may not know the shape of an object, but after seeing its projection
onto one wall, other projections onto other walls, I start getting the zest of it and
become able to reconstruct the unknown shape. So, when you’re taking part in a
cryptographic protocol you are in a bind. If you never use your secret key, the secrecy
of your key is guaranteed, but you are not doing anything that’s cryptographically
relevant either. On the other hand, if you use your secret key, which you must do
to accomplish anything of interest, you actually reveal shadowed images of your
secret key. So, will it remain secret at the end?

The solution of the riddle is to send messages using your secret key in a way
that the adversary, without knowing your secret key, can simulate you, can repro-
duce what you say in essentially the exact same way in which you say things. So by
watching you, the adversary watches your reality, but you ensure that he, without
knowledge of your secret key, is able to generate a virtual reality that is actually
identical to the one you generate for him. And if you succeed in acting in a simu-
latable way, then your secret is secure. Why? Because if the adversary could imitate
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what you say without knowing your secret key, then what you say cannot inadver-
tently betray your secret key. So that’s the whole idea of how to ensure that the
amount of secret information you reveal is “contained.” This containment is what
the simulation paradigm gives you.

So if you go back now to solipsism, I could not decide whether [laughter] the
world is real or I am making my own virtual reality, but at least I could put this
impossibility to good use. Because the impossibility of distinguishing reality from
a creation of our mind is our best way to guarantee the security of a cryptographic
protocol.

May I abuse your patience a little bit more to give you a concrete example of
how to apply the simulation paradigm? Consider public-key encryption. What do
you do in this setting? Assume that you select a specific secret message to send
me. You probabilistically encrypt it in my key, and then you send me the resulting
ciphertext. Call it C. C is a good acronym for a ciphertext. Assume now that there
is an adversary in between us. Then, what is his real view? His real view (besides
my public encryption key) is this string, C, the ciphertext that you actually so
produced, OK? However, nothing stops the adversary, without ever seeing C, from
choosing a random message, a creature of his own mind without any objective
reality; then, from encrypting it probabilistically using my public key, so as to
obtain a virtual ciphertext D that nobody sent; and, finally, from looking at D. So
now the adversary has actually two worlds: one, C, that you created by encrypting
your specific message—M, call it; and another one, D, that the adversary himself
created probabilistically by encrypting a random message. And if a cryptosystem
guarantees that his real view—the ciphertext C that you sent—and his virtual view—
the D that he himself created—are essentially indistinguishable, then the secrecy
of your specific message is safe, right?

Simplifying a bit, this is what the simulation paradigm means in encryption,
but the principle is the same across other applications. It may actually become a
little bit harder to implement and to grasp in these other applications, but the idea
is the same.

Ibaraki: Now, can you further describe your notions of encryption security—for ex-
ample, semantic security and indistinguishability—and how these measures must
be met for schemes to provide security across a wide range of cryptographic appli-
cations?

Micali: All right, so we are going from technical to more technical. OK, let me try.
Semantic security is essentially what you intuitively want from an encryption

scheme. In some sense, it extends Shannon’s notion of perfect secrecy, which was
applicable only to a very constrained scenario; namely, when a sender and a receiver
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share beforehand a string of random bits, and only need to encrypt messages whose
total bit length does not exceed that of their shared random string.

When somebody is going to transmit a message, we have, from context, a
probability distribution—we call it a message space—of what he is going to say,
right? Consider all messages that are a thousand letters long. Then, some messages
actually have probability zero—for instance, those that contain five consonants in
a row, just because one cannot even pronounce them. Of the remaining messages,
some have higher probability than others, depending again on the contexts we are
in. In sum, there is an a priori probability distribution from which the message
sender is going to choose his message. In this setting, you want to guarantee not
only the secrecy of the chosen message in its entirety, but also that of partial
information about the message.

So, what should this partial information be? You can think that it’s a function
from the message space to some other, perhaps smaller, space. For instance, you
may be satisfied to figure out whether the sender’s message is about attacking or
retreating, or whether it expresses worry, and things like this. (Indeed, you would
like to understand that your enemy is worried, even though you cannot quite un-
derstand what he is saying.) For simplicity, assume that this “partial information”
function F you are interested in maps any message into a number between one
and 1,000, say, OK? Even if you’re not able to decrypt the message sent, you may be
satisfied to learn the value of F on the message sent.

Now consider the following situation. Assume that somebody tells you that the
sender has selected a message m from the message space, and has sent it by magic,
by teleportation, to its destination. So, what is the value of F(m)? If you would like to
win this game, what would you answer? You would say: “Well, if I try to be as right as
I can be, what is the most popular value, the most probable value this F can take?”
Since F maps every possible message to a number between one and 1000, and
since you know from context what is the probability distribution over all possible
message, you figure out that, say, maybe 727 is the most popular value of F , and
it occurs with probability 2%. So, if you answer 727 you’ll be automatically correct
with probability 2%, right? You don’t need any cryptoanalysis. You don’t need to
know anything. You just know what the message space is, what the distribution is,
and you choose the most popular value for F , given this distribution.

OK, now consider a dramatically different situation. The sender not only has
chosen the message m from the given probability distribution, but also encrypts it,
transmits an encryption of it, and so you also see the encryption of this message.
Not only do you know that the message m has been selected according to the
given probability distribution, but, lo and behold, you have an encryption of m.
Now, can you guess what F(m) is better than before? Remember, before seeing the
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encryption of m, without any cryptanalysis, you could be right 2% of the time. Now,
by cryptanalyzing the encryption of m, can you improve your probability of correctly
guessing F(m)? If you cannot improve it to more than 2%, that is, not 2.01%,
not 2.001%, not 2 plus epsilon percent, then we call the encryption semantically
secure. OK, that is the whole idea. Now it’s computational complexity, rather than
information theory à la Shannon, that is being used to drive the notion of semantic
security.

Actually, we developed computational indistinguishability as a tool to prove se-
mantic security, and we proved that if we had a system which was computationally
indistinguishable, then it was also semantic secure. We actually proved that also
the opposite was true, that is, that semantic security implies computational indis-
tinguishability, and that other notions of security are all equivalent to each other.
And this is the most reassuring thing there can be in science, when you try to ap-
proach a new object. You use one avenue, then another one, then a third one, and
suddenly you realize that all these avenues are absolutely equivalent.

Going back to Turing, at the time in which the notion of computation was up for
grabs, people were trying to figure it out. “OK, I understand poetry. I understand
other human endeavors. But how should I define computation?” Turing defined
it using Turing machines. Church used lambda calculus. Another definition was
recursive functions. And then, at some point, it was figured out that all these
definitions were provably equivalent to one another. So one did not have to pick and
choose which definition was the right one, because they were one and the same. It
is this identity of different looking notions that reassures us that the right notion
has been achieved.

So the equivalence of semantic security and computation indistinguishability,
and other notions as well, tell us that a robust notion of secure encryption has been
reached. Being equivalent, you might prefer to use semantic security to best convey
what secure encryption means. But you may want to stick to computational indistin-
guishability when you want to prove that a particular encryption scheme is secure,
because proofs are simpler when you use computational indistinguishability.

Ibaraki: It’s just so amazing, [laughter] the level of thinking. And I can see now the
profound impact of your work. And speaking about that, how do you see your work
revolutionizing the study of cryptography, and laying the foundation for the theory
of cryptographic security?

Micali: Well, cryptography has existed since time immemorial. For thousands of
years people wanted to encrypt their messages. But they did not design a cryptosys-
tem so as to achieve a predefined rigorous goal of security. They simply designed a
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cryptosystem which “achieved whatever it achieved.” They tried the best they could.
They tried to poke their system as best as they could. There were no notions of secu-
rity, no proofs, only heuristics. They essentially considered a laundry list of possible
attacks, and then checked that each attack that they knew of failed. There was no
guarantee that a new, yet known, attack would fail too.

So, later, even when the encryption was based on a mathematical problem like
in the RSA, there was only a loose connection between the human problem of
decryption, that is, between breaking the system and the difficulty of the purely
mathematical problem that was chosen as the basis of a cryptosystem. Solving the
underlying purely mathematical problem is one thing, and may be very difficult.
But decrypting messages exchanged in a cryptosystem loosely based on that math-
ematical problem is a totally different thing, because you are helped by grammar
constraints, by logical constraints, by context, by a lot of other things. Right? So
these two problems are not quite the same.

Let me give you an example. Assume that the problem you have chosen as the
basis of your cryptosystem is factoring integers. This is actually a great problem.
Some numbers are primes, like two, three, five, seven. It turns out that you can
randomly pick two large primes—say, a thousand digits each. Then, you can easily
multiply them—in fact, you can still do it by pen and paper. But then, if you give
their product to someone else and say, “I multiplied two random primes to get
to this number; which primes did I use?” then nobody knows how to factor your
product and retrieve the two primes you started with. Gauss and plenty of other
mathematicians have looked at this problem without being able to solve it. So
factoring integers is a very difficult pure mathematical problem. But it has nothing
to do with decrypting.

When building a cryptosystem loosely based on factoring, we built it so that,
if you knew how to factor, then you knew how to decrypt. But this is not a very
interesting direction, right? The interesting direction is the opposite one. What
we really want is that nobody could decrypt our messages, or even gain partial
information about them, without being able to factor, so that, if factoring is hard,
then the system is absolutely unbreakable. And if somebody somehow decrypts
what I encrypted because he’s able to solve the factoring problem, thus succeeding
where Gauss and company failed, you know what? He deserves to know what I was
saying. [laughter] OK?

So, the main contribution of Shafi and me was building cryptosystems for which
one could rigorously prove that the purely mathematical underlying problem is
absolutely identical to the very human problem of decrypting or even getting partial
information about encrypted messages. In a sense, we found a way to rigorously
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reduce apples to oranges! By now, one routinely designs cryptosystems with this
notion of security embedded and with this type of reduction. In sum, I believe that
replacing heuristics with proofs, and introducing these sophisticated apples-to-
oranges reductions was our contribution to the field.

Ibaraki: And what a contribution! Again, an historical inflection point, [laughter]
which really marks a huge shift, in my opinion, so . . .

Micali: Thanks!

Ibaraki: Now, Silvio, can you talk more about your work with knowledge complexity
and zero-knowledge proofs?

Micali: Yes. Proofs are supposed to convey knowledge, right? There is a theorem
statement. You don’t know if it is true at all, so you ask somebody to prove it to you.
He or she provides you a proof, and at this point, at the end of the proof, if the proof
checks, after you verify it, you know not only that the statement as claimed is true,
but you also know a lot of other things. You know why the statement is true. You
must get a lot of details to get convinced that the theorem statement is true.

Assume instead that we want to reduce to a minimum the amount of knowledge
necessary to convince somebody that the theorem is true. What should this min-
imum be? Well, at the end of the day, the minimum should be that you learned
that the statement is true, which you didn’t know beforehand, right? That is the
minimum I really need to reveal in any proof. Now, a zero-knowledge proof is a
proof that reveals only that minimum: that the statement is true, without adding
any other piece of knowledge.

But the question is how can you tell that no other knowledge has leaked from
the proof? This is another application of a simulation paradigm, which we were
discussing before. Essentially, you want to prove a theorem in a way that ensures
that if somebody knew beforehand that the statement of a theorem was true, then
he could reconstruct the proof you give to him in exactly the same way in which
you provide it. In other words, how do I know that from this proof, from this big
interaction, I don’t learn much more than the statement of a theorem being true?
Indeed, from this interaction you learn that the theorem is true, and I wanted to give
you this. But if you could simulate my proof in its entirety if you knew beforehand
that this theorem was true, then there is no other further information in my proof.
This is what a zero-knowledge proof is.

Sometimes you may want to reveal a little bit more. For example, think of
an election. There is no theorem here, but there may still be a “zero-knowledge
interaction.” Assume that you have a hundred people in a room, and they want to
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carry out a very simple election, the simplest election: a referendum. OK? So what
do we want to do? We want to tally our yeas and nays. Each one votes yea or nay,
and we want to tally how many yeas there are. Assume there actually are 60 yeas
and 40 nays. So you want to compute that there are 60 yeas and 40 nays, but you
don’t want to reveal who voted for what. You want to keep private the votes, but you
want to compute the tally correctly. So you want to have correctness and privacy at
the same time.

Now, correctness without privacy, that’s not a problem, because I can just say,
“OK, ladies and gentlemen, whoever votes yes raises their hands. I count 60 hands,
so there are 60 yeas in this referendum.” On the other hand, if I want to have privacy
alone, without the correctness of the tally at all, I can say, “Everybody writes a yea or
a nay on a piece of paper, and throws the paper to the fireplace.” By so doing, total
secrecy is easily guaranteed. But then, what is the tally? So what we want, instead,
is that, without trusting anybody, we can compute the tally of 60 yeas in a way that
we have no idea who voted yes and who voted no.

Of course, if we trust somebody, she can just say, “Oh, just whisper in my ear
what your vote is and I promise not to tell anybody, and further, I promise to
announce the correct tally.” Sure! I mean, this is not going to fly with anybody, and
with cryptographers in particular. So, the idea is that we replace this trust in some
individual, in order to guarantee correctness and privacy simultaneously, by just
talking to each other, and trust that the majority of us are honest. Essentially, the
idea is a blending of correctness and privacy. And because correctness matters in all
human enterprises, and privacy matters to all humans, I believe that this blending
is a good building block for a theory of human interaction.

Ibaraki: That’s very interesting. So what do you see as the implications of this work,
and how does the work extend to other domains?

Micali: All right. The implications. First of all, you can imagine that in a general
cryptographic protocol, or in an economic transaction, you want to have both
correctness and secrecy. Let me give you an example. Assume that you go to a carpet
store, right? And you see a carpet there. As it happens, in such stores, carpets are not
tagged with their prices. So you say, “I’m interested in this carpet. How much does
it cost?” And the other guy says, “Well, wait a second. How much are you willing to
offer?” “No, no, no, you go first,” right?

The situation is very complicated, and we could benefit from a new transaction,
one that we didn’t quite have available before, such as the following. We engage in
a cryptographic protocol in which I, as the buyer, choose my input to the protocol
to be the maximum buying price I am willing to pay, and you, as the seller, choose
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as your input the minimum selling price you may consider. And now, through our
protocol, without telling each other these two values, we just compare them. If there
is no overlap, that is, if my maximum buying price is below your minimum selling
price, we only learn, “Sorry, guys, the two of you cannot transact. No carpet sale
today.” On the other hand, if there is an overlap, we end up with a contract, digitally
signed by both of us, stating that the carpet is sold and is now mine at the price
that, say, sits in the middle between my minimum buying price and your maximum
buying price, or whatever price formula we want to choose. So, this transaction is
something that somehow enlarges the realm of the possibilities we have in our
“paper world,” our ordinary-world transactions.

But in my opinion the implications of this theory go beyond business transac-
tions. Because enabling secure transactions enables more interaction. Let me give
you another example. Assume now we have a dating game, OK? There are two in-
dividuals, and I go first and say, “Hey, on a scale of one to ten, I like you ten. How
much do you like me?” And the answer comes back: “Two.” [laughter] With such an
answer, I know I will never interact with anybody in the near future, because I need
to recover psychologically, right? But assume now that you can actually interact in
another way, in which you can somehow compare these two numbers but only fig-
ure out whether both of you like each other ten, or whether both of you don’t like
each other ten. In such an interaction, I’ve much less to lose in self-image, and thus
I can safely interact much more in this fashion. In other words, if I can control the
amount of privacy I might lose, I can confidently enter into many more transactions
than before. So this is another implication of correctness and privacy. It enables not
only business transactions, but also personal transactions.

You ask about other domains. There are plenty of other domains. Because
essentially, at this point, from just encryption, cryptography has become the science
of adversarial computing. And adversaries are everywhere, [laughter] as everybody
knows, not only cryptographers. In a proof, the adversary is whoever wants to
convince you of false statement. In encryption, the adversary is somebody who
wants to understand information about your messages. In pseudorandom number
generation, the adversary is somebody who wants you to generate biased rather
than unbiased coin flips, etc., etc. More generally, the best way to model a very
complex system is to model it adversarially. Because the more complex a system
is, the more it looks like there is really an evil guy there trying to wreck it apart, to
make sure that nothing works.

So, essentially, this theory is becoming more and more hand in glove with fault-
tolerant computing, where you really want to make sure that, you know, a network
of computers continues to work properly together, even though some of them fail,
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and fail in a way that is seemingly controlled by an adversary. In a different domain,
this theory has by now encompassed all pseudorandom number generation. It has
also provided bounds for what is learnable. Valiant and Kearns have somehow used
Shafi’s and my results together with Oded Goldreich on pseudorandom functions
to figure out what cannot be efficiently learned. In sum, because adversarial com-
puting is so pervasive, and allows us to model so many things, there are many, many
domains to which this work may apply.

Ibaraki: I see. I mean, that’s fascinating, I can see this now and in ten years’ time a
Nobel Prize.

Micali: [laughter] Thanks. I don’t know about this, but thanks.

Ibaraki: Now, you’ve somewhat addressed this in all the different kinds of answers
you’ve provided, and the dialogue we’ve had so far, but how does your work address
important practical problems, such as the protection of data from being viewed or
modified, and providing a secure means of communication and transactions over
the Internet?

Micali: All right, yes, sure. You know, encryption is not the only thing you want to
do on the Internet. Protection of data from being viewed, we have discussed, but
from being modified we have not yet discussed, right? About protection against data
modification, Shafi and Ron Rivest, my colleague at MIT and a prior Turing Award
winner, and I developed a digital signature scheme that actually has set the standard
for subsequent digital signatures. Can I describe briefly what this involves? Let me
go on a limb and take another five minutes.

Essentially, what is a digital scheme? A digital signature scheme involves a pair
of matching keys, a secret key that allows me to sign messages and a public key
that enables everyone to verify the messages I sign using my secret key. The crucial
property is that the public verification key does not betray the secret signing key.
That is, knowledge of the verification key should not enable one to compute the
signing key in any remotely feasible time, such as a few millions years, even with
the fastest computer. So to prove that a given message, M, comes from me, I use
my secret signing key to compute a short string S, my digital signature of M. Such
digital signature S depends on M, because different M’s would have different digital
signatures from me. But then you can use my signature S and M and my public
verification key to see whether S is indeed the correct signature of mine for the
message M. If this is the case, you can rest assured that I consented to the message
M, right?
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Now, for this to work, it is necessary that these signatures are unforgeable by
somebody else. OK, but what does this mean? In the past, it used to mean that
an adversary could not come in, look at my public verification key, and forge my
signature of his favorite message, such as, you know, “Silvio owes me a million
dollars.” But, we need more security than that. So what do we need? We also
need that somebody cannot modify a prior signature of mine so as to forge my
signature on a modified message. So, for instance, if I did sign, “I, Silvio, owe you,
Stephen, $1000,” somebody should not be able to change it “I, Silvio, owe Stephen
(or somebody else) $2000,” right?

Even more, you want that somebody cannot ask me to sign a few things, and
then, assuming that I do agree and sign them, learn to sign other messages. Think
of a notary public, who essentially is somebody who signs messages chosen by
other people. And of course, he could use digital signatures to digitally sign mes-
sages. So you don’t know how to forge the digital signatures of this notary public,
but you can ask him to sign a given message, and he does. Then you say, “Ah,
that’s interesting. I just learned something that I didn’t know before. I think I
start getting the idea how the signatures of this notary public look like, but I’m
not quite sure, so let me ask him for a second one. Could you please sign this sec-
ond message?” And the notary public signs it again. You say, “Oh, gee, now I’m
getting the gist of it.” And so you go on with this process a bunch of times. You
request signatures. The guy agrees and sends them back. So what one should really
want is that, at the end, you cannot sign any new message at all. In other words,
forging someone else’s signatures should not only be hard from scratch, but also
unlearnable.

When I arrived in this country, you know, English was a cryptosystem for me.
More or less, I could not really be understood by anybody. But then I was able to
ask questions, “How do you say this? How do you say that?” And slowly slowly,
I learned enough to get by. So we don’t want this to happen in a secure digital
signature scheme. We want a more stringent notion of security. We want signatures
that are unlearnable. I believe that this requirement is crucial if you really want to
prevent data from being tampered with over the Internet. And signature schemes
guaranteeing this stronger property have already been developed.

Ibaraki: Now, what is the impact of your work on computational complexity?

Micali: Well, interactive proofs were crucial to complexity theory, because they let us
understand which class of problems have an efficient proof. Remember, proving a
theorem is the most frustrating thing. Proofs are very frustrating to write down,
and it is very frustrating to read them. Interactive proofs actually transform this
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frustrating thing into a game between the prover and the verifier. Somehow, if the
theorem is true, and I act as a prover, then I should win a very simple game between
you and me. Say that the game has five moves: I move, you move, I move, you move,
and one of us wins, and then we can determine who wins. If the theorem is true,
then I should win all the time. If the theorem is false, I should win at most half of
the time. So if we play this game, say, 100 times, and you see that I win 100 times in a
row, you conclude, “Well, you know what? The best explanation is that the theorem
is actually true.”

Figuring out which theorems are easily provable is important in complexity
theory. As for another impact in complexity theory, my work on pseudorandomness,
with Manuel Blum first and with Shafi later, essentially has helped us understand
which problems can be solved deterministically. Thanks to Solovay and Strassen,
and Rabin, by now we know that there are plenty of problems that can be efficiently
solved probabilistically. But then what happens if your computer cannot flip coins?
Somehow the theory of pseudorandom number generation allows us to understand
what problems can be solved efficiently and deterministically.

More generally, a lot of my work depends on a one-way function, OK? A one-way
function F is a function that has two crucial ingredients, very antagonistic to each
other. The first is that the function F is easy to evaluate, which means on input x,
you can compute F(x) very, very quickly. The second is that the function is hard
to invert, meaning that given F(x), you have no idea how to retrieve one such x.
Essentially that is the mathematical analogue of the one-way phenomena that we
so commonly experience in the real world.

For instance, if I take a glass, and I smash it on the floor, that is very easy, but
to reconstitute the original glass from its pieces is much harder. So this a one-way
phenomenon. As for another example, it is easy to scramble an egg, yes? But to
unscramble it is a totally different (and in fact much harder) story. So a one-way
function essentially incorporates in itself both easy and hard computation. Thus,
it’s not surprising that understanding one-way functions increases our understand-
ing of complexity theory, which is the field devoted to figure out which problems
are easy to solve and which ones are not.

Ibaraki: Yeah, that’s fascinating. What are your thoughts about things like in quan-
tum mechanics and the twin particle effect, and sort of the impact that’s going to
have perhaps on your field? Or do you see sort of the work of Judea Pearl in causal-
ity and counterfactuals and external validity and artificial intelligence—do you see
some kind of connection between some of this research you’ve done and those
areas, at all?
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Micali: Well, certainly let me address the field that [laughter] is more dangerous to
mine, quantum computing. We need hard problems to base cryptography on. As
we said, we want to take a purely computational problem, a purely mathematical
problem, and massage it around and transform it by magic into a very human
problem, like proving “This message comes from Stephen,” right? Of course what
is easy computation and what is hard computation depends a lot on the available
computational model. If you have an abacus, what is hard and what is easy is
one thing. If you have now a modern computer, but still a classical computer, it’s
something else. The jury is still out on whether quantum effects can practically and
dramatically speed up computation or not, but they might. In this case, first of all,
we have to redefine what is easy and what is hard, and then define functions that
are one-way for quantum computers, rather than for digital ones. So some specific
candidates for one-way functions, such as factoring, may disappear, but that does
not mean that we cannot generate other candidates, because we now have a more
general theory of one-way computation.

Ibaraki: You know, amongst our listeners there’s people who are not necessarily
heavily involved in all the technical aspects, and in some ways they could be con-
sumers, because they’re in senior management now, and their technical years are
long past. So what are the practical implications and applications of your work
influencing all of our daily lives?

Micali: All right, the simple practical example is that of a password. I’m sure every-
body has dealt with passwords, right? For thousands of years, a password has been
some secret phrase, such as “Abracadabra,” that I use to enter, say, a castle. If I’m a
medieval knight, and I’m on the other side of a moat, and I see the bridge is drawn,
and I want it to be lowered, I say to the guard upstairs, “Abracadabra,” and recog-
nizing the password, the guard lowers the bridge and I can come in. You can use
your mother’s maiden name as a password. I can use the name of my favorite un-
cle. Either way, it is a secret that we actually need to communicate. This password
system, of course, has some drawbacks. Essentially, if in the moat of the castle, in
the water there, there is somebody, he can hear that the knight whispers “Abra-
cadabra” before getting into the castle. Thus, at a later time, he can impersonate
the knight with no problems. He puts on helmet and armor, says “Abracadabra,”
and the bridge will be lowered for him too.

In addition, a classical password system has another drawback: The gatekeeper
himself knows know the password, so if I use the same password for other systems,
say, not only to enter the castle but also to log in at MIT and to log into my bank
site and wire money out of it, I am in danger, because I actually am enabling any
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verifier of one of these systems to impersonate me to any other system. So, what
am I going to do?

I generate somehow a theorem whose proof only I know. For instance, I take two
large random primes and I multiply them together to generate an integer N , and
then I tell MIT, the castle, and my bank, “This number N here is Silvio’s number.
Anybody who proves to you that it is product of exactly two primes, let him enter
my castle, let him wire money on my behalf, let him access my files at MIT. With
my consent.”

But how do I prove that N is the product of two primes? Do I send over the
two primes I originally multiplied? Absolutely not: such a proof could be copied
and used to impersonate me to another system. I use instead a zero-knowledge
proof. That is, when, say, I want to log in at MIT, I engage its server with a zero-
knowledge proof that N is the product of two primes. Such a proof can be verified
by everybody, and thus by MIT’s server. But it’s a zero-knowledge proof, so nobody
having verified that N is indeed the product of two primes is able to prove this to
anybody else. Because, after a zero-knowledge proof, you don’t learn how to prove
the statement—you only learn that the statement is true.

So suddenly you essentially a have an ideal password system. It lets you safely
use the same passwords with multiple systems, it is very efficient, and it is imple-
mentable via a smart card. It is the most practical application that I can think of.

Ibaraki: Silvio, you’re this giant in industry and education and research and so
on, and your work resonates throughout the world, and so I know our audience
would be interested if you can additionally profile your extensive research history,
its lasting impact, and some valuable lessons you wish to share from each of your
top research areas that we haven’t talked about yet.

Micali: [laughter] All right. First of all, let me just mention, without any details, that,
in addition to whatever else we just discussed, I’ve been working on distributed
computing, on private information retrieval, etc. But perhaps, you know, we should
move from the technical work to the lessons learned.

The most valuable lesson that has worked for me (and many others) is to really
generalize and simplify the concrete examples that motivate you. Concrete exam-
ples are wonderful. They really drive us. But they are also typically messy, right? They
contain an abundance of details that may blind us. So my lesson would be just, you
know, get rid of as many details possible. Generalize your problem as much as pos-
sible. Back up, and back further up until you see the whole picture in its simplicity.
Generalize a problem until it becomes either impossible to solve or very simple to
solve. Back up to get the full view and drive yourself to a corner. And once you have
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no escape you may lose, but you may also find additional strength and win big. At
the end of the day, who needs partial victories? So my lesson would be drive yourself
to a corner and go from there.

Ibaraki: That’s an interesting concept. So how many times have you done that?

Micali: Oh, I’ve done it as a graduate student. I’ve done it as an undergraduate
student. I’ve done it as an assistant professor. [laughter] I’ve done it a few times.
The amazing thing is that it often works. So I’m not advocating without practicing,
let’s put it this way.

Ibaraki: It seems to me that concept could be applied to so many other areas,
perhaps friends and family and business deals, as well.

Micali: Why not? Never sit at a negotiating table if you cannot get up and leave at
any time, and never shoot for “just friendship.” You know, sometimes I think it’s
worth it to risk it all.

Ibaraki: I see, Silvio. So this could be a book beyond your research [laughter] that
the general public will read.

Micali: [laughter] I’m sure I’m not alone, right? I’m sure many people would agree
with me.

Ibaraki: Now, Silvio, you talked about your past research, and you also talked about
some of the other areas that you have researched. Can you get into more detail
about your current research interests?

Micali: Yes. Somehow, at a late age, unfortunately, I encountered a beautiful notion
that was put forward some half a century ago by economists, mechanism design.
Essentially, this is a way to choose an optimal outcome without data. Optimizing
is never easy, even if you have the data, but if you don’t have the data it is actually
much harder. And so why don’t you have that data? Because other people, the so-
called players, have the data. You may say, “Why can’t you just ask them?” Well,
because they may have a stake in the outcome you choose, and therefore, when you
ask them for the data, they may lie so as to manipulate in their favor the outcome
you choose. And so you must engineer a game so that, when everybody plays it so as
to maximize his own utility, you learn, as a side product, which outcome you should
choose. It’s a fascinating field, and that’s what I’m currently working on, from my
own special perspective, of course.

Ibaraki: And then what are the broad implications and applications of this work?

Micali: Well, in principle, any decision-maker, in particular any politician, would
stand to benefit from mechanism design. If you really want to go one step farther,
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mechanism design may be the best way to engineer a system, like the Internet, that
is very decentralized, in which no one is in charge. And because no one is in charge,
you can put all the rules and laws that you want, but unless you design the system so
that everybody is incentivized to stick to the rules, the system will never quite work.
So mechanism design may actually be used in engineering large decentralized
systems. And finally, you know, I’ll not be surprised if mechanism design were
to provide us with key insights for understanding successful biological systems.
Perhaps our complex organisms are not the visible product of some unlikely kind
of equilibrium, a very fragile thing, but actually are the robust outcomes of properly
and slowly designed mechanisms.

Ibaraki: Oh, fascinating. And again I mention, gee, maybe a Nobel Prize, as well.

Micali: [laughter] Ahi Ahi Ahi!

Ibaraki: What are your future research interests?

Micali: If you stress future, the answer is the brain. Yes, the brain might be my future
interest, and not only mine. [laughter] In fact, other computer scientists before
me—in particular, Les Valiant—started working on it. I think that I’m considering
working on it.

Ibaraki: Oh, that’s fascinating. In terms of that work, you’re thinking of applying
sort of a mathematical model to it, or getting more sort of into the engineering
side, or getting into sort of the works like external validity or causation and some
of that area? Sort of what’s the approach?

Micali: Remember that I truthfully answered your question by stressing future. So,
right now we don’t know, at least I don’t know which angle it’s going to be, but
certainly it’s going to be a computational angle. At the end, I believe that a big
part of the brain’s function, and memory in particular, should be modeled as a
computer, and you want to put things in memory, and retrieve them efficiently,
and with some redundancy. And we know a lot about how to store, retrieve, and
manipulate information when we have total liberty to decide the components. Here,
the components are decided beforehand, but perhaps some of the lessons we learn
from distributed computing may be applicable to the brain, too. More than this, I
do not know. Right now I’m working on mechanism design, as I was saying.

Ibaraki: It’s interesting, the whole concept of that kind of research, and I’m think-
ing of Daniel Dennett and Consciousness Explained, or Descartes and this sort of
mind/body connection, or Penrose and some of the work that he’s done in think-
ing about the brain, but from a model of a philosophical sense, or Kurzweil, and
this idea of a singularity, which in some circles is controversial. Do you have any
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feelings about that sort of idea about a soul and a brain, and is there something
more that we don’t understand?

Micali: We don’t understand a lot. But [laughter], if you ask me, remember whatever
I said about the simulation paradigm? Never mind the mind and the body. Really,
the question is whether the whole universe can fit in the brain, right? [laughter]
I mean, I’m a little bit of an extremist here. But again, there are tremendous
possibilities, but I have not given them the rigorous thought that I’ve given to some
other fields yet.

Ibaraki: Silvio, I could just see those roots of this kind of thinking going back to
when you were a child, and talking to your mother. [laughter] Now, what are your
most difficult challenges in research, and what valuable lessons do you wish to
share?

Micali: Well, my challenges, if I can be frank, are inability to work alone and lack
of knowledge. And so the lessons I wish to share are the same ones that I used
to cope with my challenges: collaboration and imagination. So what if you cannot
work alone? You can always collaborate, provided that you hold on to your own
individual obsessions, no matter how extensively you collaborate. And again, who
cares if your arsenal is quite small? Be imaginative, forge your own tool, and march
ahead.

Ibaraki: Every time you get researchers together, or you get, I guess, any group or
cohort together, you’re going to get a lot of discussion. You’re going to get debate.
You’re going to get some controversy. You’re going to get different points of view.
So what would you describe as additional areas of controversy in the areas that you
research?

Micali: [laughter] Well, controversy is . . . Everything is controversial. Actually, I
think that the main controversy, not only in my research area but in any area, is
the very definition of an area. This is the most contentious item in research. To be
clear, defining an area is both necessary and useful to focus the effort of future work,
to flesh out the problems, to attract fresh minds, etc., etc. But it’s also a constraint.
It’s a boundary, right? And boundaries may always incarcerate us. So we have to be
very, very, very careful.

Our theoretical community is just amazing. I really love my community. It has
invaded new territories with determination, ferocity, and cleverness, like a bunch
of conquistadores, but fortunately [laughter] no physical bloodshed. But even we,
a progressive and ready-to-abandon-all-boundaries society, risk to transform our-
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selves into ‘the guardians of the sacred fire’. And at a very great speed. We start
fighting to protect the purity of our field against outside contamination. It is mind-
boggling to me.

Suddenly, the game is not to find solutions to problems that do not yet exist,
but to solve older problems. And the older the better, because you get more credit
for solving, you know, a 50-year-old problem, than you get for solving a 10-year-old
problem, etc., etc. Of course, you need both to pose and solve new problems and to
solve old problems. But I don’t understand the emphasis on old problems, right?
That is really a disease.

If you chair a prestigious conference, or you are the editor in chief of a flagship
journal, somehow you start feeling that you are expected to become a businessman,
to satisfy the customers who put you there. So if you publish outlandish material,
the number of subscribers may drop in droves. How would you look? Can you ac-
cept this damage to your reputation? Publishing such material may cost you further
advancement. On the other hand, refusing to publish dangerous new material is
hidden from the public eye, so you may actually harm the growth of your field, but
no one will ever know. I’m actually saddened by the fact that journals and confer-
ences publish a disproportionate amount of small—but declared big—advances on
the status quo. I believe that the incentives are misplaced, and we can and must do
better and never define in too strict a way any area.

Ibaraki: Hmm, that’s quite fascinating what you just stated there. I mean, it kind of
reminds me of this idea of disruptive innovation or research, and this concept of
innovators being a platform where they sort of model what creates breakthrough in-
novation, what creates breakthrough disruptive innovation. They find sort of these
five qualities, one of which is always actively questioning everybody, everything and
everybody, always actively observing everything and everybody, always actively ex-
perimenting in diverse areas, even across areas that are outside of your domain, to
get a different perspective. And the final two elements are associating, and that is
synthesizing all the kind of different concepts in all the different areas, and integrat-
ing that information as you sort of proceed day to day. And then finally networking.
Networking with others, but particularly with those who hold diverse views, and
perhaps contradictory views, or even to the point where it could break the system,
or close to sort of your collaborative team. It sounds like you’re sort of speaking to
that, not to get into this sort of groupthink idea.

Micali: Oh, absolutely. Of course there is the risk that, if everything is innovating
so fast, then we cannot discern anything anymore. We need some rigidity, I don’t
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know, it’s an old question whether geometry could have been invented if we were
water animals. I mean, [laughter] we need some solid terrain, perhaps, to hypothe-
size a triangle, and so on and so forth. Or maybe not. But what I’m saying is that we
must do better than just barring this. It would be nice if every journal or conference
actually accepted, say, every ten articles, two oddball articles, if people actually ex-
pected two such articles. And I bet they would be read with interest. Even simple
policies like this would go a long way to incentivize us to question ourselves and
our own fields and to make progress.

Ibaraki: I see. So, actively embrace outliers. [laughter]

Micali: Yes, yes, bring them into the fold. We need outliers. But we also need, you
know, to make progress on very established questions. My problem is that I perceive
a disproportionate emphasis on traditional work. Of course innovation will break
through once in a while, but not at the right rate. We can actually control and
optimize the rate a bit. Actually, quite a bit.

Ibaraki: Now, Silvio, can you describe the types of research being created or updated
that will drive our experiences in five or ten years, and what will these experiences
be like? Can you paint a picture for our audience?

Micali: Well, frankly, my prediction for future research can only be based on what
I know, so I expect more and better of the same. I don’t know how interesting that
may be. All expert predictions matter less than the developments we cannot predict.
I mean, if our predictions were exact, our future would be doomed to boredom and
missed opportunity. I personally look forward to major surprises, [laughter] and I
must confess that those I cannot anticipate.

Ibaraki: Now, you have this remarkable background—your educational back-
ground, that is—at the University of Rome and in Berkeley. So what specific chal-
lenges in your education at these two famous institutions were catalysts to inflec-
tion points in your lifetime of contributions, and how and why did this happen?

Micali: Oh, wow! Thanks for asking. [laughter] I really would like to give credit to
both great educational systems, in Rome and in Berkeley, and the actual people
behind them, who really shaped me . . . So let me have a crack at explaining. First
of all, both universities, and in particular the specific teachers I met, have been very
flexible. This really shaped my attitude towards research.

In the United States, to tell you the truth, a course is run more tightly than in
Italy. As a student, you are continuously monitored with problem sets, and the exam
coincides, so to speak, with the last day of the course. There is not much room for
negotiations [laughter] of alternative dates. In the Italian system, instead, you are
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much more in charge of yourself. There are lectures, of course, there are sessions
of exercises, but it’s totally up to you to attend or not to attend. And the exam, you
can actually take it when you feel ready: after a month, after a few months, after
a year, even. That for me was really ideal, because I would have not functioned
otherwise. Typically, I took four yearlong courses, where yearlong [laughter] meant
from November to May. Then I took, say, one exam in June, another in July, one in
September, and one in October. And then courses started again. It was crucial for
me to be able to take an exam when I felt ready. I absorb things slowly, and that
flexibility was extremely important to me.

People-wise, I really, really admire and I owe a lot to Professor Luciano DeVito.
He taught us mathematical analysis. You must know that, in the typical Italian
fashion of the time, I took a classical high school: lots of humanities, history, philos-
ophy, and very little math. In fact, the only math that I was exposed to was Euclidian
geometry, maybe because it was Greek. [laughter] Yet, I was fascinated by it enough
to decide to enroll in physics, and thus I was exposed for the first time to mathemat-
ical analysis. A marvelous field. You started talking about infinity in rigorous terms.
It was wonderful. But whatever made this course unique, as I realized later, was that
this guy, DeVito, organized the entire course around problems. He never engaged
in a classical definition-theorem-proof sequence. He would ask, “How might ‘area’
be defined?” And then a big debate started. Sometimes, he posed problems that
we could not solve right away, but we solved them very much later. The problems
were really center stage, and we were obliged, actually, to define things if we wanted
to make progress. And somehow this necessity to define things became an ability,
and helped me tremendously in my career.

So, in essence, his course was entirely devoted to research and that was the first
course that I ever took, OK? I loved it so much to conclude, “Who cares about phys-
ics? Actually, what I care about is mathematics.” I understood mathematics to be
analysis. So I told him, “Professor DeVito, I really want to switch to mathematics.”
To my surprise, the guy says no: “You cannot switch.” I said, “Why not?” Because, he
says, he’s proud to have been an analyst himself, but analysis was for older people
like him, and a young person like me would be better off staying in physics. OK!
[laughter]

I followed his advice, thinking that perhaps I could change his mind if I actually
proved something. At some point, he mentioned the general axioms of measur-
ability according to Lebegue and the existence of a set non-Lebegue-measurable.
Somehow I decided to find such a set. But I was unprepared for the problem, and
could not solve it, at least not right away. So I totally obsessed about it, to the point
that I actually neglected to follow his lectures. I was behind in the course. In fact, I
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dropped all the other courses as well. But eventually, I managed to solve the prob-
lem, and I presented a solution to him. He was very happy and gave me an A+ at
the first exam opportunity, while I was intending to take the exam much later. For
me, that was really a transformative experience. Somehow I got the notion that
it was OK to carve a path on my own, and that somehow research has to be cen-
ter stage. I really felt empowered. More importantly, he now gave me permission
to switch to mathematics, but he added, “If you really want to do mathematics,
then you should focus on . . . ” —he didn’t use the word, but he essentially de-
scribed theoretical computer science. He told me about Gödel and Turing. But
then he says [laughter] “You really watch out, because to do this stuff you need
a big stomach.”

I switched to mathematics, but I neglected his advice and followed instead
courses in analysis. But, in the fourth year, I paid attention to what he said enough
to follow informally as a listener two courses, one on lambda calculus with Corrado
Böhm, which was and is the father of Italian computer science, and one in logic with
Giuseppe Iacopini. Corrado has always been very enthusiastic. He sought me out.
He convinced me to leave analysis, to actually formally enroll in his class, and also
he gave me a challenge. He said, you know, “Why don’t you take the class, and why
don’t you try to prove that?” That challenge then became my undergraduate thesis
and our first paper.

So now at this point, to tell you the truth, I was convinced that I wanted to
do computer science, but I was totally unprepared. At the time there was no CS
graduate program in Italy. So Corrado quite unselfishly suggested that I pursue
a doctoral degree in CS abroad. Before applying, I followed a one-month summer
school in computer science. The idea was to choose four courses out of some eight. I
chose my four, but then dropped two. Since no degrees were awarded, why not? The
course I liked the most was on graph algorithms, and it was taught by Shimon Even.
Shimon was a wonderful teacher from the Technion, in Israel. He really introduced
me to algorithmic thinking, and he became a beloved friend and mentor. The other
course was also on algorithms, but more general, and it was taught by Fabrizio
Luccio, from Pisa. At the end, they both gave me the same advice as Corrado: “I
think you have to go abroad.”

Somehow all three of them suggested Berkeley as the more suitable place for
me to study. So I applied, I actually was admitted, and eventually went. I must tell
you that was another lesson for me: Receiving caring advice on how to complete my
studies from people who were not my advisers and had no formal responsibilities
towards me, somehow gave me the impression that research really was an enter-
prise without borders, that I was helped by people who owed me nothing and who
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really encouraged me to go far, [laughter] in a way. I realized I was entering a com-
munity of the mind without borders, and that the people out there actually cared
to advance Science with a capital S. It was an amazing message, right?

I was saying that I was studying history in high school, but my history books
were de facto centered on the history of nation states. Or at least I read them that
way. So somehow I didn’t take notice of the fact that there was a parallel, in fact,
a transversal universe. I mean, I knew, on paper, that science was a big enterprise.
You know, Archimedes and Eratosthenes exchanged letters, Pythagoras traveled all
over the Mediterranean, medieval scholars moved from Bologna, to Prague, Paris,
etc., etc. Artists were born in one city, lived in another, worked in another, and died
in another yet. Really, all this I knew, but somehow I never registered it. So, from
that point on I must tell you that geopolitical boundaries faded in the background
forever. And so that’s it. Gotten this mythical view of what science ought to be, I
decided that, yes, I would go to Berkeley.

Now, Berkeley: I was admitted, but not right away. My score in the test of English
as a foreign language was actually abysmally low, so I had to take it again. Finally,
I got a barely decent score, and I could begin at Berkeley in, I think, March 1979.
And I was utterly miserable. First of all, I realized that my English was really poor,
that I could not communicate with anyone, that I knew no one, and that I had no
prerequisites in computer science, while Berkeley had a very tough prerequisite
tree. So the only course I could take was CS1—the name says it all—an entry
programming course attended by 18-year-old people, and even precocious younger
people. I was 25, so there was very little mingling there. The other courses were
equally elementary. So, bottom line, I decided I’d finish the trimester, I’d pack up,
and I’d go back home. Accordingly, I also decided I might as well enjoy the city.

Just when I lowered my guard—perhaps because I was a bit more open—I
actually met David Lichtenstein, who at that time was a Ph.D. student about to
graduate. He took me under his wing, really, and was another marvelous example
of the generous help that had been showered on me over the years. He showed me
around San Francisco. He told me: “Forget about prerequisites. I think you need
to do research. Why don’t you pick up along the knowledge you need?” He told
me that Professor Blum was actually finishing chairing the department of CS at
Berkeley that summer, and said, “He’s a great advisor, and you’re lucky, because
he has not taken new students during his chairmanship, so in the fall when he
steps down he needs new students, so why don’t you propose yourself?” I said, “I
will try.” He actually had [laughter] another reason in favor of Manuel: Being from
Caracas, Manuel spoke Spanish. So, you know, “He can understand your Italian.”
[laughter] Because apparently my English wasn’t good enough.
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So I went to see Manuel. He was very kind, but he said that his hands were full,
that we should reconsider everything in the fall, that we should wait. But David
didn’t give up. He was determined that I started doing research and stay motivated.
And so he told me about a problem posed by another graduate student, who had just
graduated with a superb thesis, Mike Sipser, now a leading complexity theorist, and
the chair of MIT Math Department. In his thesis, Mike had left an open problem,
and David suggested that I should try to solve it. The problem was in automata
theory, which, of course, I knew nothing about it. So, he said, “No problem, so
I’ll give you a crash course in it.” The “course” took two hours, or maybe three,
at a coffee shop in Berkeley. We were sitting there, sipping cappuccinos, and he
was telling me one definition, then giving a small exercise. He was patient and
understanding, and so on and so forth. And at the end, with the last cappuccino—
I call it the four-cappuccino course; that’s how many cappuccinos [laughter] I was
able to drink in one session—he says, “OK, now, here is the problem you should
try to solve.”

A few days later, I was actually able to solve it, and told David, and he says, “That’s
wonderful. Now you have to go back to Manuel and explain it to him too.” I said,
“But Manuel said his hands are full.” He said, “Never mind, Manuel knows the
problem. In fact, he was the advisor of Mike, so he would like to see the solution.”
So I went to Manuel, and David was right: Manuel wanted to hear the problem right
away. He cleared his schedule, cleared the board, and let me explain the solution.
And at that point, he agreed to pick me up as a student, and from that point on
we only spoke of research. I mean, I’ve never seen anybody so research-oriented as
Manuel. He really was wonderful.

So, at this point, you know, I decided to stay in Berkeley, and I showed up again
in the fall. By then, David actually was no longer there—he already went off to his
job—but that’s when I met Shafi, and actually Vijay Vazirani, too, and Mike Luby, a
group of extraordinary researchers and great people, as they turned out to be. We
formed a gang of sorts. We dined out with modest finances, but still enjoyed the
food, working together, and actually trying to solve the problem sets together. It was
really wonderful. We took a course of Dick Karp, which was to test the flexibility of
Berkeley [laughter] despite being a U.S. university.

Dick Karp is a fabulous teacher, too, and he ran a famous algorithm class. And he
mentioned a problem, fortunately or unfortunately, kind of early on in the course.
It was a problem in algorithmic graph theory, the same subject that Shimon made
me enthusiastic about. The problem was extending the running time of the best-
known algorithm for matching from bipartite graphs, which are special types of
graphs, to general graphs. So Vijay and I decided to work together to try to solve
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the problem. We spent hours and hours together. Vijay was capable of satisfying
all the other courses and taking care of the other problem sets. As for me, I, again,
dropped out from all courses, including the one with Dick Karp. I only spoke to
Vijay. But at the end, by our good fortune, by the end of the course we found a
solution, right? (That solution, by the way, continues to be to this very day the most
efficient solution for general graphs.)

So now what do I do? Dick, I must say, to his honor, let me pass the course,
which by any standard I should have failed, with a B-minus. I mean, Dick is a very
generous and fair person. I’m sure I must have tested his patience, [laughter] but he
had to give me a B-minus. And now I was a little bit in trouble, because surviving as
a Ph.D. student with only one course with a B-minus on my transcript was no joke.
And to make things worse, I had to pass a barrier to continue the Ph.D. program,
the prelim exam, and having not taken any hardware classes, I failed the hardware
portion of this exam. So Dick and Manuel had to personally testify in front of the
relevant committee so that I could continue my doctorate. Somehow, they were very
persuasive, so I was allowed to continue.

And then our gang attended Manuel’s course on computational number theory,
and we all had a great time, we cemented our friendship, and at that point Shafi
and I joined forces on cryptography for many, many years. And she actually had a
tremendous influence on me in many ways. In particular, she convinced me that,
given that nothing came easy to me, I might as well focus on hard things only. I
must say that her insights, personal and scientific, really spurred me on in decades
of joint work. I was indeed very fortunate to join forces with such a scientist and
a friend and a colleague. So at this point I had a course that I loved, taken from
Manuel, and the companionship from great friends and researchers. The people
were much more flexible than the system, and I really felt, you know, that I really
was in the proper crowd.

Manuel, I don’t know if you know him, but he’s a permanent revolutionary. We
already spoke about Dick Karp. And then there was also another faculty member at
the time, Andrew Yao, who started also as a physicist but, unlike me, a real one,
with a Ph.D., a post-doctorate, etc., but then he got fascinated by computation
and switched to computer science, and was then a professor at Berkeley, too. And
I’m glad he was, because Shafi and I and he actually had a marvelous and fruitful
interaction.

All these guys were actually marvelous teachers, but in very different ways. I
mean, I have the fondest memories. Such a high standard to live by. It’s scary, really.
Manuel, I don’t know, he was a magician. He did not explain a theorem. He actually
forced you, actually all of his students, to prove the theorem on the spot: the trials,
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errors, anxiety, heartbeat accelerations, the whole shebang when you try to solve a
problem. Dick was most clear, organized, a perfect sense of timing. I mean, I have a
terrible memory, but whatever he explained I still remember. And Andy, he was not
formally one of my professors, but I attended all of the lectures that he gave, and
two of them really changed my life. You know, one was on Shamir’s secret sharing,
when I was a student, and another one when I was an assistant professor at MIT.
The latter was a lecture on what came to be known as Yao’s garbled circuit, which
had also tremendous influence, not only on the field but on me in particular.

At Berkeley, I really think that the flexibility, the focus on research, and the
ability to pardon cutting corners—provided that you actually strive forward at least
in one direction—was really what made me what I really am. I really felt I was in
a magical place. Remember, I had a very Europe-centered point of view, right? I
thought of Berkeley as the far edge of a civilized universe, in front of the Pacific
Ocean, that mythical barrier to mankind, right? I felt I was in heaven, but, keeping
with the metaphor, [laughter] I also felt, “Who could live in such a small city, except,
you know, monks?” I saw them as monks, Manuel and Dick and Andy, living in
this remote hermitage at the confine of Earth. Really, it’s hard to communicate
such a personal experience, you know. I learned so much. And I learned what I
really wanted to learn: that finally I was not alone. I learned that Science really had
the power to understand anything, even things that seem to be impenetrable to
quantification or rational analysis altogether. I learned the power of interaction. I’ve
never forgotten it. And really, I learned that experiences that cannot be written down
or repeated in any way, like these I just described, really are the most permanent
and precious. Ever since, I became a very big fan of the oral tradition. We should go
back to this oral tradition, the strongest and most effective tradition we ever had.

Ibaraki: Silvio, that’s just an amazing history, in terms of the mentors that you’ve
had, and continue to have, the collaboration with so many people, as you indicated,
the flexibility that you were given, and I guess now that’s generated [laughter] some
questions in my mind. You had this very unique kind of program, both at University
of Rome and at Berkeley, where people have given you some agility and some, as you
indicated, some flexibility. Now, do you pass that on in terms of your interaction
with your students, and so on, your graduate students? Has that influenced your
interactions with potential researchers?

Micali: Oh, absolutely it has influenced. The extent to which I actually succeed at
giving back what I received, that I don’t know. But I certainly try. [laughter] I have
my own rigidity to worry about, of course, but you bet I try to be as flexible to others
as my teachers have been to me.
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Ibaraki: You know, it’s interesting: in this dialogue I can feel and sense your energy
and your passion for the research that you do and the things that excite you, and I
know that your collaborators, and those students that you influence, as well, would
feel that same passion, so they’d be very excited [laughter] to work with you, I think.

Micali: Oh, these are very passionate people. You’re right.

Ibaraki: Another question is that, you know, you worked with your colleague Shafi
for some time, starting at Berkeley, and that collaboration has continued. You
know, any time you collaborate with somebody, sometimes there’s tension, and
how do you manage that tension? Or, you know, let’s say if you disagree on a point
of view, how do you manage that?

Micali: Well, the best thing is not to manage. Somehow, tension gets resolved.
Tension is good, right? Somehow you are pulled in two directions, but I think you
generate energy. I think that as long as there is goodwill, this energy gets released
in a positive direction. I’ve never tried to be, quote, “polite,” in an interaction. It
doesn’t work for me. And other people have been very genuine when interacting
with me. Sometimes, we start “polite,” but then as we become more and more
friendly with one another [laughter] and we become more and more direct, tension
rises. And to tell you the truth, I think it’s good. I don’t think we should manage
tension. If the tension becomes too high, and you have to say “Go to hell” for a day,
and “I’ll never work with you anymore,” you can always restart on the next day. But
if you try to keep everything at a quiet or moderate tension level, I’m not sure . . .
It may work for others, by the way. I don’t want to dampen it. But it just doesn’t
work with me, and with the people with whom I’ve had the pleasure or the honor
of working.

Ibaraki: In the past your supervisors and collaborators, but also your mentors in
the past, have given you a lot of flexibility, sort of allowing this sort of oral tradition
in terms of you proving that you had the expertise or the knowledge, or you’ve
done the required research in your problem solving. You know, there’s this new
idea that came out of Stanford—oh, I guess it’s not new, but it sort of got more
attention back in 2011. That’s this idea of massive, open, online courses, you know,
where they had the artificial intelligence course, 160,000 students enrolled from
190 countries, volunteers translating in 44 languages, and MIT and Harvard had
started something called edX, and it’s sort of in that same area, or Coursera, you
know, is all about MOOCs. What’s your opinion of MOOCs, and do you see that in
conflict with sort of the traditional side of teaching, or do you see it sort of aligned
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with how you were kind of mentored, and the kind of support that you’ve received
in your life?

Micali: So, we have to distinguish here the personal, what is good for me, from what
may be good for others. Tell you the truth, I really believe that enabling a very large
audience to get educated is something extremely beautiful and extremely useful.
Ideally, we’d like to do this one-on-one, but if we cannot, then these online courses
are perhaps, you know, a very good alternative. For me, actually, personally, it does
not work, but that does not mean that it’s not good. Just I’ll be a very poor e-teacher.
Remember that I continue to struggle with the doubt of whether there is somebody
“on the other side,” right? So, I hate writing letters, because who knows if the other
one will ever receive it. And if it is received, in what state or mood he or she is.
So I prefer a phone call to a letter anytime. Actually, if it’s something that is very
important, I really insist on physical presence. And so the notion that I, personally,
could go in front of a microphone and a camera and deliver an e-course gives me . . .
[laughter] I shudder at the thought.

But, however, that does not mean that it’s not good. Actually it may be a way. But
I really believe that there has got to be room for an old-fashioned way, for, as you
say, oral tradition, personal interaction within a small group of people. I believe
that you can actually subliminally transmit so much more this way. It’s just a way
that does not scale. So I don’t want that in order to guarantee scale we suppress this
other mode, but we can certainly augment it with e-learning and remote learning. I
think that it is, again, a beautiful project that I certainly applaud. I’m not sure that
I’ll be successful in this particular mode. But that’s just me.

Ibaraki: Again illustrating your continuing leadership, one of the things you did was
you cofounded the information and security group, and because you’re one of the
cofounders of this very important group, can you detail your objectives in both the
short and long term?

Micali: Those are actually quite simple, really: to foster interest, education, and re-
search in cryptography. Pure and simple. I think that’s the goal of any research
group that has been founded, and ours is no different. It just focuses on cryptogra-
phy, that I still like [laughter] despite my recent adventures in mechanism design.

Ibaraki: Now, throughout this interview it’s clear that you have a lot of energy that
you put to different areas, and one of them is Advances in Computing Research, that
five-volume textbook series. Why are you so supportive of that series? You know,
what motivates you? What generates all of that passion?
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Micali: All right. First of all, about this specific series, let me tell you right away
that I’m very proud of that volume. I mean, the volume I edited was dedicated
to randomness in computation, and I believe that the interplay of randomness
and computation is crucial to our field, and I’m proud, actually, of the confidence
bestowed upon me by the many contributors—who, by the way, are all great leaders
in our field—and by the editor of entire series, Franco Preparata. So, I’m very proud
of that volume. I liked it, and I still like it.

But let me generalize your question a little bit. I believe that this volume, like
other volumes, in whatever form—because the form changes—are occasions of
common and focused reflection on what we try to understand, and are very im-
portant. To advance a given field, we need original technical contributions. But,
somehow, I also find that it’s important that, from time to time, we take a little
bit of time to record our coordinates in our journey, right? As the saying goes, how
we got to know things is at least as important as what we know. And I could not
agree more. Unfortunately, it’s much more efficient to communicate only the sleek
proof of whatever we found, ignoring the torturous path that usually leads to it.
The path is forgotten, and that is a pity. And those with any experience of scien-
tific discovery know only too well that such a path is very far [laughter] from sleek
and linear. No one could exactly guess in advance the conceptual barriers that pre-
ceded a solution. “Where were we, conceptually, beforehand?” I find this to be a
fascinating aspect of science, too. And it’s one which is very hard to reconstruct
afterwards.

Personally, I do not subscribe to the theory that history helps us avoid the
mistakes of the past. If it does, it may do so only in part, in a very indirect way. But I
believe in the history of ideas for its own sake. Period. I mean, knowing humanity’s
past journey may actually make us better men, and, if we are better men, then we
can actually do better science. And all this may be true. But if it’s not true, I don’t
care. I still want to know the history of our ideas. And this is because, at the end,
I really believe that, we develop one reality, but I don’t believe that there is a single
reality for us to discover over time, that we just, you know, peel off the reality. I
think science is a variegated process. We always choose what to discover, and, in
that sense, we continually define our own scientific reality. Most people like stories.
I think that scientific development is really a fascinating story. So I really believe
that once in a while we should really find the time to document the stage of the
path we are in. I think that’s important. It may slow us down a little bit, but it may
also motivate us, right?

Hopefully, it will not stifle us. Because if you start staring at your own navel,
pretty much you don’t look further up anymore. Nevertheless, I think it’s a risk
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worth taking. Ultimately, if we don’t care about how we got here, we may also not
consider it important to decide where we want to go.

Ibaraki: Silvio, when I look at your profile of all the things you’ve done in the past, it’s
just an incredible profile, just an inspiring list of contributions over so many years.
And as a result, you’ve also won some awards and recognitions. So can you share
some valuable experiences and lessons from your prior awards and recognitions?

Micali: Well, OK, valuable or not, you know, my experience seems to follow the
following track: First I’m happy, then I’m depressed, then I meet other awardees
and I feel better again. That’s the trajectory. Somehow I meet these other awardees
for the first time, like, let’s say, in the induction to an academy. Sometimes I actually
have first and very different discussions with these people I always wanted to know,
and because these are very motivated people, they tell me about their own goals.
These are their goals, not mine. But somehow I realize how worthy and clear their
very personal and very different goals are. We live in an era of extreme specialization
in science, right? Most of the time, you know, I don’t even walk to another floor, and
even less to another department. So these I find very special and very motivating
moments.

Ibaraki: Silvio, you laid many of the foundational pillars in your pioneering work,
and distilling from your experiences, what are the greater burning challenges and
research problems for today’s youth to solve, to inspire them to go into computing?

Micali: Get into computing! Because computation is everywhere. Perhaps compu-
tation is a mental construct that we superimpose to the world, but then we only
experience the world via ourselves. So computation is everywhere, in one way or
another. So the real questions that I’d like to know and try to induce others to solve
is to what extent can we use computation to understand physical, biological, and
social laws, and can we perhaps use computation to influence some of these laws?
I think these are very big questions, and we need all the manpower we can get to
answer them, or even to scratch at their answers.

Ibaraki: It’s interesting, your answer kind of reminds me of this folded game where
there’s these sort of problems of how proteins fold into enzymes, and now they use
computers, and just people. They crowdsource it. It’s a solution, where they throw
it out to math as a people, including middle-schoolers, and they solve problems in
this area that couldn’t be solved by supercomputers and experienced researchers.
Or there’s this other online game which they’re using to model economic behavior.
So it’s kind of interesting, this idea that computing is everywhere, and how can
it influence some of the other domains that are out there. Or perhaps it is very
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important, all the other domains out there, and how can we maybe further that
work in some way?

Micali: Yeah, I agree, but not only because somehow we can use humans to solve
computational problems. Certainly development, embryo development, is an un-
folding computation in one way or another, right? But even if you want to look at a
particle . . . [laughter] Maybe, a particle follows “the laws.” But, also maybe, it ac-
tually computes where it should go. I wouldn’t be surprised of that. We really don’t
know. I really believe that computation is the development of something. We our-
selves in the universe, and anything else are the development of something. I think
there ought to be a bit more explanation to gain by understanding computations.
For sure in biological systems, but almost also everywhere else.

Ibaraki: Now, again, because of the position that you hold in history, and also in
the computing field, but also many other domains, again, this question is directed
regarding our youth, to our youth, with an interest in the future of computing, but
without the educational foundation, how would you explain your work?

Micali: All right. I said that computation is everywhere, but perhaps I was not able to
study much of it. I chose to use computation to model, to study, and to augment our
ability to interact with others. I really used computation to cooperate with others
while retaining our individuality, our secrets, and to efficiently convince others of
what we laboriously found to be true. That’s my chosen aspect of computation.
That’s the one I cherish. That’s the one I’d develop. And my hope, for every single
one of you, is that you find what is your own aspect and develop that.

Ibaraki: Now, what specific qualities make you excel, and why?

Micali: Oh! I’m going to be very direct and therefore I’m going to be very brief, OK?
So, I’d say: the ability to convert emotions into science, creativity, admiration for
the past, willingness to gamble the present, and yearning for the future.

Ibaraki: Hey, I like those answers. [laughter]

Micali: Well, like them or not, these are my answers.

Ibaraki: Now, past, present, or future—and you’ve already discussed this, in a way,
when you discussed your journey at the University of Rome and then Berkeley, all
these sort of collaborators and people who’ve mentored you and so on, but can you
name three or more who inspire you, and why is this so?

Micali: Well, certainly I’ll mention a few names, Stephen. [laughter] But actually let
it be known that we’d not have this conversation without the tremendous influence
of many other minds and friends, right? Ultimately, we are the people who inspired
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us. So I’ve got a few other people I’ve not yet mentioned but really should be men-
tioned. One of them is Charlie Rackoff, who was the co-author with Shafi and me
of zero-knowledge proofs. Oded Goldreich, with whom we co-authored pseudoran-
dom functions. Independent of that, you know, he just had a great influence, in
fact a crucial influence in transforming a set of theorems to a new theory. And Avi
Wigderson, without whom zero-knowledge might have remained a quite limited
intellectual enterprise. And Ron Rivest was the one, actually, who attracted Shafi
and me at MIT and nurtured our career and our intellectual development in innu-
merable ways. The list could, of course, go on.

But, that said, let me highlight three researchers whose research style really most
impressed me, right? And these are Alan Turing, Manuel Blum, and Michael Rabin.
And what I see in them is an innate ability of solving problems by conceptualization.
That is, these guys internalize the problem so well, and they metabolize it so
thoroughly, that at the end all they have to do is to pick flowers in a sunny field.
It is like magic. The problem solves itself. This naturalness, of course, is very hard,
[laughter] and maybe a little bit artificial. You have to work very hard for it. But we
should always strive towards it.

Ibaraki: Silvio, we’re down to our last two questions, and this is pretty open-ended.
And I’m telling you, you choose the topic area, and then what do you see as the
three top challenges facing us today, and how do you propose they be solved?

Micali: Three top challenges . . . Well, you know, one top challenge should be
enough for each one of us, right? Fortunately, there is many of us, [laughter] so
we ended up with many challenges. But let me try to multiply mine. The top chal-
lenge I see today is, as I mentioned before, really solving the mystery of the brain.
How do I propose to solve it? I don’t have an exact recipe, but somehow I really
believe that, to go after the opportunity, education is going to be crucial. So now
we have two challenges: the brain and education.

So why I think they are correlated? Because perhaps the brain puzzle could be
solved via one breakthrough, or a cascade of great insights in very rapid succession.
But we cannot sit down and wait for one of these events to occur, right? That
is hardly a proposal. I’m not the only one to believe that computation would be
crucial, as well as biology, for reaching a satisfactory understanding of the brain.
I was telling you that Les Valiant has certainly given this a lot of thought. In fact,
actually, he’s maybe a main motivator for me to think about this idea. But the role of
computation in this endeavor is still unclear. We need many more biologists with an
intuitive understanding of computation. Intuitive doesn’t mean simplistic, by the
way, but that you know something so well that it comes second nature to you. And



Chapter 4 An Interview with Silvio Micali 137

we need plenty of computer scientists with an intuitive understanding of biology.
I must admit that, at least currently, I’m not one of them. But we don’t need one
person only, because we cannot put all the bets on one person. If we know who the
right one is, so be it. But we need to bring up many and hope to actually nurture the
one who really is going to solve the problem, right? So education is crucial, because
we need to foster the synergy between biology and computation.

Synergies at some point should really become the norm in science. Right now we
are scattering. We are going deeper and deeper in subfields. It’s scary. So we need to
come together. Certainly for the brain this will be crucial. So an attack maximizing
success should include a strong interdisciplinary educational component. And
education, I must say, is a challenge, was a challenge, and will always remain
a challenge. I actually repeat myself here, because I cannot stress education too
much, right? People, at the end, only use—and are motivated by—what they know.
So we must continually revise what we know and how we teach what we know. And
by understanding the world better, we are able to push knowledge and ideas earlier
and earlier in our educational system, and more intuitively, up to, say, middle
school. And even before, why not? When, as a society, we care a lot about a problem
we must accelerate its solution. We cannot just wait for just this natural percolation
in the earlier educational years. We may have to be creative here. And I think one way
to be creative—who knows—is allowing faculty members to teach only one course:
You teach a course and you take someone else’s course, in another discipline. In
any case, to enable further and deeper advances, I think we should always find ways
to generate shared knowledge more efficiently.

Now, let me go on a limb and mention something else that I think is really a
challenge. More a psychological challenge, perhaps, but why not? A main chal-
lenge, as I see it, is living outside our planet very soon. I view this as a psycho-
logical necessity. I think that there is great psychological harm in feeling trapped
on the surface of a small physical sphere. And our sphere used to be much big-
ger not long ago. Of course, there are going to be other “infinities” for us to ex-
plore. But, somehow, physical exploration, I believe, is in our DNA. I’m sure that
if you go back to what I said, I must have used “journey” as a metaphor several
times. So I don’t know if we can really survive this loss of, quote, “infinite,” end
quote, physical journeys. I think we are going to be suffering a lot unless we find a
solution.

Ibaraki: Just very fascinating, your take on that question. And now we’re down to
our last question. You’ve had this very long and distinguished career. What are your
top lessons that you want to share with a broad audience?
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Micali: All right, if it is the last one, I’m going to revert to my cryptographic roots and
be a little bit cryptic, if I may, but hopefully not too obscure. So I think that power
is really the symbiosis of opposites. I believe that our emotions are our ultimate
power. And that nothing boils down to one thing.

Ibaraki: That’s a great closing set of lessons to pass on to our audience, and it
reflects the individual that you are, the professional that you are, the remarkable
scientist and researcher that you are. And I know your schedule is demanding.
You’ve spent considerable time sharing your deep wisdom with our audience, and
we are indeed fortunate, and thank you for coming in today.

Micali: Thank you, Stephen. It’s been a great pleasure. [laughter] Thank you for your
provocative questions.

Ibaraki: I’m Stephen Ibaraki, and this concludes our exclusive interview with Pro-
fessor Silvio Micali, ACM Turing Award winner, recipient in 2012, and the Turing
Award is widely considered the Nobel Prize of computing. Professor Silvio Micali is
also a world-renowned, distinguished researcher and professor at MIT.
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I’m very happy to give the talk here at STOC 2014, because the first conference
I attended in Computer Science was a STOC conference. It was in 1982 in San
Francisco. It was also the first conference that I ever had a paper in, which was
on probabilistic encryption. We titled it “Probabilistic Encryption and How to Play
Mental Poker Keeping Secret all Partial Information” and it is mentioned in the
Turing Award citation. It was the first public talk I ever gave.

The deal with Silvio was that, because he had a STOC paper before, I was going
to give the talk. In exchange, I let him speak first this time, and I think it was a
mistake. Had I known better, maybe I would have done it differently.1 But seriously,
I’m incredibly thankful to Silvio for all the years of collaboration and friendship and
inspiration and advice.

Okay, so today we are in 2014 and it is evident that theoretical computer science
has gone a tremendous journey, starting from the 1970s to today. Many fundamen-
tal ideas on the nature of computation have been discovered, including nondeter-
minism, randomness, synchronization, parallelism, fault tolerance, interaction,
locality, and more. Back in 1982, a lot of the things that we take as granted today
were not known. For example, we didn’t know that linear programming, or primal-
ity testing, can be done in polynomial time, and so forth. All these grand theorems
were proved later.

1. Editor’s note: But eventually, Shafi’s got her way, at least in the sense that her lecture appears
before Silvio’s (see Chapter 6). A few additional references to that lecture appear in the rest of this
text (see, e.g., “Silvio said”).
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Not only that we as a theoretical field have made amazing algorithmic advances
and explored fundamental notions, we’ve also made a lot of impact on the tech-
nology. When started out, theory may have been viewed as the ivory tower esoteric
side of computer science, whereas now it’s the backbone of search algorithms and
secure electronic commerce, routing and load balancing, and much more. We’ve
also had an impact on science. Indeed, many times you hear physicists talk about
getting interested in quantum computation due to Shor’s algorithm and so forth.
So much so that people have coined the phrase the Computational Lens to talk about
how you can view science, engineering, and technology through the prism of com-
putation, thinking about a computer as an abstract process that happens in biology,
physics, the brain, and so forth.

Today, I’m going to talk about a different lens, which I call the Cryptographic
Lens. I’m going to tell you how looking through this Cryptographic Lens you can
view theoretical computer science according to Shafi.

5.1 Historical and Social Perspective
Before we begin the story, let me add that it’s interesting historically to notice
that two of the grandfathers of the field, Shannon and Turing, the inventor of
information theory and the inventor of the Universal computer, were both also
known for their work in cryptography. In fact, probably for the popular public,
Turing is notable as someone who broke the Enigma machine, the German code,
rather than the inventor of the universal Turing machine.

Interestingly, Shannon, worked on two papers at the same time, one was “The
Mathematical Theory of Communication,” where he introduces information the-
ory. The other one was titled “A Communication Theory of Secrecy Systems,” where
he defined what it is that you should want from a perfectly private system, how
would you achieve it, and what are some bounds on what can be achieved. Appar-
ently, Shannon’s own testimony is that these two results were linked to each other.
They motivated each other, although one was published before the other, on ac-
count of being classified.

My main point here is not so much the love of history—I know very little of it—
but that those two guys were motivated in their interest in cryptography by wartime
research. The impetus for their work—in fact, I think they met in Princeton at
some point during the War—was their interest to win the War. And this is exactly
where we depart when we talk about modern cryptography. When we think about
modern cryptography, we don’t think just about fighting some bad guys, an enemy,
a wartime effort. Modern cryptography was born at a time when computers and
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communication using computers were becoming available beyond the military,
and when people were trying to think of how this progress could be used for
economic growth. Furthermore, the bulk of the work in the theory of cryptography
in the last 30 years concentrates on the correctness and privacy of computation.
Not just dedicated to protecting communication over enemy lines.

There are sort of three bullets that I’d like to hit on in this talk. One is that mod-
ern cryptography has enabled a lot of—in my opinion—fascinating computational
phenomena, which seem paradoxical in nature. The second is that it has been a
catalyst for many notions and techniques that led to a series of intellectual leaps—
new paradigms of thought—in theoretical computer science. And third, I believe
that cryptographic research has not only enabled these paradoxical and beautiful
abilities in the past, as well as led to progress in theory at large, it has a promis-
ing future in front of it. This is because today we have a tremendous amount of
data out there and tremendous connectivity, which present a truly pressing ques-
tion: Now what? It’s all out there, can we still keep some basic rights for privacy in this
world?

Judge Brandeis said, in 1890, that “we have a basic right to be left alone.” That
is a great quote. Can we still be “left alone” in some sense in this day and age? I
think that cryptography and its tools—some of which I’ll tell you about—provides
our best chance to somewhat be left alone. So, I know that Silvio says we should
interact all the time, but sometimes we want to just be left alone. I mean there’s
some merit, also, to that.

5.2 A List of Wonders
Let me start with a list of some catalytic, paradoxical abilities that crypto makes pos-
sible. Obviously, I’m not going to talk about all of them, but let me just mention
them in brief. Many people here are familiar with this list, mainly because cryp-
tography is very accessible—there’s something very sexy about it. Possibly, some
of you, even when you were in grade school, have tried to come up with codes and
break codes.

First and foremost, I would put public key cryptography, the fact that people can
exchange secret information without ever meeting, an amazing concept. You now
all take it for granted, but to start with, it seems absolutely impossible.

The second one is the fact that it is possible for two people sitting in remote
places around the world to actually sign a contract simultaneously. Obviously, they
cannot do it simultaneously. Information must travel from one to the other before
it travels back, but yet we can emulate the simultaneity using cryptographic means.
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A third one is that starting from very little true randomness, we can generate
deterministically very long strings that will behave, for all practical purposes, like
long random strings.

Next is that we can prove theorems without revealing anything about the proof;
that is, zero-knowledge proofs, which I’ll talk more about. Furthermore, we can play
games, digital games virtually around the world with each other, without access to
physical card games or boards, and without referees, and actually be able to trust
the result when somebody is declared a winner. Again, this is due to underlying
cryptographic ideas.

We can retrieve information from databases, where the database doesn’t know
what information we are after. These days, we can even compute on encrypted data
without decrypting it, and much more.

A Common Theme. This looks like a laundry list. You could give a course on each
one of them. What’s in common among all these inventions? The unifying theme,
among all of this—generating some random numbers, proving theorems in zero-
knowledge, and so forth—is the presence of an adversary, which is an integral part
of the definition of the problem.

Note that also in an introduction to algorithms class, we talk about adversaries.
When we prove that an algorithm runs in a certain amount of time, we can do so by
proving that even for an adversarially chosen input, the worst input, the algorithm
runs quickly. This talk of an adversary, however, is different in cryptography because
we’re not talking about analysis, but really about the definition of the problem in
itself—there wouldn’t be a problem to solve if there was no adversary.

For example, if two people communicate, and there is no curious adversary in
the world, why the heck would they encrypt? It only makes sense if somebody is
trying to listen. And if there’s a mathematical statement, which I claim I proved to
be true, why should I provide the proof unless you suspect that the claim is false and
my proof is wrong. In other words, the proof is needed only because an adversarial
claim and a false argument is a possibility. And when you talk about randomness,
I would ask randomness with respect to whom?

Adversaries are an integral part of the definition of problems in cryptography,
and as such, the quality of the adversary is going to determine also the quality of
the solution. We will say that a solution is good or bad for a problem, depending on
who the adversary is. Finally, as Silvio said, this approach is the key to how we can
analyze any complex system because if we could show that such a system works in
the presence of an adversary, then the system would work under all eventualities.
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What is the power of this adversary? We’re going to make no assumption on
its strategy. We’re not going to say that we know how he behaves and prove a
system secure with respect to this particular adversary. The adversary is going to
be worst case. However, we will make the assumption, through almost all that I’ll
talk about, although not everything, that the adversary cannot work for as much
time as he wants, he doesn’t have an infinite amount of space or time. He has
only a polynomial amount of resources. We choose this limitation because it’s
realistic, and because it gives us great power. Once we think of the adversary as
computationally bounded, we can achieve the paradoxical seeming abilities above.
If he wasn’t computationally bounded, many of these tasks can be shown to be
impossible, but when we have computational limitations on the power of the
adversary, we can achieve the amazing abilities of cryptography.

5.3 Two Axioms
I’d like to give you two axioms that we use, in cryptography, when we prove our
results. The first is called “computational indistinguishability.”

Computational Indistinguishability. Look at this picture. There is the adversary sit-
ting on one side of a wall and on the other side there is one of two probability
distributions. We can view them as distributions over k-bit strings, D1 and D2. The
adversary wants to know whether he’s interacting with Distribution 1 or Distribu-
tion 2. He presses a button, and gets a sample. He can ask for a polynomial number
of samples, and at the end will declare a verdict. We will say that the distributions
are indistinguishable (by him) if he cannot tell from looking at a polynomial num-
ber of samples whether he was getting samples from D1 or getting samples from
D2. In that case, we say that, to the cryptographic adversary, these two distributions
are effectively the same.

This will enable us to talk about D1 being the same as D2, D2 as D3, D3 as D4,
and so on. We can start manipulating these probability distributions and reach
interesting conclusions at the end about what is and isn’t indistinguishable from
each other. This type of definition or axiom has been applied to encryption, to
pseudorandomness, to simultaneity, and verifying correctness. Let me show you
how through a couple of examples.

So, the first example, is how to define secure encryption, at least in that original
paper from 1982. The idea is the following. What would be the two distributions?
The first distribution might be the encryption of one message. Since the encryption
algorithm can be probabilistic, many ciphertexts may exist for the same message.
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So, one distribution are the ciphertexts for one message, and the other distribution
are the ciphertexts for another message. And the requirement is that the adversary
cannot tell them apart; that is, the adversary cannot tell whether an encryption is
of one message or the other. The adversary cannot tell this in polynomial time, no
matter how many examples he sees of encryptions of message M1 versus message
M2. He can’t tell which is which. If so, then the encryption system is called secure.
If a scheme satisfies such security, then it can be shown that ciphertexts will hide
all partial information about the underlying messages.

What’s another place you could apply this type of definition? How about ran-
domness? I think Avi talked earlier today about pseudo-random generators. Lets
think about randomness. What are the distributions now? One is the distribution
over say all k-bit strings, which is a totally random k-bit string. And the other distri-
bution is over a smaller set of pseudorandom strings. Now, an adversary would like
to know whether he’s looking at truly random strings or at pseudorandom ones. So
he asks for samples and after awhile he declares, “I think I know which is which.”
But if he can’t tell them apart, that is cannot tell whether he is getting random
strings or pseudorandom strings, then we say that these pseudorandom strings
were generated by a good pseudorandom generator.

What does this mean? It means that you can use these pseudorandom bits in
any application that runs in polynomial time and it will be as good as using ran-
dom bits. For example, you could use these pseudorandom bits for choosing which
patient to give a placebo versus the real drug to. You could use these bits in any
application that needs randomness as long as it runs in polynomial time. The appli-
cation should perform just as well when using pseudorandom sequences as it will
perform using truly random sequences. Clearly, this is the right definition. Further-
more, one can show that pseudorandom number generators and pseudorandom
functions exist, if one-way functions exist.

One more example is in the context of obfuscation, and this is very timely,
as there’s a lot of research now in cryptography on obfuscation. I don’t know if
some of you have heard of it. What does obfuscation mean? Say there is a program
which we want to scramble or hide its internals so that an adversary will not
know how to reverse engineer it. How would you define this goal formally? One
way to define it, using computational indistinguishability, would be to take two
programs with the same input–output relation and let one distribution be all of
the obfuscated versions of one program and the second distribution all of the
obfuscated versions of the second program. Then demand that you should not
be able to distinguish whether you are getting an obfuscation of the first program
or of the second one. That’s the definition of indistinguishable obfuscation. You
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can—it turns out—construct programs, which satisfy this definition under some
computational assumptions. This seems a very strong definition, which enables a
lot of applications that you may want from the intuitive obfuscation of programs.
That’s it for the first axiom.

The Simulation Paradigm. Sometimes, the adversary does not just sit behind a
curtain, pressing buttons and looking at samples. Sometimes the adversary is part
of the system itself. He may be one of the parties within the system. He’s not sitting
on the outside looking in. How would we talk about being secure in the presence
of such an adversary? What we say then is that the insider’s view, being an insider,
should give him zero extra knowledge. But how would we define that? Essentially,
we say that if he could have simulated the conversation, on his own, sitting at home,
it gives zero extra knowledge to be an insider.

This is what’s called the simulation paradigm; again, it essentially says that if
the adversary could simulate the execution on his own, he might as well stay at
home. He gains nothing from actually being in a protocol. So the protocol does not
introduce any vulnerability. Of course, he might gain something, which is the stated
goal of the system, say buying something on Amazon. But the issue is that he doesn’t
learn anything beyond the stated goal of the system. If you can show protocols
that have this kind of strength, then you can show that they can be composed
maintaining security.

To summarize, these two notions are useful to the way we think as cryptogra-
phers: Computational indistinguishability and simulation. Let’s now move on to
the catalytic developments—that I was referring to earlier—in theoretical computer
science.

5.4 Impact on Theory of Computation at Large
I’m going to have a few threads here, starting with the one that’s probably most well
known. I’ll elaborate on the zero-knowledge proofs thread, which led to the notion of
probabilistically checkable proofs, which morphed into many other probabilistic
verification systems, and down the line to surprising results on the hardness of
approximation problems. I’ve listed it first, both because it’s well known, and
because of implications of this development for research today on how to delegate
computations to the Cloud.

Another development thread is that of pseudorandomness. Pseudorandom num-
ber generators and functions were also a very early cryptographic goal, because we
wanted to generate lots of randomness to use in our randomized cryptographic
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algorithms. And it turned out that there was an interesting duality between com-
putational hardness and randomness, and you could generate randomness based
on hardness. But they had other very surprising applications. The first application
is that if you have a pseudorandom number generator, you can use it to deran-
domize complexity classes. That makes sense. Maybe what makes less sense is that
it works so well. Next, using pseudorandom functions, we can present “concept
classes” that are not PAC learnable. So, it yields examples of the impossibility of
representation independent learning for concepts that are in low level complexity
classes. Finally, pseudorandom functions are behind some impossibility of lower
bound using natural proofs, as shown by Razborov and Rudich.

Let’s go on. This is one of my favorites threads, as it is an unusual develop-
ment. In cryptography, we want one-way functions whose pre-images have parts
that are “really hard” to compute, called hard-core bits. Hard-core bits should
be essentially impossible to guess better than 50–50. The first result about hard-
core bits for general functions was proved by Goldreich and Levin, with a very
interesting proof, which although set out to establish a cryptographic goal, ended
up showing how to come up with a polynomial-time list-decoding algorithm for
Hadamard Codes. Now, Hadamard is a well-known error-correcting code. This
was the beginning of an incredible development in error correction, where list-
decoding became almost the rule rather than the exception, whereas before its
existence for natural codes was an open question in information theory, in the
error-correcting code research community. All of a sudden there was list-decoding
of Reed–Solomon codes, by Madhu’s famous work, followed by a long list of works
till today, where work of Guruswami et al. gives list-decoding of explicit codes
that meet the list-decoding bound. This is an truly surprising development, going
from a proof technique that shows you how the inversion of a function is equiv-
alent to predicting a single bit about its pre-image, to fundamental progress in
list-decoding.

The next one is regarding oblivious transfer. Oblivious transfer is a seemingly
strange mechanism that Michael Rabin invented when he visited Berkeley one sum-
mer. For cryptographers this is a natural mechanism; for others it may seem bizarre.
The idea of oblivious transfer is that there are two parties, one of which intends to
send the other party some information, but instead of just sending it, we want the
information to be transmitted obliviously, without the sender knowing whether
it was successfully delivered or not. Although this may seem of dubious merit, it
turns out to be incredibly fundamental for cryptography, and has led to—among
other things—the concept of private information retrieval (PIR). With a PIR you
can search a remote database, say lookup keywords in a patent database, without
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enabling the database to know which keyword you were looking for. Of course, I
can’t show you the reduction, but there’s a direct connection from oblivious trans-
fer. And PIR, in turn, has led to other research, on locally decodable codes. These
are error-correcting codes where you can recover partial information about the en-
coded data without looking at the entire corrupted codeword but only looking at
a small number of places in the corrupted codeword. This is of incredible signifi-
cance, also practical significance. These days we already have linear-rate codes with
sublinear decoding time.

Finally, my last thread, although not the last development, is about techniques.
So far, we’ve talked about results, models, and questions that led to other questions.
What about techniques? At the heart of cryptographic security proofs, the goal is
to force the adversary to solve impossibly difficult computational problems. In a
cryptographic setting, it’s not good enough for these difficult problems to be hard
on a worst-case instance. They must be hard on an average-case instance. Thus, we
need techniques for mapping worst case instances to average case instances, such
as random self-reducibility techniques. When you can reduce solving any worst-case
instance to solving an average-case instance, the conclusion is that if the problem
is hard at all, then it is hard on the average. Equivalently, if a problem is easy on an
average instance, then it’s easy everywhere.

Through further work on program checking and so forth, the next idea was to
show how this mapping can work between different problems and not just different
instances of the same problem. Say that, in order to check a global property of a
combinatorial object, you would translate checking the global property to checking
average local properties. This is the fundamental technique of property testing. We
want to test global properties by making a few local random tests, and therefore be
able to work in sublinear time rather than linear or more.

Finally, I’m not going to recount the impact of trying to break RSA on improve-
ments in integer factoring and on Quantum computation. Those are sort of obvious.

5.5 Following One Thread
What I’d like to do now is to follow one of these threads in more detail, to give
you an idea of how the development took place. As Silvio said, classical proofs are
attributed to very famous mathematicians, well some more, some less. But they all
have the same blueprint. There is a theorem to prove, you start from some axioms,
follow intermediate reductive steps, and at the end, QED. That’s how classical
proofs work. However, one component is omitted: the verifier, who has to read
these proofs.
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I would like now to give the verifier his proper place and separate it out. Whereas
the prover may work very hard and solve computationally hard problems, we want
to make sure that the verifier can check the proof in polynomial time. These are the
kind of proofs we’re going to be interested in.

What’s an example? Take an equation in n Boolean variables, which is difficult
to solve, and a prover who claims there exists a solution to the equation. One way
to convince the verifier that the equation can be solved is for the prover to come up
with a solution to the equation and send it to the verifier. All the verifier has to do
is plug the solution into the equation and see if it solvable. If so, the verifier says,
yes, I believe there exists a solution to the equation. And if not, the verifier says I
don’t believe it, I reject it, this is an unconvincing proof.

The Knowledge Communicated by Proofs. Notice however that the verifier did not
only learn that there is a solution to the equation, he also learned a particular
solution. We ask “Is there any other way? Is it possible that the verifier will be
convinced there is a solution, but won’t get any idea of what the solution is?”

This is a cryptographer’s concern. Rather than learning from a proof, we want
to show that the theorem is true and reveal nothing else. And the answer is, that it
is possible. And the crux of the idea is for the prover to say, “I am not going to give
you the solution, but will prove to you that I could if I felt like it.” If the verifier is
convinced that the prover could provide a solution if she felt like it, he knows there
is a solution.

How do you do it? How do you convince one that there exists a solution by prov-
ing that you could show it if you felt like it? You use randomness and interaction.
Here is an example—it’s really the first example, in that original paper, with Silvio—
and indeed we’re looking at a particular equation. The equation is a very simple
equation. It is Q = X2 (mod N), where Q and N are part of the description of the
equation.

If N is hard to factor, then it is a hard equation to solve. If N is easy to factor, it’s
easy to solve. As the prover is powerful, she can factor N and solve the equation, and
compute X. However, she wants to convince the verifier, that naive guy, that there
exists a solution without giving it. So how does she do it? The idea here is that she
essentially comes up with two other equations, one is a random equation, S = R2

(mod N), the other one is the product of the random equation and the original one,
QS = (XR)2 (mod N). If both are solvable, then the original one is as well.

The prover says, “Look at these two equations S = Y 2 (mod N) and QS = Z2

(mod N). I will solve one of them for you—the first one or the second one. You
choose which one.” The verifier then chooses at random whether he wants to see a
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solution of the first equation or the second. The point is that if the original equation
has no solution, then at least one of the two equations has no solution, and there is
at least a 50–50 chance that the verifier will ask for that one and catch the prover at
a mistake. And if we repeat this again and again, and the prover provides each time
new random equations, the chance she can actually satisfy the verifier’s questions
when there isn’t a solution to the original one, is extremely small. On the other
hand, the verifier gets nothing from this interaction, except for being convinced of
the validity of the original claim, since he could generate the interaction by himself.
We call this zero-knowledge because he never sees both solutions, and therefore
can never derive the original.

This is just an example, but to some degree, all zero-knowledge proofs work
this way. We take a classical proof, somehow transform it into another one that is
split into pieces such that only if all of them are true the original proof exists. Then
the prover only exposes few of the pieces, which the verifier chooses at random.
Goldreich, Micali, and Wigderson’s theorem showing 3-colorability, and therefore
any NP language, has a zero-knowledge interactive membership proof, works in the
same fashion.

Interactive Proofs. Embedded here is a new notion of a proof, an interactive proof .
The parties interact for some time, and the required property is that if the theorem
is correct, then the verifier will accept, and if the theorem is incorrect, the verifier
will reject with extremely high probability. There is some small quantifiable chance
that the verifier will be convinced of an incorrect theorem.

Although zero-knowledge was very influential for cryptography and so forth,
perhaps even more importantly it was a catalyst. It was really the first time that we
decoupled verifying correctness of the theorem, from knowledge of the proof. And
once we’ve done this mental separation, we were now willing to accept these kind
of mechanisms as proofs, or “interactive proofs,” could start asking new questions
about what is a proof. For example:

. Can this kind of proof be used to prove harder theorems than those you could
prove by writing a proof in a book?

. Can it be more efficient to prove this way?

. Are there other forms of probabilistic verification?

These are the type of questions that have been asked and answered in the last 25
years.

Indeed, we may ask what’s interactively provable. With classical polynomial-
size proofs, we can verify membership in NP languages. How about coNP? That is,
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can we prove that an equation has no solutions? Can we verify how many solutions
the equation has? An amazing result by Fortnow, Karloff, Lund, Nissan and then
Shamir showed that you can verify more with interaction and randomness than with
classical proofs. You can, in fact, not only show that there exists a solution to the
equation, but that there are no solutions, exactly K solutions, and most generally
verify correctness of any polynomial space computation.

Multi-Prover Interactive Proofs. Fabulous. Amazing! But we were not satisfied yet.
We asked, how about other ways to define proofs? The next step was what I call
“the arrival of the second prover.” This is joint work with Avi, Ben-Or, and Kilian.
We asked the following: What if we added another prover? To begin with, it seems
like it’s a frivolous idea, because we allowed the first prover to take as much time
as she wants. Why would another prover be of any use? Because what we do is to
separate the two provers, and allow the verifier to ask questions and interact with
each one separately but adaptively. Namely, each prover will not see the questions
the verifier is asking of the other prover, but these questions may be related or even
depend on the answers that the verifier obtained from the other prover, akin to two
suspects in a crime interrogated by the police (the verifier) while sitting in separate
jail cells.

Why would you expect this mechanism to be powerful? The idea is that by
comparing their answers, you might be able to catch them in an inconsistency if
there was no real proof of the statement at hand that they both claim to know. And
if the statement at hand is correct and a classical proof does exist, then the two
provers can always be consistent. Back to the analogy of interrogating suspects, by
asking them the right carefully chosen questions, chosen via a random process,
which they couldn’t have predicted in advance, we will be able to catch them and
disprove their alibi, or disprove the correctness of their proof.

Going back to cryptography being a catalyst, when we introduced the second
prover, we thought that it was useful for removing assumptions from cryptographic
constructions. As I mentioned, GMW proved that NP is in Zero-Knowledge. That’s
actually under the assumption that one-way functions exist. We instead wanted to
prove an unconditional result, and in fact, we showed that, with these two provers,
you can convince a verifier of membership in an NP language, unconditionally,
maintaining zero knowledge, soundness and completeness.

However, we were unprepared for the fact that this second prover seemed to be
kind of a game-changer in terms of recognizing more languages, which was shown
shortly after by Babai, Fortnow, and Lund. What they showed is that—actually—
two provers, guys, can convince the verifier of even harder statements than ones
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in PSPACE. That is, statements that require nondeterministic exponential time
to verify. Now this is an exponential gap in power from NP proofs. Classically, in
a textbook, noninteractive NP-type proof, you can verify membership in NP lan-
guages. With two provers, interactively, you can verify membership in NEXPTIME
languages. To prove this, a key concept that was used was linearity testing, devel-
oped in the work on program self-testing and self-correcting by Blum, Luby, and
Rubinfeld.

As beautiful as it is, one may dismiss this latter development as merely building
towers of abstractions in the air, using the language of probabilistically verifiable
proofs to capture previously defined complexity classes such as #P, PSPACE, and
nondeterministic exponential time. Does this teach us anything of significance for
“down to earth” questions beyond intellectual beauty?

Indeed it does. We can scale down this result on two provers capturing NEXP-
TIME problems, and address the verifiability of classical NP problems more effi-
ciently. The intuition is that since the verifier could verify NEXPTIME problems in
polynomial time, receiving polynomial size messages from the provers, it is possi-
ble that he could verify simpler NP statements with even less resources.

This was established in a sequence of works, starting with Babai, Fortnow,
Levin, and Szegedy, followed by Feige, Goldwasser, Lovasz, Safra, and Szegedy,
who also made a connection to hardness of approximation for NP-Hard problems.
Whereas in these two works the hope was to get shorter proof, perhaps logarithmic
in size, it turned out—in follow-up work by Arora–Safra and Arora–Lund–Motwani–
Sudan–Szegedy—that you can in fact verify NP statements in polynomial time by
interacting with a constant number of provers. The verifier uses only logarith-
mic amount of randomness and reads a constant number of bits in the proof to
be assured that, with constant probability, he can find a mistake in a fallacious
proof.

As people know this has led to much insight on the hardness of approximation
problems. I won’t get into that. I do want to give you an idea of why these two provers
enable more succinct proofs than possible interacting with a single prover. Let’s
look at an example.

Say the verifier is given a set of linear equations mod 2, each equation here is
a function of 3 Boolean variables. And he is promised that one of two cases holds.
Either almost all these equations are satisfiable—say, 99% of them—or at most 50%
are satisfiable. The prover claims that in fact the first case holds; that is, more than
99% of the equations are satisfiable. A single prover could convince the verifier of
this fact by solving 99% of them, and sending over to the verifier—to check—the
solution that satisfies 99% of the equations. The length of this proof is essentially
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n, the size of the assignment. Not too bad, but it’s still as big as the size of the
problem. What can two provers do to improve on this?

In the case of two provers, the verifier does the following: Choose a random
equation, go to one prover and ask “Hey, could you tell me the value of the 3
variables that appear in this equation, for the solution that satisfies 99% of the
equations?” The prover gives the value of the requested 3 variables, 3 bits. Then the
verifier turns to the second prover, who doesn’t know which equation was chosen,
chooses one of the 3 variables at random, and asks its value from the second prover.
If the value of the variable in question is the same in both answers, the verifier will
accept, else he will reject.

Now if there is a 99% satisfying solution, the first prover gives the verifier the
values for that equation, and the second prover always gives the corresponding
value of the requested variable. The verifier gets a consistent answer, he accepts.
However, if there is no assignment satisfying more than 50% of these equations,
then there is no strategy for the two provers to not be caught in inconsistent answers
with probability at least half.

What I’m claiming is that we have a new proof system for an NP-complete
problem, shown by Hastad, in which the verifier receives 4 bits and will catch a
mistake with probability at least half. This should give you an idea of why verifying
inconsistency is so powerful, and allows you to communicate so much less and yet
catch a mistake in a proof.

I want to say that this method of using two provers in order to check the cor-
rectness of a statement has been shown in a completely different arena recently;
specifically, to enable two quantum polynomial-time machines to convince a clas-
sical verifier of the correctness of the computation.

5.6 The Future
I promised that there are three bullets. One was paradoxical abilities, two was
catalytic, and three was the future. And for the future, as usual, we only have five
minutes.

Let us talk a little bit about the future. As we know, the world of computation has
evolved, and these days we have a big Cloud and a small computer, whereas before
we had a big computer and a small Cloud. The whole paradigm of computation
is changing, with a migration of data, photographs, DNA information, our docu-
ments, our financial information—everything is migrating to the Cloud, because
we put it there, because someone has collected information about us.

It’s not only migration of data but there’s migration of computation. In the fu-
ture, all computation will be done in the Cloud. We will only have a device that
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sends inputs and receives outputs. This globalization of knowledge and connec-
tivity is quite impressive as well as what we can gain in terms of saving on local
storage and computation. It can help us in medical research, energy usage, traffic
rerouting, and much more. It is hard to summarize all the beautiful things that can
be done by being able to know so much.

However, there’s also enormous risk in this globalization of knowledge. And
some of the risks are that we lose control. Whereas before, the computation was
done at home, now it’s been done somewhere else. And what do I know if the
computation is done correctly? We lose privacy as well. We lose the “right to be
left alone.” We lose fairness. They know so much about me, they might profile me,
they might charge me more than I should be charged, they might not accept me to
graduate school, and so forth.

The question is: Can we essentially advance as a society without losing these
rights to the extent we have them today? Can we not relinquish individual control
entirely? I think that cryptography’s magic offers us a hope.

Even in what I’ve shown, verification in zero-knowledge means that you don’t
have to see the proof to verify the correctness of a computation, and in a similar
way, computation on data doesn’t necessarily mean that you have to see the data.
There is indeed a host of techniques that have been developed since the ’80s, and
matured remarkably in the last 5, 6 years, to this end. We should do exactly that.
These techniques show how you can compute on data without actually seeing it.

Let me just sort of very quickly breeze through the kind of problems that people
are working on these days, on Cloud computing, using cryptography. First thing is
verifying correctness of computation in the cloud: Trust but check.

Instead of trusting the Cloud, what we’d like to do is tell the Cloud, “Hey, listen,
why don’t you compute and then prove the results?” Of course, I would like to
take much less time than the cloud did, as the whole point is that I (the verifier) is
much weaker. So, I want the kind of proofs, which are extremely efficient to verify.
What would be the proof, interactive proof, the Cloud would say, “I actually ran
the program for this F, and that’s the result.” As we said IP is equal to PSPACE. Are
we done?

The problem is that these original results were about the complexity classes.
They didn’t care about specific computation. And they went through complete
problems. So, if you link up these results, the work that the Cloud is going to have
to do, in order to do the proofs, is going to be more than polynomial time. The
modern challenge is that you want to make sure that the Cloud, when it gives you a
proof, doesn’t have to work much harder to come up with that efficient proof. We
want both to verify superefficiently, but also the Cloud should not lose too much
time in overhead.
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This is an area of extremely active research. The results change depending on
whether you use interactive proof, which doesn’t make any assumptions on the
computational power of the cheating Cloud, or you want a computationally sound
proof like Silvio discussed in his talk. There’s incredible progress there. There’s a
paper in this conference, by Kalai, Raz, and Rothblum, who show how to take any
time T computation, and add only linear time overhead on top of what the prover
has to do.

Now, what’s nice about these results is, again, that they have also this catalytic
flavor to them, in that people are now aiming to go from theory to practice, apply-
ing a lot of these techniques to real-life programs. Writing compilers, designing
hardware, to take real programs and attach a proof to them quickly.

What’s the second challenge? The second challenge concerns privacy in the
Cloud. Do I really want to give the Cloud all my data? I could encrypt everything that
I put in the Cloud, but once I encrypt it, how is the Cloud going to do computations
on it now that it’s encrypted? Can we maintain privacy, and get utility?

That is a beautiful question posed by Rivest, Adelman, and Dertouzos many
years ago, and there have been an amazing trailblazing progress in the last few
years, in how to compute on encrypted data. New forms of encryption have been
invented to do exactly that. The most famous one is the Fully Homomorphic Encryp-
tion scheme by Gentry, presented in 2009, where he shows an encryption scheme,
where you could evaluate arbitrary polynomial-time functions on the encrypted do-
main.

When this was first shown, it was very slow, and it used assumptions we were
unfamiliar with. There has been incredibly rapid progress since. At this point,
the best assumption—as far as I know—is as good as the best nonhomomor-
phic cryptographic scheme based on lattices. Furthermore, a tremendous amount
of money was poured in by DARPA and other agencies to go from theory to
practice.

Third challenge: Okay, so we can encrypt our data in the Cloud, we can get proofs
that everything is correct. We can utilize the Cloud as computation engine. What
else? What else do we want? Well, we don’t necessarily always want to go back to
the client with encrypted data and say, “Hey, here is your answer, you can decrypt
it.” We want to do more than that. We want to aggregate information in the Cloud
and be able to compute on it and get the result. And this is the third challenge: Can
we encrypt data in the Cloud and allow the server to extract partial information on
this encrypted data and nothing else, without explicitly coming back to the client
who would decrypt the result of the computation each time?
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This would be useful for medical research, for traffic information, and so forth,
where can each server extract the information relevant to them and only that. The
answer in principal is, yes. But before I give you the how, I want to give you two
beautiful applications.

Suppose you are a hospital, with loads of medical records. They’re all encrypted.
The hospital is not allowed to reveal to the drug company, let’s say, these medical
records because the patients didn’t give them the authority to do so. But the drug
company wants to run an algorithm that checks for a gene presence in a cohort of
patients. They don’t really care about looking at the entire medical file. Can it be
done and if so, how?

Another example is surveillance searching for suspects in photographs. Imagine
surveillance cameras would produce only encrypted photographs. Yet to make
these photos useful, you want to evaluate a comparison to a suspect database. Could
you do that? Could you just find out if there’s a suspect in the picture, and if so, get
the picture decrypted. Can I just extract that information and nothing else?

Surprisingly, this seems possible in principle. A new type of encryption called
functional encryption was introduced in 2005 by Sahai and Waters, to do just that.
It is a special encryption scheme, where for every program that you want to run on
data, there will be a special key that enables you to do just that, given the encryption
of the data, and nothing else. One program, one key. Another program, another
key. And so forth. Where are these keys coming from? There is a master key that
not only enables to decrypt, but also to come up with these auxiliary keys, which
enable someone just to compute specific functions. It’s a beautiful concept. And
raises beautiful questions. The progress has been to first address some interesting
functions, then for any polynomial time computation in a way that increases the
cipher-text size, then for multiple keys, and so forth.

5.7 Concluding Remarks
My talk has been long. There are two takeaway messages, before I express my
thanks.

First of all, our physical intuition today shouldn’t constrict our expectations
from the digital privacy of tomorrow. Often, even if a goal may seem paradoxical
in nature, once you define it the right way, find the right model, and add the
cryptographic toolbox, you can achieve it.

Second, given how much progress we made in complexity theory in the past
by thinking cryptographically, it may be worthwhile exploring how today’s new
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methods such as Fully Homomorphic, Functional Encryption, and so on, would
affect the complexity theory of tomorrow.

Finally, I want to thank my co-authors everywhere, but specifically the ones I
mentioned in the talk. I’ve co-authored with lots of people whose results I men-
tioned, but there’s always the Unknown Soldier out there.

I also want to thank my mentors in Berkeley and at MIT: Manuel Blum, Dick
Karp, and Ron Rivest, and my fabulous students, which are phenomenal. More
than all, I am forever grateful to my family for tolerating me so very well all this
time, thank you.



6Proofs, According to
Silvio: Silvio Micali’s
Turing Lecture

Good afternoon, everybody!

It’s an honor and a pleasure to be here, and it’s even more of an honor and more of
a pleasure to be here together with Shafi. When the two of us strategized on what
to talk about in our Turing lectures, we decided to talk about proofs and agreed
on how to carve this huge topic between us. Shafi and I work together quite well.
But I’m not sure we coordinate that well. . . . Hence, the qualification “According
to Silvio” makes sure that my lecture represents my own take about proofs. I hope
Shafi covers the rest.

My lecture is articulated in three sections: Thanks, Science, and Advice. If you
get lost, just wait for the next section.

6.1 Thanks
If I am before you today, it’s because I have many thanks to give. But I’ll be brief.

I’d like to thank my family (including my original one): my parents Giovanni and
Franca; my sister Aurea; my wife Daniela; and our kids Stefano and Enrico.

I’d like to thank my teachers: Corrado Böhm, for lovingly luring me from math-
ematics to computer science; Shimon Even, for introducing me to algorithms; and
Dick Karp, Manuel Blum, and Andy Yao, for providing me a lifetime of inspiration.
In particular, I’d like to thank Manuel for introducing me to cryptography, and for
simply being the best advisor one can hope to have. At the time of my arrival, Berke-
ley was, to computer science, what Göttingen must have been for mathematics at
the beginning of the last century. With Dick, Manuel, and Andy, I found myself at
a place and time of revolutionary progress. And I was terrified.
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Thankfully, I was helped by my fellow students. In this picture, David Licht-
enstein appears in his traditional rhetorical pose, Vijay Vazirani in his traditional
defiant pose, Michael Sipser in his traditional cool pose. The picture was taken by
Michael Luby, appearing in here in his traditional pensive pose. I really could not
have survived the big stress, conceptual and otherwise, that Berkeley was for me,
without their scientific and human help. In particular, I’d like to thank them for
smartly decoding my Italian, and kindly ignoring my English.

Most of all, I’d really like to thank my best friend, Shafi, shown here in our
Berkeley days. As you know, Shafi is a very interactive person. In fact, thanks to her
multiple personalities, we could pack more interaction in a single day of joint work
than less fortunate souls could pack in a year. And interact we did, for many years.
We produced many works we are both proud of. We were fortunate in our scientific
quest. Fortune, they say, favors the prepared. If this is so, then it must have made
a huge exception, because in our case it favored the näıve and the shameless, but
also the fearless. In fact, I must admit, we were totally unprepared to achieve the
goals that we set forward for ourselves. I thus feel doubly fortunate that we actually
managed to achieve them! But, work aside, the best thing for me is that, after so
many years, Shafi and I remain best friends. Given the personalities involved, this
really is a sort of miracle. So, thank you Shafi!

I’d like to thank that special place that is MIT, and my two guardian angels there,
Ron Rivest and Barbara Liskov. In particular, many thanks to Ron for continuing
to be a scientific and human mentor to me. I’d like to thank my other wonderful
colleagues—indeed, the best colleagues one can hope for.

My deep thanks to my stupendous Ph.D. students, Paul Feldman, Claude
Crépau, Bonnie Berger, Mihir Bellare, Phil Rogaway, Rafail Ostrovsky, Shai Halevi,
Ray Sidney, Rosario Gennaro, Moses Liskov, Leo Reyzin, Abhi Shelat, Matt Lepinski,
Chris Paikert, Rafael Pass, Paul Valiant, Jing Chen, Pablo Azar, Alessandro Chiesa,
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and Zeyuan Zhu, for injecting so many ideas in my mind and so much warmth in
my heart.

Special thanks to my wonderful neighbors, Michael Rabin, Les Valiant, and
Leonid Levin; and my neighbors in spirit, Charlie Rackoff, Oded Goldreich, and
Avi Wigderson for so many years of fun and science together, a truly heavenly
combination.

Finally, I’d like to thank our magnificent field. Last century, as it was said,
was meant to be the Century of the Atom, and it was instead the Century of the
Computer. The introduction of the computer in human history has been almost
as momentous as the invention of fire. Computation has really revolutionized the
world and us. Even more, since I am a theoretician, it has revolutionized the way
we think about the world and ourselves.

The charge of the light brigade at Balaclava, vividly recalled here in the painting
of Richard Canton Woodville Jr., admittedly was a low-tech affair. But it may be
the best way to convey the impetus, the courage, and the intellectual ferocity with
which we are contributing not only to our own field, but also to other great fields
like biology, economics, quantum mechanics—you name it. I am mighty proud to
belong to such a generous and insatiable community. So, thank you all for being
such a community.

I would have more thanks to give, but wish instead to leave you with two sugges-
tions: (1) We really are those who have influenced us, and (2) Science is a collective
adventure.

6.2 Science
The evolution of the notion of a proof has taken more than two thousand years.
But I will summarize it in just 30 minutes: a real bargain! So, a better title for this
section would be “History of Proofs (Abridged).”

Classical Proofs. In my tradition, the classical notion of a proof started in ancient
Greece and ended up with Gödel and Turing. The traditional iconography of these
two extraordinary individuals shows them older and marked by the hardships of
life. But I love to recall them in the glory of their student days, as we all should
be recalled, young and invincible. Here are their photos. Even though they had
very different approaches—very formalistic the first, very intuitive the second—they
agreed on one thing: Proofs are strings satisfying special syntactic properties. In
one formalization, a proof consists of a sequence of lines of text. In a line, you can
invoke an axiom. In another line, you may invoke a derivation rule. And so on. If,



160 Chapter 6 Proofs, According to Silvio: Silvio Micali’s Turing Lecture

in the last line, you manage to write down the statement of the theorem you care
about, the theorem is proven.

The Need for Efficiency. Classical proofs ignore efficiency. But, in my opinion,
efficiency is really crucial to differentiate the notions of “truth” and “proof.” Truth
is something that you can achieve on your own, in isolation. Proof is a social process,
involving, at least implicitly, two different actors: a “prover” and a “verifier.” This
social process is truly meaningful only if the prover helps the verifier to ascertain
more efficiently the truthfulness of a given statement. Indeed, should the time
required to verify a proof be (essentially) equal to that required to find the proof,
there wouldn’t be much use for mathematicians!

So, which proofs are efficient?

NP. In the ’70s, Steve Cook, Dick Karp, and Leonid Levin proposed the notion of
NP, short for nondeterministic polynomial time. (Too “techy,” right? We should hire
a good PR firm!) Colloquially speaking, NP proofs are strings that are short (i.e.,
polynomially long in the length of a statement) and easily (i.e., polynomial-time)
verifiable.

Interactive Proofs. About a decade later, Shafi, Charlie (Rackoff), and I, and inde-
pendently Babai and Moran, somehow stopped looking at proofs as purely syntactic
objects, and started looking at them as interactive processes. Very much like those
we remember from our good old school days, when proofs were Q&A sessions in a
classroom. To keep things simple, interactive proofs can be formalized as special
games. Let me be the prover, you the verifier, and S a statement we care about. We
both know (e.g., via a classical proof) that, corresponding to each such S, there is a
game GS satisfying the following property. I can win GS all the time, if S is true; else
I can win GS at most half of the time. Assume now that we play GS a hundred times
and that I win every single time. Then, you may conclude that either (a) “Statement
S is true, and this is why Silvio has always won,” or (b) “S is false and Silvio has won
a hundred times in a row only because I have been extremely unlucky.” If I were you
I would conclude (a).

When interactive proofs were introduced, their power was far from clear. Oded
(Goldreich), Avi (Wigderson), and I showed that graph nonisomorphism, a famous
problem for which no NP proofs are known to exist, possesses very simple interac-
tive proofs. This result boded well for the power of the new notion.

But it was with Fortnow, Karloff, Lund, and Nisan that the power of interactive
proofs really started to take off. They indeed showed that all problems in #P have
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interactive proofs. And then Adi Shamir actually showed that the set of problems
having an interactive proof coincides with PSPACE. This amazing achievement
exactly captures how much interaction helps in a proof.

(By the way, interaction has actually proved helpful in a lot of other things.
For example, Noam Nisan has recently shown that it helps the communication
complexity of game-theoretic mechanisms. Interaction is a wonderful thing!)

Zero-Knowledge Proofs. From interactive proofs, we were able to develop zero-
knowledge proofs. Essentially, the latter proofs enable one to prove something
hiding all possible details. After the zero-knowledge proof of a given statement, you
know that the statement is true, but nothing else. Shafi, Charlie, and I introduced
the notion of a zero-knowledge proof and provided its first example. But Oded, Avi,
and I actually proved the power of zero-knowledge proofs. That is, we proved that
not just some theorems but actually all theorems in NP can be proved interactively
in a zero-knowledge manner. Actually, through a combination of other results, the
same holds for PSPACE.

By the way: Who cares about proofs that hide knowledge? Well, if you are in
cryptography, you care, because zero-knowledge is clearly crucial to guarantee se-
curity. In particular, zero knowledge has enabled general multiparty computation.
Let P1, . . . , Pn be parties, where each Pi has a secret input xi; let f be an efficient
function on n inputs; and let (y1, . . . , yn) = f (x1, . . . , xn). Then, secure computa-
tion guarantees that there is an efficient way for the n parties to talk back and forth
with each other so that, at the end, each Pi correctly learns his own output yi, but
does not learn any other information about the inputs of the other parties that
is not deducible from yi itself. This result was first proved by Oded, Avi, and me
based on public-key cryptography (following an earlier two-party result of Andy in
a slightly weaker model). Soon after, Ben-Or, Shafi, and Avi, showed a noncrypto-
graphic proof of the result, assuming instead that each pair of parties is connected
by a separate secure channel.

In addition, zero-knowldge is important to achieve reliability. For example, zero-
knowledge has played a central role in Byzantine agreement, as defined by Pease,
Shostak and Lamport. Assume that we have a group of players, each of which starts
with his own initial bit. Then, informally, at the end of a Byzantine agreement
protocol, two properties must be satisfied. First, all honest players (i.e., all those
who follow all the instructions of the protocol) output the same bit. Second, the bit
output by all honest players must be 0, if the initial bit of every player was 0; and 1,
if the initial bit of every player was 1. Crucially, the above two properties must hold
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even if, during the execution of the protocol, 1/3 of the players can be corrupted by
an Adversary, who can force them to deviate from their protocol instructions in any
way she wants.

As defined, Byzantyne agreement has no privacy constraint whatsoever. Its only
constraint is an elaborate and delicate form of (reliable) correctness. Yet, somehow,
privacy—in fact, zero knowledge—really helps to enforce correctness, in Byzantine
agreement and in countless other protocols. Why? Because the best way to model
a sufficiently complex system is to assume that it is controlled by an Adversary. In-
deed, if a system is large enough and operates for long enough, then you can count
that it will eventually start to behave adversarially. So, how to defeat an adversary?
In any strategic setting, an adversary has little power if she knows little about what
you intend to do. Thus, although you only want to protect the correctness of your
system from the evil influence of an adversary, you may want to artificially inject pri-
vacy in your system, so as to curb the power of your adversary. It is thus no surprise
that zero knowledge has proved crucial to efficiently reach Byzantine agreement.

Probabilistically Checkable Proofs. Probabilistically checkable proofs (PCPs)
started with the works of Feige, Goldwasser, Lovasz, and Szegedy and Babai, Fort-
now, Levin, and Szegedy, and culminated with that of Arora, Lund, Motwuani,
Sudan, and Szegedy. PCPs are a remarkable achievement. As we all know, when
we verify a proof we must carefully read all its bits; otherwise, we may overlook
a fatal mistake. (If one assumes 0 = 1 somewhere in his proof, then he can prove
anything!) It is thus incredible that we can encode a proof so as to actually ascertain
its correctness by just sampling a few of its bits. Really amazing. These possibilities
were not at all on our radar screens just a few years ago.

Multiprover Interactive Proofs.. PCPs have found lots of applications, but, strictly
speaking, are not efficient. This is so, because they essentially transform a classical
proof into a longer, but “samplable” proof. Since receiving a string must have a
cost proportional to its length, the verifier may prefer receiving from the prover a
classical proof and read it in its entirety to receiving a longer proof that he can later
just read in a few places.

This problem cannot be avoided by having the prover ship to the verifier a piece
of random-access memory containing the longer, samplable proof. Indeed, I have
never heard that shipping a piece of hardware containing a string s is cheaper than
sending s! Nor can it be avoided by (1) having the prover compute and keep the
longer and samplable proof and (2) having the verifier simply ask the prover for the
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portions he wants to read. In this way, in fact, it becomes trivial for the prover to
cheat without being caught.

The problem is instead elegantly addressed by multiprover interactive proofs
(MIPs), proposed by Michael Ben-Or, Shafi, Joe Kilian, and Avi. Informally, in their
model, the longer and samplable proof is known to each of two distinct provers,
who are assumed to be unable of communicating to each other during the proving
process. By separately and cleverly interrogating them, the verifier can reconstruct
any piece of the proof he wants to read, without fear of being undetectably cheated.
Importantly, this property continues to hold even if, before their interaction with
the verifier starts, the provers have met and agreed on a joint strategy for answering
the verifier’s questions.

However, it is not trivial to guarantee that two provers cannot communicate with
each other during the proving process. Verbal communication may be prevented by
thick walls. Cell-phone communication by Faraday cages. But there may be many
other forms of communication . . .

CS Proofs. Computationally sound proofs (CS proofs for short) have been formal-
ized by me based on the work of Kilian. Such proofs envisage a single prover and
a single verifier (and do properly “charge” for any bit sent). Essentially, they are
super-efficient “proofs” for all statements. Did I say “all theorems?” No. I said “all
statements.” In fact, every statement is guaranteed to have a CS proof that is both
super short and super easy to verify. Thus, a CS proof system is both complete (i.e.,
all true statements are provable) and inconsistent (i.e., all false statements are prov-
able).

To be sure, inconsistency has been the big scarecrow of mathematics. Non-
Euclidian geometries have been developed out of the fear that the 5th postulate
could lead to some contradiction. In a CS proof system, however, the ability of
proving true and false statements alike is de facto rendered harmless by a crucial
asymmetry: Very roughly, proving a true statement is always feasible, while proving
a false one is always extremely hard.

The joining of two opposites is rarely inconsequential. The gods and goddesses
who combine opposite forces typically enjoy great powers themselves. In complex-
ity theory, the notion of a one-way function also combines two opposites. Infor-
mally, a function is one-way if it is easy to evaluate and hard to invert. The power
of such functions is almost inconceivable. Most of cryptography originates from
this power. By enjoying both completeness and consistency, CS proof systems are
extremely powerful too. Indeed, they finally succeed in simultaneously simplifying
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the job of the prover and that of the verifier. All prior notions of an efficient proof
only aimed at simplifying the job of the verifier. But this simplification may not
be very useful if the work of the prover is made astronomically more complex. In
such a case, in fact, no one in the real world will be able to play the role of the
prover. Finding the proofs of some theorems required a life-time of work. But if we
further demanded that such proofs should be checkable by verifiers with the atten-
tion span of a three-year old, finding them might require an astronomical (rather
than a human) amount of time.

A CS proof, instead, allows you to convince a most impatient verifier that a given
true statement S is true in roughly the same time it took you to convince yourself
that S is indeed true. But, if S is false, then convincing the verifier that S is true is
hopelessly hard.

Two-Message Delegation. Let me continue our abridged history of efficient proofs
with two-message delegation, as just discovered by Kalai, Raz, and Rothblum. What
is this? It is an efficient way to prove mathematical statements via a detour through
quantum mechanics. (Do not worry: The visit to physics is a round trip. At the end,
what is produced is a purely mathematical proof!) It’s a wonderful and unusual
result. It shows that fields are often artificially separate. There is one humanity and
one human knowledge.

SNARKS. SNARKS is short for Succinct Noninteractive ARguments of Knowledge.
Their essential bibliography includes the works of Valiant; Bitansky, Chiesa, Ishai,
Ostrovsky, and Paneth; Gennaro, Gentry, Parno, Raykova; Parno, Gentry, Howell,
Raykova; Ben-Sasson, Chiesa, Genkin, Tromer, and Virza; Lipmaa; and Bitansky,
Canetti, Chiesa, Tromer. An amazing sequence of works. Conceptually, a SNARK
can be constructed by starting with a CS proof. Then, by adding a nondeterministic
compiler. (Compilers are optimized to work for ordinary programs. But this time
you want to optimize things for the prover, who is indeed a nondeterministic
program.) And, finally, by adding some zero-knowledge. The end result is a proof
so compact as to consist of just 256 bytes. Thus, you can use a bar code to encode
your proof. Anyone can scan it with her phone and easily verify it.

In sum, even disregarding zero-knowledge, SNARKS enable one to use proofs
anytime and anywhere. SNARKS have a tremendous potential.

Rational Proofs. Last chapter in our abridged history are rational proofs. Such
proofs, introduced by Pablo Azar and me, are indeed the new kid on the block.
They include some ingredients that have been neglected so far. So, I’ll take a bit
more time to discuss them.
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Let me start with a story: Call it a “CS Tale.” Merlin and Arthur, as you know,
have been living a happy life. Once in a while, Arthur asks, “Is X true?”; Merlin
replies “Yes” or “No,” whatever the case may be; and then they quickly interact,
until Arthur is convinced. Their arrangement has lasted for a long time. Suddenly,
Arthur asks “Is X true?” and Merlin replies “Go to hell!” Arthur: “What happened?”
Merlin: “Simple. Dumbledore works for Goldman Sachs; Gandolf for Citi; Potter
for J.P. Morgan. They are making money hands over fist. How about me? Now that I
have money on my mind, I don’t want to hear about proving your stupid theorems
any more.” Somehow, Arthur is practical. “You know what? If money is what you
want, okay, I’ll pay.” The smile comes back on Merlin’s face.

The purpose of this tale raises a very serious question: How to pay a math expert?
The answer better be a lot, but there are various options. The first is the “fixed
price” one: $1 for a correct proof and $0 for an incorrect one. This option simply
mimics the standard interactive-proof setting and does not enlarge the range of
what is efficiently provable. So, can we, with more flexible monetary incentives, be
able to prove efficiently more theorems? In particular, can we prove them with fewer
rounds of communication? Communication rounds matter a lot. They actually
are the most expensive resource. General interactive proofs in principle require
polynomially many elementary computational steps (such as increasing a counter
by 1) and polynomially many rounds. Now assume that an interactive proof requires
n3 computational steps and n2 rounds of communication, where n = 1000. Then,
the first constraint is not a problem: The laptop I am using right now can easily
perform a billion elementary operations. However, we cannot feasibly exchange
e-mails back and forth a million times!

Rational proofs are very round-savvy. Currently, they are a theoretical model,
to be sure, but they address a real concern and may become practically relevant at
least in some applications. To be more intuitive, I will discuss Rational Merlin Arthur
(RMA for short) as a set of functions, rather than languages. Moreover, I will infor-
mally describe only RMA[k], where k is the number of rounds of communication
utilized by Arthur and Merlin.

A function F belongs to RMA[k] if there exist two polynomial-time functions, a
conclusion function C and a reward function R, that, for any input x, enable Arthur
to learn F(x) as follows. Arthur and Merlin talk back and forth for k rounds. Like
in the classical Merlin–Arthur system, Arthur is a dumb interacting algorithm that
sends messages ri consisting of polynomially many (in the length of x) random bits.
Merlin, on the other hand, is an arbitrary interactive algorithm (thus capable of
performing an unbounded amount of computation) that sends polynomially long
messages si. Merlin goes first. So the transcript of their conversation about x is of
the form T = s1, r1, . . . , sk , rk.
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At the end of their conversation, two things happen:

(a) The reward function R is evaluated, on the input x and the transcript T , to
determine the amount of money that Arthur pays to Merlin.

(b) The conclusion function C is evaluated on x and T to determine a value y,
which Arthur concludes to be F(x).

That is, Merlin wanted to be paid and now he is paid. Namely, he is paid R(x , T )

dollars. Arthur wanted to know about the value of F(x) and now takes it to be
y = C(x , T ).

Thus a natural question arises: How about verifying that C(x , T ) = F(x)? The
answer is surprisingly simple: There is no such verification! However, the proof
system RMA[k] offers some guarantee. Assume you’re Merlin. Finally, you get paid.
OK, but: How much? As we have just discussed, according to rule R. Again, whatever
strings s1, s2, . . . you may choose, if Arthur chooses the random string ri as his own
ith message, then you will receive the amount of money R(x , (s1, r1, . . . , sk , rk)).
And if you had said s′1, s′2, . . . instead, then you would have received the amount
of money R(x , (s′1, r1, . . . , s′

k
, rk)). In other words, it is your lucky day: you get

money no matter what you say. It’s a bonanza! True. But, what is best for you to
say? If you are rational, your optimal strategy for choosing your ith string is as
follows. Given the transcript generated so far, s�

1, r1, . . . , s�
i−1, ri−1, find the string

s�
i

that maximizes your expected reward. This reward, of course, is computed over
the possible continuations of the transcript (knowing that Arthur’s future strings
will continue to be chosen at random, and yours will be chosen by your optimal
strategy). Let T � denote a transcript so generated. Then the guarantee offered is
that, when you maximize your expected money, Arthur correctly learns F(x). That
is, C(x , T �) = F(x) for all inputs x.

To check our understanding, let us focus on RMA[1]. In this proof system,
Merlin sends a single random string, s1, Arthur replies with a single string, r1, and a
transcript has the form T = s1, r1. To show that a given function F is in RMA[1] we
must choose a reward function R and a proof function C so that Merlin maximizes
his money if and only if Arthur learns the truth about F(x). The first idea that comes
to mind is to choose R and C as follows: For any string s that Merlin may choose,
any random string r that Arthur may choose, and any input x for F ,

. C(x , (r , s)) = s and

. R(x , (r , s)) = 1 if s = F(x), and 0 otherwise.
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Indeed, with such choices of R and C, to maximize his reward, Merlin must send
Arthur the string s = F(x). Thus, whenever Merlin so chooses s, Arthur correctly
learns F(x).

Of course, a problem with the above choice of C and R is that R cannot be
polynomial-time unless so is F . However, this problem does not exclude the possi-
bility, for some hard-to-evaluate function F , to find two efficient functions C and
R showing that F is in RMA[1].

Consider SAT , the NP-complete language of satisfiability, which can be equiv-
alently defined as a function as follows: for all Boolean formulas f ,

SAT (f ) = YES if there exists x such that f (x) = TRUE, and NO otherwise.
This function should be hard to evaluate. Yet let me argue that SAT belongs

to RMA[1] by informally and trivially constructing the required functions C and R

as follows. Arthur pays Merlin $2 if Merlin gives him a satisfying assignment of f ,
and $1 in all other cases (e.g., if Merlin tells him that f is not satisfiable). Consider
first the case that f is satisfiable. In this case, Merlin maximizes his money by
giving Arthur a satisfying assignment, z, of f . Indeed, Arthur can easily verify that
f (z) = TRUE, and thus that Merlin should receive $2. But, in so doing, Arthur of
course correctly concludes that f is satisfiable! Consider now the case that f is
not satisfiable. In this case, Merlin maximizes his money no matter what he tells
Arthur, because he can only receive $1. At the same time, Arthur correctly deduces
that f is not satisfiable, because, no matter what Merlin can tell him, he cannot
tell him a satisfying assignment of f , if none exists. QED. What could be simpler?

On the basis of the above example, we might believe that trivial rational proofs
exist any function of interest. But not so fast. Consider the following two functions.

1. #: for any Boolean formula f , #(f )
def= |x : f (x) = TRUE|.

That is, # tells us the number of satisfying assignments of every possible
Boolean formula.

2. MinMaxk: for any (2k-input) finite function g, denoting by ḡ a compact encoding
of g,

MinMaxk(ḡ)
def= min

x1
max

y1
. . . min

xk

max
yk

g(x1, y1, . . . , xk , gk).

That is, MinMaxk tells us the value of any k-round game.

Hmm . . . OK, rational proof may not be as trivial for the above two functions,
but they still exist—and are not too hard to find either! Indeed, # ∈ RMA[1] and
MinMaxk ∈ RMA[k]. The first of the above two results may be surprising, because it
trivially implies that there exist single-round rational proofs for #P . By contrast, in
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the traditional Arthur–Merlin model, one round does not suffice for #P , unless the
polynomial-time hierarchy collapses—something disbelieved by most researchers.
Thus, proving that #P can be decided one-round rational proofs (without any
unproven assumptions!) shows the power of rational proofs.

The rational proof model may be made more realistic by extending it to experts
who cannot perform arbitrary amounts of computation. A more robust model actu-
ally envisages that both parties incur monetary costs for the amount of computation
they perform, but that Merlin’s cost for computation is less than Arthur’s.

Rational proofs point out that efficiently conveying the truth can sometimes
be viewed as the maximization of an easy to evaluate function. Forget interpreting
the reward function as “money”: The truth you are looking for is the value that
maximizes a given function R. This perspective enlarges the applicability of rational
proofs. In the extreme, in a living organism, cells may not care about money or
produce written reports. However, some cells may care about receiving—say—some
proteins, and the production of these proteins may be strongly correlated to those
cells’ reports about the status of some vital aspect of the organism!

Efficient Proofs and the Computation Market. Computation is the new Atlas that
keeps the world up. OK, the world can stand on its own, but pretty much anything
else in the world needs computation. Computation may be more valuable than
oil, water, and lots of other resources. It is a good thing that those with more
computation power use it to solve the computational needs of those who have
less computational power. But we need good ways of selling computation. And
proofs will play a crucial role in ensuring that computation is correctly bought. This
was one of my original motivations behind interactive proofs. And this motivation
has never waned. Rather, the ability of proofs to power a vibrant and meaningful
computation market has increased.

Final and Personal Considerations. In mere 30 years, we have brought forward
NP, interactive proofs, zero-knowledge proofs, probabilistically checkable proofs,
multi-prover interactive proofs, computationally sound proofs, 2-message delega-
tion, SNARKS, rational proofs . . . . Cathedrals and other splendid architectures of
the past have been erected to the skies over multiple generations. It is thus amazing
that the notion of an efficient proof, this formidable conceptual architecture, has
been erected in a single generation. I cannot tell you how fortunate I feel to have
witnessed and participated to such a momentous development.

Everything is fair in love, war, and proofs. But with proofs we have abandoned all
restraints. Proofs used to be syntactic objects; now they are interactive processes.
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They used to be deterministic; now they are probabilistic. They had to be verified
by full reading, and now can be verified by spot reading. Proof systems had to be
consistent to be useful; and now some proof systems are more useful because they
are properly inconsistent. Like love and war, proofs demand total commitment. For
them, we must certainly summon our intellect, but also emotions, personal history,
and sense of aesthetics. All of these make us figure out which of the infinitely many
theorems out there we should try to prove and how.

Proofs are going to become more and more useful as the complexity of our world
increases. Our survival as a species will depend on proving that some very complex
mechanism, which will keep us alive, actually works.

Proofs are our past, our present, and our future.

6.3 Advice
I have always loved to give advice. And, at this point, I feel a little bit legitimized to
give it. . . . My advice, of course, is to the students among you. Here we go.

1. Collaboration. Collaboration wins over competition anytime. And on top of
it, it’s much more fun. Don’t ever believe that research is a zero-sum game.

Collaborate as much as you can!

2. Confidence and Doubt. Confidence and doubt are both crucial. If you’re not
confident, you’re not going to attempt doing anything worth doing. But if
you have no doubts about succeeding in what you are trying to do, then you
are not pushing yourself hard enough.

Be confident, until you doubt yourself!

3. Fortune. Never be ashamed of luck. I’m not. Nothing of importance is ever ac-
complished without a good dose of luck. My ancestors, the Romans, defined
luck as “that without which nothing.” And, in Palestrina, they dedicated a
monumental temple—better a mountain turned into a temple—to Fortune.
And fortune has many forms. Particularly in Science.

One form of luck is timing. Working on the right problem, with the right
collaborators, at the right time.

Another form of luck is ignorance. Finding a needle in a haystack is very
hard. But if your haystack is very, very small, you’ll find the damned needle.
A long time ago, when we were graduate students, Shafi and I wanted to find
a candidate encryption scheme satisfying our new and demanding notion of
security. In part, we succeeded to find it thanks to our limited knowledge of
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computational number theory, because this feasibly restricted a potentially
enormous search space. Ignorance may occasionally help.

Yet another form of luck is myopia. Because, if we could really see what
you are up against, rather than charging forward we would run away. Failure
to grasp the magnitude of the task ahead gives us the courage to get going.

In sum, be lucky!

4. Stubborness. I’m stubborn as a mule, and I’m proud of it. Stubbornness is be-
lieving in yourself when nobody else does. Consider zero-knowledge proofs.
Shafi and I started calling them “Proofs with Untrusted Oracles.” And we
were so proud of them, so confident. “This stuff will catch fire; everybody will
love it.” To make the deadline of the next conference, we wrote our paper
furiously: day after night, after day, after night . . . Rejected! Okay. It can-
not happen again. Let’s re-write it and re-submit it. We changed the title
to “Interactive and Minimal Computation.” To better convey the nature of
the beast, and to better hide the prior rejection from the next committee . . .
New rejection! Next conference, next title: “The Information Content of Proof
Systems.” Way more respectable. It should have worked. It didn’t! Next, we
got ourself a wonderful collaborator: Charlie. He told us: “You guys! The way
you write! Leave the introduction to me.” We did. Let me read to you the
opening paragraph. “Communication is a tool for transferring or exchang-
ing knowledge. In traditional computational complexity or communication
complexity, the goal is to communicate as much knowledge as possible as
efficiently as possible. Since all participants are considered good friends, no
one cares if more knowledge than necessary is communicated. The situation
with respect to cryptographic protocols is very different.” Ah! Such a beautiful
prose . . . Canned! But, finally, some 30 years ago, “The Knowledge Com-
plexity of Interactive Proof Systems” was accepted by the 17th Symposium of
Theory of Computing.

Be stubborn!

5. Limitations.How can I do research, limited as I am? Actually, if you are limited
you can think about a different approach to the problem. An approach that
less limited people will miss. Limitations can be strengths. In fact, it is a
powerful trick to artificially limit ourselves, so as to make ourselves stronger.
In 1519, Hernán Cortes, with a few hundred men, disembarked in what is
now Mexico. He was facing an unchartered territory and a huge enemy army.
He was in a pretty weak position. So, what did he do? He decided to fortify
his stance. He sank his own ships, thus depriving his men of any possible
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escape and ultimately securing victory. If you use the same strategy toward
peaceful ends, you’ll make a better world.

Enjoy your limitations!

6. Inspiration. Where do we find it? Leo Tolstoy had it right: “If you want to be
universal, start by painting your own village.” Actually, you do not have to
leave your house and roam around your village. Stay inside and look inside.
Speak about the deepest part of your heart and you’ll be universal. In any
artistic endeavor as well as in any scientific endeavor, what motivates us is
an emotional problem that has been bothering us since we were kids. And
we’ll never tire and we’ll never rest. Because we want to solve the damned
problem that has bothered us for so long. In my case: “Is there someone out
there with whom I can interact? And if there is, should I fear the interaction?”
And in your case?

Find the true source of your inspiration!

I know it is hard. The path of self- discovery is long and tortuous. But then: Do we
have anything better to do in this world than figuring out who we really are and
what we really want? I don’t think so. So, let’s embrace our destiny;,let’s pack our
belongings, and let’s start our journey. Step after step, with hope, with joy, with
confidence, and most of all, with

GOOD LUCK!
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7Probabilistic Encryption
This chapter reproduces the contents of the paper “Probabilistic Encryption and
How to Play Mental Poker Keeping Secret All Partial Information,” which appeared
in the proceedings of the 14th Annual ACM Symposium on Theory of Computing, pages
365-377, 1982.

This pioneering work of Shafi Goldwasser and Silvio Micali defined the mind-
set of the field by establishing conceptual frameworks and demonstrating their
usefulness. In particular, it advocated rigorous and robust definitions of security
as well as reducing the security of complex systems to better understood complexity
assumptions; it presented computational indistinguishability as a proxy for equiv-
alence; it heralded viewing security as an emulation of an ideal setting (via the
simulation paradigm); and introduced techniques such as the hybrid argument.
The term “probabilistic encryption” reflects the realization that a robust notion of
secure encryption requires the use of randomization in the process of encrypting
each message (and not only in the process of generating cryptographic keys).



Probabilistic Encryption &
How To Play Mental
Poker Keeping Secret
All Partial Information
Shafi Goldwasser∗ (University of California - Berkeley),
Silvio Micali∗∗ (University of California - Berkeley)

1 Introduction
This paper proposes an Encryption Scheme that possess the following property:

An adversary, who knows the encryption algorithm and is given the cyphertext,
cannot obtain any information about the cleartext.

Any implementation of a Public Key Cryptosystem, as proposed by Diffie and Hell-
man in [8], should possess this property.

Our Encryption Scheme follows the ideas in the number theoretic implemen-
tations of a Public Key Cryptosystem due to Rivest, Shamir and Adleman [13], and
Rabin [12].
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Security is based on Complexity Theory and the intractability of some problems
in number theory such as factoring, index finding and deciding whether numbers
are quadratic residues with respect to composite moduli is assumed. In this con-
text, impossibility means computational infeasibility and proving that a problem
is hard means to show it equivalent to one of the above mentioned problems.

The key idea in both the RSA scheme and the Rabin scheme is the selection of
an appropriate trapdoor function; an easy to evaluate function f such that x is not
easily computable from f (x), unless some extra information is known. To encrypt
a message m, one simply evaluates f (m).

We would like to point out two basic weaknesses of this approach:

1. The fact that f is a trapdoor function does not rule out the possibility of
computing x from f (x) when x is of a special form. Usually messages do
not consist of numbers chosen at random but possess more structure. Such
structural information may help in decoding. For example, a function f ,
which is hard to invert on a generic input, could conceivably be easy to invert
on the ASCII representations of English sentences.

2. The fact that f is a trapdoor function does not rule out the possibility of
easily computing some partial information about z (even every other bit
of x) from f (z). The danger in the case that z is the ASCII representation
of an English sentence is self evident. Encrypting messages in a way that
ensures the secrecy of all partial information is an extremely important goal
in Cryptography. The importance of this point of view is particularly apparent
if we want to use encryption to play card games over the telephone. If the suit
or color of a card could be compromised the whole game could be invalid.

Though no one knows how to break the RSA or the Rabin scheme, in none of
these schemes is it proved that decoding is hard without any assumptions made
on the message space. Rabin shows that, in his scheme, decoding is hard for an
adversary if the set of possible messages has some density property.

The novelty of our contribution consists of

1. The notion of Trapdoor Functions is replaced by Probabilistic Encryption.
To encrypt each message we make use of a fair coin. The encoding of each
message will depend on the message plus the result of a sequence of coin
tosses. Consequently, there are many possible encodings for each message.
However, messages are always uniquely decodable.1

1. Probabilistic Encryption is completely different from the technique of appending random bits
to a message as suggested in [12] and [16].
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2. Decoding is easy for the legal receiver of a message, but provably hard for an
adversary. Therefore the spirit of a trapdoor function is maintained. In addi-
tion, in our scheme, without imposing any restrictions on the message space,
we can prove that decoding is equivalent to deciding quadratic residuosity
modulo composite numbers.

3. No Partial Information about an encrypted message could be obtained by
an adversary. Assume that the message space has an associated probability
distribution and that, with respect to this distribution, an easy to compute
predicate P (such as “the exclusive or of all the bits in the message is 1”)
has probability p to be true. Let p ≥ .5 without any loss of generality. Then,
without any special ability, an adversary, given the cyphertext, can always
guess that P is true for the cleartext, and be correct with probability p.

Based on the assumption that deciding quadratic residuosity modulo
composite numbers is hard, we prove that an adversary cannot guess cor-
rectly with probability p + ε, from the cyphertext, whether the cleartext sat-
isfies the predicate P , where ε is a non negligible positive real number.

Probabilistic Encryption has been useful for the solution of Mental Poker. The
problem whether it is possible to play a “fair” game of Mental Poker has been raised
by Robert Floyd. Shamir, Rivest and Adleman proposed an elegant solution to this
problem in [14] using commutative encryption functions, but they could not prove
that partial information could not be compromised using their scheme. Indeed,
several problems in the implementation of their scheme have been pointed out by
Lipton in [10].

We present a solution for Mental Poker, for which we can prove, based on the
assumption that factoring and deciding quadratic residuosity modulo composite
numbers is hard, that not a single bit of information about a card which should re-
main hidden can be discovered. Our solution does not use commutative encryption
functions.

2 The Security of a Public Key Cryptosystem
All the number theoretic notation used in this section will be defined in Section
3.1.

2.1 What is a Public Key Cryptosystem?
The concept of a Public Key Cryptosystem was introduced by Diffie and Hellman in
their ingenious paper [8]. Let M be a finite message space, A, B , . . . be users, and
let m ∈ M denote a message. Let EA: M → M be A’s encryption function, which is
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ideally bijective, and DA be A’s decryption function such that DA(EA(m)) = m for all
m ∈ M . In a Public Key Cryptosystem EA is placed in a public file, and user A keeps
DA private. DA should be difficult to compute knowing only EA. To send message
m to A, B takes EA from the public file, computes EA(m) and sends this message
to A. A easily computes DA(EA(m)) to obtain m.

2.2 The RSA Scheme and the Rabin Scheme
The two implementations of a Public Key Cryptosystem most relevant and inspiring
for this paper are the RSA scheme [13], due to Rivest, Shamir and Adleman, and its
particularization suggested by Rabin [12].

The key idea in both the RSA scheme and the Rabin scheme consists in the se-
lection of an appropriate number theoretic trapdoor function. In the RSA scheme,
user A selects N , the product of two large primes p1 and p2 and a number s such that
s and φ(N) are relatively prime, where φ is the Euler totient function. A puts N and
s in a public file and keeps the factorization of N private. Let Z∗

N
= {x | 1≤ x ≤ N − 1

and x and N are relatively prime}. For every message m ∈ Z∗
N

, EA(m) = ms mod N .
Clearly, the ability to take sth roots mod N implies the ability to decode. A, who
knows the factorization of N , can easily take sth mod N . No efficient way to take
sth roots mod N is known when the factorization of N is unknown.

About the RSA scheme Rabin remarks that, for all we know, inverting the func-
tion xs mod N may be a hard problem in general, and yet easy for a large percentage
of the x’s.

He suggests to modify the RSA scheme by choosing s = 2. Thus, for all users
A, EA(x) = x2 mod N . Notice that EA is a 4-1 function because our N is the prod-
uct of two primes. In fact, every quadratic residue mod N , i.e every q such that
q = x2 mod N for some x ∈ ZN

∗, has four square roots mod N : ±x mod N and
±y mod N . As A knows the factorization of N , upon receiving the encrypted mes-
sage m2 mod N , he could compute its four square roots and get the message m.
The ambiguity in decoding could be eliminated, for example, by sending the first
20 digits of m in addition to m2 mod N . Such extra information cannot effectively
help in decoding: we could always guess the first 20 digits of m.

The following theorem shows how hard is it to invert Rabin’s function x2 mod N .

Theorem (Rabin): If for 1% of the q’s quadratic residues mod N one could find one square
root of q, then one could factor N in Random Polynomial Time.

The theorem follows from the following lemma that we state without proof.
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Lemma 1 Given x , y ∈ ZN
∗ such that x2 = y2 mod N and x = ±y mod N , there is a polynomial

time algorithm to factor N . (In fact the greatest common divisor of N and x ± y is
a factor of N ).

Proof Informal proof of Rabin’s theorem: Assume that we have a magic box B such that
given q, a quadratic residue mod N , for 1% of the q’s it outputs one square root of
q mod N . Then we could factor N by iterating the following step:

Pick i at random in ZN
∗ and compute q = i2 mod N . Feed the magic box B with q.

If M outputs a square root of q different from i or −i mod N , then (by the above
lemma) factor N .

The expected number of iterations is low, as at each step, we have a 0.5% chance to
factor N .

2.3 Objections to Cryptosystems based on Trapdoor Functions
Covering ones face with a handkerchief certainly helps to hide personal identity.
However:

1. It will not hide from me the identity of a special subset of people: my mother,
my sister, close friends.

2. I can gather a lot of information about the people I cannot identify: their
height, their hair color, and so on.

Essentially, the same kind of problems may arise in the RSA scheme and in the
Rabin scheme and, more generally, in any other Public Key Cryptosystem based on
Trapdoor Functions:

1. The fact that f is a trapdoor function does not rule out the possibility of
computing x from f (x) when x is of special form.

2. The fact that f is trapdoor function does not rule out the possibility of easily
computing some partial information about x from f (x).

2.4 Discussion of Objection 1
One may argue that Rabin’s Public Key Cryptosystem is as hard to break as factoring
in the following way; whoever can get a message m from their encryptions m2 mod N

1% of the time, is actually realizing the magic box of Rabin’s theorem and thus could
efficiently factor n.

We would like to point out the following fact.
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Claim If M , the set of messages, is “sparse" in ZN
∗, the ability to decode 1% of all messages

does not yield a random polynomial time algorithm for factoring.

By “sparse" we mean that for a randomly chosen x ∈ ZN
∗, the probability that x

is a message is virtually 0.
Let f (x) = x2 mod N . Assume that we are able to invert the function f only on

f (M). Then we would have a magic box MB which, fed m2 mod N , would output
m whenever m ∈ M ; and fed q, outputs nothing whenever q ∈ {m2 mod N | m ∈ M},
except, at most, for a negligible portion of the q’s. With the use of such a magic
box we could decode, but not factor N efficiently. Using such MB, let us look at the
above informal proof of Rabin’s theorem. If we pick m ∈ M and feed m2 mod N into
MB, then we get back m and we cannot factor. If we pick i ∈ M and feed i2 mod N to
MB, then the probability that one square root of i2 mod N different from i, belongs
to M is practically 0 and we get no answer.

2.5 Discussion of Objection 2
We would like to define a Public Key Cryptosystem to be secure if an adversary, given
the cyphertext, cannot obtain any partial information about the cleartext. This latter
notion needs to be formalized:

Let P be any easy to evaluate, non constant, boolean predicate defined on the
message space M . Let m ∈ M . If, given the encryption of m, an adversary can
efficiently compute the value of P(m), then partial information about m can be
obtained from the encryption of m.

Notice that, according to the above definition, no Public Key Cryptosystem based
on trapdoor functions is secure. In fact, if EA is a trapdoor function, the following
predicate P , defined on the cleartext, is easy to evaluate from the cyphertext: P(x)

is true if and only if EA(x) is even. We can avoid such problems using Probabitistic
Encryption.

We know that some decision problems may be hard to solve for particular
inputs, but easy to solve for most of the inputs. In view of the special purpose
of Cryptography, the requirement that obtaining partial information should be
difficult needs to be strengthened.

Assume that the message space has an associated probability distribution and
that, with respect to this distribution, a predicate P has a probability p to be true.
Without loss of generality, let p ≥ 0.5.

Definition An adversary has an ε advantage in evaluating the predicate P , if he can correctly
guess the value of P relative to the cleartext with probability greater than p + ε.



182 Chapter 7 Probabilistic Encryption

We are now able to restate the previous partial information definition.

Definition A Public Key Cryptosystem is ε secure if an adversary does not have an ε advantage
in evaluating, given the cyphertext, any easy to compute predicate relative to the
cleartext.

Based on the assumption that deciding quadratic residuosity modulo composite
numbers is hard, we introduce an ε-secure Public Key Cryptosystem, for every non
negligible, positive, real number ε. Let us first deal with the question of sending
securely a single bit in a Public Key Cryptosystern. This question, closely related to
the security of Partial Information, has been raised by Brassard in [7].

2.6 Attempts to Send a Single Bit Securely in Public Key Cryptosystems
based on TrapDoor Functions
Suppose that user B wants to send a single bit message to user A in great secrecy.
The bit is equally likely to be a 0 or a 1. B wants no adversary to have a 1% advantage
in guessing correctly his message. B knows that EA is hard to invert and tries to
make use of this fact in the following way.

Idea 1: All users in the system agree on an integer i. User B selects r ∈ M at
random, except for the ith bit of r , which will be his message. B sends EA(r) to A.

A can decode and thus get the desired bit. But what can an adversary do?
Danger: let y = EA(x), where EA is a one way function. Then, given y, it could

be difficult to compute x but not a specific bit of x.

Example Let p be a large prime such that p − 1 has at least one large prime factor. Let g

be a generator for Zp
∗. Then y = gx mod p is a well known one-way function. But,

even though it is difficult to compute x from gx mod p (the index finding problem),
it is easy to get the last bit of x. In fact, x ends in 0 if and only if y is a quadratic
residue mod p. For p prime we have fast random polynomial time algorithms to
test quadratic residuosity, see [10].

The following idea was suggested by Donald Johnson.
Idea 2: B selects 8 ≤ i ≤ 100 at random, and sets the ith bit of x to the bit he

wants to communicate. The remaining 93 bits of x are chosen at random, except
for the first 7 bits of x, which specify location i. B sends EA(x) to A.

Danger: If, given EA(x), we can easily compute the first 7 bits of x and one of the
last 93 bits of x, then we could guess B’s message with a 1/93 advantage.

Summarizing: There are many ways in which a single bit could be “embedded"
in a binary number x. Taking the “exclusive or" of all the digits of x is just one
more example. However, given y = EA(x), being able to discover some particular
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bits embedded in x DOES NOT CONTRADICT the fact that it is hard to compute
x. Then, what is a secure way to send a single bit? The answer to this problem is
discussed in the next section.

3 Deciding Quadratic Residuosity Is Hard on the Average
The symbol (x , N) will denote the greatest common divisor of x and N . We use
Pr(X) to denote the probability of the event X. We let ZN

∗ = {x | 1 ≤ x N − 1 and
(x , N) = 1}.

3.1 Background and Notation
Given q ∈ ZN

∗, is q = x2 mod N solvable? If N is prime, then the answer to this
question is easily computed. If a solution exists, q is said to be a quadratic residue
mod N . Otherwise q is said to be a quadratic non-residue mod N . From now on let
P1, and P2 be odd, distinct primes and N = P1P2. Then, q = x2 mod N is solvable if
and only if both q =−x2 mod P1 and q = x2 mod p2 are solvable. If this is the case,
q is said to be a quadratic residue mod N , otherwise q is said to be a quadratic
non-residue mod N . We will call the problem of determining whether an element
q ∈ ZN

∗ is a quadratic residue, the quadratic residuosity problem.
Let p be an odd prime and q ∈ Zp

∗, then the Jacobi symbol (q/p) equals i if q is
a quadratic residue mod p and −1 otherwise. The Jacobi symbol (q/N), is defined
as (q/N) = (q/p1)(q/p2). Despite the fact that the Jacobi symbol (q/N) is defined
through the factorization of N , (q/N) is computable in polynomial time even when
the factorization of N is not known!

It is easy to see, from the above definitions that if (q/N) = −1 then q must be
a quadratic non-residue mod N . In fact, q must be a quadratic non-residue either
mod P1 or mod P2. However, if (q/N) = +1, then either q is a quadratic residue
mod N or q is a quadratic non-residue for both the prime factors of N .

Let us count how many of the q’s, such that (q/N) = 1, are actually quadratic
residues.

Theorem Let p be an odd prime. Then Zp
∗ is a cyclic group.

Theorem Let 9 be a generator for Zp
∗, then gs mod p is a quadratic residue if and only if s is

even.

Corollary Half of the numbers in Zp
∗ are quadratic residues and half are quadratic non-

residues.

Theorem Let N = P1P2 where p1 and p2 are distinct odd primes. Then half of the numbers
in ZN

∗ have Jacobi symbol equal to −1 and thus are quadratic non-residues. The
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Jacobi symbol of the rest of the numbers is 1. Exactly half of these latter ones are
quadratic residues.

3.2 A Difficult Problem in Number Theory
If the factorization of N is not known and (q/N) = 1, then there is no known
procedure for deciding whether q is a quadratic residue mod N . This decision
problem is well known to be hard in Number Theory. It is one of the main four
algorithmic problems discussed by Gauss in his “Disquisitiones Arithmeticae"
(1801). A polynomial solution for it would imply a polynomial solution to other
open problems in Number Theory, such as deciding whether a composite n, whose
factorization is not known, is the product of 2 or 3 primes, see open problems 9 and
15 in Adleman [3]. Recently, Adleman [1] showed that a generalization of quadratic
residuosity is equivalent to factoring. Using this generalized notion in our protocol,
we could base the security of our cryptosystem on factoring. At present, we await
the final version of Adelman’s paper.

Assumption Let 0 < ε < 1. For each positive integer k, let Ck ,ε be the minimum size of circuits C

that decide correctly quadratic residuosity mod n for a fraction ε of the k bit integers
n. Then, for every 0 < ε < 1 and every polynomial Q, there exists δε ,Q such that
k > δε ,Q implies Cε ,k > Q(k).

3.4 A Number Theoretic Result
We want to show that deciding whether q is a quadratic residue mod N , is not hard
in some special cases, but is hard on the average in a very strong sense. In order to
do so, let us recall the weak law of large numbers:

If y1, y2 . . . yk are k independent Bernoulli variables such that yi = 1 with proba-
bility p, and Sk = y1 + . . . + yk, then for real numbers ψ , δ > 0, k ≥ 1

4δψ2 implies
that

Pr

(∣∣∣∣∣ Sk

k
− p

∣∣∣∣∣> ψ

)
< δ.

Notice that k is bounded by a polynomial in ψ−1 and ψ−1.
Let AN

∗ = {x | x ∈ ZN
∗ and (x/N) = 1}.

Definition For a composite number N , and for real number 0 < ε ≤ 1
2 , we say that we can

guess with ε advantage whether q drawn at random from AN
∗ is a quadratic residue

mod N if we can, in polynomial (| N |) time, guess quadratic residuosity mod N

correctly for at least 1
2 + ε of the elements of AN

∗.
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Theorem 1 Let 0 < ε ≤ 1
2 , 0 < δ ≤ 1 be nonnegligible numbers. Suppose we could guess, with an

ε advantage whether q, drawn at random from AN
∗, is a quadratic residue mod N .

Then we could decide quadratic residuosity of any integer mod N with probability
1 − δ by means of a polynomial in | N |, ε−1 and δ−1 time probabilistic algorithm.

Proof Assume, to the contrary, that we have a polynomial time magic box MB which
guesses correctly whether q ∈ AN

∗ is a quadratic residue mod N , for 1
2 + ε of the

elements of AN
∗.

Let,
α =Pr (MB answers “q is a quadratic residue” | q is a quadratic residue mod n)
β =Pr (MB answers “q is a quadratic residue" | q is a quadratic non-residue mod N ,
q ∈ AN

∗).
The fraction of AN

∗ on which MB is correct equals 1
2α + 1

2(1 − β). In order for
MB to have a ε advantage, it must be that α − β ≥ 2ε. How ever, α need not be equal
to ε + 1

2 . We will now show how to get a good estimate for α.
Construct a sample of k quadratic residues chosen at random in ZN

∗ (the value
of k will be defined later on). This can be easily done by picking s + 1. . . . .sk at
random in ZN

∗ and squaring them mod N .
Initialize two counters R and NR to 0.
Feed each s2

i
to MB. Every time that MB answers “quadratic residue," increment

the R counter. Every time that MB answer “quadratic non residue," increment the
NR counter.

Let ψ = 2ε
4 . If k is chosen to be suitably large, k ≥ 1

δψ2 , the weak law of large
numbers assures that

Pr

(∣∣∣∣ α − R

k

∣∣∣∣> ψ

)
<

δ

4
,

i.e. R/k is a very good approximation to how well MB guesses if the inputs are only
quadratic residues.

We are now ready to determine the quadratic residuosity of elements in A∗
N

.
Let q be an element of A∗

N
that we want to test for quadratic residuosity. Ran-

domly generate k quadratic residues, x1, . . . , xk, elements of ZN
∗ and compute

yi ≡ qxi mod N for i = 1, . . . , k . Notice that

(a) if q is a quadratic residue, then the yi’s are random quadratic residues in
ZN

∗

(b) if q is a quadratic non-residue in AN
∗, then the yi’s are random quadratic

non-residues in AN
∗.
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Let us postpone the proof of (a) and (b) and assume, for the time being, that they
are true. Initialize two counters R∗ and NR∗ to 0. Feed the sample {Yi} into MB.
Increment R∗ every time that MB answers “quadratic residue," and NR∗ every time
that MB answers “quadratic non-residue." We know, that if q is a quadratic residue,
then the

Pr

(∣∣∣∣ R∗

k
− R

k

∣∣∣∣≤ 2ψ

)
≥
(

1 − δ

4

)2

,

and if q is a quadratic non-residue then

Pr

(∣∣∣∣ R∗

k
− R

k

∣∣∣∣≤ 2ψ

)
< 1 −

(
1 − δ

4

)2

.

Thus if

∣∣∣∣ R∗
k

− R
k

∣∣∣∣≤ 2ψ then with probability greater than 1 − δ, q is a quadratic

residue mod N , otherwise, again with probability greater than 1 − δ, q was a qua-
dratic non-residue mod N .

We still need to prove (a) and (b). We will only prove (a) as the proof for (b)
is similar. It will suffice to prove that, given any quadratic residue q, any other
quadratic residue y in ZN

∗ can be uniquely written as y = qx where x is a quadratic
residue mod N . It is a well known theorem in algebra that ZN

∗ = Zp1
∗ × Zp2

. Thus
let a and b be generators for Zp1

∗ and Zp2
∗ such that (a , p2) = 1 and (b, p1) = 1.

Then any element of ZN
∗ can be written uniquely as aibj where 1 ≤ i ≤ p1 − 1 and

l ≤ j ≤ p2 − 1. Moreover, q is a quadratic residue mod N if and only if it can be
written as q = a2ib2j where 1 ≤ 2i ≤ p1 − 1 and 1 ≤ 2j ≤ p2 − 1. Thus if y = a2sb2t

is any quadratic residue and x = a2(s−i)b2(t−j), then y = qx part (a) is proved.

Theorem 2 Let r ∈ AN
∗ be a publicized quadratic non-residue mod N . Let 0 < ε ≤ 1

2 0 < δ ≤ 1 be
non-negligible numbers. Suppose we could guess with an ε advantage whether q,
drawn at random from AN

∗, is a quadratic residue mod N . Then we could decide
quadratic residuosity of any integer mod N with probability 1 − δ by means of a
polynomial in I| N |, ε−1 and δ−1 time probabilistic algorithm.

Proof Assume first that given any r quadratic non-residue mod N , r ∈ AN
∗, someone

could build a polynomial time magic box MBr that has a ε advantage in distinguish-
ing between quadratic residues and non-residues mod N . We will show that even
if one is not given such an r , quadratic residuosity can still be decided.

Construct a set T consisting of 20 elements chosen at random from AN
∗. With

probability 1 − (1/2)20 one of the elements in T will be a quadratic non-residue
mod N . For each x ∈ T do the following:
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Choose k as in Theorem 1. Construct MBx and test its performance on k random
quadratic residues, S = {s1, . . . , sk}, as we did in Theorem 1. Also pick y1, . . . , y20

at random from AN
∗. Again, with very high probability, at least one of the yi’s will

be a quadratic non-residue. Now, construct samples Hi = {yis | s ∈ S}, and feed
them into MBx.

(a) If MBx performs on all the Hi’s as it performed on S, then go to the next
element in T . Halt if all elements in T have been used.

(b) If MBx performs “significantly" differently on, say Hi, than it did on S, halt.

If case (b) occurs then yi is a quadratic non-residue and, most importantly, we
obtain a magic box, MBx, which distinguishes between quadratic residues and non-
residues in random polynomial time.

Case (b) occurs when there is an x ∈ T which is a quadratic non-residue mod N ,
and at least one of its corresponding yi’s is a quadratic non-residue mod N . Thus

case (b) occurs with probability
(

1 − 1
2

20
)2

. This contradicts our assumption that

deciding quadratic residuosity is hard.
In the above, we assumed that given any quadratic non residue r ∈ AN

∗, one
could construct a magic box MBr , having a ε advantage in deciding quadratic
residuosity, and we derived a contradiction.

Suppose one is able to build a MBr , having a ε advantage in deciding quadratic
residuosity, only for 1% of the quadratic non-residues, r ∈ AN

∗. Then all that would
be changed in the above proof would be the size of the set T , so that T will include
a suitable r .

4 How to Send Messages in a Public Key Cryptosystem
in a Provably Secure Way
Every user in the system publicizes a large composite number N whose factoriza-
tion, N = p1p2, he alone knows, and y ∈ A∗

N
such that y is a quadratic non-residue

mod N .
Let N be the public key of user A. Suppose user B wants to send A a binary

message m = (m1, . . . , mk). Then, for each mi, B randomly picks an xi ∈ ZN
∗, and

sets

ei ←
{

x2
i

mod N if mi is a 0

yx2
i

mod N if mi is a 1

B sends (el , . . . , ek) to A.
To decode m, user A, who knows the factors of N , reconstructs m by letting
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mi ←
{

1 if ei is a quadratic residue mod N

0 if ei is a quadratic non-residue mod N

Testing whether q ∈ A∗
N

is a quadratic residue mod N , when the factorization of N

is known, is easy by the following lemma.

Lemma 2 If the factorization of N is known, we can test whether there exists an x such that
q ≡ x2 mod N in polynomial time.

Proof q is a quadratic residue mod N if and only if q is a quadratic residue mod p1

AND p2. For a prime p, q is a quadratic residue mod p if and only if q(p−1)/2 =
1 mod p. Thus, to test whether q is a quadratic residue mod N we need only com-
pute q(p1−1)/2 mod p1 and q(p2−1)/2 mod p2.

We now address the question of the security of the newly proposed Public Key
Cryptosystern. Let E(x) stand for our new encryption function and let M be the set
of all possible messages.

The definition of security in a Public Key Cryptosystem is very difficult. It de-
pends on the model assumed of the possible behavior of an adversary. At present, we
assume that an adversary may intercept E(m) and try to extract information about
m. He can make use only of a computer, the cyphertext and the a priori knowledge
of the message space M . No restrictions on M are assumed.

Notice that in our scheme, differently from the RSA, an adversary, given E(m),
may be lucky in guessing correctly m and yet not able to prove the correctness of his
guess. However, the possibility of understanding a message, without being able to
prove what it is, is still dangerous for the security of the Public Key Cryptosystem.

We show that, given E(m) for m ∈ M , if an adversary can do better than guessing
m at random, then deciding quadratic residuosity of any integer mod N , is easy.

Recall that AN
∗ = {x ∈ ZN

∗ | (x/N) = 1}.

Definition Let x ∈ AN
∗. The signature of x, σN(x) is defined as

σN(x) ←
{

1 if x is a quadratic residue mod N

0 if ei is a quadratic non-residue mod N

Let Sn
N be the set of all sequences of n elements from AN

∗.

Definition Let s = (x1, . . . , xn) ∈ SN
n. The n-signature of s, 
N(s), is defined to be the string


N(s) = σN(x1)σN(x2) . . . σN(xn).

Definition A decision function is a function d: Sn
N → {0, 1}.

Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n-signatures.
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Definition The distance between a and b is defined to be the number of positions in which a

and b differ. We say that a and b are adjacent if the distance between them is 1.

For any decision function d and n-signature l, let Pd(l): {0, 1}n → [0, 1] be defined
as

Pd(l) = Pr(d(x) = l | 
N(x) = l for x ∈ SN
n)

Theorem 3 Let 0 < ε ≤ 1
2 and 0 < δ ≤ 1 be non-negligible numbers. If there exists a decision

function d which is easy to compute and two n-signatures, u and v, have been
found such that | Pd(u) − Pd(v) | > ε, then we can decide quadratic residuosity of
any integer mod N with probability 1 − σ by means of a polynomial (in | N |, ε−1,
and σ−1) time probabilistic algorithm.

Proof Suppose there exists a decision function d and two n-signatures u and v such that
| Pd(u) − Pd(v) |> ε. Let � be the distance between u and v. Let a0, a1, . . . , a�

be a sequence of n-signatures such that a0 = u, a� = v and ai is adjacent to ai+1

for ≤ i < m. As | Pd(u) − Pd(v) |> ε, there must exist i , 0 ≤ i ≤ � − 1, such that
| Pd(ai) − Pd(ai+1) | ε/n. For convenience, let s = ai and t = ai+1.

Let us choose ψ = ε
4n

. Also, let k ≥ 1
δψ2 . Choose k elements, x1, . . . , xk at random

from �s = {x ∈ Sn
N | 
N(x) = s} and k elements, y1, . . . , yk at random from �t = {x ∈

Sn
N | 
N(x) = t}. Then, by the weak law of large numbers,

Pr

(∣∣∣∣ Pd(s) − d(x1) + . . . + d(xk)

k

∣∣∣∣> ψ

)
<

δ

4

and

Pr

(∣∣∣∣ Pd(t) − d(y1) + . . . + d(yk)

k

∣∣∣∣> ψ

)
<

δ

4

Set,

α = d(x1) + . . . + d(xk)

k
, β = d(y1) + . . . + d(yk)

k

As s = (s1, . . . , sn) and t = (t1, . . . , tn) are adjacent, they differ in exactly one loca-
tion. Call this location r . Let us assume, without loss of generality, that sr = 1 and
tr = 0.

We will now show that we can decide quadratic residuosity mod N with prob-
ability greater than 1 − δ. Let q be an element of A∗

N
that we want to test for

residuosity. Choose k random quadratic residues in AN
∗: x2

1 , . . . , x2
k

and compute
yj = q . x2

j
mod N for 1 ≤ j ≤ k. By Theorem 1, the yj ’s are all quadratic residues if

q is a quadratic residue and all quadratic non-residues in A∗
N

, otherwise.
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In Theorem 2 we showed that knowing a non-residue in A∗
N

does not help in
deciding quadratic residuosity. Therefore we can assume that such a non-residue,
h, is known. This allows us to pick quadratic non-residues at random from A∗

N
(by

computing hx2).
We are now ready to decide whether q is a quadratic residue.

(∗ Construct a random sample of k elements (y1, 1, . . . , y1,n), . . . , (yk , 1, . . . , yk ,n) ∈
SN

∗ such that for all 1 ≤ i ≤ n, i = r , 1 ≤ j ≤ k , σN(yj , i) = si, and for all 1 ≤ j ≤
k , yj ,r = yj .∗)

For i = 1, . . . , r − 1, r + 1, . . . , n do

begin
For j = 1, . . . , k do

draw x ∈ A∗
N

at random.
if si = 1 then yj , i: = x2 mod N

else if si = 0 then yj , i: = hx2 mod N

end.

(∗ Evaluate the decision function d on each member of the sample ∗)
For j = 1, . . . , k do
Xj = d(yj , 1, . . . , yj ,r−1, yj , yj ,r+1, . . . , yj ,n)

Notice that the entire sample {yj , 1, . . . , yj ,r−1, yj , yj ,r+1, . . . , Yj ,n | 1 ≤ j ≤ k} is
either a subset of �s or a subset of �t . Thus with probability greater than 1 − δ one
of the following two mutually exclusive eyents will occur:

(1)

∣∣∣∣ (X1 + . . . + Xk)

k
− α

∣∣∣∣< ε

2n

or

(2)

∣∣∣∣ (X1 + . . . + Xk)

k
− β

∣∣∣∣< ε

2n
.

If case (1) occurs, we conclude, with probability greater than 1 − δ, that q is a
quadratic residue. Otherwise, we conclude, again with probability greater than 1− δ

that q is a quadratic non-residue.

The notion of a decision function is immediately generalized to that of a dis-
criminating function. This is a decision function which can take on more than 2
values. For any non empty set �, let D: Sn

N → �. Let a ∈ �, then PD ,a(l) = Pr(D(x) =
a | 
N(x) = l for x ∈ Sn

N). The following theorem is an easy extension of Theorem 3
and we will state it without proof.
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Theorem 4 Let 0 < ε ≤ 1
2 and 0 < δ ≤ 1 be non-negligible numbers. If there exists a discrimi-

nating function D: Sn
N → A, which is easy to compute and two n-signatures, u and

v, have been found such that | PD ,a(u) − PD ,a(v) |> ε, then we can decide quadratic
residuosity of any integer mod N with probability 1 − δ by means of a polynomial
(in | N |, ε−1, and δ − 1) time probabilistic algorithm.

Let us introduce some more notation. Let, Mn = {ml , m + 2, . . . , } be the set of
messages whose length is n, where n is bounded by a polynomial function in | N |.
Set k =| Mn |. Let Mi be the set of all possible encodings of message mi ∈ Mn, using
the scheme described at the beginning of this section. Clearly, Mi ⊂ Sn

N and for all
i and j , | Mi |=| Mj |. Set Xχ =| Mi |.

4.1 The Security of Partial Information
In the present version of the paper, we assume that all messages in Mn are equally
likely. Let P be an easy to evaluate predicate, defined on Mn. Let p be the probability
that P(x) is true for a random x ∈ Mn. Since Mn is uniformly distributed, and
| Mn |= k, P must evaluate to 1 on pk messages in Mn.

Let MB be a magic box that receives as input the cyphertext E(m) ∈n
N , where

m ∈ Mn, and outputs 0 or 1, its guess for the value of P(m). Let 0j be the number
of 0’s and let 1j be the number of 1’s that MB guesses on encodings of mj . Clearly,
0j + 1j = X. Let

Cj =
{

1j if P(mj) = 1

0j if P(mj) = 0

Cj represents the number of encodings of message mj on which MB correctly
guesses the value of P(mj).

Theorem 5 Let 0 < δ < 1 be a non negligible real number. If 1
kχ

∑k
j=1 Cj ≥ p + ε, for some non-

negligible real ε > 0, then we could decide quadratic residuosity of any integer
mod N with probability 1 − δ by means of a polynomial in | N |, ε−1, and δ−1 time
probabilistic algorithm.

Proof Let us partition Mn into 10/ε buckets, Mn =⋃10/ε

i=1 Bi, such that m ∈ Bi if and
only if (i − 1) ε

10 ≤ 1m
(10ε−1)2 k. (i − 1) ε

10 ≤ 1m

χ
< i ε

10 . We show that there exist two non-
adjacent buckets, each containing a non-negligible portion of the messages. More
formally, we show there exist g , h where 1 < h + 1 < g ≤ 10/ε such that | Bg |, | Bh |>

1
(10ε−1)2 k. Say, that Bi is big if | Bi |> 1

(10ε−1)2 k and small otherwise. Then we want to
show that there are two non adjacent big buckets. Assume, for contradiction, that
this is not the case. Then one of the following cases must apply:
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1. There are no big buckets.

2. There is only one big bucket: Bi

3. There are exactly two adjacent big buckets: Bi and Bi−1.

Note that case 1 can never be true; otherwise k =∑10ε−1

i=1 | Bi |≤ k
10ε−1 < k. In case

2,
∑

mj∈Bi
Cj is maximum for i = ε

10 , and if all messages mj for which P(mj) = 1
belong to B ε

10
, i.e. when MB guesses 1 for all the encodings of all the messages for

which the predicate is true.
Thus,

p + ε ≤ 1
kχ

∑
mj∈Mn

Cj = 1
kχ

⎛⎝ ∑
mj∈Bi

Cj +
∑

mj∈Bk ,k =i

Cj

⎞⎠≤ p + ε

10
< p + ε

In case 3,
∑

mj∈Bi
Cj +∑mj∈Bi−1Cj

is maximum when i = ε
10 and all the messages

for which P is true belong to B ε
10

and all the messages for which P is false belong
to B ε

10−1.
Thus,

p + ε ≤ 1
kχ

∑
mj∈Mn

Cj = 1
kχ

⎧⎨⎩
⎛⎝ ∑

mj∈Bi

Cj +
∑

mj∈Bi−1

Cj

⎞⎠+
∑

mjεBkk =i , i+1

Cj

⎫⎬⎭
≤ 1

kχ

{[
pkχ + (1 − p)2ε10−1kχ

]+ kχε10−1}
≤ 2

kχ
(pkχ + 3ε10−1kχ) < p + ε

2

In all three cases we reach a contradiction.
Thus there exist two non adjacent buckets Bg and Bh each containing at least

ε
10k messages. By sampling, we can find, in a small expected time, two messages u

and v in Bg and Bh, respectively. We view MB as a decision function D: Sn
N → [0, 1].

Then, PD(u) − PD(v) > ε
10 and Theorem 3 applies.

Next, we will see that an adversary cannot decode more than a negligible fraction
of the encodings of all messages.

4.2 An Adversary Cannot Decode
Let MB be a magic box that receives as input E(m) for m ∈ Mn, and outputs mi. MB’s
output can be interpreted as MB’s guess of what m is.
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Let rj , i denote the number of encodings of message mj , on which MB answers
mi. Clearly, ri , i will denote the number of times, over all possible encodings of mi,
that MB answers correctly.

Theorem 6 Let 0 < δ < 1 be a non negligible real number. If
∑k

i=1
ri , i
kχ

> ε + 1
k

for some non-

negligible ε < 1− 1
k

, then we can decide quadratic residuosity mod N with probabil-
ity 1− δ by means of a polynomial in | N |, ε−1 and δ−1 time probabilistic algorithm.

Proof Say that a message mi is well decoded if ri , i >
( 1

2ε
)
χ . Let, W be the set of well-

decoded messages and W ′ = Mn − W .
Claim 1: There exist at least εk

2 well-decoded messages.
Proof :

εkχ < εk + χ <

k∑
i=1

ri , i =
∑
i∈W

ri , i +
∑
i∈W

ri , i

≤ χ | W | +(k− | W |) 1
2
εχ = χ

[(
1 − 1

2
ε

)
| W | +k

1
2
ε

]
Hence, |W |

k
>

ε/2
(1−ε/2)

> ε
2 . (claim 1)

Clearly, if we pick messages at random from Mn, we expect to find a well-decoded
message in 2ε−1 trials. Let � ⊂ W such that | � |> 2ε−1 and let p > 1

2ε−1(2ε−1+1)
.

Claim 2: There exists two well-decoded messages mi , mj ∈ � such that

∣∣∣∣ ri , i
χ

−
rj , i
χ

∣∣∣∣> ρ.

Proof : Fix mj ∈ �. How many messages mi ∈ � can be such that

∣∣∣∣ ri , i
χ

− rj , i
χ

∣∣∣∣≤ ρ?

There are at most 1(
1
2 ε−ρ

) < 2ε−1 + 1 such messages. Thus there exists an mi ∈ � that

satisfies the claim. (claim 2)
Let us transform MB into a discriminating function D: Sn

N → Mn ∪ {γ }. If x ∈ Sn
N

and MB, on input x, outputs mj , then set D(x) = mj . If y is not the encoding of any
message, then one of 3 cases must occur:

1. MB outputs mi for 1 ≤ i ≤ t . Set D(y) = mi.

2. MB outputs mi for i < 1 or i > t . Set D(y) = γ .

3. MB does not answer within a certain time limit. Set D(y) = γ .

Now, note that in claims 1 and 2 just proved above, we showed that we can
quickly find two well-decoded messages mi and mj such that | PD ,mi

(mi)−



194 Chapter 7 Probabilistic Encryption

PD ,mi
(mj) |> ρ. Thus the hypothesis of Theorem 4 holds and deciding quadratic

residuosity mod N is polynomial in | N |, ε−1 and δ−1.

Theorem 6 shows that inverting the function E on the encrypted messages is as
hard as deciding quadratic residuosity, independently of the sparsity of Mn.

5 Mental Poker
Mental Poker is played like regular poker except that there are no cards and no deck
The game is played over the telephone lines, or over a computer network. Since
we can not send physical cards over the phone lines, dealing and playing must be
simulated by exchanging messages between the players. The players do not trust
each other more than ordinary players do. A fair game on the telephone should
ensure that:

1. Neither player can have any partial information about the cards in his oppo-
nent’s hand or in the deck,

2. There is no overlap in the cards dealt to players,

3. All possible hands are equally probable for both players,

4. At the end of the game each player can verify that the game was played
according to the rules and no cheating occurred.

Note that in a fair game of Mental Poker it is not enough to show that it is
computationally difficult to get the exact value of a card. We must also show that
no partial information about the card can fall into the hands of an adversary.

We present a protocol for two people to play a fair game of Mental Poker, using
eneryption. We prove that there is no way a player can get any information about
cards not in his hand under the assumption that deciding quadratic residuosity is
hard.

There are two main tools used in our implementation of Mental Poker. One is
a method for coin-flipping over the telephone [5] and the other is the method for
sending a single bit securely in a Public Key Cryptosystem presented here.

A different solution to the problem of Mental Poker has been obtained inde-
pendently by Manuel Blum in [6]. His solution is based on the assumption that
factoring is hard and that completely secure one way functions exist.

5.1 Background For Coin Flipping
To flip a coin in the well—A and B stand far apart from each other. B is standing
next to a deep well. A throws a coin into the well from a distance. Now, B knows the
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outcome of the flip (by looking into the well) but can not change it, and A has no
way of knowing the outcome. Later on when B would like to prove to A that he won
(or lost), he lets A come closer and look into the well.

Essentially, if we can simulate a flip in the well by exchanging messages over
the telephone, A can send a random bit to B, where A does not know what he sent,
but B can, if necessary, prove to A what the bit was. This is especially applicable to
cryptographical games.

The notion of coin flipping in the well has been introduced by Blum and Micali
in [5], in which, based on the assumption that index finding is hard, they show
how to flip a coin in the well over the telephone lines. Another method based on
the assumption that factorization is hard has been found by Blum in [4]. We sketch
a third method, based on the difficulty of distinguishing quadratic residues from
non-residues with respect to composite moduli.

A and B want to flip a coin. A generates two large odd primes at random, P and Q

and sets N = P ∗ Q. A publicizes N and y ∈ AN
∗ such that y is a quadratic non-

residue mod N . A picks a number q at random from AN
∗ and asks B, who does

not know the factorization of N , whether q is a quadratic residue mod N or not.
B tells A what his guess is. A now knows whether B won (lost), and can later prove
to B that he indeed won(lost) by releasing the factorization of N .

To avoid adding new assumptions to the ones that we already have, we propose
to use one of these latter two coin flipping methods in our protocol for Mental
Poker.

The next section will list some known results that will be used in the proof of
the protocol.

5.2 Useful Results
Let p1, p2 be odd primes and N = p1p2.

Lemma 3 If the factorization of N is known, we can find q ∈ ZN
∗ such that (q/N) = 1 and q

is a quadratic non-residue, in random polynomial time.

Proof Pick a ∈ This can be done in 2 expected trials. Similarly, pick b ∈ Zp2
such that

(b/p2) = −1. Using the Chinese Remainder theorem compute the Zpl
such that

(a/p1) =−1. unique q ∈ ZN
∗ such that q ≡ a(mod p1) and q ≡ b(mod p2). Now, q is

a quadratic non-residue and (q/N) = (q/p1p2) = (q/p1) . (q/p2) = (a/p1) . (b/p2) =
1.

Lemma 4 Let N = p1p2 such that p1 ≡ p2 ≡ 3 mod 4. For all x , y ∈ ZN
∗, if x2 ≡ y2 mod N and

x = ±y mod N then (x/N) =−(y/N).
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Proof Let

c ←
{

1(mod p1)

0(mod p2)

d ←
{

1(mod p2)

0(mod p1)

We can find c and d through the Chinese Remainder Theorem. Let a2 ≡ x2(mod p1)

and b2 ≡ x2(mod p2). Then the four square roots (mod N) are given by ac + db,
−ac + db, −(ac + db) and (ac − db). Let x = ac + db, and y = −ac + bd. Since
N ≡ 1 mod 4 implies (x/N) = (−x/N), we need only prove that (+x/N) =−(+y/N).
Thus, (x/N) = (ac + bd/N) = (ac + bd/p1)(ac + bd/p2) = (ac/p1)(bd/p2). And
(y/N) = (−ac + bd/N) = (−ac + bd/p1)(−ac + bd/p2) = (−ac/p1)(bd/p2) = (−1/

p1)(x/N). Since p1 = 3(mod 4), (−i/p1) =−1.

By a theorem of de la Vallee Poussin [15], approximately half of all primes of
a given length are congruent to 3 mod 4. Thus, composite numbers of the form
N = p1p2 where p1 ≡ p2 ≡ 3 mod 4 constitute approximately 1/4 of all composite
numbers which are a product of two odd primes of a given length. Thus factor-
ing and deciding quadratic residuosity modulos such special N ’s remains a hard
problem. Another method, which does not use special composite numbers, but in-
creases the number of messages exchanged in the protocol, will appear in the final
paper.

5.3 The Protocol
To represent 52 cards in binary we must use at least 6 bits per card. Thus at first A
and B agree on 52 different bit patterns which correspond to the 52 cards.

From now on, when we say that A flips k to B, we mean that B receives a number
k at random from A, and A has no information whatsoever about k. k is actually sent
bit by bit through a sequence of coin flips into a well.

5.3.1 The Algorithm
STEP 1: B chooses at random 52 pairs of large prime numbers: (p1, ql), (p2, q2),
(p3, q3), . . . , (p52, q52) such that pi ≡ qi ≡ 3 mod 4 for 1 ≤ i ≤ 52, and produces 52
large composite numbers whose factorization she knows, i.e. Nl: = p1 . ql, N2: =
p2 . q2, . . . , N52: = p52 . q52. Next, she shuffles the deck of cards in her hands and
assigns N1, . . . , N52 to the shuffled deck, an Ni per the ith card. She publicizes the
ordered 52 tuple < N1, N2, . . . , N52 > .
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STEP 2: A does the same. Let us denote the primes chosen by him as (s1, t1), (s2, t2),
(s3, t3), . . . , (s52, t52) such that si ≡ ti ≡ 3 mod 4 for 1 ≤ i ≤ 52, and his 52 composite
numbers by M1: = s1 . t1, M2: = s2 . t2, . . . , M52: = s52 . t52. He shuffles the deck of
cards and assigns M1, . . . , M52 to the shuffled deck, an Mi, per the ith card. He
publicizes the ordered 52 tuple < M1, M2, . . . , M52 >.

STEP 3: B publicizes his entire deck. The deck is encrypted in the following way.
For every card Ci (with public key Ni), B publicizes an ordered list of 6 numbers in
A∗

Ni
, (ql , . . . , q6) such that for 1 ≤ j ≤ 6, qj is a quadratic residue if and only if the

j th bit of Ci is a 1.
For example, let the first card in B’s deck be 010010. Then B publicizes (ql , q2, q3,

q4, q5, q6) where ql , q3, q4 and q6 are quadratic non-residues mod Ni, and q2, q5 are
quadratic residues mod Ni with Jacobi symbol 1. The qi’s are chosen at random
among the elements of A∗

Ni
with the desired properties. This can be done in random

polynomial time, by Lemma 3.

NOTE that, by Lemma 2, if A can factor Ni, he can also determine whether the num-
bers that B posed as corresponding to the bits in the encoding of Ci are quadratic
residues or not and therefore determine what the card is. If A can not factor Ni, he
can not tell whether the numbers corresponding to bits in the cards encoding are
quadratic residues or not, and therefore can not tell what the remaining cards are.

STEP 4: A publicizes his deck in the exact same way that B did.

STEP 5 [B deals a Card to A]: Suppose A decided to pick the K-th card from B’s deck.
Repeat the following procedure for each card in B’s encrypted deck. We describe
it for the i-th card, to which Ni corresponds. B flips x ∈ Z∗

Ni
, to A. A computes

x2 mod Ni and (x/Ni). At this point A must follow one of two procedures: P1 if
i = K and P2 otherwise.

P1: A sends x2 mod Ni and −(x/Ni) to B.
P2: A sends x2 mod Ni and (x/Ni) to B.

B computes the square roots of x2 mod Ni. Let the square roots be x , n − x , y and
n − y. Next, B sends the root whose Jacobi symbol she received from A : y if she
received −(x/Ni) from A, and x otherwise. By Lemma 4, (x/Ni) uniquely identifies
x, and −(x/Ni) uniquely identifies y. Thus if A followed P1 then he will receive 4
square roots of x2 mod Ni, and by Lemma 1 can factor. If A followed P2, he will get
no new information as to the value of Ci. B from her side has no information as to
which card A selected. Later, B can verify what he flipped to A, and hence verify that
B has only found out the factorization of a single card.
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STEP 6: At this point A knows the factorization of NK . To reconstruct the actual card
CK , A applies the polynomial time test of Lemma 2 to the encrypted representation
of CK , (q1, . . . , q6). Next, A must delete CK from his encrypted deck. B can see
which encrypted element in A’s deck is being erased, but this does not enable her
to decrypt it.

STEP 7 [A deals a card to B]: Clearly, the same procedure as in Step 5 and 6 is done
with the roles of A and B reversed. Now B will discover the factorization of one of
M1, . . . , M52.

STEP 8: If any more cards need to be dealt throughout the game, a similar protocol
takes place. Whenever A needs a card, he will pick a card from B’s deck, by following
the procedure in step 5 and 6. And similarly whenever B needs a card, she will pick
it from A’s deck.

STEP 9 [after game verification]: After the game is over, A can prove to B that
everything he claims she flipped him, was indeed flipped by her and in what order.
B can do the same. A releases the factorization of each of the M , for all 1 ≤ i ≤ 52,
and B releases the factorization of each of the Ni for all 1 ≤ i ≤ 52. They can both
prove to each other whatever claim they made in the game such as “N is a product
of two primes," “all cards where present at the deck at all times," “these are the
quadratic residues you flipped to me," or “I won."

5.3.2 Proof Of Correctness
Claim 1 All hands are equally probable.

Proof In step 9, A and B verify that both encrypted decks contained all 52 cards. In step 5,
A himself chooses which encrypted value from B’s deck he wants, thus he is equally
likely to get any card in the deck. Similar reasoning holds for B.

Claim 2 No overlapping or repeating hands.

Proof When A is dealt a card, he erases that card from his encrypted deck. Thus B can
never be dealt the same card. A knows which cards he picked from B’s deck, and
thus will never pick the same card twice.

Claim 3 If player A knows the factorization of Ni he can reconstruct Ci in 0(| N |3) time.

Proof We are given Ni = p1p2, and (q1, . . . , q6) such that for all j , qi ∈ ZN
∗ and (qj/Ni) = 1.

To reconstruct, Ci, we must test whether qj is a quadratic residue mod Ni for all j .
That can be done in 0(| N |3) steps by Lemma 2.
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It still remains to be shown that neither player can have, at any stage of the
game, any partial information, about a single encrypted card not in his hand, or
any subset of encrypted cards not in his hand. A complete proof will be found in
the final paper. Here we restrict ourselves to proving that when two players A and B
publicize their respective encrypted decks, neither A nor B can answer quickly with
1% advantage a 1 bit question about a single card in the opponents deck. Examples
of such 1 bit questions are: is the i-th card in the deck black? Are the first and third
bit of the i-th card equal? Is the mod 2 sum of the bits in the i-th card 0 or 1?

Theorem 7 If A, when B publicizes her encrypted deck, can answer, in polynomial time, a 1-bit
question Q about a single card in B’s deck with 1% advantage, then he can decide
quadratic residuosity modulo a random composite N with probability 1, by means
of a polynomial (| N |) time probabilistic algorithm.

Proof Suppose A can answer a 1-bit question Q about card i, to which composite Ni

corresponds. A’s ability to answer Q with a 1% advantage can be viewed as a decision
function d: S6 → 0, 1 (S6 = all 6-1ong sequences of elements from A∗

Ni
). Since A

answers Q correctly 51 times out of a 100, we can efficiently find two 6-signatures u

and v such that | Pd(u) − Pd(v) |≥ 1/100. Thus we can apply Theorem 3 and decide
quadratic residuosity modulo Ni in polynomial time. Contradiction!

5.3.3 Implementation Details
In order to perform the protocol we must be able to do the following:

1. Generate large prime numbers, This can be done using Gary Miller’s test for
primality [11] .

2. Find square roots of x2 mod N when the factorization of N is known. Use
Adleman, Manders and Miller’s polynomial time algorithm [2] for finding
square roots.

6 Remarks and Further Improvements
In this paper we showed that it is possible to encrypt messages in such a way, that
an adversary, given the cyphertext, cannot extract information about the cleartext.
This is sufficient for protocols such as Mental Poker or for encrypting one’s private
files. An adversary can read these files but cannot understand them.

We also showed that Probabilistic Encryption can be used in a Public Key En-
vironment. However, in a Public Key Cryptosystem, getting hold of the cyphertext
and trying to understand it is the most obvious attack to the security of the scheme.
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. An adversary could, as a user, try to break the scheme by communicating.

. He could try to break the scheme by intercepting some other user’s messages
and changing them.

. Finally, he may try to break the scheme by making use of the decoding
equipment !

The Public Key Cryptosystem presented in this paper is not secure against these
possible attacks. However, by forcing the users to follow a particular protocol for
exchanging messages, we have built a Public Key Cryptosystem which is provably
secure against the above mentioned attacks. These results will appear in a future
paper.
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8The Knowledge
Complexity of Interactive
Proof Systems
This chapter reproduces the contents of the paper “The Knowledge Complexity of
Interactive Proof-Systems,” which appeared in the proceedings of the 17th Annual
ACM Symposium on Theory of Computing, pp. 291–304, 1985.

This seminal work of Shafi Goldwasser, Silvio Micali, and Charles Rackoff intro-
duced two fascinating and highly influential concepts: the concept of interactive
proofs and the concept of zero-knowledge. The concept of interactive proofs had
a vast impact on complexity theory, to be illustrated in numerous chapters of this
volume. The concept of zero-knowledge, on top of being very intriguing, became a
central tool in cryptography (see Chapter 12), and led to fundamental discoveries
regarding general secure multi-party computation (see Chapters 13 and 15). Ini-
tial indications of the vast potential impact of these concepts were provided by the
results and discussions in this work.



The Knowledge
Complexity of Interactive
Proof-Systems
(Extended Abstract)
Shafi Goldwasser (MIT), Silvio Micali (MIT),
Chales Rackoff (University of Toronto)

1 Introduction
In the first part of the paper we introduce a new theorem-proving procedure, that is
a new efficient method of communicating a proof. Any such method implies, directly
or indirectly, a definition of proof. Our “proofs” are probabilistic in nature. On input
an n-bits long statement, we may erroneously be convinced of its correctness with
very small probability, say, 1

2n , and rightfully be convinced of its correctness with
very high probability, say, 1 − 1

2n .
Our proofs are interactive. To efficiently verify the correctness of a statement,

the “recipient” of the proof must actively ask questions and receive answers from
the “prover.”
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In the second part of the paper, we address the following question:

How much knowledge should be communicated for proving a theorem T ?

Certainly enough to see that T is true, but usually much more. For instance,
to prove that a graph is Hamiltonian it suffices to exhibit an Hamiltonian tour.
This appears, however, to contain, much additional knowledge than the single bit
“Hamiltonian/non-Hamiltonian.”

We give a computational complexity measure of knowledge and measure the
amount of additional knowledge contained in proofs.

We propose to classify languages according to the amount of additional knowl-
edge that must be released for proving membership in them.

Of particular interest is the case where this additional knowledge is essentially
0 and we show that is possible to interactively prove that a number is quadratic
non residue mod m releasing 0 additional knowledge. This is surprising as no
efficient algorithm for deciding quadratic residuosity mod m is known when m’s
factorization is not given. Moreover, all known NP proofs for this problem exhibit
the prime factorization of m. This indicates that adding interaction to the proving
process, may decrease the amount of knowledge that must be communicated in
order to prove a theorem.

2 Interactive Proof Systems
Much effort has been previously devoted to make precise the notion of a theorem-
proving procedure, NP constitutes a very successfull formalization of this notion.
Loosely speaking, a theorem is in provable in NP if its proof is easy to verify once it
has been found. Let us recall Cook’s [C] (and independently Levin’s [L]) influential
definition of NP in this light.

The NP proof-system consists of two communicating Turing machines A and
B: respectively, the prover and the verifier. The prover is exponential-time, the
verifier is polynomial-time. Both A and B are deterministic, read a common input
and interact in a very elementary way. On input a string x, belonging to an NP
language L, A computes a string y (whose length is bounded by a polynomial
in the length of x) and writes y on a special tape that B can read. B then checks
that fL(y) = x (where f1 is a polynomial-time computable function relative to the
language L) and, if so, halts and accepts. This process is illusuated in Figure 1.

What is intuitively required from a theorem-proving procedure? First, that it is
possible to “prove” a true theorem. Second, that it is impossible to “prove” a false
theorem. Third, that communicating a proof should be efficient in the following
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Figure 1 The NP proof-system(∗).

sense. It does not matter how long must the prover compute during the proving
process, but it is essential that the computation required from the verifier is easy.

Theorem-proving procedures differ in the underlying definition of a proof. The
notion of a proof, like the notion of a computation, is an intuitive one. Intuition,
however, may and must be formalized. Computability by (deterministic) Turing
machines is an elegant example of formalization of the intuitive concept of a
computation. Each formalization, however, cannot entirely capture our original
and intuitive notions, exactly because they are intuitive. Following our intuition,
probabilistic algorithms [R] [SS] are means of computing, though they are not in
the previous formal model. Similarly, NP is an elegant formalization of the intuitive
notion of a theorem-proving procedure. However, NP only captures a particular
way of communicating a proof. It deals with those proofs that can be “written
down in a book”. In this paper we introduce interactive proof-systems to capture
a more general way of communicating a proof. We deal with those proofs that
can be “explained in class”. Informally, in a classroom, the lecturer can take full
advantage of the possibility of interacting with the “recipients” of the proof. They
may ask questions at crucial points of the argument and receive answers. This
makes life much easier. Writing down a proof that can be checked by everybody
without interaction is a much harder task. In some sense, because one has to
answer in advance all possible questions. Let us now formally set up the proper
computational model.

(∗) (By −→ we denote a read/write head. By −→R a read-only head and by −→W a write-only head).
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Figure 2 An interactive pair of Turing machines.

2.1 Interactive Turing Machines and Interactive Pairs of Turing Machines
An interactive Turing machine (ITM) is a Turing machine with a read-only input
tape, a work tape and a random tape. The random tape contains an infinite se-
quence of random bits. The random tape can be scanned only from left to right.
When we say that an interactive machine flips a coin we mean that it reads next
bit in its own random tape. This tape is the only source of randomness for the ma-
chine. In addition an interactive machine has a read-only communication tape and
a write-only communication tape. The head writing on the latter tape moves only
from left to right, writes only on a blank cell and cannot move to the right without
writing.

Two ITM’s A and B form an interactive pair of Turing machines (A, B) by

1. letting A and B share the same input tape and

2. letting B’s write-only communication tape be A’s read-only communication
tape and vice versa.

The interactive pair (A, B) is ordered and machine B starts the computation. The
machines take turns in being active. When, say, A is active, it can perform internal
computation, read and write on the proper tapes and send a messagc to B by writing
on the appropriate communication tape. The ith message of A is the entire string
that A writes on the communication tape during its ith turn. The ith message of B is
similarly defined. Either machine can, during its turn, terminate the computation
of the pair. Consider a computation of (A, B) on input x. Let the computation
consist of n turns and let ai be A’s ith message and bi be B’s ith message. Then
the text of the computation is defined to be the sequence {b1, a1, . . . , bn, an}. (an is
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empty if it is B that halts the computation of (A, B) in its nth turn). The text of all
possible computations of A and B on input x will be of relevance to our analysis
and it will bc denoted by (A, B)[x]. This set has the structure of a probability space
in the natural way. The probability of each computation in (A, B)[x] is taken over
the coin tosses of both machines.

2.2 Interactive Proof-Systems
Let L ⊆ {0.1}∗ be a language and (A, B) an interactive pair of Turing machines. We
say that (A, B) is an interactive proof-sysrem for L if A (the prover) has infinite power,
B (the verifer) is polynomial time and they satisfy the following properties.

1. For any x ∈ L given as input to (A, B), B halts and accepts with probability
at least 1 − 1

nk for each k and sufficiently large n.

2. For any ITM A∗ and for any x not in L given as input to (A∗, B), B accepts
with probability at most 1

nk for each k and sufficiently large n.

Here n denotes the length of the input and the probabilities are taken only over B’s
own coin tosses.

Condition 1 essentially says that. if x ∈ L, there exist a way to easily prove this
fact to B that succeeds with overwhelming probability. This way is A’s algorithm.
In other words, it is possible to prove a true theorem so that the proofs are easily
verified (B is polynomial-time). Condition 2 says that, if x not in L, there exist
no strategy, for convincing B of the contrary, that succeeds with non negligible
probability. In other words, no one can prove a false theorem. In fact, B needs not
to trust (or to know) the machine with which it is interacting. It is enough for B to
trust the randomness of its own coin tosses. Notice that, as for NP, the emphasis is
on the “yes-instances”: if a string is in the language we want to show it, if it is not
we do not care. Let us consider an example of an interactive proof-system.

Example 1 Let Z∗
m

denote the set of integers between 1 and m that are relatively prime with m.
An element a ∈ Z∗

m
is a quadratic residue mod n if a = x2 mod m for some a ∈ Z∗

m
, else

it is a quadruric nonresidue. Now let L = {(m, x) | x ∈ Z∗
m

is a quadratic nonresidue}.
Notice that L ∈ NP: a prover needs only to compute the factorization of m and send it
to the verifier without any further interaction. But looking ahead to zero knowledge
proof-systems, we will consider a more interesting interactive proof-system for L.
The verifier B begins by choosing n =| m | random members of Z∗

m
, {r1, r2, . . . , rn}.

For each i , 1≤ i ≤ n, he flips a coin, and if it comes up heads he forms tt = r2
1 mod m,

and if it comes up tails he forms tt = x . r2
1 mod m. Then B sends t1, t2, . . . , tn to

A. The prover, having unrestricted computing power, finds which of the tt , are
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quadratic residues, and uses this information to tell B the results of his last n coin
tosses. If this information is correct, B accepts.

Why does this work? If (m, x) ∈ L, then A correctly predicts all last n coin tosses
of B who will definitely accept. If (m, x) not in L, then the {tt} are just random
quadratic residues, and the prover will respond correctly in the last part of the
computation with probability 1

2n . In fact, for each of the last n coin tosses of B,
A has probability exactly 1/2 of guessing it correctly.

A more complex interactive proof-system for L, that releases essentially 0 addi-
tional knowledge, can be found in Section 4.2.

2.3 Interactive Complexity Classes
We define IP, Interactive Polynomial-time, to be the class of languages possessing
an interactive proof-system. In this case we may also say that L, is interactively
provable. To cmphasize that the prover has unlimited power, we may write IP∞
for IP. To closer analyze the role of the prover, we define IPT (n) to be the class of
languages having an interactive proof-system whose prover runs in time T (n). To
focus on the role of interaction, we let IP[f (n)] denote the class of languages having
a proof-system that, on input a string x of length n, halts within f (n) turns. Here f

is a non decreasing function from natural numbers to natural numbers.
Interactive proof-systems should be contrasted with the “Arthur-Merlin” games

of Babai [B]. In those games Merlin plays the role of A and Arthur the role of B. The
big difference is that Merlin sees all results of Arthur’s coin tosses. This allows Babai
to prove that arbitrary interaction is not necessary in his framework: it is sufficicnt
to allow Arthur to talk to Merlin and have Merlin respond; at least as long they
alternate a constant number of times. Actually Arthur’s message to Merlin consists
exactly of the sequence of its own coin tosses. (See Figure 3).

If membership in a language L can bc proved by an Arthur-Merlin game (L ∈
AM) then, for any random oracle O , L ∈ NP O with probability 1. It is apparent
that AM ⊆ IP (actually, AM ⊆ IP [1]) and we believe that the inclusion is a strict
one. We also believe that our “interactive hierarchy” does not collapse, i.e. that
IP [k] is strictly contained in IP [k + 1]. In any case, interactive proof-systems are
the right proof model to both analyze and reduce the knowledge complexity of
a language. Next section is devoted to the discussion of this more subtle notion.
Let us also mention Papadimitriou [P] “games against nature”. This is an elegant
characterization of PSPACE, though not an efficient method of communicating a
proof.
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Figure 3 The Arthur-Merlin proof-system.

3 Knowledge Complexity
Communication is a tool for transferring or exchanging knowledge. Knowledge
has received a lot of attention in a model-theoretic framework [FHV], [HM]. In this
context, roughly speaking,

1. All participanrs are considered to have infinite computing power. (E.g. each par-
ticipant “knows” all logical consequences of the information in his hands)
and

2. The object they try to “know better” is not an available public input. (Rather
some event occurs that is witnessed or noticed by some but not all partici-
pants. To give an elementary example, one participant flips a coin and tells
the outcome to a few others who now “know” it. The remaining participants
do not “know” what the outcome was and they have to decide between two
possible worlds: one in which “heads” came up and one in which “tails” came
up).

This scenario may not be realistic in many practical contexts. In physics. for ex-
ample, scientists have bounded resources and the object they try to know better is a
public input: nature. Our point of view is that

1. Knowledge is a notion relative to a specfic model of computation with specified
computing resources and

2. One studies and gains knowledge about available objects.

In this paper we mcasure the amount of knowledge that can be gained from a com-
munication by a participant with polynomially bounded resources and investigate
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how much knowledge must bc communicated for proving a theorem.1 Our com-
putational complexity measure of knowledge is, howcvcr, of wider applicability.
For example, as sketched in Section 6, it constitutes a powerful tool for developing
a mathematical theory of cryptographic protocols. The following concept will be
crucial to our analysis.

3.1 Degrees of Distinguishability for Probability Distributions
Let I be an infinite set of strings and c a positive constant. For each x ∈ I with
length n, let �x be a probability distribution over the nc-bit strings. Then we say that
� = {�x | x ∈ I } is a I-c-ensemble. By saying that � is an ensemble or a I-ensemble we
mean, respectively, that there exist I and c or simply c such that � is a I-c-ensemble.

A distinguisher is a probabilistic polynomial-time algorithm D that on input a
string s outputs a bit b. Let �1 = {�1,x | x ∈ I } and �2 = {�2,x | x ∈ I } be two I-c-
ensembles. Let pD

x , 1 denote the probability that D outputs 1 on input a | x |e-bit
long string randomly selected with probability distribution �1,x. Symmetrically,
pD

x , 2 denotes the probability that D outputs 1 on input a | x |e-bit long string ran-
domly selected with probability distribution �2,x. Let p: N → [0, 1]. We say that
the ensembles �1 and �2 are atl most p-distinguishable if for all distinguishers D,
| pD

x , 1 − aD
x , 2 |< p(| x |) + 1

|x|k for all k and sufficiently long x.
Of particular interest will be the notion of at most 0-distinguishability (or in-

distinguishability). In this case the two ensembles are “equal” with respect to any
polynomial-time computation. In Section 4.2 we will present an interesting exam-
ple of indistinguishable ensembles. In this example. the �1,x and �2,x are indis-
tinguishable in a stronger sense. In fact the probability that they assign to each
| x |c-bit string is identical except for a set of strings strings whose total probability
does not exceed 1

2d|x| for some constant d between 0 and 1. Such strong indistin-
guishability is a luxury not always available and, in any case, is not necessary to
develop our theory.

Notice that our distinguishers are fed with a single | x |c-bit string at a time. One
may consider distinguishers that are fed with more strings of length | x |c at the
same time. In this case, if two ensemble are 0-distinguishable, they will remain
undistinguishable (as long “more” < poly(| x |)). If the two ensembles are at most
p-distinguishable, they may remain at most p-distinguishable or the probability of
“distinguishing” them may become much higher. (This plays a role for deciding

1. Our definitions may be given with respect to any time bound, but we restrict our attention to
polynomial-time both to simplify the matter a bit and because we believe that it constitutes the
most important case.
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whether a certain cryptographic protocol may be played securely more than once
using the same secret key).

Related notions of indistinguishability have been previously considered in [GM]
in the context of probabilistic encryption and then in [Y] and [GGM] in the context
of pseudo-random number generation.

3.2 The Knowledge Computable from a Communication
Which communications convey knowledge? Informally, those that transmit the
output of an unfeasible computation, a computation that we cannot perform our-
selves. For example, if A sends to B n random bits, this will be n bits of information.
We would say this contains no knowledge, however, because B could generate
random bits by himself. Similarly, the result of any probabilistic polynomial-time
computation will not contain any knowledge. With this in mind we would like to
derive an upper bound (expressed in bits) for the amount of knowledge that a poly-
nomially bounded B can extract from a communication.

First a bit of notation. Notice that any probabilistic Turing machine M generates
the ensemble M[.] = {M[x]}x∈I , where M[x] denotes the set of possible outputs of M

(on input x ∈ I ) taken with the probability distribution induced by M ’s coin tosses.
Similarly, we will denote by (A, B)[.] the ensemble associated to an interactive pair
of Turing machines (A, B). We are now ready to introduce our definition.

Definition Let (A, B) be an interactive pair of Turing machines and I the set of its inputs. Let B

be polynomial-time and f : N → N be non decreasing. We say that A communicates
atl most f (n) bits of knowledge to B if there exists a probabilistic polynomial-time
machine M such that the I -ensembles M[.] and (A, B)[.] are at most 1 − 1

2f (n) -
distinguishable. We say that A conmmicates at most f (n) bits of know1edge if for
all polynomial-time ITM’s B ′ A communicates at most f (n) bits of knowledge to
B ′.

Remark 1 Assume M , on input x, tries to select a string “as undistinguishable as possible”
from a computation randomly selected in (A, B)[x]. Note that in this attempt no
information is hidden from M : A’s program, B’s program and x are all inputs of
M . M may have “built in” the description of A. This, however, is not of great help,
as A’s algorithm may be absolutely inefficient.

A non mathematical discussion: Let us try to illustrate the above definitions.
Assume that a crime x has happened, B is a reporter and A a police officer. A

understands the rights of the press but, for obvious reasons, also tries not to
communicate too much knowledge. Should reporter B call the police officer A

to know more about x? It depends. If he has probability essentially equal to 1 of



Chapter 8 The Knowledge Complexity of Interactive Proof Systems 213

generating at home, in front of his typewriter, the “same” conversations about
this specific x that he might have with A, he should not bother to call. A will
give him essentially 0 knowledge about x. If, instead, say, he may generate an
honest conversation about x with probability 1/4 (i.e. what he generates is at most
3/4-distinguishable from the “real” conversations), then the officer may tell him
something that he does not know. This knowledge however, will not exceed two
bits and may not be of the “useful” kind! Still, it may pay off to call. If, finally, B

has only chance 1 in 2100 of generating the possible conversations about x with the
police officer, then A is a real gossiper and B should rush to the telephone! Assume
now that B is so news-hungry that is ready to become dishonest during the phone
conversation, i.e. he is ready to transform himself to B ′. Despite this, if the officer
is so skillful to be one who communicates, say, at most 2 bits of knowledge, no
matter how tricky questions B ′ asks and how much he cheats, he will not get out of
him more than two bits about x. (Here we are implicitly assuming that a cheating
reporter still remains a polynomial-time one!)

Example 2 Consider the ITM (A, B) of Example 1. Restrict its inputs only to the strings in
L. Then A communicates at most 0 bits of knowledge to B. In fact, there exists a
probabilistic polynomial-time machine M such that (for those inputs) generates
exactly the same ensemble that (A, B) does. Essentially, M can simulate B, as B is
polynomial-time, and simulates A by looking at B’s coin tosses as follows. When
B sends ti computed by squaring rt , M will answer “quadratic residue”. When B

sends ti computed by squaring rt and then multiplying it by x, M answers “quadratic
nonresidue”.

Notice, however, that, if the problem of deciding quadratic residuosity is not in
probabilistic polynomial-time, A does not communicate at most 0 bits of knowl-
edge. In fact, some machine B ′, interacting with A, may decide to create the ti’s
in a different way. For instance, such a B may send the, sequence of integers ti = i

and therefore receive an answer about their quadratic residuosity that it may not
be able to compute by itself.

An interesting ITM A that communicates at most 0 bits of knowledge may be
found in section 4.2.

3.3 The Knowledge Complexity of a Language
How much knowledge should be communicated to provide a proof of a theorem T ?
Certainly enough to verify that T is true. Usually, much more. For example, to prove
that a certain a ∈ Z∗

m
is a quadratic residue, it is sufficient to communicate an x such

that a ≡ x2 mod m. This communication, however, contains more knowledge than
just the fact that a is a quadratic residue. It communicates a square root of a. We
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intend to measure the additional knowledge that a prover gives to a verifier during
a proof, and investigate whether this additional knowledge may be essentially 0.

Definition Let L be a language possessing an interactive proof-system (A, B). Let f : N → N be
non decreasing. We say that L has knowledge complexity f (n) if, when restricting the
inputs of (A, B) to the strings in L A communicates at most f (n) bits of knowledge.
We denote this fact by L ∈ KC(f (n)).

An informal discussion. Let us recall that we are concentrating on the “yes-
instances.” When a string x is not in the language the prover “gives up” and we
do not measure knowledge. When, instead, x ∈ L, what is the verifier’s point of
view at the end of an interactlve proof? First, it is “convinced” (correctly with
overwhelming probability) that x ∈ L. This was the goal of the proof-system in
the first place. Second, it possesses the text of the entire computation with the
prover on input X. This text, has been used to verify that x ∈ L, but does not
contain more than f (n) bits of additional knowledge. In fact, on input x ∈ L, we
are guaranteed to be able to easily generate such texts with probability distribution
at most (l − 1

2f (n) )-distinguishable from the “real” texts, no matter with which
machine B ′ A is interacting. The special case L ∈ KC(0) is of particular interest.
In this case, by interacting with A and from the text of the computation, B can
verify that x ∈ L, but, with respect to polynomial-time computation, the text is
irrelevant for any other purpose, no matter with which B ′ A is interacting. In fact,
on input a guaranteed x ∈ L, such texts can be easily selected with essentially the
right probability distribution and without A.

We believe that knowledge complexity is one of the fundamental parameters
of a language or, equivalently, of a theorem-proving procedure. Theorem-proving
procedures are intended to communicate knowledge and it is very natural to classify
them according to the amount of knowledge they communicate.

Note that knowledge complexity is also defined for NP proof-systems as they are
a special type of interactive proof-system. However, their knowledge complexity
tends to be very high.

A very important application of knowledge complexity is that it enables proving
correctness of cryptographic protocols in a modular way (see section 6).

4 Languages in KC(0)
Every language in P or RP or BPP has trivially knowledge complexity 0. If L is not in
probabilistic polynomial-time, no NP proof-system for L can release 0 additional
knowledge. However, there may be a more interactive proof-system for L that does
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release 0 additional knowledge. A natural question arises. Do meaningful examples
of languages in KC(0) exist or is KC(0)-BPP a fancy way to define the empty set?
A similar question could bc asked for, say, RP. Namely, is RP-P a fancy name for
the empty set? The best sign of a possible negative answer to the latter question is
constituted by the fact that primality testing is in RP [SS] [R] and, while the problem
of deterministically deciding primality has received a lot of attention for centuries,
no polynomial-time algorithm is currently known. Similarly, it is of great interest
to find candidates for languages in KC(0) but not in, say, BPP. This is the best one
can do, given our current knowledge about proving lower-bounds.

We know of two interesting languages that have knowledge complexity 0. Both
are algebraic. The first one is the following language BL proposed by Blum in [Bl1]
where he gives all the essential ingredients to prove BL ∈ KC(0). Let n be an integer
with prime factorization n = ph

1
. . . phk

k . Then n ∈ BL if the number of different pis
congruent to 3 mod 4 is even. The other language that is known to belong to KC(0)

is the well known quadratic non-residuosity language. We give a proof of this fact
in this section.

For y ∈ Z∗
m

we define

Q(y) =
{

0 if y is a quadratic residue mod m

1 otherwise

Then L = {(Y , m) | Qm(y) = 1} is the quadratic non-residuosity language.
Our proof that L ∈ KC(0) does not depend on any unproved computational

complexity assumptions. We first review what is known about the complexity of
deciding membership in this language.

4.1 The Quadratic Residuosity Problem
The quadratic residuosity problem with parameters m ∈ N and x ∈ Z∗

m
consists of

computing Qm(x). If the factorization of m is known, it is trivial to compute Qm. If
the factorization of m is unknown, then there is no known efficient procedure for
computing Qm. This decision problem is one of the four main problems discussed
by Gauss in “Disquisitiones Arithmeticae” (1801) (along with primality testing,
integer factorization and Solvability of Diophantine Equations). A polynomial time
solution for it would imply a probabilistic polynomial time solution for other open
problems in Number Theory such as deciding whether a composite integer m is a
product of 2 or 3 primes.

The Jacobi symbol
(

x
m

)
for m ∈ N and x ∈ Z∗

m
is a polynomial time computable

function that evaluates to 1 and −1 and provides some information about Qm(x).
Namely, if

(
x
m

)=−1 then Qm(x)= 1. However, when
(

x
m

)= 1 then computing Qm(x)
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is a hard problem. n fact, it is not even known how to efficiently produce a single
“guaranteed” quadratic nonresidue mod m with Jacobi symbol 1.

4.2 A “0” Knowledge Interactive Proof System for L
In the proof system, (A, B), that we exhibit for (y , m) ∈ L the prover A is only
required to be a probabilistic polynomial time Turing machine with the additional
power of being able to evaluate Qm. (Of course, it remains true that no infinitely
powerful A’ can convince B that y is a quadratic non-residue mod m if that is not
the case).

For simplicity, we only consider proving that (y , m) ∈ L, when the Jacobi symbol( y
m

)= 1. The case where
( y

m

)= −1 is uninteresting. We specify A and B by giving
their explicit program at each step of the interaction.

The basic idea is that B generates numbers of two types: x = r2 mod m (type
1) and x = y . r2 mod m (type 2) where r is randomly chosen, and quizzes A about
them. If indeed (y , m) is in L, then A can tell the types of these numbers. If (y , m)

is not in L, they look all the same to A and it will fail the quizzes with very high
probabiilty. The danger with this basic idea arises when indeed (y , m) ∈ Z∗

n
is in L as

A, when answering the quizzes, may release some knowledge other than (y , m) ∈ Z∗
n

(e.g. the quadratic residuosity of specific other x ∈ Z∗
n

chosen by a cheating B ′). We
overcome this danger, by having A make sure that the machine with which it is
interacting “knows” what are the types of the numbers it quizzes A about.

A and B’s Interactive Program
Input: (y , m) ∈ L such that

( y
m

)= 1 and n = log2 m.

Initialize iteration = 0.

Step 1:.
B first chooses a random r0 from Z∗

m
, and then tosses a coin Cx. If Cx = 0,

then B sets x = r2
0 mod n, else if Cx = l, B sets x = y . r2

0 mod n. B sends x

to A.
Then, B chooses two random sets, each of size n,

T = {t1, t2, . . . , tn | ti = r2
i

mod m}
and,

S = {tn+1, tn+2, . . . , t2n | ti = y . tn+1, tn+2, . . . , t2n | ti = mod m}
B sends to A the elements in T ∪ S in random order.
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Step 2:.
A picks a random subset Z ⊆ T ∪ S of size n and sends it back to B.

Step 3:.
For each z ∈ Z, B sends to A r such that z = r2 mod m or z = y . r2 mod m.
Suppose that the sizes of T − Z and S − Z differ by d. Then. B chooses d

random elements from the larger set, ti1
, . . . , tid and sends their respective

ri1
, . . . , rid to A. (i.e. tij = r2

ij
or tij = y . rij mod m for some 1 ≤ ij ≤ 2n)). B sets

X = T − Z − {ti1
, . . . , tid}, and Y = S − z − {ti1

, . . . , tid}.
If x = r2

0 mod m, B lets:

X′ = {r0 . ri =
√

x . ti mod n | ti ∈ X}
Y ′ = {y . r0 . r1 =√y . x . ti mod n | ti ∈ Y }.

else if x = y . r2
0 mod m, B lets:

X′ = {y . r0 . ri =
√

y . x . ti mod n | ti ∈ X}
Y ′ = {y . r0 . r1 =√x . ti mod n | ti ∈ Y }.

B then sends the elements in X′ ∪ Y ′ to A in random order.

Step 4:.
A checks that X′ ∪ Y ′ is of the form specified in step 3 (i.e for all w ∈ X′ ∪ Y ′,
w2 = tix mod m or w2 = ti . x . y mod m for some ti ∈ X ∪ Y ) and that | X′ ∪
Y ′ |> n

3 . If this is not the case, A halts detecting cheating. Otherwise, A sends
B the value v = Qm(x).

Step 5:.
If v = Cx, then B halts detecting cheating, otherwise iteration = iteration + 1
(this is the end of an iteration).
If iteration ≥ n, then B accepts (y , m) ∈ L, otherwise B goes back to step 1.

Let us first prove that (A,B) constitutes an interactive proof-system for L.

Remark 2 Note that if A, B both operate according to specification, then each iteration of the
program will be completed with probability > 1 − 1

2cn for 0 < c ≤ 1.

The following claims l & 2 hold for each completed iteration.

Claim 1 If (y , m) is not in L, then A (or any other A′) correctly guessed Cx (i.e sends v = Cx),
with probability exactly 1

2 .
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Proof The proof folIows from the fact that Cx = 0 with probability exactly 1
2 and that even

with infinite computation power A′ can’t distinguish between a computation with
B in which Cx = 0 from one in which Cx = 1. The latter can be seen as follows.

Suppose Cx = 0.

Then, in step 3 for all ti ∈ X, A receives r0r1 =√
tix =

√
r2

1r2
0 mod m. Note that

ei = ti . x mod m is a random square, (as ti is) and r0ri is a random square root

of e1 mod m. for all ti ∈ Y , A receives y . r0 . ri =√
y . ti . x =

√
y2r2

i r2
0 mod m.

Note that fi = y . ti . x = y2 . r2
i

. x mod m is a random square, (as r2
i

is) and
y . r0 . r0 . ri is a random square root of fi mod m.

Suppose Cx = 1.

Then, in step 3, for all ti ∈ X, A receives y . r0 . ri = √
y . ti . x =

√
y2r2

i
. r2

0

mod m. Note that ei = y . ti . x mod m is a random square, (as both y and ti

are now squares and ti is a random square) and y . r0 . ri, is a random square
root of fi mod m.
for all ti ∈ Y , A receives y . r0 . ri =√

ti . x mod m. Note that fi = ti . x = y2 . r2
i

.

r2
0 mod m is a random square, (as r2

i
is) and y . r0 . ri is a random square root

of fi mod m.

Thus, for both Cx = 0 and Cx = 1 A will still receive random square roots of random
squares. Therefore A can’t have any advantage in predicting Cx.

Claim 2 If (y , m) in L, then A correctly computed Cx in step 4.

Theorem 1 (A,B) is an interactive proof-system for L.

Proof For every (y , m) ∈ L given as input to (A,B), B halts and accepts with probability
greater than

(
1 − 1

2cn

)
for all constants 0 < c ≤ 1 and sufficiently large n. This follows

by claim 2. For any machine A′ and for any (y , m) not in L. given as input to (A′, B),
B accepts with probability at most 1

2 by claim 1 and remark 3.

We now proceed to show that L has knowledge complexity 0.

Theorem 2 L has knowledge complexity 0.

Proof To show that (A, B) constitutes a 0 knowledge proof-system for L we must show
that for each polynomial-time ITM B ′, there exists a probabilistic polynomial-time
Turing Machine M, such that the two ensembles M[.] and (A, B ′)[.] are indistin-
guishable. The basic idea is that M can easily simulate B ′, as B ′ runs in polynomial
time. On the other hand, M will succeed in simulating A, by running B ′ twice with
the same coin tosses.
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A more precise description of M is the following: On input (y , m) ∈ L, M ran-
domly fills the random tape of B ′ with a sufficiently long string R, and makes B ′

perform “its own version” of step 1. (B ′ may in fact execute a different algorithm
than B during step 1.) Simulating A in step 2 is easy for M, as all A does here is
picking a random subset. Next, M makes B ′ perform its own version of step 3. Now,
M must simulate A in step 4. Notice that it is easy to check whether A will halt in
step 4. Therefore it will be easy for M to simulate A in a computation with B ′ in
which A halts in step 4. Difficulties arise if A won’t halt but continue. This implies
that M must compute Qm(x) correctly as A does. This is easy to do for A who has
enough power to decide the quadratic residuosity of x. Notice that this would also
be easy for M if B ′, either generated x by squaring mod m an r0 that M may observe
(in which case M knows that Qm(x) = 0), or if B ′ generated x by squaring mod m an
r0 and multiplying by y (in which case M knows that Qm(x) = 1). However, life may
be not so easy. B ′ might have generated x in some other way (e.g. at random) which
would make it hard for M to compute Qm(x). We overcome this difficulty as follows.
By c1, c2, c3, . . . we denote fixed, positive constants depending on A and B ′. With-
out loss of generality, we may assume that on input (y , m) A will halt in step 4 with
probability less than 1 − 1

2c1n . (Otherwise by simulating A and B ′ for steps 1, 2 and
3, as above, and having A halt in step 4, we trivially generate computations which
are indistinguishable from (A, B ′)[(y , m)].

At the end of step 3, M saves all messages sent so far by B ′ and the “virtual”
A. M now runs B ′ again with the same input (y, m) and the same content R in the
random tape of B ′. For this second compuation, M simulates A anew, by flipping
new coins. Four things will happen in this second computation.

1. B ′ sends in step 1 the same sets S and T , as in its first computation.

2. In step 2, A will select a random subset Z̃ ⊆ T ∪ S. With probability greater
than 1 − 1

2c2n , Z̃ = Z (where Z denotes the set chosen in the first computa-
tion).

3. In step 3, B sends the sets X̃ and Ỹ . (The respective sets in the first compu-
ation were X′ and Y ′). With probability > 1 − 1

2c3n , X and Y are of the right
form (i.e could not cause the legal A to halt).

4. With probability 1 − 1
2c4n , X̃ = X′ and Ỹ = Y ′.

M now selects an element ti ∈ (T − X′) ∩ X̃. As ti ∈ T − X′, in the first compu-
tation B ′ sent its corresponding ri . As ti ∈ X̃, in the second computation B ′ sends√

xti mod m or
√

xtiy mod m. Now, in whatever case, it is just a matter of algebra for
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M to easily compute r0 such that r2
0 = x mod m or r2

0
. y = x mod m. If (y , m) ∈ L, ex-

actly one of these cases may occur. Therefore M, having computed r0, can simulate
A by sending a v = Qm(x).).

5 A Parenthetical Section

Remark 3 A stronger way of saying that A communicates at most f (n) bits of knowledge with
respect to polynomial-time computation, is the following.

For all ITM B ′ there exist a polynomial-time ITM M that by interacting with B ′ (but

also reading the random tape of B ′!) produces an ensemble at most
(

1 − l

sf (n)

)
-

distinguishable from (A, B ′)[.].

This notion is stronger as it allows B ′ not to be bound to polynomial-time
computation while A needs not to know what the computing power of B ′ is. Full
details will be given in the final paper. Interestingly, the interactive proof-system
for quadratic non-residuosity of section 4.2 releases 0 additional knowledge even
with respect to this stronger definition.

An informal dcfinition: One advantage of the point of view of Remark 3 is that
it allows one to express in a clean way notions like “the polynomial-time machine
B knew x at some point of its computation”. Let us consider a particular example.
Assume that machine B started computing on input k and outputs a k-bit integer m.
B may have randomly selected two primes p1 and p2, multiplied them together to
produce m, then “erased” p1 and p2 and output m. What could one mean by saying
that B knew the factorization of m? A natural choice is that B is able to compute
it. In a narrow sense, this may mean that, in performing next instruction, B will
output m’s factorization or that it was written, say, at the beginning of B’s work-
tape at some point in time. In a broader sense it may mean that if a probabilistic
polynomial-time machine M “monitors” the sequence of istantaneous descriptions
of B’s computation, then M outputs m’s factorization with very high probability in
poly(k) time. This, however, may not be general enough. In fact, “extracting” m’s
factorization may not be easy for M , and still B had enough “potential” to efficiently
compute it (though B’s program may never explicitly do so). We believe that the
following (informal) definition achieves the right level of generality. Let M be a
probabilistic polynomial-time machine that monitors B’s computation from the
start till it outputs m. In particular, M reads all the inputs (random and not) of B

and all its outputs. Informally we say that B knew m’s factorization if M can now use
B to compute m’s factorization. This use of B may be very general. For example, M
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may run B more than once after altering the content of its tapes. An example of this
is implicit in section 4.2. Full details will be given in the final paper.

6 Applications to Cryptographic Protocols
Given our current state of knowledge about lower bounds, the security of a crypto-
graphic protocol must be proved based on the intractability assumption of some
candidate hard problem. Thus one must accept that further analysis may reveal
some candidate hard problems to be efficiently solvable. What is not accept-
able is that a protocol may be broken without violating the relative intractability
assumption.

In traditional computational complexity or communication complexity, the goal
is to communicate as much knowledge as possible as efficiently as possible. Since
all participants are considered good friends, no one cares if more knowledge than
necessary is communicated. The situation with respect to cryptographic protocols
is very different. In this case there is generally no problem at all communicating
the knowledge efficiently, but the whole problem is making sure not too much
knowledge has been communicated.

Model theoretic knowledge has been used to analyze protocols. For example, in
[HR] it has been used to prove Rabin’s “Oblivious Transfer” correct in some setting.
However, as pointed out in [FMR], Rabin’s oblivious transfer still lacks a proof of
correctness in a complexity theoretic framework.

We believe that knowledge complexity provides the right framework to discuss
the correctness of crytographic protocols. Applying these ideas, [FMR] modified
Rabin’s oblivious transfer so that it can be proved correct. A sketch of this can be
found in section 6.1.

Knowledge complexity helps in proving or disproving the correctness of cryp-
tographic protocols as these are based on the secrecy of some private information
and should preserve this secrecy. The privacy of some information is what gives us
an advantage over our adversaries. Let A(lice) possess the prime factorization of an
integer n (say n = p1 . p2), while B(ob) only knows n. During a protocol with B, A

must protect the privacy of her information. Assume that A can perform each step
of the protocol without having even to look at the value of p − 1 and p2. Then it is
easy to show that the protocol did not compromise the privacy of n’s factorization.
It is also easy to see, however, that the protocol could not have accomplished any
interesting task. In fact A has not made use of her “advantage”! The protocol may
accomplish a non-trivial task if, in at least one step of it, A performs a computation
c that depends on p1 and p2. This raises the question:
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Will c(p1p2) betray to much information about p1 and p2?

Classical information theory does not provide an answer to this question. Knowl-
edge complexity can. In particular,

1. We can quantify the amount of knowledge about p1 and p2 that c conveys
and

2. We can design protocols so to minimize this amount of knowledge.

If (A, B) is a 0 knowledge interactive proof-system for L, we already saw that, on
input x ∈ L, A gives B at most one bit of knowledge, namely x ∈ L. (That is 0 addi-
tional knowledge). More generally however, we define an upper bound, measured
in bits, on the amount of knowledge A gives to B in a particular protocol (to appear
in the final paper).

We use this to give an upper bound on the number of times a single protocol or a
combination of protocols can be played, using a common secret key, without giving
away too much information about the secret key. In addition, trying to measure the
amount of knowledge revealed during the execution of a protocol about the secret,
may pin point weaknesses in the design of the protocol. For example the amount
of knowledge revealed in a protocol of [BD] appeared to be unreasonably large.
Further analysis by [H] showed that this protocol could be broken if the encryption
function used in the protocol is RSA with low exponents or Rabin’s function.

A most important application of these ideas is that it allows us to prove cor-
rectness of protocols in a modular way. Complex protocols are usually composed
of sub-protocols. For instance, many protocols use a sub-protocol for “coin toss-
ing over a telephone” (Blum [Bl1). However, it is not clear how to use a “normal”
definition of correctness of “coin tossing” to prove the correctness of the main pro-
tocol. In general, it appears that much stronger definitions for these sub-protocols
are needed in order to fit them modularly and cleanly inside larger protocols. Full
details will be given in the final paper.

6.1 A Modification of the Oblivious Transfer That Is Provably Equivalent
to Factoring
This section is joint work of [FMR]. The notion of an Oblivious Transfer (OT) has
been introduced by Rabin [HR] who also proposed the first protocol implementing
it. OT appears useful as a design tool. See for example Blum [Bl2] and Even Goldre-
ich and Lempel [EGL]. Rabin introduced OT (to be described below) in a number
theoretic setting. More generally tbc OT can bc viewed as a protocol for transfering
a large amount of knowledge with probability 1/2 [EGL]. Berger, Peralta and Tedrick
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[BPT] present a correct protocol for “obliviously transferring” a random number.
Different from OT, this protocol transfers no knowledge.

The notion of an OT involves two parties A and B and an integer n (product of
two large distinct primes) whose factorization is only known to A. A would like to
send the factorization of n to B with the following constraints:

1. B must have 50% chance of receiving the factorization of n and the other half
of the time B should not know any information at all about the factors of n.

2. A should not have any idea whether or not B received the factorization of n.

Rabin’s protocol relies on the computational difficulty of factoring. However, as
described below, there is a potential flow in his protocol: it is possible that B can
cheat and factor n with probability much higher than 1/2 even if the intractability
assumption of factoring holds. Although we cannot prove that B can really cheat,
no one has yet been able to prove that B cannot. Before proceeding any further, let
us describe Rabin’s proposed protocol. We assume that A and B both know n and
that A knows its factorization.

Step 1: B chooses a random x , 1 ≤ x ≤ n, relatively prime with n. Then B computes
y ≡ x2 mod n and sends y to A.

Step 2: A computes a random square root (mod n) z of y and sends z to B. (If no
square root exists, A does nothing).

Step 3: B checks that z2 ≡ y mod n. (If not, B halts detecting cheating). Let us
assume that z2 ≡ y mod n. It is well known that y has four square roots mod n that
can be written as {x , −x , w, −w}, where B knows x. With probability 50% z will be
x or −x and B receives no knowledge. With probability 50%, however, z will be w

or −w, in which case gcd(n, x + z) will be a factor of n, allowing B to compute the
factorization of n.

Party A cannot cheat by sending back some cleverly chosen square root z of of
n: no matter what n does, z ∈ {x , −x} with probability 50% and z ∈ {w, −w} with
probability again 50% and A cannot know which is the case.

Is it clear, however, that B cannot cheat? We wish it to be the case that at the
end of the protocol B cannot factor with probability (much) bigger than 1/2, even
if B cheats, and we wish to prove this assuming only that factoring is hard. What
happens if B does not square any x at all, but instead picks a particular cleverly
chosen square mod n y to send? Perhaps knowing any square root mod n of y will
allow B to factor n. That is, perhaps there is a polynomial time algorithm that given
n produces a “special” square mod n y, and another polynomial time algorithm that
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given y , n and any square root of y mod n factors n. The point is not that we have
such algorithms, but that no one has proved that the existence of such algorithms
contradicts the assumption that factoring is hard. Hence, the proof that Rabin’s
protocol is correct relies not only on the assumption that factoring is hard, but on
an additional complicated and unnatural assumption, essentially that the above
algorithms do not exist.

We have been able to prove that a modified version of Rabin’s OT is correct.
I.e. the probability (taken over the possible choices of n and all possible random
choices of B) that B can factor n in k steps at the end of the protocol, equals 1/2 +
the probability that B can factor n in k steps before the protocol starts. The heart
of the modified protocol is that in addition to y, B gives A a minimum knowledge
interactive proof that he possesses a square root of y following the ideas in section
4.2. In particular, such interactive proof will not reveal any information about which
square root B knows. Now that we have made sure that B knows one square root of
y, when A will give him one of them at random, it is easy to prove that B’s probability
of factoring n at the end of the protocol equals 1/2 + the probability that he had of
factoring n before the start of the protocol.

7 Open Problems
Many open problems arise. We only list a few of them.

1. Is NP strictly contained in IP?

2. Is KC(0) contained in NP?

3. Is KC(0) contained in IP [1]?

4. Is IP[k] strictly contained in IP[k + 1]?

5. Are there NP Complete languages in KC(�(n))?

6. For what time-bound T (n), if any, IPinf inite ⊆ IPT (n)?
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9How to Generate
Cryptographically
Strong Sequences of
Pseudorandom Bits
This chapter reproduces the contents of the paper “How to Generate Cryptograph-
ically Strong Sequences of Pseudo Random Bits,” which appeared in the proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 112–117,
1982.

This pioneering work of Manuel Blum and Silvio Micali defined pseudorandom
generators as producing a sequence of unpredictable bits. This definition was later
shown by Yao to be equivalent to being computationally indistinguishable from the
uniform distribution over bit-strings of adequate length. This work also defined the
notion of a hard-core predicate of a one-way function and established its existence
for the modular exponentiation function.



How To Generate Cryptographically
Strong Sequences Of Pseudo
Random Bits∗

Manuel Blum (University of California - Berkeley),
Silvio Micali (University of California - Berkeley)

1 Introduction

1.1 Randomness and Complexity Theory
We introduce a new method of generating sequences of Pseudo Random Bits. Any
such method implies, directly or indirectly, a definition of Randomness.

Much effort has been devoted in the second half of this century to make precise
the notion of Randomness. Let us informally recall one of these definitions due to
Kolmogorov [ ].

A sequence of bits A = a1, a2, . . . , ak is random if the length of the minimal
program outputting A is at least k.

We remark that the above definition is highly non constructive and rules out the
possibility of pseudo random number generators. Also, the length of a program,
from a Complexity Theory point of view, is a rather unnatural measure. A more
operative definition of Randomness should be pursued in the light of modern
Complexity Theory.

Let us consider the following example.

∗ Supported in part by NSF grant MCS 82-04506.
0272-5428/82/0000/0112$00.75 ©1982 IEEE
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Example A and B want to play head and tail in 4 different ways. In all of them A “fairly” flips
a “fair” coin. In the first way. A asks B to bet and then flips the coin. In such a case
we expect B to win with a 50% frequency. In the second way, A flips the coin and,
while it is spinning in the air, she asks B to bet. We are still expecting B to win with a
50% frequency. However, in the second case the outcome of the toss is determined
when B bets: in principle, he could solve the equation of the motion and win !

The third way is similar to the second one: B is allowed to bet when the coin is
spinning in the air, but he is also given a pocket calculator. Nobody will doubt that
in this case B is going to win with 50% frequency, as while he is still initializing any
computation the coin will have come up head or tail.

The fourth way is similar to the third, except that now B is given a very powerful
computer, able to take pictures of the spinning coin, and quickly compute its speed,
momentum etc. In such a case we will not say that B will always win, but we may
suspect he may win 51% of the time !

The purpose of the above example is to suggest that

The Randomness of an event is relative to a specific Model of Computation with
a specified amount of computing resources.

The links between randomness and the computation model were first pointed out
by Michael Sipser in [ ]. where he shows that certain sequences appear random to a
finite automaton. In his very nice paper [ ], Shamir considers also the factor of the
computing resources, presents significant progress in this direction and points out
some open problems as well.

In this paper we investigate the Randomness of k bit long sequences with respect
to the computation model of Boolean circuits with only Poly (k) gates.

1.2 Our Generator
We show under which conditions it is possible to construct Generators of Cryp-
tographically Strong Sequences of Pseudo Random Bits. Such a Generator is a
program G that, upon receiving as input a random number s (hereafter referred
to as “the seed”), outputs a sequence of Pseudo Random Bits bl , b2, bs , . . .

Our Generators have three main properties:

1. The bits bi’s are polynomially many in the length of the seed.

2. The bits bi’s are easy to generate. Each bi is output in time polynomial in the
length of the seed.
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3. The bits bi’s are unpredictable. Given the Generator G and b1, . . . , bk, the first
k output bits, but not the seed s, it is computationally infeasible to predict
the k+1st bit in the sequence with better than 50-50 chance.

1.3 Related Results and Applications
Our Generator is an improvement of Shamir’s pseudo random number generator.
In [ ]. Shamir presents programs that from a short secret random seed, output a
sequence of “unpredictable” numbers xi’s. The main difierences between ours and
Shamir’s generators are:

(a) Shamir’s notion of unpredictability is more restricted. He proves that not all
the generated xi’s can be computed from knowledge of the program and the
preceding outputs, permitting that some of the xi’s could be so computed.

(b) Shamir’s generator outputs numbers and not bits. Such numbers could be
unpredictable and yet of very special form. In particular every bit of (infor-
mation about) the next number in the sequence could be heavily biased or
predictable with high probability.

The classical sequence xi+l = axi + b mod n, provides a fast way of generating
pseudo random numbers. Such sequence is known to pass many statistical tests
(see Knuth [ ]), however it is not Cryptographically Strong. Plumstead [ ], shows
that the sequence can be inferred even when a, b and n are all unknown.

On the other hand, Yao [ ] proves a very interesting result about Cryptograph-
ically Strong Sequences of Pseudo Random Bits: they pass all Polynomial Time
statistical tests. As a consequence, under the intractability assumption of the Dis-
crete Logarithm Problem, Random Polynomial Time is contained in Deterministic
Time (2n ε) for all ε > 0.

We finally point out the relevance of Cryptographically Strong Pseudo Random
Bit Sequences to Cryptography. In Private Key Cryptography, one time pads con-
stitute the simplest and safest type of Cryptosystem. Two partners who have ex-
changed one of our Generators and have secretly exchanged a random seed, are
actually sharing a long bit sequence that can be used as a one time pad.

Our Generators also find applications in Public Key Cryptography. In [ ], Gold-
wasser and Micali show that, under the assumption that deciding quadratic residu-
osity modulo composite numbers is hard, there exist Encryption Schemes possess-
ing the following property:

An adversary, who knows the encryption algorithm and is given the cyphertext,
cannot obtain any information about the cleartext.
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Such Encryption Shemes are Probabilistic: the encoding of a message m depends
on m and a sequence of coin tosses known only to the transmitter. In this context,
Cryptographically Strong Pseudo Random Bits Generators are needed as an adver-
sary might be able to decode not because he is able to efficiently decide quadratic
residuosity, but because he is able to predict the random numbers used to encrypt!
Such a worry is not an abstract one as shown by Plumstead.

An analysis of a particular simple pseudo random sequence generator appears
in Blum, Blum, and Shub [ ]. They point out that well-mixed sequences in which hard
problems are embedded can nevertheless be poor pseudo-random sequences. Some-
thing more is needed to construct good generators of pseudo random sequences;
what that is is pointed out below.

2 The Generator Model
1n this section we present a set of conditions that allow one to generate Crypto-
graphically Strong Sequences of Pseudo Random Bits. In the next section we show
that under the intractability assumptlon of the Discrete Logarithm Problem, it is
possible to find a concrete implementation for the Generator Model.

Definitions N = {0.1, 2, . . .}. B is said to be a set of predicates if B = {Bi : Di → {O .1}/i ∈ Sn, n ∈
N}, where Sn is a subset of the n-bit integers and Di is a subset of the integers with
at most n bits.

B is an accessible set of predicates if for all n ∈ N it is possible in Probabilistic
Poly(n) Time to select any element in In = {(i, x)/i ∈ Sn, X ∈ Di} with probability

1
|In| .

Let B be a set of predicates. For any e > 0, let Cn,ε denote the size (number of
gates) of a minimum size circuit C = C[i, x] that computes Bi(x) correctly for at
least a fraction 1

2 + ε of the inputs (i , x) ∈ In. B is input hard if for any ε > 0 and any
given polynomial Q, Cn,ε > Q(n) for all sufficiently large n.

For example, suppose Sn = set of all n-bit composite integers that are products
of two equal-length primes; Di = Z∗

i
(+1), the set of all integers x relatively prime to

i such that the Jacobi symbol (x/i) =+1; and Bi : x → 1 if x is a quadratic residue
mod i, 0 otherwise. Then it is easy to show that B is accessible. Furthermore, under
the reasonable assumption that deciding quadratic residuosity modulo composite
numbers is hard, B is input-hard.

Theorem 1 Let B be an input hard and accessible set of predicates. Let ε > 0, let Q and P be
given polynomials. Let n ∈ N and i ∈ Sn, and suppose

1. the function f: i → fi is Poly(n) Time computable
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2. fi : Di → Di is a. permutation computable in Poly(n) Time

3. the function h : x ∈ Di → Bi(fi(x) is Poly(n) Time computable.

Then it is possible in Poly(n) Time to compute, from initial random seeds
(i , x) ∈ In, sequences Si ,x, each Q(n) + 1 bits long such that:
for each integer k ∈ [1, Q(n)], for any circuit C of size less than P(n) with k Boolean
inputs and one Boolean output y: if C is fed the first k bits of an Si ,x sequence S,
then Prob {y is equal to the k+1st bit of S} < 1

2 + ε for all sufficiently large n. I.e. for
all sufficiently large n |{(i , x) ∈ In/y = the k+lst bit of Si ,x}| < ( 1

2 + ε)|In|.
Proof Let n be a natural number. As B is an accessible set of predicates, select (i,x)

at random in In. (i,x) will be the seed of the Pseudo Random Bit Sequence. Set
c = Q(n) + 1, the desired length of the sequence.

Generate the sequence Ti ,x = x , fi(x), f 2
i
(x), . . . , f c

i
(x).

From right to left (!), extract one bit from each element in Ti ,x in the following

way: for j = c to 1, output the bit Bi(f
j

i (x)). (We note below that Bi(f
j

i (x)) is easy
to compute because x is known, by (3)).

The above procedure constitutes the Generator that takes the random seed (i,x) and
stretches it into the sequence Si ,x = (sj |1 ≤ j ≤ c, sj = Bi(f

c−f+1
i (x)).

We first prove that the Generator operates in Poly(n) Time. The sequence Ti ,x

can be constructed in Poly(n) time as the two functions f : i → fi and fi : Di → Di

are both Poly(n) Time computable (hypothesis (1) and (2) ).
Once the sequence Ti ,x is computed and stored, it is easy, by virtue of hypothesis

(3), to compute each bit sj of the Si ,x sequence for 1 ≤ j ≤ c.
We now prove that, when n is large enough, for any k between 1 and c, a circuit C

with less than P(n) gates, cannot “predict” sk+1 with probability greater than 1
2 + ε.

The proof is by contradiction. Assume that there is a “small” circuit C predicting
sk+1 with probability at least 1

2 + ε. Then we will show that the set of predicates B
is not input hard. We will do this by showing that there is another “small” circuit
that computes Bi(x) for a fraction bigger than 1

2 + ε of the (i , x) ∈ In. Such a small
circuit is derived by the following Poly(n) Time algorithm that makes calls to the
circuit C.

For each (i , x) ∈ In, generate the sequence of bits (b1, . . . , bk−1, bk) =
(Bi(f

k
i
(x)), . . . , Bi(f

2
i
(x)), Bi(fi(x))). Input these k bits to the circuit C to com-

pute a bit y.

We reach a contradiction if we show that y equals Bi(x) for a fraction at least
1
2 + ε of the (i , x) ∈ In. Notice that the bits b1, . . . , bk are the first k bits of the Pseudo
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Random Bit Sequence S
i ,f k−c

i
(x)

. Thus y = Bi(x) if and only if C correctly predicts

the k+1st bit of S
i ,f k−c

i
(x)

. But this will happen for a fraction at least 1
2 + ε of the

(i , x) ∈ In as the function f k−c
i is bijective (as fi is a permutation) and we are now

assuming that C correctly predicts the k+1st bit of the Si ,x sequences for at least a
fraction 1

2 + ε of the (i , x) ∈ In.
Qed

3 The Discrete Logarithm Problem
Let p be a prime. The set of integers [1, p − l] forms a cyclic group under multiplica-
tion mod p. Such group is denoted by Z∗

p
. Let g be a generator for Z∗

p
. The function

fp ,g : x ∈ Z∗
p
→ g mod p, defines a permutation in Z∗

p
computable in Poly(|p|) Time.

The Discrete Logarithm Problem (DLP) with parameters p,g and y consists in finding
the x ∈ Z∗

p
such that gx mod p = y. A circuit C[., ., .] solves the DLP mod a prime p

if for any g generator for Z∗
p

and any y ∈ Z∗
p

, C[p, g, y] = x such that x ∈ Z∗
p

and
gx mod p = y. x will be simply denoted by indexg(y) whenever no ambiguity may
arise about p.

3.1 Actual knowledge about the DLP
gx mod p seems to be a one-way function. The fastest algorithm known for the DLP

is due to Adleman and runs in time O(2c
√

log p log log p). It is easy to see that the dif-
ficulty of the DLP does not depend on the generator g or y. By this we mean that if
for a non negligible fraction (l/Poly(|p|)) of pairs (g,y), g a generator and y ∈ Z∗

p
,

the DLP with parameters p,g and y could be efficiently solved, then it could be
solved in Random Poly(|p|) Time for any g and any y. Thus our intractability as-
sumption for the DLP will depend only on the prime p.

Pohlig and Hellman [ ] show that the DLP mod a prime p such that p − 1 contains
only small prime factors can be efficiently solved. However such primes constitute
a negligible portion of all primes. We expect that for (nearly all) randomly selected
primes p, p − 1 has a large prime factor. No “small” circuits are known that solve
the DLP mod a single prime p, for the primes p such that p − 1 has a large prime
factor (thus the DLP seems to have a higher circuit complexity than factoring: for
any composite integer k there is a small circuit storing its factorization). In this
paper we show how to generate Pseudo Random Bit Sequences under either one of
the following assumptions.

Definition A prime p is hard if p = P x + 1, where P is prime and 1 ≤ x ≤ Poly(|P|).
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It is known (De la Vallee Poussin [ ]) that asymptotically 1
|P | of the integers of the

sequence P x + 1, x = 1, 2.3, . . . , are primes.
Using efficient primality tests, there is an efficient procedure to decide if an

integer, p, is a hard prime; and if so, to factor p − 1.

First intractability assumption for the DLP. Let ε > 0 be a fixed constant and Q
be a fixed polynomial. Then for all sufficiently large n, the size of any circuit that
solves the DLP mod p for at Ieast a fraction ε of the n-bits-long hard primes p, is
greater than Q(n).

Second intractability assumption for the DIP. Let ε > 0 be a fixed constant and
Q be a fixed polynomial. Then for all sufficiently large n, the size of any circuit that
solves the DLP for at least a fraction ε of the n-bit primes p, is greater than Q(n).

3.2 The DLP and the Principal Square Root Problem
We recall some known results about Z∗

p
.

An element T of Z∗
p

is called a quadratic residue if and only if T = x2 mod p for
some x ∈ Z∗

p
; such an x is called a square root mod p of T.

Fact 1. Given any generator g for Z∗
p

, an element T of Z∗
p

is a quadratic residue

mod p if and only if T = g2s mod p for some s ∈ [1, p−1
2 ]. We recall that such

a representation of T is unique. Moreover T has two square roots mod p:
gs mod p and gs+((p−l)/2) mod p. (see [ ])

Fact 2. There exists a polynomial time algorithm for testing whether an ele-
ment T of Z∗

p
is a quadratic residue mod p (See [ ]).

Fact 3. (Miller [ ], Adleman and Manders [ ], Berlekamp [ ]) Given any T, a
quadratic residue mod p, there exists a random polynomial time algorithm
to compute both square roots of T mod p.

We introduce the following basic definition.

Definition Let g be a generator for Z∗
p

, T a quadratic residue mod p and 2s the unique index
of T such that 2s ∈ [1, p − 1]. Then gs mod p will be called the principal square root
of T, and gs+((p−l)/2) mod p the non principal square root of T.

Let g be a generator for Z∗
p

. Notice that given T, a quadratic residue mod p, but
not the index of T in base g, one can still test efficiently that T is indeed a quadratic
residue and can effectively extract its two square roots mod p, say X and Y. However
the next theorem shows that deciding which square root of T is the principal one
is a much harder problem. In fact, even allowing a weak oracle for the Principal
Square Root Problem, the DLP becomes easy.
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Definition Let g be a generator for Z∗
p

and x ∈ Z∗
p

. The predicate Bp ,g(x) is defined to be equal

to 1 if x is the principal square root of x2 mod p and 0 otherwise.

Remark 1 Notice that, given x, it is easy to evaluate Bp ,g(g
x mod p): just check whether

x <
p−1

2 or x >
p−1

2 , and output a 1 or a 0 respectively.

Theorem 2 Let ε > O, p prime and g generator for Z∗
p

. Then, given an oracle ME (Magic Box)

such that MB[x] = Bp ,g(x) for a fraction ≥ 1
2 + ε of the x ∈ Z∗

p
, one can construct an

algorithm with oracle MB that solves the DLP mod p in Probabilistic Poly(|p|) Time.

We first establish some intermediate results.

Lemma 1 Let ε > 0, P prime and g generator for Z∗
p

. Then, given an oracle ME such that
MB[x] = Bp ,g(x) for all the x ∈ Z∗

p
, there exist a Poly(|p|) Time Algorithm (with oracle

MB) for the DLP mod p.

Proof We will exhibit a Poly(|p|) Algorithm, making calls to MB, that finds indices mod
p in base g. Such an algorithm will solve the DLP mod p as, for each generator h
for Z∗

p
and each y ∈ Z∗

p
, indexh(y)indexg(h) mod p − 1 = indexg(y). The algorithm,

given y ∈ Z∗
p

, finds x = indexg(y) bit by bit from right to left. In the middle of the
execution, the variable index will contain the right half of the bits of x and the
variable element is such that indexg(element) equals the left half of x. Think of
indexg(element) and index as lists of 0’s and 1’s. The algorithm, abstractly, transfers
the last bit of indexg(element) in front of index until indexg(element) vanishes (i.e.
element = g0 = 1) and thus all of x has been reconstructed in index. “ ” denotes the
concatenation operator.

Step 0. (Initialization)
element := y; index := empty word.

Step 1. (Check for termination condition)
If element = 1 HALT. index equals x.

Step 2. (find one more bit of x)
Test whether element is a quadratic residue mod p. If yes index := 0 index and
go to step 4 else index := 1 index and go to step 3.

Step 3. (element is a quadratic non residue, i.e. indexg(element) is odd. Change
the last bit of indexg (element) from 1 to 0)
element := g−1element mod p

Step 4. (Erase 0 from the tail of indexg(element) )
element is a quadratic residue. Compute both square roots of element mod p.
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Have MB select the principal one. element := principal square root of element
and go to Step 1.

Qed

The algorithm in lemma 1 needs, for |p| times, to select the Principal Square Root
of a quadratic residue mod p. It does so by making |p| calls to the oracle MB that
computes Bp ,g correctly 100% of the time.

We should ask what happens to the algorithm if it is allowed to make calls only
to an oracle MBε that evaluates Bp ,g only slightly better than guessing at random,
i.e. correctly for a fraction 1

2 + ε of the x ∈ Z∗
p

.
The following lemma, making use of the algebraic structure of Z∗

p
, shows how

to “concentrate a stochastic advantage”, i.e. how to turn an oracle that answers
most of the instances of a decision problem correctly into an oracle answering a
particular instance correctly with arbitrarily high probability. Let us first recall the
Weak Law of Large Numbers.

If y1, . . . , yk are k independent 0-1 variables such that yi = 1 with probability α,
and Sk = y1 + . . . + yk, then for real numbers ψ and φ > 0,

k >
2

4φψ2
implies that Pr

(∣∣∣∣Sk

k
− α

∣∣∣∣> ψ

)
< φ.

Let us define trials(ψ , φ) = 1
4φψ2 . Notice that trials(ψ , φ) is a polynomial in ψ−1

and φ−1.

Lemma 2 Let ε ∈ (0, 1
2), δ ∈ (0, 1), p a prime and g a generator for Z∗

p
. Set n = trials(ε, δ) and

define IS, the initial segment of Z∗
p

as follows: IS = {gx mod p 1 ≤ x ≤ p−1
n

}. Then,

given an oracle MBε such that MBε[x] = Bp ,g(x) for at least a fraction 1
2 + ε of the

x ∈ Z∗
p

, there is a Probabilistic Poly(|p|, ε−1, δ−1) Algorithm with oracle MBε that,
with Probability 1 − δ, correctly selects the Principal Square Root of any quadratic
residue e mod p belonging to IS.

Proof Select r1, . . . , rn at random in [1, p−1
2 ]. Compute 2rl , . . . , 2rn. Compute e1 =

e2r1
g

mod p, . . . , en = e
2rn
g modp. All the ei’s are quadratic residues mod p as indexg(ei)

is even for all i’s. In fact indexg(ei) = (indexg(e) + 2ri) mod p-1 and both indexg (e)
and p-1 are even. Compute the two square roots Xi and Yi of each ei. (Note that
while these can be computed, it is not (yet) clear which of Xi and Yi is principal.)
For each ei select PSQRi, your guess for the principal square root of ei, in the fol-
lowing way: if MBε[Xi] = MBε[Yi], set PSQRi = one of MBε[Xi], MBε[Yi] selected
at random with probability 1/2. Otherwise, if MBε[Xi] = 1, set PSQRi = Xi; else set
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PSQRi = Yi. Notice that the ei’s have been drawn at random with uniform proba-
bility among the quadratic residues mod p: in fact every even index between 1 and
p-1 can be uniquely written in the form (indexg(e) + 2r) mod p-l, for 1 ≤ 2r ≤ p − 1.
Thus, even if an adversary had chosen the x’s for which MBε[x] = Bg(x), the Weak

Law of Large Numbers guarantees that with Probability 1 − δ, |Sn

n
− ( 1

2 + ε)| < ε
2 .

I.e., with probability 1 − δ, we have selected the principal square root of the ei’s
more correctly than incorrectly. We exploit this fact in the following way.
Initialize to 0 two counters CX and CY . Compute a square root of e, call it X. For
each ri compute Si = Xgri mod p. If Si = PSQRi then increment the counter CX, else
increment the counter CY .

Notice the following fact:

Let e = g2s mod p (2s ∈ [1, p − 1]) be a quadratic residue mod p and let X and Y
be its square roots mod p. Let 2s + 2r < p − 1. Then Xgr mod p is the principal
square root of eg2r mod p if and only if X is the principal square root of e.

Without loss of generality, let CX > CY and let 2s be the index of e in base g. If for all
the ri’s, 2s + 2ri < p − l; then with probability 1 − δ, X will be the Principal Square
Root of e.

2s is unknown, but we know that 2s ∈ [1, p−1
n

]. Thus all ri’s for which 2s + 2ri >

p − 1 must belong to the interval [(n − 1)
p−1

n
, p − 1]]. But the 2ri’s are n even

integers drawn at random with uniform probability in [l,p-1]; thus each 2ri has the
same probability to belong to each of the n sub intervals [k p−1

n
, (k + 1)

p−1
n

]. Let t
be the number of ri’s belonging to the dangerous interval [(n − 1)

p−1
n

, p − 1]. This
t will be so small that also CX − t will be greater than Cy. Thus still with probability
1 − δ, X will be the Principal Square Root of e.

Qed

Lemma 3 Let ε ∈ (0, 1
2) and φ ∈ (0, 1), p prime and g generator for Z∗

p
. Set n = trials(ε, 1

2|p| )
and define IS = {gx mod p|x ∈ [1, p−1

n
]}. Then, given an oracle MBε such that

MBε[x] = Bp ,g(x) for at least a fraction 1
2 + ε of the x ∈ Z∗

p
, there is a Probabilistic

Algorithm that finds indices of any y ∈ IS in Expected Poly(|p|) Time.

Proof Let y be any element in IS. Apply the algorithm in lemma 1 to find the index of y,
In Step 4, to select the principal square root of a quadratic residue in IS, instead of
calling MB, apply the algorithm in lemma 2 with δ = 1

2|p| . In view of lemma 2, Step

4 will be performed correctly with independent probability equal to 1 − 1
2|p| . Notice

that if x belongs to IS, so does xg−1 mod p; and that if x is a quadratic residue mod p
belonging to IS, also its principal square root will belong to IS. Therefore. if in Step
4 the algorithm correctly selects the principal square root, the total computation
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will be done in the initial segment IS. As Step 4 is executed at most |p| times, the
probability that the index of y will be found correctly is greater than (1− 1

2|p| )
|p| > 1

2 .

It is easy to see that the whole computation is polynomial in ε−1 and |p|, thus
polynomial in |p| for sufficiently large p.

Qed

Proof of Theorem 2 The following Probabilistic Poly(|p|) Time Algoriihm finds indexg(y) for any y ∈ Z∗
p

.

Set n = trials(ε, 1
2|p| ) and define IS = {gz mod p|x ∈ [1, p−1

n
]}.

Step 0. (Initialization)
i:=l

Step 1. (guess that y ∈ [i p−1
k

, (i + 1)
p−1

k
] and map y into IS)

w := yg−i
p−1

k mod p

Step 2. (find the index of w)
Apply the algorithm in Lemma 3 to find the index of w. index(w) := the index
of w.

Step 3. (check whether the index of y has been found)
candidate := index(w) + i

p−1
k

: if gcandidate mod p = y then HALT: candidate
is the index of y in base g. Else continue.

Step 4. (keep on guessing)
i := i + l. If i > k then i := l and go to Step 0; else go to Step 1.

Qed

4 A Concrete Implementation of the General Model
We merely sketch the proofs that will appear in the final paper.

4.1 First Implementation
This implementation is more efficient than the second one. It assumes the first
intractability assumption for the DLP and the constructability of the hard primes
(suggested, but not implied, by the De La Vallee Poussin Theorem, which is an
asymptotic result).

Let n ∈ N. Let S2n, be the set of 2n-bit long integers i such that the first n bits of i

constitute a hard prime p, and the next n bits a generator g for Z∗
p

. For i ∈ S2n, i =p g,
set Di = Z∗

p
and, for x an n-bit integer, set Bi(x) = Bp ,g(x). Then the set of predicates

B = Bi|i ∈ S2n is an accessible, input hard set of predicates.
B is accessible : Flip 3n coins. An element (i , x) ∈ I2n has been obtained if
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1. The first n bits constitute a hard prime p. This will happen in n2 expected
trials (Prime theorem & De La Vallee Poussin Theorem). Moreover, success
can be easily detected by means of fast primality tests.

2. The next n bits constitute a generator for Z∗
p

. This will happen in a low ex-
pected number of trials as the fraction of generators for Z∗

p
is asymptotically

greater than 1
6 log log(p)

. Also notice that as we easily have the complete fac-
torization of p-l, it is easy to check whether g is a generator for Z∗

p
.

3. The last n bits constitute an integer x ∈ [l , p − 1].

If the 3n flips have not generated a complete element of I2n, flip 3n coins again.
B is input hard : If there were a circuit C, of size less than Q(n) for some fixed

polynomial Q, that evaluates correctly Bp ,g(x) for a fraction of at least 1
2 + ε of the

n-bit inputs p, g, and x, then a counting argument shows that there would be a
fraction of pairs (p,g) for which the circuit guesses Bp ,g(x) correctly for at least a
fraction 1

2 + ε of the x ∈ Z∗
p

. By the results in the previous section, using C as an
oracle, there would be a Probabilistic Poly(n) Time Algorithm, for solving the DLP
for a fixed fraction of the hard primes of n bits. As the size of C is bounded by Q(n)
and any Probabilistic Poly Algorithm is easily seen to admit small circuits, the first
intractability assumption for the DLP has been violated.

B satisfies the hypothesis of Theorem 1 : Define fi(x) = gx mod p.

4.2 Second Implementation
Assume that we can pick a prime p with uniform probability, among those of a given
size, so that the factorization of p-1 is known. Then, set S2n equal to the set of 2n bit
integers i such that the first n bits of i constitute a prime p and the second n bits a
generator g for Z∗

p
. Set Di = Z∗

p
. fi(x) = gx mod p. Then as in the previous section,

{Bi : x → Bp ,g(x)|i ∈ S2n} is an accessible set of predicates satisfying hypothesis (1),
(2) and (3) of Theorem 1. However we do not know how to pick at random a prime
p so that the factorization of p-l is known. So, after having picked a prime p we
would have trouble picking a generator for Z∗

p
, as no way is known of proving

that x ∈ Z∗
p

is a generator without having the factorization of p-l. However there
is an “abundance” of generators in Z∗

p
: one out of 6 log log (p) elements is a

generator. Thus having picked at random k = log(p) elements x1, . . . , Xk in Z∗
p

,
with probability greater than any fixed ε one of the xi’s will be a generator. Consider
each xi to be a generator for Z∗

p
and implement k Pseudo Random Bit Generators

G1, . . . Gk as above. We now make use of the “exclusive or” function in a way similar
to Yao [ ]. Construct the following new Pseudo Random Bit Generator G: generate
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the ith bit by outputting the ith bit for G1, G2, . . . , Gk and take their “exclusive or”.
It is easy to see that, if at least one of the Gi’s is Cryptographically Strong so is G.

Acknowledgements
We are proud to thank many friends.

We are grateful to Shafi Goldwasser for numerous valuable discussions, to
Richard Karp for his precious gift of setting the context and making vague ideas
precise, and to Andy Yao for having brought to light hidden potentials.

This work has benefitted highly from the insightful comments of Erich Bach.
Lenore Blum, Faith Fich, Donald Johnson, Donald Knuth, Leonid Levin, David
Lichtenstein, Mike Luby, Gary Miller, Joan Plumstead, Ron Rivest, Jeff Shallit, Mike
Sipser, Po Tong, Umesh Vazirani, Vijay Vazirani and Frances Yao.

References
[1] L. Adleman, “A Subexponential Algorithm for the Discrete Logarithm Problem with

Applications to Cryptography,” 20th FOCS (1979), 55-60.

[2] L. Blum., M. Blum, and M. Shub, “A Simple Secure Pseudo-Random Number Generator,”
in Proc. CRYPTO-82, ed. Allen Gersho.

[3] S. Goldwasser and S. Micali, “Probabilistic Encryption and How to Play Mental Poker
Keeping Secret all Partial Information,” 14th STOC (1982). 365-377.

[4] D. Knuth, “The Art of Computer Programming: Seminumerical Algorithms,” Vol. 2,
Addison-Wesley Pub. Co., 1981.

[5] J. Plumstead, "Inferring a Sequence Generated by a Linear Congruence,” submitted to
FOCS 1982.

[6] S. Pohlig and M. Hellman, “An Improved Algorithm for Computing Logarithms over
GF(p) and Its Cryptographic Significance,” IEEE Trans. on Info. Theory, Vol. It-24,
No. 1, (1978), 106-110.

[7] R. Rivest, A. Shamir, and L. Adleman, “On Digital Signatures and Public Key
Cryptosystems,” Commun. ACM, vol. 21 (Feb. 1978), 120-126.

[8] A. Shamir, “On the Generation of Cryptographically Strong Pseudo-random Sequences,”
ICALP 1981.

[9] M. Sipser, “Three Approaches to a Definition of Finite State Randomness,” unpublished
manuscript.

[10] A. Yao, “A Relation Between Random Polynomial Time and Deterministic Polynomial
Time,” submitted to FOCS 1982.



10How to Construct
Random Functions
This chapter reproduces the contents of the paper “How to Construct Random
Functions,” which appeared in the proceedings of the 25th Annual Symposium on
Foundations of Computer Science, pp. 464–479, 1984.

This influential work of Oded Goldreich, Shafi Goldwasser, and Silvio Micali ex-
tended the theory of pseudorandomness to functions, and showed how to construct
pseudorandom functions based on any pseudorandom generator. The notion of a
pseudorandom function found numerous applications in cryptography, starting
from the construction of message authentication codes and private-key encryption
schemes that withstand chosen ciphertext attacks.



How to Construct Random Functions
(Extended Abstract)
Oded Coldreich (Massachusetts Institute of Technology),
Shafi Goldwasser (Massachusetts Institute of Technology),
Silvio Micali (Massachusetts Institute of Technology)

Abstract
This paper develops a constructive theory of randomness for functions based on
computational complexity.

We present a deterministic polynomial-time algorithm that transforms pairs
(g , r), where g is any one-way (in a very weak sense) function and r is a random k-
bit string, to polynomial-time computable functions fr : {1, . . . , 2k} → {1, . . . , 2k}.
These ff ’s cannot be distinguished from random functions by any probabilistic
polynomial time algorithm that asks and receives the value of a function at argu-
ments of its choice.

The result has applications in cryptography, random constructions and com-
plexity theory.

1 Introduction
Measuring randomness has attracted much attention in the second half of this
century. However most of the previous work focused on measuring the randomness
of strings.

The first author was supported in part by a Weizmann Postdoctoral fellowship. The second author
was supported in part by the International Business Machines Corporation under the IBM/MIT
Joint Research Program, Faculty Development Award agreement dated August 9, 1983.
0272-5428/84/0000/0464$01.00 © 1984 IEEE
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In Kolmogorov Complexity ([Kol], [Sol], [ZL], [Ch], [L2], [L3], [L4], [ML], [Sch]
and [Ga]) the measure of randomness of a string is the length of its shortest de-
scription: randomness is an inherent property of individual strings. This approach
is nonconstructive and far from being applicable to pseudo-random string genera-
tion. (Interesting generalizations of Kolmogorov Complexity have been considered
in [A], [Si], [HI] and [W].)

In [BM] and [Y] (following a result of [Sh]) a constructive approach to the ran-
domness of strings is introduced based on computational complexity. In this ap-
proach a set of strings is random if elements randomly selected in it retain, with
respect to polynomial-time computation, properties of elements randomly selected
in the set of all strings.

In this paper we further develop this latter approach by introducing a construc-
tive theory of randomness for functions. In particular,

1. We introduce a computational complexity measure of the randomness of
functions.

(Loosely speaking, we call a function random if no polynomial time al-
gorithm, asking for the values of the function at arguments of its choice,
can distinguish a computation during which it receives the true values of the
function, from a computation during which it receives the outcome of inde-
pendent coin flips. Notice the analogy with the Turing Test for intelligence.)

2. Assuming the existence of one-way functions, we present an algorithm for
constructing functions that achieve maximum randomness with respect to
the above measure.

Our result solves, and was motivated by, an open problem of [BBS].

Organization of the Paper
In the rest of this section we informally discuss the notion of a poly-random collec-
tion: a set of easy to select and to evaluate functions that achieve randomness with
respect to polynomial-time computation. We compare this new notion with the
previously considered notions of one-way functions and Cryptographically Strong
Pseudo-Random Bit generators (CSPRB generators). In section 2 we briefly recall
the basic definitions and results about CSPRB generators and the Blum Blum
Shub open problem. In section 3 we formally define poly-random collections and
show how to construct a poly-random collection given any one-way function. In
section 4 we characterize poly-random collections as extremely hard prediction
problems. In section 5 we briefly discuss various applications of poly-random col-
lections. We conclude this paper with some reflections on the internal coherence
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of polynomial-randomness: the approach that constructively bases randomness on
computational complexity.

1.1 Poly-Random Collections
Let Ik denote the set of all k-bit strings. Consider the set, Hk, of all functions from
Ik into Ik. Note that the cardinality of Hk is 2k2k

. Thus to specify a function in Hk

we would need k2k bits: an impractical task even for a moderately large k. Even
more, assume that one randomly selects subsets H ′

k
⊆ Hk of cardinality 2k so that

each function in Hk has a unique k-bit index; then there is no polynomial time
algorithm that, given the index of a function f ∈ H ′

k
and x ∈ Ik, will evaluate f (x).

Our goal is to make “random functions” accessible for applications. I.e. to
construct functions that can be easily specified and evaluated and yet cannot be
distinguished from functions chosen at random in Hk. Thus we restrict ourselves
to choose functions from a subset Fk ⊆ Hk where the collection F = (Fk) has the
following properties:

1. Indexing: Each function in Fk has a unique k-bit index associated with it.
(Thus picking randomly a function f ∈ Fk is easy.)

2. Poly-time Evaluation: There exists a polynomial algorithm that given as input
an index of a function f ∈ Fk and an argument x, computes f (x).

3. Pseudo-Randomness: No probabilistic algorithm that runs in time polyno-
mial in k can distinguish the functions in Fk from the functions in Hk. (see
section 3.1 for a precise definition).

Such a collection of functions F will be called a poly-random collection. Loosely
speaking, despite the fact that the functions in F are easy to select and easy to
evaluate, they will exhibit, to an examiner with polynomially bounded resources,
all the properties of randomly selected functions.

The above definition is highly constructive. We transform any one-to-one one-
way function (formally defined in section 2.3) to a poly-random collection. The
construction is in two steps: first, we use a construction due to Yao [Y] to transform
a one-to-one one-way function into a high quality pseudo-random bit generator,
called a CSPRB-generator; next, we use any CSPRB-generator to construct a poly-
random collection.

1.2 Comparison with One-way Functions
We construct random functions from any one-way permutation. This confirms the
great potential present in the notion of a one-way computation. However, this
power needs to be carefully brought out.
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Although the inverse of a one-way function is somewhat unpredictable, this does
not mean that it is random. In fact, all permutations that are believed to be one-way
satisfy various algebraic identities (e.g., the RSA function [RSA] is multiplicative,
thus given its inverse on x and y, one can easily infer its inverse at x . y. This clearly
does not happen with truly random functions, and in fact will not happen with a
function randomly selected from a poly-random collection {Fk}. In particular, our
construction hides all the identities of the one-way function upon which it is based
from any observer with polynomially bounded resources:

Choose and fix f ∈ Fk. Let a probabilistic poly(k) time algorithm A ask for the
value of f on polynomially many (in k) arguments of its choice: y1y2, . . . , yki .
Then let A choose an argument x (x = yi, for all i’s) as an exam. If A is now given
two numbers in random order, one of which is f (x) and the other a random k-bit
number, it cannot guess which of the two is f (x) with probability greater than
1/2.

Not only that f (x) cannot be computed from the values of f at other arguments,
but it cannot even be recognized when given! The above test is a complete charac-
terization of poly-random collections (see section 4).

1.3 Comparison with CSPRB Generators
CSPRB generators are deterministic programs that stretch a (random) k-bit long
seed to a kt -bit long (pseudo-random) sequence that is indistinguishable from a
kt -bit long truly random sequence for some constant t > 0 (see section 2.1). Their
existence has interesting implications with respect to probabilistic computation.

Performing a probabilistic polynomial-time computation that requires kt ran-
dom bits is trivial if we are willing to flip kt coins. Interestingly, CSPRB generators
guarantee the same result of the computation by flipping only k coins.

We now address the problem of efficiently simulating more complex probabilis-
tic computations: computations with a random oracle.

A random oracle (see Bennet and Gill [BG]) is a special case of a random func-
tion: it associates the result of a single coin toss to each string. Notice that com-
puting with a random oracle has advantages over computing with a coin. The bit
associated with each string x, not only is random, but does not change in time.
That is, if one asks twice for the bit associated with string x, then he gets the same
(random) result. The advantages of computing with a random oracle are clarified
by all the applications listed in section 5.

It is trivial to simulate a random oracle that is queried on kt strings if one is
willing to use O(kt+l) bits of storage:



246 Chapter 10 How to Construct Random Functions

For each query q, generate a random (or pseudo-random) bit b and store some
encoding of the pair (q , b) so to be able to recognize whether a query occurred
before and give the same answer.

Clearly, if the queries cannot be compressed (as for random queries) then this
simple simulation would require at least kt+1 bits of storage. An interesting feature
of poly-random collections is that they guarantee the same result of any computa-
tion with a random oracle for k-bit strings (by using only k coin flips and) by storing
only k bits! This can be done by randomly selecting and storing a k-bit index spec-
ifying a function in a poly-random collection.

Poly-Random Collections Allow to Share Randomness
in a Distributed Environment
An additional advantage of poly-random collections is that they enable many parties
to efficiently share a random function f in a distributed environment. By sharing f

we mean that if f is evaluated at different times by different parties on the same
argument x, the same value f (x) will be obtained. Such sharing is efficient as it can
be achieved by only flipping k coins, using k bits of storage (per party) and without
exchanging any messages at all. Again, each party (processor) will simply have in
memory a common, randomly selected k-bit string specifying a function f in a
poly-random collection.

1.4 Conventions
All definitions and results in this paper are stated with respect to the Turing Ma-
chine computational model. The results can also be stated and proved in terms of
circuit complexity.

Also, all definitions and results are stated with respect to the uniform probability
distribution. The results can be stated and proved with respect to more general
probability distributions.

The parameter k, when given as input to any algorithm discussed in this paper,
will be presented in unary.

Let A be a multiset with distinct elements al , . . . , an occurring with multiplici-
ties m1, . . . , mn, respectively. Then |A| =∑n

i=1 mi. By writing a ∈R A we mean that
the element a has been randomly selected from the multiset A. I.e. an element
occurring in A with multiplicity m is chosen with probabilility m

|A| .

2 CSPRB Generators
In this section we recall some of the basic definitions and results concerning
Cryptographically Strong Pseudo-Random Bit generators (CSPRB generator).
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2.1 The Notion of a CSPRB Generator
Improving a result of Shamir [Sh], Blum and Micali [BM] introduced the notion of
a Cryptographically Strong Pseudo-Random Bit generator (CSPRB generator). Let
P be a polynomial. A CSPRB generator, G, is a deterministic poly(k)-time program
that stretches a k-bit long randomly selected seed into a P(k)-bit long sequence
(called a CSPRB sequence) that passes all next-bit-tests:

Let P be a polynomial, Sk is a multiset consisting of P(k)-bit sequences and
S =∪kSk. A next-bit-test for S is a probabilistic polynomial-time algorithm T that
on input k and the first i bits in a srting s ∈R Sk outputs a bit b. Let Pk denote the
probability that b equals the i + 1st bit of s.

We say that S passes the next-bit-test T if for all ε > O, for all sufficiently large k:
|pk − 1

2 | < ε.

A more general definition of string randomness has been suggested by Yao [Y] and
is formally stated below.

2.2 Polynomial-Time Statistical Tests for Strings
Let P and S = ∪kSk be as above. A polynomial time statistical test for strings is a
probabilistic polynomial-time algorithm T that, on input a P(k)-bit string, outputs
only 0 or 1.

The multiset S passes the test T if for any polynomial Q, for all sufficiently large k:

|pS
k
− pR

k
| < 1

Q(k)

where pS
k

denotes the probability that T outputs 1 on s ∈R Sk and pR
k

the proba-
bility that T outputs 1 on a randomly selected P(k)-long bit sequence.

Yao [Y] shows that by substituting ε by 1
poly(k)

in the definition of the next-bit-test
the following theorem can be proved.

Theorem 1 (Yao [Y]): A multiset S = ∪kSk, of bit-sequences passes the next-bit-test if and only
if it passes all polynomial-time statistical tests for strings.

Thus, CSPRB sequences pass all polynomial-time statistical tests for strings.
Theorem 4 generalizes the above theorem. The reader can derive a proof of Theo-
rem 1 from the proof of Theorem 4.

2.3 Implementations of CSPRB Generators
Blum and MiCali [BM] presented an algorithmic scheme for constructing CSPRB
generators based on a general complexity theoretic assumption (a sketch can be
found in the Appendix). They also presented the first instance of their scheme based
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on a specific assumption: the intractability assumption of the discrete logarithm
problem (DLP). Namely, if the next bit in the sequences produced by their generator
could be predicted with probability greater than 1

2 + ε, then there would exist a
poly(k , ε−1) algorithm for solving the DLP for a fraction ε of all primes of length k.

Other instances of CSPRB generators based on various number theoretic as-
sumptions appeared in [Y] [BBS] [GMT] [BCS] [VV1] [LW] [ACGS].

More generally, Yao [Y] showed how to obtain CSPRB generators if any (weak)
one-way permutation is given. Let us be more formal.

Definition (Yao) Let Dk ⊆ Ik. Let fk : Dk → Dk be a sequence of permutations and let the
function f be defined as follows: f (x) = fk(x) if X ∈ Dk. f is said to be a one-to-one
one-way function if

1. f is polynomial-time computable.

2. f is (moderately) hard to invert: there exists a polynomial Q such that for
every polynomial-time algorithm A and for all sufficiently large k, A(x) =
f −1

k (x) for at least a fraction 1
Q(k)

of the x ∈ Dk.

3. There exists a probabilistic polynomial-time algorithm that, on input k,
select an X ∈ Dk with uniform probability distribution.

Theorem 2 (Yao [Y]) Given a weak one-to-one one-way function, it is possible to construct
CSPRB generators.

A sketch of the construction used by Yao is given in the Appendix.
Levin [L5] pointed out that Theorem 2 still holds with respect to “locally one-

way” functions, a notion weaker than the above defined notion of a one-way permu-
tation. Moreover he exhibits a function that is locally one-way if any locally one-way
function exists. An informal sketch of Levin’s definition is given in the Appendix.

2.4 CSPRB Generators with Direct Access
Blum, Blum and Shub [BBS] present an interesting CSPRB generator whose se-
quences pass all polynomial time statistical tests if and only if squaring modulo a
Blum-integer1 is a weak one-to-one one-way function.2

1. A Blum integer is an integer of the form p1p2 where pl and p2 are distinct primes both congruent
to 3 mod 4.

2. This generator has been proved [BBS] to be cryptographically strong based on the intractability
of deciding Quadratic Residuosity modulo a Blum-integer. Recently, it has been pointed out [VV2]
that the results in [ACGS] imply that this generator is cryptographically strong based on a weaker
assumption: the intractability of factoring Blum-integers.



Chapter 10 How to Construct Random Functions 249

Notice that, even though a CSPRB sequence generated with a k-bit long seed
consists of polynomially many (in k) bits, a CSPRB generator and a seed s define
an infinite (ultimately periodic) bit-sequence b0, b1, . . . An interesting feature first
present in Blum Blum Shub’s generator is that knowledge of the seed and of
the factorization of the modulus allows direct access to each of the first 2k bits.
I.e. if log i < k, the ith bit in the string, bi , can be computed in poly(k) time.
This is due to the special weak one-way permutation on which the security of
their generator is based. However, this directly-accessible exponentially-long bit-
string may not appear “random.” Blum, Blum and Shub only prove that any single
polynomially long interval of consecutive bits in the string passes all polynomial
time statistical tests for strings. Indeed, it may be the case that, given b1, . . . , bk

and b2
√

k+1, . . . , b2
√

k+k
it is easy to compute any other bit in the string.

The Blum Blum Shub open problem consists of whether direct access to expo-
nentially far away bits in their pseudo-random pad is a “randomness preserving”
operation. This problem has also been discussed by Angluin and Lichtenstein [AL].

Notice that there is a natural one-to-one correspondence between “randomness
preserving” directly-accessible k . 2k-bit long strings and random functions from
Ik to Ik. By constructing a poly-random collection F = {Fk}, we virtually construct
k . 2k-bit strings {sf = f (1)f (2) . . . f (2k)}f Fk

which can be directly accessed in a
“randomness preserving” manner. This practically solves the Blum Blum Shub
problem in a strong sense since we construct poly-random collections not only if
squaring modulo a Blum-integer is a one-way permutation, but given any one-way
permutation.

3 Constructing Poly-Random Collections
In this section we show how to construct functions that pass all “polynomially
bounded” statistical tests.

A collection of functions, F , is a collection {Fk}, such that for all k and all f ∈ Fk,
f : Ik → Ik.

3.1 Polynomial Time Statistical Tests for Functions
A polynomial time statistical test for functions is a probabilistic polynomial time
algorithm T that, given k as input and access to an oracle Of for a function f : Ik →
Ik, outputs either 0 or 1. Algorithm T can query the oracle Of only by writing on a
special query-tape some y ∈ Ik and will read the oracle answer, f (y), on a separate
answer-tape. As usual, Of prints its answer in one step.
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Let F = {Fk} be a collection of functions. We say that F passes the test T if for
any polynomial Q, for all sufficiently large k:

| pF
k
− pH

k
|< 1

Q(k)

where pF
k

denotes the probability that T outputs 1 on input k and access to an oracle
for a function f ∈R Fk. pH

k
is the probability that T outputs 1 when given the input

k and access to an oracle Of for a function f ∈R Hk (i.e. a random function).
The above definition can be interpreted as follows. A function f is “judged” to be

random depending on its input-output relation. The test T consists of two phases.
First it gathers information about f by getting f ’s values at arguments of its choice.
Then it outputs its “verdict”: 0 (if it “thinks” that f ∈R Fk) or 1 (if it “thinks” that
f ∈R Hk). If the collection F passes the test T , then the output of T given oracle 0f

gives no information on whether f ∈R Fk or f ∈R Hk. In either case T will output 1
with essentially the same probability.

Passing all polynomial-time statistical tests for functions is an extremely gen-
eral randomness criterion. This can be intuitively argued as follows. Should some
efficient algorithm A find any dependencies among the selected input-output pairs
of f ∈R Fk, it can be converted to a statistical test TA that will halt outputting 0 (i.e.
judging that f ∈R Fk) when detecting these dependencies. Since such dependen-
cies cannot be found when f ∈R Hk, the collection F = {Fk} will not pass the test
TA.

We now exhibit a collection F that passes all polynomial time statistical tests,
under the assumption that there exisis a weak one-to-one one-way function.

3.2 The Construction of F
We construct poly-random collections given any CSPRB generator G that stretches
a seed x ∈ Ik into a 2k-bit long sequence, G(x) = bx

1 . . . bx
2k. By Theorem 2, such

generator G can be constructed given any one-way permutation.
Let Sk be the multiset of the 2k-bit sequences output by G on seeds of’ length k.

Recall that S = ∪kSk passes all polynomial-time statistical tests for strings.
Let x ∈ Ik. By G0(x) we denote the first k bits output by G on input x. I.e. G0(x) =

bx
1 . . . bx

k . By G1(x) we denote the next k bits output by G. I.e. G1(x) = bx
k+1 . . . bx

2k. Let
a = a1a2 . . . at be a binary string. We define Ga1a2. . .at

(x) = Gat
(. . . (Ga2

(Ga1
(x))) . . .).

Let x ∈ Ik. The function fx : Ik → Ik is defined as follows:

For y = y1y2 . . . yk , fx(y) = Gy1y2. . .yk
(x).

Set Fk = {fx}x∈Ik
and F = {Fk}.

Note that a function in Fk needs not be one-to-one.
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The reader may find it useful to picture a function fx : Ik → Ik as a full binary
tree of depth k with k-bit strings stored in the nodes and edges labelled 0 or 1. The
k-bit string x will be stored in the root. If a k-bit string s is stored in an internal
node, v, then G0(s) is stored in v’s left-son, vI , and G1(s) is stored in v’s right-son,
vr . The edge (v , vI ) is labelled 0 and the edge (v , vr) is labelled 1. The string fx(y)

is then stored in the leaf reachable from the root following the edge-path labelled
y. See figure 1.

Efficiency Consideration
Let Tk denote the (worst case) number of steps used in the computation of the
CSPRB sequence G(x) on input x ∈ Ik. Clearly, computing fx(y) on inputs x and
y can be done in at most k . Tk steps. Thus, the efficiency of the evaluation of a
function in our poly-random collection is reduced to the efficiency of the underlying
CSPRB generator. The latter question is referred to in the Appendix.

3.3 The Poly-Randomness of F
Note that the collection F just defined satisfies conditions 1 (indexing) and 2
(poly-time evaluation) of a poly-random collection. The main theorem shows that
condition 3 (pseudo-randomness) is also satisfied. We prove the main theorem
using a (new) variant of Yao’s statistical test.

Definition (population test) Let P and P1 be polynomials and S =∪kSk be a set of sequences,
where Sk consists of P(k)-bit sequences. A polynomial-time population test for strings
is a probabilistic polynomial-time algorithm T that, on input P1(k) strings each
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P(k)-bit long, outputs either 0 or 1. We say that S passes the test T if for any polyno-
mial Q, for all sufficiently large k:

| pS
k
− pR

k
|< 1

Q(k)

where pS
k denotes the probability that T outputs 1 on P1(k) randomly selected

strings in Sk and pR
k

denotes the probability that T outputs 1 on P1(k) random bit-
strings each of length P(k).

Lemma A set of bit-sequences S = ∪kSk passes all polynomial-time statistical tests if and
only if it passes all polynomial-time population tests.

The proof of the Lemma can be easily obtained by techniques similar to the ones
used for proving Theorem 4.

Main Theorem (Theorem 3) The collection of functions F passes all polynomial time statistical
tests for functions.

Proof Let T be a polynomial time test for functions. Let pF
k
(pH

k
) be the probability that

T outputs 1 when given the input parameter k and access to an oracle Of for a
function f ∈R Fk(f ∈R Hk).

Assume, for contradiction, that for some polynomial Q and for infinitely many
k, |pF

k
− pH

k
| > 1

Q(k)
.

Let us consider computations of T in which, instead of an oracle Of , an algo-
rithm Ai answers T ’s queries. For 0 ≤ i ≤ k and for each computation of T with
oracle Ai, Ai is defined as follows.

Let y= y1y2 . . . yk be a query to Ai. Then Ai responds as follows:
If y is the first query with prefix y1 . . . yi, Ai selects a string r ∈ Ik at random,

stores the pair (y1 . . . yi , r), and answers Gyi+l . . .yk
(r).

Else, Ai retrieves the pair (y1 . . . yi , v) and answers Gyi+l
. . . yk(v).

(In terms of the tree representation of fx, Ai stores random k-bit strings in the
nodes of level i. The nodes of higher level will contain k-bit strings deterministically
computed as in the previous subsection based on the actual values in level i).

For 0 ≤ i ≤ k, pi
k is defined to be the probability that T outputs 1 when given k

as input and access to the oracle Ai.
Note that p0

k
= pF

k
and that pk

k = pH
k

.
We will reach a contradiction by exhibiting a polynomial-time population test

for strings, A, so that S will not pass A.
Let k be such that |p0

k
− pk

k| > 1
Q(k)

, without loss of generality let p0
k
− pk

k > 1
Q(k)

.

On input k, with probability greater than 1 − 1
8k.Q(k)

, A finds an i (0 ≤ i < k) such
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that pi
k − pi+1

k > 1
2k.Q(k)

. Algorithm A does so by running a polynomial-time Monte-
Carlo experiment using T as a subroutine.

Let now Rk be the set of all 2k-bit long strings and Sk be as in section 3.2.
Algorithm A gives k as input to algorithm T and answers T ’s oracle queries

consistently using the set Uk as follows. (Uk is either Rk or Sk).
Assume T writes y = y1 . . . yk on the oracle tape.
If y is the first query with prefix y1 . . . yi, A picks at random, in the set Uk,

u = u0u1(u0u1 is the concatenation of uo and u1, and |u0| = |u1| = k) . A stores the
pairs (y1 . . . yi0, uo) and (y1 . . . yi1, ui). A answers

Gyyi+2. . .yk
(u0) if yi+l = 0 and

Gyyi+2. . .yk
(u1) if yi+l = 1.

Else A retrieves the pair (y1 . . . yi+1, v) and answers Gyyi+2
. . . yk(ν) if i ≤ k − 2 and

ν if i = k − 1.
Note that, when Uk = Sk, A simulates the computation of T with oracle Ai.

When instead Uk = Rk, A simulates the computation of T with oracle Ai+l. Since
T ’s output differs, in a measurable way, on these two computations for infinitely
many k, letting A output the same bit that subroutine T does, we have reached a
contradiction.

3.4 Generalized Poly-Random Collections
Let P1 and P2 be polynomials. In some applications, we would like to have random
functions from Ip1(k) → Ip2(k) (e.g. in hashing we might want functions from I1000

into I10). We meet this need by constructing a generalized poly-random collection
{FP1,P2

k }. The modified construction can be simply described in terms of two dif-
ferent CSPRB generators: G as above and G′ mapping k random input bits to P2(k)

pseudo-random bits. For x ∈ Ik the function fx ∈ F
P1,P2
k is defined as follows: on

input y ∈ Ipl(k)fx(y) = G′(Gy(x)). By a proof similar to the one of the Main Theo-

rem one can prove that the collection {FP1,P2
k } possesses properties (l), (2) and (3)

of poly-random collections.

3.5 A Universal StatisticalTest
Our definition of a poly-random collection consists of passing all polynomial-
time statistical tests for functions. In fact it is enough to consider one universal
polynomial-time statistical test for functions (a collection will pass this universal
test if and only if it passes all tests). Essentially, this universal test will guess a
program of a statistical test and then execute it. Further details will be given in the
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full version of this paper. Similarly, universal tests exist also for all the other classes
of tests mentioned in this paper.

4 Prediction Problems and Poly-Random Collections
Physics may be viewed as a prediction problem. This problem may seem to be
tractable if

1. There is an a priori guarantee that the “laws of nature” are “simple” (the
functions one needs to predict can be computed in polynomial time once
some trapdoor information is given).

2. It is possible to conduct selected experiments (one is given temporary access
to an oracle for the function).

3. The goal is only to approximately predict the “laws of nature” (the function).

Note that the ability to perform selected experiments (query the function) is a much
more powerful tool than learning from given examples. The power of this tool is
hereafter demonstrated.

An Example Consider the set C of all integers product of two primes of equal length. No effi-
cient algorithm is known for factoring the integers n ∈ C: furthermore, the question
whether such an efficient algorithm exists constitutes one of the oldest computa-
tional problems. For n ∈ C ∩ Ik, we define the following functions fn : Ik → Ik as
follows: fn(x) = the smallest square root of x2 mod n if gcd(x , n) = 1, and 0 oth-
erwise. These functions are “simple,” i.e. are polynomial-time computable if the
trapdoor information (the factorization of n) is given. If the factorization of n is not
part of the input then these fn’s may be hard to compute: Rabin [Ra] proved that
factoring n ∈ C is probabilistic polynomial-time reducible to computing fn(y) on
input n and y. However, a simple extension of Rabin’s proof shows that (even when
the index n is not a part of the input), these “simple” functions can be computed
after being given temporary access to an oracle (On) which on query q returns the
value of the function at argument q (i.e. fn(q)). In fact, after asking the oracle a few
questions, n can be easily computed and factored.

One might therefore wonder whether for all “simple” functions f , temporary
access to an oracle for f may enable one to hereafter easily compute f . We answer
this question negatively in a strong sense, under the assumption that one-way per-
mutations exist. Given any one-way permutation g, we construct “simple” functions
f (g) that cannot be predicated (even in a weaker sense than discussed above).
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Remark The f (g)’s we construct cannot be weakly predicted after temporary access to an
oracle for them, even if the one-way permutation g at the base of the construction
can be easily computed after temporary access to an oracle for g.

Formal Setting
Let F be a collection of functions satisfying conditions 1 (indexing) and 2 (poly-time
evaluation) of a poly-random collection. Let A be a probabilistic polynomial-time
algorithm capable of oracle calls as in section 3.1. On input k and access to an
oracle Of for a function f ∈ Fk, algorithm A carries out a computation during
which it queries Of about x1, . . . , xj . Then, algorithm A outputs x ∈ Ik such that
x = x1, . . . , xj . This x will be called the chosen exam. At this point A is disconnected
from Oj , and is presented f (x) and y ∈R Ik in random order. A is asked to guess
which of the two is f (x).

Let Q be a polynomial. We say that A Q–Queries-and-Learns F if on input k the
probability that A guesses correctly which-is-which is greater than 1

2 + 1
Q(k)

.
We say that F cannot be polynomially-inferred if there exists no probabilistic

polynomial time algorithm A and polynomial Q such that A can Q–query-and-learn
F .

Note that polynomially-inferring the collection F is a much more easy task than
predicting f ∈R Fk in the sense discussed in the beginning of this section.

Theorem 4 F cannot be polynomially-inferred if and only if F passes all polynomial-time
statistical tests for functions.

Proof Assume, on one hand, that F can be polynomially-inferred. Let Q be a polynomial
and A be a probabilistic algorithm that Q–queries-and-learns F . Clearly, A cannot
Q–queries-and-learns H = {Hk}. Thus A can be used to construct a statistical test
TA which distinguishes F from H as follows:
On input k, TA initiates A with input k and answers A’s queries by forwarding them
to the oracle Of (f ∈R Fk or f ∈R Hk). When A asks to be examined on the exam x,
TA queries Of on x, picks randomly y ∈ Ik and returns y and f (x) to A in random
order. If A guess right the identity of f (x) then TA outputs 1; otherwise TA outputs
0. Note that the probability that TA outputs 1 is exactly 1

2 when (f ∈R H − k; while
it (the probability TA outputs 1) is greater then 1

2 + 1
Q(k)

when f ∈R Fk.
Assume, on the other hand, that F does not pass the statistical test T . Then there

exist a polynomial, Q, such that |pF
k
− pH

k
| > 1

Q(k)
, where pF

k
and pH

k
are defined, as

in section 3.1, relative to T . Let P be a polynomial. Without loss of generality, given
k as input, T always asks P(k) oracle queries and all queries are different. Without
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loss of generality assume that |pH
k

− pF
k
| > 1

Q(k)
. We will construct a probabilistic

polynomial time algorithm, AT , that 2 . P(k) . Q(k)–queries-and-learns F .
For f ∈ Fk, the pseudo-oracle Oi

f is formally defined as follows:

Let xj be the j -th query presented to Oi
f

.
If j ≤ i, then O1

f
answers with f (xj),

Else Oi
f

answers with a random k-bit string.

Define pi
k to be the probability that T outputs 1 when given access to the oracle

Oi
f . Here the probability is taken over all f ∈ Fk and all possible computations of

T . Note that p0
K
= pH

k
and p

P(k)
k = P F

k
.

On input k with probability 1 − 1
8P(k)Q(k)

, AT , finds an i (0 ≤ i < P (k)), such that

pi
k − pi+1

k > 1
2.P(k).Q(k)

by running a Monte-Carlo experiment.
AT uses T as follows: AT starts T on the same input k it receives. AT answers

the first i queries of T using the oracle Of . When T asks for its i + 1st query, xi+1,
AT outputs xi+1 as its (AT ’s) chosen exam. Upon receiving f (xi+1) and y where
y ∈R Ik, AT chooses randomly z ∈ {f (xi+1), y} and writes z on T ’s answer tape (i.e.
as the i + 1st oracle answer). AT answers all subsequent queries of T by randomly
selecting k-bit strings. If T outputs 1 then AT guesses that z ∈R Ik; otherwise then
AT guesses that z = f (xi+1).

5 Applications
In this section we briefly discuss some of the problems which can be solved using a
poly-random collection. Our solutions are the first which are proved secure under
the general assumption that one-way permutations exist. A detailed discussion
of these applications is presented in [CGM2]. Brassard [B] has pointed out that
application 5.2 could be possible if the BBS open problem had a positive solution.

5.1 Storageless Distribution of Secret Identification Numbers
Consider a distributed system with one or more servers and many users each hav-
ing a distinct name. The problem is to distribute, to each user, a secret user-
identification number (ID) such that the ID is verifiable by the servers but infeasible
to compute by any other user. An example of such a problem is assigning calling
card numbers to telephone customers.

Our solution uses the poly-random collection F = {Fk} in order to assign random
secret IDs to the users. First, the servers jointly pick a f ∈R Fk in secrecy, and each
server stores the k-bit index of f . (This is all the servers need to store!) Then, every
user X in the system is assigned as an ID f (X).
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Note that each server can verify whether a given number is the ID of Alice, by
computing f (Alice). However, it is infeasible for any set of users to compute the ID
of any user not in the set.

5.2 Message Authentication and Time-Stamping
Using poly-random collections it is possible, for the first time, to construct de-
terministic, memoryless, authentication schemes which are highly robust, as dis-
cussed in the following concrete setting.

Assume that all the employees of a large bank communicate through a public
network. As an adversary may be able to inject messages, the employees need to
authenticate the messages they sent to each other (e.g. “transfer sum S from ac-
count A to account B”). A solution may consist of appending to the message in
an authentication tag which is hard to compute by an adversary. In particular, we
propose the following. Let all employees have access to authentication machines
which compute a function fs in a poly-random collection. The tag associated with
a message m is fs(m). We can tradeoff security for the length of the tag. For exam-
ple, if one uses only the first 20 bits of fs(m) as an authentication tag, then the
chance that an adversary could successfully authenticate a message is about 1 in a
million.

To avoid playback of previously authenticated messages, it is common practice
to use time-stamps. Namely, authenticate m concatenated with date it was sent.
So far, time-stamping was only a heuristic as an adversary who sees the message
m authenticated with date D could conceivably authenticate m with another date
(say D + 1). Using our solution for message authentication, time-stamping makes
playback provably hard. This is the case as for a random function f (x) is totally
unrelated to f (x + 1), and therefore the same holds (with respect to polynomial-
time adversaries) for poly-random collections.

Another threat to the Bank’s security is the loyalty of its own employees. They
have the authenticating computer at their disposal and can use it to launch a chosen
message attack against the scheme, so that when they are fired they can forge
transactions. Our message authentication scheme remains secure even when the
employees are not trustworthy, if each message to be authenticated is automatically
time stamped by the computer. An employee who leaves the bank, after having
widely experimented with the machine, will not be able to authenticate even one
new message.

5.3 An Identify Friend or Foe System
The members of an exclusive society are well known for their brotherhood spirit.
Upon meeting each other, anywhere in the world, they extend hospitality, favors,
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advice, money etc. Naturely, they face the danger of imposters trying to take ad-
vantage of their generosity. Thus, upon meeting each other, they must execute a
protocol for establishing membership. As they meet in public places (busses, trains,
theatre), they must be careful not to yield information that can lead to future suc-
cessful impersonations. They go around carrying pocket computers on which they
may make calculations.

Clearly a password scheme will not suffice in this context, as the conversations
are public. An interactive identification scheme is needed where the ability to ask
questions does not enable future successful impersonations. Note that that the
questions that A may ask member B, must be picked from an exponential range to
prevent an active imposter from asking all possible questions, receiving all possible
answers and thereafter successfully impersonating as a member (or to prevent a
passive imposter from having a non-negligible probability of being asked a question
that he overheard the answer to).

Using our poly-random collection, we can fully solve this problem. Let the
president of the society choose a k-bit random string s, specifying a function fs

in a poly-random collection. Each member receives a computer which calculates
fs. When member A meets B, he asks z? where z ∈R Ik. Only if B answers fs(z),
will member A be convinced that B is a member. In addition, if the computers that
calculate fs can be manufactured so that they cannot be duplicated, then losing
a computer does not compromise the security of the entire scheme; it just allows
one non-member to enjoy the privileges of the society.

Note that using any of the “known” one-way functions in the role of fs may not
work here, since ability to ask questions may compromise the security of the entire
society as for the case of Rabin’s function (see section 4).

5.4 Dynamic Hashing
Poly-random collections from long bit-strings to short bit-strings constitute very
good hash functions. Note that such hash functions have advantages, with respect
to polynomial-time computation, over the Universal Hashing scheme suggested
by Carter and Wegman [CW]. In their scheme the hash functions perform well
with respect to a fixed a priori probability distribution for the keys. Our scheme
performs well even if an adversary does not fix his key distribution a priori, but can
dynamically change the key distribution during the hashing process upon seeing
the hash function values on previous keys.

Such a scheme may be useful in applications where accessing memory is more
expensive than evaluating the hash functions.
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5.5 Speeding-up CSPRB Generation
Assume that G is an “inherently-sequential” CSPRB generator. That is, on input a
k-bit seed, computing the i-th bit in the output sequence of G takes time i . T (k).
Assume that our application (see example below) requires to compute the bits in
the poly(k)-bit long sequence output by G in arbitrary order, and that only O(k)

bits of storage are available. Then it would be desirable to access the bits in the
pseudo-random sequence “directly” rather than “sequentially.”

Using G to construct a function in a poly-random collection, we effectively
construct an exponentially (in k) long pad each bit of which can be accessed in
time k . 2k . T (k).

Example Protecting a data base. Suppose that one would like to store a huge data base
on a public computer while maintaining the information contained in it private.
To achieve this one may encrypt each of the records of the data base, place the
encrypted records on the public computer and store only a relatively small secret
key on his home computer. Suppose that encryption has been done by using the
sequence output by a CSPRB generator as a one-time pad. In this case the private key
consists of the input seed to the generator. To retrieve the information on a record
one has to access the segment of the pseudo-random pad used for encrypting it.

6 Concluding Remarks

The Notion of Polynomial Pseudo-Randomness
A CSPRB generator can be viewed as a tool for simulating a source of truly ran-
dom coin tosses. Consider the following source of randomness: a probabilistic
polynoinial-time Turing Machine (TM) that, on input the security parameter k,
outputs polynomially many bits. Using a CSPBR generator, one can construct a
probabilistic polynomial-time TM that, on input k, simulates the source using only
k internal coin tosses. The simulation is perfect with respect to all polynomially
bounded observers.

Let its now consider interactive sources. An Interactive Source is an interactive,
probabilistic, polynomial-time TM which answers queries presented to it by an
inspection machine (another interactive, probabilistic, polynomial-time TM). The
interaction consists of a sequence of interleaved queries and answers. In this ex-
tended abstract, we considered a special case of interaction and showed how such
interactive sources can be perfectly simulated by a poly-random collection, using
only k internal coin tosses and kC bits of storage (for some fixed C). We believe that
this case captures the notion of polynomial pseudo-randomness.
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A Tool for Cryptographic Protocol Design
As shown in the applications mentioned in section 5.1, 5.2 and 5.3, the poly-random
collections are a powerful tool in cryptographic protocol design. The following
methodology for protocol design appears fruitful. First, design a protocol which
uses truly random functions, and prove it correct. Then, replace the truly random
functions by functions randomly selected from a poly-random collection. This
implementation will provably maintain all properties of the original protocol with
respect to polynomially bounded adversaries. Also note that if two independent
random functions are substituted by two functions randomly selected from a poly-
random collection, then the latter will be totally uncorrelated (as the former ones).
This provable independence is very useful in protocol design.

Recently, Luby and Rackoff [LR] used polyrandom collections to construct col-
lections of polyrandom permutations. This result leads to the construction of ideal
private key cryptosystems.
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Appendix
Sufficient Conditions for Constructing CSPRB Generators
Let Dk ⊆ Ik and Bk : Dk → {0, 1}. Let gk be a permutation over Dk. Let D = ∪kDk,
B = {Bk} and g = {gk}. Blum and Micali [BM] showed that CSPRB generators can
be constructed under the following conditions:

1. The Domain is accessible: there exists a probabilistic polynomial-time algo-
rithm that on input k, chooses x ∈ Dk with uniform probability distribution.
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2. There exists a polynomial-time algorithm that on input k and x ∈ Dk, com-
putes gk(x).

3. Let A be a probabilistic polynomial-time algorithm and Q be a polynomial.
Then for all sufficiently large k:

A(x) = Bk(x) for at least for a fraction 1
2 − 1

Q(k)
of the x ∈ Dk.

4. There exists a polynomial-time algorithm that on input k and x ∈ Dk, com-
putes Bk(gk(x)).

Note that the above conditions imply that g is a one-way permutation as defined
in section 2.3. Yao [Y] showed that the existence of a one-way permutation (over an
accessible domain) is a sufficient condition for constructing CSPRB generators.

A Sketch of Yao’s Construction
Yao’s construction [Y] can be viewed as a method to construct B and g as above,
when given any one-way permutation h = {hk}over the accessible domain E =∪kEk.
Recall that no polynomial algorithm can invert h without being mistaken on a 1

kc

fraction of the domain, for some constant c, when k is sufficiently large.

Set Dk to be the Cartesian product of k2q copies of Ek.

Set gk(x1x2 . . . xk2q) = hk(x1)hk(x2) . . . hk(xk2q), where xj ∈ Ek.

Set B
(i ,j)

k (x) to be the ith bit of h−1
k (x), where x ∈ Ek and

Bk(x1x2 . . . xk2q) =
k⊕

i=1

k2q−1⊕
j−1

B
(i ,j)

k (xk2q−1(i−1)+j )

Then ∪kDk, {gk}, and {Bk} defined above satisfy all 4 conditions of the Blum-Micali
scheme (a proof of this appears in [G]).

A Sketch of Levin’s Definition
A function (algorithm) A is (t , e)–one-way on an input x ∈ Ik if

1. There exists an i such that Ai(x) = x.

2. The computation of A on input x takes time at most t (k).

3. An optimal inverting algorithm (for A) requires at least time e(k) in order to
compute and verify x on input A(x). (The existence of an optimal inverting
algorithm for NP-search problems was pointed out in [L6].)
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A function (algorithm), A, is locally one-way if there exist a polynomial t and a
function e which grows faster than any polynomial such that A is (t , e)–one-way
on at least a 1

t (k)
fraction of the inputs in Ik.

Levin has pointed out a universal algorithm, u, (with k2 time bound) which is
locally one-way, unless no function is locally one-way. Furthermore, in case u is
locally one-way it is (tu, eu)–locally one-way, where tu(k) = k2 and eu grows faster
than any polynomial. Note that, u can be used in Yao’s construction (of a CSPRB
generator) instead of the given one-way permutation.

On the Running Time of the Known CSPRB Generators
The running time of CSPRB generators should be compared with respect to the
intractability assumption on which they are based. Basing a generator on any weak
one-way permutation, though very appealing from a theoretical point of view, seems
to have a practical drawback: slow running time (see Yao’s construction above).
It seems that in order to get fast generators, one would have to rely on stronger
assumptions (i.e. on the intractability of specific problems). Let us consider the
following two assumptions:

1. The Intractability Assumption for the Discrete Logarithm Problem (DLA): It is in-
feasible to compute discrete logarithms modulos all but a negligible fraction
of the primes. (For a precise formulation of DLA see [BM].)

2. The Intractabilily Assurnplion for the Inleger Factorization Problem (FA): It is
infeasible to factor all but a negligible fraction of the Blum Integers. (For a
precise formulation of FA see [GMT].)

The fastest CSPRB generator known under DLA is presented in [LW]. It produces
O(log k) bits of output at the cost of one modular exponentiation of k-bit integers.

The fastest CSPRB generators known under FA can be obtained by the results
in [ACGS]. In particular, O(log k) bits of output can be produced at the cost of one
modular multiplication of k-bit integers.
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11A Digital Signature
Scheme Secure
Against Adaptive
Chosen-Message Attacks
This chapter reproduces the contents of the paper “A ‘Paradoxical’ Solution to
the Signature Problem,” which appeared in the proceedings of the 25th Annual
Symposium on Foundations of Computer Science, pp. 441–448, 1984.

Assuming the intractability of factoring integers, this surprising (at the time)
work of Shafi Goldwasser, Silvio Micali, and Ronald Rivest provided a signature
scheme that is unforgeable under chosen-message attacks. Such a result was con-
sidered impossible at the time, because it was (falsely) believed that a “construc-
tive proof of unforgeability (under passive attacks)” implies a successful chosen-
message attack.
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Brief Abstract
We present a general signature scheme which uses any pair of trap-door per-

mutations (f0, f1) for which it is infeasible to find any x , y with f0(x) = f1(y). The
scheme possesses the novel property of being robust against an adaptive chosen
message attack: no adversary who first asks for and then receives signatures for
messages of his choice (which may depend on previous signatures seen) can later
forge the signature of even a single additional message.

For a specific instance of our general scheme, we prove that

1. forging signatures is provably equivalent to factoring, while

2. adaptive chosen message attacks are of no help to an “enemy” who wishes
to forge a signature.

Such a scheme is “paradoxical” since the above two properties were believed (and
even “proven” in the folklore) to be contradictory.

The new scheme is potentially practical: signing and verifying signatures are
reasonably fast, and signatures are not too long.
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Keywords: Cryptography, digital signatures, factoring, chosen message attacks,
authentication, claw-free pairs of functions, randomization.

I Introduction
The idea of a “digital signature” first appeared in Diffie and Hellman’s seminal
papers, “New Direction in Cryptography” [DH76]. They propose that a user A’s sig-
nature for a message M should be a value which depends on M and on information
held secret by A such that anyone can verify the validity of A’s signature (using infor-
mation published by A) but no one can forge A’s signature on any messages. They
also proposed a way of implementing signatures based on “trap-door functions”
(see section II.A).

While the notion of a digital signature is robust, useful, and even legal [LM78,
Ma79], a number of technical problems arise if they are implemented as suggested
using trap-door functions; these problems have been addressed in part elsewhere.
For example, [GMY83] showed how to handle arbitrary or sparse messages sets
and how to ensure that if an enemy sees previous signatures it does not help him
to forge new signatures (this is a so-called “non-adaptive chosen message attack”).
For further discussion see section IV.

One difficult problem with simple trap-door signature schemes is proving they
are secure agains adaptive chosen message attackes, where the enemy can request
signatures of messages which depend on previously obtained signatures.

We present a new digital signature scheme that is seemingly “paradoxical”, in
that we prove that forgery is equivalent to factoring, even if the enemy uses an
adaptive chosen message attack.

We can restate the paradox as follows:

. Any general technique for forging signatures can be used as a “black box”
in a construction that enables the enemy to factor one of the signer’s public
moduli (he has two in our scheme),

but

. The technique of “forging” signatures by getting the real signer to play the
role of the “black box” (i.e. getting the real signer to produce some desired
genuine signatures) does not help the enemy to factor either of the signer’s
moduli.

Resolving this paradox was previously believed to be impossible and contradictory
[Wi80, misled by Rivest].



268 Chapter 11 A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks

From a cryptographer’s viewpoint, the following points might be judged to be
even more significant than resolving the apparent paradox:

. What we prove to be difficult is forgery, and not merely obtaining the secret
trap-door information embedded in the signing algorithm (or obtaining an
efficient equivalent algorithm).

. Forgery is proven to be difficult for a “most general” enemy who can mount
an “adaptive chosen message attack”: an enemy who can use the real signer
as “an oracle” can not in time polynomial in the size of the public keys forge a
signature for any message whose signature was not obtained from the oracle.
In contrast to all previous published work on this problem, we prove the
scheme invulnerable against such an “adaptive” attack (where each message
whose signature is requested may depend on all the signatures previously
obtained from the oracle). We believe that such an “adaptive chosen message
attack” to be the most powerful attack possible for an enemy who is restricted
during his attach to using the signature scheme in a natural manner.

. The properties we prove about the new signature scheme do not depend in
any way on the set of messages which can be signed or on any assumptions
about an input probability distribution on the message set.

. Our scheme can be generalized so that it can be based on “hard” problems
other than factoring whenever one can create (so-called “claw-free”) pairs of
trap-door permutations (f0, f1) such that the hard problem is equivalent to
find x , y with f0(x) = f1(y) (a “claw”—see Figure 1). The paradoxical nature
of the signature scheme remains.

The scheme as a “pumping” nature: using any family of pairs of trap-door
permutations we can produce a signature scheme that is invulnerable to a chosen
message attack, even if the trap-door permutations are vulnerable to a chosen
message attack when used to make a trap-door signature scheme (see section II).

Figure 1
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Fundamental ideas in the construction are the use of randomization, signing by
using two authentication steps (the first step authenticates a random value which
is used in the second step to authenticate the message), and the use of a tree-like
branching authentication structure to produce short signatures.

We note that because our signature scheme is randomized it is not of the simple
Diffie-Hellman “trap-door” type. (For example, a given message can have many
signatures.)

The rest of the paper is organized as follows. In section II we review the funda-
mental notions of what it means to “break” a signature scheme and what it means
to “attack” a signature scheme. In section III we review more closely the nature of
the “paradox”, and present the folklore “proof” that it is impossible to have a sig-
nature scheme for which forgery is provably equivalent to factoring and which is
simultaneously invulnerable to an adaptive chosen message attack. In section IV
we review previously proposed signature schemes. In section V we give the details
of our proposed signature scheme, and in section VI we prove that it has the desired
properties.

II Fundamental Notions
To properly characterize the results of this paper, it is helpful to answer the follow-
ing questions:

. What is a digital signature scheme?

. What kinds of attacks can the enemy mount against a digital signature
scheme?

. What is meant by “breaking” the signature scheme?

II.A What Is a Digital Signature Scheme?
A digital signature scheme contains the following components:

. A key generation algorithm κ(R , k) which any user A can use to produce a
pair (P k

A, Sk
A) of matching public and secret keys from inputs k and (random)

input R. (The secret key is sometimes called the trap-door information. The
parameter k is called the security parameter; a number of quantities (e.g. the
length of signatures, overall security) may depend on k.

. A message space M which is the set of messages to which the signature algo-
rithm may be applied. We assume here that the messages are represented in
some encoding suitable for the signature algorithm.
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. A signature algorithm which produces a signature σ(M , SA, R) for a message
M using the secret key SA and random input R. (This is the memoryless model;
it is also permissible to have the signature algorithm depend on the number
of messages previously signed and even how they were signed. The scheme
proposed in this paper is not memoryless.)

. A verification predicate τ(S , M , PA) which tests whether S is valid signature
for message M using the public key PA.

We note that there are other kinds of “signature” problems which are not dealt
with here; the most notable being the “contract signing problem” where two parties
wish to exchange their signatures to an agreed-up contract simultaneously (for
example, see [EGL82]).

II.A.1 Trap-Door Signatures
To create a signature scheme Diffie and Hellman proposed that A use a “trap-door
function” f : a function for which it is easy to evaluate f (x) for any argument x but
for which, given only f (x), it is computationally infeasible to find any y with f (y) =
f (x) without the secret “trap-door” information. Then A publishes f and anyone
can validate a signature by checking that f (signature) = message. Only A possesses
the “trap-door” information allowing her to invert f : f −1(message) = signature. A
trap-door permutation is a trap-door function which is one-to-one and onto; then
any message can be signed since the domain of f −1 is the entire message space.
We call any signature scheme that fits into this model (i.e. uses trap-door functions
and signs by apply f −1 to the message) a trap-door signature scheme.

We note that not all signature schemes are trap-door schemes, although most
of the proposals in the literature are of this type.

II.B Kinds of Attacks
The enemy may mount an attack knowing only the real signer’s public key—what
we call a direct attack. Of more concern, however, are what we call known or chosen
message attacks where the enemy is able to examine some signatures corresponding
to either known or chosen messages before his attempt to break the scheme. (These
are analogous to “chose ciphertext attacks” for encryption schemes.)

We identify the following four kinds of message attacks, which are characterized
by how the messages who signatures the enemy sees are constructed. (Here we let
A denote the user whose signature method is being attacked.)
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. Known Message Attack: The enemy sees signatures for a set of messages
M1, . . . , Mk. The messages are known to the enemy but are not in any way
chosen by him.

. Generic Chosen Message Attack: Here the enemy is allowed to obtain from A

valid signatures for a chosen list of message M1, . . . , Mk before he attempts
to break A’s signature scheme. These messages are chosen by the enemy, but
they are fixed and independent of A’s public key (for example the Mi’s may
be chosen at random). This attack is nonadaptive: the entire message list is
constructed before any signatures are seen. This attack is “generic” since
it does not depend on the A’s public key; the same attack is used against
everyone.

. Directed Chosen Message Attack: This is similar to the generic chosen mes-
sage attack, except that the list of messages to be signed may depend on A’s
public key. However, it is still nonadaptive as before. This attack is “directed”
against a particular user A.

. Adaptive Chosen Message Attack: This is more general yet: here the enemy
is also allowed to use A as an “oracle”; not only may he request from A

signatures of messages which depend on A’s public key but he may also
request signatures of messages which depend additionally on previously
obtained signatures.

We use the term “non-adaptive message attack” to mean a know, generic chosen,
or directed chosen message attack.

II.C What Does It Mean to “Break” a Signature Scheme?
One might say that the enemy has “broken” user A’s signature scheme if this attack
allows him to do any of the following with a non-negligible probability:

. A Total Break: Compute A’s secret trap-door information.

. Universal Forgery: Find an efficient signing algorithm functionally equiva-
lent to A’s signing algorithm (based on possibly different but equivalent
trap-door information).

. Selective Forgery: Forge a signature for a particular message chosen a priori
by the enemy.

. Existential Forgery: Forge a signature for at least one message. The enemy has
no control over the message whose signature he obtains, so it may be random
or nonsensical. Consequently this forgery may only be a minor nuisance to A.
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We say that a scheme is respectively totally breakable, universally forgeable, selec-
tively forgeable, or existentially forgeable if it is breakable in one of the above senses.
Note that is it more desirable to prove that a scheme is not even existentially forge-
able than to prove that it is not totally breakable. The above list is not exhaustive;
there may be other ways of “breaking” a signature scheme which fit in between
those listed, or are somehow different in characer.

Our notion of forgery means that the enemy must produce a signature for a
message whose signature he was not given by A during his attack; it is not forgery
to obtain from A a valid signature for a message and then claim that he has now
“forged” that signature, any more than photocopying a signed document is an
instance of forgery.

To say that the scheme is “broken”, we insist that it be broken with a non-
negligible probability—for at least some positive fraction ε of all possible public
keys.

We note here that the characteristics of the signature scheme may depend on its
message space in subtle ways. For example a scheme may be existentially forgeable
for a message space M1 but not existentially forgeable if restricted to a message
space which is a sparse subset of M1.

For examples of the notions, see section IV (where we review previously proposed
signature schemes).

III The Paradoxical Problem of Proving Signature Schemes Secure
The paradoxical nature of signature schemes which are provably secure against
chose message attacks made its first appearance in Rabin’s paper, “Digitalized
Signatures as Intractable as Factorization”. The signature scheme he proposed
there works as follows. User A publishes a number n which is the product of two
large primes. To sign a message M , A computes as M ’s signature one of M ’s square
roots modulo n. (When M is not a square modulo n, A modifies a few bits of M

to find a nearby square.) Here signing is essentially just extracting square roots
modulo n. Using the fact that extracting square roots modulo n enables one to factor
n, it follows that selective forgery in Rabin’s scheme is equivalent to factoring if the
enemy is restricted to at most a known message attack.

However, it is true (and was noticed by Rabin) that an enemy might totally break
the scheme using a directed chosen message attack. By asking A to sign a value x2

(mod n) (where x was picked at random), the enemy would obtain with probability
1
2 another square root y of x2 such that gcd(x + y , n) was a prime factor of n.
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Rabin suggested that one could overcome this problem by, for example, having
the signer concatenate a fairly long randomly chosen pad U to the message before
signing it. In this way the enemy can not force A to extract a square root of any
particular number.

However, the reader may now observe that the proof of the equivalence of
selective forgery to factoring no longer works for the modified scheme. That is,
being able to selectively forge no longer enables the enemy to directly extract square
roots and thus to factor. Of course, breaking this equivalence was really the whole
point of making the modification.

III.A The Paradox
We now “prove” that it is impossible to have a signature scheme for which it is
both true that forgery is provably equivalent to factoring, and yet the scheme is
invulnerable to adaptive chosen message attacks. (This is essentially the argument
given in [Wi80].) By forgery we mean in this section any of universal, selective, or
existential forgery—we assume that we are given a proof that forgery of the specified
type is equivalent to factoring.

Let us begin by considering this given proof. The main part of the proof pre-
sumably goes as follows: given a subroutine for forging signatures, a construction
method is specified for factoring. (The other part of the equivalence, showing that
factoring enables forgery, is usually easy, since factoring usually enables the enemy
to totally break the scheme.)

But it is trivial then to show that an adaptive chosen message attack enables
an enemy to totally break the scheme. The enemy merely executes the constructive
method given in the proof. Whenever he needs to execute the forgery subroutine, he
merely performs an “adaptive chosen message attack” step—getting the real user
to sign a message. In the end the unwary user has enabled the enemy to factor his
modulus! (If the proof relates to universal or selective forgery, we have to get real
user to sign a particular message. If the proof relates to existential forgery, we can
get him to sign anything at all.)

III.B Breaking the Paradox
How can one hope to get around the apparent contradictory natures of equivalence
to factoring and invulnerability to an adaptive chosen message attack?

A major idea in both the construction and the proof is the notion of “random
rooting”. Each user publishes not only his two composite moduli n1 and n2, but also
a “random root” R0. This value R0 is used when validating the user’s signatures. The
paradox is resolved using this notion as follows:
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. It is provably equivalent to factoring for an enemy to have a uniform algorithm
for forging; uniform in the sense that for each pair of composite numbers n1
and n2, if the enemy can randomly forge signatures for a significant fraction
of the possible random roots R0, then he can factor either n1 or n2.

. The above proof requires that the enemy be able to pick R0 himself—the
forgery subroutine is fed triples (n1, n2, R0) where the R0 part is chosen
by the enemy according the procedure specified in the constructive proof.
However, the user has picked a fixed R0 at random to put in his public file,
so an adaptive chosen message attack will not enable the enemy to “forge”
signatures corresponding to any other values of R0. Thus the constructive
method given in the proof can not be applied!

IV Previous Signature Schemes
In this section we list a number of previously proposed signature schemes and
briefly review some facts about their security.

Trap-Door Signatures Schemes [DH76]. Any trap-door signature scheme is existen-
tially forgeable with a direct attack since a valid (message, signature) pair can be
created by beginning with a random “signature” and applying the public verifi-
cation algorithm to obtain the corresponding message. A common heuristic for
handling this problem in practice is to require that the message space be sparse
(e.g. by having each message contain a reasonably long checksum); in this case the
proposed attack is not likely to result in a successful existential forgery.

Rivest-Shamir-Adleman [RSA78]. The RSA scheme is selectively forgeable using a
directed chosen message attack, since RSA is multiplicative: the signature of a
product is the product of the signatures. (This can be handled in practice as above
using a sparse message space.)

Merkle-Hellman [MH78]. Shamir showed the basic Merkle-Hallman “knapsack”
sehem to be universally forgeable using just a direct attack [Sh82]. (This scheme
was perhaps more an encryption scheme than a signature scheme, but had been
proposed for use as a signature scheme as well.)

Rabin [Ra79]. As noted earlier, Rabin’s signature scheme is totally breakable if the
enemy uses a directed chosen message attack. However, for non-sparse message
spaces selective forgery is as hard as factoring if the enemy is restricted to a known
message attack.
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Williams [Wi80]. This scheme is similar to Rabin’s. The proof that selective forgery
is as hard as factoring is slightly stronger, since here only a single instance of
selective forgery guarantees factoring (Rabin needed a probabilistic argument).
Williams uses effectively (as we do) the properties of numbers which are the product
of a prime p ≡ 3 (mod 8) and prime q ≡ 7 (mod 8).

Lieberherr [Li81]. This scheme is similar to Rabin’s and Williams’.

Shamir [Sh78]. This knapsack-type signature scheme has recently been shown by
Tulpan [Tu84] to be universally forgeable with a direct attack for any practical values
of the security parameter.

Goldwasser-Micali-Yao [GMY83]. This paper presents two signature schemes, which
are not of the trap-door type. These schemes have the interesting property that their
characteristics hold for any message space (even a sparse one). The first signature
scheme presented in [GMY83] was proven not to be even existentially forgeable
against a generic chosen message attack unless factoring is easy. However, it is not
known to what extent directed chosen message attacks or adaptive chosen message
attacks might aid an enemy in “breaking” the scheme.

The second scheme presented there (based on the RSA function) was also proven
not to be even existentially forgeable against a generic chosen message attack. This
scheme may also resist existentially forgery against an adaptive chosen message
attack, although this has not been proven. (A proof would probably require showing
certain properties about the distribution of prime numbers and making a stronger
intractability assumption about inverting RSA.)

By comparison, the scheme presented here is much faster, produces much more
compact signatures, and is based on the much simpler assumptions (only the
difficulty of factoring or more generally the existence of sets of claw-free pairs of
functions).

Several of the ideas and techniques presented in [GMY83], such as bit-by-bit
authentication, are used in the present paper.

Ong-Schnorr-Shamir [OSS84]. Totally breaking this scheme using an adaptive cho-
sen message attack has been show to be as hard as factoring. However, Pollard
[Po84] has recently been able to show that the “OSS” signature scheme is univer-
sially forgeable in practice using just a direct attack; he developed an algorithm to
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forge a signature for any given message without obtaining the secret trap-door in-
formation. A more recent “cubic” version has recently been show to be universally
forgeable in practice using just a direct attack (also by Pollard).

El Gamal [EG84]. This scheme, based on the difficulty of computing discrete log-
arithms, is existentially forgeable with a generic message attack and selectively
forgeable using a directed chosen message attack.

V Description of the Scheme

A General Scheme. It is convenient to present our scheme in a general manner that
is divorced from any particular assumptions, such as that factoring is hard. This
clarifies the exposition, and helps to establish the true generality of the proposed
scheme.

Definition We define a claw-free family to be a set of pairs of trap-door permutations such that:

. It is easy, given a security parameter k, to select members of the family at
random which have the given security parameter together with the trap-door
information allowing inversion of the permutations chosen. We note that
the family may contain many pairs of permutations associated with a given
security parameter, just as there are many composite numbers of a given
length.

. For each such pair (f0, f1) we have domain(f0) = domain(f1).

. Given a pair (f0, f1) of permutations from the family it is computationally
infeasible (even by a probabilistic algorithm) given just a description of the
pair to find any (x , y) with f0(x) = f1(y) (a “claw”—specifically, an “f -claw”)
with a non-negligible probability.

We also call each pair of permutations in the family “claw-free”.

Remark Note that if it is infeasible to find claws, then it is infeasible to invert either permu-
tation, since an inversion algorithm enables one to create claws easily. It is thus a
stronger requirement that the pair of functions be claw-free than that they merely
be one-way in the sense that inversion is infeasible. Note, for example, that the RSA
functions f0(x) = xs (mod n) and f1(x) = xt (mod n) are not easily invertible but are
also not claw-free, since their commutativity allows one to create claws easily.

Remark This is a slight generalization of the notion of a “claw-free” function f (one for
which both inversion is hard and finding x , y with f (x) = f (y) is hard). This latter
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notion has previously been proposed in the literature, and has been proposed as
the proper notion of a one-way function. (See [Yu79, Li81], for example.)

Notation If (f0, f1) and (g0, g1) are claw-free pairs of functions, we extend the notation fi and
gi to handle the case i > 1 by:

fi(x) = fid
(fid−1

(fid−2
(. . . (fi1

(fi0
(x)) . . .)))

if i = idid−1 . . . i1i0 in binary.

Notation f −1
i is interpreted as (fi)

−1 so that f −1
i (fi(x)) = x.

Prefix-Free Encodings.
We will be using the mapping from i to f −1

i (x) as a one-way function, where the pair
(f0, f1) and the value x were previously known or proven to have been produced by
the real signer. Anyone will be able to check this result, since fi(f

−1
i (x)) = x.

It is important for this use that the value i be chosen from a set whose elements
have a prefix-free binary encoding. (An encoding scheme is prefix-free if no encod-
ing of an element of the set is a prefix of the encoding of any other element of the
set.) If a prefix-free encoding scheme were not used, an enemy could “forge” f −1

j (x)

from f −1
i (x) if the encoding for j is a prefix of the encoding for i.

We do not care to fix a particular prefix-free encoding for use here, but note
that such encodings are simple to devise (e.g. code each 0 as 00, each 1 as 11, and
terminate the encoding with 01).

We do, however, introduce the notation [x] to denote the chosen prefix-free
encoding of the integer x. Thus, our basic one-way function can be represented
as f[i](x).

Message Space. The new signature scheme can use any countable set as a message
space, as long as a prefix-free encoding is used. Like the schemes presented in
[GMY83], the properties of the new scheme do not depend on the message space
used (even if it is, say, sparse).

An Atomic Authentication Step. Given an “authenticated” quantity Q, we can au-
thenticate two new quantities L and R if f −1

[R](Q) = L. This is done is a bit by bit
manner: by examining the bits of [R] one-by-one, we can easily compute L. Only
someone who knowns how to invert the fi’s could have produced a valid (L, R)

pair from Q. (In [GM82] and [GMY83] very similar ideas appeared.)

Randomization. The signer flips coins; there are many valid signatures for any one
message.
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Signing by Two-Step Authentication. Signing the i-th message Mi consists of first
authenticating a random message Ri, and then authenticating the given message
M from the random starting point Ri. (This is reminiscent of the routing scheme
for the boolean n-cube proposed by Reif and Valiant [RV83].)

Tree Authentication. We begin with an authenticated root R0 (authenticated by
being in the public file), and from each authenticated point Ri (resp. Li) we authen-
ticate two new values (L2i+1, R2i+1) (resp. (L2i , R2i)). Each Ri is randomly chosen
and the Li values are determined from them. This defines a tree structure on the Li

and Ri values. (This tree can either be grown as new signatures are needed or can
have a suitably large size defined initially.) A path from any node to the root is an
“authentication chain” which authenticates the node, assuming the root has been
authenticated.

Random Rooting. The initial value R0, which is placed in the public directory, is
randomly chosen.

Signatures. The signature for the j -th message Mj consists of

. The message Mj itself.

. A random quantity Rj and an authentication chain for it.

. An atomic authentication for Mj beginning at Rj .

Thus, each message Mi is authenticated by producing a pair (Si , Mi) authenticated
from Ri (which in turn is authenticated in the tree structure defined above).

V.A How to Generate Keys
Each user publishes his public key, consisting of:

. two claw-free pairs of permutations (f0, f1) and (g0, g1), and

. a random number R0 in the range of f0 and f1.

V.B How to Sign
Implicit. User Alice has an infinite list R0, R1, R2, . . . of random numbers in the
range of f0, f1. She will use one such number per signature, begining with R1. In
practice, Alice will create these as needed rather than all at the beginning.

Authenticators. Alice will include Rj as part of her j -th signature, and provide an
“authenticator” that it is valid (really created by Alice). Define
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Figure 2

Lj =
{

f −1
[Rj ](Lj/2), if j is even;

f −1
[Rj ](Rj−1/2), if j is odd.

and

Aj =
{

(1, R1, L1), if j = 1;

(j , Rj , Lj , A�j/2�), if j > 1.

Here “Aj” is the “authenticator” for Rj ; only Alice could have created it but any-
one can check for it. The authenticators form a “tree-like” structure (see Figure 2).
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Signature. Alice’s signature for the j -th message Mj is (Mj , Aj , g−1
[Mj ](Rj)).

V.C How to Verify a Signature
First, authenticate Rj using the published fi’s.

Then, authenticate Mj using the published gi’s.

V.D Efficiency of the Proposed Signature Scheme
Let us assume that all numbers and messages have length O(k), where k is the
“security parameter” for the system. Then the time to compute a signature is O(k)

function inversions (i.e. inversions of f0 or f1).
Then length of the j -th signature is

O(log(j) . k).

VI Proof of Security
We recall that a signature scheme is existentially forgeable if the enemy is able to
forget any valid message/signature pairs at all. We also recall that in an adaptive
chosen message attack the enemy can use the real signer as an “oracle” for a while
before attempting to forge a new signature.

Theorem The proposed signature scheme is not existentially forgeable, even if the enemy
uses an adaptive chosen message attack.

Proof Assume that there exists an adaptive chosen message attack which enables the
enemy to later forge valid signatures. We prove that this would enable an enemy
to create an f -claw or a g-claw, or to invert one of the fi’s or the gi’s.

We assume that the security parameter k is given.
Choose at random a claw-free pair of functions f0, f1 with the correct security

parameter from the given family of pairs of claw-free functions, so we don’t know
f −1

i (i = 0, 1). We will show that the existence of the effective attack by the enemy
would violate the claw-freeness assumption for the fi’s.

We choose gi at random with corresponding trapdoor information (i = 0, 1). We
can therefore invert each gi.

We consider two cases and apply the presumed attack to each:

Case 1. Apply the attack to the (f , g) signature scheme—(i.e. as described above).
Note that we can “simulate” the attack (i.e. play the role of the actual signer when
asked to sign messages) even though we don’t know f −1

i , since we can a priori create
the necessary tree in the “f -world” using f in the forward direction only (since
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all nodes in the “f -world” are randomly chosen). So the attack can be executed
resulting in the forgery of a new message.

Case 2. Apply the attack as in case 1, but switching the roles of f and g (but not
their names). Here it is easy to simulate the attack by simulating the signing of
messages as needed, without using f −1

i . To do this, given a message Mj to sign, we
can compute f[Mj ](S) where S is randomly chosen, resulting in a a value Rj . We can

then “authenticate” Rj in the “g-world” by using g−1 as needed.

Lemma A successful attack will, when it forges its signature, either create an f -claw, a g-
claw.

Proof Sketch We can view the authentication structure produced by the legitimate signer during a
chosen message attack as a collection of atomic authentication steps, each of which
authenticate two values from one previously authenticated value. (Some of these
steps are in g-world and some in f -world, but it doesn’t matter here.) To forge a new
signature means to produce new atomic authentication steps (otherwise nothing
new has been signed) which “link in” to values previously authenticated by the real
signer. If it “links in” in g-world we get a g-claw and if it “links in” in f -world we
get an f -claw.

By assumption about the ways in which the fi’s and the gi’s were chosen, the
attack could not tell if it was in case 1 or case 2. Therefore the attack will with
probability at least 1/2 (if it succeeds) “break” the given fi’s by creating an f -claw.
By assumption, however, (f0, f1) was a claw-free pair for which we did not know
the trap-door information. This contradiction proves that it is impossible to have
a uniform method of forging signatures with an adaptive chosen signature attack.

VI.A An Implementation of Our Scheme as Intractable as Factoring
The assumption of the existence of “claw-free” pairs was made in a general manner,
and not based on any particular number theoretic assumptions. Thus, the above
proof of security holds even if factoring turns out to be in polynomial time. However
for concretely implementing our scheme the following is suggested.

We first make an assumption about the intractability of factoring, and then
exhibit a family of claw free pairs whose existence is thereby implied.

Notation Let Hk = {n = p . q | |p| = |q| = k} (the set of composite numbers which are the
product of two k-bit primes), and let H = ∪kHk.
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Remark Randomly selected members of H seem to be among the “hardest” inputs for all
known factoring algorithms.

The following assumption about the intractability of factoring is made through-
out this section.

The Intractability Assumption for Factoring (IAF). Let 0 < ε < 1, let Q be an arbitrary
polynomial, and let Cε ,k denote the minimum size of a boolean circuit that can
factor at least a fraction ε of the numbers in Hk. Then Cε ,k > Q(k) for all sufficiently
large k.

Consider the subset B of H whose elements are the product of a prime p ≡ 3
(mod 8) and prime q ≡ 7 (mod 8). (These numbers were used in [Wi80, Bl82].) We
note that for n ∈ Bn:

−1 has Jacobi symbol +1 but is not a quadratic residue (mod n).
2 has Jacobi symbol −1 (and is not a quadratic residue (mod n)).
Let Qn denote the set of quadratic residues (modulo n). Define f n

0 and f n
1 as

permutations of Qn as follows:

f n
0 (x) = x2 (mod n)

f n
1 (x) = 4x2 (mod n)

(It is not too difficult to prove that f n
0 and f n

1 are permutations of Qn when n ∈ Bn.
See [Bl82] for example.)

Claim Under the IAF, F = {(f n
0 , f n

1 ) | n ∈ B} is a claw-free family of permutations.

Proof Every x ∈ Qn has exactly one square root y ∈ Qn, but has four square roots y , −y ,
w, −w altogether. Roots w and −w have Jacobi symbol −1, while y and −y have
Jacobi symbol +1.

Let n ∈ B and (f n
0 , f n

1 ) ∈ F . First f0 and f1 are permutations. Second they
are trapdoor under IAF, by Rabin’s proof. Finally, we show if there exists a fast
algorithm that finds x and y in Qn such that y2 ≡ 4x2 (mod n) then factoring
is easy. Suppose such an x and y have been found. Then, x2 ≡ (2y)2 (mod n).
Since x ∈ Qn, y ∈ Qn, 2 ∈ Qn, we have 2y ∈ Qn so that x ≡ ±2y (mod n). Thus
gcd(x ± 2y , n) will produce a nontrivial factor of n.

VII Conclusions and Open Problems
. Can a signature scheme be developed with the properties of the new scheme

proposed here, except that it is “memoryless” in the sense that the signature
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algorithm does not depend on the number of messages previously signed or
how they were signed?

. It is an open question whether the RSA scheme is universally forgeable under
an adaptive chosen message attack.

. Can an encryption scheme be developed for which decryption is provably
equivalent to factoring yet for which an adaptive chosen ciphertext attack is
of no help to the enemy?
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12Proofs that Yield Nothing
but Their Validity or
All Languages in NP Have
Zero-Knowledge Proof
Systems
This chapter reproduces the contents of the paper “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design,” which ap-
peared in the proceedings of the 27th Annual Symposium on Foundations of Computer
Science, pp. 174–187, 1986.

This influenial work of Oded Goldreich, Silvio Micali, and Avi Wigderson demon-
strated the generality and wide applicability of zero-knowledge proofs. In partic-
ular, assuming the existence of secure commitment schemes, it showed how to
construct zero-knowledge interactive proof systems for any set in NP, yielding a
powerful tool for the design of various cryptographic schemes. Loosely speaking,
zero-knowledge proofs offer a way for a party to prove that it has behaved accord-
ing to a predetermined protocol without revelaing its own secrets, and so they can
be used to force parties to behave in “honest-but-curious” manner.



Proofs that Yield Nothing
but Their Validity and a
Methodology of
Cryptographic
Protocol Design
(Extended Abstract)
Oded Goldreich (Dept. of Computer Sc., Technion),
Silvio Micali (Lab. for Computer Sc., MIT),
Avi Wigderson (Inst. of Math. and CS, Hebrew University)

In this paper we demonstrate the generality and wide applicability of zero-knowledge
proofs, a notion introduced by Goldwasser, Micali and Rackoff. These are proba-
bilistic and interactive proofs that, for the members x of a language L, efficiently
demonstrate membership in the language without conveying any additional knowl-
edge. So far, zero-knowledge proofs were known only for some number theoretic
languages in NP ∩ Co-NP.

Summary of Our Results
Under the assumption that encryption functions exist, we show that all languages
in NP have zero-knowledge proofs. That is, it is possible to demonstrate that a

Work done while first author was at the Laboratory for Computer Science, MIT; and the third
author was at the Mathematical Sciences Research Institute, UC-Berkeley. Work was partially
supported by an IBM Postdoctoral Fellowship, NSF Grants DCR-8509905 and DCR-8413577, and
an IBM Faculty Development Award.
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CNF formula is satisfiable without revealing any other property of the formula. In
particular, without yielding neither a satisfying assignment nor properties such as
whether there is a satisfying assignment in which x1 = x3 etc.

The above result allows us to prove two fundamental theorems in the field of
(two-party and multi-party) cryptographic protocols. These theorems consist of au-
tomatic and efficient transformations that, given a protocol that is correct with
respect to an extremely weak adversary, output a protocol correct in the most adver-
sarial scenario. Thus, these theorems imply a powerful methodology for developing
secure two-party and multi-party protocols.

We also demonstrate that zero-knowledge proofs exist “independently of cryp-
tography and number theory”. Using no unproved assumptions, we show that both
graph isomorphism and graph nonisomorphism possess zero-knowledge interac-
tive proofs. The mere existence of an interactive proof for graph non-isomorphism
is interesting, since graph non-isomorphism is not known to be in NP and thus did
not possess so far any efficient proofs.

1 Introduction
It is traditional to view NP as the class of languages whose elements posses short
proofs of membership. A “proof that x ∈ L” is a witness wx such that PL(x , wz) =
1 where PL is a polynomially computable Boolean predicate associated to the
language L such that PL(x , y) = 0 for all y if x is not in L. The witness must have
length polynomial in the length of the input x, but needs not be computable from
x in polynomial-time. A slightly different point of view is to consider NP as the
class of languages L for which a powerful prover may prove membership in L to
a polynomial-time deterministic verifier. The interaction between the prover and
the verifier, in this case, is trivial: the prover sends a witness (proof) and the verifier
computes for polynomial time to verify that it is indeed a proof.

This formalism was recently generalized by allowing more complex interaction
between the prover and the verifier and by allowing the verifier to toss coins and to
be convinced by overwhelming statistical evidence [GMR, B]. The prover has some
computational advantage over the verifier and for the definition to be interesting
one should assume that this advantage is crucial for proving membership in the
language (otherwise the verifier can do this by itself). In other words, we will im-
plicitly assume that there exist interesting languages (say in PSPACE) which are not
in BPP, and be interested in proof systems for such languages.

A fundamental measure proposed by Goldwasser, Micali and Rackoff [GMR] is
that of the amount of knowledge released during an interactive proof. Informally,
a proof system was called zero-knowledge if whatever the verifier could generate in
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probabilistic polynomial-time after “seeing” a proof of membership, he could also
generate in probabilistic polynomial-time when just told by a trusted oracle that
the input is indeed in the language. In other words, zero-knowledge proofs have
the remarkable property of being both convincing and yielding nothing except that
the assertion is indeed valid.

Besides being a very intriguing notion, zero-knowledge proofs promise to be a
very powerful tool for the design of secure cryptographic protocol. Typically these
protocols must cope with the problem of distrustful parties convincing each other
that the messages they are sending are indeed computed according to their pre-
determined local program. Such proofs should be carried out without yielding any
secret knowledge. In particular cases, zero-knowledge proofs were used to design
secure protocols [FMRW, GMR, CF]. However, in order to demonstrate the general-
ity of this tool (and to utilize its full potential) one should have come with general
results concerning the existence of zero-knowledge proof systems. Until now, no
such general results were obtained.

In this paper, we present general results concerning zero-knowledge proof
systems. In particular, we show how to give zero-knowledge proofs to every NP-
statement. A general methodology for designing secure cryptographic protocols
follows. Its core is a compiler which, making primary use of the above result, trans-
lates protocols correct in a weak adversary model to protocols correct in the most
adversarial environment.

1.1 What Is an Interactive Proof
An interactive proof system for a language L is a protocol (i.e. a pair of local pro-
grams) for two probabilistic interactive machines called the prover and the verifier.
Initially both machine have access to a common input tape. The two machines send
messages to one another through two communication tapes. Each machine only
sees its own tapes, the common input tape and the communication tapes. In par-
ticular, it follows that one machine cannot monitor the internal computation of
the other machine nor read the other’s coin tosses, current state, program etc. The
verifier is bounded to a number of steps which is polynomial in the length of the
common input, after which he stops either in an accept state or in a reject state. At
this point we put no restrictions on the local computation conducted by the prover.

We require that, whenever the verifier is following his predetermined program,
V , the following two conditions hold:

1. Completeness of the interactive proof system: If the common input x is in L

and the prover runs his predetermined program, P , then the verifier accepts
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x with probability ≥ 1− | x |−c, for every constant c > 0. In other words, the
prover can convince the verifier of x ∈ L.

2. Validity of the interactive proof system: If the common input x is NOT in L, then
for every program P ∗, run by the prover, the verifier rejects x with probability
≥ 1− | x |−c (for every constant c > 0). In other words, the prover cannot fool
the verifier.

An important example of an interactive proof system is presented in section 2.1.

Remark 1 Note that it does not suffice to require that the verifier cannot be fooled by the
predetermined prover (such a mild condition would have presupposed that the
“prover” is a trusted oracle).

Remark 2 As is the case with NP, the conditions imposed on acceptance and rejection are not
symmetric. Thus the existence of an interactive proof for the language L does not
imply its existence for the complement of L.

Remark 3 The above “definition” follows the one of Goldwasser, Micali and Rackoff [GMR].
A different definition due to Babai [B], restricts the verifier to generate random
strings, send them to the prover, and evaluate a deterministic polynomial-time
predicate at the end of the interaction. Demonstrating the existence of proof sys-
tems is easier when allowing the verifier to flip private coins (i.e. [GMR] model),
while relating interactive proof systems to traditional complexity classes seems
easier if one restricts oneself to Babai’s model. Surprisingly, these two models are
equivalent, as far as language recognition is concerned [GS] (see Sec. 1.3).

Remark 4 The ability to toss coins is crucial to the non-triviality of the notion of an interactive
proof system. If the verifier is deterministic then interactive proof systems coincide
with NP.

Remark 5 Without loss of generality, we assume that the last message sent during an inter-
active proof is sent by the prover. (A last message sent by the verifier has absolutely
no effect.)

1.2 What Is a Zero-Knowledge Proof
Intuitively, a zero-knowledge proof is a proof which yields nothing but its validity.
This means that for all practical purposes, “whatever” can be done after interacting
with a zero-knowledge prover, can be done when just believing that the assertion he
claims is indeed valid. (In “whatever” we mean not only the computation of func-
tions but also the generation of probability distributions.) Thus, zero-knowledge is
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a property of the predetermined prover. It is the robustness of the prover against
attempts of the verifier to extract knowledge via interaction. Note that the verifier
may deviate arbitrarily (but in polynomial-time) from the predetermined program.
This is captured by the formulation appearing in [GMR] and sketched below.

Denote by V ∗(x) the probability distribution generated by a machine V ∗ which
interacts with (the prover) P on input x ∈ L. We say that the proof system is zero-
knowledge if for all probabilistic polynomial-time machines V ∗, there exists a prob-
abilistic polynomial-time algorithm M∗

V
that on input x produces a probability

distribution MV ∗(x) such that MV ∗(.) and V ∗(.) are polynomially-indistinguishable.
(For every algorithm A, let pA(x) denote the probability that A outputs 1 on

input x and an element chosen according to the probability distribution D(x).
Similarly, P ′

A
(x) is defined (w.r.t. D′). The distribution ensembles D(.) and D′(.) are

polynomially-indistinguishable if for every probabilistic polynomial-time algorithm
A, pA(x) − p′

A
(x) ≤| x |−c, for every constant c > 0 and sufficiently long x. This

notion appeared in [GM] and in [Y1].)

Remark 6 It is not difficult to see that if a language L has a zero-knowledge proof system
in which only one message is sent, then L ∈ BPP . Thus, the non-triviality of the
interaction is a necessary condition for the non-triviality or the notion of zero-
knowledge.

1.3 Previous Results Concerning Interactive Proof Systems
Let Q be a polynomial. Denote by IP(Q) the class of languages L such that mem-
bership of x ∈ L can be proved through a general interaction consisting of Q(| x |)
message exchanges. Similarly, let AM(Q) denote languages proven through the
restricted type interaction in which the verifier only tosses “public coins” (i.e.
Babai’s Arthur-Merlin framework). Babai [B] showed that for every polynomial Q,
AM(Q + 1) = AM(Q). This means that his finite level hierarchy collapses. (Note
that this does not imply the collapse of the unbounded level hierarchy! For more
details see [AGH].) Goldwasser and Sipser [GS] showed that, for every polynomial
Q, IP(Q) ⊆ AM(Q + 2). This means that from a complexity theoretic point of view,
the IP(.) hierarchy and the AM(.) hierarchy essentially coincide. Both the above re-
sults say nothing about the preservation of zero-knowledge by the transformations.

The bounded level IP hierarchy is related to the polynomial-time hierarchy by
Babai’s proof that AM(2) ⊆∏P

2 and that AM(2) ⊆ NPB for almost all oracles B.
Several Number Theoretic languages, not known to be in BPP, have been pre-

viously shown to have zero-knowledge proof systems. The first language for which
such a proof system has been demonstrated is Quadratic Non-Residuosity [GMR].
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Other zero-knowledge proof systems were presented in [GMR], [GHY], [CF] and [G].
All these languages are known to lie in NP ∩ C0 − NP.

1.4 Organization of the Paper
In Section 2 we present zero-knowledge interactive proofs for graph isomorphism
and graph non-isomorphism. We also discuss complexity theoretic implications of
the existence of an interactive proof for graph nonisomorphism. In Section 3 we
show how to use any one-way permutation in order to construct a zero-knowledge
interactive proof for any language in NP. This result is extended to any language
in IP.

In Section 4, we outline the methodological theorems for two-party and multi-
party cryptographic protocols.

2 Proofs of Graph Isomorphism and Graph Non-Isomorphism
We start by presenting a (probably nonzero- knowledge) interactive proof for graph
non-isomorphism. Next we present a zero-knowledge interactive proof for graph
isomorphism, and for graph non-isomorphism. Let us set some common nota-
tions.

Let A be a set. Then Sym(A) denote the set of permutations over A. When
writing a ∈R A, we mean an element chosen at random with uniform probability
distribution from the set A.

We will consider undirected graphs, G(V , E). V will denote the vertex set, and
E the edge set of the graph G. n will denote the size of the vertex set, and m the size
of the edge set (i.e. n =| V |, m =| E |). The graph G(V , E) will be represented by
the set E, in an arbitrary fixed order (e.g. lexicographic).

Two graphs G(V , E) and H(V , F) are isomorphic if and only if there exist a
permutation π ∈ Sym(V ) such that

(u, v) ∈ E iff (π(u), π(v)) ∈ F .

The graph isomorphism problem consists of two graphs as input, and one has to de-
termine whether they are isomorphic. The graph isomorphism problem is trivially
in NP, is not known to be in Co-NP, and is believed not to be NP-complete.

We say that the graph H(V , F) is a random isomorphic copy of the graph G(V , E)

if H is obtained from G by picking π ∈R Sym(V ) and letting

F = {(π(u), π(v)) : (u, v) ∈ E}.



292 Chapter 12 Proofs that Yield Nothing but Their Validity

2.1 An Interactive Proof of Graph Non-Isomorphism
In this subsection we examplify the notion of an interactive proof system by pre-
senting an interactive proof for graph non-isomorphism. The fact that graph non-
isomorphism has interactive proofs is interesting as it is not know to be in NP, and
thus has not been know previously to have any efficient proofs. Moreover, the exis-
tence of an interactive proof for graph non-isomorphism has interesting complexity
theoretic consequences.

In the following protocol the prover needs only to be a probabilistic polynomial-
time machine with access to an oracle for graph isomorphism.

common input: Two graphs Gl(V , E1) and G2(V , E2).

1. The verifier chooses at random n integers αi ∈R {1, 2}, 1 ≤ i ≤ n. The verifier
computes n graphs Hi(V , Fi) such that Hi is a random isomorphic copy of
Gai

. The verifier sends the Hi’s to the prover.

2. The prover answers with a string of βi’s (each in {1, 2}), such that Hi(V , Fi)

is isomorphic to Gβi
(V , Eβi

).

3. The verifier tests whether αi = βi, for every 1 ≤ i ≤ n. If the condition is
violated then the verifier rejects; otherwise he accepts.

Theorem 1 The above protocol constitutes a (two-move) interactive proof system for Graph
Non-Isomorphism.

Proof If the graphs G1 and G2 are not isomorphic, and both prover and verifier follow
the protocol, then the verifier always accepts. If on the other hand, Gl and G2 are
isomorphic then, for each i, we have αi = βi with probability at least 1/2, even if the
prover does not follow the protocol. The reason being that in case G1 and G2 are
isomorphic,

Prob(αi = 1 | verifier sent Hi) = 1/2.

The probability that the verifier does not reject two isomorphic graphs is thus at
most 2−n.

The above Theorem has interesting implications on the traditional complexity
of the graph isomorphism problem. Namely,

Corollary 1 Graph Isomorphism is in (NP ∩ Co-NP)A, for a random oracle A. Also, Graph Non-
Isomorphism can be recognized by a (non-uniform) family of non-
deterministic polynomial-size circuits (i. e. non-uniform NP ).
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Proof By the Theorem 1, Graph Non-Isomorphism (GNI) is in IP (2). Using Goldwasser
and Sipser’s transformation of IP (k) protocols to AM(k + 2) protocols, GNI ∈
AM(4). By Babai’s proof of the finite AM(.) collapse, GNI ∈ AM(2) ⊆ NP A for a
random oracle A. Finally, it has been pointed out by Mike Sipser that AM(2) is
contained in non-uniform NP .

Another interesting corollary concerning graph isomorphism is due to Boppana
and Hastad [BH].

Corollary 2 [BH] If Graph Isomorphism is NP -Complete then the polynomial-time hierarchy col-
lapses to its second level.

Proof Boppana and Hastad showed that if Co-NP ⊆ IP (k) (for some fixed k) then the entire
polynomial-time hierarchy collapses to AM(2) ⊆∏P

2 . Since Theorem 1 states that
graph non-isomorphism is in IP (2), the Corollary follows.

Corollary 2 may be viewed as providing additional support to the belief that
Graph Isomorphism is not NP-Complete.

2.2 A Zero-Knowledge Proof for Graph Isomorphism
In this section we examplify the notion of zero-knowledge proof systems by pre-
senting a zero-knowledge proof for graph isomorphism. The fact that graph iso-
morphism has efficient proofs is apparent, since it is in NP. However, the fact that
graph isomorphism can be proved in zero-knowledge, and in particular without
demonstrating the isomorphism is interesting.

In the following protocol, the prover needs only to be a probabilistic polynomial-
time machine which gets, as an auxiliary input, the isomorphism between the input
graphs.

common input: Two graphs G1(V , E1) and G2(V , E2).
Let φ denote the isomorphism between G1 and G2. The following four steps are
executed n times, each time using independent random coin tosses.

1. The prover generates a graph H , a random isomorphic copy of G1. This is
done by selecting a permutation π ∈R Sym(V ), and computing H(V , F) such
that (π(u), π(v)) ∈ F iff (u, v) ∈ E1. The prover sends the graph H(V , F) to
the verifier.

2. The verifier chooses at random α ∈R {1, 2}, and sends α to the prover. (Intu-
itively, the verifier asks the prover to prove to him that H and Gα are indeed
isomorphic.)
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3. If α ∈ 1, 2 then the prover halts. If α = 1 then the prover sends π to the verifier,
else the prover sends πφ−1.

4. If the permutation received from the prover is not an isomorphism between
Gα and H then the verifier stops and rejects; otherwise he continues.

If the verifier has completed n iterations of the above steps then he accepts.
The reader can easily verify that the above constitutes an interactive proof system

for graph isomorphism. Intuitively, this proof is zero-knowledge since whatever
the verifier receives is “useless”, as he can generate random isomorphic copies
of the input graphs by himself. This is easy to see in case the verifier follows the
protocol. In case the verifier deviates from the protocol, the situation is much more
complex. The verifier may set the α’s depending on the graphs presented to him. In
such a case it can not be argued that the verifier only receives random isomorphic
copies of the input graph. The issue is fairly involved, as we have to defeat a
universal quantifier which is not well understood (i.e. all possible deviations from
the protocol). We cannot really trust our intuition in such matters, so a formal proof
is indeed required.

Theorem 2 The above protocol constitutes a zero-knowledge interactive proof system for Graph
Isomorphism.

Proof’s Sketch It is clear that the above prover conveys no knowledge to the specified verifier. We
need however to show that our prover conveys no knowledge to all possible verifiers,
including cheating ones that deviate arbitrarily from the protocol.

Let V ∗ be an arbitrary fixed program of a probabilistic polynomial-time machine
interacting with the prover, specified by the protocol. We will present a probabilistic
polynomial-time machine MV ∗ that generates a probability distribution which is
identical to the probability distribution induced on V ∗’s tapes during its interaction
with the prover. In fact it suffices to generate the distribution on the random tape
and the communication tape of V ∗.

Our demonstration of the existence of such V ∗ is constructive: given an inter-
active program V ∗, we use it in order to construct the machine V ∗. The way we use
V ∗ in this construction does not correspond to the traditional notion of (a subrou-
tine) reduction [K , C], but rather to a more general notion of reduction suggested
in [AHU, pp. 373–374]. Typically, we will try to guess which isomorphism the ma-
chine V ∗ will ask to check. We will construct the graph H such that we can answer
V ∗ in case we were lucky. The cases in which we failed will be ignored. It is crucial
that from the point of view of V ∗ the case which leads to our success and the case
which leads to our failure look identical. By throwing away the instances where we
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failed, we only slow down our construction, but we do not change the probability
distribution that V ∗ “sees”.

Following is a more detailed description of MV ∗. On input G1 and G2, the
machine MV ∗ will monitor the execution of the program V ∗ on this input and will
“simulate” the prover to V ∗. MV ∗ will start by choosing and fixing random coin
tosses r (random tape) for V ∗, and placing r on a special record tape. All subsequent
coin tosses are for MV ∗. (The random tape of V ∗, denoted r , will remain fix and V ∗

is “deterministic” given its random tape r .) Machine MV ∗ proceeds in n rounds as
follows.

1. MV ∗ chooses at random β ∈R {1, 2} and a permutation π ∈R Sym(V ). It com-
putes H(V , F) such that (π(u), π(v)) ∈ F if and only if (u, v) ∈ Eβ. MV ∗ places
H on the communication tape of V ∗. (Note that H is an isomorphic copy of
Gβ.)

2. MV ∗ reads V ∗ answer from the communication tape of V ∗. When V ∗ answers
with α = β (lucky for MV ∗), machine MV ∗ places π on the communication
tape of V ∗, appends (H , α , π) to its record tape, and proceeds to the next
round. If α ∈ {1, 2} (V ∗ is obviously cheating) then the machine MV ∗ appends
(H , α) to its record tape and stops outputting its record tape. If α + β = 3
(unlucky for MV ∗) then MV ∗ is going to repeat the current round. This is done
by “rewinding” V ∗ to its configuration at the beginning of the current round,
and by repeating Steps 1 and 2 with new random choices. (V ∗ configuration
consists of the contents of its tapes, the positions of its heads and its internal
state.)

If all rounds are completed then MV ∗ outputs its record and halts. It should be
noted that, for each repetition of the ith round, Pr(β = 1| | H(i)) = 1/2, where H(i)

is the list of graphs send to V ∗ so far (this includes the graph sent in the current
repetition of round i, but does not include graphs after which V ∗ was rewound).
Therefore, Pr(β = α(r , H(i)|H(i)) = 1/2, where α(r , H(i) is V ∗’s answer on random
tape r and communication tape H(i). It is left to the reader to verify that the ith
round is repeated j times with probability at most 2−j . Machine MV ∗ stops and
outputs its record tape after n rounds were completed or after encountering an
improper α ∈ {1, 2}. In the first case the machine outputs a sequence of n triples of
the form (H , α , π), where π is an isomorphism between H and Gα. It is left to the
reader to verify that in both cases, MV ∗ outputs the right probability distribution.

Remark 7 In the above proof, the probability distribution output by the simulator MV ∗ is
identical to the distribution during an interaction between V ∗ and the prover. This
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is more than required by the definition of zero-knowledge, which only requires
that these distributions be polynomially-indistinguishable. We call a proof system
for which such a result (i.e. identical distributions) is demonstrated a perfect zero-
knowledge proof system.

Remark 8 Serial execution v. parallel execution: the case where the intuition fails? Although
one’s intuition may insist that the above zero-knowledge protocol, remains zero-
knowledge even when executed in parallel instead than serially, we do not know
how to prove this statement. We even doubt this intuition, and will explain why in
the full version of this paper.

2.3 Zero-Knowledge Proof of Graph Non-Isomorphism
The interactive proof for graph nonisomorphism presented in section 2.1 is prob-
ably not zero-knowledge: a user interacting with the prover may use the prover in
order to test to which of the given graphs (G1 and G2) is a third graph G3 isomorphic.
The way to fix this flaw, is to let the verifier first “prove” to the prover that he “knows”
an isomorphism between his query graph H and one of the input graphs. The mod-
ified protocol and the proof that it constitutes a zero-knowledge interactive-proof
system, are omitted from this extended abstract. We get

Theorem 3 There exist a zero-knowledge interactive proof system for Graph Non-Isomorphism.

3 All Languages in NP Have Zero-Knowledge Proof Systems
In this section we assume the existence of secure encryption schemes (in the sense
of Goldwasser and Micali [GM]). Such schemes exist if unapproximable predicates
exist [GM]. The existence of unapproximable predicates has been shown by Yao to
be a weaker assumption than the existence of one-way permutations [Y1].

An encryption scheme secure as in [GM) is a probabilistic polynomial-time
algorithm f that on input x and internal coin tosses r , outputs an encryption
f (x , r). Decryption is unique: that is f (x , r) = f (y , s) implies x = y.

We begin by presenting a zero-knowledge interactive proof for graph 3-colour-
ability. Using this interactive proof and the power of NP-Completeness, we present
zero-knowledge proofs for every language in NP. Finally, we show that “everything
that is efficiently provable” can be proved in zero-knowledge.

3.1 A Zero-Knowledge Proof for Graph 3-Colourability
The common input to the following protocol is a graph G(V , E). In the follow-
ing protocol, the prover needs only to be a probabilistic polynomial-time machine
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which gets a proper 3-colouring of G as an auxiliary input. Let us denote this colour-
ing by φ(φ: V →{1, 2, 3}). Let n = |V |, m = |E|. For simplicity, let V = {1, 2, . . . , n}.
The following four steps are executed m2 times, each time using independent coin
tosses.

1. The prover chooses a random permutation of the 3-colouring, encrypts it,
and sends it to the verifier. More specifically, the prover chooses a permuta-
tion π ∈R Sym({1, 2, 3}), and random rv’s, computes Rv = f (π(φ(v)), rv) (for
every v ∈ V ), and sends the sequence R1, R2, . . . , Rn to the verifier.

2. The verifier chooses at random an edge e ∈R E and sends it to the prover.
(Intuitively, the verifier asks to examine the colouring of the endpoints of
e ∈ E.)

3. If e = (u, v) ∈ E then the prover reveals the colouring of u and v and “proves”
that they correspond to their encryptions. More specifically, the prover sends
(π(φ(u)), ru) and (π(φ(v)), rv) to the verifier. If e ∈ E then the prover stops.

4. The verifier checks the “proof” provided in step (3). Namely, the verifier
checks whether Ru = f (π(φ(u)), ru), Rv = f (π(φ(v)), rv), π(φ(u)) = π(φ(v)),
and π(φ(u)), π(φ(v)) ∈ {1, 2, 3}. If either condition is violated the verifier
rejects and stops. Otherwise the verifier continues to the next iteration.

If the verifier has completed all m2 iterations then it accepts.
The reader can easily verify the following facts: When the graph is 3-colourable

and both prover and verifier follow the protocol then the verifier accepts. When
the graph is not 3-colourable and the verifier follows the protocol then no matter
how the prover plays, the verifier will reject with probability at least (1 − m−l)m

2 =
exp(−m). Thus, the above protocol constitutes an interactive proof system for
3-colourability. Proving that the above protocol is zero-knowledge is even more
involved that the proof of Theorem 2.

Proposition 4 If f (., .) is a secure probabilistic encryption, then the above protocol constitutes a
zero-knowledge interactive proof system for 3-colourability.

Proof’s Sketch As in the proof of Theorem 2, we will present a machine MV ∗ for every interactive
machine V ∗. Typically, we will try to guess which edge the machine V ∗ will ask to
check. We will encrypt an illegal colouring of G such that we can answer V ∗ in case
we were lucky. The cases in which we failed will be ignored. It is crucial that from
the point of view of V ∗ the case which leads to our success and the case which leads
to our failure are polynomially indistinguishable.
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The machine MV ∗ monitoring V ∗, starts by choosing a random tape r for V ∗.
MV ∗ places r on its record tape and proceeds in m2 rounds as follows.

1. MV ∗ picks an edge (u, v) ∈R E and a pair of integers (a , b) ∈R {(i , j): 1 ≤ i =
j ≤ 3} at random. MV ∗ chooses random ri’s and computes Ri = f (ci , ri),
where ci is 0 for i ∈ V − {u, v}, cu = a and cv = b. MV ∗ places the sequence
of Ri’s on the communication tape of V ∗.

2. MV ∗ reads e from the communication tape of V ∗. If e ∈ E(V ∗ obviously
cheats) then MV ∗ appends the Ri’s and e to its record tape, outputs the
record tape, and stops. If e = (u, v) (unlucky for MV ∗) then MV ∗ rewinds V ∗

to the configuration at the beginning of the current round, and repeats the
current round with new random choices. If e = (u, v) (lucky for MV ∗) then MV ∗

proceeds as follows: First, it places (a , ru) and (b, rv) on the communication
tape of V ∗. Second, it appends the Ri’s, e, (a , ru) and (b, rv) to its record tape;
and finally, it proceeds to the next round.

If all rounds are completed then MV ∗ outputs its record and halts. A technical
lemma (to be stated and proved in the final paper) guarantees that the three pos-
sible “answers” of the verifier (i.e. e ∈ E , e ∈ E − {(u, v)} and e = (u, v)) occur with
essentially the same probability as in the interaction of V ∗ and the real prover.
Thus, the probability that the simulation of a particular round requires more than
k . m rewinds is smaller than 2−k, and MV ∗ terminates in polynomial time. The
only difference between the probability distribution of the true interactions and
the distribution generated by MV ∗ is that the first contain probabilistic encryptions
of colourings while the second contains probabilistic encryptions of mostly 0’s.
However, a second technical lemma (postponed to the final paper) asserts that this
difference is indistinguishable in probabilistic polynomial-time.

Remark 9 The above protocol needs m2 rounds. In the final version of our paper we will present
two alternative ways of modifying the above protocol so to get a four-round zero-
knowledge protocol for graph 3-colorability. In both modifications the idea is to
have the verifier commit himself to all his queries (i.e. which edge he wants to
check for each copy of the coloured graph) before the prover sends to the verifier
the corresponding coloured graphs. The two modifications differ by the manner
in which the verifier commits to his queries. One modification is based on the
intractability of factoring. The second modification is based on a relaxation of the
definition of a proof system so that the prover is also restricted to polynomial-time
(and his “computational advantage” over the verifier consists of an auxiliary input).
This relaxation is natural in the cryptographic applications.
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3.2 Zero-Knowledge Proofs for all NP
Incorporating the standard reductions into the protocol for graph 3-colourability,
we get

Theorem 5 If f (., .) is a secure probabilistic encryption, then every NP language has a zero-
knowledge interactive proof system.

Slightly less obvious is the proof of the following Theorem 6 that adapts Theorem
5 to a cryptographic scenario in which all players are bounded to efficient computa-
tion. What is needed is to notice that the standard reductions transform efficiently
also the solution to the instances.

Theorem 6 If there exists a secure probabilistic encryption, then every language in NP has
a zero-knowledge interactive proof system in which the prover is a probabilistic
polynomial-time machine that gets an NP proof as an auxiliary input.

(Namely, in case the common input x is in the language L, the polynomial-time
prover gets an NP proof that x ∈ L as an auxiliary input.)

Remark 10 The number of computational steps required by both parties in the above inter-
active proof is bounded by O(T 2(n) . F(n) . log4 n), where n = |x| is the length of
the common input x , T (n) is the number of steps required by a non-deterministic
machine to accept x, and F(n) is the number of steps require to encrypt a bit when
the security parameter is n.

A Positive Use of NP-Completeness
So far NP-completeness have mostly had a “negative” utility: it was (and is) the most
practical way to give evidence to the infeasibility of a problem. Here we want to point
out a “positive” use of NP-completeness: its primary role in deriving the general
results of Theorems 5 and 6 (i.e. zero-knowledge proofs of every NP statement) from
Proposition 4 (i.e. a zero-knowledge proof of a particular NP-Complete problem).

An Example: Verifiable Secret Sharing
Due to its generality, Theorem 6 has a dramatic effect on the design of cryptographic
protocols. Let us first demonstrate this point by using Theorem 6 to present a
simple solution to a problem which until recently was considered very complex:
Verifiable Secret Sharing. The more general implications of Theorem 6, are outlined
in Section 4.
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The notion of a verifiable secret sharing was presented by Chor, Goldwasser,
Micali and Awerbuch [CGMA], and constitutes a powerful tool for multi-party pro-
tocol design. Loosely speaking, a verifiable secret sharing is a n + 1-party protocol
through which a sender (S) can distribute to the receivers (Ri’s) pieces of a secret
s recognizable through an a-priori known “encryption” g(s). The n pieces should
satisfy the following three conditions (with respect to 1 ≤ l < u ≤ n):

1. It is infeasible to obtain any knowledge about the secret from any l pieces;

2. Given any u messages the entire secret can be easily computed;

3. Given a piece it is easy to verify that it belongs to a set satisfying condition
(2).

The notion of a verifiable secret sharing differs from Shamir’s secret sharing [Sha],
in that the secret is recognizable and that the pieces should be verifiable as authentic
(i.e. condition (3)).

Following the first implementation presented in [CGMA], improvements in effi-
ciency and “tolerance” appeared in [FM, AGY, F]. These solutions are conceptually
complicated, and rely on specific properties of particular encryption functions.

Assuming the existence of arbitrary one-way permutations, we present a con-
ceptually simple solution allowing u = l + 1 ≤ n. Our scheme combines Theorem 6
with Shamir’s (non-verifiable) secret sharing [Sha]. To share a secret s ∈ Zp recog-
nizable through r = g(s), the sender proceeds as follows: First, the sender chooses
at random a l-degree polynomial over Z∗

p
and evaluates it in n fixed points (these are

the pieces in Shamir’s scheme). Next, the sender encrypts the ith piece using the
Public encryption algorithm of the ith receiver, and sends all encrypted secrets to
all receivers. Finally, the sender provides each receiver with a zero-knowledge proof
that the encrypted messages correspond to the evaluation of a single polynomial
over Z∗

p
, and that applying g to the free term of this polynomial yields r (note that

this is a NP statement ).

3.3 Everything Efficiently Provable Can Be Proven in Zero-Knowledge
We now generalize Theorem 5 to show that not only NP is in zero-knowledge, but
also “probabilistic NP” is. Namely,

Theorem 7 If there exists a secure probabilistic encryption, then for every fixed k every language
in IP(k) has zero-knowledge proof systems.

Proof’s Sketch Using the results of [GS] and [B], it suffices to demonstrate zero-knowledge proof
systems for languages in AM(2). The intuitive idea is to let the verifier send random
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coins and then let the prover prove that “he could have convinced the verifier with
respect to these coins”, which is an NP statement! To oblige the verifier to send
random coins and not strings of his choice, coin flipping into the well [Blu) is used.
It has to be proven however, that the substitution of certified random coins by coin
flips into the well preserves zero-knowledge.

Recently, Ben-Or extended Theorem 7 and showed that every language which
has an interactive proof system, has a zero-knowledge one [Ben]. As above, the
result of Goldwasser and Sipser [GS] is used to restrict attention to languages in
AM. This time we can not use Babai’s result [B], since the number of interactions
is unbounded. The idea is to first execute the AM protocol in an encrypted form
(only the messages of the prover need to be encrypted and this does not disturb the
verifier who only toss coins), and next have the prover convince the verifier in zero-
knowledge that the encrypted interaction corresponds to an accepting interaction
in the original AM protocol.

The following question was raised by Leonid Levin: Let M be a probabilistic
polynomial-time interactive machine having access to a machine P1 which is able
to prove that x ∈ L via an arbitrary predetermined interactive proof system. Can M

prove that x ∈ L to another machine V2 in a zero-knowledge manner? Clearly the
answer is negative if M first interact with P1 and only later interact with V2 (hint:
P1 may use a zero-knowledge proof system). However, M is allowed to interleave its
interactions in an arbitrary manner. Theorem 6 answers Levin’s question positively
for the case that P1 sends M an NP-proof. (In fact this was the motivation for
his question.) It is easy to answer Levin’s question positively for the case that P1

interacts with M via an AM protocol. Recently, using a result of Yao [Y2], we have
answered this question positively also for the general case (of IP protocols).

3.4 Related Results
Using the intractability assumption of quadratic residuosity, Brassard and Crepeau
have discovered independently (but subsequently) zero-knowledge proof systems to
all languages in NP [BC1]. These proof systems heavily rely on particular properties
of quadratic residues and do not seem to extend to arbitrary encryption functions.

Recently, Brassard and Crepeau showed that if factoring is intractable then
every NP language has a perfect zero-knowledge interactive proof system [BC2]. It
should be stressed that the protocol they proposed constitutes an interactive proof
provided that factoring is intractable. In other words, the validity of the interactive
proofs depends on an intractability assumption; while in this paper and in [BCI]
the validity of the proofs do not rely on such an assumption.
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Independently, Chaum [Cha] discovered a protocol which is very similar to the
one in [BC2]. Chaum also proposed an interesting application of such “perfect zero-
knowledge proofs”. His application is to a setting in which the verifier may have
infinite computing power while the prover is restricted to polynomial-time com-
putations (see also [CEGP]). In such a setting it makes no sense to have the prover
demonstrate properties (as membership in a language) to the verifier. However, the
prover may wish to demonstrate to the verifier that he “knows” something without
revealing what he “knows”. More specifically, given a CNF formulae, the prover
wishes to convince the verifier that he “knows” a satisfying assignment in a man-
ner that would yield no information which of the satisfying assignments he knows.
A definition of the notion of “a program knowing a satisfying assignment” can be
derived from [GMR].

4 A Methodology of Cryptographic Protocol Design
Assuming the existence of arbitrary encryption functions, we will present extremely
powerful methodologies for developing secure two-party and multi-party proto-
cols. These methodology consists of efficient “correctness and privacy preserving”
transformations of protocols from a weak adversary model to the most adversarial
model. These (explicit) transformations are informally summarized as follows

Informal Theorem A There exist an efficient compiler transforming a protocol P designed for n = 2t + 1
honest players, to a cryptographic protocol P ′ that achieves the same goals even
if t of its n players are faulty. Faulty players are allowed to deviate from P ′ in any
arbitrary but polynomial-time way.

In the formal statement of the corresponding Theorem, we avoid talking about
“achieving goals”. The “goal of a protocol” is a semantic object that is not well
understood. Instead, we make statements about well understood syntactic objects:
the probability distribution on the tapes of interactive machines. In the final version
of this paper we will define the notions of a “correctness preserving compiler” and a
“privacy preserving compiler”. Both notions will be defined as relations between the
probability distribution on the tapes of interactive machines during the execution
of protocol P (in a weak adversarial environment) and the distribution on these
tapes during the execution of P ′ (in a strong adversarial environment). Loosely
speaking, “preserving correctness” means that whatever a party could compute
after participating in the original protocol P , he could also compute when following
the transformed protocol P ′, properly. “Preserving privacy” means that whatever a
set of dishonest players can compute after participating in P ′, the corresponding
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players in P can compute from their joint local “histories” after participating in P .
Similarly we formalize the following

Informal Theorem B There exist an efficient compiler transforming a two-party protocol P that is correct
in a fail-stop model, to a cryptographic two-party-protocol P ′ that achieves the same
goals even if one of the players deviates from P ′ in any arbitrary but polynomial-time
way.

The proofs of the above Theorems make primary use of Theorem 6 to allow a ma-
chine to “prove” to other machines that a message it sent is computed according
to the protocol. In addition, these proofs make innovative use of most of the cryp-
tographic techniques developed in the recent years. Essential ingredients in the
proof of Theorem A are the notions of verifiable secret sharing and simultaneous
broadcast proposed and first implemented by Chor, Goldwasser, Micali and Awer-
buch [CGMA]. An essential ingredient in the proof of Theorem B is Blum’s “coin
flipping into the well” [Blu].

Further Improvement
Theorem A constitutes a procedure for automatically constructing fault-tolerant
protocols, the goal of which is to compute a predetermine function of the private
inputs scattered among the players. This procedure takes as input a distributed
specification of the function (i.e. a protocol for honest players), not the function
itself. It is guaranteed that this procedure will output a fault-tolerant protocol
for computing this very function (i.e. the “correctness” condition) and that the
“privacy” present in the specification will be preserved. Thus, the degree of privacy
offered by the output fault-tolerance protocol depends on the specification, and
not on the function to be computed. Furthermore, for some functions f it seems
to be difficult to write a distributed specification (protocol for honest players) which
offers the maximum degree of privacy. Recently, assuming the exist of an arbitrary
secure encryption scheme, we found a polynominal-time algorithm which on input
a Turing machine specification of a n-ary function f , outputs a protocol for n honest
players which offers the maximum possible privacy. Namely, at the termination
of the protocol, each subset of players can compute from their joint local history
only whatever they could have computed from their corresponding local inputs and
the value of the function. Essential ingredients in the algorithm are the “circuit
encoding” of Barrington [Bar], a modification of the two-party protocol of Yao
[Y2], and a general implementation of a variant of Oblivious Transfer using any
encryption function. Details will appear in a forthcoming paper [GMW].
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The algorithm claimed above can also be applied to any Turing machine speci-
fication of a probability distribution (depending on n variables). Equivalently, one
can view the algorithm as a compiler that on input a n-party protocol (for hon-
est players) outputs a fault tolerant n-party protocol, for computing the same dis-
tributed input-output relation, which offers the maximum degree of privacy. This
compiler, which may increase the privacy present in the input protocol, improves
on and uses as a subroutine the compiler of Theorem A (which only preserves the
privacy present in the input). The compiler of Theorem A, in turn, improves on
and uses as subroutine the compiler of Chor, Goldwasser, Micali and Awerbuch
[CGMA].
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13How to Play Any Mental
Game: A Completeness
Theorem for Protocols
with Honest Majority
This chapter reproduces the contents of the paper “How to Play Any Mental Game,
or A Completeness Theorem for Protocols with Honest Majority,” which appeared
in the proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp.
218–229, 1987.

This influenial work of Oded Goldreich, Silvio Micali, and Avi Wigderson pre-
sented constructions of secure protocols for any multi-party computation problem.
In other words, it shows how a trusted party can be emulated by a set of mutually
distrustful parties. This result combines the construction of “privacy-preserving”
protocols for the “honest-but-curious” model with a method (presented in Chap-
ter 12) of forcing parties to behave in an honest-but-curious manner. The privacy-
preserving protocols rely on the existence of a public-key encryption scheme and an
Oblivious Transfer protocol, which can both be based on the existence of trapdoor
permutations.
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Abstract
We present a polynomial-time algorithm that, given as a input the description of a
game with incomplete information and any number of players, produces a protocol
for playing the game that leaks no partial information, provided the majority of the
players is honest.

Our algorithm automatically solves all the multi-party protocol problems ad-
dressed in complexity-based cryptography during the last 10 years. It actually is a
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Such completeness theorem is optimal in the sense that, if the majority of the play-
ers is not honest, some protocol problems have no efficient solution [c].

1 Introduction
Before discussing how to “make playable” a general game with incomplete infor-
mation (which we do in section 6) let us address the problem of making playable a
special class of games, the Turing machine games (Tm-games for short).

Informally, n parties, respectively and individually owning secret inputs x1, . . . ,
xn, would like to correctly run a given Turing machine M on these xi’s while keeping
the maximum possible privacy about them. That is, they want to compute y =
M(x1, . . . , xn) without revealing more about the xi’s than it is already contained in
the value y itself. For instance, if M computes the sum of the xi’s, every single player
should not be able to learn more than the sum of the inputs of the other parties.
Here M may very well be a probabilistic Turing machine. In this case, all players
want to agree on a single string y, selected with the right probability distribution,
as M ’s output.

The correctness and privacy constraint of a Tm-game can be easily met with the
help of an extra, trusted party P . Each player i simply gives his secret input xi to P . P
will privately run the prescribed Turing machine, M , on these inputs and publically
announce M ’s output. Making a Tm-game playable essentially means that the
correctness and privacy constraints can be satisfied by the n players themselves,
without invoking any extra party. Proving that Tm-games are playable retains most
of the flavor and dificulties of our general theorem.

2 Preliminary Definitions

2.1 Notation and Conventions for Probabilistic Algorithms
We emphasize the number of inputs received by an algorithm as follows. If algo-
rithm A receives only one input we write “A(.)”, if it receives two inputs we write
A(., .) and so on.

RV will stand for “random variable”; in this paper we only consider RVs that
assume values in {0, 1}∗. In fact, we deal almost exclusively with random variables
arising from probabilistic algorithms. (We make the natural assumption that all
parties may make use of probabilistic methods.)

If A(.) is a probabilistic algorithm, then for any input x the notation A(x) refers
to the RV which assigns to the string σ the probability that A, on input x outputs
σ . If S is a RV that assigns positive probability only to a single element e, we denote
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the value e by S. (For instance, if A(.) is an algorithm that, on input x outputs x3,
then we may write A(2) = 8.) This is in agreement with traditional notation.

If f (.) and g(., . . .) are probabilistic algorithms then f (g(., . . .)) is the proba-
bilistic algorithm obtained by composing f and g (i.e. running f on g’s output).
For any inputs x , y , . . . the associated RV is denoted f (g(x , y , . . .)).

Let PA denote the set of probabilistic polynomial-time algorithms. We assume
that a natural representation of these algorithms as binary strings is used.

By 1k we denote the unary representation of integer k.

2.2 Game Networks and Distributed Algorithms
Let us start by briefly describing the communication networks in which games will
be played. This is the standard network supporting the execution of multi-party
protocols.

Informally, a game network of size n is a collection of (interacting) probabilis-
tic polynomial-time Turing machines. Each machine has a private read-only input
tape, a private write-only output tape and a private read-write work tape. All ma-
chines share a common read-only input tape and a common write-only output tape.
The n machines communicate by means of n . (n − 1) special tapes. Machine i pub-
lically sends messages (strings) to machine j by means of a special tape i → j on
which only i can write and that all other machines can read. There is a common
clock whose pulses define time intervals 1, 2, . . . . Messages are sent at the begin-
ning of a time interval and are received within the same time interval. We stress,
though, that our result is largely independent from the specific communication
mechanism, and also holds for “less equipped” communication networks.1

A probabilistic distributed algorithm S running in a game network of size n

is a sequence of programs S = (Si , . . . , Sn), where Si is the program of the ith
Turing machine in the network. We denote by PDA the class of all probabilistic
polynomial-time distributed algorithms.

Let S ∈ PDA run in a game network of size n with common input CI and (respec-
tive) private inputs x1, . . . , xn. Then HS(x1, . . . , xn, CI) denotes the RV consisting
of the public history, that is the sequence of all messages sent in an execution of

1. For instance, there may be only one communication tape. In this case, digital signatures can be
used to authenticate the sender. In case that not all machines may read all communication tapes,
Byzantine agreement can be used to simulate the fact that all processors agree on what message
machine i has sent to machine j at time t . The common clock may be replaced by local clocks
that don’t drift “too much”. The quite tight synchrony of the message delivery can be replaced by
a feasible upper bound on the time it takes a message to be delivered, and so on.
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S; HSi(x1, . . . , xn, CI) denotes the RV consisting of the private history of machine
i, that is the sequence of the internal configurations of machine i in an execution
of S; for T ⊂ {1, . . . , n}, HST (x1, . . . , xn) denotes the vector of the private histories
of the members of T in an execution of S; and OS(xi , . . . , xn, CI) denotes the RV
consisting of the private output of machine i in an execution of S.

2.3 Adversaries
We consider two interesting types of adversaries (faulty machines) in a game net-
work: passive ones (a new notion) and malicious ones (a more standard notion).

A passive adversary is a machine that may compute more than required by its pre-
scribed program, but the messages it sends and what it outputs are in accordance to
its original program. (Passive adversaries may be thought as machines who only try
to violate the privacy constraint. They keep on running their prescribed programs
correctly, but also run, “on the side”, their favorite polynomial-time program to try
to compute more than their due share of knowledge. In an election protocol, a pas-
sive adversary may be someone who respects the majority’s opinion -and thus does
not want to corrupt the tally- and yet wants to discover who voted for whom.)

A malicious adversary is, instead, a machine that deviates from its prescribed
program in any possible action. That is, we allow the program of such a machine to
be replaced by any fixed probbilistic polynomial-time program. (Malicious adver-
sary not only have a better chance of disrupting the privacy constraint, but could
also make the outcome of a Tm-game vastly different than in an ideal run with a
trusted party.)

We allow machines in a game network to become adversarial in a dynamic
fashion, during the execution of a protocol. We also allow adversarial machines
(of either type) to undetectedly cooperate. Adversarial machines are not allowed,
however, to monitor the private tapes or the internal state of good machines.

We believe the malicious-adversary scenario to be the most adversarial among
all the natural scenarios in which cryptography may help.

Jumping haed, we will show that all Tm-games are playable with any number of
passive adversaries or with < n/2 malicious adversaries.

2.4 Indistinguishability of Random Variables
Throughout this paper, we will only consider families of RVs U = {Uk} where the
parameter k ranges in the natural numbers. Let U = {Uk} and V = {Vk} be two fam-
ilies of RVs. The following notion of computational indistinguishability expresses
the fact that, when the length of k increases, Uk becomes “replaceable” by Vk in the
following sense. A random sample is selected either from Uk or from Vk and it is
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handed to a “judge”. After studying the sample, the judge will proclaim his verdict:
0 or 1. (We may interpret 0 as the judge’s desicion that that the sample came from
Uk; 1 as the desicion that the sample came from Vk.) It is then natural to say that
Vk becomes “replaceable” by Vk for k large enough if, when k increases, the verdict
of any computationally bounded judge becomes “meaningless”, that is essentially
uncorrelated to which of the two distributions the sample came from.

To formalize the notion of computational indistinguishablity we make use of
nonuniformity. Thus, our “judge”, rather than polynomial time Turing machine,
will be a poly-size family of circuits. That is a family C = {Ck} of Boolean circuits Ck

with one Boolean output such that, for some constants c, d > 0, all Ck ∈ C have at
most kc gates and kd Boolean inputs. In order to feed samples from our probability
distributions to such circuits, we will consider only poly-bounded families of RVs.
That is families U = {Uk} such that, for some constant e > 0, all RV Uk ∈ U assigns
positive probability only to strings whose length is exac:tly ke. If U = {Uk} is a poly-
bounded family of RVs and C = {Ck} a poly-size sequence of circuits, we denote
by P(U , C , k) the probability that Ck outputs 1 on input a random strings from Uk.
(Here we assume that the length of the strings that are assigned positive probability
by Uk equals the number of Boolean inputs of Ck.)

Definition (Computational indistinguishability): Two poly-bounded families of RVs U and V

are computationally indistinguishable if for all poly-size family of circuits C, for all
constants f > 0 and all sufficiently large k ∈ N ,

|P(U , C , k) − P(V , C , k)| < k−1.

This notion was already used by Goldwasser and Micali [GM] in the context of
encryption and by Yao [Y] in the context of pseudo-random generation. For other
notions of indistinguishability and further discussion see [GMR].

Remark 1 Let us point out the robustness of the above definition. In this definition, we
are handing our computationally bounded “judge” only samples of size 1. This,
however, is not restrictive. It should be noticed that two families of RVs {Uk} and
{Vk} are computationally indistinguishable with respect to samples of size 1 if and
only if they are computationally indistinguishable with respect to samples whose
size is bounded by a fixed polynomial in k.

3 Tm-games With Passive Adversaries
An Tm-game problem consists of a pair (M̄ , 1k), that is, the description of a Turing
machine M and an integer k, the security parameter, presented in unary.



Chapter 13 How to Play Any Mental Game: A Completeness Theorem for Protocols with Honest Majority 313

Let us now make some simplifications that will expedite our exposition. Without
loss of generality in our scenario, we assume that, when (M̄ , 1k) is the common
input in a game network, all private inputs have the same length l and that T (l),
the running time of M on inputs of size l, is less than k.

Let S ∈ PDA. We say that S is a Tm-game Solver for passive adversaries if, for all
Tm-game problems (M̄ , 1k) given as common input and for all (respective) private
inputs x1, . . . , xn,

1. (Agreement constraint)
At the end of each execution of S, for all machines i and j , i’s private output
equals j ’s private output.

2. (Correctness constraint)
OS1(x , . . . , xn, (M̄1k)) = M(x1, . . . , xn) and

3. (Privacy constraint)
∀ T ⊂ {1, . . . , n} and ∀A ∈ PPT , ∃B ∈ PPT such that {Ak} and {Bk} are com-
putationally undistinguishable RVs.

Here

Ak = A((M̄ , 1k), HS((M̄ , 1k)), HST ((M̄1k)))

and

Bk = B((M̄ , 1k), M(x1, . . . , xn), {(i , xi): i ∈ T }).

Let us now interpret the above definition.

The Agreement Constraint
This constraint essentially says that all machines agree on a single, common string
as the output of S.

The Correctness Constraint
This constraint ensures that the output of a game solver S coincides with the one
of M . As M may be probabilistic, the equality of the correctness constraint must
interpreted ss equality between RVs.

The Privacy Constraint
Notice that passive adversaries appear in the above definition in an implicit way.
Algorithm A can be thought as all the members of T being passive adversaries
computing after an execution of S. In fact passive adversaries are obliged to send
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messages according to S and their private history, in an execution of S, is an explicit
input to A. Let us stress that the private history of a machine i contains the name i,
the private input xi and M ’s output as well. Thus the privacy constraint essentially
says that whatever the passive adversaries may compute after executing S, they
could also easily deduce from the desired M ’s output, y, and their own private
inputs (which they are entitled to have!). In fact, if they are given y by running S,
the passive adversaries will see, in addition to y, only the public history and their
own private history. However, whatever they could efficiently compute with this
additional input, they could also have computed without it. In other words, S keeps
whatever privacy of the inputs of the good parties is not “betrayed” by the value y

itself. For instance, if M computes the sum of the xi’s, then the privacy constraint
will allow the adversarial players to compute (at the end of S) essentially only the
sum of the inputs of the good parties. As for another example, if M is the identity
function, then the privacy constraint holds vacuously. Same if the set T is the set
of all players.

4 Hints on How to Play Tm-games With Passive Adversaries
At a first glance enforcing both correctness and privacy constraints of a Tm-game
appears easy only for special cases of M , say the ones computing a constant func-
tion. None-the-less,

Theorem If trapdoor functions exist, there exists a Tm-game solver for passive adversaries.

In this extended abstract we limit ourselves to give a few indications, in an
informal manner, about the proof of the above theorem. Moreover, not to get
into further complications, we do not let the set of adversarial machines to be
chosen dynamically, during the execution of the protocol, but at its start. (We
stress, though, that the adversarial set is still unknown to the good machines). This
restriction will be removed in the final paper.

4.1 A New and General Oblivious Transfer Protocol
In [HR], Rabin proposes the beautiful notion of an Oblivious Transfer (OT). This
is a probabilistic polynomial-time algorithm that allows A(lice), who knows the
prime factorization of an integer n, to send it to B(ob), who knows just n, so that
B will receive n’s factorization with probability l/2 and A does not know whether
or not B received it. Clearly, Rabin’s notion of an OT, supposes that factoring is
computationly hard. Under this assumption, he proposed a protocol that, if A and
B are allowed to be at most passive adversaries, correctly implements an OT. This
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protocol, however, may not work (i.e. no longer possesses a proof of correctness) if
A and B are allowed to be malicious. Using the interactive proof-systems of [GMR],
Fischer, Micali, Rackoff and Wittenberg [FMRW] found a protocol that correctly
implements OT under the simple (and in this context minimal) assumption that
factoring is hard. Rabin’s OT has proved to be a very fruitful notion, as exemplified
by various applications proposed by Blum [B].

A more general and useful notion of OT has been proposed by Even, Goldreich
and Lempel [EGL], the one-out-of-two OT. In their framework, A has two messages
m0 and m1. By using a cryptosystem E, she computes σ0 = E(m0) and σ1 = E(m1)

and sends σ1 and σ2 to B. B chooses one of these encryption, σi. A one-out-of-two
OT allows B to read the corresponding message mi, while A will not know which
message B has read (whenever m0 and m1 are different). This notion achieves the
right level of generality and is crucial to what follows. Even, Goldreich and Lempel
also proposed the first implementation of a one-out-of-two OT using public-key
cryptosystems. Their protocol has the merit of having freed the implementation of
an oblivious transfer from the algebraic setting to which it appeared to be confined.
Their protocol, though, requires a quite strong set of assumptions even when the
adversaries are only passive.

Below, we contribute a new protocol that correctly implements a one-out-of-
two OT in presence of passive advarsaries. The existence of trapdoor permutations
suffices to prove the correctness of our protocol.

Trapdoor and One-Way Functions
A satisfactory definition of a trap-door permutation is given in [GoMiRi]. Here let
us informally say that a family of trapdoor permutations f possesses the following
properties:

. It is easy, given an integer k, to randomly select permutations f in the family
which have k as their security parameter, together with some extra “trap-
door” information allowing easy inversion of the permutations chosen.

. It is easy to randomly select a point in f ’s domain.

. It is hard to invert f without knowing f ’s trap-door on a random element in
f ’s domain.

We can interpret the above by saying that a party A can randomly select a pair of
permutations, (f , f −1), inverses of each other. This will enable A to easily evaluate
and invert f ; if now A publicizes f and keeps secret f −1, then inverting f will
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be hard for any other party. We may write fk, to enphasize that k is the security
parameter of our permutation.

Trap-door permutations are a special case of one-way permutations. These are
permutations enjoying the three properties above, except that we do not insist that
the trap-door information exists.

Random Bits in One-Way Permutations
Our one-out-of-two OT protocol makes use of trap-door functions f hiding a ran-
dom bit Bf . Here Bf is a polynomial-time computable Boolean function; the word
“bit” is appropriate as Bf evaluates to 1 for half of the :’s in f ’s domain.

We say that {Bf } is a random bit in a family {f } of trap-door permutations if ∀
predicting algorithm Alg that, on inputs f = fk and f (x), outputs, in T (k) steps,
a guess for Bf ((x)) that is correct with probability ε, ∃ Alg ′ that, on inputs f and
f (x), outputs x in poly(T (k), ε−1) expected time.

Thus, being f trap-door, no probabilistic, polynomial-time algorithm given
fk(x), can correctly predict Bfk

(x) with probability > 1/2 + 1/poly(k). We might as
well flip a coin. Thus, for a one-way permutation f , given f (x) the value of Bf (x)

cannot be guessed in polynomial time essentially better than at random.
The notion of a random bit in a one-way permutation was introduced by Blum

and Micali [BM] who showed a random bit in the Discrete Logarithm Problem, a
well known candidate one-way permutation. Chor and Goldreich show random bits
in the RSA function. Do all one-way functions have a random bit? We do not know
the answer to this question, but Yao [Y] has shown the next best thing. Namely,
that given a one-way (trap-door) permutation f , one can construct a one-way (trap-
door) permutation F with a random bit BF (for a detailed proof of this theorem see
[BH]). Levin [L] has actually proved a more general version of this theorem.

Our Protocol
Without loss of generality, we assume that the two messages in the one-out-of-two
OT both consist of a single bit.

In our protocol, both A and B ∈ PA. A’s inputs are a pair of bits (b0, b1) and
their corresponding pair of encryptions (E(b0), E(b1)) where E is a probabilistic
encryption algorithm [GM]. The pair (E(b0), E(b1)) is also an input to B who has
an additional private input bit α. It is desired that even if some party is a passive
adversary the following two properties hold:

(i) B will read the bit b0, but will not be able to predict the other bit, bᾱ,
essentially better than at random.
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(ii) A cannot predict α essentially better than at random.

We achieve this by means of the following protocol.

Step 1

A randomly selects (f , f −1), a trap-door function of size k (having a random bit Bj )
together with its inverse. She keeps f −1 secret and sends f to B.

Step 2

B randomly selects x0 and x1 in f ’s domain and computes z = f (x0) and sends A

the pair

(u, v) =
{

(f (x0), x1) if α = 0

(x0, f (x1)) if α = 1

Step 3

A computes (c0, c1) = (Bf (f −1(u)), Bf (f −1(v))). She sets d0 = b0 xor c0 and d1 =
b1 xor c1 and sends (d0, d1) to B.

Step 4

B computes bα = dα xor Bj(xα).

First notice that A, B ∈ PA and that B correctly reads bα. Property i) is satisfied
as B only sees bᾱ, exclusived-ored with a bit essentially 50-50 unpredictable to him.
Thus he cannot correctly guess bᾱ essentially better than at random. Let us now
show that ii) holds. As f is a permutation, randomly selecting x in f ’s domain and
computing f (x) yealds a randomly selected element in f ’s domain. Thus (u, v) is
a pair of randomly selected elements in f ’s domain both if α = 0 or α = 1. As (u, v)

is the only message B sends A, not even with infinite computing power A will find
out whether B has read b0 or b1.

Notice that the protocol makes use that the adversaries are at most passive in a
crucial way. Should in fact B send (u, v) = (f (x0), f (x1)) in step 2, he will easily
read both bits. Thus, we will make use of additional ideas to handle malicious
adversaries.

Notice also that we never made use of the encryptions E(b0) and E(b1). b0 and b1

could have been bits in “A’s mind.” We have added these encryptions for uniformity
with the next protocol in which the two messages must appear encrypted. Another
reason is that, when we will handle malicious adversaries, we will need these
encryptions to define the problem.
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It is easy to see that, having solved the single-bit messages case, we have also
solved the case of arbitrary messages m0 and m1 of equal, known length l. In fact,
we can repeat the above protocol l times, so that, if α is 0(1), B is required at the
ith time to learn the ith bit of m0(m1).

4.2 4.2 Strengthening Yao’s Combined Oblivious Transfer
In [Y2], Yao presented a protocol that we call combined oblivious transfer (COT).
The protocol involves two parties A and B, respectively owning private inputs a and
b and any chosen function g. It possesses the following property: upon termination,
A computes g(a , b), while B has no idea of what A has computed. If we think of a ad
b as secrets, B appears to obliviously transfering a prescribed combination of his
and A’s secret to A. Yao implemented COT based on the assumption that factoring
is hard, (which yelds, as shown by Blum [B]) a particular trap-door permutation. We
strengthen his result by showing that COT can be correctly implemented based on
any trap-door permutation. We do this by using the one-out-of-two OT of section
4.1 in Yao’s scheme. Let us consider first the case where a and b are bits and g is
the Boolean AND. Consider figure 1. Here E1, . . . , E6 are independently selected
encryption algorithms, respectively having decryption keys D1, . . . , D6. E1 and E2

label the first input-wire, E3 and E4 the second input-wire, and E5 and E6 the
output-wire. Each row in the gate is formed by the encryption of two strings. m

and n are two randomly selected strings whose bit-by-bit exclusive-or equals D5. p

and q are two randomly selected strings whose xor equals D6; so are x and t ; so are
u and v. The 4 rows have been put in the gate in random order. E1, E2andE5, E6

are publically labelled by complementary bits. E3 and E4 are each secretely labelled
by a bit; more precisely, E3 is SECRETELY labelled 0 with probability 1/2 and E4 is
labelled with the complement of E3’s bit. (This secrecy is pictorially indicated by
drawing E3 and E4’s bits by a dotted line.) Define the value of a wire to be 0 (1) if
one ONLY possesses the decoding algorithm of encryption algorithm labelled 0 (1).
Then figure 1 is a or-gate. For instance, assume that both input-wires have value 0.
That is, one possesses only D1 and D4. Then one is able to decrypt both entries only
in the third row. By taking the xor of u and v, one easily obtains D6, but has no idea
what D5 may be. Thus the output-wire has value 0 = AND(0, 0).

To COTransfer AND(a , b), B generates a COT AND-gate like in figure 1, keeping
for himself all decoding algorithms and all the strings in the rows. Then, he gives
A the decoding algorithm of the second input-wire that corresponds to the value
of b, his own input. Notice that as the association between E3, E4 and 0, 1 is secret
(and E1, E2, E3, E4 enter symmetrically in the gate rows), this will not betray b at
all. Now A will get either D1 or D2, according to the value of a, by means of our one-
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Figure 1 A COT AND-gate

Figure 2

out-of-two OT. Thus, B will not know which algorithm she got. At this point A can
easily compute the value of the output-wire. Thus she will be the only one to know
AND(a , b).

It is trivial to build a COT NOT -gate. Notice that B may also keep secret the
corresponding between 0, l and E5, E6. This allows the out-put wire to become
an input-wire of another gate. If the encryption algorithms of this second gate
are publically labelled 0/1 (see fig. 2), we see that A may evaluate any 2-gates
function on her and B’s inputs, without knowing intermediate resu1ts. Better
said, B can “COTransfer” the value of any 2-gates function. By cascading this
way COT AND-gates and COT NOT -gates (which are trivial to design), we can see
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that B can COTransfer the value of any function, provided that there is an upper
bound to the length of A’s and B’s inputs, (else, the length of the inputs will be
betrayed).

4.3 The Tm-game Solver for Passive Adversaries
Recall that a Tm-game solver wants to compute M(x1, . . . , xn) while respecting
the privacy constraint. We want to use COT as a subroutine to construct a Tm-
solver. This does not appear to be straightforward. For instance, if two parties i

and j use COT so that i will compute g(xi , xj) for some function g, this would
already be a violation of the privacy constraint. Recall also that the Tm-game solver
has to be polynomial not only in M ’s running time, but also in n, the number of
players.

We find a way out by making special use of a lemma of Barrington’s [Ba] that
simulates computation by composing permutations in S5, the symmetric group
on 5 elements. The general picture is the following. First transform the Turing
machine M of a Tm-game to an equivalent circuit C in a standard way. The Boolean
inputs of C will be b1

1, . . . , b1
l

, . . . , bn
1 , . . . , bn

l , the bits of the n, l-bit long, inputs of
tour parties. This circuit C is then transformed to straight-line program as in [Ba].
This straight-line program is essentially as long as C is big. In it,

. 0,1 are encoded by two (specially selected) 5-permutations

. the variables range in S5 and

. each instruction consists of multiplying (composing) two 5-permutations σ

and τ , whre σ(τ) is either a constant, or a variable, or the inverse (in S5) of a
variable.

At the start, each party takes each of his private bits and encodes it by a 5-
permutation σ as in [Ba]. Then he divides σ . That is, he selects at random n-1
5-permutations σ1, . . . , σn−1 and gives the pair (i , σi) to party i (possibly himself).
He then sets σn = (σ1 . . . . . σn−1)

−1 . σ and gives (n, σn) to party n. Now, inductively,
assume that each variable is divided among the parties. That is, for each variable σ ,
each player i possesses an index permutation pair (x , σz) so that �x

x=1σz = σ and,
given only n − 1 pieces, σ cannot be guessed better than at random. We now want
to show that each instruction can be performed (i.e., each party can compute his in-
dividual piece of the result) respecting the privacy constraint. There are essentially
3 cases.

Case 1: The instruction is of the form σ . c, where σ is a variable and c a constant.
By induction, each party has a piece of the form (x , σx). Then the party owning the
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piece (n, σn) sets his new piece to be (n, σn
. c) and all each party leaves his piece

untouched. It is immediately checked that the ordered product of the new pieces
is σ . c and that privacy has been preserved against n − 1 passive adversaries.

Case 2: The instruction is of the form σ−1 . c where, again, σ is a variable and c

a constant. It will be enough to show how to compute pieces for σ−1 respecting the
privacy constraint. To do this, if a party has a piece (x , σx), he sets his new piece to
be (n − x + 1, σ−1

x
).

Case 3: The instruction is of the form σ . τ , where both u and τ are variables. Then
σ . τ = σ1 . . . σn

. τ1 . . . τn, and assume for simplicity that party i possesses piece σi

and τi. Unfortunately, party 1 cannot compute his piece of σ . τ by multiplying his
own two pieces. In fact, they are n positions apart in the product and S6 is not
commutative (a fact crucial in Barrington’s argument). The idea will then consist
of making “partial progress”. That is, moving party 1’s pieces closer together by
“swapping” σn and τ1. This can be correctly accomplished by giving party 1 a piece
τ ′

1 and party n a piece σ ′
n

so that τ ′
i

. σ ′
n
= σn

. τ1. This way the product of the new
(and newly ordered pieces) would remain σ . τ . One way of doing this would be of
having party 1 and party n tell each other σn and τ1. However this would violate the
privacy constraint with respect to a set of n − 1 passive adversaries. Instead, we use
COT in the following way. Party n randomly selects a 5-permutation p. Consider
now the function g such that, for 5-permutations x,y, and z, g(x , (y , z)) = w where
w . z = y . x. Let now party 1 (with the role of A and input a = τ1) and party n (with
the role of B and input b = (σn, ρ)) play COT with function g. Set τ ′

1 = g(a , b) and
σn = ρ. Then we have made the desired partial progress. In fact, not only the product
of the new pieces is unaltered, but we have also respected the privacy constraint.
Informally, party n’s new piece is a random 5-permutation selected by party n

himself and thus cannot give him any information neither about party 1’s old piece
nor the new one; moreover the transference of g(a , b) is oblivious and thus cannot
give party n any knowledge either. On the other side, party 1 is dealt a new piece
g(r1, (σn, ρ)) and he knows τ1. However, as for all z and y, g(x , (y1.)) is injective on
Sδ, and ρ has been randomly and secretely selected by party n, also party 1 does
not get any knowledge that he did not possess before! Notice also that during this
“swap” we did not create any other pieces. Thus after n “swaps” the only two pieces
of party 1 will be in the first two positions in the product and he can thus multiply
them together. This product will be party 1’s piece for the variable σ . τ . It should be
verified that the entire walk of party 1 τ -piece towards the left preserves correctness
and does not violate the privacy constraint. Essentially because a new, random piece
is created at each step. This way, after O(n2) “swaps”, and in polynomial time, all
parties receive their piece of σ . τ .
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At the end of the straight-line program, for each output variable γ , each party
publicizes his own piece (x , γx), the ordered product of these pieces is computed
and the output bit recovered so to satisfy both the correctness and the privacy
constraint. (A more formal argument will be given in the final paper.)

5 Malicious Adversaries
The complexity of our Tm-game solver greatly increases when up to half of the play-
ers is allowed to be malicious and can more powerfully collaborate to try to disrupt
the correctness and the privacy constraints. We use essentially all the cryptographic
tools developed in the last ten years in the (correct) hope that they would make
possible protocol design. Also, the proof of its correctness is rather delicate and
unsuitable for an abstract. We will give it in the final paper. Here we only indicate
what making playable a Tm-game with malicious advesaries may mean and which
general ideas are involved in our solution.

As in this case some of the parties may not follow their prescribed programs at
all, it is necessary to clarify what a private input is. After all, what stops someone
from pretending that his private input is different from what it actually is? To avoid
this, we assume that the parties have established their private inputs by announcing
correct encodings of them. Their inputs are by definition the unique decryption of
their respective encodings. Moreover, it shoud be clear that seeking a solution to a
Tm-game problem makes sense only if the parties are “willing to play”. If, say, one of
them “commits suicide”, carrying with himself what his private input was, there is
very little one can do besides investing exponential time and break his encryption.
However we can, loosely speaking, prove that

Given n players willing to play, less than half of which malicious, all Tm-games
are playable.

The above term “willing to play”, indicates a technical condition rather than a
psychological one. Namely, having successfully completed the engagement protocol.
After completing this protocol, all players can be forced to play any desired game.
The engagement protocol consists of two phases.

1. For each player i, a protocol is performed at the end of which no minority of
the players can even predict a bit of i’s private input with chances essentially
better than 1/2. However, it is guaranteed that any subset of cardinality > n/2
can, without the cooperation or even against the actions of other players,
easily compute i’s private input.

2. The community deals to each player a sequence of encrypted “random” bits
so that a) the recipient knows their decryption, b) they appear unpredictable
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to any minority of the players, but c) they are easily computable by any
majority of the players.

We stress that while no one can be forced to complete the engagement protocol
(so to become “willing to play”), no one can decide not to complete it because he
received a better idea of what the result of the subsequent game may be. Completing
the engagement protocol will not give any player (or any small enough group of
players) any knowledge about the others’ private inputs.

Phase 1 of the engagement protocol consists of a verifiable secret sharing in the
sense of Awerbuch, Chor, Goldwasser and Micali [CGMA] . However, we contribute
a new protocol both tolerating up to n/2 malicious adversaries and using any trap-
door function whatsoever. Phase 2 of the engagement protocol is the multy-party
version of Blum’s coin flipping by telephone. Despite the (deceivingly) similarity
with the verifiable secret sharing of phase 1, to implement phase 2 we must make
use of a yet unpublished theorem (and algorithm) of ACGM.

We now give a bird’s eye view of how to make any Tm-game g playable despite
malicious adversaries. On input M , 1k, we first run the engagement protocol, then
the passive-adversary playable version of the Tm-game. Here we require all parties
to use, as their private inputs, the strings they shared in phase 1 of the engagement
protocol and, as a source of randomness, the encrypted random bits each was dealt
in phase 2. The key point is that, now, no malicious adversary can deviate from his
prescribed program, and thus he becomes a simple passive adversary. In fact, he
is required to prove, in zero-knowledge (in the sense of Goldwasser, Micali and
Rackoff [GoMiRa]), that each message he sends is what he should have sent being
honest, given his private input, his random choices and the messages he received
so far. (Here, an essential tool is our recent result that all NP languages possess
zero-knowledge proofs [GMW] .) If a malicious party, frustrated at not being able
to send messages according to a different program, decides to stop, his input
and random bits will be reconstructed by the community who will compute his
messages when necessary, without skewing the probability distribution of the final
outcome.

We would like to stress our new use of NP-completeness. From being our most
effective way to prove lower-bounds, it now becomes our most effective tool to
construct correct protocols.

6 General Games
Many actions in life, like negotiating a contract, casting a vote in a ballot, play-
ing cards, bargaining in the market, submitting a STOC abstract, driving a car
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and simply living, may be viewed as participating with others in a game with pay-
offs/penalties associated with its results. This is not only true for individuals, but
also for companies, governments, armies etc. that are engaged in financial, polit-
ical and physical struggles. Despite the diversity of these games, all of them can
be described in the elegant mathematical framework laid out by Von Neumann
and Morgenstern earlier in this century. Game theory, however, exhibits a “gap”, in
that it neglected to study whether, or how, or under which conditions, games can
be implemented. That is, it never addressed the question of whether, given the de-
scription of a game, a method existes for physically or mentally playing it. We do fill
this gap by showing that, in a complexity theoretic sense, all games can be played.

In this extended abstract we will only informally clarify what and how this is. We
start by briefly recalling the ingredients used by game theory to model a n-players
game with incomplete information.

6.1 Games
Essentially, a game consists of a set S of possible states, representing all possible
instantaneous descriptions of the game, a set M of possible moves, describing all
possible ways to change the current state of the game, a set {K1, K2, . . . , Kn} of
knowledge functions, where Ki(σ ) represents the partial information about state σ

possessed by player i, and a function p, the payoff junction, that, evaluated on the
final state, tells the outcome of the game. Without loss of generality, the players
make moves in cyclic order and the set of possible moves in any state are the same
for all states. Also, WLOG, the game goes on for a fixed number of moves m. With
little restriction we do assume that the players make use of recursive strategies
for selecting their moves. (The classical model does not rule out selecting moves
according to an infinite table.)

Let us now see how a game evolves using, in parenthesis, poker as an example.
The game starts by having “NATURE” select an initial state σ1. (For poker, σ1 is a
randomly selected permutation of the 52 cards; the first 5n cards of the permutation
representing the players initial hands and the remaining ones the deck.) Player 1
moves first. He does not know σ1 -nor does anybody else-, he only knows K1(σ1), his
own hand: the first 5 elements of permutation σ1). Based solely on K1(σ1), he will
select a move p (e.g. he changes 3 of his cards with the first 3 cards of the deck).
This move automatically updates the -unknown!- current state to σ2. (The new state
consists of the cards currently possessed by each player, the sequence of cards in
the deck and which cards were discarded by player 1. K1(σ2) consists of the new
hand of player 1 and the cards he just discarded.) Now it is the turn of player 2. He
also does not know the current state σ2, he only knows K2(σ2). Based solely on this
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information, he selects his move, which updates the current state, and so on. After
the prescribed number of moves, the payoff function p is evaluated at the final state
to compute the result of the game. (In poker the result consists of who has won,
how much he has won and how much everyone else has individually lost.)

Note that a Tm-game is indeed a game in which the initial state is empty and
each player moves only once. State σi consists of the sequence of the first i moves.
Each player has no knowledge about the current state and chooses his move to be
the string xi, his own private input. The payoff function M is then run on σn. (Having
probabilistic machines running on the final state, rather than deterministic ones,
is a quite natural generalization.)

From this brief description it is immediately apparent that, by properly selecting
the knowledge functions, one can enforce any desired “privacy” constraints in a
game.

6.2 Playable Games
Game theory, besides an elegant formulation, also suggests to the players strategies
satisfying some desired property (e.g. optimality). That is, game theory’s primary
concern is how TO SELECT MOVES WELL. However, and ironically!, it never ad-
dressed the question of how TO PLAY WELL. For a general n-player game, all we
can say is that we need n + 1 parties to properly play it; the extra party being the
“trusted party”. The trusted party communicates privately with all players. At step
t , he knows the current state σt of the game. He kindly computes α = kt mod n(σt),
communicates α to player t mod n, receives from him a move μ, secretely computes
the new state St+1 = μ(St), and so on. At the end, the trusted party will evaluate the
payoff function on the final state and declare the outcome of the game. Clearly,
playing with the trusted party achieves exactly the privacy constraints of the game
description, and at the end each player will get the correct outcome.

Now, the fact that, in general, a n-person game requires n + 1 people to be
played, not only is grotesque, but it also diminuishes the otherwise wide appli-
cability of game theory! In fact, in real life situations, we may simply not have any
trusted parties, whether men or public computers. Recently, complaints have been
raised about finantial transactions in the stock market. The complaints were about
the fact that some parties were enjoying knowledge that was considered “extra” be-
fore choosing their move, i.e. before buying stocks. Just another game, the stock
market, but one in which you may desire trusting no one!

We are thus led to consider the notion of a (purely) playable game. This is a
n-person game that can be implemented by the n players without invoking any
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trusted parties. In general, however, given the specification of a game with com-
plicated knowledge functions, it is not at all easy to decide whether it is playable
in some meaningful way. Here, among the “meaningful way”, we also include non-
mathematical methods. Yet, the decision may still not be easy.

Poker, for instance, has simple enough knowledge functions (i.e. privacy con-
straints) that makes it playable in a “physical” way. In it we use cards with equal
“back” and “opaque”, tables whose top does not reflect light too much, we shuf-
fle the deck “a lot”, and we hand cards “facing down”. All this is satisfactory as in
our physical model (world) we only see along straight lines. However, assume we de-
fine NEWPOKER as follows. A player may select his move not only based on his own
hand, but also on the knowledge of whether, combining the current hands of all
players, one may form a royal flush. NEWPOKER is certainly a game in the Von Neu-
mann’s framework but it, is no longer apparent whether any physical realization of
the game exists, particularly if some of the players may be cheaters.

This is what we perceive lacking in game theory: the attention to the notion of
playability. At this point a variety of good questions naturally arises:

Is there a model (physical or mathematical) which makes all games playable?

Or at least,

Does every game have a model in which: it is playable?

And if not,

Should we restrict our attention to the class of playable games?

We show that the first question can be affirmatively answered in a computational
complexity model.

6.3 A General Result
Theorem If any trap-door function exists, any game is playable if more than half of the players

are honest.

Essentially our result consists of a protocol for simulating the trusted party of
an ideal game. That is, if more than half of the players follow our protocol, whatever
a player (or a set of players of size less than n/2) knows at any step of the game, he
would have also known in an ideal execution of the game with a trusted party. In our
context the knowledge constants are satisfied in a computational complexity sense.
Namely, any player (or collection of dishonest players) in order to compute anything
more than his due share of the current state, should perform an exponential-time



Chapter 13 How to Play Any Mental Game: A Completeness Theorem for Protocols with Honest Majority 327

computation. Unfortunaly, we cannot, in this extended abstract, elaborate on the
relationship between general games and Tm-games, nor how to pass from solving
the latter ones to solve the general case. We’ll do this in the final paper.

6.4 A Completeness Theorem for Fault-Tolerant Computation
Our main theorem has direct impact to the field of fault-tolerant computation. This
is so as protocols, when properly formalized (which we will do in the final paper),
are games with partial information. Thus, as long as the majority of the players is
honest, all protocols may be correctly played. Actually, slightly more strongly, the
correct way to play a game can be found in a uniform manner. Namely, we exhibit a
specific, efficient algorithm that, on input a protocol problem, outputs an efficient,
distributed protocol for solving it.

It should be noticed that, before this, only an handful of multi-party protocol
problems were given a satisfactory solution (e.g. collective coin flipping and poker
over the telephone, secret exchange, voting, and a few others). Moreover the security
of some of these solutions crucially depended on the “trap-doorness” of specific
functions satisfying some additional, convenient property (e.g. multiplicativity). By
contrast, our completeness theorem is proved based on any trap-door function
(multiplicative or not, associative or not, etc.). That is, we prove that, if public-
key cryptography is possible at all, then all protocols problems are (automatically!)
solvable if more than half of the players are honest.

7 Recent Developments
Recently, Haber and Micali found a Tm-game solver that is algorithmically much
simpler (for instance it does not use Barrington’s straight-line programs) but more
difficult to prove correct. Also, Goldreich and Vainish found a simpler solution
based on a specific assumption, the computational difficulty of quadratic resid-
uosity.

8 Acknowledgements
We are very grateful to Shimon Even, Dick Karp, Mike Merritt, Albert Meyer, Yoram
Moses for having doubted the generality of some of our intermediate solutions and
having encouraged us to reach the right level of generality. In particular, Albert
Meyer contributed the beautiful notion of a Turing-machine game, and Dick Karp
steered us toward games with incomplete information as the best avenue to our
completeness theorem for protocols.



328 Chapter 13 How to Play Any Mental Game: A Completeness Theorem for Protocols with Honest Majority

We also would like to thank Benny Chor, Mike Fischer and Shafi Goldwssser for
helpful discussions concerning the issues of this paper.

9 References
[Ba] D. Barrington , Bounded-Width Branching Programs Recognize Exactly Those Languages

in NC1, Proc. 18th STOC, 1986 pp 1-5

[B1] M. Blum, Coin Flipping by Telephone, IEEE COMPCON 1982, pp. 133-137.

[BH] R. Boppana and R. Hirschfeld, Pseudo-Random Generatora and Complexity Classes,
To appear in Randomness and Computation, 5th volume of Advances in Computing
Research, ed. S. Micali

[BM] M. Blum and S. Micali, How To Generate Sequences Of Cryptographically Strong Pseudo-
Random Bits, SIAM J. on Computing, Vol. 13, Nov 1984, pp. 850-864

[CG] B. Chor and 0. Goldreich, RSA/Rabin Bits Are 1/2 + 1/poly(log N) Secure, To appear SIAM
J. on Computing. Earlier version in Proc. FOCS 1984, pp. 449-463

[CGMA] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults’, Proc. 26th FOCS, 1985, pp. 383-395

[EGL] S. Even, O. Goldreich, and A. Lempel, A Randomized Protocol for Signing Contracts,
CACM, vol. 28, No. 6, 1985, pp. 637-647

[FMRW] M.Fischer, S. Micali, C. Rackoff and D. Witenberg, A Secure Protocol for the Oblivious
Transfer, In preperation 1986.

[GM] S. Goldwasser, and S. Micali, Probabilistic Encryption, JCSS Vol. 28, No. 2, April 1984.
An earlier version (containing other results) was titled Probabilistic Encryption and How
to Play Mental Poker Hideing Ail Partial Injormation,

[GMR] S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Interactive
Proof-Systems, To appear SIAM J. on Computing (manuscript available from authors).
Earlier version in Proc. 17th Annual ACM Symp. on Theory of Computing, pp 291-304.

[GoMiRi] S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against
Adaptive, Chosen Cyphertezt Attack To appear in SLAM J. on Computing (available from
authors)
Earlier version, titled ”A Paradoxical Solution to the Signature Problem, in Proc. 25th
FOCS, 1984, pp. 441-448

[GMW] O. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing but their Validity
and a Methodology of Cryptographic Design, Proc. of FOCS 1986.

[HR] J. Halpern and M.O. Rabin, A Logic to reason about likehood, Proc. of 15th STOC, 1983.

[L] L. Leonid, One-Way Functions and Pseud0-Random Generators, Proc. 17th STOC, 1985,
pp. 363-365

[Y] A.Yao, Theory and Application of Trapdoor Functions, Proc. of 23rd FOCS, IEEE, Nov.,
1982, pp. 80-91.

[Y2] A.Yao, How to Generate and Exchange Secrets, Proc. 27th STOC, 1986, pp. 162-167



14Non-Interactive
Zero-Knowledge (NIZK)
Proof Systems
This chapter reproduces the contents of the paper “Non-Interactive Zero-Know-
ledge and its Applications,” which appeared in the proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pp. 103–112, 1988.

This influential work of Manuel Blum, Paul Feldman, and Silvio Micali intro-
duced a model that includes a common random string provided from the outside
and available to both the prover and the verifier. It then showed how to provide zero-
knowledge (non-interactive) proofs for any NP-assertion. Such NIZKs have been
used as a building blocks in many subsequent works (e.g., in constructing public-
key encryption schemes that withstand chosen-ciphertext attacks).



Non-Interactive
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(Extended Abstract)
Manuel Blum∗ (Computer Science Dept., Univ. of Calif., Berkely, CA),
Paul Feldman (MIT Lab. for Computer Sci, Cambridge, MA),
Silvio Micali† (MIT Lab. for Computer Sci, Cambridge, MA)

Abstract
We show that interaction in any zero-knowledge proof can be replaced by sharing a
common, short, random string. We use this result to construct the first public-key
cryptosystem secure against chosen ciphertext attack.

1 Introduction
Recently [GMR] have shown that it is possible to prove that some theorems are true
without giving the slightest hint of why this is so. This is rigorously formalized in
the somewhat paradoxical notion of a zero-knowledge proof system
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If secure encryption schemes exist, though, these proof systems are far from
being a rare and bizar event. In fact, under this assumption, [GMW] demonstrate
that any language in NP possesses zero-knowledge proof systems.

Actually, as recently pointed out by Ben-Or, Goldreich, Goldwasser, Hastad,
Micali and Rogaway [BGGHMR], the same is true for all languages in IP; also, as
pointed out by Blum [B2], any theorem at all admits a proof that conveys zero-
knowledge other than betraying its own length.

Zero-knowledge proofs have proven very useful both in complexity theory and
in cryptography. For instance, in complexity theory, via results of fortnow [F] and
Boppana and Hastad [BH], zero-knowledge provides us an avenue to convince our-
selves that certain languages are not NP-complete. In cryptography, zero-knowledge
proofs have played a major role in the recently proven completeness theorem
for protocols with honest majority [GMW2]. They also have inspired rigorously-
analyzed identification schemes [FFS] that are as efficient as folklore ones.

Despite its wide applicability, zero-knowledge remains an intriguing notion:
What makes zero-knowledge proofs work?

Three main features differentiate all known zero-knowledge proof systems from
more traditional ones:

1. Interaction: The prover and the verifier talk back and forth

2. Hidden Randomization: The verifier tosses coins that are hidden from the
prover and thus unpredictable to him.

3. Computational Difficulty: The prover imbeds in his proofs the computational
difficulty of some other problem.

At a first glance, all of these ingredients appear to be necessary. This paper
makes a first, important step in distilling what is essential in a zero-knowledge
proof. We show that computational difficulty alone (for instance the hardness
of distinguishing products of 2 primes from products of 3 primes) may make
inessential the first resource (interaction) and and eliminate the secrecy of the second
resource (randomness). That is, if the prover and the verifier share a common
random string, the prover can non-interactively and yet in zero-knowledge convince
the verifier of the validity of any theorem he may discover. A bit more precisely,
for any constants c and d, sharing a k-bit long random string allows a prover p
to prove in zero-knowledge to a poly(k)-time verifier V any kc theorems of kd size
non-interactively; that is, without ever reading any message from V.

A Conceptual Scenario: Think of P and V as two mathematicians. After having
played “heads and tails” for a while, or having both witnessed the same random
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event, P leaves for a long trip along the world, during which he continues his math-
ematical investigations. whenever he discovers a theorem, he writes a postcard to v
proving the validity of his new theorem in zero-knowledge. Notice that this is nec-
essarily a non-interactive process; better said, it is a mono-directional interaction:
From P to V only. in fact, even if V would like to answer or talk to P, he couldn’t: P
has no fixed (or predictable) address and will move away before any mail can reach
him.

1.1 Our Model Versus the Old One
While the definition of zero-knowledge remains unchanged, the mechanics of the
computation of the prover and verifier changes dramatically.

Notice that sharing a random string σ is a weaker requirement than being able to
interact. In fact, if P and V could interact they would be able to construct a common
random string by coin tossing over the phone [B1]; the converse, however, is not
true.

Also notice that sharing a common random string is a requirement even weaker
than having both parties access a random beacon in the rabin’s sense (e.g., the same
geiger counter). In this latter case, in fact, all made coin tosses would be seen by
the prover, but the future ones would still be unpredictable to him. by contrast,
our model allows the prover to see in advance all the coin tosses of the verifier.
That is the zero-knowledgeness of our proofs does not depend on the secrecy, or
unpredictability of 7, but on the “well mixedness” of its bits! This curious property
makes our result potentially applicable. For instance, all libraries in the country
possess identical copies of the random tables prepared by the rand corporation.
Thus, we may think of ourselves as being already in the scenario needed for non-
interactive zero-knowledge proofs.

1.2 The Robustness of Our Result
As we have already said, we guaranltee that all theorems proved in our proof systems
are correct and zero-knowledge if the string σ is a truly random one. We may rightly
ask what would happen if σ was not, in fact, truly randomly selected. fortunately,
the poor randomness of σ may upset the zero-knowledgeness of our theorems,
but not their correctness. That is, for almost all (poorly random) σ ’s, there is no
wrong statement that can be accepted by the verifier. This is indeed an important
property as we can never be sure of the quality of our natural sources of randomness.
Unfortunately, due to the limitations of an extended abstract, we cannot further
elaborate on this and similar points. We wish, however, to point out the following
important corollary of our result.
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1.3 Applications of our Result
A very noticeable application of non-interactive zero-knowledge is the construction
of encryption schemes á la diffie and hellman that are secure against chosen cipher-
text attacks. Whether such schemes existed has been a fundamenatal open problem
ever since the appearence of complexity-based cryptography. We will discuss this
application in Section 3.

1.4 What’s Coming
The next section is devoted to set up our notation, recall some elementary facts
from Number Theory and state the complexity assumption which sufficies to show
the existence of non-interactive, zero-knowledge proofs.

In Section 3, we show that if a k4-bit string is randomly selected and given to
both the proven and the verifier, then the first can prove in zero-knowledge, for any
single string x (of length k) belonging, to a NP-language L, that indeed x ∈ L.

Only in Section 4 we show that, for each fixed polynomial Q(.), using the same
randomly chosen k4-bit string, the prover can show in zero-knowledge membership
in NP languages for any Q(k) strings of length Q(k).

2 Preliminaries

2.1 Notations and Conventions
Let us quickly recall the standard notation of [GoMiRi].

We emphasize the number of inputs received by an algorithm as follows. If
algorithm a receives only one input we write “A(.)”, if it receives two inputs we
write “A(., .)” and so on.

If A(.) is a probabilistic atgorithm, then for any input x, the notation A(x) refers
to the probability space that assigns to the string σ the probability that A, on input
x, outputs σ . If S is a probability space, then PRS(e) denotes the probability that S

associates with the element e.
If f (.) and g(., . . . , .) are probabilistic algorithms then f (g(., . . . , .)) is the

probabilistic algorithm obtained by composing f and g (i.e. running f on g’s
output). For any inputs x , y , . . . the associated probability space is denoted by
f (g(x , y , . . .)).

If s is any probability space, then z ← S denotes the algorithm which assigns
to x an element randomly selected according to S. If f is a finite set, then the
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notationx ← f denotes the algorithm which assigns to x an element selected ac-
cording to the probability space whose sample space is f and uniform probability
distribution on the sample points.

The notation Pr(z ← S; y ← T ; . . . : p(x , y , ..)) denotes the probability that the
predicate p(x , y , . . .) will be true after the ordered execution of the algorithms
x ← S , y ← T , . . .

The notation {z ← S; y ← T ; . . . : (x , y , ...)} denotes the probability space over
{(x , y , . . .)} generated by the ordered execution of the algorithms x ← S, y ← T , . . ..

Let us recall the basic definitions of [GMR]. We address the reader to the original
paper for motivation, interpretation and justification of these definitions.

Let U = {U/(x)} be a family of random variables taking values in {0, 1}∗, with the
parameter x ranging in {0, 1}∗. U = {U(x)} is called poly-bounded family of random
variables, if, for some constant e ∈ \, all random variables U(z) ∈ u assign positive
probability only to strings whose length is exactly |x|e.

Let C = {Cx} be a poly-size family of boolean circuits, that is, for some constants
c, d > 0, all Cx, have one boolean output and at most |x|e gates and |x|d inputs. In
the following, when we say that a random string, chosen according to U(x), where
{U(x)} is a poly-bounded family of random variables, is given as input to Cx, we
assume that the length of the strings that are assigned positive probability by U(x)

equals the number of boolean inputs of C|x.

Definition 2.1 (Indistinguishability) Let L ⊂ {0, 1}∗ be a language. Two poly-bounded families of
random variables U = {U(z)} and V = {V (x)} are indistinguishable on L if for all
poly-size families of circuits C = {Cx},∣∣Pr(A ← U(x) : Cx(a) = 1) − Pr(a ← V (x) : Cx(a) = 1)

∣∣< |x|c

For all positive constants c and suficiently large x ∈ L.

Definition 2.2 (Approximability) Let L ⊂ {0, 1}∗ be a language. a family of random variables
U = {U(x)} is approximable on L if there exists a probabilistic turing machine M ,
running in expected polynomial time, such that the families {U(x)} and {M(x)} are
indistinguishable on L.

2.2 Number Theory
Let Zs(k) denote the set of integers product of s > 1 distinct primes of length k.

Let N be the set of the natural numbers, x ∈ N , Z∗
x
= {y | 1≤ y < x, gcd(x , y) = 1}

and Z+1
x

= {y ∈ Z∗
x
| (y | x) = +1}, where (y | x) is the jacobi symbol. We say that

y ∈ Z∗
x

is a quadratic residue modulo x iff there is w ∈ Z∗
x

such that w2 ≡ y mod x.
If this is not the case we call w a quadratic non residue modulo x.
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Define the quadratic residuosity predicate to be

Qx(y) =
{

0, if y is a quadratic residue modulo x;

1, otherwise;

and the languages QR and QNR as

QR = {(y , x) | Qx(y) = 0}
QNR = {(y , x) | (y ∈ Z+1

x
and Qx(y) = 1}.

Fact 1 Let∼be the relation so defined: y1 ∼ y2 iff Q+ x(y1y2)= 0. Then∼ is an equivalence
relation in Z+1

x
. Two elements are equivalents if they have the same quadratic

character modulo each of the prime divisors of x. Thus, if x ∈ Z2(k) there are 2
equivalence classes, if x ∈ Z3(k) there are 4; in general if x = p

h1
i

. . . , p
hn
n

where
each pi is a prime > 2 and pi = pi if i = j , then there are 2n equivalence classes.

Fact 2 For each y1, y2 ∈ Z+1
x

one has

Qx(y1y2) = Qx(y1) ⊕ Qx(y2).

Fact 3 Where “⊕” denotes the exclusive or operator. the jacobi symbol function x|n is
polynomial-time computable.

We now formalize the complexity assumption that is sufficient for non-inter-
active zero-knowledge. Namely, that it is computationally hard to distinguish the
integers product of 2 primes leftarrow the ones product of 3 primes.

2.3 A Complexity Assumption
2OR3A: for each poly-size family of circuits {Cklk ∈ N

|PZ3(k) − PZ3(k)| < k−c

for all positive constants c and sufficiently large k; where

PZ2(k) = PR(X ← Z2(k) : Ck(x) = 1) and

PZ3(k) = PR(x ← Z3(k) : Ck(x) = 1).

2OR3A is a stronger assumption than assuming that deciding quadratic resid-
uosity is hard. (Having an oracle for Qn(.), allows one to prbabilistically count the
number of∼ equivalence in Z+1

x
and thus, by fact 1, to distinguish whether n ∈ Z2(k)

or n ∈ Z3(k)). Thus we can freely use that quadratic residuosity is computationally
hard (as formalized below) without increasing our assumption set.
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Quadratic Residuosity Assumption (QRA)
For each poiy-size family of circuits {Ck|k ∈ N },

Pr
(
x ← Z2(k); y ← Z+1

x
: Ck(x , y) = Qx(y)

)
< 1/2 + 1/k−O(1).

The QRA was introduced in [GM] and is now widely used in Cryptography. The cur-
rent fastest algorithm to compute Qx(y) is to first factor x and then compute Qx(y),
while it is well known that, given the factorization of x, Qx(y) can be computed in
O(|x|3) steps. In what follows, we choose x ∈ Z2(k) since these integers constitute
the hardest input for any known factoring algorithm.

3 Single-Theorem Non-Interactive Zero-Knowledge Proofs
To prove the existence of single-theorem Non-Interactive Zero-Knowledge Proof
Systems (single-theorem non-interactive ZKPS) for all NP languages, it is enough
to prove it for 3COL the NP-complete language of the 3-colorable graphs [GJ]. For
k > 0, we define the language 3COLk = {x ∈ 3COL||x| ≤ k}.

Definition 3.1 A Single-Theorem Non-Interactive ZKPS is a pair (A, B) where A is a Probabilistic
Turing Machine and B(., ., .) is a deterministic algorithm running in time polyno-
mial in the length of its first input, such that:

1. Completeness. (The probability of succeeding in proving a true theorem is
overwhelming.)

∃c > 0 such that ∀x ∈ 3COLk

P r
(
σ ← {0, 1}nc

; y ← A(σ , x) : B(x , y , σ) = 1
)

> 1 − n−O(1).

2. Soundness. (The probability of succeeding in proving a false theorem is
negligible.)
∃ c > 0 such that ∀x � 3COLk and for each Probabilistic Turing Machine A′

Pr
(
σ ← {0, 1}nc

; y ← A′(σ , x) : B(x , y , σ) = 1
)

< n−O(1).

3. Zero-Knowledge. (The proof gives no information but the validity of the
theorem.)
∃ c > 0 such that the family of random variables V = {V (x)} is approximable
over 3COL. Where

V (x) = {σ ← {0, l}|x|c; y ← A(σ , x) : (σ , y)}),
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Remark Notice that, as usual, the zero-knowledge condition guarantees that the verifier’s
view can be well simulated; that is, all the verifier may see can be reconstructed
with essentially the same odds. In our scenario, what the verifier sees is only the
common random string and the proof, i.e., the string, received by A. Notice that in
our scenario, the definition of zero-knowledge is simpler. As there is no interaction
between B and A, we do not have to worry about possible cheating by the verifier to
obtain a “more interesting view.” That is, we can eliminate the quantification “∀B ′”
from the original definition of [GMR].

Theorem 3.1 Under the QRA, there exists a Single-Theorem Non-Interactive ZKPS for 3-COL.

This theorem will be rigorously proven in the final paper. Here we restrict
ourselves to informally describe the programs P and V of a single-theorem non-
interactive ZKPS (P,V) and, even more informally, to argue that they posses the
desired properties.

3.1 The Proof-System (P,V)
Instructions for P

1. Randomly select n1, n2, n3 ∈ Z2(k)

2. For i = 1, 2, 3 randomly select qi such that (qi|ni) = 1 and qi is a quadratic
non-residue mod ni.

3. Color G with colors 1,2,3.

4. For each node u of G whose color is i, label v with a randomly selected triplet
(v1, v2, v3) ∈ Z+1

x
× Z+1

n2
× Z+1

n3
such that Qn(vi) = 0 and Qnj

(vj) = 1 for j = i.
Call G′ the so labeled G

{Remark 1: WLOG (else purge σ in the “right way”) let σ = σ1 ◦ σ2 ◦ σ3 ◦
σ4, . . . , where all triplets (σ1, σ2, σ3)(σ4, σ5, σ6), . . . belong to Z+1

n1
× Z+1

ni
×

Z+1
n3

.}
{Convention: The first 8k triplets are assigned to the first edge of G (in
the lexicographic order), the next 8k triplets to the second edge, and
so on.}

5. For each edge (a , b) of G′ (where node a has label (a1, a2, a3) and node b

(b1, b2, b3)) and each of its 8k assigned triplets (z1, z2, z3) compute one of the
following types of signature.
{Comment: Only one is applicable if steps 1-4 are performed correctly)}
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(√
z1,

√
z2,

√
z3
)

type 0(√
q1z1,

√
z2,

√
z3
)

type 1(√
z1,

√
q2z2,

√
z3
)

type 2(√
z1,

√
z2,

√
q3z3

)
type 3(√

a1z1,
√

a2z2,
√

a3z3
)

type 4(√
b1z1,

√
b2z2,

√
b3z3

)
type 5(√

a1b1z1,
√

a2b2z2,
√

a3b3z3

)
type 6(√

q1z1,
√

q2z2,
√

q3z3
)

type 7

{Notation “by example”: Let x1 be a quadratic non residue mod n1, z2 a
quadratic residue mod n2, and z3 is a quadratic residue mod n2. Then the
signature of the triplet (z1, z2, z3) a triplet of type 1: (

√
q1z1,

√
z2,

√
z3) where√

qz1 denotes a randomly selected square root of the quadratic residue q1 .

z1 mod n1; and for i = 2, 3
√

zi denotes a randomly selected square root of
zi mod ni}

6. Send V n1, n2, n3, q1, q2, q3, G′, and the signature of the triplets composing
σ .
{Comment: Note that the edges of G′ are labelled with triples, not with
colors!}

Instructions for V
1. Verify that n1, n2, and n3 are not even and not integer powers. Verify that G′ is

a proper labelling of G. That is, each node u has assigned a triplet (v1, v2, v3)

such that vi ∈ Z+1
ni

for i = 1, 2, 3.

2. Break σ into triplets, verify that for each edge you received a signature of
some type for each of its 8k triplets.

3. If all the above verifications have been successfully made, accept that G is
3-colorable.

3.2 A Rough Idea of why (P,V) is a Single-Theorem Non-Interactive ZKPS
First notice that, the communication is mono-directional: From P to V. Then let
us convince ourselves that the statement of Remark 1 really holds without loss of
generality. In our context, WLOG means with overwhelming probability.
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If G has a edges, our protocol assumes σ to consist of 8 . k . a triplets in Z+1
n1

×
Z+1

n2
× Z+1

n3
. Such a string σ is easily obtainable from a (not too much larger) random

string p. Consider p to be the concatentation of k-bit strings grouped into triplets

p = (p1, p2, p3)(p4, p5, p6) . . .

Then obtain σ by “purging” p. That is, obtain σ from p by discarding all triplets
not in Z+1

n1
× Z+1

n2
× Z+1

n3
. We now argue that p is not much longer than σ . Let n

be either n1 or n2 or n3. Now a random k-bit integer (with possible leading 0’s) is
less than n with probability ≥ 1

3 ; a random integer less than n belongs to Z∗
n

with
probability ≥ 1

2 ; a random element of Z∗
n

belongs to Z+1
n

with probability ≥ 1
2 . Thus,

we expect that at least 1 in 64 of the triplets of p not to be discarded.
Now let us consider the question of V’s running time. V can verify in poly-time

whether ni = xα (where x , α integers; α > 1) as only values 1, . . . , log ni should be
tried for α and binary search can be performed for finding x, if it exists. All other
steps of V are even easier.

Now let us give some indication that (P,V) constitute a single-theorem non-
interactive ZKPS.

Completeness: Assuming that σ is already consiting of triplets in Z+1
n1

× Z+1
n2

×
Z+1

n3
, if P operates correctly, V will be satisfied with probability 1.

Soundness: If the verification step 1 is successfully passed, by fact 1, there must
be ≥ 2 ∼ equivalence classes in each Z+1

ni
(exactly two if P honestly chooses all the

ni’s in Z2(k)).
Thus, if we define two of our triplets (z1, z2, z3) (w1, w2, w3) to be equivalent if

ziwimodni is a quadratic residue for i = 1, 2, 3, we obtain ≥ 8 equivalence classes
among the triplets (exactly 8 if P is honest).

To exhibit a signature of a given type for a triplet, essentially means to put the
triplet in one of ≤ 8 possible “drawers”. (there are 8 types of signatues, but they may
not be mutually exclusive; thus two drawers may be equal). Moreover, it is easy to
see that if two triplets are put in the same drawer, they must belong to the same
equivalence class.

As σ is randomly selected, each of its triplets in Z+1
n1

× Z+1
n2

× Z+1
n3

is equally likely
to belong to any of the ≥ 8 equally-numerous equivalence classes. However, since if
there were > 8 classes, there would be (by fact 1) at least 16, the fact that all triplets
can be fit in ≤ 8 drawers, “probabilistically proves” several facts:

1. There are exactly 8 equivalence classes among the triplets and exactly 8
distinct drawers.

2. The ni’s are product of two distinct prime powers.
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3. Qn1
(q1) = Qn2

(q2) = Qn3
(q3) = 1

4. Qn1
(q1) + Qn2

(q2) + Qn3
(q3) = 2

That is, (a1, a2, a3) is a proper color (i.e., properly encodes a color: Either 1,2,
or 3).

5. That (b1, b2, b3) is a proper color.

6. That (a1, a2, a3) and (b1, b12, b3) are different colors. Else drawer 6 and drawer
0 would be the same.

Item 6 being true for all edges in G′ implies that G is 3-colorable which is what
was to be proven.

Zero-Knowledgeness
Let us specify the simulating machine M that, under the QRA, generates a pair (σ ,
proof) with the “right odds” on input G (without any coloring!)

Instructions for M

1. Randomly select n1, n2, n3, ∈ Z2(k) together with their prime factorization.

2. Randomly select q1, q2, q3 so that Qn1
(q1) = Qn1

(q2) = Qn3
(q3) = 0

3. For each node v of G, label v with a triplet (v1, v2, v3) ∈ Z∗
n1

× Z∗
n2

× Z∗
n3

such
that QN1

(v1) = Qn2
(v2) = Qn3

(v3) = 0. Call G′ the so labelled graph.

4. Construct σ = (σ1, σ2, σ3)(σ4, σ5, σ6) . . . , such that each triplet (σ3j+1,
σ3j+2, σ3j+3) is randomly selected so that Qni

(σ3j+i) = 0 for i = 1, 2, 3.
{Remark: Also in the simulation we only deal with already 11purged strings”.
It is not hard to see that M could also handle generating “unpurged strings”.}

5. For each edge (a , b) of G′ and each of its assigned 8k triplets (z1, z2, z3),
choose an integer i at random between 0 and 7, and compute a signature
of type i.
{Comment: By using the prime factorization of the ni .}

6. Output σ , n1, n2, n3, q1, q2, q3, G′, and the computed signatures.

We now informally argue that M is a good simulator for the view of V. Essentially,
this is so because efficiently detecting that the triplets of σ are not randomly and
independently drawn from the space Z+1

n1
× Z+1

n2
× Z+1

n3
is tantamount as violating

the QRA (to be explained in the final paper). For the same reason, it cannot be
detected efficiently that G′ is an illegal labelling or that q1, q2, q3 are squares mod,
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respectively, n1, n2, n3. Given that, the distribution of the various types of signature
looks “perfect”.

{Remark: the reader is encouraged to verify that if (P,V) uses part of the used σ

to show that another graph is 3-colorable, then extra knowledge would leek. For
instance that there exists 3-coloring of G and H in which nodes v1 and v2 in H

respectively have the same clolors as nodes w1 and w2 in G.)

4 Non-Interactive ZKPS
The Single-Theorem Non-Interactive ZKPS of Section 3 has a limited applicability.
This is best illustrated in terms of our conceptual scenario where the prover P is
leaving for a trip. It is unlikely that for each theorem T that P finds, a string σT

comes from the sky “devoted” to T and is presented to (is read by) both P and V. It
is instead more probable, that P and V have witnessed or generated (i.e., by flipping
a coin), the same common random event of “size n” when they were together.

However, the Proof System of Section 3 will enable P to subsequently prove in
Zero-Knowledge to V only a single theorem of size, smaller than n. He is out of luck
should he discover the proofs of many theorems or of a theorem of bigger size.

This drawback is eliminated by the following notion of non-interactive ZKPS.
Our formal definition is slightly oriented towards our solution. Namely, at the

beginning, independently of the theorems Ti’s we care about, we let the prover
choose a random theorem T and use the common string σ to compute a string yo,
proving that T is true.

Subsequently, for each desired and important theorem Ti, the prover will pro-
duce a proof yi. The correctness of yi is checked by the verifier, not only on input
Ti and σ but also yo, the proof of the initial, random theorem.

This somewhat awkward mechanics, justified by the technical needs of our
proof, does not change the rules of the game of our conceptual scenario in any es-
sential way. In fact, notice in the definition that every important theorem is proven
ALONE. That is, P is able to select the zero-knowledge proof of each important
theorem INDEPENDENTLY from the proofs or the statements of every other im-
portant theorem. In other words, P may have forgotten what important theorems
he has already proved, and does not yet know what other important theorems he
will discover: A true mathematician!

Only the proof, yo, of the initial random theorem needs to be remembered.
This random theorem and its proof are selected before and independently of every
important theorem.
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Definition 4.1 A Non-Interactive ZKPS is a pair (P , V ) where P is a pair, (P0, P1), of Probabilis-
tic Turing Machines and V (., ., ., .) is a deterministic algorithm running in time
polynomial in the length of its first input, such that:

1. (Completeness) For all polynomials P, Q, and for all (x1, x2, . . . , xQ(n)) ∈
(3COLP(n))

Q(n)

P r( σ ← {0, 1}nO(1)

;

yO ← A0(σ );

y1 ← A1(σ , x1, y0);
...

...

yQ(n) ← A1(σ , xQ(n), y0) :

Q(n)∧
j=1

B(xj , yj , y0, σ) = 1

) > 1 − n−O(1).

2. (Soundness) For all polynomials P , Q, for all (x1, x2, . . . xQ(n)) ∈
(3COLP(n))

Q(n) and for each A′ = (A′
0, , A′

1)

P r( σ ← {0, 1}nO(1)

;

yO ← A′
0(σ );

y1 ← A′
1(σ , x1, y0);

...
...

yQ(n) ← A′
1(σ , xQ(n), y0) :

Q(n)∧
j=1

B(xj , yj , y0, σ) = 1

) < n−O(1).

3. (Zero-Knowledge) For each polynomial Q, the family of random variables
V = {V (x1, . . . , xQ(n))}, where
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V (x1, . . . , xQ(n)) =

{ σ ← {0, 1}nO(1)

;

yO ← A0(σ );

y1 ← A1(σ , x1, y0);
...

...

yQ(n) ← A1(σ , xQ(n), y0) :

(σ , y0, y1, . . . , yQ(n)

}
is approximable over

⋃
n(3COL)Q(n).

4.1 The Proof System (P,V)
Below Gen is a cryptographically strong pseudo-random bits generator [RM] [Yl.
(Not to increase our assumptions, Gen could be the generator suggested in [BBS]
that is based on quadratic residuosity , actually on factoring as shown in [ACGS].)

Common Inputs to P and V
A random string σ ◦ p, a security parameter k, a sequence of 4-colorable graphs
G1, G2, . . .

Stage 1
P Chooses at random n ∈ Z3(k) and non-interactively, in zero-knowledge proves

to V that indeed n ∈ Z3(k). P does so as in Section 3 by reducing the statement
“n ∈ Z3(k)” to the 3-colorability of an auxiliary graph H . P proves that H is 3-
colorable by only using σ , the first segment of the common random string. Remark:
This is another example of the fact that proving a more general theorem is easier.
Here we only needed to prove membership in Z3(k). However, we were not able to
find a direct non-interactive zero-knowledge proof of it. (What is easy by using a
guaranteed random string, is proving membership in Z2(k) by sampling. Namely,
by fact 1, to prove that n ∈ Z2(k) is enough to show that half of the elements in Z+1

n

are quadratic residues mod n). Only when we thought of generalizing the problem
of membership in Z3(k) to the more general 3-colorability problem, we succeeded
in proving the desired result.

Stage 2
For each input graph, G ∈ 4 − COLk , G1 P’s and V’s programs are as follows:
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Instructions for P
1. Number the equivalence classes of Z+1

n
1 through 4.

2. Find a 4-coloring for G.

3. For any vertex v in G, if v is colored i, randomly choose an element ev, in class
i and label v with ev. Call G′ the so labeled graph.

4. Send G′ to V.

5. For each edge (u, v) in G, randomly choose yuv ∈ Z+1
n

so that eu
. ev

. yuv

mod+n is a square, compute a random square root of it, xuv and send yuv

and xuv to V.

6. for each yuv do: Output the next kh bits of Gen on input p (here h is a constant
to be determined later); group these bits into consecutive blocks of k bits
each; consider all blocks that represent elements in Z+1

n
; for each block

representing a square mod n, send a random square root of it to V; for each
block that is in the same ∼ equivalence class as yuv, send V a square root of
its product with yuv.

Instructions for V
1. Check that all labels of G are Jacobi symbol 1 elements of Z∗

n
.

2. For all edges (u, v), check that xuv is a square root of eu
. ev

. yuv mod n

3. For each yuv, check to have received correcrt square roots for more than kh

5

of its associated blocks and for more than kh

5 other blocks “times” yuv.

4. If all checks are passed “accept” that G is 4-colorable.

4.2 The Zero-Knowledgeness of (P,V)
We now very informally argue that (P,V) is a non-interactive ZKPS.

First notice that the communication is mono-directional: from P to V. Second
that all of V’s computation can be done in probabilistic polynomial time.

Completeness
If G is 4-colorable and P and V follow their instructions, V will accept with proba-
bility essentially 1. The reader can easily derive a proof of it. (Reading the ideas of
the proof about the soundness property may help.)
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Soundness
Since n has passed stage 1 successfully, with probability essentially 1 it is the
product of three distinct primes1. (All modular operations mentioned are mod n)

Second, with probability essentially equal to 1, the sequence of blocks associated
with each yuv contains more than kh

5 elements in each of the 4 equivalence classes.
In fact, a random sequence of Jacobi symbol 1 elements mod n would “visit” each
class with probability 1/4. This is also true for the output of Gen since it is poly-
indistinguishable from a truly random sequence2 If kh

5 blocks “times” yuv have
square roots mod n, then they all belong to the same equivalence class as yuv.
Moreover, if another kh

5 elements have square roots mod n by themselves, then,

with probability essentially 1, yuv is a non-square mod n. (Otherwise 2.kh

5 blocks

would be squares mod n rather than the expected kh

4 .) Finally, if yuv is a non-square
mod n, then the edge (u,v) is properly colored; that, is, eu and ev belong to different
classes. In fact, since eu

. ev
. yuv has a square root, (eu

. ev) belongs to the same class
as yuv; and if eu, and ev, belonged to the same class, their product would be a square
and so would yuv. Each edge being correctly colored, so is G.

Zero-Knowledgeness
We must now argue that the above proof system is zero-knowledge. That is, that
there exists an efficient simulator that, given any sequence of 4-colorable graphs
(but not their colorings!), a probability distribution on the pairs (σ , proof,) that
is computationally indistinguishable from the one V prime′ would “see” if listening
to P. What V ′ would see is stage 1 and in stage 2, messages from P about each
input graph. The proof of zero knowledge is quite delicate. We restrict ourselves
to merely outlining its high level steps, without further details. We do point out,
though, which parts of the proof are easy and which are hard.

4.2.1 The Simulation of Stage 1
The first message a verifier receives from P is a random member of Z3(k). The
simulating machine M, instead, randomly generates two primes and multiplies

1. n is or is not product of 3 primes wheter or not it passed the first stage; but you know what I
mean and it is easier to read!

2. A subtle point: this is so even if in our application Gen’s seed, p, is not secret. In fact, all
efficiently checkable statistical properties hold for Gen’s output if the random seed is kept secret,
and the particular statistical property of interest to us cannot “disappear” if the seed is made
public!



346 Chapter 14 Non-Interactive Zero-Knowledge (NIZK) Proof Systems

them together to generate a random member of Z2(k). So far, because of the 2or3A,
this will fool any polynomially-bounded judge.

Then M in a standard way constructs a graph H that is S-colorable if and only if
n ∈ Z3(k).

Since the latter statement is false, H will not be 3-colorable. Nonetheless, M
follows the protocol described in Section 3 where H is the input graph.

Given the 2or3A, the distribution so obtained is polynomial-time indistinguish-
able from random a correct execution of Stage 1 (including the choice of σ )!

This may appear paradoxical,. How can M generate such an “indistinguishable”
distribution on input n ∈ Z2(k), if, after all, P’s message (which is an integral part
of V’s view) was proving that n ∈ Z3(k) = Z2(k)?

The paradox disappears when we consider that P’s message was convincing
since the random choice of σ was not under its control. In the simulation, instead,
M chooses σ !3

In fact, in stage 2, the simulator will label all vertices of any graph G by squares
mod n (∈ C2(k)). That is, to each vertex u he associates a randomly selected square
eu. (No efficient judge may reject this labelling, since the hardness of quadratic
residuosity implied by our assumption.) Then, to each edge (u, v), he associates a
randomly selected square yuv. Now the simulator correctly runs Gen on its random
seed to obtain a pseudo-random kh-long block sequence. Roughly half of the ele-
ments of Jacobi symbol 1 of these blocks will be squares mod n, as n is the product
of 2 primes. For a randomly selected half of them the simulator will extract a square
root, which it can easily done as he chose n in factored form. For each block in the
remaining half, he extracts a square root of its product with yuv. Again this will fool
the judge as he cannot efficiently decide quadratic residuosity.

Notice that faking the proof of a single theorem (membership in Zk
3) allowes

us to fake the proof of an arbitrary number of other theorems. This is one of
the reasons to choose the computational difficulty of distinguishing products of
2 primes from products of 3 primes.

3. It should be noted where the 2or3A comes into play. Let L is a poly-time language, x ∈ L and
G is a graph 3-colorable if and only if x ∈ L. Let M, or input G, follow the protocol in Section 3 to
(necessarily) fake P’s proof that G is 3-colorable.
Such proof will not fool a poly-time judge not because the quadratic-residousity labeling would
give away that the graph is not 3-colored; but because he can easily check that x ∈ L (and thus that
the underlying graph, without any labeling, is not 3-colorable).
The 2or3A guarantees that this easy check is not available to a poly-time judge. In the final paper
we essentially show that there are no other easy checks.



Chapter 14 Non-Interactive Zero-Knowledge (NIZK) Proof Systems 347

5 A No-Longer Long-Standing Open Problem
One of the most beautiful gifts of complexity-based cryptography is the notion of
a public-key cryptosystem. As proposed by Diffie and Hellman [DH], each user
U publicizes a string PU and keeps secret an associated string SU . Another user,
to secretely send a message m to U , computes y = E(PU , m) and sends y; upon
receiving y, U retrieves m by computing D(SU , y); here E and D are polynomial-
time algorithms chosen so that it will be infeasible, for any other user, to compute
m from y.

Notice that in this set-up any other user is thought to be a “passive” adversary
who tries to retrieve m by computing solely on inputs y and PU . This is indeed
a mild type of adversary and other types of attacks have been considered in the
literature. It is widely believed that the strongest type of attack among all the natural
ones is the chosen-cipher-text attack. In such an attack, someone tries to break the
system by asking and receiving decryptions of ciphertexts of his choices. Rivest has
shown that Rabin’s scheme (whose breaking is, for a passive adversary, as hard as
factoring if the messages are uniformily selected strings of a given length) is easily
vulnerable to such an attack. Indeed, this is an attack feasible to any employee
who works at the decoding equipment of, say, a large bank. The power by this
attack is very well exemplified by an elegant scheme of Rabin [R] that is as secure as
factoring in the passive adversary model but is easily broken by chosen-ciphertext
attack. Since observing this phenomenon, people tried to design cryptosystems
invulnerable to such attacks, but in vain. A positive answer has been found [GMT]
only allowing interaction, during the encryption process, between legal sender
and legal receiver. However, for the standard (non-interactive) Diffie-and-Hellman
model, the existence of a cryptosystem invulnerable to chosen ciphertext attack has
been an open problem since 1978.

Non-interactive zero-knowledge proofs allow us to finally solve this problem.
The essence of our solution (instead of its details) is informally described as fol-
lows. Instead of sending U an encryption, y, of a message m, one is required to
send two strings: y and and σ , where σ is a zero-knowledge and non-interactive proof
that the sender knows the decoding of y. The “decoding equipment” (read: the de-
coding function) checks that σ is convincing and, if so, outputs m, the decoding of
y; Otherwise, it outputs nothing. Notice that, now, being able to use the decoding
equipment provably is of no advantage! In fact, only when we feed it with ciphertexts
whose decoding we can prove we know, does the decoding equipment output these
decodings! In other words, the decoding equipment can only be used to output
what we already know. A detailed discussion of this powerful application will
appear in the final paper.
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(A formal setting and the proof require some care. For instance, the decoding
equipment may be used as an oracle to check whether a given string σ is a “correct
proof of knowledge”. Thus, in particular, one should prove that such an oracle
cannot help. In the final paper we will essentially show that if one can generate
a legal (y , σ) pair without having m as an input, then one can easily decrypt all
messages on input y and PU only.)

6 Improvements
It has very often been the case in cryptography that new notions and results have
been first obtained under a specific intractability assumption. This is so because
one can exploit the additional properties of a specific, candidate intractable prob-
lem. Number theory has always played a leading role as a basis of new cryptographic
concepts. For instance, cryptographically strong pseudo-random number gener-
ators were first exhibited based on the computational difficulty of the discrete
logarithm problem [BM]. Only later a construction was presented based on a more
general assumption: the existence of one-way permutations [Y]. Finally it has been
established that cryptographically strong pseudo-random number generation is
possible if and only if one-way functions exist [L].

Non-interactive ZKPS have been introduced and still are based on the in-
tractability of algebraic problems. Very recently, our intractability assumption has
been relaxed. DeSantis, Micali, and Persiano have exhibited non-interactive ZKPS
based only on the quadriatic residensity assumption.

We hope this new notion will be given a sounder foundation; hopefully by basing
it on the existence of any general trap-door or one-way function.
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15Completeness Theorems
for Non-Cryptographic
Fault-Tolerant Distributed
Computation
This chapter reproduces the contents of the paper “Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation,” which appeared in
the proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp.
1–10, 1988.

This influential work of Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson
obtained general results similar to those of Chapter 13, except that it uses no
intractability assumptions. Instead this work presumes the existence of private
channels between each pair of parties (and a larger percentage of honest parties).
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Abstract
Every function of n inputs can be efficiently computed by a complete network of n

processors in such a way that:

1. If no faults occur, no set of size t < n/2 of players gets any additional infor-
mation (other than the function value),
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2. Even if Byzantine faults are allowed, no set of size t < n/3 can either disrupt
the computation or get additional information.

Furthermore, the above bounds on t are tight!

Introduction
The rapid development of distributed systems raised the natural question of what
tasks can be performed by them (especially when faults occur). A large body of
literature over the past ten years addressed this question. There are two approaches
to this question, depending on whether a limit on the computational power of
processors is assumed or not.

The cryptographic approach, inaugurated by Difiie and Hellman [DH], assumes
the players are computationally bounded, and further assumes the existence of
certain (one-way) functions, that can be computed but not inverted by the player.

This simple assumption was postulated in [DH] in order to achieve the basic task
of secure message exchange between two of the processors, but turned out to be
universal! In subsequent years ingenious protocols based on the same assumption
were given for increasingly harder tasks such as contract signing, secret exchange,
joint coin flipping, voting and playing Poker. These results culminated, through the
definition of zero-knowledge proofs [GMR], their existence for NP-complete prob-
lems [GMW1] in completeness theorems for two-party [Y1] and multi-party [GMW2]
cryptographic distributed computation. In particular the results of Goldreich, Mi-
cali and Wigderson in [GMW2] were the main inspiration to our work. They show,
that if (non-uniform) one way functions exist then every (probabilistic) function of
n inputs can be computed by n computationally bounded processors in such a way
that: (1) If no faults occur, no subset of the players can compute any additional in-
formation, and (2) Even if Byzantine faults are allowed, no set of size t < n/2 can
either disrupt the computation or compute additional information.

The non-Cryptographic (or information-theoretic) approach does not limit
the computational power of the processors. Here, the notion of privacy is much
stronger - for a piece of data to be unknown to a set of players it does not suffice
that they cannot compute it within a certain time bound from what they know, but
simply that it cannot be computed at all!

To facilitate the basic primitive of secret message exchange between a pair of
players, we have secure channels. (For an excellent source of results and problems
in the case no secure channels exist, see [BL]). Unlike the cryptographic case, very
little was known about the capabilities of this model. Two main basic problems
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were studied and solved (in the synchronous case): Byzantine agreement [LPS,
DS, . . . ] and collective coin flipping [Y2].

This paper provides a full understanding of the power and limits of this model,
by proving a few completeness theorems. Comparing these results to the crypto-
graphic case of [GMW2], one gets the impression that one-way functions are “more
powerful” than secure channels. This should not be surprising, if one considers
the case of n = 2. Clearly, here a secure channel is useless, and indeed two (non-
faulty) players can compute the OR function of their bits using cryptography, while
the reader can convince herself (it will be proven later) that any protocol will leak
information in the information-theoretic sense. The lower bounds we provide show
that the same phenomenon is true for any value of n. A similar situation arises in
the Byzantine case where, using cryptography one can allow t < n/2 faulty players,
but in the non-Cryptographic case one must have t < n/3.

As happened in the cryptographic case, the protocols are based on a new method
for computing with shared secrets. Our constructions are based on Algebraic Cod-
ing Theory, particularly the use of generalized BCM codes.

It is important to stress here that our main protocols require only a polynomial
amount of work from the players. (In fact, they are efficient enough to be practi-
cal!). Putting no bound on the computational power serves only to allow the most
stringent definition of privacy and the most liberal definition of faultiness, both of
which we can handle.

Essentially the same results we obtain here were independently discovered by
Chaum, Crepeau and Damgard [CCD]. We briefly point out the small differences of
this work from ours. The simple case of no faults is almost identical. Their solution
in the case of Byzantine faults is elementary and requires no error correcting
codes. The error correction is achieved using a clever scheme of zero knowledge
proofs. This has two consequences: They have to allow an exponentially small
error probability for both correctness and privacy (we can guarantee them with no
errors), and the frequent zero knowledge proofs increase the complexity of their
protocols. In the solution of [CCD] the simulation is of Boolean operations while
our solution allows direct simulation of arithmetic operations in large finite fields.
Thus, for example, computing the product of two n bit numbers using [CCD] calls
for O(log n) communication rounds. This can be done in O(1) rounds using our
solution.

We mention that the above results already found application in the new, con-
stant expected number of rounds protocol for Byzantine agreement of Feldman and
Micali [FM].



Chapter 15 Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation 355

We proceed to define the model, state the results and prove them. In the full
paper we mention generalizations and extensions of our results to other tasks
(playing games rather than computing functions), to other model parameters (syn-
chrony, communication networks) and other complexity measures (number of
rounds).

Definitions and Results
For this abstract, we define the model and state the results on an intuitive level.
Since even the formal definition of the notions of privacy and resiliency are non-
trivial, we give them explicitly in an appendix.

The model of computation is a complete synchronous network of n processors.
The pairwise communication channels between players are secure, i.e. they cannot
be read or tempered with by other players. In one round of computation each of the
players can do an arbitrary amount of local computation, send a message to each
of the players, and read all messages that were sent to it at this round.

We shall be interested in the computational power of this model when imposing
privacy and fault tolerance requirements. For simplicity, we restrict ourselves to the
computation of (probabilistic) functions f from n inputs to n outputs. We assume
that player i holds the i-th input at the start of computation, and should obtain the
i-th output at the end, but nothing else.

A protocol for computing a function is a specification of n programs, one for each
of the players. We distinguish two kinds of faults: “Gossip” and “Byzantine”. In the
first, faulty processors send messages according to their predetermined programs,
but try to learn as much as they can by sharing the information they received. In
the second, they can use totally different programs, collaborating to acquire more
information of even sabotage the computation.

A protocol is t-private if any set of at most t players cannot compute after the
protocol more than they could jointly compute solely from their set of private inputs
and outputs.

A protocol is t-resilient if no set of t or less players can influence the correctness of
the outputs of the remaining players. For this to make sense, the function definition
should be extended to specify what it is if some players neglect to give their inputs
or are caught cheating (see appendix).

We can now state the main results of this paper.

Theorem 1 For every (probabilistic) function f and t < n/2 there exists a t -private protocol.
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Theorem 2 There are functions for which there are no n/2-private protocols.

Theorem 3 For every probabilistic function and every t < n/3 there exists a protocol that is both
t -resilient and t -private.

Theorem 4 There are functions for which there is no n/3-resilient protocol.

Proof of Theorem 1
Let P0, . . . , Pn−l be a set of players, and let n ≥ 2t + 1. Let F be the function which
this set of players wants to compute t -privately, where each player holds some input
variables to the function F. Let E be some fixed finite field E, with |E| > n. Without
loss of generality we may assume that all inputs are elements from E and that F

is some polynomial (in the input variables) over E, and that we are given some
arithmetic circuit computing |F |, using the operations +, × and constants from E.

To simplify our explanation we divide the computation into three stages.

Stage I: The input stage, where each player will enter his input variables to the
computation using a secret sharing procedure.

Stage II: The computation stage, where the players will simulate the circuit
computing F , gate by gate, keeping the value of each computed gate as secret
shared by all players.

Stage III: The final stage, where the secret shares of the final value of F are
revealed to one or all of the players.

Stages I and III are very simple and we describe them below, and delay the details
of the computation stage to the next section.

The Input Stage
Let (α0, . . . , αn−1 be some n disbinct non zero points in our field E. (This is why we
need |E| > n.) Each player holding some input s ∈ E, introduces the input to the
computation by selecting t random elements ai ∈ E, for i = 1, . . . , t , setting

f (x) = s + a1x + . . . + atx
t

and sending to each player Pi the value si = f (αi).
As in Shamir’s [Sh] secret sharing scheme, the sequence (s0, . . . , sn−1) is a

sequence of t -wise independent random variables uniformly distributed over E,
thus the value of the input is completely independent from the shares {si} that are
given to any set of t player that does not include the player holding the secret.
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The Final Stage
To keep the t -privacy condition, we will make sure that the set of messages received
by any set of t players will be completely independent from all the inputs. During
the whole computation each gate which evaluates to some s ∈ E, will be “evaluated”
by the players by sharing the secret value of s using a completely independent from
all the inputs, random polynomial f (x) of degree t , with the only restriction that
f (0) = s. In particular at the end of the computation we will have the value of F

shared among the players in a similar manner. If we want to let just one player
know the output value, all the players send their shares to that particular player. This
player can compute the interpolation polynomial f (x) and use its free coefficient
as the result.

Note that there is a one-to-one correspondence between the set of all shares and
the coefficients of the polynomial f (x). Since all the coefficients of f (x), except
for its free coefficient, are uniform random variables that are independent of the
inputs, the set of all shares does not contain any information about the inputs that
does not follow from the value of f (0).

The Computation Stage
Let a, b ∈ E be two secrets that are shared using the polynomials f (x), g(r) respec-
tively, and let c ∈ E, c = 0 be some constant. It is enough to show how one can
“compute” c . a, a + b, and a . b.

The two linear operations are simple and for their evaluation we do not need
any communication between the players. This is because if f (x) and g(x) encode
a and b, then the polynomials h(x) = c . f (x) and k(x) = f (x) + g(x) encode c . a,
a + b respectively. Thus to compute for example a + b, each player Pi holding f (αi),
and g(α1) can compute k(αi) = f (αi) + g(αi). Likewise, since c is a known constant
Pi can compute h(αi) = c . f (αi). Furthermore, h(x) is random if only f (x) was, and
k(x) is random if only one of f (x) or g(x) was.

As a corollary we immediately have

Lemma (Linear Functional) For any t , (t ≤ n − 1), and any linear functional

F(x0, . . . , xn−1) = a0x0 + . . . + an−1xn−1

where each Pi has input xi and the ai are known constants, can be computed t -
privately.

From the lemma we have
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Corollary (Matrix Multiplication) Let A be a constant n × n matrix, and let each Pi have an
input variable xi. Let X = (x0, . . . , xn−1) and define Y = (y1, . . . , yn) by

Y = X . A,

then for any t , (t ≤ n − l), we can t -privately compute the vector Y such that the only
information given to Pi will be the value of Yi, for i = 0, . . . , n − l.

Proof Matrix multiplication is just the evaluation of n linear functionals. By the Lemma,
we can compute each linear functional Yi independently, and reveal the outcome
only to Pi.

The Multiplication Step
The multiplication step is only a bit harder. Let a and b be encoded by f (x) and
g(x) as above. We now assume that n ≥ 2t + 1. Note that the free coefficient, of
the polynomial h(x) = f (x)g(x) is a . b. There are two problems with using h(x) to
encode the product of a times b. The first, and obvious one, is that the degree of
h(x) is 2t instead of t . While this poses no problem with interpolating h(x) from its
n pieces since n ≥ 2t + 1, it is clear that further multiplications will raise the degree,
and once the degree passes n we will not have enough points for the interpolation.
The second problem is more subtle. h(x) is not a random polynomial of degree
2t (ignoring of course the free coefficient). For example, h(x), as a product of two
polynomials, cannot be irreducible.

To overcome these two problems we will, in one step, randomize the coefficients
of h(x), and reduce its degree while keeping the free coefficient unchanged. We first
describe the degree reduction procedure and then combine it with the randomiza-
tion of the coefficients.

The Degree Reduction Step
Let

h(x) = h0 + h1x + . . . + h2tx
2t

and let

si = h(αi) = f (αi)g(αi),

for i = 0, . . . , n − 1 be the “shares” of h(x). Each Pi holds an si. Define the truncation
of h(x) to be

k(x) = h0 + h1x + . . . + htx
t ,
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and ri = k(αi) for i = 1, . . . , n − 1.

Claim Let S = (s0, . . . , sn−1) and R = (r0, . . . , rn−1) then there is a constant n × n matrix
A such that

R = S . A.

Proof Let H be the n-vector

H = (h0, . . . , ht , . . . , h2t , 0, . . . , 0)

and let K be the n-vector

K = (h0, . . . , ht , 0, . . . , 0).

Let B = (bi ,j ) be the n × n (Vandermonde) matrix, where bi ,j = αi
j for i,j = 0, . . . ,

n − 1. Furthermore, let P be the linear projection

P(x0, . . . , xn−1) = (x0, . . . , xt , 0, . . . , 0).

We have

H . B = S

H . P = K

and

K . B = R.

Since B is not singular (because the αi-s are distinct) we have

S . (B−1PB) = R

but A = B−1PB is some fixed constant matrix, proving our claim.

The Randomization Step
As noted above the coefficients of the product polynomial are not completely ran-
dom, and likewise the coefficients of its truncation k(x) may not be completely
random. To randomize the coefficients, each player Pi randomly selects a polyno-
mial qi(x) of degree 2t with a zero free coefficient, and distributes its shares among
the players. By a simple generalization of the argument in Shamir’s [Sh] scheme, it
is easy to see that knowing t values on this polynomial gives no information on the
vector of coefficients of the monomials of x , x2, . . . , xt of qi(x).



360 Chapter 15 Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation

Thus instead of using h(x) in our reduction we can use

h̃(x) = h(x) +
n−1∑
j=0

qj(x)

which satisfies h̃(0) = h(0) but the other coefficients of xi, 1 ≤ i ≤ t , are completely
random. Since each player can evaluate his point s̃ = h̃(αi), we can now apply
the truncation procedure using the matrix multiplication lemma to arrive at a
completely random polynomial k̃(x) which satisfies both deg k̃(x) = t , and k̃(0) =
a . . . b, and k(x) is properly shared among all the players.

Thus (omitting many well known details, see [GMW]) we have proved

Theorem 1 For every (probabilistic) function F and t < n/2 there exists a t -private protocol.

Remarks
(1) The complexity of computing F t -privately is bounded by a polynomial (in n)

factor times the complexity of computing F .

(2) If F can be computed by an arithmetic circuit over some field using un-
bounded fan-in linear operation and bounded fan-in multiplication, in
depth d, then F can be computed t -privately in O(d) rounds of exchange
of information.

(3) In our construction we have to reduce the degree of our polynomial only
when its degree is about to pass n − 1. Thus if t = O(n1−ε), for some fixed
ε > 0, and we start with polynomials of degree t , the players can simulate
many steps of the computation before the degree comes close to n, by doing
the computation each on their own shares, without any communication(!).
When the degree does get close to n, we reduce the degree back to t in one
radomizing, degree reducing step.

Two simple examples are:

(a) Any Boolean function F : {0, 1}n →{0, 1} can be represented as a multilinear
polynomial over the field F . Thus if t = O(n1−ε) we can compute t -privately,
in parallel, all the monomials of F in O(1) number of rounds and then use a
big fan-in addition to evaluate F . This procedure may use exponentially long
messages but only constant number of rounds.

(b) The Boolean Majority function has a polynomial size O(log n) depth circuit,
and thus for t = O(n1−ε), this function can be computed t -privately using
only polynomially long messages in constant number of rounds.
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For completeness we state the following simple result

Theorem 2 There are functions for which there are no n/2-private protocols.

Proof It is easy to see that two players, each holding one input bit, cannot compute the
OR function of their bits, without one of them leaking some information. This
immediately generalizes to prove the theorem.

Sharing a Secret with Cheaters
Let n = 3t + 1 and let PO , . . . , Pn−1 be a set of n players among which we want to
share a secret such that

(A) Any set of at most t players does not have any information about the secret
and

(B) It is easy to compute the secret from all its shares even if up to t pieces are
wrong or missing.

The following scheme achieves both requirements:
Let E be a (finite) field with a primitive n-th root of unity, ω ∈ E, ωn = 1 and for

all 1 < j < n, ωj = 1. Without loss of generality we can assume that our secret s is
in E.

Pick a random polynomial f (x) ∈ E[x], of degree t such that f (0) = s. That is,
set a0 = s and pick random ai ∈ E for i = 1 . . . t and set

f (x) = a0 + a1x + . . . + atx
2.

Define the share of Pi, i = 0 . . . n − 1, to be si = f (ωi). As in [Sh], the si-s are t -wise
independent random variables that are uniformly distributed over E, and thus our
first requirement (A) is met.

Note that setting ai = 0 for i > t makes our secret shares the Discrete Fourier
Transform of the sequence (a0, . . . , an−1). Let f̂ (x) = s0 + s1x + . . . + sn−1x

n−1. By
the well known formula for the inverse transform

ai = 1
n
f̂ (ω−i)

and in particular f̂ (ω−i)= 0 for i = t + 1, . . . , n− 1. Explicitly the si satisfy the linear
equations

n−1∑
i=0

ωr .i . si = 0 for r = 1, . . . , 2t .
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Thus the polynomial g(x) =∏n−1
i=t+1(x − ω−i) divides the polynomial f̂ (x), which in

the language of Error Correcting Codes says that the vector s = (s0, . . . , sn−1) is a
codeword in the Cyclic Code of length n generated by g(x). By our choice of g(x),
this cyclic code is the well known Generalized Reed-Miller code. Such codes have a
simple error correction procedure to correct 1

2 deg g(x) = t errors. See for example
[PW, page 283).

Verifying a Secret
Assume that player P has distributed a secret in the manner described above.
Before entering this shared secret into a computation we wish to verify that the
secret shares we are holding are shares of a real secret and not some n random
numbers. We want to do so without revealing any information about the secret
or any of its shares. This is easily done using the following Zero Knowledge proof
technique. We will later show how to verify a secret using a different technique that
has absolutely no probability of error. We present this Zero Knowledge technique
because it is simpler, and uses fewer rounds of communication.

Simple Verification of a Secret
Let f0 be the original polynomial. Let f1, . . . , fm, m = 3n be random polynomials
of degree t generated by P , and have P send to Pi the values fj(ω

i) for j = 1, . . . , m.
Each Pi selectes a random α = 0 from E and sends it to all the other players. After
reaching agreement on the set of α-s, the dealer broadcasts the set of polynomials
f a =∑m

k=0 αkfk to all players. Each player Pi checks that at the point ωi, the shares
he received satisfy the required equations, for all the α-s. If some Pi finds an error
he broadcasts his complaint. If t + 1 or more player file a complaint, we decide that
the dealer is faulty and take some default value, say 0, to be the dealers secret, (and
pick 0 for all the needed shares).

Claim Let T be a set of good players that did not complain. Let f T
i

be the the interpola-
tion polynomial through the points in T of the original polynomial fi. Then with
probability at least

1 − m2n/|E|
all the polynomials f T

i
are of degree t .

Proof Omitted.

Keeping in mind the (polynomial) complexity of the players computation, we
can certainly allow |E| ≥ 22n. This makes the error probability exponentially small.



Chapter 15 Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation 363

(The case of small |E| is similar: Using a somewhat larger m, each player, using a
different set of random polynomials, asks the dealer to reveal either fi or f0 + fi.)

Note that if n ≥ 5t + 1, then our secret sharing scheme can correct 2t errors.
If a secret is accepted then at most t good players may have wrong values. This
together with at most t more wrong values that may come from the bad players,
gives altogether at most 2t errors. Thus in this case the secret is uniquely defined
and there is a simple procedure to recover its value using the error correcting
procedure.

To handle the case of n = 3t + 1 we must make sure that all the pieces in the
hands of the good players lie on a polynomial of degree t . To achieve this we ask
the dealer of the secret to make public all the values that were sent to each player
who filed a complaint. We now repeat the test, using new random α-s. Each player
now checks at his point and at all thc points that were made public, and if there is
an error he files a complaint. If by now more than t + 1 players have complained we
all decide that the secret is bad and take the default zero polynomial. Otherwise,

Claim With very high probability, all good players are on a polynomial of degree t .

Proof Omitted.

Note that if the dealer is correct then no good player’s value will become public
during the verification process. This together with the fact that all the polynomials
that the dealer reveals during this verification procedure are completely indepen-
dent from the secret polynomial f0, ensures that the bad players will not gain any
information about the dealer’s secret. (Detailed proof omitted).

Absolute Verification of a Secret
The verification procedure described above leaves an exponentially small probabil-
ity of error. In this section we describe a secret verification procedure that leaves
no probability of errors1.

Instead of just sending the shares {si}, the dealer of the secret selects n random
polynomials f0(x), . . . , fn−1(x), with

(1) si = fii(0) for i = 0, . . . , n − 1, and

(2)

n−1∑
i=0

ωr .ifi(x) = 0 for r = 1, . . . , 2t

1. Our original protocol was simpliied by Paul Feldman who independently observed that the
verification procedure can be accomplished in a constant number of communication rounds.
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In other words, the dealer selects a random polynomial f (x , y), of degree t in both
variables x and y, with the only restriction that f (0, 0) = s (his secret). Then he
sends the polynomials fi(x) = f (x , ωi) and gi(y) = f (ωi , y) to player Pi, for i =
0, . . . , n − 1. The real share is just si = fi(0), but for the purpose of its verification,
the dealer also sends the polynomials fi(x) and gi(y). At this point each player Pi

sends the polynomials si ,j = fi(ω
j) = f (ωj , ωi) = gj(ω

i) to each player Pj .
Note that if the dealer is correct, then when a good player Pj is looking at

the sequence SSj = (s0,j , s1,j , . . . sn−1,j ), then all these points should be on his
polynomial gj(y). Therefore Pj can compare the incoming values with his own
computation and find out which values are wrong. Furthermore it is clear that in
this case no good player will have to correct any value coming from other good
players.

On the other hand we have

Lemma If no correct player has to correct a value given by a correct player, then there is a
polynomial of degree t that passes through the interpolation points of all the correct
players.

Proof Simple algebra. Omitted.

To make sure that the condition of this lemma is satisfied, each player Pj

broadcasts a request to make the coordinates (i , j) he had to correct public. If Pj

detects more than t wrong incoming values, or had to correct his own value, the
dealer is clearly faulty. In such a case Pj broadcasts a request to make both fj(x)

and gj(y) public. At this point the dealer broadcasts the (supposedly true) values
si ,j at all these points, and the polynomials that were to be made public. Note that
making fj and gj public makes all the sk ,j and sj ,k public for 0 ≤ k < n, for that
particular j .

Now if some player Pi observes that some new public si ,j contradicts the poly-
nomials he is holding, or finds out the the public information already contradicts
itself, he broadcasts a request to make all his information public. Here once more,
the dealer makes public all the requested information, Finally, each Pi checks all
the public and private information he received from the dealer. If Pi finds any in-
consistencies he broadcasts a complaint by asking all his private information to be
made public.

If at this point t + 1 or more players have asked to make their information public,
the dealer is clearly faulty and all the players pick the default zero polynomial as
the dealer’s polynomial. Likewise, if the dealer did not answer all the broadcasted
requests he is declared faulty. On the other hand, if t or less players have complaint,
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then there are at least t + 1 good players who are satisfied. These uniquely define
the polynomial f (x , y) and they conform with all the information that was made
public. In this case the complaining players take the public information as their
share.

Note that if the dealer has distributed a correct secret then no piece of infor-
mation of any good player was revealed during the verification process. If however
the dealer was bad, we do not have to protect the privacy of his information, and
the verification procedure ensures us that all the good players values lie on some
polynomial of degree t .

Some More Tools
Before going into the computation stage, we need two more tools

(1) Generating (and verifying) a random polynomial of degree 2t , with a zero free
coefficient.

(II) Allowing a dealer to distribute three secrets, a, b, and c, and verifying that
c = a . b.

Both of these are not needed when n ≥ 4t + 1, but are required to handle the
n = 3t + 1 case.

(I) Generating Polynomials of Degree 2t

Let each player Pi distribute t random (including the free coefficient) polynomials
gi ,k, k = 1, . . . , t , of degree t . Define fi(x) by

fi(x) =
t∑

k=1

xk . gi ,k

and let the players evaluate from their points on the gi ,k-s their corresponding point
on fi(x).

After we have verified that indeed deg gi ,k ≤ t , it is clear that deg fi(x) ≤ 2t , and
fi(0) = 0. (It is also clear that the vector of coefficients of the monomials of xi,
i = 1, . . . , t , in fi(x) are uniformly distributed and are completely independent
from the information held by any set of at most t players that does not include
Pi.)

Finally, as our random polynomial we take

f (x) = sumn−1
i=0 fi(x).

(II) Verifying that c = a . b

Let the player P distribute a and b using the polynomials A(x) and B(x) respectively.
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We want P to also distribute a random polynomial encoding c = a . b, in such a way
that the players can all verify that indeed c = a . b. Let

D(x) = A(x) . B(x) = c + c1x + . . . + c2tx
2t

and let

Dt(x) = rt , 0 + rt , 1x + . . . + rt , t−1x
t−1 + c2tx

t

Dt−1(x) = rt−1, 0 + . . . + rt−1, t−1x
t−1 + . . . + [c2t−1 − rt , t−1]xt

...
...

D1(x) = r1, 0 + . . . + r1, t−1x
t−1 + . . . + [ct − rt , 1 − rt−1, 2 − . . . − r2, t−1]xt

where the ri ,j are random elements from E. P selects the Di(x) and distributes
their shares to all the players. After verifying that A(x), B(x) and all the Di(x) are
of degree t , define

C(x) = D(x)

t∑
i−1

xt . Di(x).

and verify that C(x) is also of degree t . From the construction of C(x) it is clear that
C(x) is a random polynomial of degree t with the only restriction that C(0) = a . b.

Proof of Theorem 3
We separate again the computation to its Input, Computation and Final stages. At
the input stage, we let each player enter his inputs to the computation using our
secret sharing scheme, while verifying that each secret shared is indeed some poly-
nomial of degree t . The secret verification assures that the inputs of any Byzantine
player is well defined, but does not ensure that it is in the domain of our function.
For example, in a 0-1 vote, we must verify that the input is 0 or 1. We defer this type
of verification to the computation stage.

The final stage is exactly the same as in the proof of Theorem 1. When we have
simulated the circuit, and the players are holding the pieces of a properly shared
secret, encoding the final output, they send all the pieces to one or all the players.
As at most t pieces are wrong, each player can use the error correcting procedure
and recover the result.

The Computation Stage – Byzantine Case
Let a and b be properly encoded by f (x) and g(x) respectively, where by “properly
encoded” we mean that all the pieces of the good players are on some polynomial
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of degree t . Since f (x) and g(x) are properly encoded the polynomials f (x) + g(x),
and c . f (x), properly encode a + b, and c . a, for any constant c ∈ E. The same
argument of Theorem 1 implies that we can do the computation of any linear
operation with no communication at all.

Here again, the multiplication step is more involved. To repeat the procedure of
theorem I, using the degree reduction step, via the Matrix Multiplication Lemma,
we must make sure the all the players use, as input to this procedure, their correct
point on the product polynomial h(x) = f (x)g(x). To guarantee that this indeed
happens, we use the Error Correcting Codes again.

Let ai = f (ωi), bi = g(ωi) and ci = h(ωi) = ai
. bi be the points of Pi on these

polynomials. We ask each Pi to pick a random polynomial of degree t , Ai(x), such
that ai = Ai(0), and use this polynomial to distribute ai as a secret to all the players.
Similarly, Pi distributes bi using Bi(x). We also ask Pi to distribute ci using the
polynomial Ci(x), while verifying that Ai(x), Bi(x), Ci(X) are all of degree t , and
that Ci(0) = Ai(0)Bi(0).

We want to verify that the free coefficients of the polynomials Ci(x) are all points
on the product polynomial h(x). It is enough to verify that all the free coefficient of
the Ai(x) and Bi(x) are on f (x) and g(x) respectively. We do this as follows.

The free coefficient of the Ai(x)-s are a code word with at most t errors. By
our assumption, all the Ai(x) are properly distributed. We can therefore use them
to compute any linear functional. In particular, using the same Ai(x)-s we can
compute the polynomials

Sr(x) =
n−1∑
i=0

ωr .iAi(x)

for r = 1, . . . , 2t . At this point all the players reveal their points on the polynomials
Sr(x), enabling all the players to recover the value of sr = Sr(0), for r = 1, . . . , 2t .

Note that if all the Ai(0) are correct (i.e. on a polynomial of degree t) then
sr = 0 for all r . Thus the computed value of the sr , are just a function of the errors
introduced by the Byzantine players. In particular, this implies that the value of the
sr does not reveal any information that is held in the hands of the good players!

Since at most t of the Ai(0) can be wrong, the value of the sr − s, the so called
Syndrome Vector, is the only information needed by the error correction procedure
to detect which coordinates Ai(x) encode a wrong Ai(0) and give the correct value.
Therefore, if some sr = 0, all the players compute the wrong coordinates, the correct
value of f (ωi), and use the constant polynomial with this value, instead of Ai(x).
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In a similar way we can check and correct the Bi(x). We can, therefore, also check
(and correct) the Ci(x), so we are sure that all the inputs to the linear computation
we have to do in the degree reduction procedure are correct.

Note that much of this is not needed when n ≥ 4t + 1, because then we can still
correct up to t errors on polynomials of degree 2t . In this case we can do the error
correction on the points of h(x) directly.

As in the proof of Theorem 1, we have,

Theorem 3 For every probabilistic function and every t < n/3 there exists a protocol that is both
t -resilient and t -private.

For completeness we state,

Theorem 4 There are functions for which there is no n/3-resilient protocol.

Proof Follows immediately from the lower bound for Byzantine Agreement in this model.
We note that even if we allow broadcast as a primitive operation, theorem 4 remains
true. This is because we can exhibit functions for three players that cannot be
computed resiliently, when one player is bad. This generalizes immediately to n/3.

Remark All the remarks following the statement of theorem 1 apply also to theorem 3.
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Appendix

Formal Notation
Let F be a field. Let U = Fn denote the standard n-dimensional vector space over
F and Mn(F) the ring of n × n matrices over F .

Let R be a random variable with distribution D over F . Then Rk (R∗) denotes k

(finitely many) independent draws from D.
Comment: Unless otherwise specified, F will be finite, and D the uniform distri-
bution over F .

The Basic Model
Fix n > 0 and a field F . Intuitively, an (n, F) - network is a complete synchronous
network of n probabilistic machines (players) P0, P1, . . . Pn−1. At every round, each
player can send one message (element of F ) to each other player, receive a message
from each other player, and perform arbitrary computation.

If we assume for convenience that players send messages to themselves too, a
round of communication is neatly described by a matrix M ∈ Mn(F), where each Pi

sent the ith row of M , and receives the ith column of M . (This formalizes the security
of private channels).

Formally, a T round (n, F) - network is a set of players {P0, P1, . . . , Pn−1}. Each
Pi is a tuple

Pi =< Qi , q
(0)
i , Ri , δi >,

where Qi is a set of states, q
(0)
i the initial state, Ri is a random variable over F

(distributed like R) and

δi : [T ] × Qi × Fn × R∗
i
→ Qi × Fn

is a transition function that given a round number, state, previous round input and
private coin tosses computes the next state and this round’s output.

A protocol is simply δ =< δ0, δ1, . . . , δn−1 >, the transition functions prescribing
to each player what to do in each round.
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A run M of a protocol δ is a sequence (Ml , M2, . . . , MT ), Mj ∈ Mn(F) of matrices
describing the communication in rounds j = 1, 2, . . . , T . Note that M is a random
variable, depending on {q(0)

i }, the initial states, and {R∗
i
}, (= R∗), the random draws

from D.
A (probabilistic) function is a function f ,

f : Fn × Rm → Fn.

Intuitively, a protocol computes a function f if for all v ∈ Fn, if Pi is given vi ∈ F

before round 1, then after round T it knows ui, such that u =< u0, u1, . . . , un−1 > is
distributed exactly like f (v × Rm). For convenience we denote a vector < a0, a1, . . . ,
a + n − 1 > by < ai >. Also, let q

(j)

i denote the state of Pi after round j .
To formally define what it means for a protocol to compute a function, we

assume fixed input and output functions, Ii , Oi : Qi → F for each player Pi. Now δ

computes f , if for every choice of < q
(0)
i ) >, we have < Oi(q

(T )
i ) >= f (Ii(q

(0)
i ) × Rm)

(as random variables).

Some Intuition
The bad players in our model can completely coordinate their actions. Hence, for
a bad set (coalition) C ⊆ [n] = {0, 1, 2, . . . , n − 1}, the transition functions δi, i ∈ C

are replaced by arbitrary functions δ′
i

that compute the next state and messages of
Pi from the joint information of the current states, previously received messages
and random choices of all {Pi}, i ∈ C. We denote any protocol in which a set C is
bad (in this sense) by δC.

We distinguish two types of bad behavior. The benign (gossip) kind, in which
bad players send messages according to the original protocol δ, but try to learn as
much as they can from it by joining their forces. The malign (Byzantine) kind puts
no restrictions on the bad players, i.e. the δ′

i
can really be arbitrary.

To formalize the benign kind of bad behavior we need the following definition:
Two protocols δ and δ′ look alike if their runs have the same distribution, i.e. M = M ′

as random variables, for every fixed initial state < q
(0)
i > of all players.

A bad coalition C is called gossip if the protocol δC looks like δ, otherwise it is
called Byzantine.

In the case of gossip, we don’t have to worry about the correctness of computing
f - this follows from the definition “look alike”. Here all we shall have to prevent
is leakage of information. In case of Byzantine faults, we will have to guarantee
also the correctness of the computation. We proceed now to define the important
notions of Privacy and Correctness.
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Privacy (Preliminary)
Intuitively, a coalition C did not learn anything from a protocol for computing f , if
whatever it can compute after the protocol (from its final states), it could compute
only from its inputs (initial states) and its components of the function values.

Let QC =∏i∈C Qi and A be an arbitrary set. Also, if u =< u0, u1, . . . , un−1 >,
uC denotes the sub-vector of u that contains ui, i ∈ C. Formally, a set C is ignorant
in a protocol δ (for computing f ), if for every set of initial states < q

(0)
i ) >, every

protocol δC that looks like δ and every function g′ : Q + c → A there exists a funclion
d : QC × F |C| → A satisfying

g′(q(T )
C = g(q

(0)
C , f , (< Ii(q

(0)
i ) >)C) (∗)

A protocol δ (for computing f ) is t -private if every coalition C with |C| ≤ t is ignorant.

Correctness
This issue is problematic, since some of the bad players can obliterate their initial
inputs, and the function value is not well defined (a simple example is Byzantine
agreement). To ignore bad inputs for every set B ⊆ [n], we need a (sub)function of
f that depends on the input coordinates of only [n] \ B. (a special case is assigning
default values to input coordinates in B).

So now by f we mean a family of functions {fB : Fn\B × RM → Fn}, B ⊆ [n],
with fφ being the original function f . Typically, (as in Byzantine agreement) this
exponential size family is very succinctly described.

So now, a computation is correct, if all good players compute a function fB,
where B is a subset of the bad players.

More formally, a coalition C is harmless if for every set of initial states < q
(O)
i >

and every protocol δC,

{< Oi(q
(T )
i ) >}[n]\C = fB({< Ii(q

(0)
i ) >}[n]\B)[n]\C

for some B ⊆ C.
A protocol is t -resilient if every coalition C with |C| ≤ t is harmless.

Privacy Revisited
For the case of Byzantine faults, the assumption that δC looks like δ is invalid. For
any harmless coalition C we can remove this assumption from the definition of
ignorance, and replace f in (*) above, by fB, the function that will actually be
computed by the good players.

Now the notion of a protocol that is both t -resilient and t -private is well defined.





16Multi-Prover Interactive
Proofs: How to Remove
Intractability
Assumptions
This chapter reproduces the contents of the paper “Multi-Prover Interactive Proofs:
How to Remove Intractability Assumptions,” which appeared in the proceedings of
the 20th Annual ACM Symposium on Theory of Computing, pp. 113–131, 1988.

This influential work of Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi
Wigderson introduced a model, denoted MIP, that turned out to be closely related
to the PCP model, which was introduced later and had a vast impact on complex-
ity theory. Interestingly, the original motivation was constructing zero-knowledge
proof systems without relying on intractability assumptions, a goal that was indeed
achieved in this work.
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Abstract
Quite complex cryptographic machinery has been developed based on the assump-
tion that one-way functions exist, yet we know of only a few possible such candi-
dates. It is important at this time to find alternative foundations to the design of
secure cryptography. We introduce a new model of generalized interactive proofs as
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The generalized interactive-proof model consists of two computationally un-
bounded and untrusted provers , rather than one, who jointly agree on a strategy to
convince the verifier of the truth of an assertion and then engage in a polynomial
number of message exchanges with the verifier in their attempt to do so. To be-
lieve the validity of the assertion, the verifier must make sure that the two provers
can not communicate with each other during the course of the proof process. Thus,
the complexity assumptions made in previous work, have been traded for a physical
separation between the two provers.

We call this new model the multi-prover interactive-proof model, and examine
its properties and applicability to cryptography.

1 Introduction
The notion of randomized and interactive proof system, extending NP, was intro-
duced in [GMR] and in [B]. An interactive proof-system consists of an all powerful
prover who attempts to convince a probabilistic polynomial-time bounded verifier
of the truth of a proposition. The prover and verifier receive a common input and
can exchange upto a polynomial number of messages, at the end of which the veri-
fier either accepts or rejects the input. Several examples of interactive proof-system
for languages not known to be in NP (e.g graph non-isomorphism) are known.

In [GMWl] Goldreich, Micali and Wigderson show the fundamental result that
that if “nonuniform” one-way functions exist (i.e no small circuits exist for the
function inverse computation), then every NP language has a computationally zero-
knowledge interactive proof system. This has far reaching implications concerning
the secure design of cryptographic protocols. It also seems to be the strongest result
possible. Results in [F] and [BHZ] imply that if perfect zero-knowledge interactive
proof-systems for NP exist, (i.e which do not rely on the fact that the verifier is
polynomial time bounded) then the polynomial time hierarchy would collapse to
its second level. This provides strong evidence that it will be impossible (and at
least very hard) to unconditionally show that NP has zero-knowledge interactive
proofs.

In light of the above negative results, it is interesting to examine whether the
definition of interactive proofs can be modified so as to still capture the notion of
efficient provability and yet allow perfect zero-knowledge proofs for NP, making no
intractability assumptions.

This is particularily important from a cryptographic view point, as the possible
one-way functions currently considered are very few and almost exclusive to num-
ber theory (e.g. integer factorization, discrete logarithm computation and elliptic
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logarithm computation.) If these were found to be efficiently solvable, the crypto-
graphic consequences of the [GMW] result would be unusable.

1.1 New Model
We extend the definition of an interactive proof for language L as follows: instead
of one prover attempting to convince a verifier that x, the input string, is in L, our
prover consists of two separate agents (or rather two provers) who jointly attempt to
convince a verifier that x is in L. The two provers can cooperate and communicate
between them to decide on a common optimal strategy before the interaction with
the verifier starts. But, once they start to interact with the verifier, they can no longer
send each other messages or see the messages exchanged between the verifier and
the “other prover”. As in [GMR] the verifier is probabilistic polynomial time, and can
exchange upto a polynomial number of messages with either one of the two provers
(with no restriction on interleaving the exchanged messages) before deciding to
accept or reject string x.1

We restrict the verifier to send messages to the prover in a predetrmined order.
It can be shown that this is equivalent with respect to language recognition, to a
model in which the verifier is free to talk to the provers in any order he wishes.
Moreover, the verifier can be forced to send messages to the provers in a predeter-
mined order by using a simple password scheme. Thus, we can work in the easier
to deal with synchronous model completely without loss of generality.

The main novelty of our model is that the verifier can “check” its interactions
with the provers “against each other”. One may think of this as the process of
checking the alibi of two suspects of a crime (who have worked long and hard
to prepare a joint alibi), where the suspects are the provers and the verifier is
the interrogator. The interrogators conviction that the alibi is valid, stems from
his conviction that once the interrogation starts the suspects can not talk to each
other as they are kept in separate rooms, and since they can not anticipate the
randomized questions he may ask them, he can trust his findings (i.e receiving a
correct proof of the proposition at hand).

Applying this model in a cryptographic scenario, one may think of a bank
customer holding two bank-cards rather than one, attempting to prove its identity
to the bank machine. The machine makes sure that once the two cards are inserted

1. A proof-system for a language in this model is defined in a similar manner to [GMR]. Namely, L

has a multi-prover interactive proof-system if there exist a verifier V and provers P1, P2 such Lllat
when x ∈ L the probability that V accepts is greater than 2/3, and when x is not in L then for all
P1, P2 the probability that V accepts is less than 1/3.
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they can no longer communicate with each other. In this scenario, the provers
correspond to the two cards, and the verifier to the bank machine.

1.2 Results
1.2.1 Perfect Zero Knowledge Multi-Prover Interactive Proofs

We show, that in our extended model all NP languages have a perfect zero-
knowledge interactive proof-system, making no intractability assumptions.

The protocol for NP languages proposed, requires the two provers to share either
a polynomially long random pad or a function which they can compute but the
polynomially bounded verifier can not. It is well known that such functions exist
by counting arguments. Most of the burden of the proof lies on one predetermined
prover. In fact, the “other” prover sole function is to periodically output segments
of the random pad he shares with the “primary prover”. The protocol is constant
(two) round.

Differently then in the case of the graph non-isomorphism and quadratic non-
residousity proof-systems in [GMR], [GMW], paralIe1 executions of the protocol
remain perfect zero-knowledge.

More generally, we show that any lauguage which can be recognized in our ex-
tended model, can be recognized in perfect zero-knowledge making no intractabil-
ity assumptions.

Our construction does not assume that the verifier is polynomial time bounded.
The assumption that there is no communication between the two provers while
interacting with the verifier, must be made in order for the verifier to believe the
validity of the proofs. It need not be made to show that the interaction is perfect
zero-knowledge.

1.3 Language Recognition Power of New Model
It is interesting to consider what is the power of this new model solely with respect
to language recognition. Clearly, NP ⊆ IP which in turn is a subset of languages
accepts by our extended model. We show that adding more provers than two, adds
no more power to the model.

We also show for every language possessing a two prover interactive proof there
exists another two prover interactive proof which achieves completeness, i.e. the
verifier will always accept strings which are in the language.

Fortnow, Rompel and Sipser [FRS] have shown that two provers can accept any
language in IP (one-prover model with polynomial number of rounds) using only
a constant number of rounds. They also show that three provers can accept in a
constant number of rounds all languages recognized by a multi prover model.
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Feige, Shamir and Tennenholtz [FST] look at a model they call the k-noisy oracle
model, in which the verifier is interacting with k oracles all of which but one may
be dishonest. Based on the assumption that one of the oracles is trusted, they show
that P-space langauages can be recognized in a 2-noisy oracle model.

1.4 Open Problem
Whether the two-prover proof-system is actually more powerful with respect to
language recognition than the original one-prover interactive proof-system of
[GMR],[B], remains an open problem.

Even the simplest case of two-round two-prover proof-system in which the veri-
fier sends the result of his coin tosses first (some to prover 1 and some to prover 2),
receives responses (from both provers) on the subsequent round, and then evalu-
ates a polynomial time predicate to decide whether to accept or reject, is not known
to lie in PSPACE. Hastad and Mansour [HM] show that resolving this question in
the positive will imply that NP = poly(log) - SPACE.

2 Definitions

Definition 1 Let P1, P2, . . . , Pk be Turing machines which are computationally unbounded
and V be a probabilistic polynomial time Turing machine. All machines have a
read-only input tape, a work tape and a random tape. In addition, P1, P2, . . . , Pi

share an infinite read-only random tape of 0’s and 1’s. Every Pi has one write-only
communication tape on which it writes messages for V . V has k write-only com-
munication tapes. On communication tape i, V writes messages to Pi. We call
(P1, P2, . . . , Pk , V ) a k-prover interactive protocol.

Remark 1 Fortnow, Rompel and Sipser [FRS] remark that the above can be modeled as a
probabilistic polynomial time Turing machine V and an oracle p such that queries
to p are prefixed always by 1≤ i ≤ k, corresponding to whether the query is directed
to prover i. Each query contains the history of the communication thus far.

We note that although this memoryless formulation is equivalent to the i-prover
formulation with respect to language recognition, it is not equivalent when zero-
knowledge is considered. In this latter case the provers must be able to check that
the history is indeed what is claimed by the verifier, before answering the next query.
Since the verifier is not untrusted, the provers can not be memoryless.

Definition 2 Let L ⊂ {0, 1}∗, We say that L has a k-prover interactive proof-system(IPS) if there
exists an interactive BPP machine V such that:



Chapter 16 Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions 379

1. ∃P1P2, . . . , Pk such that (P1, P2, . . . , Pk , V ) is a k-prover interactive protocol
and ∀x ∈ L, prob( V accepts input x) ≥ 2

3 .

2. ∀P1, P2, . . . , Pk such that (P1, P2, . . . , Pk , V ) is a k-prover interactive proto-
col, prob( V accepts input x) ≤ 1

3 .

Remark 2 if L has an k-prover interative proof-system and condition (1) holds for a particular
P̂1P̂2, . . . , P̂k, then we say that (P̂1, P̂2, P̂k , V ) is a k-prover interactive proof-system
for L.

Remark 3 if L has an two-prover interative proof-system, then L has a two-prover interactive
proof-systems (P1, P2, V ) such that for x ∈ L, prob(V accepts x) = 1. See Theorem 5.

Remark 4 For convenience, without loss of generality, we assume that every verifier V outputs
his coin tosses at the end of his interaction with the Pi’s.

Definition 3 Let IPk = {L which have k-prover interactive proof-system }.

The following definition of perfect zero-kowledge is identical to the Goldwasser-
Micali-Rackoff [GMR] definition of perfect zero-knowledge in the 1-prover model.

Definition 4 Let (P1, P2, . . . , Pk , V ) be a k-prover interactive proof-system for L. Let
ViewP1,P2, . . . ,Pk ,V (x) denote the verifier’s view during the protocol (namely the
sequence of messages exchanged between the verifier and the two provers in-
cluding the last message of the verifier which contains his coin tosses - see re-
mark 4 above). This is a probability space taken over the coin tosses of V and
the joint random tape of P1, P2, . . . , Pk. We say that k-prover interactive protocol
(P1, P2, . . . , Pk , V ) is perfect zero-knowledge for V if there existe a BPP machine
M such that M(x) = ViewP1,P2, . . . ,Pk ,V (x). We say that L has a k-prover perfect zero-
knowledge proof-system if there exists provers P1, P2, . . . , Pk such that for all BPP
verifiers V̂ , there exists a probabilistic Turing machine M such that for all x in L,
M(x) = View

P1,P2, . . . ,Pk , V̂ (x) and M(x) terminates in expected polynomial time.

3 Statement of Our Results
Theorem 1 Every L ∈ NP has a two-prover perfect zero-knowledge interactive proof-system.

Proposition 1 parallel executions of the perfect zero-knowledge interactive proof-system for NP
remain perfect zero-knowledge.

Theorem 2 Every L ∈ IP2 has a perfect zero-knowledge interactive proof-system.

Theorem 3 Any two party oblivious function computation can be done in this model.
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Theorem 4 For all k ≥ 2, if L∈ IPk, then L ∈ IP2.

Theorem 5 If L ∈ IP2 then ∃P1, P2, V such that (P1, P2, V ) is a two-prover interactive proof-
system for L and for all x ∈ L, Prob( V accepts x) = 1.

3 Key Ideas
A general primitive used in complexity based cryptography (and in particular in the
proof that NP is in zero-knowledge under the assumption that one-way functions
exist)is the ability to encrypt a bit so that the decryption is unique. In our model,
encryption is replaced by a commitment protocol to a bit such that the bit is equally
likely to be 0 or 1 (information theoretically), and yet the probability that a different
bit can be decommited (i.e revealed) is less than 1

2 (this fraction can then be made
arbitrarily small using standard techniques). The idea is that one prover is used to
commit the bit, and the other to reveal it.

Another important primitive is that of oblivious circuit evaluation. This primi-
tive allows two parties, A and B, possessing secrets i and j respectively, to compute
some agred upon function f (i , j) in such a way that A learns nothing, and B learns
only f (i , j). The original implementation of this protocol, due to Yao [Yao86a], re-
quires the existence of trapdoor functions. In fact, oblivious circuit evaluation can
not be implemented without cryptographic assumptions in the standard two party
scenario. However, we show that oblivious circuit evaluation between verifier and 1
prover can be done without assumptions in the two-prover model. The proof relies
on a result of [K] reducing oblivious circuit evaluation to a simpler protocol, known
as 1-out-of-2 oblivious transfer, which was reduced by [C] to a still simpler protocol,
known as oblivious transfer. This last protocol is implemented in the two-prover
model.

4 Proof of Theorem 1: How to Commit Bits
We first show that every language in NP has a perfect zero-knowledge two-prover
interactive proof-system.

Theorem 1 Every L in NP has a two-prover perfect zero-knowledge interactive proof-system.

Idea of Proof
Let (P1, P2, V ) denote a multi-prover protocol which receives as input the graph
G = (V , E). Let P1 and P2 share an infinite random pad R such that R = r2r2 . . . rk . . .
where ri ∈ {0, 1, 2}.2 Let n = V.

2. Alternatively, R can be replaced by the outcome of f (x) where x is the input and f : {0, 1}∗− >

{0, 1}∗ is a function such that for all x ∈ {0, 1}∗, for all i < |f (x)|, the i-th bit of f (x) is equally
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Let us quickly review3 one of the, by now standard proofs ([GMW1], [Bl]) that
NP is in zero-knowledge under the assumption that one-way functions exist.

Review: The prover is attempting to convince the verifier that G is Hamilton-
ian. The prover publicizes an probabilistic encryption algorithm E (as in [GM],
[Yao82a])4 The prover and verifier repeat the following protocol n times:

STEP 1. prover randomly permutes the vertices of graph G (using permutation
π ) to obtain graph G and sends to verifier

an n × n matrix α = {αij} where αij in E(bij) and bij = 1 if edge ij is

present in the Ĝ and 0 otherwise.

β ∈ E(π), i.e an encryption of π .

STEP 2. verifier chooses at random coin ∈ {0, 1}, and sends coin to the prover.

STEP 3. If coin = 1, prover decrypts β and αij for all i , j ≤ n and sends decryp-
tions to verifier. If coin = 0, prover decrypts those αij such that edge ij is in

the Hamiltonian path in Ĝ.

STEP 4. If prover is unable to preform step 3 correctly, verifier rejects. Other-
wise, after n iterations of steps 1 through 4, verifier accept.

End of Review
Returning to the two prover model, prover P1 replaces the prover in step 1 of above
protocol and prover P2 replaces the prover in step 2 of above protocol. Algorithm E

is no longer a probabilistic encryption algorithm based on the existence of one-way
functions as in [GM] or [Yao86a], but rather a commitment algorithm computed
as follows.

Let σ0, σ1 : {0, 1, 2}− > {0, 1, 2} be such that

1. for all i, σ0(i) = i,

2. σ1(0) = 0, σ1(1) = 2 and σ1(2) = 1.

Let mk be the k-th bit to be committed to in the protocol.

likely to be 0 or 1 with respect to any probabilistic polynomial time machine. Such functions can
be shown to exist by standard diagonalization techniques over all probabilistic polynomial time
machines.

3. the proof reviewed is from [Bl]

4. The encryption algorithm E is public. We denote γ ∈ E(m) to mean that there exists string r

such that algorithm E using r for his coin tosses, on input m, produces γ . Given γ there exists
unique m, r such that E, on coin tosses r and input m outputs γ . To decrypt γ both m, r are
revealed.
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To commit mk :

. V chooses at random ck ∈ {O , 1} and sends ck to P1.

. P1 sets E(ck , mk) = σck
(rk) + mk mod 3, where rk ∈ {0, 1, 2} is read off the

random tape P1 shares with P2, and sends E(ck , mk) to V .

To reveal the k-th bit committed in the protocol, V and P2 engage in the following
protocol.

To reveal the k-th bit:

. V sends k to P2.

. P2 sends V the string rk.

. V computes σck
(rk) and sets mk to (E(ck , mk) − σck

(rk)) mod 3.

Note: P2 does not know ck and has never seen E(ck , mk).
We prove two properties of the above pair of commit-reveal protocols. First,

since P2 sees neither E(ck , mk) nor ck, but knows exactly what P1’s program is,
the probability that P2 successfully reveals a bit value different than the one P1

committed to is less than 1
2 .

Claim 1.1 ∀r ∈ {0, 1, 2}, m ∈ {0, 1},

prob(r̂ is s.t. E(c, r , m) = E(c, r̂ , m)) ≤ 1
2

Comment: To decrease the probability of successfuly cheating from 1
2 to 1

2n , P1

preform n commits to mk and P2 preforms n reveals correspondingly.

Knowing k, E(ck , mk) and ck gives the verifier no advantage in guessing mk.

Claim 1.2 ∀c ∈ {0, 1},

prob(m = 0|E(c, r , m)) = prob(m = 1|E(c, r , m)) = 1
2

Proving now that the altered mutli-prover Hamiltonian cycle protocol consti-
tutes a two-prover interactive proof for the Hamiltonian cycle problem follows
directly from [Bl]’s proof and claim 1.

Proving that the protocol is perfect-zero-knowledge is more subtle.
To this end, we exhibit a probabilistic Turing machine M such that

. for HamiItonian graphs G, M(G) terminates in expected polynomial time.
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. for all V̂ such that (P1, P2, V̂ ) is a two-prover protocol, and for all Hamil-
tonian graphs G, M(G) = View

P1,P2, V̂ . (where P1, P2 are honest provers as
specified above.)

WLOG let the number of coin tosses of verifier and prover on input G = (V , E) where
|V| = n be be bounded by polynomial Q(n).

Simulator M program: (tailored after steps 1-4 above in [Bl]’s proof)

STEP 1. M chooses ρ ∈ {0, 1}Q(n) at random for the coin tosses to be used by
V̂ . and sets R = r1r2 . . . rk . . . , |R| ∈ {0, 1}Q(n) where rk ∈ {0, 1, 2} are cho-
sen at random. (V̂ (ρ , G) will denote the program V̂ on input G and coin
tosses ρ.) M picks a random permutation π of the vertices of graph G to ob-
tainthe permuted graph Ĝ and an n × n random binary matrix MAT . Next,
M simulates a commitment protocol to π and MAT as follows. To simulate
a commitment protocol to the k-th bit m: M runs V̂ (ρ , G) to obtain c, com-
putes E(c, m) = σck

(rk) + m mod 3 for rk ∈ R, and writes E(c, m) on V̂ (ρ , G)’s
tape.

STEP 2. M continues running V̂ (ρ , G) to obtain coin.

STEP 3. if coin = 1, M reveals π (as P2 would do in real protocol) by writing the
appropriate r ∈ R on V̂ (ρ , G)’s tape. Revealing MAT to V is more involved, as
follows. Let MAT = {mij |1 ≤ i , j ≤ n}r and α = E(c, mij) = σc(r) + mij mod 3
where r ∈R is the r used in step 1 to commit mij . Let r̂ be such that α = σc(r̂)+
mij mod 3. Note that such r̂ always exists and since M knows c (differently
from P2 in the real protocol) M can compute it. Set

ř =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r if mij = 1 and ij is an edge of Ĝ,

or mij = 0 and ij is not an edge of Ĝ

r̂ if mij = 0 and ij is an edge of Ĝ,

or mij = 1 and ij is not an edge of Ĝ

Then M reveals ř to V̂ (ρ , G).
If coin = 0, M selects n ij entries at random in MAT such that no two

entries are in the same column or in the same row. Set

ř =
{

r if mij = 1

r̂ if mij = 0

Where again r ∈ R from step 1 such that α = E(c, mij) = σc(r) + mij mod 3,

and r̂ is such that αij = σc(r̂) + mij mod 3. Next, M reveals ř to V̂ (ρ , G).
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Finally, M sets Ř to be R with the values of ř substituted for r used to commit
the matrix MAT .

STEP 4. M runs V̂ to either accept or reject. It then outputs the transcript of its
exchanges with V̂ followed by Ř. DONE

It is clear that, M on G operates in polynomial time in the running time of V̂ .
Since V̂ is assumed to be probabilistic polynomial time, so is M .

To show that the probability space generated by M is identical to that in
View

(P1,P2, V̂ )
, we notice that for fixed ρ ( coin tosses of the verifier) and fixed Ř

(joint random tape of P1 and P2) the output of M(G) is identical to View
(P1,P2, V̂ )

.

This is so as M actually runs V̂ to obtain his moves and therefore V̂ ’s moves are
guaranteed to be perfectly simulated, while M itself follows the moves P1, P2 would
have made on joint random tape R̂. Since ρ was picked by M at random at step 1,
it remains to argue that the probability that Ř was chosen by P1 and P2 is the same
as the probability that Ř was output by M . This is trivially true by claim 1.2.

We claim, without proof here, that independent executions of the above protocol
for any language L ∈ NP can be performed in parallel and the resulting protocol will
still be a 2-prover perfect zero-knowledge proof-system for L.

In the 1-prover model the question of whether it is possible in general to preform
parallel executions of perfect zero-knowledge protocols maintaining perfect zero-
knowledge is unresolved. In particular, it is not known how to parallelize the proof-
systems for quadratic residuosity and graph isomorphism.

5 Proof of Theorem 4: IPk = IP2 for all k ≥ 2
We now show that any k-prover (P1, . . . , Pk , V ) interactive proof-system for lan-
guage L can be converted into a 2-prover (P̂1, P̂2, V̂ ) interactive proof-system. The
idea is as follows.

Verifier V̂ tosses all his coins and sends them to prover P̂1. In return, P̂1 sends
V̂ the entire history of communication that would have occured for theses coin
tosses between the real verifier V and the k real provers Pi’s. If this is an accepting
conversation for V , V̂ now uses P̂2 to check the validity of the conversation. This
is done by V̂ selecting at random an original prover Pi, and simulating with P̂2 the
conversation between V and Pi on these coin tosses. If the conversation does not
match the conversation sent by P̂1 then V̂ rejects, otherwise the protocol is repeated
k times (in series) and finally V̂ accepts.

Note that the number of rounds in the simulating protocol is k2t , where t is the
number of rounds in the k-prover interactive proof-system. Fortnow, Rompel and
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Sipser in [FRS] show that for each L ∈ IP2, there exists a 3-prover IPS for L with
only a constant number of rounds.

Theorem 4 Let k ≥ 2. If L ∈ IPk then L ∈ IP2.

Proof Let L have a k-prover interactive proof-system (P1, . . . , Pk , V ). Let Ik = {1, 2, . . . ,
k , $} and r denote the coin tosses made by the verifier. For a w ∈ L, the opti-
mal provers P1, . . . , Pk and the verifier V can be thought of as deterministic
functions Pi : 
∗ → 
∗ and V : 
∗ × Ik × 
∗ → 
∗ ∪ {(accept, reject} such that
yi

j = Pi(h
i
j−l#xi

j) denotes the j -th message of the i-th prover to the verifier, xi
j =

V (r , i , h1
j−1, . . . , hk

j−1) denotes the j -th message of the verifier to the i-th prover,

and hi
j = #xi

1#yi
1# . . . #xi

j#yi
j denotes the history of communication as prover i

sees it at round j . Let t the total number of rounds, then V (r , $, h1
t

, . . . , hk
t
) ∈

{accept, reject}. Let Q be a polynomial such that |r|, |xi
j |, |yi

j | < Q(|w|).

We now define provers P̂1 and P̂2 and verifier V̂ in the simulating two-prover
protocool P̂1, P̂2, V̂ ).

On input w,

STEP 1. V̂ chooses r ∈ {0, 1}Q(|w|) at random, sends r to P̂1.

STEP 2. P̂1 sends h1
t

, . . . , hk
t

to V̂ where the hi
t
’s are computed according to

functions P̂1, . . . , P̂k and V . If V (r , $, h1
t

, . . . , hk
t
) = reject then V̂ rejects and

halts. Otherwise V picks 1 ≤ i ≤ k at random, sets j = 1 and continues.

STEP 3. V̂ sends ui
j = V (r , i , ĥi

j−1) to P̂2, where hi
j = #ui

1#vi
1# . . . #ui

j#vi
j for

j ≤ t . if j = t and ĥi
t
= hi

t
then V̂ accepts and halts , otherwise V̂ rejects and

halts.

STEP 4. P̂2 sends ui
j = Pi(h

i
j−1#ui

j) to V̂ . Set j = j + 1 and GOTO STEP 3.

Claim 5.1 ∀w ∈ L,

prob( V̂ accepts w) = prob( V accepts w)

Proof If P̂i follow the protocol as described above and compute the hi
t

according to the
functions of the corresponding Pi’s, then for every sequence of coin tosses r on
which V would accept so would V̂ .

Claim 5.2 if w ∈ L, prob( V accepts w) ≤ (prob( V accepts w) + e−k.

Proof Assume w ∈ L. Then, the prob( V̂ accepts w) ≤ prob( V̂ accepts w|∀i ≤ k∀j ≤ t ,
yi
j = P̂i(h

i
j−1)) + prob( V̂ accepts w|∃l , j s.t. , yl

j = P̂l(h
l
j−l)) ≤ prob( V accepts w)
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+ prob( V (r , $, h1
t

, . . . , hk
t
) = accept, and ∃ 1 ≤ k , s.t. hl

t
, = ĥl

t
, but i of step 4 is s.t.

hi
t
= ĥi

t
) ≤ prob( V accepts w) + (1 − 1

k
).

If the above protcol is repeated k2 independent times, the probability of success
is reduced to prob( V accepts w) + (1 − 1

k
)k

2 ≤ prob( V accepts w) + e−k.

This completes the proof, and L is indeed in IP2.

6 Proof of Theorem 5: Completeness
Goldreich, Mansour and Sisper (GMS] showed that any L ∈ IP has an interactive
proof-system for which strings in L are always accepted. We show the correspond-
ing property for any L ∈ IP2.

Theorem 5 If L ∈ IP2, then there exists a 2-prover interactive proof-system (P1, P2, V ) for L

such that for all x ∈ L, prob( V accepts ) = 1.

Proof Suppose (P1, P2, V ) is a 2-prover interactive proof-system for L such that ε =
prob( V accepts |w not in L) and the number of coin tosses on input w which V

makes is a polynomial Q(|w|). We show a simulating 2-prover interactive proof-
system (P̂1, P̂2, V ) for L which also achieves completenes. The simulation is done
in two stages. In stage 1, we use the idea of the completeness proof for the l-prover
interactive proof-system model by Goldreich, Mansour and Sisper in [MGS] (based
on Lautman’s Lemma) where P̂1 plays the part of both P̂1 and P̂2. In stage 2, as in
the proof of the theorem of section 6, V uses P̂2 to check the validity of stage 1.

Let t denote the number of rounds in (P1, P 2, V ). Again, consider P1, P2 and V

as deterministic functions as in the proof of theorem of section 6.
Let r denote the coin tosses of the verifier. For i = 1, 2, let hi

t
(r) = #xi

1#yi
1#

. . . #xi
t
#yi

t
where xi

j = V (r , i , hi
j−1, (r)), and yi

j = Pi(h
i
j−1(r)#xi

j).

Define W = {r|V (r , $, h1
t

, h2
t
) = accept}. Note that for w ∈ L, |W |

2Q(|w|) ≥ (1 − ε)

and for w not in L
|W |

2Q(|w|) ≤ ε. Lautman[L] shows that ∀w ∈ L∃s1, . . . , sQ(|w|), |si| =
Q(|w|), s.t. ∀r , |r| = Q(|w|), ∃l s.t. r ⊕ sl ∈ W . We use this in a manner similar to
[GMS].

On input w,

STEP 1. P̂1 sends V s1, . . . , s(Q|w|) such that si ∈ {0, 1}Q(|w|)

STEP 2. V̂ sends r to P̂1 where r is randomly selected in {0, 1}(Q|w|)

STEP 3. P̂1 sends to V̂ , hi
t
(sj ⊕ r) for i = 1, 2 and 1 ≤ j ≤ Q(|w|). (These are

the histories of conversations which would have been exchanged in original
protocol (P1, P2, V ) on coin tosses r ⊕ sj , 1 ≤ j ≤ Q(|w|).)
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STEP 4. if V (r ⊕ sj , h1
t
(r ⊕ sj), h2

t
(r ⊕ sj)) = reject for all 1 ≤ j ≤ k, then V̂ re-

jects. If ∃ 1 s.t. V (r ⊕ sl , h1
t
(r ⊕ sl), h2

t
(⊕sl)) = accept, then goto STEP 5.

STEP 5. V̂ chooses i ∈ {1, 2} at randorn. It then interacts with prover P̂2 in the
same way that V and Pi would have on coin tosses r ⊕ s1. If this interaction
produces exactly the same history string hi

t
(r ⊕ 1) sent by P̂1 in STEP 3 then

V̂ accepts, otherwise it rejects.

The above protocol is repeated (Q|w|)s times, and the verifier accepts if and only
if he accepeted in any of these iterations.

Claim 1 prob( V accepts |w| ∈ L) = 1

Proof if P̂1, and P̂1 follow the program outlined above, follows directly from [L] and [GMS].

Claim 2 prob( V accepts |w| not in L) ≤ 1
3

Proof We now can not assume that P̂1, P̂2 follow the protocol. Let hij , for i = 1, 2, 1 ≤ j ≤
Q(|w|) denote the strings sent by P̂1 in STEP 3.

prob( V accepts in one iteration |w ∈ L) ≤∑l prob( ∃l , V (r ⊕ sl , h1l , h2l) =
accept|P̂1, P̂2 honest) +prob( P̂1, P̂2 not caught in step 5 but ∃j , i , hi

t
(r ⊕ sj = jij )

≤ (Q|w|) . ε + (1 − 1
(Q|w|)

)= 1 − 1
(Q|w|) + (Q|w|) . ε Now, prob( V accepts in Q(|w|)3

iterations |w ∈ L) = (1 − 1
(Q|w|) . ε

)(Q|w|)3
which is less than a 1/3 for ε sufficiently

small.

7 Proof of Theorem 2: Outline

Overview
The proof of Theorem 2 is very long and complicated. The main idea of the proof
is the implementation of a technique we call encrypted conversalions. This is a gen-
eral technique for transforming proof systems into zero-knowledge proof systems.
A protocol that has been transformed using this technique closely mirrors the orig-
inal protocol. Indeed, all the questions and answers of the transformed protocol
can be mapped to questions and answers in the original protocol. However, these
questions and answers are all strongly encrypted, in an information theoretic sense,
using keys that are known by the provers, but not by the verifier. Because the con-
versation is so strongly encrypted, the verifier gets no information, so the protocol
is zero-knowledge.
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Two concerns such a transformation must deal with are

. How can the verifier, who in a strong sense knows little of what has happened
in an encrypted conversation, be convinced that the conversation indeed
mirrors a valid conversation from the original protocol? Also, how can the
verifier be convinced that the unencrypted conversation would indeed have
caused the original verifier to accept?

. How can one insure that a malicious verifier cannot subvert the encrypted
protocol in order to acquire information in some way?

We deal with the first concern by showing how the provers and verifier can take
an encrypted transcript of the first i rounds of a conversation, and compute an
encrypted transcript of the first i + 1 rounds of a conversation. This is done in such
a way that the verifier can verify with high probability that this is the case. We deal
with the second concern by insuring that the encrypted conversation, if generated
at all, will mirror a conversation between the prover and an honest verifier. Thus, if
the verifier follows the simulation, he will only find out whether the original verifier,
on a random set of coin tosses, accepted. Since the original verifier accepts with
probability 1, this is no information. Furthermore, we guarentee that if the verifier
does not go along with the simulation, he will not get any information.

In order to accomplish these goals, we use a very useful tool called oblivious
circuit computation. This tool, first developed by Yao [Yao86a], is a protocol by
which two parties, A and B, possess secrets i and j respectively, and have agreed
upon some circuit f . At the end of the protocol, A learns nothing about j , and
B learns f (i , j), but nothing more about i than can be inferred from knowing j

and f (i , j). The provers and verifier can compute the next step of an encrypted
conversation by obliviously evaluating a circuit. We sketch the reduction from
encrypted conversations to oblivious circuit evaluation in appendix A.3.

A large portion of our construction is devoted to implementing oblivious circuit
evaluation. Yao’s implementation of this protocol relies on complexity theoretic as-
sumptions, and is therefore unsuitable for our purposes. More recently, however,
this protocol was implemented using a subprotoco1 known as oblivious transfer
in lieu of any cryptographic assumptions[K]. In the standard, two-party scenario,
oblivious transfer cannot be implemented without complexity theoretic assump-
tions. However, we show that oblivious transfer can be implemented in the two-
prover scenario without recourse to these assumptions. Our implementation uses
a result of Barringtion [Ba] that NC1 languages can be accepted by bounded width
branching programs. We sketch our implementation in appendix A.2.
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A Structure of the Transformed Protocol
Given a 2-prover IPS, we transform it into a zero-knowledge 2-prover IPS that has
three distinct phases. These stages will be referred to as the commital phase, the
oblivious transfer phase, and the encrypted conversation phase. In the commital
phase of the protocol, the two provers commit a set of bits to the verifier. In the
oblivious transfer phase of the protocol, the provers and verifier create a random
sequence O of oblivious transfer bits. Sequence O has the following three proper-
ties.

. All of the bits of O are known to the provers.

. Each bit in O is known to the verifier with probability 1
2 .

. Neither prover knows which bits in O the verifer knows.
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The third and final stage actually simulates the original 2 prover IPS. In this stage,
sequence O is used to perform oblivious circuit computation, which then allows
the use of the encrypted conversation technique. We now describe the three phases
in greater detail.

A.1 The Commital Phase
It is necessary for the two provers to be able to commit bits for use in the second,
oblivious transfer phase of the protocol. This commital is of the same type as in the
proof that any language in NP has a zero-knowledge 2-prover IPS. We use the same
commital protocol as is used in Section!5.

The bits committed to in the commital phase may be random. In order to
commit a bit b in the oblivious transfer phase, a prover can tell the verifier the
value of b ⊕ bc, where bc is a bit committed to in the commital phase. To decommit
b, the prover can then simply decommit bc.

A.2 The Oblivious Transfer Phase
The oblivious transfer phase of the zero-knowledge IPS consists of several parallel
evaluations of the oblivious transfer protocol, described below.

Introduction to Oblivious Transfer
We can view oblivious transfer as a protocol between two parties, A and B. Initially,
A knows some random bit b, which is unknown to B. At the end of the protocol,
the following two conditions hold.

1. (The Transfer Condition) One of the following two events has occured, each
with probability 1

2 . Either B learns the value of b, or B learns nothing. Player
B knows which of the two events occurred.

2. (The Obliviousness Condition) Player A receives no information about
whether or not B learned the value of b.

Oblivious transfer, first introduced by Rabin[R], is a powerful cryptographic
primitive. Its applications include contract signing [EGL] and oblivious circuit eval-
uation ([Y], [GMW2], [GHY], [AF], [GV], [K]). The first implementation of oblivious
transfer by Rabin [R] was based on the difficulty of factoring and only worked
for honest parties, Fischer, Micali, and Rackoff[FMR] presented the first imple-
mentation based on factoring and robust against computationally bounded adver-
saries. Even-Goldreich-Lempel[EGL] reduced the intractibility assumption to the
existence of trapdoor permutations.



392 Chapter 16 Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions

Unfortunately, these reductions are all cryptographic in nature, and thus of no
use to us. Our implementation, which is not based on any cryptographic assump-
tions, exploits the lack of direct communication between the two provers.

A Variant of Oblivious Transfer in the 2-Prover Model
We implement an analog to oblivious transfer in the two-prover model. At the
beginning of the protocol, the provers know(have chosen) solve random bit b, which
the verifier does not know. The provers and the verifier have also agreed on a security
parameter K . At the end of the protocol, the following variants of the usual transfer
and obliviousness conditions hold.

1. (The Transfer Condition) One of the following events occurs with probability
1
2 . Either the verifier fully learns the value of b (i.e. can predict b with prob-
ability 1), or the verifier gains only partial knowledge of b (i.e. can predict b

with probability 3
4 ). The verifier knows which of the two events occurred.

2. (The Obliviousness Condition) Let K denote the security parameters. For all
c > 0, and for K sufficiently large, if the two provers communicate less than K

bits of information, they cannot predict, with probability 1
2 + 1/Kc, whether

the verifier fully learned b.

Our implementation of this oblivious transfer protocol requires a constant number
of rounds. The total number of bits of communication between the provers and the
verifier will by polynomial in K and the size of the input.

Both the transfer and the obliviousness conditions are relaxed versions of the
standard ones. The transfer condition is relaxed purely for ease of implementation.
Using the techniques of Crépeau-Kilian[CK], we can show that achieving this weak-
ened transfer condition is equivalent to achieving the ideal transfer condition. The
standard obliviousness condition, however, cannot be implemented in this model
if the two provers are allowed to freely communicate. To get around this difficulty,
we show that for interactive proof systems, a set of bits transferred under the non-
ideal obliviousness condition may be used in place of a set of bits transferred under
the ideal obliviousness condition.

Branching Programs
The main idea behind the oblivious transfer protocol is a simulation of width 5
permutation branching programs(W5PBP), as defined in [B]. Before describing the
protocol, we first present a slightly nonstandard way to specify a W5PBP. We then
show a way of randomizing this specification. Using this randomized representa-
tion, we can then describe our oblivious ransfer protocol.
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W5PBP’s may be formally thought of as having some polynomial p(n) levels,
each with five nodes. On level 1 there is a distinguished start node s; on level p(n)

there is a distinguished accept node a. For each level, i, 1 ≤ i ≤ p(n), there is an
input variable, which we denote by vi, and two 1–1 mappings, f i

0 and f i
1, that map

the nodes at level i to the nodes at level i + 1. Intuitively, the mapping f i
0 tells

where to go if the input variable vi is 0, and f i
1 tells where to go if vi is equal to

1. A branching program may be evaluated by on a set of inputs by computing

Branching_Program(x1, . . . , xn) =
(
f p(n)−1

vp(n)−1
◦ f p(n)−2

vp(n)−2
◦ . . . ◦ f 1

v1

)
(s). (A.2.1)

If this value if equal to the accept node a, the branching program accepts, otherwise,
it is rejects. An example of a program is in fig. 1.

As described above, our branching programs consist of variables, nodes, and
functions from nodes to nodes. For our protocol, we need an alternate represen-
tation for branching programs. Given a W5PBP, we first pick a random mapping
γ , that maps nodes to {1, . . . , 5}, subject to the constraint that no two nodes on
the same level are mapped to the same number. We then replace each function f i

k ,
k ∈ {0, 1}, by a permutation hi

k, subject to the constraint

hi
k
(γ (N)) = γ (f i

k
(N)), (A.2.1)

for all nodes N on level i. From equations (A.2.1) and (A.2.2) we have

γ (Branching_Program(x1, . . . , xn)) =
(
hp(n)−1

vp(n)−1
◦ hp(n)−2

vp(n)−2
◦ . . . ◦ h1

v1

)
(γ (s)). (A.2.3)

This isomorphism between evaluating the permutations hi
k on γ (s) and evaluat-

ing the original branching program proves very useful in implementing oblivious
transfer, as we will show in the next section. The following simple lemma is useful
in analyzing the information transferred by the oblivious transfer protocol we will
present.

Lemma A.1 Suppose that for each level, i, of a branching program, exactly one of the functions
hi

0 or hi
1 is specified. Suppose also that for some level j , γ (N) is specified for all

nodes N on level j . Then there is exactly one way of consistently defining γ and the
functions hi

k.

Proof Outline First, we note that specifying γ specifies all the h’s. Thus we need only show that
there is exactly one way of consistently defining γ . By equation A.2.2, we have

γ (N) = hi−1
k (γ (f i

k
(N)), and (A.2.4)

γ (N) = hi
k
(γ (f i−1

k (N))). (A.2.5)
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If γ is defined on level i, equation(A.2.4) uniquely extends it to level i − 1, and
equation (A.2.5) uniquely extends it to level i + 1. Inductively, one can uniquely
extend γ from row j to the entire branching program. This extension is easily shown
to be consistent.

The Oblivious Transfer Protocol
We now outline the oblivious transfer protocol between the two provers and the
verifier. For the exposition, we assume that the provers follow the protocol. It is not
hard to convert this protocol to one that works with adversarial provers.

Stage 1:. Let n = K2. Both provers initially start with some canonical W5PBP
that, given two vectors  x = [x1 x2 . . . xn] and  y = [y1 y2 . . . yn], accepts iff
 x .  y = 1. They then agree on a random mapping γ , and permutations hi

k.
The provers send the verifier the exclusive-or of b and the least significant bit
of γ (a).

Stage 2:. The verifier and Prover 1 pick a random vector x. The verifier and
Prover 2 pick a random vector y. As a subprotocol, the prover and verifier
flip an unbiased coin in the following manner: Prover i chooses as his bit,
rp, one of the bits committed in the commital phase of the protocol. The
verifier chooses a bit rv at random, and announces it to Prover i. Prover i

then decommits rp. The bit r , defined by r = rp ⊕ rv will be unbiased if either
Prover i or the verifier obeys the protocol.

Stage 3:. Prover 1 sends the verifier the permutations hi
ui

, for all i such that
vi = xj , for some j . Likewise, Prover 2 sends the verifier the permutations
hi

vi
, for all i such that vi = yj , for some j . For example, if vi = y7, and y7 = 0,

then Prover 2 would send the verifier hi
0, but not send him hi

1.

We now show how to convert this protocol to one in which the provers may be
adversarial. First, we require that the provers commit their γ and their permuta-
tions hi

0 and hi
1 at Stage 1 of the oblivious transfer protocol, using the commital

protocol described in section 1. The verifier must be assured that the following two
conditions are met.

1. The permutations it receives correspond to those that have been committed,
and

2. The permutations and γ correspond to a legitimate randomized branching
program.
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The first condition is assured by having the provers decommit their permutations
in Stage 3 of the protocol. To assure that the second condition is met, we have
the verifier perform a “spot-check” with probability 1/nc, where n is the size of the
input, and c is some positive constant. To perform a spot-check, the verifier halts
the oblivious transfer protocol at the beginning of Stage 2. Instead of using the
committed W5PBP to implement oblivious transfer, the verifier requests that γ

and all the hash functions are revealed. The verifier can then check whether or not
the two provers gave a legitimate randomized W5PBP, and reject if they did not.
Note that it is only necessary for the verifier to be able to detect cheating by the
provers some polynomial fraction ofthe time. This probability may be amplified by
successively running the zero-knowledge proof system sufficiently many times.

Properties of the Oblivious Transfer Protocol
The following theorems state that the above protocol does indeed implement our
variant of oblivious transfer.

Theorem (Transfer) After the above protocol has been executed, one of the following two
events may occur, each with probability 1/2.

1. The verifier knows the value of b.

2. The verifier can guess the value of b with probability at most 3/4.

Furthermore, the verifier can tell which event occurred.

Proof Outline Suppose, that  x .  y = 1. Then the verifier can compute γ (a), and thus compute b.
This corresponds to event (1). Now suppose that  x .  y = 1. The verifier knows, for
each level i, exactly one of the functions hi

0 or hi
1. The verifier can also compute γ (a′),

where a′ is also on the last level, and a′ = a. Everything else the verifier knows can
be computed from this information. Using Lemma 1, we have that any specification
of γ on the top level nodes can be consistently extended in exactly one way. Thus,
the verifier has no information about γ (a) other than the fact that γ (a) = γ (a′).
The verifier’s predictive ability is maximized when γ (a′) is even, in which case the
conditional probability that γ (a) is odd is 3/4. In this situation, the verifier can
predict b with probability 3/4.

Theorem (Obliviousness) Let c be a constant, c > 0, and K , the security parameter, be suf-
ficiently large (possibly depending on c). If, after the above protocol has been ex-
ecuted, the two provers exchange onlyK bits of information, they cannot predict,
with probnbility 1

2 + 1/Kc, whether the verifier received the bit.
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Proof Outline We again use the observation that the verifier receives a bit iff the dot product of
the two randomly chosen vectors is equal to 1. Determining if the verifier received
the bit is equivalent to computing the dot product of two random vectors of size n.
We now cite a theorem of Chor and Goldreich [CG] concerning the communication
complexity of computing dot products.

Theorem[CG] Let players A and B each receive random n bit boolean vectors,  x and  y respectively.
If they exchange o(n) bits, they cannot predict  x .  y with probability greater than
1
2 + 1/nc, for any c.

Our theorem follows directly from this result.

Ideal versus Nonideal Oblivious Transfer Bits
As we have meutioned above, the oblivious transfer protocol we implement is
nonideal in the obliviousness conditions. The nonideal nature of the obliviousness
condition is inherent to our model, if the transfer condition is indeed ideal in
the information theoretic sense. If the two infinitely powerful provers are allowed
to communicate freely, they can each learn the entire transcript of the oblivious
transfer protocol, and thus determine everything the verifier could have learned
from the protocol. This violates the obliviousness condition of oblivious transfer,
yielding the following observation.

Observation: It in impossible to implement an ideal oblivious transfer protocol
between two provers and a verifier if the provers are alIowed to communicate freely
after the protocol.

The nonideal nature of the oblivious condition does not affect whether a proto-
col is zero-knowledge; the verifier learns exactly as much from a pseudo-oblivious
source as from an oblivous one. However, using a pseudo-oblivious source of bit in-
stead of an ideal source could conceivably cause a protocol to no longer be a proof
system. We show that, provided the security parameter for our pseudo-oblivious
source is sufficiently high, this will not be the case.

Formalizing Proof Systems with Oblivious Transfer Channels
In order to state our resuIt more precisely, we first augment our definition of two-
prover interactive proof systems by adding a fourth party, a transfer source.

Definition A two-prover interactive protocol with oblivious transfer consists of a four-tuple of
parties, < P1, P2, V , T >. Parties P1, P2, V may be formally described as mappings
from sequences of 
∗ (informally, the history of that party’s conversation so far) to
distributions on 
∗ (informally, the next answer/question given/asked by the party).



Chapter 16 Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions 397

Player T may be formally described as a mapping from {0, 1}∗ to a distribution on
triples (IP1

, IP2
, IV ). The values IP1

, IP2
may be informally thought of as information

leaked back to the provers, P1 and P2, by a possibly nonideal oblivious transfer pro-
tocol. The possible values of IV on input O = O1, . . . , Ok are elements of {(0, 1, #}∗,
of the form O ′

1; . . . , O ′
k

, where O ′
i
= Oi or O ′

i
= #. Informally, IV consists of the bits

that are tranferred to the verifier, V .

For the rest of the discussion, we will anthromorphize our descriptions of the
P1, P2, V and T , describing their behavior in terms of actions by players instead of
as values of functions.

Protocols with oblivious transfer are evaluated in nearly the same way as stan-
dard protocols, but for an initial oblivious transfer phase. At the beginning of the
protocol, the provers, P1 and P2, agree on a sequence of bits O, which they send to
the transfer mechanism, T . The transfer mechanism sends some of these bits to
the verifier, and sends additional information back to the two provers. At this point,
T no longer plays any part in the protocol, and the players P1, P2, and V proceed to
interact in the same manner as with standard two-prover protocols. Players P1, P2,
and V treat their views of the oblivious transfer phase as special inputs.

Modeling Ideal and Nonideal Sources in Our Formalism
We now give a specification for an oblivious transfer mechanism which models the
information received by the provers by the actual oblivious transfer mechanism we
have implemented in the two-prover model.

Specification: Oblivious transfer mechanism Tn,k is specified by its input from
the provers and its output to the provers and the verifier. Tn,k takes as input a
sequence of bits O = O1, . . . , Ok. It flips k coins, b1, . . . , bk. Tn,k randomly selects
two sequences of n element boolean vectors,  x1, . . . ,  xk and  y1, . . . ,  yk, subject to
 x .  yi = bi. Tn,k’s output is as follows.

Transfer to V : Tn,k, sends the verifier sequence O ′ = O ′
1, . . . , O ′

k
where O ′

i
= Oi

iff bi = 1. Otherwise, O ′
i
= #.

Transfer to P1: Tn,k sends P1 the sequence  x1, . . .  xk.

Transfer to P2: Tn,k sends P2 the sequence  y1, . . . ,  yk.

This model for our transfer channel makes the following simplifications. The
verifier does not get any partial glimpses at bits that it hasn’t completely received,
whereas in the actual protocol, it may guess it with probability 3/4. Also, it does
not get any record of its interactions with the provers in the oblivious transfer
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protocol. For instance, in the actual protocol, the verifier would also know the  xi’s
and  yi’s, whereas in this model it does not. These simplifications turns out to be
irrelevant to our analysis, since the valid verifier completely disregards all of this
extra information.

More significantly, the provers do not receive any of the extra information they
might obtain in the commital and oblivious transfer phases. One can show that any
pair of provers which have any chance of fooling the verifier must abide by rules of
the commital and oblivious transfer protocols. The extra information they receive
from an honest run of these protocols is of no value to them. They may, in a certain
technical sense, simulate all of this extra information, once given their respective
vector sequences  x1, . . . ,  xk and  y1, . . . ,  yk. Thus, the provers cannot cheat any more
effectively using our simplified channel than they could using the actual commital
and oblivious transfer protocols. The details of this argument are ommitted.

Modeling an Ideal Oblivious Transfer Mechanism
It is fairly straightforward to model an ideal oblivious transfer mechanism in our
formalism. We denote this transfer channel T ideal

k
, which we specify as follows.

Specification: Oblivious transfer mechanism T ideal
k

is specified by its input from
the provers and its output to the provers and the verifier. T ideal

k
takes as input a

sequence of bits O = O1, . . . , Ok. It flips k coins, b1, . . . , bk. It randomly selects two
sequences of n element boolean vectors,  x1, . . . ,  xk and  y1, . . . ,  yk. T ideal

k
’s output

ir as follows.

Transfer to V : T ideal
k

sends the verifier sequence O ′ = O ′
1, . . . , O ′

k
where O ′

i
Oi iff

bi = 1. Otherwise, O ′
i
= #.

Transfer to P1 and P2: T ideal
k

, sends nothing to P1 or P2.

A Practical Equivalence Between Tn,k and T ideal

We can now state our theorem concerning the the practical equivalence of our
oblivious transfer protocol and the ideal one.

Theorem Let < P1, P2, V , T ideal
p(n)

> be an interactive proof system with oblivious transfer. Here,
p(n) denotes some polynomial in the size of the input. Then there exists some
some polynomial q(n) such that < P1, P2, V , Tq(n),p(n) > is also an interactive proof
system with oblivious transfer.

Brief Outline of Proof The proof of this theorem is somewhat involved. We show that if one could cheat
more effectively using a Tq(n),p(n) transfer channel, for q(n) arbitrarily large, then
one could use this fact to create a protocol for computing the dot product of two
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random q(n) element boolean vectors. The communication complexity for this
protocol will depend on V and n, but not on the function q. From this it is possible to
use the Chor-Goldreich lower bound on the communication complexity of boolean
dot product to reach a contradiction.

In order to constuct the protocol for computing boolean dot products, we first
define a sequence of transfer mechanisms that are intermediate between our non-
ideal and ideal transfer mechanisms. We show that if the provers can cheat using
the nonideal transfer mechanism, then two consecutive transfer mechanisms in
our sequence can be distinguished. We then show how to use these transfer mech-
anisms to generate two very simple and very similar transfer mechanisms whose
behavior is distinguishable. Finally, we use the distinguishability of this final pair
of transfer mechanisms to create a protocol for boolean dot-product. We proceed
to formalize this argument.

Transfer Mechanisms That Are Intermediate Between The Ideal
and Nonideal Models
We specify a sequence of oblivious transfer mechanisms as follows.

Specification: Oblivious transfer mechanism T i
n,k is specified by its input from

the provers and its output to the provers and the verifier. T i
n,k takes as input a

sequence of bits O = O1, . . . , Ok. It flips k coins, b1, . . . , bk. T i
n,k randomly selects

two sequences of n element boolean vectors,  x1, . . . ,  xk and  y1, . . . ,  yk. For 1≤ j ≤ i,
vectors  xj and  yj are subject to the constraint  xj

.  yj = bj . T i
n,k’s output is as follows.

Transfer to V : T i
n,k sends the verifier a sequence O ′ = O ′

1, . . . , Oi
k where O ′

i
= Oi,

iff bi = 1. Otherwise, O ′
i
= #.

Transfer to P1: T i
n,k sends P1 the sequence  x1, . . . ,  xk.

Transfer to P2: T i
n,k sends P2 the sequence  y1, . . . ,  yk.

The only difference between Tn,k and T i
n,k is that the vectors sent to the provers by

Tn,k all have some correlation with whether the bit was sent to the verifier, whereas
only the first i vectors sent to the provers by T i

n,k are so correlated. Note that T O
n,k is

equivalent to the ideal channel T ideal
k

, and T i
n,k is equivalent to Tn,k.

Analysis of Cheating Probabilities for Different Transfer Mechanisms
The sequence of oblivious transfer mechanisms we defined above is “continuous”
in that any two consecutive mechanisms are only incrementally different from each
other. Using an argument simi1ar to that of [GM], we show that if the probability of
successfully cheating using one transfer mechanism in the sequence is significantly
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greater than the probability of successfully cheating using a different transfer
mechanism in the sequence, then there must be two consecutive mechanisms
which differ in the probability of a particular cheating strategy being successful.

Definition Let L be some language, and < P1, P2, V , T ideal
p(n)

> a two-prover IPS for L, with
oblivious transfer. For some x ∈ L, |x| = n, we define cheatideal(x) as the probability
that V can be tricked into accepting x.

We wish to analyze how frequently the provers can cheat if they use a nonideal
transfer mechanism, Tq(n),p(n). Let P1,q(n), P2,q(n) be optimal cheating provers for
the protocol < P1,q(n), P2,q(n), V , Tq(n),p(n) >. For x ∈ L, |x| = n, we define
cheati

q(n)
(x) as the probability that P1,q(n), P2,q(n)) causes V to accept x in protocol

< P1,q(n), P2,q(n), V , Tq(n),p(n) >.
Clearly, we have cheat0

q(n)
(x) ≤ cheatideal(x). We also have, by definition, that

cheatp(n)

q(n)
(x) is the maximum probability that any provers can trick V into accepting

x, using transfer mechanism Tq(n),p(n).
Using a simple pigeonhole argument, we can show the following.

Lemma A.2 Let x ∈ L, and |x| = n. For all polynomials q(n), there exists some i, q(n) ≤ i ≤ p(n),
such that

cheati+1
q(n)

(x) − cheati
q(n)

(x) ≥ cheatp(n)

q(n)
(x) − cheat0

q(n)
(x)

p(n)
. (A.2.6)

We now show that if for for all polynomials q(n), there exists a c > 0, such that
cheati+1

q(n)
(x) − cheati

q(n)
(x) > 1/|x|c for infinitely many x, then we can create efficient

algorithms for computing dot products of random vectors. To do this, we first must
introduce the notion of “hardwired” versions of transfer mechanisms T i

q(n),p(n)
.

Restricted Versions of Oblivious Transfer Mechanisms
Given two easily distinguishable mechanisms T i

q(n),p(n)
and T i+1

q(n),p(n)
, we would like

to create even simpler pairs of mechanisms that are easily distinguishable, yet
preserve the essential differences between T i

q(n),p(n)
and T i+1

q(n),p(n)
. We observe that

the only difference between these two mechanisms lies in the distibutions imposed
on the vectors  xi+1 and  yi+1 which are sent to P1,q(n) and P2,q(n). We would like to be
able to fix all the other aspects ofthese channels. To do this, we make the following
definitions.

Definition A transfer restriction R ∈ Ri
n,k is a 3-tuple (Rb , Rx , Ry), where

. Rb is a sequence of bits, b1, . . . , bk.
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. Rx is a k − 1 element sequence of n element boolean vectors,  x1, . . . ,  xi−1,
. . . ,  xi+1, . . . ,  xk.

. Ry is a k − 1 element sequence of n element boolean vectors,  y1, . . . ,  yi−1,
. . . ,  yi+1, . . . ,  yk.

Furthermore, we require that for 1 ≤ j < i ,  xj
.  yj = bj

Intuitively, we can think of R ∈ Ri
n,k as a specification for which bits get through

to the verifier, and, except for the ith bit, specifications for which vectors are
transmitted back to the provers.

Definition Given a transfer restriction R ∈ Rj

n,k We specify a restricted version of T i
n,k, which

we denote by T i
n,k[R], as follows.

Specification: Oblivious transfer mechanism T i
n,k[R] takes as input a sequence

of bits O = O1, . . . , Ok. Let Rb = b1, . . . , bk, Rx =  x1, . . . ,  xi−1, . . . ,  xi+1, . . . ,  xk, and
Ry =  y1, . . . ,  yi−1, . . . ,  yi+1, . . . ,  yk. T i

n,k[R] randomly selects two n element boolean

vectors,  xj and  yj . If j ≥ i,  xj and  yj are chosen s.t  xj
.  yj = bj . T i

n,k[R]’s output is
as follows.

Transfer to T i
n,k[R] sends the verifier sequence O ′

1; , . . . , O ′
k

; where O ′
i
= Oi iff

bi = 1. Otherwise, O ′
i
= #.

Transfer to P1: T i
n,k[R] sends P1 the sequence  x1, . . . ,  xk.

Transfer to P2: T i
n,k[R] sends P2 the sequence  y1, . . . ,  yk.

Analysis of Cheating with Respect to Restricted Transfer Mechanisms
Recall that provers P1,q(n) and P2,q(n) cheat optimally, given oblivious transfer mech-
anism T i

q(n),p(n)
. We would like to describe what happens when these provers are run

using restricted transfer mechanisms. To this end, we define cheati
q(n)

[R](x) as the
probability that P1,q(n), P2,q(n), causes V to accept x in protocol < P1,q(n), P2,p(n), V ,
T i

q(n),p(n)
[R] >.

Using a simple probabilistic argument, we prove the following important
lemma.

Lemma A.3 Let x ∈ L, and |x| = n. Let 1 ≤ i < p(n). For all polynomials q(n), there exists a
restriction R ∈ Ri+1

q(n),p(n)
) such that

cheati+1
q(n)

[R](x) − cheati
q(n)

[R](x) ≥ cheati+1
q(n)

(x) − cheati
q(n)

(x). (A.2.7)

Using T i
q(n),p(n)

[R], T i+1
q(n),p(n)

[R] to compute dot products.
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Recall that a restriction R ∈ Ri+1
q(n),p(n)

) defines the entire input/output properties

of a restricted transfer protocol T i
q(n),p(n)

[R], but for the output vectors  xi ,  yi trans-
mitted back to the provers. If the two provers have a source Mq(n), which produces
vector pairs  x ,  y, of size q(n) and sends them to Prover1 and Prover2, respectively,
we can use it to simulate T i

q(n),p(n)
[R].

We also note that, if allowed to communicate directly, two provers can “simu-
late” the verifier in the following way. They can send to each other the messages
they would have sent to the verifier. By knowing the set of transfer bits, which bits
were received by the verifier, and a transcript of the conversation so far between the
verifier and the provers, the provers can determine exactly what the verifier’s next
question in the conversaton will be.

We now can explicitly write down a protocol for computing the dot product of
random boolean vectors. The assume that the two parties P1 and P2 have agreed
on some x(x ∈ L.|x| = n), q , i, and R = (Rb , Rx , Ry) ∈ Ri+1

q(n),p(n)
). The protocol is

specified as follows. Player P1 receives a random boolean vector  x, and player P2

receives a random boolean vector  y. At the end of the protocol, player P1 outputs a
0 or 1, which hopefully corresponds to  x .  y.

Protocol Dot-Product( x ,  y) /* P1 knows  x, P2 knows  y, and | x| = | y| = q(n) */

P1 and P2 simulate the protocol < P1,q(n), P2q(n), V , T i
q(n),p(n)

[R] >, on input x.
They treat vectors  x and  y as substitutes for  xi+1,  yi+1 (which are not defined by R).

If the simulated verifier accepts, then P1 outputs bi+l, where Rb = b1, . . . , bp(n).
Otherwise it outputs the complement of bi+l.

We now analyze the communication complexity of this protocol.

Definition Given a two-prover protocol P < P1, P2, V , T >, and some input x, we define the
leakage L(P , x) as the total number of bits transmitted from the provers to the
verifier.

The following lemma follows immediately from the definition of Dot-Product.

Lemma A.4 Let P =< P1,q(n), P2,q(n), V , T i
q(n),p(n)

[R] >. Then protocol Dot-Product requires
L(P , x) bits of communication.

Finally, we can bound below Dot–Product’s success rate on random vectors by
the following lemma.

Lemma A.5 Given q(n) bit vectors  x ,  x distributed uniformly, the probability that Dot-Product
( x ,  y) =  x .  y is at least

1
2
+
(

cheati+1
q(n)

[R](x) − cheati
q(n)

[R](x)
)

. (A.2.8)
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Proof Our proof is by a straightforward calculation of conditional probabilities, which we
outline below. We define the variables good and bad by

good = prob(The simulated verifier accepts | x .  y = bi), and,

bad = prob(The simulated verifier accepts | x .  y = bi).

The probability that IDot-Product yields the correct answer is equal to

1
2

. good + 1
2

. (1 − bad) (A.2.9.)

We now solve for good and bad in terms of cheati
q(n)

[R](x) and cheati+1
q(n)

[R](x). Using

our definitions for cheati
g(n)

[R](x) and cheati+1
g(n)

[R](x), we have

cheati+1
q(n)

[R](x) = good , and, (A.2.A)

cheati
q(n)

pR](x) = 1
2

. good + 1
2

. bad. (A.2.11)

Solving for good and bad, we have

good = cheati+1
q(n)

[RJ(x), and, (A.2.12)

bad = cheati+1
q(n)

[RJ(x) − 2
(

cheati+1
q(n)

[R](x) − cheati
q(n)

[R](x)
)

. (A.2.13)

Substituting equations (A.2.12) and (A.2.13) into equation A.2.9), and simplifying,
we get equation (A.2.8).

A.3 Implementing Zero-Knowledge with Circuits
In this section we outline a technique we call the method of encrypted conversations.
This technique represents a fairly general methodology for converting protocols
into zero-knowiedge protocols. Its main requirement is the ability of the parties
involved to perform oblivious circuit evaluation.

A Normal Form for Two-Prover IPS’s
For ease of exposition, we consider a normal form for two-prover interactive proof
systems(IPS’s). This normal form consists of three stages, as described below.

Notation: Throughout this section, qi(x , r , ., ., .) will denote the i-th question of
the verifier computed on his random coin tosses r , the input x, and the history of
the communication so far. (ai correspond to the provers answers).
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Stage 1:. On input x, where |x| = n, the verifier generates a sequence r =
r1, . . . , rp(n) of random bits. The verifier computes his first question, q1 =
q1(x , r).

Stage 2:. The verifier sends q1 to Prover 1. Prover 1 sends its answer, a1 back to
the verifier. The verifier computes his second question, q2 = q2(x , r , a1).

Stage 3:. The verifier sends q2 to Prover 2. Prover 2 sends its answer, a2, back to
the verifier. The verifier computes its decision predicate, accept(x , t , a1, a2),
and accepts iff accept(x , r , a1, a2) evaluates to “true”.

We use the following result.

Theorem (norma1 form for 2 prover IPS’s): Given any two prover IPS P for a language L, there
exists an IPS P ′, with the following 2 properties.

1. If x ∈ L then prob(P ′(x) accepts) = 1.

2. There exists some c > 0 such that if x ∈ L then prob(P ′(x) accepts) ≤ 1 −
1/|x|c.

Remark It is currently open whether the ≤ 1 − 1/|x|c failure probability can be reduced.
However, if greater reliability is desired, one may run a normal form protocol several
times serially to achieve an exponentially low probability of failure.

We now need to show how to convert an IPS in normal form into a zero-
knowledge IPS.

Conceptually, we would like to have the use of a black box into which the verifier
inputs an encrypted history of the communication, the prover inputs its answer to
the question and the output which is given to the verifier is the encrypted answer
of the prover and the encrypted next question of the verifier. See fig. 2.

The encryption scheme used to encrypt the questions and answers should be
an information theoretically strong encryption scheme with respect to the verifier,
while the provers will be given the ability to decrypt.

We describe how this is achieved in the following section A.3.1. The box is
achieved by the technique of oblivious circuit evaluation as described in section
A.3.2.

A.3.1 Strong Encryption Using 2-Universal Hash Functions
We need a cryptographic system (call it E for the sake of discussion) which is both
unbreakable, and existentially unforgeable. By unbreakable, we mean that if one is
given E(x), an encryption of x, but one does not have the decryption key, then one
cannot infer anything about x. By existentially unforgeable, we mean that if one is
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given E(x), an encryption of x, but one does not have the decryption key, then one
cannot produce any string forge such that forge = E(y) for some y. These security
requirements are information theoretic, and must apply to someone with arbitrary
computational power.

To accomplish this, we use the notion of universal hash functions, first intro-
duced by Carter and Wegman[CW]. In addition, we require the following property
of our universal sets.

Definition A family of 2-universal sets Hn, of functions h : {0, 1}n →{0, 1}n is almost self-inverse
iff for all c, and for all n sufficiently large (with respect to c), a function h, picked
uniformly from H, will have an inverse h−1 ∈ H with probability > 1 − n−c.

One example of an almost self-inverse 2-universal set of hash functions is the
set of linear equations over GF(2n). As there is a trivial correspondence between
{0, 1}n and GF(2n), we treat all our elements as being in {O , 1}n.

For our encryption system, we require that all legal messages m are padded with
a number of trailing 0’s equal to the length of the original message. We encrypt a
message m ∈ {0, 1}n by applying some uniformly selected function h ∈ Hn to it. We
can decrypt h(m) by by applying its h−1 to it. For our purposes, we can safely ignore
the possibility that a uniformly chosen h isn’t invertible. The following lemma
shows that this encryption scheme is unbreakable and unforgeable.

Lemma Let h be chosen uniformly from Hn. Then

1. (unbreakability) (∀x , y ∈ {0, 1}n)prob(h(x) = y) = 2−n.

2. (unforgeability) (∀x , y , z ∈ {0, 1}n))

prob((∃w ∈ {0, 1}n/20n/2)h(w) = z|h(x) = y) = 2−n/2.

Proof Both properties follow immediately from the definition of 2-universal hash func-
tions.

In the protocol the provers will agree on four random hash functions h1, h2, h3,
h4 ∈ Hp(n). At the end of the protocol, the verifier will possess the values of h1(r),
h2(q1), and h3(a1), but will not possess any extra information about which functions
h1, h2, and h3 actually are. However, knowing the value of h(x) gives no information,
in the information theoretic sense, about the value of x. This is roughly how the
zero-knowledge aspect of our protocol is achieved.
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A.3.2 Use of Oblivious Circuit Evaluation
We use the reduction of Kilian[K] from oblivious transfer to oblivious circuit com-
putation. This reduction maintains the usual security properties desired of oblivi-
ous circuit evaluation, without recourse to any intractibility assumptions.5 Its sole
requirement is a sequence O = O1, . . . , Op(n) of bits, all of which are known to A,
and haif of which are known to B(a more detailed description of this condition is
given in section A.2). This set of bits(or, more technically, a reasonable approxima-
tion to such a set) is provided by the oblivious transfer protocol outlined in section
A.2. for the rest of this discussion, we treat oblivious circuit evaluation as a primitive
operation.

A.3.3 Outline of the Zero-Knowledge Protocol
We can now describe our zero-knowledge transformed protocol For our exposi-
tions, we still treat oblivious circuit computation of as a primitive. (A description of
circuits C0, C1, C2 and C3 is given following the protocol.) Note the similaruty be-
tween this description and the description of the normal-form for protocols given
above.

On input x, where |1x| = n.

Step 0:. Provers 1 and 2 agree on random invertible hash functions h1, h2, h3,
h4 ∈ H2p(n), and random string r1 ∈ {0, 1}p(n). The verifier selects a random
string r2 ∈ {0, 1}p(n). The verifier and Prover 1 evaluate r ′ = C0[x](r1, r2, h1).
(′r will the random coin tosses to be used by the verifier).

Step 1:. The verifier and Prover 1 then evaluate q ′
1 = C1[x](r ′, h−1

1 , h2), the en-
crypted version of the verifier’s first question.

Step 2:. The verifier sends q ′
1 to Prover 1. If h−1

2 (q ′
1) does not decrypt to a

legitimate message, then Prover 1 halts the conversation. Otherwise, Prover
1 computes his answer, a1, and sends the verifier a′

1 = h3(a1). The verifier and
Prover 1 evaluate q ′

2 = C2[x](r ′, a′
1, h−1

1 , h−1
3 , h4), the encrypted version of the

verifiers second question.

Step 3:. The verifier sends q ′
2 to Prover 2. If h−1

4 (q ′
2) does not decrypt to a

legitimate message, then Prover 2 halts the conversation. Otherwise, Prover
2 computes his answer, a2. The verifier and Prover 2 evaluate decision =
C3[x](r ′, a′

1, a2, h−1
1 , h−1

3 ).

5. Goldreich-Vainish describe a simple reduction from oblivious circuit evaluation to oblivious
transfer, without any intractibility assumptions. However, this reduction only works for honest
parties, and is thus unuseable by us.
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At the end of this ;protocol, verifier accepts iff decision = true.
We now describe circuits Ci for i = 0, 1, 2, 3.
For each circuit, we give the input from the prover, the input from the verifier,

and the output given to the verifier. We adopt the convention that |x| = n, and
assume without loss of generality that all strings being exchanged in the protocol
are of length p(n), for some polynomial p. We use the following simple functions
to simplify our exposition. Function padn : {0, 1}n − {0, 1}2n pads an extra n zeros
onto the end of an n-bit string Function stripn : {0, 1}2n → {0, 1}n, which removes
the last n bits from a 2n-bit string. Predicate legaln : {0, 1}2n → {true, false} is true
iff the last n bits of the input string are equal to 0.

C0[x]:

Input from the prover: A sequence of bits, b = b1, . . . , bp(n), and a hash function
h ∈ H2p(n).

Input from the verifier: A sequence of bits c = c1, . . . , cp(n).

Output to the Verifier: Output(h(padn(b ⊕ c)))

Circuit C0s[x] is the initialization circuit that creates the verifiers random bits in
Stage 1 of the protocol described above.

C1[x]:
Input from the prover:

Hash functions h−1
1 , h2 ∈ H2p(n).

Input from the verifier:
String r ′ ∈ {O , 1}2p(n).

Output to the verifier:
r = h−1

1 (r ′)
If legalp(n)(r) = false
Then Output(O2p(n))
Else r = stripp(n)(r)

q1 = q1(x , r)

Output(h2(padp(n)(q1)))

Circuit C1[x] is used to implement Stage 1 of the protocol described above.

C2[x]:
Input from the prover:

Hash functions h−1
1 , h−1

3 , h4 ∈ H2p(n)

Input from the verifier:
Strings r ′, a′

1 ∈ {0, 1}2p(n).



408 Chapter 16 Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions

Output to the verifier:
r = h−1

1 (r ′)
a1 = h−1

3 (a′
1)

If (legalp(n)(r) and legalp(n)(a1)) = false
Then Output(O2p(n))

Else r = stripp(n)(r)

a1 = stripp(n)(a1)

q2 = q2(x , r , a1)

Output(h4(padp(n)(q2)))

Circuit C2[x] is used to implement Stage 2 of the protocol described above.

C3[x]:
Input from the prover:

Hash functions h−1
1 , h−1

3 ∈ H2p(n),
String a2 ∈ {0, 1}2p(n)

Input from the verifier:
Strings r ′, a′

1 ∈ {0, 1}2p(n).
Output to the verifier:
r = h−1

1 (r ′)
a1 = h−1

3 , (a′
1)

If (legalp(n)(r) and legalp(n)(a1)) = false
Then Output(O22p(n))

Else r = stripp(n)(r)

a1 = stripp(n)(a1)

Output(accept(z, r , a1, a2))

Circuit C3[x] is used to implement Stage 3 of the protocol described above.
The two obvious questions we must deal with are, “Is this protocol still a proof

system?”, and “Is this protocol zero-knowledge?”

Is This Protocol a Proof System?
If the verifier is honest, and if the provers input the correct hash functions, and
their inverses, into the circuits being evaluated, then one can map transcripts of
conversations in this protocol into transcripts of the original protocol (with possibly
cheating provers). In this case, the provers cannot cheat any more effectively they
could in the original protocol, and the new protocol will remain a proof system if
the original one was.

If the provers do not input consistent sets of hash functions, then nothing can
be guarenteed about whether the protocol remains a proof system. However, using
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Figure 1 Schematic of encrypted conversation.

Figure 2 Schematic of a simple W5PBP. Solid lines correspond to functions f i
1, dashed lines

correspond to functions f i
0. In this program, v1 = x2 and v2 = x1. This branching program

is equivalent to x1 ⊕ x2.

the machinery developed in [K], it is possible for the provers to commit, at the
beginning of the protocol, all the hash functions they input to the circuits, along
with a zero-knowledge proof that these inputs are consistent with each other.

Is This Protocol Zero-Knowledge?
The proof that this protocol is zero-knowledge is, while not overly complex or
difficult, relies too heavily on machinery from [K] to be concisely presented here.
We make the following intuitive argument for why the protocol is zero-knowledge.

First, note that the verifier’s actions are severely restricted by the use of circuits
and the encryption scheme. Except for its random bits, all the inputs it gives to the
provers or the circuits are encrypted with an unforgeable system. If the verifier ever
attempts to give an incorrect string to a prover, the prover will detect the forgery
will probability exponentially close to 1. Likewise, if the verifier inputs an incorrect
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string to a circuit, it will almost certainly output either O2p(n) or false. This rules
out any active attack on the part of the verifier.

Second, we show that passive attacks by the verifier do not yield ay information.
The intermediate outputs of circuits C1, . . . , C3 are all uniformly distributed, and
thus yield no information.
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17On the Foundations of
Cryptography
Oded Goldreich

We survey the main paradigms, approaches, and techniques used to conceptualize,
define, and provide solutions to natural cryptographic problems. We start by pre-
senting some of the central tools used in cryptography—that is, computational dif-
ficulty (in the form of one-way functions), pseudorandomness, and zero-knowledge
proofs. Based on these tools, we turn to the treatment of basic cryptographic appli-
cations such as encryption and signature schemes as well as the design of general
secure cryptographic protocols. Our presentation assumes basic knowledge of al-
gorithms, probability theory, and complexity theory, but nothing beyond this.1

17.1 Introduction and Preliminaries

It is possible to build a cabin with no foundations, but not a lasting building.

—Eng. Isidor Goldreich (1906–1995)

17.1.1 Introduction
The vast expansion and rigorous treatment of cryptography is one of the major
achievements of theoretical computer science. In particular, concepts such as
computational indistinguishability, pseudorandomness, and zero-knowledge in-
teractive proofs were introduced, classical notions such as secure encryption and
unforgeable signatures were placed on sound grounds, and new (unexpected) di-
rections and connections were uncovered. Indeed, modern cryptography is strongly

1. This is a revision of the primer [Goldreich 2005].
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linked to complexity theory (in contrast to “classical” cryptography, which is
strongly related to information theory).

Modern cryptography is concerned with the construction of information sys-
tems that are robust against malicious attempts to make these systems deviate
from their prescribed functionality. The prescribed functionality may be the private
and authenticated communication of information through the Internet, the hold-
ing of incoercible and secret electronic voting, or conducting any “fault-resilient”
multi-party computation. Indeed, the scope of modern cryptography is very broad,
and it stands in contrast to “classical” cryptography (which has focused on the
single problem of enabling secret communication over insecure communication
media).

The design of cryptographic systems is a very difficult task. One cannot rely on
intuitions regarding the “typical” state of the environment in which the system
operates. For sure, the adversary attacking the system will try to manipulate the
environment into “untypical” states. Nor can one be content with countermeasures
designed to withstand specific attacks, since the adversary (which acts after the
design of the system is completed) will try to attack the schemes in ways that are
different from the ones the designer had envisioned. The validity of the above
assertions seems self-evident, still some people hope that in practice ignoring
these tautologies will not result in actual damage. Experience shows that these
hopes rarely come true; cryptographic schemes based on make-believe are broken,
typically sooner than later.

In view of the foregoing, we believe that it makes little sense to make assump-
tions regarding the specific strategy that the adversary may use. The only assump-
tions that can be justified refer to the computational abilities of the adversary.
Furthermore, the design of cryptographic systems has to be based on firm foun-
dations; whereas ad hoc approaches and heuristics are a very dangerous way to
go. A heuristic may make sense when the designer has a very good idea regard-
ing the environment in which a scheme is to operate, yet a cryptographic scheme
has to operate in a maliciously selected environment that typically transcends the
designer’s view.

This chapter is aimed at providing an introduction to the foundations for cryp-
tography. The foundations of cryptography are the paradigms, approaches and
techniques used to conceptualize, define and provide solutions to natural “security
concerns.” We will present some of these paradigms, approaches, and techniques,
as well as some of the fundamental results obtained using them. It is quite striking
that doing so means focusing on research that was conducted either by Goldwasser and
Micali or was directly inspired and informed by their work.
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Solving a cryptographic problem (or addressing a security concern) is a two-
stage process consisting of a definitional stage and a constructive stage. First, in
the definitional stage, the functionality underlying the natural concern is to be
identified, and an adequate cryptographic problem has to be defined. Trying to list
all undesired situations is infeasible and prone to error. Instead, one should define
the functionality in terms of operation in an imaginary ideal model, and require
a candidate solution to emulate this operation in the real, clearly defined model
(which specifies the adversary’s abilities). Once the definitional stage is completed,
one proceeds to construct a system that satisfies the definition. Such a construction
may use some simpler tools, and its security is proved relying on the features of
these tools. In practice, of course, such a scheme may need to satisfy also some
specific efficiency requirements.

The emphasis of the chapter is on the clarification of fundamental concepts
and on demonstrating the feasibility of solving several central cryptographic prob-
lems. It focuses on several archetypical cryptographic problems (e.g., encryption
and signature schemes) and on several central tools (e.g., computational diffi-
culty, pseudorandomness, and zero-knowledge proofs). For each of these problems
(respectively, tools), we start by presenting the natural concern underlying it (re-
spectively, its intuitive objective), then define the problem (respectively, tool), and
finally demonstrate that the problem may be solved (respectively, the tool can be
constructed). In the latter step, our focus is on demonstrating the feasibility of solv-
ing the problem, not on providing a practical solution. As a secondary concern, we
typically discuss the level of practicality (or impracticality) of the given (or known)
solution.

Computational Difficulty
The aforementioned tools and applications (e.g., secure encryption) exist only if
some sort of computational hardness exists. Specifically, all these problems and
tools require (either explicitly or implicitly) the ability to generate instances of hard
problems. Such ability is captured in the definition of one-way functions. Thus,
one-way functions are the very minimum needed for doing most natural tasks of
cryptography (see Impagliazzo and Luby [1989]). (It turns out, as we shall see, that
this necessary condition is “morally” sufficient; that is, the existence of one-way
functions (or augmentations and extensions of this assumption) suffices for doing
most of cryptography.)

Our current state of understanding of efficient computation does not allow us
to prove that one-way functions exist. In particular, if P = N P then no one-way
functions exist. Furthermore, the existence of one-way functions implies that N P
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is not contained in BPP ⊇ P (not even “on the average”). Thus, proving that one-
way functions exist is not easier than proving that P = N P; in fact, the former
task seems significantly harder than the latter. Hence, we have no choice (at this
stage of history) but to assume that one-way functions exist. As justification to this
assumption we may only offer the combined beliefs of hundreds (or thousands) of
researchers. Furthermore, these beliefs concern a simply stated assumption, and
their validity follows from several widely believed conjectures that are central to
various fields (e.g., the conjectured intractability of integer factorization is central
to computational number theory).

Since we need assumptions anyhow, why not just assume what we want (i.e., the
existence of a solution to some natural cryptographic problem)? Well, first we need
to know what we want: as stated above, we must first clarify what exactly we want;
that is, go through the typically complex definitional stage. But once this stage is
completed, can we just assume that the definition derived can be met? Not really:
Once a definition is derived, how can we know that it can at all be met? The way
to demonstrate that a definition is viable (and that the corresponding intuitive se-
curity concern can be satisfied at all) is to construct a solution based on a better
understood assumption (i.e., one that is more common and widely believed). For
example, looking at the definition of zero-knowledge proofs (introduced by Gold-
wasser, Micali, and Rackoff [Goldwasser et al. 1989]), it is not a priori clear that
such proofs exist at all (in a nontrivial sense). The nontriviality of the notion was
first demonstrated (in Goldwasser et al. [1989]) by presenting a zero-knowledge
proof system for statements, regarding Quadratic Residuosity, that are believed to
be hard to verify (without extra information). Furthermore, contrary to prior be-
liefs, it was later shown (by Goldreich, Micali, and Wigderson [Goldreich et al.
1991]) that the existence of one-way functions implies that any NP-statement can
be proved in zero-knowledge. Thus, facts that were not known at all to hold (and
even believed to be false) were shown to hold by reduction to widely believed as-
sumptions (without which most of modern cryptography collapses anyhow). To
summarize, not all assumptions are equal, and so reducing a complex, new, and
doubtful assumption to a widely believed simple (or even merely simpler) assump-
tion is of great value. Furthermore, reducing the solution of a new task to the
assumed security of a well-known primitive typically means providing a construc-
tion that, using the known primitive, solves the new task. This means that we do
not only know (or assume) that the new task is solvable but we also have a solu-
tion based on a primitive that, being well-known, typically has several candidate
implementations.
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Prerequisites and Structure
Our aim is to present the basic concepts, techniques, and results in cryptography. As
stated above, our emphasis is on the clarification of fundamental concepts and the
relationship among them. This is done in a way independent of the particularities
of some popular number-theoretic examples. These particular examples played
a central role in the development of the field and still offer the most practical
implementations of all cryptographic primitives, but this does not mean that the
presentation has to be linked to them. On the contrary, we believe that concepts
are best clarified when presented at an abstract level, decoupled from specific
implementations. Thus, the most relevant background for this chapter is provided
by basic knowledge of algorithms (including randomized ones), computability, and
elementary probability theory.

The chapter is organized in two main parts, which are preceded by preliminaries
(regarding efficient and feasible computations). The two parts are “Basic Tools”
and “Basic Applications.” The basic tools consist of computational difficulty (one-
way functions), pseudorandomness, and zero-knowledge proofs. These basic tools
are used for the basic applications, which in turn consist of encryption schemes,
signature schemes, and general cryptographic protocols.

In order to give some feeling of the flavor of the area, we have included in this
chapter a few proof sketches, which some readers may find too terse. We stress
that following these proof sketches is not essential to understanding the rest of
the material. In general, later sections may refer to definitions and results in prior
sections, but not to the constructions and proofs that support these results. It may
be even possible to understand later sections without reading any prior section, but
we believe that the order we chose should be preferred because it proceeds from
the simplest notions to the most complex ones.

Suggestions for Further Reading
This chapter is a brief summary of the author’s two-volume work on the subject
[Goldreich 2001, Goldreich 2004]. Furthermore, Part I corresponds to Goldreich
[2001], whereas Part II corresponds to Goldreich [2004]. Needless to say, the reader
is referred to these textbooks for further detail.

Two of the topics reviewed by this chapter are zero-knowledge proofs (which are
probabilistic) and pseudorandom generators (and functions). A wider perspective
on probabilistic proof systems and pseudorandomness is provided in Chapter 18
(of this volume) as well as in Goldreich [2008, Chap. 8–9].
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Needless to say, this chapter (as well as Goldreich 2001, 2004) provide only an
introduction to the foundations of cryptography, which are still a topic of very active
research. As a rule of thumb, developments that deviate from the basic definitions
presented in this chapter are not even referenced in this text, and the interested
readers will have to look for them elsewhere.

Practice. The aim of this chapter is to introduce the reader to the theoretical foun-
dations of cryptography. As argued above, such foundations are necessary for sound
practice of cryptography. Indeed, practice requires more than theoretical founda-
tions, whereas the current chapter makes no attempt to provide anything beyond
the latter. However, given a sound foundation, one can learn and evaluate various
practical suggestions that appear elsewhere (e.g., in Menezes et al. [1996]). On the
other hand, lack of sound foundations results in inability to critically evaluate prac-
tical suggestions, which in turn leads to unsound decisions. Nothing could be more
harmful to the design of schemes that need to withstand adversarial attacks than
misconceptions about such attacks.

17.1.2 Preliminaries
Modern cryptography, as surveyed here, is concerned with the construction of
efficient schemes for which it is infeasible to violate the security feature. Thus, we
need a notion of efficient computations as well as a notion of infeasible ones. The
computations of the legitimate users of the scheme ought be efficient, whereas
violating the security features (by an adversary) ought to be infeasible. We stress
that we do not identify feasible computations with efficient ones, but rather view
the former notion as potentially more liberal.

Efficient Computations and Infeasible ones
Efficient computations are commonly modeled by computations that are polyno-
mial time in the security parameter. The polynomial bounding the running time of
the legitimate user’s strategy is fixed and typically explicit (and small). Indeed, our
aim is to have a notion of efficiency that is as strict as possible (or, equivalently,
develop strategies that are as efficient as possible). Here (i.e., when referring to the
complexity of the legitimate users) we are in the same situation as in any algorith-
mic setting. Things are different when referring to our assumptions regarding the
computational resources of the adversary, where we refer to the notion of feasible
that we wish to be as wide as possible. A common approach is to postulate that fea-
sible computations are polynomial time too, but here the polynomial is not a priori
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specified (and is to be thought of as arbitrarily large). In other words, the adversary
is restricted to the class of polynomial-time computations and anything beyond
this is considered to be infeasible.

Although many definitions explicitly refer to the convention of associating feasi-
ble computations with polynomial-time ones, this convention is inessential to any
of the results known in the area. In all cases, a more general statement can be
made by referring to a general notion of feasibility, which should be preserved un-
der standard algorithmic composition, yielding theories that refer to adversaries
of running time bounded by any specific super-polynomial function (or class of
functions). Still, for sake of concreteness and clarity, we shall use the former con-
vention in our formal definitions (but our motivational discussions will refer to an
unspecified notion of feasibility that covers at least efficient computations).

Randomized (or Probabilistic) Computations
Randomized computations play a central role in cryptography. One fundamental
reason for this fact is that randomness is essential for the existence (or rather
the generation) of secrets. Thus, we must allow the legitimate users to employ
randomized computations, and certainly (since randomization is feasible) we must
consider also adversaries that employ randomized computations. This brings up
the issue of success probability: Typically, we require that legitimate users succeed
(in fulfilling their legitimate goals) with probability 1 (or negligibly close to this),
whereas adversaries succeed (in violating the security features) with negligible
probability. Thus, the notion of a negligible probability plays an important role in
our exposition. One requirement of the definition of negligible probability is to
provide a robust notion of rareness: A rare event should occur rarely even if we
repeat the experiment for a feasible number of times. That is, in case we consider
any polynomial-time computation to be feasible, a function μ: N → N is called
negligible if 1 − (1 − μ(n))p(n) < 0.01 for every polynomial p and sufficiently big n

(i.e., μ is negligible if for every positive polynomial p′ the function μ(.) is upper-
bounded by 1/p′(.)). However, if we consider the function T (n) to provide our notion
of infeasible computation then functions bounded above by 1/T (n) are considered
negligible (in n).

We will also refer to the notion of noticeable probability. Here the requirement
is that events that occur with noticeable probability, will occur almost surely (i.e.,
except with negligible probability) if we repeat the experiment for a polynomial
number of times. Thus, a function ν: N → N is called noticeable if for some positive
polynomial p′ the function ν(.) is lower-bounded by 1/p′(.).
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Part I Basic Tools
In this part we survey three basic tools used in modern cryptography. The most basic
tool is computational difficulty, which in turn is captured by the notion of one-
way functions. Next, we survey the notion of computational indistinguishability,
which underlies the theory of pseudorandomness as well as much of the rest of
cryptography. In particular, pseudorandom generators and functions are important
tools that will be used in later sections. Finally, we survey zero-knowledge proofs
and their use in the design of cryptographic protocols. For more details regarding
the contents of the current part, see our textbook [Goldreich 2001].

17.3 Computational Difficulty and One-Way Functions
Modern cryptography is concerned with the construction of systems that are easy
to operate (properly) but hard to foil. Thus, a complexity gap (between the ease
of proper usage and the difficulty of deviating from the prescribed functionality)
lies at the heart of modern cryptography. However, gaps as required for modern
cryptography are not known to exist; they are only widely believed to exist. Indeed,
almost all of modern cryptography rises or falls with the question of whether one-
way functions exist. We mention that the existence of one-way functions implies
that N P contains search problems that are hard to solve on the average, which
in turn implies that N P is not contained in BPP (i.e., a worst-case complexity
conjecture).

Loosely speaking, one-way functions are functions that are easy to evaluate but
hard (on the average) to invert. Such functions can be thought of as an efficient
way of generating “puzzles” that are infeasible to solve (i.e., the puzzle is a random
image of the function and a solution is a corresponding preimage). Furthermore,
the person generating the puzzle knows a solution to it and can efficiently verify the
validity of (possibly other) solutions to the puzzle. Thus, one-way functions have, by
definition, a clear cryptographic flavor (i.e., they manifest a gap between the ease
of one task and the difficulty of a related one).

17.3.1 One-Way Functions
One-way functions are functions that are efficiently computable but infeasible to
invert (in an average-case sense). That is, a function f : {0, 1}∗ → {0, 1}∗ is called
one-way if there is an efficient algorithm that on input x outputs f (x), whereas
any feasible algorithm that tries to find a preimage of f (x) under f may succeed
only with negligible probability (where the probability is taken uniformly over the
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choices of x and the algorithm’s coin tosses). Associating feasible computations
with probabilistic polynomial-time algorithms, we obtain the following definition.

Definition 17.1 (One-way functions) A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the follow-
ing two conditions hold:

easy to evaluate. There exist a polynomial-time algorithm A such that A(x) =
f (x) for every x ∈ {0, 1}∗.

hard to invert. For every probabilistic polynomial-time algorithm A′, every
polynomial p, and all sufficiently large n,

Pr[A′(f (x), 1n) ∈ f −1(f (x))] <
1

p(n)
,

where the probability is taken uniformly over all the possible choices of
x ∈ {0, 1}n and all the possible outcomes of the internal coin tosses of al-
gorithm A′.

Algorithm A′ is given the auxiliary input 1n so to allow it to run in time polyno-
mial in the length of x, which is important in case f drastically shrinks its input
(e.g., |f (x)| = O(log |x|)). Typically, f is length preserving, in which case the auxil-
iary input 1n is redundant. Note that A′ is not required to output a specific preimage
of f (x); any preimage (i.e., element in the set f −1(f (x))) will do. (Indeed, in case f

is one-to-one, the string x is the only preimage of f (x) under f ; but in general there
may be other preimages.) It is required that algorithm A′ fails (to find a preimage)
with overwhelming probability, when the probability is also taken over the input
distribution. That is, f is “typically” hard to invert, not merely hard to invert in
some (“rare”) cases.

Some of the most popular candidates for one-way functions are based on the
conjectured intractability of computational problems in number theory. One such
conjecture is that it is infeasible to factor large integers. Consequently, the function
that takes as input two (equal-length) primes and outputs their product is widely
believed to be a one-way function. Furthermore, factoring such a composite is
infeasible if and only if squaring modulo such a composite is a one-way function
(see Rabin [1979]). For certain composites (i.e., products of two primes that are both
congruent to 3 mod 4), the latter function induces a permutation over the set of
quadratic residues modulo this composite. A related permutation, which is widely
believed to be one-way, is the RSA function [Rivest et al. 1978]: x "→ xe mod N , where
N = P . Q is a composite as above, e is relatively prime to (P − 1) . (Q − 1), and
x ∈ {0, . . . , N − 1}. The latter examples (as well as other popular suggestions) are
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better captured by the following formulation of a collection of one-way functions
(which is indeed related to Definition 17.1):

Definition 17.2 (Collections of one-way functions) A collection of functions, {fi: Di →{0, 1}∗}
i∈I

,
is called one-way if there exists three probabilistic polynomial-time algorithms, I ,
D and F , so that the following two conditions hold

easy to sample and compute. On input 1n, the output of (the index selection)
algorithm I is distributed over the set I ∩ {0, 1}n (i.e., is an n-bit long index
of some function). On input (an index of a function) i ∈ I , the output of (the
domain sampling) algorithm D is distributed over the set Di (i.e., over the
domain of the function). On input i ∈ I and x ∈ Di, (the evaluation) algorithm
F always outputs fi(x).

hard to invert. 2 For every probabilistic polynomial-time algorithm, A′, every
positive polynomial p(.), and all sufficiently large n’s

Pr
[
A′(i , fi(x)) ∈ f −1

i (fi(x))
]

<
1

p(n)
,

where i ← I (1n) and x ← D(i).

The collection is said to be a collection of permutations if each of the fi’s is a
permutation over the corresponding Di, and D(i) is almost uniformly distributed
in Di.

For example, in case of the RSA, fN ,e: DN ,e → DN ,e satisfies fN ,e(x) = xe mod N ,
where DN ,e = {0, . . . , N − 1}. Definition 17.2 is also a good starting point for the
definition of a trapdoor permutation.3 Loosely speaking, the latter is a collection
of one-way permutations augmented with an efficient algorithm that allows for
inverting the permutation when given adequate auxiliary information (called a
trapdoor).

Definition 17.3 (Trapdoor permutations) A collection of permutations as in Definition 17.2 is
called a trapdoor permutation if there are two auxiliary probabilistic polynomial-
time algorithms I ′ and F−1 such that (1) the distribution I ′(1n) ranges over pairs
of strings so that the first string is distributed as in I (1n), and (2) for every (i , t) in

2. Note that this condition refers to the distributions I (1n) and D(i), which are merely required to
range over I ∩ {0, 1}n and Di, respectively. (Typically, the distributions I (1n) and D(i) are (almost)
uniform over I ∩ {0, 1}n and Di, respectively.)

3. Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter
(and less precise) term is the commonly used one.
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the range of I ′(1n) and every x ∈ Di it holds that F−1(t , fi(x)) = x. (That is, t is a
trapdoor that allows to invert fi.)

For example, in case of the RSA, fN ,e can be inverted by raising to the power d

(modulo N = P . Q), where d is the multiplicative inverse of e modulo (P − 1) .

(Q − 1). Indeed, in this case, the trapdoor information is (N , d).

Strong versus Weak One-Way Functions
Recall that the above definitions require that any feasible algorithm succeeds in in-
verting the function with negligible probability. A weaker notion only requires that
any feasible algorithm fails to invert the function with noticeable probability. It turns
out that the existence of such weak one-way functions implies the existence of
strong one-way functions (as defined above). The construction itself is straight-
forward: The argument to the new function F is parsed into sufficiently many
equal-length blocks, and the weak one-way function f on the individual blocks. We
warn that the hardness of inverting F is not established by mere “combinatorics”
(i.e., considering the relative volume of St in Ut , for S ⊂ U , where S represents the
set of “easy to invert” images). Specifically, one may not assume that the potential
inverting algorithm works independently on each block. Indeed, this assumption
seems reasonable, but we should not assume that the adversary behaves in a rea-
sonable way (unless we can actually prove that it gains nothing by behaving in other
ways—i.e., ways that seem unreasonable to us).

The hardness of inverting the resulting function F is proved via a so called “re-
ducibility argument” (which is used to prove all conditional results in the area).
Specifically, we show that any algorithm that inverts F with nonnegligible success
probability can be used to construct an algorithm that inverts the original function
f with success probability that violates the hypothesis (regarding f ). In other words,
we reduce the task of “strongly inverting” f (i.e., violating its weak one-wayness) to
the task of “weakly inverting” F (i.e., violating its strong one-wayness). We hint
that, on input y = f (x), the reduction invokes the F -inverter (polynomially) many
times, each time feeding it with a sequence of random f -images that contains y

at a random location. (Indeed such a sequence corresponds to a random image of
F .) The analysis of this reduction, presented in Goldreich [2001, Sec. 2.3], demon-
strates that dealing with computational difficulty is much more involved than the
analogous combinatorial question. An alternative demonstration of the difficulty
of reasoning about computational difficulty (in comparison to an analogous purely
probabilistic situation) is provided in the proof of Theorem 17.1.
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17.3.2 Hard-Core Predicates
Loosely speaking, saying that a function f is one-way implies that given y (in the
range of f ) it is infeasible to find a preimage of y under f . This does not mean
that it is infeasible to find out partial information about the preimage(s) of y

under f . Specifically, it may be easy to retrieve half of the bits of the preimage
(e.g., for any one-way function f , consider the function f ′ defined by f ′(x , r)

def=
(f (x), r), for every |x| = |r|). As will become clear in subsequent sections, hiding
partial information (about the function’s preimage) plays an important role in
more advanced constructs (e.g., secure encryption). Thus, we will first show how to
transform any one-way function into a one-way function that hides specific partial
information about its preimage, where this partial information is easy to compute
from the preimage itself. This partial information can be considered a “hard core”
of the difficulty of inverting f . Loosely speaking, a polynomial-time computable
(Boolean) predicate b, is called a hard-core of a function f if no feasible algorithm,
given f (x), can guess b(x) with success probability that is nonnegligibly better than
one-half.

Definition 17.4 (Hard-core predicates [Blum and Micali 1984]) A polynomial-time computable
predicate b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every proba-
bilistic polynomial-time algorithm A′, every positive polynomial p(.), and all suffi-
ciently large n’s

Pr
[
A′(f (x)) = b(x)

]
<

1
2
+ 1

p(n)
,

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n
and all the possible outcomes of the internal coin tosses of algorithm A′.

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗, there exist obvious
algorithms that guess b(x) from f (x) with success probability at least one half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if
b is a hard-core predicate (for any function), then it follows that b is almost unbiased
(i.e., for a uniformly chosen x, the difference | Pr[b(x) = 0] − Pr[b(x) = 1]| must be
a negligible function in n). Finally, if b is a hard-core of a one-to-one function f that
is polynomial-time computable, then f is a one-way function.

Theorem 17.1 (Goldreich and Levin [1989]; see simpler proof in Goldreich [2001, Sec. 2.5.2]) For
any one-way function f , the inner-product mod 2 of x and r is a hard-core of
f ′(x , r) = (f (x), r).
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The proof is by a so-called reducibility argument (which is used to prove all con-
ditional results in the area). Specifically, we reduce the task of inverting f to the
task of predicting the hard-core of f ′, while making sure that the reduction (when
applied to input distributed as in the inverting task) generates a distribution as in
the definition of the predicting task. Thus, a contradiction to the claim that b is
a hard-core of f ′ yields a contradiction to the hypothesis that f is hard to invert.
We stress that this argument is far more complex than analyzing the correspond-
ing “probabilistic” situation (i.e., the distribution of the inner product mod 2 of X

and r , where r is uniformly distributed in r ∈ {0, 1}n, and X is an independent ran-
dom variable with super-logarithmic min-entropy, which represents the “effective”
knowledge of x, when given f (x)).4

Proof Sketch The actual proof refers to an arbitrary algorithm B that, when given (f (x), r), tries
to guess b(x , r). Suppose that this algorithm succeeds with probability 1

2 + ε, where
the probability is taken over the random choices of x and r (as well as the internal
coin tosses of B). By an averaging argument, we first identify a ε/2 fraction of the
possible coin tosses of B such that using any of these coin sequences B succeeds
with probability at least 1

2 + ε/2. Similarly, we can identify a ε/4 fraction of the x’s
such that B succeeds (in guessing b(x , r)) with probability at least 1

2 + ε/4, where
now the probability is taken only over the r ’s. We will show how to use B in order to
invert f , on input f (x), provided that x is in the good set (which has density ε/4).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm
B succeeds with probability p > 3

4 + 1/ poly(|x|) (rather than p ≥ 1
2 + ε/4). In this

case, retrieving x from f (x) is quite easy: To retrieve the ith bit of x, denoted xi,
we first randomly select r ∈ {0, 1}|x|, and obtain B(f (x), r) and B(f (x), r ⊕ ei),
where ei = 0i−110|x|−i and v ⊕ u denotes the addition mod 2 of the binary vectors v

and u. Note that if both B(f (x), r) = b(x , r) and B(f (x), r ⊕ ei) = b(x , r ⊕ ei) hold,
then B(f (x), r) ⊕ B(f (x), r ⊕ ei) equals b(x , r) ⊕ b(x , r ⊕ ei) = b(x , ei) = xi. The
probability that both B(f (x), r) = b(x , r) and B(f (x), r ⊕ ei) = b(x , r ⊕ ei) hold, for
a random r , is at least 1 − 2 . (1 − p) > 1

2 + 1
poly(|x|) . Hence, repeating the foregoing

procedure sufficiently many times (using independent random choices of such r ’s)
and ruling by majority, we retrieve xi with very high probability. (We note that the
same holds if these choices are pairwise independent.) Similarly, we can retrieve

4. The min-entropy of X is defined as minv{log2(1/ Pr[X = v])}; that is, if X has min-entropy m

then maxv{Pr[X = v]} = 2−m. The Leftover Hashing Lemma [Sipser 1983, Bennett et al. 1988,
Impagliazzo et al. 1989] implies that, in this case, Pr[b(X, Un) = 1|Un] = 1

2 ± 2−�(m), where Un

denotes the uniform distribution over {0, 1}n, and b(u, v) denotes the inner-product mod 2 of u

and v.
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all the bits of x, and hence invert f on f (x). However, the entire analysis was
conducted under (the unjustifiable) assumption that p > 3

4 + 1
poly(|x|) , whereas we

only know that p > 1
2 + ε

4 (for ε > 1/ poly(|x|)).
The problem with the foregoing procedure is that it doubles the original error

probability of algorithm B on inputs of the form (f (x), .). Under the unrealistic
assumption (made above), that B’s average error on such inputs is nonnegligibly
smaller than 1

4 , the “error-doubling” phenomenon raises no problems. However,
in general (and even in the special case where B’s error is exactly 1

4 ) the foregoing
procedure is unlikely to invert f . Note that the average error probability of B (for
a fixed f (x), when the average is taken over a random r) can not be decreased by
repeating B several times (e.g., for every x, it may be that B always answer correctly
on three quarters of the pairs (f (x), r), and always err on the remaining quarter).
What is required is an alternative way of using the algorithm B, a way that does not
double the original error probability of B.

The key idea is to generate the r ’s in a way that allows to apply algorithm B only
once per each r (and i), instead of twice. Specifically, we will use algorithm B to
obtain a “guess” for b(x , r ⊕ ei) and obtain b(x , r) in a different way (which does
not use B). The good news is that the error probability is no longer doubled, since
we only use B to get a “guess” of b(x , r ⊕ ei). The bad news is that we still need
to know b(x , r), and it is not clear how we can know b(x , r) without applying B.
The answer is that we can guess b(x , r) by ourselves. This is fine if we only need
to guess b(x , r) for one r (or logarithmically in |x| many r ’s), but the problem is
that we need to know (and hence guess) the value of b(x , r) for polynomially many
r ’s. The obvious way of guessing these b(x , r)’s yields an exponentially small suc-
cess probability. Instead, we generate these polynomially many r ’s such that they
are “sufficiently random” on the one hand, whereas, on the other hand, we can
guess all the b(x , r)’s with noticeable success probability.5 Specifically, generating
the r ’s in a specific pairwise-independent manner will satisfy both (seemingly con-
tradictory) requirements. We stress that in case we are successful (in our guesses
for all the b(x , r)’s), we can retrieve x with high probability. Hence, we retrieve x

with noticeable probability.
A word about the way in which the pairwise-independent r ’s are generated

(and the corresponding b(x , r)’s are guessed) is indeed in place. To generate m =
poly(|x|) many r ’s, we uniformly (and independently) select �

def= log2(m + 1) strings
in {0, 1}|x|. Let us denote these strings by s1, . . . , s�. We then guess b(x , s1) through

5. Alternatively, we can try all polynomially many possible guesses.
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b(x , s�). Let us denote these guesses, which are uniformly (and independently)
chosen in {0, 1}, by σ 1 through σ�. Hence, the probability that all our guesses
for the b(x , si)’s are correct is 2−� = 1

poly(|x|) . The different r ’s correspond to the
different nonempty subsets of {1, 2, . . . , �}. Specifically, for every such subset J , we
let rJ def= ⊕j∈J sj . The reader can easily verify that the rJ ’s are pairwise independent
and each is uniformly distributed in {0, 1}|x|. The key observation is that b(x , rJ ) =
b(x , ⊕j∈J sj) = ⊕j∈Jb(x , sj). Hence, our guess for b(x , rJ ) is ⊕j∈Jσ j , and with
noticeable probability all our guesses are correct.

17.4 Pseudorandomness
In practice “pseudorandom” sequences are often used instead of truly random
sequences. The underlying belief is that if an (efficient) application performs well
when using a truly random sequence, then it will perform essentially as well when
using a “pseudorandom” sequence. However, this belief is not supported by ad
hoc notions of “pseudorandomness” such as passing the statistical tests in Knuth
[1969] or having large linear-complexity (as in Golomb [1967]). In contrast, the
foregoing belief is an easy corollary of defining pseudorandom distributions as
ones that are computationally indistinguishable from uniform distributions.

Loosely speaking, pseudorandom generators are efficient procedures for creat-
ing long “random-looking” sequences based on few truly random bits (i.e., a short
random seed). The relevance of such constructs to cryptography is in the ability
of legitimate users who share short random seeds to create large objects that look
random to any feasible adversary (who does not know the said seed).

17.4.1 Computational Indistinguishability

Indistinguishable things are identical (or should be considered as identical).

—The Principle of Identity of Indiscernibles, G. W. Leibniz (1646–1714)

(Leibniz admits that counterexamples to this principle are conceivable but will not
occur in real life because God is much too benevolent.)

A central notion in modern cryptography is that of “effective similarity” (intro-
duced by Goldwasser, Micali, and Yao [Goldwasser and Micali 1984, Yao 1982]).
The underlying thesis is that we do not care whether or not objects are equal, all
we care about is whether or not a difference between the objects can be observed
by a feasible computation. In the case where the answer is negative, the two ob-
jects are equivalent as far as any practical application is concerned. Indeed, in the
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sequel we will often interchange such (computationally indistinguishable) objects.
Let X = {Xn}n∈N and Y = {Yn}n∈N be probability ensembles such that each Xn and
Yn is a distribution that ranges over strings of length n (or polynomial in n). We say
that X and Y are computationally indistinguishable if for every feasible algorithm
A the difference dA(n)

def= | Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| is a negligible function in
n. That is:

Definition 17.5 (Computational indistinguishability [Goldwasser and Micali 1984, Yao 1982]) We
say that X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable if for
every probabilistic polynomial-time algorithm D every polynomial p, and all suffi-
ciently large n,

| Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| < 1
p(n)

,

where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn)
and over the internal coin tosses of algorithm D.

We can think of D as somebody who wishes to distinguish two distributions (based
on a sample given to it), and think of 1 as D’s verdict that the sample was drawn
according to the first distribution. Saying that the two distributions are computa-
tionally indistinguishable means that if D is a feasible procedure, then its verdict
is not really meaningful (because the verdict is almost as often 1 when the input
is drawn from the first distribution as when the input is drawn from the second
distribution).

Indistinguishability by Multiple Samples
We mention that, for “efficiently constructible” distributions, indistinguishability
by a single sample (as defined above) implies indistinguishability by multiple sam-
ples (see Goldreich [2001, Sec. 3.2.3]). The proof of this fact, which we briefly present
next, provides a simple demonstration of a central proof technique, originating in
the work Goldwasser and Micali [1984] and known as a hybrid argument.

To prove that a sequence of m independently drawn samples of one distribu-
tion is indistinguishable from a sequence of independently drawn samples from
the other distribution, we consider m + 1 hybrid sequences such that the ith hy-
brid consists of i − 1 samples taken from the first distribution and the rest taken
from the second distribution. The “homogeneous” sequences (which we wish to
prove to be computational indistinguishable) are the extreme hybrids (i.e., the first
and last hybrids considered above). The key observation is that distinguishing the
extreme hybrids (toward the contradiction hypothesis) yields a procedure for dis-
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tinguishing single samples of the two distributions (contradicting the hypothesis
that the two distributions are indistinguishable by a single sample). Specifically, if
D distinguishes the extreme hybrids, then it also distinguishes a random pair of
neighboring hybrids (i.e., D distinguishes the ith hybrid from the i + 1st hybrid,
for a randomly selected i ∈ [m]). Using D, we obtain a distinguisher D′ of single
samples: Given a single sample, D′ selects i ∈ [m] uniformly at random, generates
i − 1 samples from the first distribution and m − i samples from the second distri-
bution, and invokes D with the corresponding sequence, while placing the input
sample in location i of the sequence. We stress that although the original distin-
guisher D (arising from the contradiction hypothesis) was only “supposed to work”
for the extreme hybrids, we may consider D’s performance on any distribution that
we please, and draw adequate conclusions (as we have done).

17.4.2 Pseudorandom Generators
Loosely speaking, a pseudorandom generator is an efficient (deterministic) algo-
rithm that on input a short random seed outputs a (typically much) longer sequence
that is computationally indistinguishable from a uniformly distributed sequence
(of the same length). Pseudorandom generators were introduced by Blum, Micali,
and Yao [Blum and Micali 1984, Yao 1982], and are formally defined as follows.

Definition 17.6 (Pseudorandom generator [Blum and Micali 1984, Yao 1982]) Let �: N → N satisfy
�(n) > n, for all n ∈ N. A pseudorandom generator, with stretch function �, is a
(deterministic) polynomial-time algorithm G satisfying the following:

1. For every s ∈ {0, 1}∗, it holds that |G(s)| = �(|s|).

2. {G(Un)}n∈N and {U�(n)}n∈N are computationally indistinguishable, where Um

denotes the uniform distribution over {0, 1}m.

Indeed, the probability ensemble {G(Un)}n∈N is called pseudorandom.

Thus, pseudorandom sequences can replace truly random sequences not only in
“standard” algorithmic applications but also in cryptographic ones. That is, any
cryptographic application that is secure when the legitimate parties use truly ran-
dom sequences, is also secure when the legitimate parties use pseudorandom
sequences. The benefit in such a substitution (of random sequences by pseudo-
random ones) is that the latter sequences can be efficiently generated using much
less true randomness. Furthermore, in an interactive setting, it is possible to elimi-
nate all random steps from the on-line execution of a program, by replacing them
with the generation of pseudorandom bits based on a random seed selected and
fixed off-line (or at set-up time).
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Various cryptographic applications of pseudorandom generators will be pre-
sented in the sequel, but first let us show a construction of pseudorandom gener-
ators based on the simpler notion of a one-way permutation. Using Theorem 17.1,
we may actually assume that such a function is accompanied by a hard-core pred-
icate. We start with a simple construction that suffices for the case of one-to-one
(and length-preserving) functions.

Theorem 17.2 (Blum and Micali [1984], Yao [1982]; see Goldreich [2001, Sec. 3.4]) Let f be
a one-to-one function that is length-preserving and efficiently computable, and
b be a hard-core predicate of f . Then G(s) = b(s) . b(f (s)) . . . b(f �(|s|)−1(s)) is a
pseudorandom generator (with stretch function �), where f i+1(x)

def= f (f i(x)) and
f 0(x)

def= x.

As a concrete example, consider the permutation6 x "→ x2 mod N , where N is the
product of two primes each congruent to 3 (mod 4) and x is a quadratic residue
modulo N . Then we have GN(s) = lsb(s) . lsb(s2 mod N) . . . lsb(s2�(|s|)−1

mod N),
where lsb(x) is the least significant bit of x (which is a hard-core of the modular
squaring function [Alexi et al. 1988]).

Proof Sketch (of Theorem 17.2) We use the fundamental fact that asserts that the following two
conditions are equivalent:

1. The distribution X (in our case {G(Un)}n∈N) is pseudorandom (i.e., is com-
putationally indistinguishable from a uniform distribution (on {U�(n)}n∈N)).

2. The distribution X is unpredictable in polynomial time; that is, no feasi-
ble algorithm, given a prefix of the sequence, can guess its next bit with a
nonnegligible advantage over 1

2 .

Clearly, pseudorandomness implies polynomial-time unpredictability (i.e., poly-
nomial-time predictability violates pseudorandomness). The converse is shown
using a hybrid argument, which refers to hybrids consisting of a prefix of X fol-
lowed by truly random bits (i.e., a suffix of the uniform distribution). Thus, we
focus on proving that G′(Un) is polynomial-time unpredictable, where G′(s) =
b(f �(|s|)−1(s)) . . . b(f (s)) . b(s) is the reverse of G(s).

Suppose toward the contradiction that, for some j < �
def= �(n), given the j -bit-

long prefix of G′(Un) an algorithm A′ can predict the j + 1st bit of G′(Un). That
is, given b(f �−1(s)) . . . b(f �−j (s)), algorithm A′ predicts b(f �−(j+1)(s)), where s

is uniformly distributed in {0, 1}n. Then, for x uniformly distributed in {0, 1}n,

6. It is a well-known fact (see Goldreich [2001, Appendix A.2.4]) that, for such N ’s, the mapping
x "→ x2 mod N is a permutation over the set of quadratic residues modulo N .
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given y = f (x), one can predict b(x) by invoking A′ on input b(f j−1(y)) . . . b(y) =
b(f j(x)) . . . b(f (x)), which in turn is polynomial-time computable from y = f (x).
In the analysis, we use the hypothesis that f induces a permutation over {0, 1}n and
associate x with f �−(j+1)(s).

We mention that the existence of a pseudorandom generator with any stretch
function (including the very minimal stretch function �(n) = n + 1) implies the
existence of pseudorandom generators for any desired stretch function. The con-
struction is similar to the one presented in Theorem 17.2. That is, for a pseu-
dorandom generator G1, let F(x) (respectively, B(x)) denote the first |x| bits of
G1(x) (respectively, the |x| + 1st bit of G1(x)), and consider G(s) = B(s) . B(F(s)) . . .

B(F�(|s|)−1(s)), where � is the desired stretch. Although F is not necessarily one-
to-one, it can be shown that G is a pseudorandom generator [Goldreich 2001,
Sec. 3.3.2].

We conclude this section by mentioning that pseudorandom generators can be
constructed from any one-way function (rather than merely from one-way permuta-
tions, as above). On the other hand, the existence of one-way functions is a necessary
condition for the existence of pseudorandom generators. That is:

Theorem 17.3 ([Håstad et al. 1999]) Pseudorandom generators exist if and only if one-way func-
tions exist.

The necessary condition is easy to establish. Given a pseudorandom generator G

that stretches by a factor of 2, consider the function f (x) = G(x) (or, to obtain
a length-preserving function, let f (x , y) = G(x), where |x| = |y|). An algorithm
that inverts f with nonnegligible success probability (on the distribution f (Un) =
G(Un)) yields a distinguisher of {G(Un)}n∈N from {U2n}n∈N, because the probability
that U2n is an image of f is negligible.

17.4.3 Pseudorandom Functions
Pseudorandom generators provide a way to efficiently generate long pseudorandom
sequences from short random seeds. Pseudorandom functions, introduced and
constructed by Goldreich, Goldwasser, and Micali [Goldreich et al. 1986], are even
more powerful: They provide efficient direct access to bits of a huge pseudorandom
sequence (which is not feasible to scan bit by bit). More precisely, a pseudorandom
function is an efficient (deterministic) algorithm that given an n-bit seed, s, and an
n-bit argument, x, returns an n-bit string, denoted fs(x), so that it is infeasible to
distinguish the values of fs, for a uniformly chosen s ∈ {0, 1}n, from the values of a
truly random function F : {0, 1}n →{0, 1}n. That is, the (feasible) testing procedure
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is given oracle access to the function (but not its explicit description), and cannot
distinguish the case it is given oracle access to a pseudorandom function from the
case it is given oracle access to a truly random function.

One key feature of the foregoing definition is that pseudorandom functions
can be generated and shared by merely generating and sharing their seed; that is,
a “random-looking” function fs : {0, 1}n → {0, 1}n is determined by its n-bit seed
s. Parties wishing to share a random-looking function fs (determining 2n-many
values) merely need to generate and share among themselves the n-bit seed s. (For
example, one party may randomly select the seed s and communicate it, via a secure
channel, to all other parties.) Sharing a pseudorandom function allows parties
to determine (by themselves and without any further communication) random-
looking values depending on their current views of the environment (which need
not be known a priori). To appreciate the potential of this tool, one should realize
that sharing a pseudorandom function is essentially as good as being able to
agree, on the fly, on the association of random values to (on-line) given values,
where the latter are taken from a huge set of possible values. We stress that this
agreement is achieved without communication and synchronization: Whenever
some party needs to associate a random value to a given value, v ∈ {0, 1}n, it will
associate to v the (same) random value rv ∈ {0, 1}n (by setting rv = fs(v), where fs

is a pseudorandom function agreed upon beforehand).

Theorem 17.4 (Goldreich et al. [1986]; see Goldreich [2001, Sec. 3.6.2]) Pseudorandom functions
can be constructed using any pseudorandom generator.

Proof Sketch Let G be a pseudorandom generator that stretches its seed by a factor of 2 (i.e.,
�(n) = 2n), and let G0(s) (respectively, G1(s)) denote the first (respectively, last) |s|
bits in G(s). Define

Gσ|s|...σ2σ1
(s)

def= Gσ|s|(
. . . Gσ2

(Gσ1
(s)) . . .).

We consider the function ensemble {fs: {0, 1}|s| → {0, 1}|s|}s∈{0, 1}∗, where fs(x)
def=

Gx(s). Pictorially, the function fs is defined by n-step walks down a full binary tree
of depth n having labels at the vertices. The root of the tree, hereafter referred to
as the level 0 vertex of the tree, is labeled by the string s. If an internal vertex is
labeled r , then its left child is labeled G0(r) and its right child is labeled G1(r). The
value of fs(x) is the string residing in the leaf reachable from the root by a path
corresponding to the string x.

We claim that the function ensemble {fs}s∈{0, 1}∗ is pseudorandom. The proof
uses the hybrid technique: The ith hybrid, Hi

n
, is a function ensemble consisting of
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22i .n functions {0, 1}n → {0, 1}n, each defined by 2i random n-bit strings, denoted
s = 〈sβ〉β∈{0, 1}i . The value of such function hs at x = αβ, where |β| = i, is Gα(sβ). (Pic-
torially, the function hs is defined by placing the strings in s in the corresponding
vertices of level i, and labeling vertices of lower levels using the very rule used in
the definition of fs.) The extreme hybrids correspond to our indistinguishability
claim (i.e., H 0

n
≡ fUn

and Hn
n

is a truly random function), and neighboring hybrids
can be related to our indistinguishability hypothesis (specifically, to the indistin-
guishability of G(Un) and U2n under multiple samples).

Useful variants (and generalizations) of the notion of pseudorandom functions
include Boolean pseudorandom functions that are defined over all bit strings
(i.e., fs : {0, 1}∗ → {0, 1}) and pseudorandom functions that are defined for other
domains and ranges (i.e., fs : {0, 1}d(|s|) → {0, 1}r(|s|), for arbitrary polynomially
bounded functions d , r : N → N). Various transformations between these variants
are known (see Goldreich [2001, Sec. 3.6.4], and Goldreich [2004, Appendix C.2]).

Applications and a generic methodology. Pseudorandom functions are a very useful
cryptographic tool: One may first design a cryptographic scheme assuming that the
legitimate users have black-box access to a random function, and next implement
the random function using a pseudorandom function. The usefulness of this tool
stems from the fact that having (black-box) access to a random function gives the
legitimate parties a potential advantage over the adversary (which does not have free
access to this function).7 The security of the resulting implementation (which uses a
pseudorandom function) is established in two steps: First, one proves the security
of an idealized scheme that uses a truly random function, and next one argues
that the actual implementation (which uses a pseudorandom function) is secure
(because otherwise one obtains an efficient oracle machine that distinguishes a
pseudorandom function from a truly random one).

17.5 Zero-Knowledge
Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff
[Goldwasser et al. 1989], provide a powerful tool for the design of cryptographic
protocols. Loosely speaking, zero-knowledge proofs are proofs that yield nothing

7. The foregoing methodology is sound provided that the adversary does not get the description
of the pseudorandom function (i.e., the seed) in use, but has only (possibly limited) oracle access
to it. This is different from the so-called Random Oracle Methodology formulated in Bellare and
Rogaway [1993] and criticized in Canetti et al. [1998].
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beyond the validity of the assertion. That is, a verifier obtaining such a proof only
gains conviction in the validity of the assertion (as if it was told by a trusted party
that the assertion holds). This is formulated by saying that anything that is fea-
sibly computable from a zero-knowledge proof is also feasibly computable from
the (valid) assertion itself. The latter formulation follows the simulation paradigm,
which is discussed next.

17.5.1 The Simulation Paradigm
A key question regarding the modeling of security concerns is how to express the
intuitive requirement that an adversary “gains nothing substantial” by deviating
from the prescribed behavior of an honest user. The answer provided by the sim-
ulation paradigm is that the adversary gains nothing if whatever it can obtain by
unrestricted adversarial behavior can also be obtained within essentially the same
computational effort by a benign behavior. The definition of the “benign behavior”
captures what we want to achieve in terms of security, and is specific to the security
concern to be addressed. For example, in the previous paragraph, we said that a
proof is zero-knowledge if it yields nothing (to the adversarial verifier) beyond the
validity of the assertion; hence the benign behavior in this case is any computation
that is based (only) on the assertion itself (while assuming that the latter is valid).
Other examples are discussed in Sections 17.7.1 and 17.9.1.

A notable property of the aforementioned simulation paradigm, as well as of
the entire approach surveyed in this text, is that this approach is overly liberal
with respect to its view of the abilities of the adversary as well as to what might
constitute a gain for the adversary. Thus, the approach may be considered overly
cautious, because it prohibits also “nonharmful” gains of some “far fetched” ad-
versaries. We warn against this impression. First, there is nothing more danger-
ous in cryptography than to consider “reasonable” adversaries (a notion which is
almost a contradiction in terms): Typically, the adversaries will try exactly what
the system designer has discarded as “far fetched.” Second, it seems impossible
to come up with definitions of security that distinguish “breaking the scheme
in a harmful way” from “breaking it in a nonharmful way”: What is harmful is
application dependent, whereas a good definition of security ought to be appli-
cation independent (since otherwise using the scheme in any new application
will require a full re-evaluation of its security). Furthermore, even with respect
to a specific application, it is typically very hard to classify the set of “harmful
breakings.”
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17.5.2 The Actual Definition

A proof is whatever convinces me.

—Shimon Even (1935–2004)

Before defining zero-knowledge proofs, we have to define proofs. The standard no-
tion of a static (i.e., noninteractive) proof will not do, because static zero-knowledge
proofs exist only for sets that are easy to decide (i.e, are in BPP) [Goldreich and
Oren 1994], whereas we are interested in zero-knowledge proofs for arbitrary NP-
sets. Instead, we use the notion of an interactive proof (introduced exactly for that
reason by Goldwasser, Micali, and Rackoff [Goldwasser et al. 1989]). That is, here
a proof is a (multi-round) randomized protocol for two parties, called verifier and
prover, in which the prover wishes to convince the verifier of the validity of a given
assertion. Such an interactive proof should allow the prover to convince the verifier
of the validity of any true assertion (i.e., completeness), whereas no prover strategy
may fool the verifier to accept false assertions (i.e., soundness). Both the complete-
ness and soundness conditions should hold with high probability (i.e., a negligible
error probability is allowed). The prescribed verifier strategy is required to be effi-
cient. No such requirement is made with respect to the prover strategy; yet we will
be interested in “relatively efficient” prover strategies (see below).8

Zero-knowledge is a property of some prover strategies. More generally, we con-
sider interactive machines that yield no knowledge while interacting with an arbi-
trary feasible adversary on a common input taken from a predetermined set (in our
case, the set of valid assertions). A strategy A is zero-knowledge on (inputs from) the
set S if, for every feasible strategy B∗, there exists a feasible computation C∗ such
that the following two probability ensembles are computationally indistinguish-
able:9

8. We stress that the relative efficiency of the prover strategy refers to the strategy employed in
order to prove valid assertions; that is, relative efficiency of the prover strategy is a strengthening of
the completeness condition (which is indeed required for cryptographic applications). This should
not be confused with the relaxation (i.e., weakening) of the soundness condition that restricts
its scope to feasible adversarial prover strategies (rather than to all possible prover strategies).
The resulting notion of “computational soundness” is discussed in Section 17.5.4.1, and indeed
suffices in most cryptographic applications. Still, we believe that it is simpler to present the
material in terms of interactive proofs (rather than in terms of computationally sound proofs).

9. Here we refer to a natural extension of Definition 17.5: Rather than referring to ensembles
indexed by N, we refer to ensembles indexed by a set S ⊆ {0, 1}∗. Typically, for an ensemble
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1. {(A, B∗)(x)}x∈S
def= the output of B∗ after interacting with A on common input

x ∈ S; and

2. {C∗(x)}x∈S
def= the output of C∗ on input x ∈ S.

We stress that the first ensemble represents an actual execution of an interactive
protocol, whereas the second ensemble represents the computation of a stand-
alone procedure (called the “simulator”), which does not interact with anybody.

The foregoing definition does not account for auxiliary information that an ad-
versary B∗ may have prior to entering the interaction. Accounting for such auxiliary
information is essential for using zero-knowledge proofs as subprotocols inside
larger protocols (see Goldreich and Krawczyk [1996], Goldreich and Oren [1994]).
This is taken care of by a stricter notion called auxiliary-input zero-knowledge.

Definition 17.7 (Zero-knowledge [Goldwasser et al. [1989]; revisited in Goldreich and Oren [1994]])
A strategy A is auxiliary-input zero-knowledge on inputs from S if, for every prob-
abilistic polynomial-time strategy B∗ and every polynomial p, there exists a prob-
abilistic polynomial-time algorithm C∗ such that the following two probability en-
sembles are computationally indistinguishable:

1. {(A, B∗(z))(x)}x∈S ,z∈{0, 1}p(|x|)
def= the output of B∗ when having auxiliary-input

z and interacting with A on common input x ∈ S.

2. {C∗(x , z)}x∈S ,z∈{0, 1}p(|x|)
def= the output of C∗ on inputs x ∈ S and z ∈ {0, 1}p(|x|).

Almost all known zero-knowledge proofs are in fact auxiliary-input zero-
knowledge. As hinted above, auxiliary-input zero-knowledge is preserved under se-
quential composition [Goldreich and Oren 1994]. A simulator for the multiple-
session protocol can be constructed by iteratively invoking the single-session simu-
lator that refers to the residual strategy of the adversarial verifier in the given session
(while feeding this simulator with the transcript of previous sessions). Indeed, the
residual single-session verifier gets the transcript of the previous sessions as part
of its auxiliary input (i.e., z in Definition 17.7). (For details, see Goldreich [2001,
Sec. 4.3.4].)

{Zα}α∈S, it holds that Zα ranges over strings of length that is polynomially related to the length of
α. We say that {Xα}α∈S and {Yα}α∈S are computationally indistinguishable if for every probabilistic
polynomial-time algorithm D every polynomial p, and all sufficiently long α ∈ S,

| Pr[D(α , Xα) = 1] − Pr[D(α , Yα) = 1]| < 1
p(|α|) ,

where the probabilities are taken over the relevant distribution (i.e., either Xα or Yα) and over the
internal coin tosses of algorithm D.
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17.5.3 Zero-Knowledge Proofs for All NP-Assertions and Their Applications
A question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every
set in P (or rather in BPP) has a “trivial” zero-knowledge proof (in which the verifier
determines membership by itself); however, what we seek is zero-knowledge proofs
for statements that the verifier cannot decide by itself.

Assuming the existence of “commitment schemes” (see below), which in turn
exist if one-way functions exist [Naor 1991, Håstad et al. 1999], there exist (auxiliary-
input) zero-knowledge proofs of membership in any NP-set (i.e., sets having efficiently
verifiable static proofs of membership). These zero-knowledge proofs, first con-
structed by Goldreich, Micali, and Wigderson [Goldreich et al. 1991] and depicted
in Figure 17.1, have the following important property: The prescribed prover strat-
egy is efficient, provided it is given as auxiliary-input an NP-witness to the assertion
(to be proved).10 That is:

Theorem 17.5 (Goldreich et al. [1991]; using Håstad et al. [1999], Naor [1991]) If (nonuniformly
hard) one-way functions exist, then every set S ∈ N P has a zero-knowledge inter-
active proof. Furthermore, the prescribed prover strategy can be implemented in
probabilistic polynomial time, provided it is given as auxiliary input an NP-witness
for membership of the common input in S.

Theorem 17.5 makes zero-knowledge a very powerful tool in the design of cryp-
tographic schemes and protocols (see below). We comment that the intractability
assumption used in Theorem 17.5 seems essential; see Ostrovsky and Wigderson
[1993] and Vadhan [2004].

Analyzing the Protocol of Figure 17.1. Let us consider a single execution of the main
loop (and rely on the preservation of zero-knowledge under sequential composi-
tion). Clearly, the prescribed prover is implemented in probabilistic polynomial
time, and always convinces the verifier (provided that it is given a valid 3-coloring
of the common input graph). In the case where the graph is not 3-colorable, then,
no matter how the prover behaves, the verifier will reject with probability at least
1/|E| (because at least one of the edges must be improperly colored by the prover).
We stress that the verifier selects uniformly which edge to inspect after the prover

10. The auxiliary input given to the prescribed prover (in order to allow for an efficient implementa-
tion of its strategy) is not to be confused with the auxiliary-input that is given to malicious verifiers
(in the definition of auxiliary-input zero-knowledge). The former is typically an NP-witness for the
common input, which is available to the user that invokes the prover strategy (see the generic
application discussed below). In contrast, the auxiliary input that is given to malicious verifiers
models arbitrary partial information that may be available to the adversary.
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Commitment schemes are digital analogs of sealed envelopes (or, better, locked boxes).

Sending a commitment means sending a string that binds the sender to a unique value

without revealing this value to the receiver (as when getting a locked box). Decommitting

to the value means sending some auxiliary information that allows the receiver to read the

uniquely committed value (as when sending the key to the lock).

Common Input: A graph G(V , E). Suppose that V ≡ {1, . . . , n} for n
def= |V |.

Auxiliary Input (to the prover): A 3-coloring φ : V → {1, 2, 3}.

The following four steps are repeated (t . |E|) many times so to obtain soundness error

exp(−t).

Prover’s first step (P1): Select uniformly a permutation π over {1, 2, 3}. For i = 1 to n, send

the verifier a commitment to the value π(φ(i)).

Verifier’s first step (V1): Select uniformly an edge e ∈ E and send it to the prover.

Prover’s second step (P2): Upon receiving e = (i , j) ∈ E, decommit to the ith and j th

values sent in Step (P1).

Verifier’s second step (V2): Reject if either the decommitted values are not different

elements of {1, 2, 3} or the decommitments do not match the commitments received

in Step (P1).

(If the verifier did not reject in any iteration, then it accepts.)

Figure 17.1 The zero-knowledge proof of graph 3-colorability (of Goldreich et al. [1991]). Zero-
knowledge proofs for other NP-sets can be obtained using the standard reductions.

has committed to the colors of all vertices. Thus, Figure 17.1 depicts an interactive
proof system for graph 3-colorability (with error probability exp(−t)). As the reader
might have guessed, the zero-knowledge property is the hardest to establish, and
we will confine ourselves to presenting an adequate simulator. We start with three
simplifying conventions (which are useful in general):

1. Without loss of generality, we may assume that the cheating verifier strat-
egy is implemented by a deterministic polynomial-time algorithm with an
auxiliary input. This is justified by fixing any outcome of the verifier’s coins
(as part of the auxiliary input), and observing that our (uniform) simulation
of the various (residual) deterministic strategies yields a simulation of the
original probabilistic strategy.

2. Without loss of generality, it suffices to consider cheating verifiers that (only)
output their view of the interaction (i.e., their input, coin tosses, and the
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messages they received). In other words, it suffices to simulate the view of the
cheating verifier rather than its output (which is the result of a polynomial-
time post-processing of the view).

3. Without loss of generality, it suffices to construct a “weak simulator” that
produces an output with some noticeable probability, provided that (condi-
tioned on producing output) the output is computationally indistinguishable
from the desired distribution (i.e., the view of the cheating verifier in a real
interaction). This is the case because, by repeatedly invoking this weak sim-
ulator (polynomially) many times, we may obtain a simulator that fails to
produce an output with negligible probability. Finally, letting the simulator
produce an arbitrary output rather than failing, we obtain a simulator that
never fails (as required by the definition), while skewing the output distribu-
tion by at most a negligible amount.

Our simulator starts by selecting uniformly and independently a random color
(i.e., element of {1, 2, 3}) for each vertex, and feeding the verifier strategy with
random commitments to these random colors. Indeed, the simulator feeds the
verifier with a distribution that is very different from the distribution that the
verifier sees in a real interaction with the prover. However, being computationally
restricted, the verifier cannot tell these distributions apart (or else we obtain a
contradiction to the security of the commitment scheme in use). Now, if the verifier
asks to inspect an edge that is properly colored, then the simulator performs
the proper decommitment action and outputs the transcript of this interaction.
Otherwise, the simulator halts proclaiming failure. We claim that failure occurs
with probability approximately 1/3 (or else we obtain a contradiction to the security
of the commitment scheme in use). Furthermore, based on the same hypothesis
(but via a more complex proof (see Goldreich [2001, Sec. 4.4.2.3])), conditioned on
not failing, the output of the simulator is computationally indistinguishable from
the verifier’s view of the real interaction.

Commitment schemes. Loosely speaking, commitment schemes are two-stage (two-
party) protocols allowing for one party to commit itself (at the first stage) to a
value while keeping the value secret. In a (second) later stage, the commitment
is “opened” and it is guaranteed that the “opening” can yield only a single value
determined in the committing phase. Thus, the (first stage of the) commitment
scheme is both binding and hiding. A simple (unidirectional communication) com-
mitment scheme can be constructed based on any one-way one-to-one function
f (with a corresponding hard-core b). To commit to a bit σ , the sender uniformly
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selects s ∈ {0, 1}n and sends the pair (f (s), b(s) ⊕ σ). Note that this is both bind-
ing and hiding. An alternative construction, which can be based on any one-way
function, uses a pseudorandom generator G that stretches its seed by a factor of 3.
A commitment is established, via two-way communication, as follows (see Naor
[1991]): The receiver selects uniformly r ∈ {0, 1}3n and sends it to the sender, which
selects uniformly s ∈ {0, 1}n and sends r ⊕ G(s) if it wishes to commit to the value 1
and G(s) if it wishes to commit to 0. To see that this is binding, observe that there
are at most 22n “bad” values r that satisfy G(s0) = r ⊕ G(s1) for some pair (s0, s1),
and with overwhelmingly high probability the receiver will not pick one of these
bad values. The hiding property follows by the pseudorandomness of G.

Zero-knowledge proofs for other NP-sets. By using the standard Karp-reductions to
3-colorability, the protocol of Figure 17.1 can be used for constructing zero-
knowledge proofs for any set in N P. We comment that this is probably the first
time that an NP-completeness result was used in a “positive” way (i.e., in order to
construct something rather than in order to derive a hardness result).11

Efficiency considerations. The protocol in Figure 17.1 calls for invoking some con-
stant-round protocol for a nonconstant number of times (and its analysis relies on
the preservation of zero-knowledge under sequential composition). At first glance,
it seems that one can derive a constant-round zero-knowledge proof system (of
negligible soundness error) by performing these invocations in parallel (rather
than sequentially). Unfortunately, as indicated in Goldreich and Krawczyk [1996],
it is not clear that the resulting interactive proof is zero-knowledge. Still, under
standard intractability assumptions (e.g., the intractability of factoring), constant-
round zero-knowledge proofs (of negligible soundness error) do exist for every set
in N P (see Goldreich and Kahan [1996]). We comment that the number of rounds
in a protocol is commonly considered the most important efficiency criterion (or
complexity measure), and typically one desires to have it be a constant.

A generic application. As mentioned above, Theorem 17.5 makes zero-knowledge
a very powerful tool in the design of cryptographic schemes and protocols. This
wide applicability is due to two important aspects regarding Theorem 17.5: First,
Theorem 17.5 provides a zero-knowledge proof for every NP-set, and second the
prescribed prover can be implemented in probabilistic polynomial time when given
an adequate NP-witness. We now turn to a typical application of zero-knowledge

11. Subsequent positive uses of completeness results have appeared in the context of interactive
proofs (see the proof of Goldreich [2008, Thm. 9.4]), probabilistically checkable proofs (see the
proof of Goldreich [2008, Thm. 9.16]), and statistical zero-knowledge [Sahai and Vadhan 2003].
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proofs. In a typical cryptographic setting, a user U has a secret and is supposed to
take some action depending on its secret. The question is how can other users verify
that U indeed took the correct action (as determined by U ’s secret and publicly
known information). Indeed, if U discloses its secret, then anybody can verify that
U took the correct action. However, U does not want to reveal its secret. Using
zero-knowledge proofs we can satisfy both conflicting requirements (i.e., having
other users verify that U took the correct action without violating U ’s interest in not
revealing its secret). That is, U can prove in zero-knowledge that it took the correct
action. Note that U ’s claim to having taken the correct action is an NP-assertion
(since U ’s legal action is determined as a polynomial-time function of its secret and
the public information), and that U has an NP-witness to its validity (i.e., the secret
is an NP-witness to the claim that the action fits the public information). Thus, by
Theorem 17.5, it is possible for U to efficiently prove the correctness of its action
without yielding anything about its secret. Consequently, it is fair to ask U to prove
(in zero-knowledge) that it behaves properly, and so to force U to behave properly.
Indeed, “forcing proper behavior” is the canonical application of zero-knowledge
proofs (see Goldreich et al. [1987], Goldreich [1998]).

This paradigm (i.e., “forcing proper behavior” via zero-knowledge proofs), which
in turn is based on the fact that zero-knowledge proofs can be constructed for any
NP-set, has been utilized in numerous different settings. Indeed, this paradigm is
the basis for the wide applicability of zero-knowledge protocols in cryptography.

17.5.4 Variants and Issues
In this section we consider numerous variants on the notion of zero-knowledge and
the underlying model of interactive proofs. These include computational sound-
ness (Section 17.5.4.1), black-box simulation and other variants of zero-knowledge
(Section 17.5.4.2), as well as notions such as proofs of knowledge, noninterac-
tive zero-knowledge, and witness indistinguishable proofs (Section 17.5.4.3). We
conclude this section by reviewing results regarding the composition of zero-
knowledge protocols and the power of non-black-box simulation (Section 17.5.4.4).

17.5.4.1 Computational Soundness
A fundamental variant on the notion of interactive proofs was introduced by Bras-
sard, Chaum, and Crépeau [Brassard et al. 1988], who relaxed the soundness condi-
tion so that it only refers to feasible ways of trying to fool the verifier (rather than to
all possible ways). Specifically, the soundness condition was replaced by a compu-
tational soundness condition that asserts that it is infeasible to fool the verifier into
accepting false statements. We warn that although the computational-soundness
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error can always be reduced by sequential repetitions, it is not true that this error
can always be reduced by parallel repetitions (see Bellare et al. [1997]).

Protocols that satisfy the computational-soundness condition are called argu-
ments.12 We mention that argument systems may be more efficient than inter-
active proofs (see Kilian [1992] vs. Goldreich and Håstad [1998], Goldreich et al.
[2002]) as well as provide stronger zero-knowledge guarantees (see Brassard et al.
[1988], Haitner et al. [2009] vs. Fortnow [1987], Aiello and Håstad [1987]). Specif-
ically, perfect zero-knowledge arguments for N P can be constructed (based on
the same assumption used in Theorem 17.5) [Haitner et al. 2009], where perfect
zero-knowledge means that the simulator’s output is distributed identically to the
verifier’s view in the real interaction (see discussion in Section 17.5.4.2). Note that
stronger security for the prover (as provided by perfect zero-knowledge) comes at
the cost of weaker security for the verifier (as provided by computational sound-
ness). The answer to the question of whether or not this trade-off is worthwhile
seems to be application dependent, and one should also take into account the com-
plexity of the corresponding protocols and their reliability (i.e., the assumptions
that underlie their security).13

17.5.4.2 Definitional Variations
We consider several definitional issues regarding the notion of zero-knowledge (as
defined in Definition 17.7).

Universal and black-box simulation. Further strengthening of Definition 17.7 is ob-
tained by requiring the existence of a universal simulator, denoted C, that is given
the program of the verifier (i.e., B∗) as an auxiliary input; that is, in terms of Def-
inition 17.7, one should replace C∗(x , z) by C(x , z, 〈B∗〉), where 〈B∗〉 denotes the
description of the program of B∗ (which may depend on x and on z). That is, we
effectively restrict the simulation by requiring that it be a uniform (feasible) func-
tion of the verifier’s program (rather than arbitrarily depend on it). This restriction
is very natural, because it seems hard to envision an alternative way of establish-
ing the zero-knowledge property of a given protocol. Taking another step, one may
argue that since it seems infeasible to reverse-engineer programs, the simulator
may as well just use the verifier strategy as an oracle (or as a “black box”). This
reasoning gave rise to the notion of black-box simulation, which was introduced

12. A related notion (not discussed here) is that of CS-proofs, introduced by Micali [2000].

13. Still, as stated in Footnote 8, we believe that a presentation in terms of proofs should be
preferred for expositional purposes.
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and advocated in Goldreich and Krawczyk [1996] and further studied in numer-
ous works (see, e.g., Canetti et al. [2001]). The belief was that inherent limitations
regarding black-box simulation represent inherent limitations of zero-knowledge
itself. For example, it was believed that the fact that the parallel version of the inter-
active proof of Figure 17.1 cannot be simulated in a black-box manner (unless N P
is contained in BPP [Goldreich and Krawczyk 1996]) implies that this version is not
zero-knowledge (as per Definition 17.7 itself). However, the (underlying) belief that
any zero-knowledge protocol can be simulated in a black-box manner was refuted
by Barak [2001]. For further discussion, see Section 17.5.4.4.

Honest verifier versus general cheating verifier. Definition 17.7 refers to all feasible
verifier strategies, which is most natural (in the cryptographic setting) because zero-
knowledge is supposed to capture the robustness of the prover under any feasible
(i.e., adversarial) attempt to gain something by interacting with it. A weaker and still
interesting notion of zero-knowledge refers to what can be gained by an “honest ver-
ifier” (or rather a semi-honest verifier)14 that interacts with the prover as directed,
with the exception that it may maintain (and output) a record of the entire inter-
action (i.e., even when directed to erase all records of the interaction). Although
such a weaker notion is not satisfactory for standard cryptographic applications,
it yields a fascinating notion from a conceptual as well as a complexity-theoretic
point of view. Furthermore, as shown in Goldreich et al. [1998] and Vadhan [2004],
every proof system that is zero-knowledge with respect to the honest-verifier can be
transformed into a standard zero-knowledge proof (without using intractability as-
sumptions and in case of “public-coin” proofs this is done without significantly
increasing the prover’s computational effort).

Statistical versus computational zero-knowledge. Recall that Definition 17.7 postulates
that for every probability ensemble of one type (i.e., representing the verifier’s
output after interaction with the prover) there exists a “similar” ensemble of a
second type (i.e., representing the simulator’s output). One key parameter is the
interpretation of “similarity.” Three interpretations, yielding different notions of
zero-knowledge, have been commonly considered in the literature (see Goldwasser
et al. [1989], Fortnow [1987]):

14. The term “honest verifier” is more appealing when considering an alternative (equivalent)
formulation of Definition 17.7. In the alternative definition (see Goldreich [2001, Sec. 4.3.1.3]),
the simulator is “only” required to generate the verifier’s view of the real interaction, where the
verifier’s view includes its (common and auxiliary) inputs, the outcome of its coin tosses, and all
messages it has received.
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. Perfect zero-knowledge requires that the two probability ensembles be iden-
tical.15

. Statistical zero-knowledge requires that these probability ensembles be sta-
tistically close (i.e., the variation distance between them is negligible).

. Computational (or rather, general) zero-knowledge requires that these prob-
ability ensembles be computationally indistinguishable.

Indeed, computational zero-knowledge is the most liberal notion, and is the notion
considered in Definition 17.7. We note that the class of problems having statistical
zero-knowledge proofs contains several problems that are considered intractable.
The interested reader is referred to Vadhan [1999].

Strict versus expected probabilistic polynomial time. So far, we did not specify what we
exactly mean by the term probabilistic polynomial time. Two common interpreta-
tions are:

. Strict probabilistic polynomial time. That is, there exist a (polynomial in the
length of the input) bound on the number of steps in each possible run of the
machine, regardless of the outcome of its coin tosses.

. Expected probabilistic polynomial time. The standard approach is to look at
the running-time as a random variable and bound its expectation (by a poly-
nomial in the length of the input). As observed by Levin (see Goldreich [2001,
Sec. 4.3.1.6], and Barak and Lindell [2004]), this definitional approach is
quite problematic (e.g., it is not model independent and is not closed un-
der algorithmic composition), and an alternative treatment of this random
variable is preferable.

Since the notion of expected polynomial time raises a variety of conceptual and
technical problems, whenever possible, one should prefer the more robust (and
restricted) notion of strict (probabilistic) polynomial time. Thus, with the exception
of constant-round zero-knowledge protocols, whenever we talked of a probabilistic
polynomial-time verifier (respectively, simulator) we mean one in the strict sense. In
contrast, with the exception of Barak [2001] and Barak and Lindell [2004], all results
regarding constant-round zero-knowledge protocols refer to a strict polynomial-
time verifier and an expected polynomial-time simulator, which is indeed a small

15. The actual definition of perfect zero-knowledge allows the simulator to fail (while outputting
a special symbol) with negligible probability, and the output distribution of the simulator is
conditioned on its not failing.
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cheat. For further discussion, the reader is referred to Barak and Lindell [2004] and
Goldreich [2010].

17.5.4.3 Related Notions: POK, NIZK, and WI
We briefly discuss the notions of proofs of knowledge (POK), non-interactive zero-
knowledge (NIZK), and witness indistinguishable proofs (WI).

Proofs of Knowledge. Loosely speaking, proofs of knowledge (discussed in
Goldwasser et al. [1989] and defined in Bellare and Goldreich [1992]) are interactive
proofs in which the prover asserts “knowledge” of some object (e.g., a 3-coloring
of a graph), and not merely its existence (e.g., the existence of a 3-coloring of the
graph, which in turn is equivalent to the assertion that the graph is 3-colorable).
Before clarifying what we mean by saying that a machine knows something, we
point out that “proofs of knowledge”, and in particular zero-knowledge “proofs
of knowledge”, have many applications to the design of cryptographic schemes
and cryptographic protocols. One famous application of zero-knowledge proofs of
knowledge is to the construction of identification schemes (e.g., the Fiat–Shamir
scheme [Fiat and Shamir 1987]).

What do we mean by saying that a machine knows something? Any standard
dictionary suggests several meanings for the verb to know, which are typically
phrased with reference to awareness, a notion which is certainly inapplicable in
the context of machines. Instead, we must look for a behavioristic interpretation
of the verb to know. Indeed, it is reasonable to link knowledge with ability to do
something (e.g., the ability to write down whatever one knows). Hence, we will say
that a machine knows a string α if it can output the string α. But this seems as
total nonsense too: A machine has a well-defined output—either the output equals
α or it does not. So what can be meant by saying that a machine can do something?
Loosely speaking, it may mean that the machine can be easily modified so that it
does whatever is claimed. More precisely, it may mean that there exists an efficient
machine that, using the original machine as a black box (or given its code as an
input), outputs whatever is claimed.

So much for defining the “knowledge of machines.” Yet whatever a machine
knows or does not know is “its own business.” What can be of interest and reference
to the outside is whatever can be deduced about the knowledge of a machine by
interacting with it. Hence, we are interested in proofs of knowledge (rather than
in mere knowledge). For sake of simplicity let us consider a concrete question:
How can a machine prove that it knows a 3-coloring of a graph? An obvious way is
just to send the 3-coloring to the verifier. Yet we claim that applying the protocol in
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Figure 17.1 (i.e., the zero-knowledge proof system for 3-colorability) is an alternative
way of proving knowledge of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible prover
strategy. It requires the existence of an efficient universal way of “extracting” a 3-
coloring of a given graph by using any prover strategy that convinces the verifier to
accept the graph (with noticeable probability). Surely, we should no expect much
of prover strategies that convince the verifier to accept the graph with negligible
probability. However, a robust definition should allow a smooth passage from
noticeable to negligible, and should allow to establish the intuitive zero-knowledge
property of a party that sends some information to another party after the other
party proved that it knows this information.

Loosely speaking, we may say that an interactive machine, V , constitutes a
verifier for knowledge of 3-coloring if, for any prover strategy P , the complexity of
extracting a 3-coloring of G when using machine P as a “black box”16 is inversely
proportional to the probability that the verifier is convinced by P (to accept the
graph G)—namely, the extraction of the 3-coloring is done by an oracle machine,
called an extractor, that is given access to a function specifying the behavior P

(i.e., the messages it sends in response to particular messages it may receive). We
require that the (expected) running time of the extractor, on input G and access to
an oracle specifying P ’s strategy, be inversely related (by a factor polynomial in |G|)
to the probability that P convinces V to accept G. In case P always convinces V to
accept G, the extractor runs in expected polynomial time. The same holds in case
P convinces V to accept with noticeable probability. On the other hand, in case P

never convinces V to accept, essentially nothing is required of the extractor. (We
stress that the latter special cases do not suffice for a satisfactory definition; see
discussion in Goldreich [2001, Sec. 4.7.1].)

Noninteractive zero-knowledge. The model of noninteractive zero-knowledge
proof systems, introduced in Blum et al. [1988], consists of three entities: a prover, a
verifier, and a uniformly selected reference string (which can be thought of as being
selected by a trusted third party). Both the verifier and prover can read the refer-
ence string, and each can toss additional coins. The interaction consists of a single
message sent from the prover to the verifier, who then is left with the final decision
(whether or not to accept). The (basic) zero-knowledge requirement refers to a sim-
ulator that outputs pairs that should be computationally indistinguishable from
the distribution (of pairs consisting of a uniformly selected reference string and a

16. Indeed, one may consider also non-black-box extractors as done in Barak and Lindell [2004].
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random prover message) seen in the real model.17 Noninteractive zero-knowledge
proof systems have numerous applications (e.g., to the construction of public key
encryption and signature schemes, where the reference string may be incorporated
in the public key). Several different definitions of noninteractive zero-knowledge
proofs were considered in the literature:

. In the basic definition, one considers proving a single assertion of a priori
bounded length, where this length may be smaller than the length of the
reference string.

. A natural extension, required in many applications, is the ability to prove
multiple assertions of varying length, where the total length of these asser-
tions may exceed the length of the reference string (as long as the total length
is polynomial in the length of the reference string). This definition is some-
times referred to as the unbounded definition, because the total length of the
assertions to be proved is not a priori bounded.

. Other natural extensions refer to the preservation of security (i.e., both
soundness and zero-knowledge) when the assertions to be proved are se-
lected adaptively (based on the reference string and possibly even based on
previous proofs).

. Finally, we mention the notion of simulation soundness, which is related to
nonmalleability. This extension, which mixes the zero-knowledge and sound-
ness conditions, refers to the soundness of proofs presented by an adversary
after it obtains proofs of assertions of its own choice (with respect to the same
reference string). This notion is important in applications of non-interactive
zero-knowledge proofs to the construction of public-key encryption schemes
secure against chosen ciphertext attacks (see Goldreich [2004, Sec. 5.4.4.4]).

Constructing noninteractive zero-knowledge proofs seems more difficult than con-
structing interactive zero-knowledge proofs. Still, based on standard intractability
assumptions (e.g., intractability of factoring), it is known how to construct a nonin-
teractive zero-knowledge proof (even in the adaptive and nonmalleable sense) for
any NP-set (see Feige et al. [1999], De Santis et al. [2001]).

Witness indistinguishability and the FLS-technique. The notion of witness indistin-
guishability was suggested in Feige and Shamir [1990] as a meaningful relaxation

17. Note that the verifier does not affect the distribution seen in the real model, and so the basic
definition of zero-knowledge does not refer to it. The verifier (or rather a process of adaptively
selecting assertions to be proved) will be referred to in the adaptive variants of the definition.



448 Chapter 17 On the Foundations of Cryptography

of zero-knowledge. Loosely speaking, for any NP-relation R, a proof (or argument)
system for the corresponding NP-set is called witness indistinguishable if no fea-
sible verifier can distinguish the case in which the prover uses one NP-witness to
x (i.e., w1 such that (x , w1) ∈ R) from the case in which the prover is using a dif-
ferent NP-witness to the same input x (i.e., w2 such that (x , w2) ∈ R). Clearly, any
zero-knowledge protocol is witness indistinguishable, but the converse does not
necessarily hold. Furthermore, it seems that witness indistinguishable protocols
are easier to construct than zero-knowledge ones. Another advantage of witness
indistinguishable protocols is that they are closed under arbitrary concurrent com-
position [Feige and Shamir 1990], whereas in general zero-knowledge protocols
are not closed even under parallel composition [Goldreich and Krawczyk 1996].
Witness indistinguishable protocols turned out to be an important tool in the con-
struction of more complex protocols, as is demonstrated next.

Feige, Lapidot, and Shamir [Feige et al. 1999] introduced a technique for con-
structing zero-knowledge proofs (and arguments) based on witness-indistinguish-
able proofs (respectively, arguments). Following is a sketchy description of a special
case of their technique, often referred to as the FLS-technique, which has been used
in numerous works. On common input x ∈ L, where L is the NP-set defined by the
witness relation R, the following two steps are performed:

1. The parties generate an instance x′ for an auxiliary NP-set L′, where L′ is
defined by a witness relation R′. Loosely speaking, the generation protocol in
use should satisfy the following two conditions:

1. If the verifier follows its prescribed strategy then no matter which
strategy is used by the prover, with high probability, the protocol’s
outcome is a no-instance of L′.

2. There exists an efficient (noninteractive) procedure for producing
a (random) transcript of the generation protocol such that the cor-
responding outcome is a yes-instance of L′ and yet the produced
transcript is computationally indistinguishable from the transcript
of a real execution of the protocol. Furthermore, this procedure also
outputs an NP-witness for the yes-instance that appears as the pro-
tocol’s outcome.

For example, L′ may consist of all possible outcomes of a pseudorandom
generator that stretches its seed by a factor of 2, and the generation protocol
may consist of the two parties iteratively invoking a “coin tossing” protocol
to obtain a random string. Note that the outcome of a real execution will be
an almost uniformly distributed string, which is most likely a no-instance
of L′, whereas it is possible to efficiently generate a (random) transcript
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corresponding to any desired outcome (provided that the parties use an
adequate coin tossing protocol).

2. The parties execute a witness-indistinguishable proof for the NP-set L′′ defined
by the witness relation R′′ = {((α , α′), (β , β ′)) : (α , β) ∈ R ∨ (α′, β ′) ∈ R′}. The
sub-protocol is such that the corresponding prover can be implemented in
probabilistic polynomial time given any NP-witness for (α , α′) ∈ L′′. The sub-
protocol is invoked on common input (x , x′), where x′ is the outcome of
Step 1, and the sub-prover is invoked with the corresponding NP-witness as
auxiliary input (i.e., with (w, 0), where w is the NP-witness for x (given to the
main prover)).

The soundness of the above protocol follows by Property (a) of the generation
protocol (i.e., with high probability x′ ∈ L′, and so x ∈ L follows by the soundness
of the protocol used in Step 2). To demonstrate the zero-knowledge property, we
first generate a simulated transcript of Step 1 (with outcome x′ ∈ L′) along with
an adequate NP-witness (i.e., w′ such that (x′, w′) ∈ R′), and then emulate Step 2 by
feeding the sub-prover strategy with the NP-witness (0, w′). Combining Property (b)
of the generation protocol and the witness indistinguishability property of the
protocol used in Step 2, the simulation is indistinguishable from the real execution.

17.5.4.4 Two Basic Problems: Composition and Black-Box Simulation
We conclude this section by considering two basic problems regarding zero-
knowledge, which actually arise also with respect to the security of other cryp-
tographic primitives.

Composition of protocols. The first question refers to the preservation of security
(i.e., zero-knowledge in our case) under various types of composition operations.
These composition operations represent independent executions of a protocol
that are attacked by an adversary (which coordinates its actions in the various
executions). The preservation of security under such compositions (which involve
only executions of the same protocol) is a first step toward the study of the security of
the protocol when executed together with other protocols (see further discussion in
Section 17.9.4). Turning back to zero-knowledge, we recall the main facts regarding
sequential, parallel, and concurrent execution of (arbitrary and/or specific) zero-
knowledge protocols:

Sequential composition:. As stated above, zero-knowledge (with respect to aux-
iliary inputs) is preserved under sequential composition.

Parallel composition:. In general, zero-knowledge is not preserved under par-
allel composition [Goldreich and Krawczyk 1996]. Yet, some zero-knowledge
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proofs (for NP) preserve their security when many copies are executed in par-
allel. Furthermore, some of these protocol use a constant number of rounds
(see Goldreich [2006]).

Concurrent composition:. One may view parallel composition as concurrent
composition in a model of strict synchronity. This leads us to consider more
general models of concurrent composition. We distinguish between a model
of full asynchronicity and a model of naturally limited asynchronicity:

In the full asynchronous model, some zero-knowledge proofs (for
NP) preserve their security when many copies are executed con-
currently (see Richardson and Kilian [1999], Kilian and Petrank
[2001], Prabhakaran et al. [2002]), but such a result is not known
for constant-round protocols.

In contrast, some constant-round zero-knowledge proofs (for NP)
preserve their security in a model of limited asynchronicity (see
Dwork et al. [1998], Goldreich [2006]), where each party holds a
local clock such that the relative clock rates are bounded by an a
priori known constant and the protocols may employ time-driven
operations (i.e., time-out in-coming messages and delay out-going
messages).

The study of zero-knowledge in the concurrent setting provides a good test case
for the study of concurrent security of general protocols. In particular, the results
in Goldreich and Krawczyk [1996] and Canetti et al. [2001] point out inherent
limitations of the “standard proof methods” (used to establish zero-knowledge)
when applied to the concurrent setting, where Goldreich and Krawczyk [1996]
treats the synchronous case and Canetti et al. [2001] uncovers much stronger
limitations for the asynchronous case. By “standard proof methods” we refer to the
establishment of zero-knowledge via a single simulator that obtains only oracle (or
“black-box”) access to the adversary procedure.

Black-box proofs of security. The second basic question regarding zero-knowledge
refers to the usage of the adversary’s program within the proof of security (i.e.,
demonstration of the zero-knowledge property). For 15 years, all known proofs of
security used the adversary’s program as a black-box (i.e., a universal simulator was
presented using the adversary’s program as an oracle). Furthermore, it was believed
that there was no advantage in having access to the code of the adversary’s pro-
gram (see Goldreich and Krawczyk [1996]). Consequently, it was conjectured that
negative results regarding black-box simulation represent an inherent limitation of
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zero-knowledge. This belief was refuted by Barak [2001], who constructed a zero-
knowledge argument (for NP) that has important properties that are impossible
to achieve by black-box simulation (unless N P ⊆ BPP). For example, this zero-
knowledge argument uses a constant number of rounds and preserves its security
when an a priori fixed (polynomial) number of copies are executed concurrently.18

Barak’s results (see Barak [2001] and also 2002) call for the re-evaluation of many
common beliefs. Most concretely, they say that results regarding black-box simula-
tors do not reflect inherent limitations of zero-knowledge (but rather an inherent
limitation of a natural way of demonstrating the zero-knowledge property). Most
abstractly, they say that there are meaningful ways of using a program other than
merely invoking it as a black-box. Does this mean that a method was found to “re-
verse engineer” programs or to “understand” them? We believe that the answer is
negative. Barak [2001] is using the adversary’s program in a significant way (i.e.,
more significant than just invoking it), without “understanding” it.

The key idea underlying Barak’s protocol [Barak 2001] is to have the prover prove
that either the original NP-assertion is valid or that he (i.e., the prover) “knows
the verifier’s residual strategy” (in the sense that it can predict the next verifier
message). Indeed, in a real interaction (with the honest verifier), it is infeasible
for the prover to predict the next verifier message, since the verifier generates ran-
dom messages, and so computational soundness of the protocol follows. However,
a simulator that is given the code of the verifier’s strategy (and not merely ora-
cle access to that code) can produce a valid proof of the foregoing disjunction
by properly executing the sub-protocol using its knowledge of an NP-witness for
the second disjunctive. The simulation is computationally indistinguishable from
the real execution, provided that one cannot distinguish an execution of the sub-
protocol in which one NP-witness (i.e., an NP-witness for the original assertion)
is used from an execution in which the second NP-witness (i.e., an NP-witness for
the auxiliary assertion) is used. That is, the sub-protocol should be a witness indis-
tinguishable argument system, and the entire construction uses the FLS technique
(described in Section 17.5.4.3). We warn the reader that the actual implementation
of the foregoing idea requires overcoming several technical difficulties (see Barak
[2001], Barak and Goldreich [2002]).

18. This result falls short of achieving a fully concurrent zero-knowledge argument, because the
number of concurrent copies must be fixed before the protocol is presented. Specifically, the
protocol uses messages that are longer than the allowed number of concurrent copies. However,
even preservation of security under an a priori bounded number of executions goes beyond the
impossibility results of Goldreich and Krawczyk [1996] and Canetti et al. [2001] (which refer to
black-box simulations).
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Part II Basic Applications
Encryption and signature schemes are the most basic applications of cryptography.
Their main utility is in providing secret and reliable communication over insecure
communication media. Loosely speaking, encryption schemes are used to ensure
the secrecy (or privacy) of the actual information being communicated, whereas
signature schemes are used to ensure its reliability (or authenticity). In this part
we survey these basic applications as well as the construction of general secure
cryptographic protocols. For more details regarding the contents of the current
part, see our textbook [Goldreich 2004].

17.7 Encryption Schemes
The problem of providing secret communication over insecure media is the traditional
and most basic problem of cryptography. The setting of this problem consists of two
parties communicating through a channel that is possibly tapped by an adversary.
The parties wish to exchange information with each other but keep the “wiretapper”
as ignorant as possible regarding the contents of this information. The canonical
solution to the foregoing problem is obtained by the use of encryption schemes.
Loosely speaking, an encryption scheme is a protocol allowing these parties to
communicate secretly with each other. Typically, the encryption scheme consists
of a pair of algorithms. One algorithm, called encryption, is applied by the sender
(i.e., the party sending a message), while the other algorithm, called decryption, is
applied by the receiver. Hence, in order to send a message, the sender first applies
the encryption algorithm to the message, and sends the result, called the ciphertext,
over the channel. Upon receiving a ciphertext, the other party (i.e., the receiver)
applies the decryption algorithm to it, and retrieves the original message (called
the plaintext).

In order for the foregoing scheme to provide secret communication, the com-
municating parties (at least the receiver) must know something that is not known
to the wiretapper. (Otherwise, the wiretapper can decrypt the ciphertext exactly as
done by the receiver.) This extra knowledge may take the form of the decryption al-
gorithm itself, or some parameters and/or auxiliary inputs used by the decryption
algorithm. We call this extra knowledge the decryption key. Note that, without loss
of generality, we may assume that the decryption algorithm is known to the wire-
tapper, and that the decryption algorithm operates on two inputs: a ciphertext and
a decryption key. We stress that the existence of a decryption key, not known to the
wiretapper, is merely a necessary condition for secret communication. The forego-
ing description implicitly presupposes the existence of an efficient algorithm for
generating (random) keys.
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Evaluating the “security” of an encryption scheme is a very tricky business. A
preliminary task is to understand what is “security” (i.e., to properly define what is
meant by this intuitive term). Two approaches to defining security are known. The
first (“classical”) approach, introduced by Shannon [1949], is information theoretic.
It is concerned with the “information” about the plaintext that is “present” in
the ciphertext. Loosely speaking, if the ciphertext contains information about the
plaintext, then the encryption scheme is considered insecure. It has been shown
that such a high (i.e., “perfect”) level of security can be achieved only if the key in
use is at least as long as the total amount of information sent via the encryption
scheme [Shannon 1949]. This fact (i.e., that the key has to be longer than the
information exchanged using it) is indeed a drastic limitation on the applicability
of such (perfectly secure) encryption schemes.

The second (“modern”) approach, followed in the current text, is based on
computational complexity. This approach is based on the thesis that it does not
matter whether the ciphertext contains information about the plaintext, but rather
whether this information can be efficiently extracted. In other words, instead of
asking whether it is possible for the wiretapper to extract specific information, we
ask whether it is feasible for the wiretapper to extract this information. It turns out
that the new (i.e., “computational complexity”) approach can offer security even
when the key is much shorter than the total length of the messages sent via the
encryption scheme.

The computational complexity approach enables the introduction of concepts
and primitives that cannot exist under the information theoretic approach. A typ-
ical example is the concept of public-key encryption schemes, introduced by Diffie
and Hellman [1976]. Recall that in the foregoing discussion we concentrated on
the decryption algorithm and its key. It can be shown that the encryption algo-
rithm must get, in addition to the message, an auxiliary input that depends on
the decryption-key. This auxiliary input is called the encryption key. Traditional
encryption schemes, and in particular all the encryption schemes used in the mil-
lennia until the 1980s, operate with an encryption key that equals the decryption
key. Hence, the wiretapper in these schemes must be ignorant of the encryption key,
and consequently the key distribution problem arises: how can two parties wishing
to communicate over an insecure channel agree on a secret encryption/decryption
key? (The traditional solution is to exchange the key through an alternative channel
that is secure though (much) more expensive to use.) The computational com-
plexity approach allows the introduction of encryption schemes in which the en-
cryption key may be given to the wiretapper without compromising the security
of the scheme. Clearly, the decryption key in such schemes is different from the
encryption key, and furthermore infeasible to compute from the encryption key.
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Such encryption schemes, called public-key schemes, have the advantage of triv-
ially resolving the key distribution problem (because the encryption key can be
publicized). That is, once some Party X generates a pair of keys and publicizes the
encryption key, any party can send encrypted messages to Party X so that Party X
can retrieve the actual information (i.e., the plaintext), whereas nobody else can
learn anything about the plaintext.

In contrast to public-key schemes, traditional encryption schemes in which the
encryption key equals the description key are called private-key schemes, because
in these schemes the encryption key must be kept secret (rather than be public
as in public-key encryption schemes). We note that a full specification of either
schemes requires the specification of the way in which keys are generated; that is,
a (randomized) key-generation algorithm that, given a security parameter, produces
a (random) pair of corresponding encryption/decryption keys (which are identical
in case of private-key schemes).

Thus, both private-key and public-key encryption schemes consist of three effi-
cient algorithms: A key generation algorithm denoted G, an encryption algorithm
denoted E, and a decryption algorithm denoted D. For every pair of encryption
and decryption keys (e, d) generated by G, and for every plaintext x, it holds that
Dd(Ee(x)) = x, where Ee(x)

def= E(e, x) and Dd(y)
def= D(d , y). The difference between

the two types of encryption schemes is reflected in the definition of security: The
security of a public-key encryption scheme should hold also when the adversary is
given the encryption key, whereas this is not required for a private-key encryption
scheme. Below we focus on the public-key case (and the private-key case can be
obtained by omitting the encryption key from the sequence of inputs given to the
adversary).

17.7.1 Definitions

A good disguise should not reveal the person’s height.
A good disguise should not allow a mother to distinguish her own children.

—Shafi Goldwasser and Silvio Micali, 1982

For simplicity, we first consider the encryption of a single message (which, for
further simplicity, is assumed to be of length n).19 As implied by the foregoing dis-

19. In the case of public-key schemes no generality is lost by these simplifying assumptions, but
in the case of private-key schemes one should consider the encryption of polynomially many
messages (as we do below).
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cussion, a public-key encryption scheme is said to be secure if it is infeasible to
gain any information about the plaintext by looking at the ciphertext (and the en-
cryption key). That is, whatever information about the plaintext one may compute
from the ciphertext and some a priori information, can be essentially computed
as efficiently from the a priori information alone. This fundamental definition of
security (called semantic security) turns out to be equivalent to saying that, for any
two messages, it is infeasible to distinguish the encryption of the first message from
the encryption of the second message, even when given the encryption key. Both
definitions were introduced by Goldwasser and Micali [1984].

Definition 17.8 (Semantic security [following Goldwasser and Micali [1984]; revisited in Goldreich
[1993]]) A public-key encryption scheme (G, E , D) is semantically secure if for ev-
ery probabilistic polynomial-time algorithm, A, there exists a probabilistic
polynomial-time algorithm B so that for every two functions f , h: {0, 1}∗ → {0, 1}∗
such that |h(x)| = poly(|x|), and all probability ensembles {Xn}n∈N, where Xn is a
random variable ranging over {0, 1}n, it holds that

Pr[A(e, Ee(x), h(x)) = f (x)] < Pr[B(1n, h(x)) = f (x)] + μ(n),

where the plaintext x is distributed according to Xn, the encryption key e is dis-
tributed according to G(1n), and μ is a negligible function.

That is, it is feasible to predict f (x) from h(x) as successfully as it is to predict
f (x) from h(x) and (e, Ee(x)), which means that nothing is gained by obtaining
(e, Ee(x)). Note that no computational restrictions are made regarding the func-
tions h and f . We stress that the foregoing definition (as well as the next one) refers
to public-key encryption schemes, and in the case of private-key schemes algorithm
A is not given the encryption key e. The following technical interpretation of secu-
rity states that it is infeasible to distinguish the encryptions of two plaintexts (of
the same length).

Definition 17.9 (Indistinguishability of encryptions [following Goldwasser and Micali [1984]]) A
public-key encryption scheme (G, E , D) has indistinguishable encryptions if for
every probabilistic polynomial-time algorithm, A, and all sequences of triples,
(xn, yn, zn)n∈N, where |xn| = |yn| = n and |zn| = poly(n), it holds that

| Pr[A(e, Ee(xn), zn) = 1] − Pr[A(e, Ee(yn), zn) = 1]| = μ(n).

Again, e is distributed according to G(1n), and μ is a negligible function.
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In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the
encryptions of any two fixed messages (such as the all-zero message and the all-
ones message).

Definition 17.8 is more appealing in most settings where encryption is consid-
ered the end goal. Definition 17.9 is used to establish the security of candidate
encryption schemes as well as to analyze their application as modules inside larger
cryptographic protocols. Thus, their equivalence is of major importance.

Equivalence of Definitions 17.8 and 17.9—proof ideas. Intuitively, indistinguishability
of encryptions (i.e., of the encryptions of xn and yn) is a special case of semantic
security; specifically, it corresponds to the case that Xn is uniform over {xn, yn}, f

indicates one of the plaintexts, and h does not distinguish them (i.e., f (w) = 1
iff w = xn and h(xn) = h(yn) = zn, where zn is as in Definition 17.9). The other
direction is proved by considering the algorithm B that, on input (1n, v) where
v = h(x), generates (e, d) ← G(1n) and outputs A(e, Ee(1n), v), where A is as in Def-
inition 17.8. Indistinguishability of encryptions is used to prove that B performs
as well as A (i.e., for every h, f and {Xn}n∈N, it holds that Pr[B(1n, h(Xn)) = f (Xn)] =
Pr[A(e, Ee(1n), h(Xn)) = f (Xn)] approximately equals Pr[A(e, Ee(Xn), h(Xn)) =
f (Xn)]).

Probabilistic encryption. It is easy to see that a secure public-key encryption scheme
must employ a probabilistic (i.e., randomized) encryption algorithm. Otherwise,
given the encryption-key as (additional) input, it is easy to distinguish the encryp-
tion of the all-zero message from the encryption of the all-ones message.20 This
explains the association of the aforementioned robust security definitions and
probabilistic encryption, an association that goes back to the title of the pioneering
work of Goldwasser and Micali [1984].

Further discussion. We stress that (the equivalent) Definitions 17.8 and 17.9 go way
beyond saying that it is infeasible to recover the plaintext from the ciphertext. The
latter statement is indeed a minimal requirement from a secure encryption scheme,
but is far from being a sufficient requirement. Typically, encryption schemes are
used in applications where even obtaining partial information on the plaintext
may endanger the security of the application. When designing an application-
independent encryption scheme, we do not know which partial information endan-

20. The same holds for (stateless) private-key encryption schemes, when considering the security
of encrypting several messages (rather than a single message as done above). For example, if one
uses a deterministic encryption algorithm, then the adversary can distinguish two encryptions of
the same message from the encryptions of a pair of different messages.
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gers the application and which does not. Furthermore, even if one wants to design
an encryption scheme tailored to a specific application, it is rare (to say the least)
that one has a precise characterization of all possible partial information that en-
danger this application. Thus, we need to require that it is infeasible to obtain any
information about the plaintext from the ciphertext. Furthermore, in most applica-
tions the plaintext may not be uniformly distributed and some a priori information
regarding it may be available to the adversary. We require that the secrecy of all par-
tial information is preserved also in such a case. That is, even in presence of a priori
information on the plaintext, it is infeasible to obtain any (new) information about
the plaintext from the ciphertext (beyond what is feasible to obtain from the a pri-
ori information on the plaintext). The definition of semantic security postulates all
of this. The equivalent definition of indistinguishability of encryptions is useful in
demonstrating the security of candidate constructions as well as for arguing about
their effect as part of larger protocols.

Security of multiple messages. Definitions 17.8 and 17.9 refer to the security of an en-
cryption scheme that is used to encrypt a single plaintext (per generated key). Since
the plaintext may be longer than the key,21 these definitions are already nontrivial,
and an encryption scheme satisfying them (even in the private-key model) implies
the existence of one-way functions. Still, in many cases, it is desirable to encrypt
many plaintexts using the same encryption key. Loosely speaking, an encryption
scheme is secure in the multiple-messages setting if analogous definitions (to Def-
initions 17.8 and 17.9) hold when polynomially many plaintexts are encrypted using
the same encryption key (see Goldreich [2004, Sec. 5.2.4]). It is easy to see that in
the public-key model, security in the single-message setting implies security in the
multiple-messages setting. We stress that this is not necessarily true for the private-
key model.

17.7.2 Constructions
It is common practice to use “pseudorandom generators” as a basis for private-
key encryption schemes. We stress that this is a very dangerous practice when
the “pseudorandom generator” is easy to predict (such as the linear congruential
generator or some modifications of it that output a constant fraction of the bits of
each resulting number). However, this common practice becomes sound provided

21. Recall that for sake of simplicity we have considered only messages of length n, but the general
definitions refer to messages of arbitrary (polynomial in n) length. We comment that, in the
general form of Definition 17.8, one should provide the length of the message as an auxiliary
input to both algorithms (A and B).
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one uses pseudorandom generators (as defined in Section 17.4.2). An alternative
and more flexible construction follows.

Private-key encryption schemes based on pseudorandom functions. We present a sim-
ple construction that uses pseudorandom functions as defined in Section 17.4.3.
The key generation algorithm consists of selecting a seed, denoted s, for a (pseu-
dorandom) function, denoted fs. To encrypt a message x ∈ {0, 1}n (using key s), the
encryption algorithm uniformly selects a string r ∈ {0, 1}n and produces the cipher-
text (r , x ⊕ fs(r)), where ⊕ denotes the exclusive-or of bit strings. To decrypt the
ciphertext (r , y) (using key s), the decryption algorithm just computes y ⊕ fs(r).
The security of this encryption scheme can be proved in two steps (suggested as a
general methodology in Section 17.4.3):

1. Prove that an idealized version of the scheme, in which one uses a uniformly
selected function F : {0, 1}n → {0, 1}n, rather than the pseudorandom func-
tion fs, is secure.

2. Conclude that the real scheme (as presented above) is secure (because, oth-
erwise one could distinguish a pseudorandom function from a truly random
one).

Note that we could have gotten rid of the randomization (in the encryption pro-
cess) if we had allowed the encryption algorithm to be history dependent (e.g., use
a counter in the role of r). This can be done provided that either only one party
uses the key for encryption (and maintains a counter) or that all parties that en-
crypt, using the same key, coordinate their actions (i.e., maintain a joint state (e.g.,
counter)). Indeed, when using a private-key encryption scheme, a common situ-
ation is that the same key is only used for communication between two specific
parties, which update a joint counter during their communication. Furthermore,
if the encryption scheme is used for fifo communication between the parties and
both parties can reliably maintain the counter value, then there is no need (for
the sender) to send the counter value. (The resulting scheme is related to “stream
ciphers” that are commonly used in practice.)

We comment that the use of a counter (or any other state) in the encryption
process is not reasonable in the case of public-key encryption schemes, because it
is incompatible with the canonical usage of such schemes (i.e., allowing all parties
to send encrypted messages to the “owner of the encryption-key” without engaging
in any type of coordination or communication). Furthermore, as discussed before,
probabilistic encryption is essential for a secure public-key encryption scheme
even in the case of encrypting a single message (unlike in the case of private-key
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schemes). Following Goldwasser and Micali [1984], we now demonstrate the use
of probabilistic encryption in the construction of a public-key encryption scheme.

Public-key encryption schemes based on trapdoor permutations. We present two con-
structions that employ a collection of trapdoor permutations, as defined in Defi-
nition 17.3. Let {fi : Di → Di}i be such a collection, and let b be a corresponding
hard-core predicate. The key generation algorithm consists of selecting a permuta-
tion fi along with a corresponding trapdoor t , and outputting (i , t) as the key pair.
To encrypt a (single) bit σ (using the encryption key i), the encryption algorithm uni-
formly selects r ∈ Di, and produces the ciphertext (fi(r), σ ⊕ b(r)). To decrypt the
ciphertext (y , τ) (using the decryption key t), the decryption algorithm computes
τ ⊕ b(f −1

i (y)) (using the trapdoor t of fi). Clearly, (σ ⊕ b(r)) ⊕ b(f −1
i (fi(r))) = σ .

Indistinguishability of encryptions can be easily proved using the fact that b is a
hard-core of fi. We comment that the foregoing scheme is quite wasteful in band-
width; however, the paradigm underlying its construction (i.e., applying the trap-
door permutation to a randomized version of the plaintext rather than to the actual
plaintext) is valuable in practice.

A more efficient construction of a public-key encryption scheme, which uses
the same key-generation algorithm, was suggested in Blum and Goldwasser [1984]
and proceeds as follows. To encrypt an �-bit long string x (using the encryp-
tion key i), the encryption algorithm uniformly selects r ∈ Di, computes s ←
b(r) . b(fi(r)) . . . b(f �−1

i (r)) and produces the ciphertext (f �
i
(r), x ⊕ s). To decrypt

the ciphertext (y , v) (using the decryption key t), the decryption algorithm first re-
covers r = f −�

i (y) (using the trapdoor t of fi), and then obtains v ⊕ b(r) . b(fi(r)) . . .

b(f �−1
i (r)). Note the similarity to the construction in Theorem 17.2, and the fact

that the proof can be extended to establish the computational indistinguishability
of (b(r) . . . b(f �−1

i (r)), f �
i
(r)) and (u, f �

i
(r)), for random and independent r ∈ Di

and u ∈ {0, 1}�. Indistinguishability of encryptions follows, and thus the aforemen-
tioned scheme is secure.

17.7.3 Beyond Eavesdropping Security
Our treatment so far has referred only to a “passive” attack in which the adversary
merely eavesdrops the line over which ciphertexts are being sent. Stronger types
of attacks, culminating in the so-called chosen ciphertext attack, may be possible
in various applications. Specifically, in some settings it is feasible for the adver-
sary to make the sender encrypt a message of the adversary’s choice, and in some
settings the adversary may even make the receiver decrypt a ciphertext of the ad-
versary’s choice. This gives rise to chosen plaintext attacks and to chosen ciphertext
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attacks, respectively, which are not covered by the security definitions considered
in Sections 17.7.1 and 17.7.2. In this section we briefly discuss such “active” attacks,
focusing on chosen ciphertext attacks (of the stronger type known as “a posteriori”
or “CCA2”).

Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the
decryptions of ciphertexts of its choice, and is deemed successful if it learns
something regarding the plaintext that corresponds to some different ciphertext
(see Katz and Yung [2000], Bellare et al. [1998b], and Goldreich [2004, Sec. 5.4.4]).
That is, the adversary is given oracle access to the decryption function correspond-
ing to the decryption-key in use (and, in the case of private-key schemes, it is also
given oracle access to the corresponding encryption function). The adversary is
allowed to query the decryption oracle on any ciphertext except for the “test ci-
phertext” (i.e., the very ciphertext for which it tries to learn something about the
corresponding plaintext). It may also make queries that do not correspond to le-
gitimate ciphertexts, and the answer will be accordingly (i.e., a special “failure”
symbol). Furthermore, the adversary may effect the selection of the test cipher-
text (by specifying a distribution from which the corresponding plaintext is to be
drawn).

Private-key and public-key encryption schemes secure against chosen ciphertext
attacks can be constructed under (almost) the same assumptions that suffice for
the construction of the corresponding passive schemes. Specifically:

Theorem 17.6 (folklore, see Goldreich [2004, Sec. 5.4.4.3]) Assuming the existence of one-way
functions, there exist private-key encryption schemes that are secure against chosen
ciphertext attack.

Theorem 17.7 (Naor and Yung [1990] and Dolev et al. [2000], using Blum et al. [1988] and Feige et
al. [1999]; see Goldreich [2004, Sec. 5.4.4.4]) Assuming the existence of suitably
enhanced trapdoor permutations,22 there exist public-key encryption schemes that
are secure against chosen ciphertext attack.

Both theorems are proved by constructing encryption schemes in which the adver-
sary’s gain from a chosen ciphertext attack is eliminated by making it infeasible
(for the adversary) to obtain any useful knowledge via such an attack. In the case
of private-key schemes (i.e., Theorem 17.6), this is achieved by making it infeasi-
ble (for the adversary) to produce legitimate ciphertexts (other than those explicitly

22. The exact definition of the suitable enhancement has been augmented several times (see
account in Goldreich and Rothblum [2013], further corrected by Canetti and Lichtenberg [2017]).
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given to it, in response to its request to encrypt plaintexts of its choice). This, in
turn, is achieved by augmenting the ciphertext with an “authentication tag” that
is hard to generate without knowledge of the encryption-key; that is, we use a
message-authentication scheme (as defined in Section 17.8). In the case of public-
key schemes (i.e., Theorem 17.7), the adversary can certainly generate ciphertexts by
itself, and the aim is to make it infeasible (for the adversary) to produce legitimate
ciphertexts without “knowing” the corresponding plaintext. This, in turn, will be
achieved by augmenting the plaintext with a non-interactive zero-knowledge “proof
of knowledge” of the corresponding plaintext.

Security against chosen ciphertext attack is related to the notion of non-
malleability of the encryption scheme (see [Dolev et al. 2000]). Loosely speaking, in
a non-malleable encryption scheme it is infeasible for an adversary, given a cipher-
text, to produce a valid ciphertext for a related plaintext (e.g., given a ciphertext
of a plaintext 1x, for an unknown x, it is infeasible to produce a ciphertext to the
plaintext 0x). For further discussion see Dolev et al. [2000], Bellare et al. [1998b],
and Katz and Yung [2000].

17.8 Signature and Message Authentication Schemes
Both signature schemes and message authentication schemes are methods for
“validating” data; that is, verifying that the data was approved by a certain party
(or set of parties). The difference between signature schemes and message au-
thentication schemes is that signatures should be “universally verifiable”, whereas
authentication tags are required to be verifiable only by parties that are also able to
generate them.

Signature schemes. The need to discuss “digital signatures” [Diffie and Hellman
1976, Rabin 1977] has emerged with the introduction of computer communica-
tion to the business environment (in which parties need to commit themselves to
proposals and/or declarations that they make). Discussions of “unforgeable signa-
tures” did take place also in previous centuries, but the objects of discussion were
handwritten signatures (and not digital ones), and the discussion was not perceived
as related to “cryptography.” Loosely speaking, a scheme for unforgeable signatures
should satisfy the following:

. Each user can efficiently produce its own signature on documents of its choice.

. Every user can efficiently verify whether a given string is a signature of another
(specific) user on a specific document.
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. It is infeasible to produce signatures of other users to documents they did not
sign.

We note that the formulation of unforgeable digital signatures provides also a clear
statement of the essential ingredients of handwritten signatures. The ingredients
are each person’s ability to sign for itself, a universally agreed verification proce-
dure, and the belief (or assertion) that it is infeasible (or at least hard) to forge
signatures (i.e., produce some other person’s signatures to documents that were
not signed by it such that these “unauthentic” signatures are accepted by the verifi-
cation procedure). It is not clear to what extent handwritten signatures meet these
requirements. In contrast, our discussion of digital signatures provides precise
statements concerning the extent to which digital signatures meet the foregoing
requirements. Furthermore, unforgeable digital signature schemes can be con-
structed based on some reasonable computational assumptions (i.e., the existence
of one-way functions).

Message authentication schemes. Message authentication is a task related to the set-
ting considered for encryption schemes—that is, communication over an insecure
channel. This time, we consider an active adversary that is monitoring the channel
and may alter the messages sent over it. The parties communicating through this
insecure channel wish to authenticate the messages they send so that their coun-
terpart can tell an original message (sent by the sender) from a modified one (i.e.,
modified by the adversary). Loosely speaking, a scheme for message authentication
should satisfy the following:

. Each of the communicating parties can efficiently produce an authentication
tag to any message of its choice.

. Each of the communicating parties can efficiently verify whether a given
string is an authentication tag of a given message.

. It is infeasible for an external adversary (i.e., a party other than the commu-
nicating parties) to produce authentication tags to messages not sent by the
communicating parties.

Note that, in contrast to the specification of signature schemes, we do not require
universal verification: only the designated receiver is required to be able to verify
the authentication tags. Furthermore, we do not require that the receiver can not
produce authentication tags by itself (i.e., we only require that external parties can
not do so). Thus, message authentication schemes cannot convince a third party
that the sender has indeed sent the information (rather than the receiver having
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generated it by itself). In contrast, signatures can be used to convince third parties;
in fact, a signature to a document is typically sent to a second party so that in the
future this party may (by merely presenting the signed document) convince third
parties that the document was indeed generated (or sent or approved) by the signer.

17.8.1 Definitions
Formally speaking, both signature schemes and message authentication schemes
consist of three efficient algorithms: key generation, signing and verification. As in
the case of encryption schemes, the key-generation algorithm is used to generate
a pair of corresponding keys, one is used for signing and the other is used for
verification. The difference between the two types of schemes is reflected in the
definition of security. In the case of signature schemes, the adversary is given
the verification key, whereas in the case of message authentication schemes the
verification key (which may equal the signing key) is not given to the adversary.
Thus, schemes for message authentication can be viewed as a private-key version
of signature schemes. This difference yields different functionalities (even more
than in the case of encryption): In typical use of a signature scheme, each user
generates a pair of signing and verification keys, publicizes the verification key and
keeps the signing key secret. Subsequently, each user may sign documents using its
own signing key, and these signatures are universally verifiable with respect to its
public verification key. In contrast, message authentication schemes are typically
used to authenticate information sent among a set of mutually trusting parties that
agree on a secret key, which is being used both to produce and verify authentication
tags. (Indeed, it is assumed that the mutually trusting parties have generated the
key together or have exchanged the key in a secure way, prior to the communication
of information that needs to be authenticated.)

We focus on the definition of secure signature schemes. Following Goldwasser,
Micali, and Rivest [Goldwasser et al. 1988], we consider very powerful attacks on
the signature scheme as well as a very liberal notion of breaking it. Specifically, the
attacker is allowed to obtain signatures to any message of its choice. One may argue
that in many applications such a general attack is not possible (because messages to
be signed must have a specific format). Yet our view is that it is impossible to define
a general (i.e., application-independent) notion of admissible messages, and thus a
general/robust definition of an attack seems to have to be formulated as suggested
here. (Note that at worst, our approach is overly cautious.) Likewise, the adversary
is said to be successful if it can produce a valid signature to any message for which
it has not asked for a signature during its attack. Indeed, this deems the ability to
form signatures to possibly “nonsensical” messages as a breaking of the scheme.
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Yet, again, we see no way to have a general (i.e., application-independent) notion of
“meaningful” messages (so that only forging signatures to them will be considered
a breaking of the scheme).

Definition 17.10 (Secure signature schemes—a sketch) A chosen message attack is a process that,
on input a verification-key, can obtain signatures (relative to the corresponding
signing-key) to messages of its choice. Such an attack is said to succeed (in existential
forgery) if it outputs a valid signature to a message for which it has not requested
a signature during the attack. A signature scheme is secure (or unforgeable) if every
feasible chosen message attack succeeds with at most negligible probability, where
the probability is taken over the initial choice of the key-pair as well as over the
adversary’s actions.

The private-key version is defined analogously, except that in that case the attacker
is given only the security paramter as input. We stress that plain RSA (alike plain ver-
sions of Rabin’s scheme [Rabin 1979] and the DSS [NIST 1991]) is not secure under
the foregoing definition. However, it may be secure if the message is “randomized”
before RSA (or the other schemes) is applied.

17.8.2 Constructions
Secure message authentication schemes can be constructed using pseudorandom
functions [Goldreich et al. 1986]. Specifically, the key-generation algorithm consists
of selecting a seed s ∈ {0, 1}n for such a function, denoted fs: {0, 1}∗ → {0, 1}n, and
the (only valid) tag of message x with respect to the key s is fs(x). As in the case
of our private-key encryption scheme, the proof of security of the current message
authentication scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uni-
formly selected function F : {0, 1}∗ → {0, 1}n, rather than the pseudorandom
function fs, is secure (i.e., unforgeable).

2. Concluding that the real scheme (as presented above) is secure (because, oth-
erwise one could distinguish a pseudorandom function from a truly random
one).

Note that the aforementioned message authentication scheme makes an “extensive
use of pseudorandom functions” (i.e., the pseudorandom function is applied di-
rectly to the message, which requires a generalized notion of pseudorandom func-
tions (see Section 17.4.3)). More efficient schemes may be obtained either based on
a more restricted use of a pseudorandom function or based on other cryptographic
primitives (see Goldreich [2004, Sec. 6.3]).
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Constructing secure signature schemes seems more difficult than constructing
message authentication schemes. Nevertheless, secure signature schemes can be
constructed based on any one-way function. Furthermore:

Theorem 17.8 (Naor and Yung [1989], Rompel [1990]; see Goldreich [2004, Sec. 6.4]) The follow-
ing three conditions are equivalent:

1. One-way functions exist.

2. Secure signature schemes exist.

3. Secure message authentication schemes exist.

We stress that, unlike in the case of public-key encryption schemes, the con-
struction of signature schemes (which may be viewed as a public-key analogue of
message authentication) does not use a trapdoor property.

How to Construct Secure Signature Schemes
Three central paradigms used in the construction of secure signature schemes are
the “refreshing” of the “effective” signing key, the usage of an “authentication tree,”
and the “hashing paradigm” (all to be discussed in the sequel). In addition to being
used in the proof of Theorem 17.8, all three paradigms are also of independent
interest.

The refreshing paradigm. Introduced in Goldwasser et al. [1988], the refreshing par-
adigm is aimed at limiting the potential dangers of chosen message attacks. This
is achieved by signing the actual document using a newly (randomly) generated
instance of the signature scheme, and authenticating (the verification key of) this
random instance with respect to the fixed public key. That is, consider a basic signa-
ture scheme (G, S , V ) used as follows. Suppose that the user U has generated a key
pair, (s , v) ← G(1n), and has placed the verification key v on a public file. When a
party asks U to sign some document α, the user U generates a new (“fresh”) key pair,
(s′, v′) ← G(1n), signs v′ using the original signing key s, signs α using the new sign-
ing key s′, and presents (Ss(v

′), v′, Ss′(α)) as a signature to α. An alleged signature,
(β1, v′, β2), is verified by checking whether both Vv(v

′, β1) = 1 and Vv′(α , β2) = 1
hold. Intuitively, the gain in terms of security is that a full-fledged chosen message
attack cannot be launched on a fixed instance of (G, S , V ) (i.e., on the fixed verifi-
cation key that resides in the public file and is known to the attacker). All that an
attacker may obtain (via a chosen message attack on the new scheme) is signatures,
relative to the original signing key s of (G, S , V ), to random strings (distributed ac-
cording to G(1n)) as well as additional signatures that are each relative to a random
and independently distributed signing key.
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Authentication trees. The security benefits of the refreshing paradigm are increased
when combining it with the use of authentication trees, as introduced in Merkle
[1980]. The idea is to use the public verification key in order to authenticate several
(e.g., two) fresh instances of the signature scheme, use each of these instances to
authenticate several additional fresh instances, and so on. We obtain a tree of fresh
instances of the basic signature scheme, where each internal node authenticates its
children. We can now use the leaves of this tree in order to sign actual documents,
where each leaf is used at most once. Thus, a signature to an actual document
consists of (1) a signature to this document authenticated with respect to the
verification key associated with some leaf, and (2) a sequence of verification keys
associated with the nodes along the path from the root to this leaf, where each such
verification key is authenticated with respect to the verification key of its parent.
We stress that (by suitable implementation)23 each instance of the signature scheme
is used to sign at most one string (i.e., a single sequence of verification-keys if the
instance resides in an internal node, and an actual document if the instance resides
in a leaf). Thus, it suffices to use a signature scheme that is secure as long as it
is used to legitimately sign a single string. Such signature schemes, called one-
time signature schemes and introduced in Rabin [1977], are easier to construct than
standard signature schemes, especially if one only wishes to sign strings that are
significantly shorter than the signing key (respectively, than the verification key).
For example, using a one-way function f , we may let the signing key consist of a
sequence of n pairs of strings, let the corresponding verification key consist of the
corresponding sequence of images of f , and sign an n-bit long message by revealing
the adequate pre-images.24

The hashing paradigm. Note, however, that in the aforementioned authentication-
tree, the instances of the signature scheme (associated with internal nodes) are
used to sign a pair of verification keys. Thus, we need a one-time signature scheme

23. In order to implement the aforementioned (full-fledged) signature scheme, one needs to store
in (secure) memory all the instances of the basic (one-time) signature scheme that are generated
throughout the entire signing process (which refers to numerous documents). This can be done by
extending the model so to allow for memory-dependent signature schemes. Alternatively, we note
that all that we need to store are the random coins used for generating each of these instances,
and the former can be determined by a pseudorandom function (applied to the name of the
corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will be part
of the signing key of the resulting (full-fledged) signature scheme.

24. That is, the signing key consist of a sequence ((s0
1 , s1

1), . . . , (s0
n

, s1
n
)) ∈ {0, 1}2n2

, the correspond-
ing verification key is (f (s0

1), f (s1
1)), . . . , (f (s0

n
), f (s1

n
))), and the signature of the message σ1 . . . σn

is (s
σ1
1 , . . . , s

σn
n ).
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that can be used for signing messages that are longer than the verification key.
Here is where the hashing paradigm comes into play. This paradigm refers to the
common practice of signing documents via a two-stage process: First, the actual
document is hashed to a (relatively) short bit string, and next the basic signature
scheme is applied to the resulting string. This practice (as well as other usages
of the hashing paradigm) is sound provided that the hashing function belongs to a
family of collision-free hashing functions (i.e., loosely speaking, given a random hash
function in the family, it is infeasible to find two different strings that are hashed
by this function to the same value; cf. Damgård [1987]). (A variant of the hashing
paradigm uses the weaker notion of a family of universal one-way hash functions
(cf. Naor and Yung [1989]), which in turn can be constructed using any one-way
function [Naor and Yung 1989, Rompel 1990].)

17.8.3 Public-Key Infrastructure
The standard use of public-key encryption schemes (respectively, signature
schemes) in real-life communication requires a mechanism for providing the
sender (respectively, signature verifier) with the receiver’s authentic encryption key
(respectively, signer’s authentic verification key). Specifically, this problem arises
in large-scale systems, where typically the sender (respectively, verifier) does not
have a local record of the receiver’s encryption-key (respectively, signer’s verifica-
tion key), and so must obtain this key in a “reliable” way (i.e., typically, certified by
some trusted authority). In most theoretical works, one assumes that the keys are
posted on and can be retrieved from a public file that is maintained by a trusted
party (which makes sure that each user can post only keys bearing its own identity).
In practice, maintaining such a public file is a major problem, and mechanisms
that implement this abstraction are typically referred to by the generic term public-
key infrastructure (PKI). For a discussion of the practical problems regarding PKI
deployment see, for example, Menezes et al. [1996, Chap. 13].

17.9 General Cryptographic Protocols
The design of secure protocols that implement arbitrary desired functionalities is
a major part of modern cryptography. Taking the opposite perspective, the design
of any cryptographic scheme may be viewed as the design of a secure protocol for
implementing a suitable functionality. Still, we believe that it makes sense to dif-
ferentiate between basic cryptographic primitives (which involve little interaction)
like encryption and signature schemes on the one hand, and general cryptographic
protocols on the other hand.
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We survey general results concerning secure multi-party computations, where
the two-party case is an important special case. In a nutshell, these results assert
that one can construct protocols for securely computing any desirable multi-party
functionality. Indeed, what is striking about these results is their generality, and
we believe that the wonder is not diminished by the (various alternative) conditions
under which these results hold.

Our focus on the general study of secure multi-party computation (rather than on
protocols for solving specific problems) is natural in the context of the theoretical
treatment of the subject matter. We wish to highlight the importance of this general
study to practice. First, this study clarifies fundamental issues regarding security
in a multi-party environment. Second, it draws the lines between what is possible
in principle and what is not. Third, it develops general techniques for designing
secure protocols. And last, sometimes it may even yield schemes (or modules) that
may be incorporated in practical systems.

A general framework for casting (m-party) cryptographic (protocol) problems
consists of specifying a random process25 that maps m inputs to m outputs. The
inputs to the process are to be thought of as the local inputs of m parties, and
the m outputs are their corresponding (desired) local outputs. The random process
describes the desired functionality. If the m parties were to trust some (possibly
external) party, then they could each send their local input to the trusted party,
who would compute the outcome of the process, and send to each party the corre-
sponding output. A pivotal question in the area of cryptographic protocols is to what
extent can this (imaginary) trusted party be “emulated” by the mutually distrustful
parties themselves.

The results surveyed below describe a variety of models in which such an “em-
ulation” is possible. The models vary by the underlying assumptions regarding the
communication channels, numerous parameters relating to the extent of adver-
sarial behavior, and the desired level of emulation of the trusted party (i.e., level of
“security”).

Organization. Section 17.9.1 provides a rather comprehensive survey of the vari-
ous definitions used in the area of secure multi-party computation, whereas Sec-

25. That is, we consider the secure evaluation of randomized functionalities, rather than “only”
the secure evaluation of functions. Specifically, we consider an arbitrary (randomized) process
F that on input (x1, . . . , xm), first selects at random (depending only on �

def=∑m
i=1 |xi|) an m-ary

function f , and then outputs the m-tuple f (x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)).
In other words, F(x1, . . . , xm) = F ′(r , x1, . . . , xm), where r is uniformly selected in {0, 1}�′ (with
�′ = poly(�)), and F ′ is a function mapping (m + 1)-long sequences to m-long sequences.
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tion 17.9.2 surveys the main known results. However, some readers may prefer to
first consider one concrete case of the definitional approach, as provided in Sec-
tion 17.9.1.2, and proceed directly to see some constructions (in Section 17.9.3).
All the foregoing refers to the security of stand-alone executions, and the preserva-
tion of security in an environment in which many executions of many protocols are
being attacked is considered in Section 17.9.4.

17.9.1 The Definitional Approach and Some Models
Before describing the aforementioned results, we further discuss the notion of “em-
ulating a trusted party,” which underlies the definitional approach to secure multi-
party computation (as initiated and developed in Goldwasser and Levin [1990],
Micali and Rogaway [1991], Beaver [1991a], [1991b], Canetti [1995], [2000]). The
approach can be traced back to the definition of zero-knowledge (see Goldwasser
et al. [1989]), and even to the definition of secure encryption (see Goldreich [1993];
rephrasing, Goldwasser and Micali [1984]). The underlying paradigm (called the
simulation paradigm (see Section 17.5.1)) is that a scheme is secure if whatever
a feasible adversary can obtain after attacking it, is also feasibly attainable “from
scratch.” In the case of zero-knowledge this amounts to saying that whatever a (fea-
sible) verifier can obtain after interacting with the prover on a prescribed valid asser-
tion, can be (feasibly) computed from the assertion itself. In the case of multi-party
computation we compare the effect of adversaries that participate in the execution
of the actual protocol to the effect of adversaries that participate in an imaginary
execution of a trivial (ideal) protocol for computing the desired functionality with
the help of a trusted party. If whatever the adversaries can feasibly obtain in the
former real setting can also be feasibly obtained in the latter ideal setting then the
protocol “emulates the ideal setting” (i.e., “emulates a trusted party”), and so is
deemed secure. This basic approach can be applied in a variety of models, and is
used to define the goals of security in these models.26 We first discuss some of the
parameters used in defining various models, and next demonstrate the application

26. A few technical comments: First, we assume that the inputs of all parties are of the same length.
We comment that as long as the lengths of the inputs are polynomially related, the foregoing
convention can be enforced by padding. On the other hand, some length restriction is essential
for the security results, because in general it is impossible to hide all information regarding the
length of the inputs to a protocol. Second, we assume that the desired functionality is computable
in probabilistic polynomial time, because we wish the secure protocol to run in probabilistic
polynomial time (and a protocol cannot be more efficient than the corresponding centralized
algorithm). Clearly, the results can be extended to functionalities that are computable within any
given (time-constructible) time bound, using adequate padding.
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of this approach in two important models. For further details, see Canetti [2000]
or Goldreich [2004, Sec. 7.2 and 7.5.1].

17.9.1.1 Some Parameters Used in Defining Security Models
The following parameters are described in terms of the actual (or real) computation.
In some cases, the corresponding definition of security is obtained by imposing
some restrictions or provisions on the ideal model. For example, in the case of two-
party computation (see below), secure computation is possible only if premature
termination is not considered a breach of security. In that case, the suitable security
definition is obtained (via the simulation paradigm) by allowing (an analogue of)
premature termination in the ideal model. In all cases, the desired notion of security
is defined by requiring that for any adequate adversary in the real model, there
exist a corresponding adversary in the corresponding ideal model that obtains
essentially the same impact (as the real-model adversary).

The communication channels:. The parameters of the model include ques-
tions like whether or not the channels may be tapped by an adversary,
whether or not they are tamper-free, and questions referring to the network
behavior (in the case of multi-party protocols).

Wire-tapping versus the private-channel model: The standard assump-
tion in cryptography is that the adversary may tap all communication
channels (between honest parties). In contrast, one may postulate
that the adversary cannot obtain messages sent between a pair of
honest parties, yielding the so-called private-channel model (cf. Ben-
Or et al. [1988], Chaum et al. [1988]). The latter postulate may be
justified in some settings. Furthermore, it may be viewed as a useful
abstraction that provides a clean model for the study and develop-
ment of secure protocols. In this respect, it is important to mention
that, in a variety of settings of the other parameters, private channels
can be easily emulated by ordinary “tapped channels.”

Broadcast channel: In the multi-party context, one may postulate the
existence of a broadcast channel (cf. Rabin and Ben-Or [1989]), and
the motivation and justifications are as in the case of the private-
channel model.

The tamper-free assumption: The standard assumption in the area is
that the adversary cannot modify, duplicate, or generate messages
sent over the communication channels (between honest parties).
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Again, this assumption can be justified in some settings and can be
emulated in others (cf. Bellare et al. [1998a], Canetti [2001]).

Network behavior: Most works in the area assume that communica-
tion is synchronous and that point-to-point channels exist between
every pair of processors (i.e., a complete network). However, one may
also consider asynchronous communication (cf. Ben-Or et al. [1993])
and arbitrary networks of point-to-point channels (cf. Dolev et al.
[1993]).

Set-up assumptions:. Unless stated differently, we make no set-up assump-
tions (except for the obvious assumption that all parties have identical copies
of the protocol’s program). However, in some cases it is assumed that each
party knows a verification key corresponding to each of the other parties
(or that a public-key infrastructure is available). Another assumption, made
more rarely, is that all parties have access to some common (trusted) random
string.

Computational limitations:. Typically, we consider computationally bounded
adversaries (e.g., probabilistic polynomial-time adversaries). However, the
private-channel model allows for the (meaningful) consideration of compu-
tationally unbounded adversaries.

We stress that, also in the case of computationally unbounded adver-
saries, security should be defined by requiring that for every real adversary,
whatever the adversary can compute after participating in the execution of
the actual protocol is computable within comparable time by an imaginary
adversary participating in an imaginary execution of the trivial ideal proto-
col (for computing the desired functionality with the help of a trusted party).
That is, although no computational restrictions are made on the real-model
adversary, it is required that the ideal-model adversary that obtains the same
impact does so within comparable time (i.e., within time that is polynomi-
ally related to the running time of the real-model adversary being simulated).
Thus, any construction proven secure in the computationally unbounded ad-
versary model is (trivially) secure with respect to computationally bounded
adversaries.

Restricted adversarial behavior:. The parameters of the model include ques-
tions like whether or not the adversary is “adaptive” and “active” (where these
terms are discussed next).
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Adaptive versus nonadaptive: The most general type of an adversary
considered in the literature is one that may corrupt parties to the
protocol while the execution goes on, and does so based on partial in-
formation it has gathered so far (cf. Canetti et al. [1996]). A somewhat
restricted model, which seems adequate in many settings, postulates
that the set of dishonest parties is fixed (arbitrarily) before the execu-
tion starts (but this set is, of course, not known to the honest parties).
The latter model is called nonadaptive as opposed to the adaptive ad-
versary discussed first. Although the adaptive model is stronger, the
nonadaptive model provides a reasonable level of security in many
applications.

Active versus passive: An orthogonal parameter of restriction refers
to whether a dishonest party takes active steps to disrupt the exe-
cution of the protocol (i.e., sends messages that differ from those
specified by the protocol), or merely gathers information (which it
may latter share with the other dishonest parties). The latter adver-
sary has been given a variety of names such as semi-honest, passive,
and honest-but-curious. This restricted model may be justified in cer-
tain settings, and certainly provides a useful methodological locus
(cf. Goldreich et al. [1991], Goldreich et al. [1987], Goldreich [1998],
and Section 17.9.3). Below we refer to the adversary of the unre-
stricted model as to active; another commonly used name is mali-
cious.

Restricted notions of security. One important example is the willingness to
tolerate “unfair” protocols in which the execution can be suspended (at any
time) by a dishonest party, provided that it is detected doing so. We stress that
in case the execution is suspended, the dishonest party does not obtain more
information than it could have obtained when not suspending the execution.
(What may happen is that the honest parties will not obtain their desired
outputs, but rather will detect that the execution was suspended.) We stress
that the motivation to this restricted model is the impossibility of obtaining
general secure two-party computation in the unrestricted model. For more
details, see Section 17.9.1.3.

Upper bounds on the number of dishonest parties. In some models, secure
multi-party computation is possible only if a majority of the parties is hon-
est (cf. Ben-Or et al. [1988], Chor and Kushilevitz [1991]). Sometimes even
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a special majority (e.g., 2/3) is required. General “(resilient) adversarial-
structures” have been considered too (cf. Hirt and Maurer [2000]).

17.9.1.2 Example: Multi-Party Protocols with Honest Majority
Here we consider an active, nonadaptive, computationally-bounded adversary, and
do not assume the existence of private channels. Our aim is to define multi-party
protocols that remain secure provided that the honest parties are in majority.
(The reason for requiring a honest majority will be discussed at the end of this
subsection.)

Consider any multi-party protocol. We first observe that each party may change
its local input before even entering the execution of the protocol. However, this
is unavoidable also when the parties utilize a trusted party. Consequently, such
an effect of the adversary on the real execution (i.e., modification of its own input
prior to entering the actual execution) is not considered a breach of security. In
general, whatever cannot be avoided when the parties utilize a trusted party, is not
considered a breach of security. We wish secure protocols (in the real model) to
suffer only from whatever is unavoidable also when the parties utilize a trusted
party. Thus, the basic paradigm underlying the definitions of secure multi-party
computations amounts to requiring that the only situations that may occur in the
real execution of a secure protocol are those that can also occur in a corresponding
ideal model (where the parties may employ a trusted party). In other words, the
“effective malfunctioning” of parties in secure protocols is restricted to what is
postulated in the corresponding ideal model.

When defining secure multi-party protocols with honest majority, we need to
pin-point what cannot be avoided in the ideal model (i.e., when the parties utilize
a trusted party). This is easy, because the ideal model is very simple. Since we are
interested in executions in which the majority of parties are honest, we consider
an ideal model in which any minority group (of the parties) may collude as follows:

1. First, this dishonest minority shares its original inputs and decides together
on replaced inputs to be sent to the trusted party. (The other parties send
their respective original inputs to the trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the
corresponding outputs and sends them to the corresponding parties. (We
stress that the information sent between the honest parties and the trusted
party is not seen by the dishonest colluding minority.)

3. Upon receiving the output-message from the trusted party, each honest party
outputs it locally, whereas the dishonest colluding minority may determine
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their outputs based on all they know (i.e., their initial inputs and their re-
ceived outputs).

Note that the foregoing behavior of the minority group is unavoidable in any exe-
cution of any protocol (even in presence of trusted parties). This is the reason that
the ideal model was defined as above. Now, a secure multi-party computation with
honest majority is required to emulate this ideal model. That is, the effect of any
feasible adversary that controls a minority of the parties in a real execution of the
actual protocol, can be essentially simulated by a (different) feasible adversary that
controls the corresponding parties in the ideal model. That is:

Definition 17.11 (Secure protocols—a sketch) Let f be an m-ary functionality and � be an m-party
protocol operating in the real model.

. For a real-model adversary A, controlling some minority of the parties (and
tapping all communication channels), and an m-sequence x, we denote by
REAL�,A(x) the sequence of m outputs resulting from the execution of �

on input x under attack of the adversary A.

. For an ideal-model adversary A′, controlling some minority of the parties,
and an m-sequence x, we denote by IDEALf ,A′(x) the sequence of m outputs
resulting from the ideal process described above, on input x under attack of
the adversary A′.

We say that � securely implements f with honest majority if for every feasible real-
model adversary A, controlling some minority of the parties, there exists a feasi-
ble ideal-model adversary A′, controlling the same parties, so that the probability
ensembles {REAL�,A(x)}x and {IDEALf ,A′(x)}x are computationally indistinguish-
able (as in Footnote 9).

Thus, security means that the effect of each minority group in a real execution
of a secure protocol is “essentially restricted” to replacing its own local inputs
(independently of the local inputs of the majority parties) before the protocol starts,
and replacing its own local outputs (depending only on its local inputs and outputs)
after the protocol terminates. (We stress that in the real execution the minority
parties do obtain additional pieces of information; yet in a secure protocol they
gain nothing from these additional pieces of information, because they can actually
reproduce those by themselves.)

The fact that Definition 17.11 refers to a model without private channels is due
to the fact that our (sketchy) definition of the real-model adversary allowed it to tap
the channels, which in turn affects the set of possible ensembles {REAL�,A(x)}x.
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When defining security in the private-channel model, the real-model adversary is
not allowed to tap channels between honest parties, and this again affects the possi-
ble ensembles {REAL�,A(x)}x. On the other hand, when we wish to define security
with respect to passive adversaries, both the scope of the real-model adversaries
and the scope of the ideal-model adversaries changes. In the real-model execution,
all parties follow the protocol but the adversary may alter the output of the dishon-
est parties arbitrarily depending on all their intermediate internal states (during
the execution). In the corresponding ideal-model, the adversary is not allowed to
modify the inputs of dishonest parties (in Step 1), but is allowed to modify their
outputs (in Step 3).

We comment that a definition analogous to Definition 17.11 can be presented
also in the case that the dishonest parties are not in minority. In fact, such a
definition seems more natural, but the problem is that such a definition cannot be
satisfied. That is, most natural functionalities do not have a protocol for computing
them securely in case at least half of the parties are dishonest and employ an
adequate adversarial strategy. This follows from an impossibility result regarding
two-party computation, which essentially asserts that there is no way to prevent a
party from prematurely suspending the execution [Cleve 1986]. On the other hand,
secure multi-party computation with dishonest majority is possible if premature
suspension of the execution is not considered a breach of security (see next).

17.9.1.3 Another Example: Two-Party Protocols Allowing Abort
In light of the last paragraph, we now consider multi-party computations in which
premature suspension of the execution is not considered a breach of security. For
concreteness, we focus on the special case of two-party computations.27

Intuitively, in any two-party protocol, each party may suspend the execution at
any point in time, and furthermore it may do so as soon as it learns the desired
output. Thus, in many cases (but not all [Gordon et al. 2011]), it is possible for
one of the parties to obtain the desired output while preventing the other party
from fully determining its own output. The same phenomenon occurs even in
case the two parties just wish to generate a common random value [Cleve 1986].
Thus, when defining security (w.r.t active adversaries in the two-party setting), we
do not consider such premature suspension of the execution a breach of security.
Consequently, we consider an ideal model where each of the two parties may “shut
down” the trusted (third) party at any point in time. In particular, this may happen

27. As in Section 17.9.1.2, we consider a nonadaptive, active, computationally bounded adversary.
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after the trusted party has supplied the outcome of the computation to one party
but before it has supplied it to the other. That is, an execution in the ideal model
proceeds as follows:

1. Each party sends its input to the trusted party, where the dishonest party may
replace its input or send no input at all (which can be treated as sending a
default value).

2. Upon receiving inputs from both parties, the trusted party determines the
corresponding outputs, and sends the first output to the first party.

3. In case the first party is dishonest, it may instruct the trusted party to halt,
otherwise it always instructs the trusted party to proceed. If instructed to
proceed, the trusted party sends the second output to the second party.

4. Upon receiving the output message from the trusted party, an honest party
outputs it locally, whereas a dishonest party may determine its output based
on all it knows (i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal
model. That is, as in Definition 17.11, security is defined by requiring that for
every feasible real-model adversary A, there exists a feasible ideal-model adversary
A′, controlling the same party, so that the probability ensembles representing the
corresponding (real and ideal) executions are computationally indistinguishable.
This means that each party’s “effective malfunctioning” in a secure protocol is
restricted to supplying an initial input of its choice and aborting the computation
at any point in time. (Needless to say, the choice of the initial input of each party
may not depend on the input of the other party.)

We mention that an alternative way of dealing with the problem of premature
suspension of execution (i.e., abort) is to restrict our attention to single-output
functionalities; that is, functionalities in which only one party is supposed to obtain
an output. The definition of secure computation of such functionalities can be
made identical to Definition 17.11, with the exception that no restriction is made on
the set of dishonest parties (and in particular one may consider a single dishonest
party in the case of two-party protocols). For further details, see Goldreich [2004,
Sec. 7.2.3].

17.9.2 Some Known Results
We next list some of the models for which general secure multi-party computa-
tion is known to be attainable (i.e., models in which one can construct secure
multi-party protocols for computing any desired functionality). We mention that
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the first results of this type were obtained by Goldreich, Micali, Wigderson, and
Yao [Goldreich et al. 1991, Yao 1986, Goldreich et al. 1987].

. Assuming the existence of enhanced trapdoor permutations,28 secure multi-
party computation is possible in the following models (see Goldreich et al.
[1991], [1987], Yao [1986], with details in Goldreich [1998], [2004]):

1. Passive adversary, for any number of dishonest parties (see
Goldreich [2004, Sec. 7.3]).

2. Active adversary that may control only a minority of the parties
(see Goldreich [2004, Sec. 7.5.4]).

3. Active adversary, for any number of bad parties, provided that sus-
pension of execution is not considered a violation of security (i.e.,
as discussed in Section 17.9.1.3). (See Goldreich [2004, Sec. 7.4
and 7.5.5].)

In all these cases, the adversary is computationally-bounded and nonadap-
tive.29 On the other hand, the adversary may tap the communication lines
between honest parties (i.e., we do not assume “private channels” here). The
results for active adversaries assume a broadcast channel. Indeed, the lat-
ter can be implemented (while tolerating any number of bad parties) using
a signature scheme and assuming a public-key infrastructure (or that each
party knows the verification key corresponding to each of the other parties).

. Making no computational assumptions and allowing computationally-
unbounded adversaries, but assuming private channels, secure multi-party
computation is possible in the following models (cf. Ben-Or et al. [1988],
Chaum et al. [1988]):

1. Passive adversary that may control only a minority of the parties.

2. Active adversary that may control only less than one-third of the
parties.30

In both cases the adversary may be adaptive (cf. Ben-Or et al. [1988], Canetti
et al. [1996]).

28. See Goldreich [2004, Appendix C.1].

29. Similar results for (active) adaptive adversaries are presented in Canetti et al. [1996] and
Damgård and Nielsen [2000].

30. Fault-tolerance can be increased to a regular minority if a broadcast channel exists [Rabin and
Ben-Or 1989].
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Results for asynchronous communication and arbitrary networks of point-to-point
channels were presented in Ben-Or et al. [1993], [1994] and Dolev et al. [1993],
respectively.

Note that the implementation of a broadcast channel can be cast as a crypto-
graphic protocol problem (i.e., for the functionality (v , λ, . . . , λ) "→ (v , v , . . . , v),
where λ denotes the empty string). Thus, it is not surprising that the results regard-
ing active adversaries either assume the existence of such a channel or require a
setting in which the latter can be implemented.

Secure reactive computation. The foregoing results (easily) extend to a reactive model
of computation in which each party interacts with a high-level process (or applica-
tion). The high-level process supplies each party with a sequence of inputs, one
at a time, and expect to receive corresponding outputs from the parties. That is, a
reactive system goes through (a possibly unbounded number of) iterations of the
following type:

. Parties are given inputs for the current iteration.

. Depending on the current inputs, the parties are supposed to compute out-
puts for the current iteration. That is, the outputs in iteration j are deter-
mined by the inputs of the j th iteration.

A more general formulation allows the outputs of each iteration to depend also on
a global state, which is possibly updated in each iteration. The global state may in-
clude all inputs and outputs of previous iterations, and may only be partially known
to individual parties. (In a secure reactive computation such a global state may be
maintained by all parties in a “secret sharing” manner.) For further discussion,
see Goldreich [2004, Sec. 7.7.1].

Efficiency considerations. One important efficiency measure regarding protocols is
the number of communication rounds in their execution. The aforementioned re-
sults were originally obtained using protocols that use an unbounded number of
rounds. In some cases, subsequent works obtained secure constant-round proto-
cols (e.g., for multi-party computations with honest majority [Beaver et al. 1990],
and for two-party computations allowing abort [Lindell 2001]). Other important ef-
ficiency considerations include the total number of bits sent in the execution of a
protocol, and the local computation time. Improving the various efficiency mea-
sures has been the focus of considerable research.
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17.9.3 Construction Paradigms
We briefly sketch a couple of paradigms used in the construction of secure multi-
party protocols. We focus on the construction of secure protocols for the model of
computationally bounded and nonadaptive adversaries [Goldreich et al. 1991, Yao
1986, Goldreich et al. 1987]. These constructions proceed in two steps (see details
in Goldreich [1998], [2004]). First a secure protocol is presented for the model of
passive adversaries (for any number of dishonest parties), and next such a protocol
is “compiled” into a protocol that is secure in one of the two models of active
adversaries (i.e., either in a model allowing the adversary to control only a minority
of the parties or in a model in which premature suspension of the execution is not
considered a violation of security). These two steps are presented in the following
two corresponding subsections.

Recall that in the model of passive adversaries, all parties follow the prescribed
protocol, but at termination the adversary may alter the outputs of the dishonest
parties depending on all their intermediate internal states (during the execution).
Below, we refer to protocols that are secure in the model of passive (respectively,
active) adversaries by the term passively secure (respectively, actively secure).

17.9.3.1 Passively Secure Computation with Shares
For any m≥ 2, suppose that m parties, each having a private input, wish to obtain the
value of a predetermined m-argument Boolean function evaluated at their sequence
of inputs. Below, we outline a passively secure protocol for achieving this goal.
For simplicity, we present the passively secure protocol in the private channel
model. We mention that the design of passively secure multi-party protocol for any
functionality (allowing different outputs to different parties as well as handling also
randomized computations) reduces easily to the aforementioned task.

We assume that the parties hold a circuit for computing the value of the function
on inputs of the adequate length, and that the circuit contains only and and not

gates. The key idea is to have each party “secretly share” its input with everybody
else, and have the parties “secretly transform” shares of the input wires of the circuit
into shares of the output wire of the circuit, thus obtaining shares of the output
(which allows for the reconstruction of the actual output). The value of each wire
in the circuit is shared in a way such that all shares yield the value, whereas lacking
even one of the shares keeps the value totally undetermined. That is, we use a simple
secret sharing scheme (cf. Shamir [1979]) such that a bit b is shared by a random
sequence of m bits that sum-up to b mod 2. First, each party shares each of its input
bits with all parties (by secretly sending each party a random value and setting its
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own share accordingly). Next, all parties jointly scan the circuit from its input wires
to the output wire, processing each gate as follows:

. When encountering a gate, the parties already hold shares of the values of
the wires entering the gate, and their aim is to obtain shares of the value of
the wires exiting the gate.

. For a not-gate this is easy: The first party just flips the value of its share, and
all other parties maintain their shares.

. Since an and-gate corresponds to multiplication modulo 2, the parties need
to securely compute the following randomized functionality (in which the
xi’s denote shares of one entry-wire, the yi’s denote shares of the second
entry-wire, the zi’s denote shares of the exit-wire, and the shares indexed by
i belongs to Party i):

((x1, y1), . . . , (xm, ym)) "→ (z1, . . . , zm) (17.1)

where

m∑
i=1

zi =
(

m∑
i=1

xi

)
.

(
m∑

i=1

yi

)
. (17.2)

That is, the zi’s are random subject to Eq. (17.2).

Finally, the parties broadcast their shares of the circuit-output wire, and each party
reconstructs the value of the output based on all shares it now holds. Thus, the
parties have propagated shares of the input wires into shares of the output wire, by
repeatedly conducting privately-secure computation of the m-ary functionality of
Equations (17.1) and (17.2). That is, securely evaluating the entire (arbitrary) circuit
“reduces” to securely conducting a specific (very simple) multi-party computation.
But things get even simpler: The key observation is that(

m∑
i=1

xi

)
.

(
m∑

i=1

yi

)
=

m∑
i=1

xiyi +
∑

1≤i<j≤m

(
xiyj + xjyi

)
. (17.3)

Thus, the m-ary functionality of Equations (17.1) and (17.2) can be computed as
follows (where all arithmetic operations are mod 2):

1. Each Party i locally computes zi , i
def= xiyi.

2. Next, each pair of parties (i.e., Parties i and j ) securely compute random
shares of xiyj + yixj . That is, Parties i and j (holding (xi , yi) and (xj , yj),
respectively) need to securely compute the randomized two-party func-
tionality ((xi , yi), (xj , yj)) "→ (zi ,j , zj , i), where the z’s are random subject
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to zi ,j + zj , i = xiyj + yixj . Equivalently, Party j uniformly selects zj , i ∈
{0, 1}, and Parties i and j securely compute the deterministic functionality
((xi , yi), (xj , yj , zj , i)) "→ (zj , i + xiyj + yixj , λ), where λ denotes the empty
string.

The latter simple two-party computation can be securely implemented
using a 1-out-of-4 Oblivious Transfer (see Goldreich and Vainish [1987]
and Goldreich [2004, Sec. 7.3.3]), which in turn can be implemented using
enhanced trapdoor permutations (see Even et al. [1985], Goldreich [2004,
Sec. 7.3.2], and Goldreich and Rothblum [2013]). Loosely speaking, a 1-out-
of-k Oblivious Transfer is a protocol enabling one party to obtain one of k

secrets held by another party, without the second party learning which secret
was obtained by the first party. That is, we refer to the two-party functionality

(i , (s1, . . . , sk)) "→ (si , λ). (17.4)

Note that any function f : [k] × {0, 1}∗ → {0, 1}∗ can be privately computed
by invoking a 1-out-of-k Oblivious Transfer on inputs i and (f (1, y), . . . ,
f (k , y)), where i (respectively, y) is the initial input of the first (respectively,
second) party.

3. Finally, for every i = 1, . . . , m, summing-up all the zi ,j ’s yields the desired
share of Party i.

Hence, we have reduced the passively secure computation of a general m-party
functionality to the passively secure computation a specific two-party function over
[4] × {0, 1}4 (i.e., 1-out-of-4 Oblivious Transfer of bit secrets). The foregoing reduc-
tion is analogous to a construction that was briefly described in Goldreich et al.
[1987]. A detailed description and full proofs appear in Goldreich [1998], [2004].

17.9.3.2 Compilation of Passively Secure Protocols into Actively Secure Ones
Recalling that the protocol constructed in Section 17.9.3.1 works in the private-
channel model, we first transform it into a protocol for the standard (wire-tapped)
model (by using a public-key encryption scheme). Now, we show how to trans-
form any passively secure protocol into a corresponding actively secure protocol.
The communication model in both protocols consists of a single broadcast chan-
nel. Note that the messages of the original protocol may be assumed to be sent
over a broadcast channel, because the adversary may see them anyhow (by tapping
the point-to-point channels), and because a broadcast channel is trivially imple-
mentable in the case of passive adversaries. As for the resulting actively secure
protocol, the broadcast channel it uses can be implemented via a (authenticated)
Byzantine Agreement protocol [Dolev and Strong 1983, Lindell et al. 2002], thus
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providing an emulation of this model on the standard point-to-point model (in
which a broadcast channel does not exist). We mention that authenticated Byzan-
tine Agreement is typically implemented using a signature scheme (and assum-
ing that each party knows the verification key corresponding to each of the other
parties).

Turning to the transformation itself, the main idea is to use zero-knowledge
proofs (as described in Section 17.5.3) in order to force parties to behave in a
way that is consistent with the (passively secure) protocol. Actually, we need to
confine each party to a unique consistent behavior (i.e., according to some fixed
local input and a sequence of coin tosses), and to guarantee that a party cannot fix
its input (and/or its coins) in a way that depends on the inputs of honest parties.
Thus, some preliminary steps have to be taken before the step-by-step emulation
of the original protocol may start. Specifically, the compiled protocol (which like
the original protocol is executed over a broadcast channel) proceeds as follows:

1. Committing to the local input: Prior to the emulation of the original proto-
col, each party commits to its input (using a commitment scheme [Naor
1991]). In addition, using a zero-knowledge proof-of-knowledge [Goldwasser
et al. 1989, Bellare and Goldreich 1992, Goldreich et al. 1991], each party also
proves that it knows its own input; that is, that it can decommit to the com-
mitment it sent. (These zero-knowledge proof-of-knowledge are conducted
sequentially to prevent dishonest parties from setting their inputs in a way
that depends on inputs of honest parties.)

2. Generation of local random tapes: Next, all parties jointly generate a sequence
of random bits for each party such that only this party knows the outcome
of the random sequence generated for it, but everybody gets a commitment
to this outcome. These sequences will be used as the random inputs (i.e.,
sequence of coin tosses) for the original protocol. Each bit in the random
sequence generated for Party X is determined as the exclusive-or of the out-
comes of instances of an (augmented) coin-tossing protocol (see Blum [1982]
and Goldreich [2004, Sec. 7.4.3.5]) that Party X plays with each of the other
parties. The latter protocol provides the other parties with a commitment to
the outcome obtained by Party X.

3. Effective prevention of premature termination: In addition, when compiling
(the passively secure protocol to an actively secure protocol) for the model
that allows the adversary to control only a minority of the parties, each party
shares its input and random input with all other parties using a “Verifiable
Secret Sharing” (VSS) protocol (see Chor et al. [1985] and Goldreich [2004,
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Sec. 7.5.5.1]). Loosely speaking, a VSS protocol allows to share a secret in a
way that enables each participant to verify that the share it got fits the publicly
posted information, which includes (on top of the commitments posted in
Steps 1 and 2) commitments to all shares. The use of VSS guarantees that
if Party X prematurely suspends the execution, then the honest parties can
together reconstruct all Party X’s secrets and carry on the execution while
playing its role. This step effectively prevents premature termination, and
is not needed in a model that does not consider premature termination a
breach of security.

4. Step-by-step emulation of the original protocol: After all the foregoing prelimi-
nary steps are completed, we turn to the main step in which the new protocol
emulates the original one. In each step, each party augments the message de-
termined by the original protocol with a zero-knowledge proof that asserts
that the message was indeed computed correctly. Recall that the next mes-
sage (as determined by the original protocol) is a function of the sender’s own
input, its random input, and the messages it has received so far (where the
latter are known to everybody because they were sent over a broadcast chan-
nel). Furthermore, the sender’s input is determined by its commitment (as
sent in Step 1), and its random input is similarly determined (in Step 2). Thus,
the next message (as determined by the original protocol) is a function of
publicly known strings (i.e., the said commitments as well as the other mes-
sages sent over the broadcast channel). Moreover, the assertion that the next
message was indeed computed correctly is an NP-assertion, and the sender
knows a corresponding NP-witness (i.e., its own input and random input as
well as the corresponding decommitment information). Thus, the sender
can prove in zero-knowledge (to each of the other parties) that the message
it is sending was indeed computed according to the original protocol.

The foregoing compilation was first outlined in Goldreich et al. [1987], [1991]. A
detailed description and full proofs appear in Goldreich [1998], [2004].

17.9.4 Concurrent Execution of Protocols
The definitions and results surveyed so far refer to a setting in which, at each time,
only a single execution of a cryptographic protocol takes place (or only one execu-
tion may be controlled by the adversary). In contrast, in many distributed settings
(e.g., the Internet), many executions are taking place concurrently (and several of
them may be controlled by the same adversary). Furthermore, it is undesirable (and



484 Chapter 17 On the Foundations of Cryptography

sometimes even impossible) to coordinate these executions (so to effectively en-
force a single-execution setting). Still, the definitions and results obtained in the
single-execution setting serve as a good starting point for the study of security in
the setting of concurrent executions.

As in the case of stand-alone security, the notion of zero-knowledge provides a
good test case for the study of concurrent security. Indeed, in order to demonstrate
the security issues arising from concurrent execution of protocols, we consider the
concurrent execution of zero-knowledge protocols. Specifically, we consider a party
P holding a random (or rather, pseudorandom) function f : {0, 1}2n → {0, 1}n, and
willing to participate in the following protocol (with respect to security parameter
n).31 The other party, called A for adversary, is supposed to send P a binary value
v ∈ {1, 2} specifying which of the following two cases to execute:

For v = 1. Party P uniformly selects α ∈ {0, 1}n, and sends it to A, who is sup-
posed to reply with a pair of n-bit-long strings, denoted (β , γ ). Party P checks
whether or not f (αβ) = γ . In the case where equality holds, P sends A some
secret information (e.g., the secret key corresponding to P ’s public key).

For v = 2. Party A is supposed to uniformly select α ∈ {0, 1}n, and sends it to P ,
which selects uniformly β ∈ {0, 1}n and replies with the pair (β , f (αβ)).

Observe that P ’s strategy (in each case) is zero-knowledge (even with respect to
auxiliary-inputs as defined in Definition 17.7): Intuitively, if the adversary A chooses
the case v = 1, then it is infeasible for A to guess a passing pair (β , γ ) with respect
to a random α provided by P . Thus, except with negligible probability (when it may
get secret information), A does not obtain anything from the interaction. On the
other hand, if the adversary A chooses the case v = 2, then it obtains a pair that is
indistinguishable from a uniformly selected pair of n-bit long strings (because β

is selected uniformly by P , and for any α the value f (αβ) looks random to A). In
contrast, if the adversary A can conduct two concurrent executions with P , then it
may learn the desired secret information: In one session, A sends v = 1 while in the
other it sends v = 2. Upon receiving P ’s message, denoted α, in the first session,
A sends it as its own message in the second session, obtaining a pair (β , f (αβ))

from P ’s execution of the second session. Now, A sends the pair (β , f (αβ)) to
the first session of P , and A obtains the desired secret, since this pair passes the
check.

31. In fact, assuming that P shares a pseudorandom function f with its friends (as explained
in Section 17.4.3), the foregoing protocol is an abstraction of a natural “mutual identification”
protocol. (The example is adapted from Goldreich and Krawczyk [1996].)
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An attack of this type is called a relay attack: During such an attack the adversary
just invokes two executions of the protocol and relays messages between them
(without any modification). However, in general, the adversary in a concurrent
setting is not restricted to relay attacks. For example, consider a minor modification
to the above protocol so that, in the case v = 2, party P replies with (say) the pair
(β , f (αβ)), where α = α ⊕ 1|α|, rather than with (β , f (αβ)). The modified strategy
P is zero-knowledge and it also withstands a relay attack, but it can be “abused”
easily by a more general concurrent attack.

The foregoing example is merely the tip of an iceberg, but it suffices for intro-
ducing the main lesson: An adversary attacking several concurrent executions of the
same protocol may be able to cause more damage than by attacking a single execution
(or several sequential executions) of the same protocol. One may say that a pro-
tocol is concurrently secure if whatever the adversary may obtain by invoking and
controlling parties in real concurrent executions of the protocol is also obtainable
by a corresponding adversary that controls corresponding parties making concur-
rent functionality calls to a trusted party (in a corresponding ideal model).32 More
generally, one may consider concurrent executions of many sessions of several pro-
tocols, and say that a set of protocols is concurrently secure if whatever the adversary
may obtain by invoking and controlling such real concurrent executions is also ob-
tainable by a corresponding adversary that invokes and controls concurrent calls to
a trusted party (in a corresponding ideal model). Consequently, a protocol is said
to be secure with respect to concurrent compositions if adding this protocol to any
set of concurrently secure protocols yields a set of concurrently secure protocols.

A much more appealing approach was suggested by Canetti [2001]. Loosely
speaking, Canetti suggests to consider a protocol to be secure (called environmen-
tally secure (or universally composable secure [Canetti 2001])) only if it remains se-
cure when executed within any (feasible) environment. Following the simulation
paradigm, we get the following definition:

Definition 17.12 (Environmentally secure protocols [Canetti 2001]—a rough sketch) Let f be an
m-ary functionality and � be an m-party protocol, and consider the following real
and ideal models.

32. One specific concern (in such a concurrent setting) is the ability of the adversary to “nontriv-
ially correlate the outputs” of concurrent executions. This ability, called malleability, was first
investigated by Dolev, Dwork, and Naor [Dolev et al. 2000]. We comment that providing a general
definition of what “correlated outputs” means (for arbitrary functionalities) seems very challeng-
ing (if at all possible). Indeed the focus of [Dolev et al. 2000] is on several important special cases
such as encryption and commitment schemes.
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. In the real model the adversary controls some of the parties in an execu-
tion of � and all parties can communicate with an arbitrary probabilistic
polynomial-time process, which is called an environment (and possibly rep-
resents other executions of various protocols that are taking place concur-
rently). Honest parties only communicate with the environment before the
execution starts and when it ends; they merely obtain their inputs from the
environment and pass their outputs to it. In contrast, dishonest parties may
communicate freely with the environment, concurrently to the entire execu-
tion of �.

. In the ideal model the (simulating) adversary controls the same parties, which
use an ideal (trusted party) that behaves according to the functionality f (as in
Section 17.9.1.2). All parties can communicate with the (same) environment
(as in the real model). Indeed, the dishonest parties may communicate ex-
tensively with the environment before and after their single communication
with the trusted party.

We say that � is an environmentally secure protocol for computing f if for every
probabilistic polynomial-time adversary A in the real model there exists a prob-
abilistic polynomial-time adversary A′ controlling the same parties in the ideal
model such that no probabilistic polynomial-time environment can distinguish the
case in which it is accessed by the parties in the real execution from the case it is
accessed by parties in the ideal model.

As hinted above, the environment may account for other executions of various pro-
tocols that are taking place concurrently to the main execution being considered.
The definition requires that such environments cannot distinguish the real exe-
cution from an ideal one. This means that anything that the real adversary (i.e.,
operating in the real model) gains from the execution and some environment, can
be also obtained by an adversary operating in the ideal model and having access to
the same environment. Indeed, Canetti proves that environmentally secure proto-
cols are secure with respect to concurrent compositions [Canetti 2001].

It is known is that environmentally secure protocols for any functionality can
be constructed for settings in which more than two-thirds of the active parties are
honest [Canetti 2001]. This holds unconditionally for the private channel model,
and under standard assumptions (e.g., allowing the construction of public-key
encryption schemes) for the standard model (i.e., without private channel). The
immediate consequence of this result is that general environmentally-secure multi-
party computation is possible, provided that more than two-thirds of the parties are
honest.
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In contrast, general environmentally secure two-party computation is not pos-
sible (in the standard sense, see, for example, Canetti and Fischlin [2001]).33 Still,
one can salvage general environmentally-secure two-party computation in the fol-
lowing reasonable model: Consider a network that contains servers that are willing
to participate (as “helpers,” possibly for a payment) in computations initiated by
a set of (two or more) users. Now, suppose that two users wishing to conduct a
secure computation can agree on a set of servers so that each user believes that
more than two-thirds of the servers (in this set) are honest. Then, with the active
participation of this set of servers, the two users can compute any functionality in
an environmentally secure manner.

Other reasonable models where general environmentally secure two-party com-
putation is possible include the common random string (CRS) model [Canetti et al.
2002] and variants of the public-key infrastructure (PKI) model [Barak et al. 2004].
In the CRS model, all parties have access to a universal random string (of length
related to the security parameter). We stress that the entity trusted to post this uni-
versal random string is not required to take part in any execution of any protocol,
and that all executions of all protocols may use the same universal random string.
The PKI models considered in Barak et al. [2004] require that each party deposits a
public key with a trusted center, while proving knowledge of a corresponding pri-
vate key. This proof may be conducted in zero-knowledge during special epochs in
which no other activity takes place.

17.9.5 Concluding Remarks
In Sections 17.9.1 and 17.9.2 we have mentioned a host of definitions of security
and constructions for multi-party protocols (especially for the case of more than
two parties). Furthermore, some of these definitions are incomparable to others
(i.e., they neither imply the others nor are implies by them), and there seems to be
no single definition that may be crowned as the central one.

For example, in Sections 17.9.1.2 and 17.9.1.3, we have presented two alterna-
tive definitions of “secure multi-party protocols,” one requiring an honest major-
ity and the other allowing abort. These definitions are incomparable and there
is no generic reason to prefer one over the other. Actually, as mentioned in Sec-
tion 17.9.1.2, one could formulate a natural definition that implies both definitions
(i.e., waiving the bound on the number of dishonest parties in Definition 17.11).

33. Of course, some specific two-party computations do have environmentally secure protocols.
See Canetti [2001] for several important examples (e.g., key exchange).
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Indeed, the resulting definition is free of the annoying restrictions that were in-
troduced in each of the two aforementioned definitions; the “only” problem with
the resulting definition is that it cannot be satisfied (in general). Thus, for the first
time in this chapter, we have reached a situation in which a natural (and general)
definition cannot be satisfied, and we are forced to choose between two weaker
alternatives, where each of these alternatives carries fundamental disadvantages.

In general, Section 17.9 carries a stronger flavor of compromise (i.e., recognizing
inherent limitations and settling for a restricted meaningful goal) than previous
sections. In contrast to the impression given in other parts of this chapter, it is now
obvious that we cannot get all that we may want (see Section 17.9.4). Instead, we
should study the alternatives, and go for the one that best suits our real needs.

Indeed, as stated in Section 17.1.1, the fact that we can define a cryptographic
goal does not mean that we can satisfy it as defined. In case we cannot satisfy
the initial definition, we should search for relaxations that can be satisfied. These
relaxations should be defined in a clear manner so that it would be obvious what
they achieve (and what they fail to achieve). Doing so will allow a sound choice of
the relaxation to be used in a specific application. This seems to be a good point to
end the current chapter.

A good compromise is one in which the most important interests of all parties are
satisfied.

—Adv. Klara Goldreich-Ingwer (1912–2004)
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M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway. 1990.
Everything provable is probable in zero-knowledge. In Crypto88, Lecture Notes in
Computer Science vol. 403, pp. 37–56. Springer. DOI: 10.1007/0-387-34799-2_4.

M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In 20th ACM Symposium on the
Theory of Computing, pp. 1–10. DOI: 10.1145/62212.62213. 470, 472, 477

http://dx.doi.org/10.1137/S0097539703427975
http://dx.doi.org/10.1007/3-540-46766-1_31
http://dx.doi.org/10.1007/BF00196771
http://dx.doi.org/10.1145/100216.100287
http://dx.doi.org/10.1145/276698.276854
http://dx.doi.org/10.1007/BFb0055718.pdf
http://dx.doi.org/10.1007/3-540-48071-4_28.pdf
http://dx.doi.org/10.1007/3-540-48071-4_28.pdf
http://dx.doi.org/10.1109/SFCS.1997.646126
http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1137/0217014
http://dx.doi.org/10.1145/167088.167109
http://dx.doi.org/10.1007/0-387-34799-2_4
http://dx.doi.org/ 10.1145/62212.62213


490 Chapter 17 On the Foundations of Cryptography

M. Ben-Or, B. Kelmer, and T. Rabin. 1994. Asynchronous secure computations with optimal
resilience. In 13th ACM Symposium on Principles of Distributed Computing, pp. 183–
192. DOI: 10.1145/197917.198088. 478

M. Blum. 1982. Coin flipping by phone. IEEE Spring COMPCOM, pp. 133–137. See also
SIGACT News, 15(1), 1983. DOI: 10.1145/1008908.1008911. 482

M. Blum, A. De Santis, S. Micali, and G. Persiano. 1991. Non-interactive zero-knowledge
proof systems. SIAM Journal on Computing, 20(6): 1084–1118. (Considered the journal
version of Blum et al. [1988].) 490

M. Blum, P. Feldman, and S. Micali. 1988. Non-interactive zero-knowledge and its
applications. In 20th ACM Symposium on the Theory of Computing, pp. 103–112.
See Blum et al. [1991]. DOI: 10.1145/62212.62222. 446, 460, 490

M. Blum and S. Goldwasser. 1984. An efficient probabilistic public-key encryption scheme
which hides all partial information. In Crypto84, Lecture Notes in Computer Science
vol. 196, pp. 289–302. Springer. 459

M. Blum and S. Micali. 1984. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13: 850–864. Preliminary version in 23rd
FOCS, 1982. DOI: 10.1137/0213053. 424, 429, 430
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18On the Impact of
Cryptography on
Complexity Theory
Oded Goldreich

We trace three major directions of research in complexity theory to their origins in
the foundations of cryptography. Specifically, we refer to the theory of pseudoran-
domness (including the various incarnations of this concept), to the study of various
forms of probabilistic proof system (including interactive proofs, zero-knowledge
proofs, and probabilistically checkable proofs), and to the finer study of reductions
(including random self-reducibility, worst-case to average-case reductions, average-
case preserving reductions, and black-box reductions).

18.1 The Story
In this essay we discuss the impact that research in the foundations of cryptography
has had on developments in complexity theory. In particular, we trace three major
research directions in complexity theory to their origins in the foundations of
cryptography. These directions are:

1. The theory of pseudorandomness, including the various incarnations of this
concept.

2. The study of various forms of probabilistic proof system, including interac-
tive proofs, zero-knowledge proofs, and probabilistically checkable proofs.

3. The finer study of reductions, including random self-reducibility, worst-case
to average-case reductions, average-case preserving reductions, and black-
box reductions.
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In the following subsections, we shall tell the story of how these complexity theo-
retic studies have emerged from the study of the foundations of cryptography.

In contrast, in Sections 18.2 and 18.3, we shall further discuss two of these three
(complexity theoretic) endeavors while ignoring their cryptographic origins. In Sec-
tion 18.2, we offer a wide perspective on the notion pseudorandom generators,
viewing it as general paradigm that includes the general-purpose pseudorandom
generator studied in cryptography as a specific (archetypical) incarnation. In Sec-
tion 18.3, we shall offer a bird’s eye view on the aforementioned types of probabilis-
tic proof systems.

18.1.1 Pseudorandomness
The notion of a pseudorandom generator has first emerged in practice, where
such candidate generators were used for various sampling tasks. In that context,
it was natural to require that the sequences produced by these generators pass
various statistical tests (as reviewed at great length by Knuth [1981]). Given the ad
hoc nature of the choice of the statistical tests, such an approach fails to yield a
robust notion of pseudorandom generators. The inadequacy of this approach is
most striking in the cryptographic setting, where the adversary is likely to launch
attacks that are not captured by natural statistical tests.

The potential applications of “cryptographically secure” pseudorandom gener-
ators in cryptography (e.g., for the construction of a (private-key) stream cipher), led
Blum and Micali to propose such a notion and a candidate construction of it [Blum
and Micali 1984]. By their definition, a pseudorandom generator is an efficient de-
terministic algorithm that stretches a short random seed into a long sequence that
is unpredictable by any feasible observer; that is, no feasible algorithm can predict
the next bit in the sequence, when given the previous bits, with success probability
that is nonnegligibly higher than half (which is obtained by just tossing a coin). We
stress that, under this definition, the potential predictor may be stronger than the
generator (as long as it is feasible); this reflects the default cryptographic principle
by which the adversary may be more powerful than the honest user (i.e., may be
willing to invest more resources than are required for proper use of the system that
it attacks).

Having other applications in mind, Yao observed that the unpredictability re-
quirement is equivalent to requiring that the output of the generator be com-
putationally indistinguishable from a truly random sequence [Yao 1982], where
the notion of computational indistinguishability is exactly the one put forward
by Goldwasser and Micali [1984]. Recall that Goldwasser and Micali suggested
this notion as a pivot of their definition of secure encryptions, while arguing that
indistinguishable distributions are equivalent for all practical purposes. Specif-
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ically, by their definition, an encryption scheme is secure if the encryptions of
any two messages (of the same length) are computationally indistinguishable.
Again, the cryptographic origin of this definition mandates that, in the context of
pseudorandom generators, the potential distinguisher may be stronger than the
generator.

The foregoing notion of a pseudorandom generator implies that any efficient
randomized algorithm maintains its performance when its internal coin tosses are sub-
stituted by a sequence generated by a pseudorandom generator. The fact that these
pseudorandom generators can be used in all efficient applications, including ap-
plications that are run for more time than the generator itself, identifies them as
general-purpose constructs, and hence we call them general-purpose pseudorandom
generators. We mention that such pseudorandom generators exist if and only if
one-way functions exist [Håstad et al. 1999].

General-purpose pseudorandom generators are actually the archetypical incar-
nation of a general paradigm. In general, pseudorandom generators are efficient
deterministic procedures that stretch short random seeds into longer “pseudo-
random” sequences. Thus, a generic formulation of pseudorandom generators
consists of specifying three fundamental aspects: the stretch measure of the gen-
erators, the class of distinguishers that the generators are supposed to fool (i.e.,
the algorithms with respect to which the computational indistinguishability require-
ment should hold), and the resources that the generators are allowed to use (i.e.,
their own computational complexity). Other incarnations of this general paradigm
are telegraphically reviewed next.

One notable example is provided by pseudorandom generators that suffice for
the derandomization of randomized complexity classes such as BPP, which is
the application envisioned by Yao [1982]. In such applications after replacing the
original random-tape by the output of a generator, one considers a deterministic
algorithm that scans all possible seeds of the generator (and invokes the genera-
tor on each possible seed). Hence, as observed by Nisan and Wigderson [1994], in
such applications, one may allow the generator to run in time that is exponential in
its seed length, which is typically much larger than the running time of the distin-
guishers that one needs to fool. We call such pseudorandom generators canonical
derandomizers, and note that they can be constructed under seemingly weaker in-
tractability assumption than those required for the construction of general-purpose
pseudorandom generators [Nisan and Wigderson 1994, Impagliazzo and Wigder-
son 1997].

Another famous incarnation of the notion of pseudorandom generators con-
sists of generators that fool bounded-space machines. Such generators can be con-
structed without relying on any intractability assumption, and their seed length and
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space complexity is only moderately higher than the space complexity of the algo-
rithms that they fool [Nisan 1992, Nisan and Zuckerman 1996]. Other incarnations
of the paradigm refer to passing very restricted tests such as local tests (yielding
limited independence generators) or linear tests (yielding small bias generators).
We call such pseudorandom generators special purpose, and note that such gen-
erators of exponential stretch can be constructed unconditionally (see Goldreich
[2008, Sec. 8.5]).

To summarize: The theory of pseudorandomness provides a fresh view at the
question of randomness, which has puzzled thinkers for ages. This theory postu-
lates that a distribution is random (or rather pseudorandom) if it cannot be told
apart from the uniform distribution by any efficient procedure. The paradigm, orig-
inally associating efficient procedures with polynomial-time algorithms, has been
applied also with respect to a variety of limited classes of such distinguishing pro-
cedures. Thus, (pseudo)randomness is not an inherent property of an object, but is
rather subjective to the observer. At the extreme, this approach says that the ques-
tion of whether the world is deterministic or allows for some free choice (which
may be viewed as sources of randomness) is irrelevant. What matters is how the
world looks to us and to various computationally bounded devices. That is, if some
phenomenon looks random, then we may just treat it as if it were random.

Hence, the theory of pseudorandomness is pivoted at the notion of computa-
tional indistinguishability, which in turn was put forward by Goldwasser and Micali,
in the context of defining secure encryption schemes [Goldwasser and Micali 1984].
The archetypical incarnation of this theory, yielding the notion of general-purpose
pseudorandom generator, was derived from the cryptographic setting considered by
Blum and Micali [1984], but other incarnations were proposed as well. The latter
were either directly or indirectly inspired by the archetypical case.

In Section 18.2 we provide a wide perspective on the theory of pseudorandom-
ness, but refrain from reproducing definitions and results that appear in Sec-
tion 17.4. Our focus in Section 18.2 will be on aspects that are not covered in
Section 17.4. A more detailed treatment of the subject can be found in Goldreich
[2008, Chap. 8].

18.1.2 Probabilistic Proof Systems
The glory attributed to the creativity involved in finding proofs makes us forget that
it is the less glorified procedure of verification that gives proofs their value. Philo-
sophically speaking, proofs are secondary to the verification procedure; whereas
technically speaking, proof systems are defined in terms of their verification pro-
cedures.
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The notion of a verification procedure presupposes the notion of computation,1

and furthermore the notion of efficient computation. This implicit dependency
is made explicit in the definition of NP-proof systems (giving rise to the class
N P), where efficient computation is associated with deterministic polynomial-
time algorithms. However, we can gain a lot if we are willing to take a somewhat
nontraditional step and allow probabilistic verification procedures. In particular:

. Randomized and interactive verification procedures, giving rise to interactive
proof systems, seem much more powerful than their deterministic counter-
parts (see Section 18.3.1).

. Such randomized procedures allow the introduction of zero-knowledge
proofs, which are of great conceptual and practical interest (see Section
18.3.2).

. NP-proofs can be efficiently transformed into a (redundant) form (called a
probabilistically checkable proof ) that offers a trade-off between the number
of bit-locations examined in the NP-proof and the confidence in its validity
(see Section 18.3.3).

In all these types of probabilistic proof systems, explicit bounds are imposed on the
computational resources of the verification procedure, which in turn is personified
by the notion of a verifier. Furthermore, in all these proof systems, the verifier is
allowed to toss coins and rule by statistical evidence. Thus, all these proof systems
carry a probability of error, yet this probability is explicitly bounded and, furthermore,
can be reduced by successive application of the proof system.

Like in the case of pseudorandom generators, the story of probabilistic proof
systems originates in cryptography. It begins with Goldwasser, Micali, and Rackoff,
who sought a general setting for their novel notion of zero-knowledge [Goldwasser
et al. 1989], which was aimed to capture cryptographic protocols that preserve the
secrecy of the inputs of their users. The choice fell on proof systems—as captur-
ing a fundamental activity that takes place in a cryptographic protocol. Motivated
by the desire to formulate the most general type of “proofs” that may be used
within cryptographic protocols, they introduced the notion of an interactive proof
system [Goldwasser et al. 1989]. Although the main thrust of their paper is the in-
troduction of a special type of interactive proofs (i.e., ones that are zero-knowledge),

1. This may explain the historical fact that notions of computation were first rigorously formulated
in the context of logic.
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the possibility that interactive proof systems may be more powerful than NP-proof
system has been pointed out in Goldwasser et al. [1989].

Independently of Goldwasser et al. [1989],2 Babai suggested a different formu-
lation of interactive proofs, which he called Arthur–Merlin Games [Babai 1985].
Syntactically, Arthur–Merlin Games are a restricted form of interactive proof sys-
tems, yet it was subsequently shown that these restricted systems are as powerful
as the general ones [Goldwasser and Sipser 1989]. Babai’s motivation was to place
a group-theoretic problem, previously placed in N P under some group-theoretic
assumptions, “as close to N P as possible” without using any assumptions. Inter-
estingly, Babai underestimated the expressive power of interactive proof systems,
conjecturing that the class of sets possessing such proof systems (even with an
unbounded number of message-exchange rounds) is “very close” to N P.

The first evidence of the surprising power of interactive proofs was given by
Goldreich, Micali, and Wigderson, who presented an interactive proof system for
Graph Nonisomorphism [Goldreich et al. 1991], a set not known to be in N P. More
importantly, their paper has demonstrated the generality and wide applicability of
zero-knowledge proofs. Assuming the existence of one-way function, it was shown
how to construct zero-knowledge interactive proofs for any set in N P. This result
has had a dramatic impact on the design of cryptographic protocols (cf. Goldreich
et al. [1987]). In addition, this result has called attention to the then-new notion
of interactive proof systems (since zero-knowledge NP-proofs could exist only in a
trivial sense [Goldreich and Oren 1994]).

A generalization of interactive proofs to multi-prover interactive proofs was sug-
gested by Ben-Or, Goldwasser, Kilian, and Wigderson [Ben-Or et al. 1988]. Again,
the main motivation came from zero-knowledge aspects—specifically, introducing
multi-prover zero-knowledge proofs for N P without relying on intractability as-
sumptions. Yet the complexity theoretic prospects of the new class, denoted MIP,
have not been ignored. A more appealing, to our taste, formulation of the class
MIP has been presented in Fortnow et al. [1988]. The latter formulation exactly
coincides with the formulation now known as probabilistically checkable proofs (i.e.,
PCP).

The cryptographic lens was responsible for yet another development regarding
interactive proof system. Motivated by the desire to construct schemes for delgating
computation in a relaiable manner, Goldwasser, Kalai, and Rothblum [Goldwasser

2. Although both Goldwasser et al. [1989] and Babai [1985] appeared in the same conference (i.e.,
17th STOC, 1985), early versions of Goldwasser et al. [1989] existed in 1982, and were rejected
three times from major conferences (i.e., FOCS83, STOC84, and FOCS84).
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et al. 2015] introduced the notion of doubly efficient interactive proof systems.
In such proof systems, originally termed “interactive proofs for muggles” (where
“muggles” are nonmagicians in the Harry Potter lingo), the prover should be rela-
tively efficient and the verifier should be super efficient. Specifically, in the context
of delegation schemes, the prover should run in time that is polynomially related to
the complexity of the delegated computation, whereas the verifier should be much
faster than the latter complexity.

Hence, each of the aforementioned four types of probabilistic proof systems was
originally proposed in order to address some cryptographic concern. More gener-
ally, these works (especially, the first one [Goldwasser et al. 1989]) introduced the
idea that a proof system may be probabilistic, and that the resulting probabilistic
proof systems yield very meaningful notions that have many practical benefits. We
also mention that the cryptographic lens motivated the definition of computation-
ally sound proof systems (a.k.a. argument systems) [Brassard et al. 1988].3

In Section 18.3 we provide a very brief introduction to the aforementioned types
of probabilistic proof systems. A detailed treatment of the basic definitions and
results can be found in Goldreich [2008, Chap. 9], whereas Chapter 24 provides a
survey of doubly efficient interactive proof systems.

18.1.3 Finer Study of Reductions
The notions of random self-reducibility, worst-case to average-case reductions,
average-case preserving reductions, and black-box reductions emerged naturally
from the study of the foundations of cryptography. In this subsection, we briefly
trace their emergence.

Random self-reducibility. Although random self-reducibility was used as an algorith-
mic tool in the design of “index calculus” algorithms [Adleman 1979, Merkle 1979,
Pollard 1978] for solving the Discrete Logarithm Problem, its first emergence as a
tool for establishing hardness occured in the work of Goldwasser and Micali [1984].
Specifically, they identified random self-reducibility as the King’s road to estab-
lishing worst-case to average-case reductions, and this road was taken by many
subsequent works, most notably by Babai et al. [1993]. Loosely speaking, if solving
a problem on any instance x can be reduced to solving the same problem on m

random |x|-bit-long instances, which need not be independently distributed, then

3. Furthermore, a cryptographic primitive (i.e., collision resistant hash functions) was com-
bined with PCP systems to yield argument systems with extremely efficient verification proce-
dures [Kilian 1992].
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the worst-case hardness of the problem implies that it is hard to solve on at least
an 1/3m fraction of the domain.4

Worst-case to average-case reductions. Goldwasser and Micali [1984] introduced the
aforementioned reduction in order to base the security of their proposed encryp-
tion scheme on a seemingly reliable (worst-case) intractability assumption. Their
encryption scheme consists of encrypting a bit σ by a random element of ZN hav-
ing a Jacobi symbol 1 and quadratic character σ , where N is the product of two
primes that are each congruent to 3 mod 4. Recall that under their robust defini-
tion of security, which was introduced in Goldwasser and Micali [1984], security was
interpreted as the indistinguishably of an encryption of 0 from an encryption of 1.
Hence, proving security of their scheme required showing that it is infeasible to dis-
tinguish a quadratic residue mod M from a quadratic nonresidue of Jacobi symbol 1
mod M . Indeed, Goldwasser and Micali showed that if the Quadratic Residuosity
problem was hard on the worst case, then the foregoing distinguishing task is in-
feasible. This was shown by reducing the Quadratic Residuosity problem to the
distinguishing task, which is equivalent to predicting the quadratic character of
random numbers that have Jacobi symbol 1—that is, by showing a worst-case to
average-case reduction.

We warn that the foregoing complexity measures are not purely worst case or av-
erage case, since they refer to a fixed parameter, which in the foregoing cases in the
composite moduli N . In contrast, subsequent complexity theoretic studies of worst-
case to average-case reductions do refer to such pure notions (see, e.g., Bogdanov
and Trevisan [2006]). In any case, we stress that it was realized from the very be-
ginning of the study of the foundations of cryptography (i.e., from Goldwasser and
Micali [1984])5 that cryptographic applications have to be secure in an average-case
sense, and so basing their security of a worst-case intractability assumption (such
as P = N P) requires a worst-case to average-case reduction.

Average-case preserving reductions. Relations between different cryptographic prim-
itives are typically proved by reductions that preserve average-case hardness. This
thread was also pioneered by Goldwasser and Micali, who showed that a (secure) bit-

4. The counter-positive asserts that an efficient algorithm that solves the problem correctly on
at least a 1 − (1/3m) fraction of the domain yields an efficient algorithm that solve the problem
correctly on each instance with probability at least 2/3.

5. Some researchers realized this point before Goldwasser and Micali [1984]. For example, in the
late 1970s, Shimon Even realized that NP-hardness of the problem of breaking an encryption
scheme does not guarantee its security.
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encryption scheme implies a (secure) full-fledged encryption scheme [Goldwasser
and Micali 1984]. Shortly after, Blum and Micali showed that the average-case hard-
ness of DLP implies a “hard-core predicate” (of the modular exponentiation func-
tion), which in turn implies a pseudorandom generator [Blum and Micali 1984].
(The argument was generalized by Yao [1982].) All these results are proved by a
reduction that preserves average-case hardness in an adequate sense. Specifically,
the reductions transform a violation of the average-case hardness of the claimed
primitive to the violation of the average-case hardness of the given primitive.

A related (“point-wise”) notion of preserving average-case hardness is pivotal to
Levin’s theory of average-case complexity, which was suggested a couple of years
later [Levin 1986].6

Yao’s result by which weakly one-way functions imply (strong) one-way func-
tions [Yao 1982] (see exposition in Goldreich [2008, Sec. 7.1.2]) heralded a line of
research known as “hardness amplification” (see, e.g., Impagliazzo et al. [2010]),
which is too rich to review here. Still, the “take home message” is that it all started
in cryptography.

Black-box reductions. All traditional reductions used in complexity theory (e.g., for
establishing NP-hardness) are black-box.7 In fact, the definition of a Cook reduction
refers to an abstract oracle that provides answers to queries regarding the target
problem (see, e.g., Goldreich [2008, Sec. 2.2]), and the notion of a Karp reduction is
a special case. Although some early expositions of the notion of NP-completeness
entertained the possibility that a set S ∈ N P may be “NP-complete” if it holds
that S ∈ P implies N P = P, the standard notion of NP-completeness calls for a
reduction. Yet the possibility of showing hardness without presenting a (black-box)
reduction re-emerged in the study of the foundations of cryptography.

It began with the work of Impagliazzo and Rudich [1989], who essentially
showed that the security of a public-key encryption scheme cannot be reduced
to the existence of one-way permutations via a black-box reduction. This result
was taken as indication to the impossibility of constructing public-key encryp-
tion schemes based on one-way functions. Similarly, the fact that protocols of a
certain type cannot be demonstrated to be zero-knowledge using a black-box sim-
ulator [Goldreich and Krawczyk 1996] was taken as indication to the nonexistence

6. The interested reader may prefer the expositions provided in Goldreich [1997] and 2008,
Sec. 10.2.1.

7. Indeed, this follows the notion of Turing reduction used in computability theory (see, e.g.,
Goldreich [2008, Sec. 1.2.3.6]).
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of such zero-knowledge protocols. The latter belief was refuted by Barak [2001] a
decade later, and the interpretation of the host of black-box separation results that
followed [Impagliazzo and Rudich 1989] is a controversial topic. For a careful ex-
amination of the relevant issues, the interested reader is directed to Reingold et al.
[2004].

We mention that a natural notion in the context of zero-knowledge is one of a
universal simulator, which obtains the code of the verifier (which it simulates) as
an auxiliary input. Such a simulator (used by Barak [2001] and subsequent works
in cryptography) corresponds to the notion of a “white-box” reduction, which is
often considered in complexity theory (e.g., in the context of derandomization;
see Impagliazzo et al. [2001], which explicitly discusses the distinction between
black-box and white-box reductions as well as the possibility of nonconstructive
proofs (of implications)).

18.2 Pseudorandomness: A Wide Computational Perspective

Indistinguishable things are identical.8

—G. W. Leibniz (1646–1714)

The second half of this century has witnessed the development of three theories
of randomness, a notion which has been puzzling thinkers for ages. The first the-
ory (cf. Cover and Thomas [1991]), initiated by Shannon, is rooted in probability
theory and is focused at distributions that are not perfectly random (i.e., are not
uniform over a set of strings of adequate length). Shannon’s Information Theory
characterizes perfect randomness as the extreme case in which the information con-
tents is maximized (i.e., the strings contain no redundancy at all). Thus, perfect
randomness is associated with a unique distribution: the uniform one. In partic-
ular, by definition, one cannot (deterministically) generate such perfect random
strings from shorter random seeds.

The second theory (cf. Li and Vitanyi [1993]), initiated by Solomonov, Kol-
mogorov, and Chaitin, is rooted in computability theory and specifically in the
notion of a universal language (equivalently, universal machine or computing
device). It measures the complexity of objects in terms of the shortest program
(for a fixed universal machine) that generates the object. Like Shannon’s theory,
Kolmogorov complexity is quantitative and perfect random objects appear as an
extreme case. However, in this approach one may say that a single object, rather

8. This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to
this principle are conceivable but will not occur in real life because God is much too benevolent.
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than a distribution over objects, is perfectly random. Still, Kolmogorov’s approach
is inherently intractable (i.e., Kolmogorov complexity is uncomputable), and—by
definition—one cannot (deterministically) generate strings of high Kolmogorov
complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali, and Yao [Goldwasser
and Micali 1984, Blum and Micali 1984, Yao 1982], is rooted in the notion of
efficient computation and is the focus of this section. This approach is explicitly
aimed at providing a notion of randomness that allows for an efficient generation
of random strings from shorter random seeds. The heart of this approach is the
suggestion to view objects as equal if they cannot be told apart by any efficient
procedure. Consequently, a distribution that cannot be efficiently distinguished
from the uniform distribution will be considered as being random (or rather called
pseudorandom). Thus, randomness is not an “inherent” property of objects (or
distributions) but is rather relative to an observer (and its computational abilities).
To demonstrate this approach, let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In each of
them, Alice flips an unbiased coin and Bob is asked to guess its outcome before
the coin hits the floor. The alternative ways differ by the knowledge Bob has
before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips the
coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin is
spinning in the air. Although the outcome is determined in principle by the motion
of the coin, Bob does not have accurate information on the motion and thus we
believe that also in this case Bob wins with probability 1/2.

The third alternative is similar to the second, except that Bob has at his
disposal sophisticated equipment capable of providing accurate information on
the coin’s motion as well as on the environment effecting the outcome. However,
Bob cannot process this information in time to improve his guess.

In the fourth alternative, Bob’s recording equipment is directly connected to
a powerful computer programmed to solve the motion equations and output a
prediction. It is conceivable that in such a case Bob can substantially improve
his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and
computing resources at our disposal. Thus, a natural concept of pseudorandom-
ness arises: a distribution is pseudorandom if no efficient procedure can distinguish
it from the uniform distribution, where efficient procedures are associated with
(probabilistic) polynomial-time algorithms. This notion of pseudorandomness is
indeed the most fundamental one, yet weaker notions of pseudorandomness arise
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as well—they refer to indistinguishability by weaker procedures such as space-
bounded algorithms, constant-depth circuits, etc.9

18.2.1 The General Paradigm
The foregoing discussion has focused at one aspect of the pseudorandomness
question—the resources or type of the observer (or potential distinguisher). An-
other important aspect is whether such pseudorandom sequences can be generated
from much shorter ones, and at what cost (or complexity). A natural approach re-
quires the generation process to be efficient, and furthermore to be fixed before
the specific observer is determined. Coupled with the aforementioned strong no-
tion of pseudorandomness, this yields the archetypical notion of pseudorandom
generators—those operating in (fixed) polynomial time and producing sequences
that are indistinguishable from uniform ones by any polynomial-time observer.
In particular, this means that the distinguisher is allowed more resources than
the generator. Such (general-purpose) pseudorandom generators (discussed in Sec-
tion 18.2.2) allow to decrease the randomness complexity of any efficient applica-
tion, and are thus of great relevance to randomized algorithms and cryptography.
The term general purpose is meant to emphasize the fact that the same generator
is good for all efficient applications, including those that consume more resources
than the generator itself.

Although general-purpose pseudorandom generators are very appealing, there
are important reasons for considering also the opposite relation between the com-
plexities of the generation and distinguishing tasks—that is, allowing the pseudo-
random generator to use more resources (e.g., time or space) than the observer
it tries to fool. This alternative is natural in the context of derandomization (i.e.,
converting randomized algorithms to deterministic ones), where the crucial step
is replacing the random input of an algorithm by a pseudorandom input, which
in turn can be generated based on a much shorter random seed. In particular,
when derandomizing a probabilistic polynomial-time algorithm, the observer (to
be fooled by the generator) is a fixed algorithm. In this case employing a more
complex generator merely means that the complexity of the derived determinis-

9. We mention two perspectives on pseudorandomness that are somewhat different than the
one presented in this section. Vadhan’s treatment [Vadhan 2012] emphasizes the connections
between a variety of fundamental “pseudorandom objects” that seem very different in nature.
The Pseudorandomness program of the Simons Institute (run in Jan–May 2017) emphasizes that
pseudorandomness and structure are complementing opposites. In both cases (especially, in the
second), the computational aspect is somewhat de-emphasized. The word “computational” was
inserted in the title of this section in order to reemphasize this aspect.



18.2 Pseudorandomness: A Wide Computational Perspective 509

tic algorithm is dominated by the complexity of the generator (rather than by the
complexity of the original randomized algorithm). Needless to say, allowing the
generator to use more resources than the observer that it tries to fool makes the
task of designing pseudorandom generators potentially easier, and enables deran-
domization results that are not known when using general-purpose pseudorandom
generators.

We note that the goal of all types of pseudorandom generators is to allow the
generation of “sufficiently random” sequences based on much shorter random
seeds; that is, such generators are actually deterministic algorithms that stretch
their input seeds into much longer pseudoramndom sequences. Our focus is on
pseudorandom generators that have significant stretch, since they offer significant
saving in the randomness complexity of various applications (and, in some cases,
eliminating randomness altogether). Saving on randomness is valuable because
many applications are severely limited in their ability to generate or obtain truly
random bits. Furthermore, typically, generating truly random bits is significantly
more expensive than standard computation steps. Thus, randomness is a compu-
tational resource that should be considered on top of time complexity (analogously
to the consideration of space complexity).

18.2.1.1 Three Fundamental Aspects
In light of the foregoing, a generic formulation of pseudorandom generators con-
sists of specifying three fundamental aspects: the stretch measure of the generators,
the class of distinguishers that the generators are supposed to fool (i.e., the al-
gorithms with respect to which the computational indistinguishability requirement
should hold), and the resources that the generators are allowed to use (i.e., their
own computational complexity). Let us elaborate.

Stretch function. A necessary requirement from any notion of a pseudorandom
generator is that the generator is a deterministic algorithm that stretches short
strings, called seeds, into longer output sequences.10 Specifically, this algorithm
stretches k-bit-long seeds into �(k)-bit-long outputs, where �(k) > k. The function
�: N → N is called the stretch measure (or stretch function) of the generator. In some
settings (e.g., in the case of general-purpose pseudorandom generators), the stretch
measure can be amplified.

10. Indeed, the seed represents the randomness that is used in the generation of the output
sequences; that is, the randomized generation process is decoupled into a deterministic algorithm
and a random seed. This decoupling facilitates the study of such processes.
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Computational indistinguishability. A necessary requirement from any notion of a
pseudorandom generator is that the generator “fools” some nontrivial algorithms.
That is, it is required that any algorithm taken from a predetermined class of inter-
est cannot distinguish the output produced by the generator (when the generator is
fed with a uniformly chosen seed) from a uniformly chosen sequence. Thus, we con-
sider a class D of distinguishers (e.g., probabilistic polynomial-time algorithms)
and a class F of (threshold) functions (e.g., reciprocals of positive polynomials),
and require that the generator G satisfies the following: For any D ∈ D, any f ∈ F ,
and for all sufficiently large k’s, it holds that

| Pr[D(G(Uk)) = 1] − Pr[D(U�(k)) = 1]| < f (k), (18.1)

where Un denotes the uniform distribution over {0, 1}n and the probability is taken
over Uk (respectively, U�(k)) as well as over the coin tosses of algorithm D in case it
is probabilistic. The reader may think of such a distinguisher, D, as of an observer
that tries to tell whether the “tested string” is a random output of the generator
(i.e., distributed as G(Uk)) or is a truly random string (i.e., distributed as U�(k)).
The condition in Eq. (18.1) requires that D cannot make a meaningful decision;
that is, ignoring a negligible difference (represented by f (k)), D’s verdict is the
same in both cases.11 The archetypical choice is that D is the set of all probabilistic
polynomial-time algorithms, and F is the set of all functions that are the reciprocal
of some positive polynomial.

Complexity of generation. This aspect refers to the complexity of the generator itself,
when viewed as an algorithm. The archetypical choice is that the generator has to
work in polynomial time (i.e., make a number of steps that is polynomial in the
length of its input—the seed). Other choices will be discussed as well. We note
that placing no computational requirements on the generator (or, alternatively,
imposing very mild requirements such as upper-bounding the running-time by a
double-exponential function), yields “generators” that can fool any subexponential-
size circuit family.12

11. The class of threshold functions F should be viewed as determining the class of noticeable
probabilities (as a function of k). Thus, we require certain functions (i.e., those presented at the
l.h.s of Eq. (18.1)) to be smaller than any noticeable function on all but finitely many integers. We
call the former functions negligible. Note that a function may be neither noticeable nor negligible
(e.g., it may be smaller than any noticeable function on infinitely many values and yet larger than
some noticeable function on infinitely many other values).

12. This fact can be proved via the probabilistic method; see Goldreich [2008, Exer. 8.1].
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18.2.1.2 Some Instantiations of the General Paradigm
Two important instantiations of the notion of pseudorandom generators relate to
polynomial-time distinguishers.

General-purpose pseudorandom generators. This incarnation corresponds to the
case that the generator itself runs in polynomial time and is required to withstand
any probabilistic polynomial-time distinguisher, including distinguishers that run for
more time than the generator (i.e., Eq. (18.1) holds for all polynomial-time D’s and
F = {1/p : p ∈ POLY}). Thus, the same generator may be used safely in any efficient
application.

This notion is treated in Section 17.4, and we shall further discuss it in Sec-
tion 18.2.2. Recall that in this case, any pseudorandom generator (of any stretch
function, including the minimal �(k) = k + 1), implies a pseudorandom generator
of any desired (polynomial) stretch function [Goldreich 2008, Sec. 8.2.4].

Canonical derandomizers. In contrast, pseudorandom generators intended for de-
randomization may run more time than the distinguisher, which is viewed as a
fixed circuit having size that is upper-bounded by a fixed polynomial (say, the qua-
dratic polynomial n2). Specifically, a canonical derandomizer is an exponential-time
deterministic algorithm that stretches its k-bit-long random seed to an �(k)-bit-long
sequence that fools any quadratic (in �) size circuits (i.e., Eq. (18.1) holds for any
circuit D of size �(n)2 and F = {1/6}).

Note that a canonical derandomizer of exponential stretch implies that BPP =
P. To see this, consider an arbitrary probabilistic polynomial-time algorithm, de-
noted A, that decides S ∈ BPP, and denote its running time by p. Letting G denote
the canonical derandomizer, and �(k) = exp(�(k)) denote its stretch, we obtain an
algorithm AG that, on input x, uniformly selects s ∈ {0, 1}k, where k = O(log |x|)
such that �(k) = p(|x|), and invokes A on input x and randomness G(s). By the
current incarnation of Eq. (18.1), it follows that, for every x, we have | Pr[A(x) =
1] − Pr[AG(x) = 1]| < 1/6, since otherwise we obtain a o(�(k)2)-size circuit that dis-
tinguishes U�(k) from G(Uk). Finally, by trying all possible random tapes of AG, we
obtain a deterministic polynomial-time algorithm that decides S (i.e., this algo-
rithm accepts x if and only if the majority of the possible random tapes lead AG(x)

to accept (i.e., iff Pr[AG(x) = 1] > 1/2)).13

Note that if f is computable in exponential time but is hard to approximate
(or predict), on the average, by circuits of smaller exponential size (with advantage

13. Recall that for every x, either Pr[A(x) = 1] ≥ 2/3 or Pr[A(x) = 1] ≤ 1/3.
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proportional to their size), then G(s) = (s , f (s)) constitutes a canonical derandom-
izer (of minimal stretch). Interestingly, canonical derandomizers of exponential
stretch can also be obtained in this case [Nisan and Wigderson 1994], by apply-
ing f to an exponential number of �(k)-bit-long substrings of the k-bit-long seed
that have relatively small pairwise intersections.14 For further details on canonical
derandomizers, the interested reader is referred to Goldreich [2008, Sec. 8.3].

We now turn to a few additional instantiations of the notion of pseudorandom
generators. These instantiations refer to more limited classes of distinguishers
such as log-space machines, local computations, and linear computations. In the
known constructions for each of these cases, each bit in the output of the generator
can be computed in time that is polynomial in the seed length.

Fooling space-bounded distinguishers. Here the distinguishers are space-bounded
machines that have unidirectional access to the input they examine; actually, we
may consider (nonuniform) OBDDs of bounded width.15 The two main construc-
tions known are at the extremes the relation between the distinguishers’ time and
space complexities (i.e., the OBDDs’ length and width), where in both cases the
generator itself has linear space complexity.

1. Using a seed of length k = O(log s)2, one can fool 2s-width OBDDs that read
exp(s)-many bits (i.e., �(k) = exp(

√
k)) [Nisan 1992].

2. Using a seed of length k = O(log s), one can fool 2s-width OBDDs that read
poly(s)-many bits (i.e., �(k) = poly(k)) [Nisan and Zuckerman 1996].

In the first result one should think of s as being logarithmic in the length of the
output sequence (i.e., s = O(log �(k))), whereas in the second result one should
think of s as being a O(1)-root of the length of the output sequence (i.e., s =
�(k)1/O(1)). The specific construction of the first generator allows for derandomizing
the class BPL in polylogarithmic space and polynomial time [Nisan 1994]. For
further details on space-bounded pseudorandom generators, the interested reader
is referred to Goldreich [2008, Sec. 8.4].

14. We mention that the construction of Nisan and Wigderson [1994] has also been applied in
other settings. One case, which predated Nisan and Wigderson [1994], is that of constant-depth
circuits [Nisan 1991]. Another case is information theoretic; this case led to a breakthrough in the
study of randomness extractors [Trevisan 2001]. In both these cases, the hard function f can be
proved to exist without relying on any intractability assumptions.

15. Ordered binary decision diagrams (OBDD) are branching programs that reads bits of the input
in a predetermined order. Their width correspond to an exponential function of the space bound.
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Fooling local distinguishers. Here we consider distinguishers that inspect a constant
number, denoted t , of bits in the sequence output by the generator, where these
bit locations are not a priori known. Random sequences that perfectly fool such
distinguishers are called t -wise independent (since each sequence of t bits in them is
uniformly distributed in {0, 1}t). Constructions of t -wise independence generators
can achieve stretch �(k) = 2k/t , and this result extends to sequences over 
 =
{0, 1}k/t ; for details, see Goldreich [2008, Sec. 8.5.1].

Fooling linear distinguishers. Here we consider distinguishers that inspect a linear
combination (over GF(2)) of bits in the sequence output by the generator, where
the linear combination is not a priori known. Random sequences that fool such
distinguishers with a probability gap of ε are called ε-biased. Constructions of ε-
biased generators can achieve stretch �(k) = ε . exp(�(k)); for details, see Goldreich
[2008, Sec. 8.5.2].

Fooling hitting tests distinguishers. Last, we consider distinguishers that inspect se-
quences over 
 = {0, 1}b. Each such distinguisher is associated with a target set
T ⊆ 
 of density at least half, and accepts the sequence if at least one of its ele-
ments hit the set T . A generator G : {0, 1}k → 
�′(k) is said to pass such a test if the
probability that its output is not accepted (i.e., each element in G(Uk) misses T ) is
at most exp(−�(�′(k))). Such generators can be constructed for �′(k) = �(k − b);
for details, see Goldreich [2008, Sec. 8.5.3].

18.2.2 General-Purpose Pseudorandom Generators
Randomness is playing an increasingly important role in computation. It is fre-
quently used in the design of sequential, parallel and distributed algorithms, and
it is of course central to cryptography. Whereas it is convenient to design such
algorithms making free use of randomness, it is also desirable to minimize the
usage of randomness in real implementations. Thus, general-purpose pseudoran-
dom generators (as defined in Section 17.4) are a key ingredient in an “algorithmic
toolbox”—they provide an automatic compiler of programs written with free usage
of randomness into programs that make an economical use of randomness.

18.2.2.1 The Archetypical Application
Recall that “pseudorandom number generators” appeared with the first computers
and have been used ever since for generating random choices (or samples) for var-
ious applications. However, typical implementations use generators that are not
pseudorandom according to our definition. Instead, at best, these generators are
shown to pass some ad hoc statistical test (cf., Knuth [1981]). We warn that the fact
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that a “pseudorandom number generator” passes some statistical tests does not
mean that it will pass a new test and that it will be good for a future (untested) ap-
plication. Needless to say, the approach of subjecting the generator to some ad hoc
tests fails to provide general results of the form “for all practical purposes using the
output of the generator is as good as using truly unbiased coin tosses.” In contrast,
the approach encompassed in the definition of general-purpose pseudorandom
generators aims at such generality, and in fact is tailored to obtain it: The notion
of computational indistinguishability, which underlines this definition, covers all
possible efficient applications and guarantees that for all of them pseudorandom
sequences are as good as truly random ones. Indeed, any efficient randomized al-
gorithm maintains its performance when its internal coin tosses are substituted by
a sequence generated by a (general purpose) pseudorandom generator. This sub-
stitution is spelled out next.

Construction 18.1 (Typical application of pseudorandom generators) Let G be a (general-purpose)
pseudorandom generator with stretch function �: N → N. Let A be a probabilistic
polynomial-time algorithm, and ρ: N → N denote its randomness complexity. De-
note by A(x , r) the output of A on input x and coin tosses sequence r ∈ {0, 1}ρ(|x|).
Consider the following randomized algorithm, denoted AG:

On input x, set k = k(|x|) to be the smallest integer such that �(k) ≥ ρ(|x|),
uniformly select s ∈ {0, 1}k, and output A(x , r), where r is the ρ(|x|)-bit-long prefix
of G(s).

That is, AG(x , s) = A(x , G′(s)), where |s| = k(|x|) = argmini{�(i) ≥ ρ(|x|)}, and G′(s)
is the ρ(|x|)-bit-long prefix of G(s).

Thus, using AG instead of A, the randomness complexity is reduced from ρ to
�−1 ◦ ρ, while (as stated in Proposition 18.1) it is infeasible to find inputs (i.e., x’s)
on which the noticeable behavior of AG is different from the one of A (and the non-
existence of such inputs follows in case pseudorandomness holds with respect to
polynomial-size circuits).16 For example, if �(k) = k2, then the randomness com-
plexity is reduced from ρ to

√
ρ. We stress that the pseudorandom generator G is

universal; that is, it can be applied to reduce the randomness complexity of any
probabilistic polynomial-time algorithm A.

Proposition 18.1 Let A, ρ, and G be as in Construction 18.1, and suppose that ρ : N → N is 1-1. Then,
for every pair of probabilistic polynomial-time algorithms, a finder F and a tester

16. That is, the (nonuniform) existential conclusion follows from a nonuniform hypothesis re-
garding G (i.e., that G(Uk) is indistinguishable from U�(k) by any poly(k)-size circuit).
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T , every positive polynomial p and all sufficiently long n’s∑
x∈{0, 1}n

Pr[F(1n) = x] . �A,T (x) <
1

p(n)
, (18.2)

where �A,T (x)
def= | Pr[T (x , A(x , Uρ(|x|))) = 1] − Pr[T (x , AG(x , Uk(|x|))) = 1]|, and the

probabilities are taken over the Um’s as well as over the internal coin tosses of the
algorithms F and T .

Algorithm F represents a potential attempt to find an input x on which the output
of AG is distinguishable from the output of A. This “attempt” may be benign, as in
the case that a user employs algorithm AG on inputs that are generated by some
probabilistic polynomial-time application. However, the attempt may also be adver-
sarial, as in the case that a user employs algorithm AG on inputs that are provided
by a potentially malicious party. The potential tester, denoted T , represents the po-
tential use of the output of algorithm AG, and captures the requirement that this
output be as good as a corresponding output produced by A. Thus, T is given x as
well as the corresponding output produced either by AG(x)

def= A(x , G′(Uk(|x|))) or
by A(x) = A(x , Uρ(|x|)), and it is required that T cannot tell the difference. In the
case that A is a probabilistic polynomial-time decision procedure, this means that
it is infeasible to find an x on which AG decides incorrectly (i.e., differently than
A). In the case that A is a search procedure for some NP-relation, it is infeasible to
find an x on which AG outputs a wrong solution. For details, see Goldreich [2008,
Sec. 8.2.1].

Conclusion. Although Proposition 18.1 refers to standard probabilistic poly-
nomial-time algorithms, a similar construction and analysis applied to any efficient
randomized process (i.e., any efficient multi-party computation). Any such process
preserves its behavior when replacing its perfect source of randomness (postulated
in its analysis) by a pseudorandom sequence (which may be used in the implemen-
tation). Thus, given a pseudorandom generator with a large stretch function, one
can significantly reduce the randomness complexity of any efficient application.

18.2.2.2 Pseudorandom Functions
Pseudorandom generators allow the efficient generation of long pseudorandom
sequences from short random seeds (e.g., using k random bits, we can efficiently
generate a pseudorandom bit-sequence of length k2). Pseudorandom functions
(defined below) are even more powerful: they allow efficient direct access to a huge
pseudorandom sequence (which is infeasible to scan bit by bit). For example, based
on k random bits, we define a sequence of length 2k such that we can efficiently
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retrieve any desired bit in this sequence while the retrieved bits look random. In
other words, pseudorandom functions can replace truly random functions in any
efficient application (e.g., most notably in cryptography). That is, pseudorandom
functions are indistinguishable from random functions by any efficient procedure
that may obtain the function values at arguments of its choice.

Definition 18.1 (Pseudorandom functions [Goldreich et al. 1986]) A pseudorandom function (en-
semble), with length parameters �D, �R: N → N (e.g., �D(k) = k and �R(k) = 1), is a
collection of functions {Fk}k∈N, where

Fk
def= {fs: {0, 1}�D(k) → {0, 1}�R(k)}s∈{0, 1}k ,

satisfying:

efficient evaluation. There exists an efficient (deterministic) algorithm that
when given a seed, s, and an �D(|s|)-bit argument, x, returns the �R(|s|)-bit
long value fs(x).

(Thus, the seed s is an “effective description” of the function fs.)

pseudorandomness. For every probabilistic polynomial-time oracle machine
M , every positive polynomial p, and all sufficiently large k,

| Pr
s∼Uk

[Mfs(1k) = 1] − Pr
ρ∼Rk

[Mρ(1k) = 1]| < 1
p(k)

,

where Rk denotes the uniform distribution over all functions mapping
{0, 1}�D(k) to {0, 1}�R(k) and Mf (x) denotes the computation of M on input
x when M ’s queries are answered by the function f .

Although pseudorandom functions seem stronger than pseudorandom generators,
the former can be constructed using the latter (see Section 17.4.3).

We mention two (“noncryptographic”) applications of pseudorandom functions
to the theory of computation. The first, which originates in Valiant’s seminal work
on PAC learning [Valiant 1984], is the observation that pseudorandom functions
yield concept classes that are infeasible to learn (since a learning algorithm for a
concept class consisting of pseudorandom functions would distinguish pseudoran-
dom functions from truly random functions, which cannot be learned at all). The
second application is the pivotal role of pseudorandom functions in the “natural
proofs” framework of Razborov and Rudich [1997].
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18.2.2.3 The Intellectual Contents of Pseudorandom Generators
We briefly discuss some intellectual aspects of general-purpose pseudorandom
generators. Actually, the first two aspects apply to all incarnations of the notion
of a pseudorandom generator.

Behavioristic versus ontological. Our definition of pseudorandom generators is based
on the notion of computational indistinguishability. The behavioristic nature of the
latter notion is best demonstrated by confronting it with the Kolmogorov–Chaitin
approach to randomness. Loosely speaking, a string is Kolmogorov random if its
length roughly equals the length of the shortest program producing it. This shortest
program may be considered the “true explanation” to the phenomenon described
by the string. A Kolmogorov-random string is thus a string that does not have a
substantially simpler (i.e., shorter) explanation than itself. Considering the sim-
plest explanation of a phenomenon may be viewed as an ontological approach.
In contrast, considering the effect of phenomena (on an observer), as underlying
the definition of pseudorandomness, is a behavioristic approach. Furthermore,
there exist probability distributions that are not uniform (and are not even statisti-
cally close to a uniform distribution), but nevertheless are indistinguishable from a
uniform distribution by any efficient procedure. Thus, distributions that are onto-
logically very different are considered equivalent by the behavioristic point of view
taken in the definition of pseudorandomness.

A relativistic view of randomness. Pseudorandomness is defined in terms of its ob-
server: In the archetypical case of the general-purpose incarnation, a pseudoran-
dom distribution is one that cannot be told apart from a uniform distribution by any
efficient (i.e., polynomial-time) observer. However, the output of such pseudoran-
dom generators can be distinguished from uniform sequences by an exponential-
time machine (which is not at our disposal), which just tries all possible seeds (and
rules that the sequence is random if and only if it is not in the image of the gen-
erator). Furthermore, the mere variety of different incarnations of the notion of
computational indistinguishability testifies that pseudorandomness depends on
the abilities of the observer. Hence, pseudorandomness is a relative notion.

Randomness and computational difficulty. In the archetypical case of the general-
purpose incarnation (and also in the case of canonical derandomizers), pseudo-
randomness and computational difficulty play dual roles: The definition of pseu-
dorandomness is pivoted at a difficult computational task (i.e., the task of distin-
guishing pseudorandom sequences from truly random ones). Furthermore, the
known constructions of pseudorandom generators rely on conjectures regarding



518 Chapter 18 On the Impact of Cryptography on Complexity Theory

computational difficulty (e.g., the existence of one-way functions in the archetyp-
ical case), and this is inevitable: The existence of such pseudorandom generators
implies some known intractability conjectures (e.g., the existence of one-way func-
tions).

Randomness and predictability. The connection between pseudorandomness and
unpredictability (by efficient procedures) plays an important role in the analy-
sis of several constructions of pseudorandom generators (see Goldreich [2008,
Sec. 8.2.5.2], as well as Goldreich [2008, Sec. 8.3.2.2]). We wish to highlight the
intuitive appeal of this connection.

18.3 Probabilistic Proof Systems: A Bird’s-Eye View

A proof is whatever convinces me.

—Shimon Even (1935–2004)

The glory attributed to the creativity involved in finding proofs makes us forget that
it is the less glorified process of verification that defines proof systems. The notion of
a verification procedure presupposes the notion of computation, and furthermore
the notion of efficient computation (because verification, unlike coming up with
proofs, is supposed to be easy). Associating the set of valid assertions with a set of
objects that have some property, we view a proof system for a set S (e.g., of satisfiable
formulae) as a game between an all-powerful prover and an efficient verifier: Both
receive an input x, and the prover attempts to convince the verifier that x ∈ S. We
seek proof systems that are complete and sound, where completeness means that
the prover succeeds for every x ∈ S, and soundness means that any prover fails for
every x ∈ S.

When taking the most natural choice of the efficiency requirement, namely,
restricting the verifier to be a deterministic polynomial-time machine, we get the
definition of the class N P (rephrased as a proof system): A set S is in N P if and only
if membership in S can be verified by a deterministic polynomial-time machine when
given an alleged proof of polynomial length (i.e., polynomial in |x|).

Relaxing the efficiency requirement, we let the verifier be a probabilistic poly-
nomial-time machine. Furthermore, we allowing it to “rule by statistical evidence”
and hence to err (with low probability, which is explicitly bounded, and can be
reduced via repetitions). This relaxation is not suggested as a substitute to the
notion of a mathematical proof, but rather as a practical solution to the problem
of verifying mundane assertions (like the fact that on input x, the program P halts
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with output P(x)). As we shall see below, this relaxation turns out to yield enormous
advances in computer science.

18.3.1 Interactive Proof Systems
When the verifier is deterministic, we can always assume that the prover simply
sends it a single message (the purported “proof”), and based on this message the
verifier decides whether to accept or reject the common input x as a member of
the target set S. (More extensive interaction does not help here, since the verifier’s
steps are predictable by the prover.)

When the verifier is probabilistic, interaction may add power. We thus consider
a (randomized) interaction between the parties. Such an interaction which may
be viewed as an “interrogation” of the teacher (prover) by a persistent student
(verifier), who asks the teacher “tough” questions in order to be convinced of the
correctness of the claim. Interestingly, it turns out that asking “tough” questions is
not (significantly) better than asking random questions (even if one cares about
the number of rounds [Goldwasser and Sipser 1989]).17 In any case, since the
verifier ought to be efficient (i.e., run in time polynomial in |x|), this interaction is
bounded to have at most polynomially many rounds. The class IP (for Interactive
Proofs) contains all sets S for which there is a verifier that accepts every x ∈ S with
probability 1 (after interacting with an adequate prover), but rejects any x ∈ S with
probability at least 1/2 (no matter what strategy is employed by the prover).

Clearly, N P ⊆ IP: To prove that x is in an NP-set S, the prover just sends an
adequate NP-witness, which the verifier can easily verify. But how can one prove
that x is not in S ∈ N P? That is, when proving that something (i.e., an NP-witness)
exists, the prover merely presents it, but how can the prover convince the verifier
that something (i.e., an NP-witness) does not exist? A major result asserts that
interactive proofs exists for every set in PSPACE ⊇ coN P. In fact, we have the
following theorem.

Theorem 18.1 [Lund et al. 1992, Shamir 1992]: IP = PSPACE.

Recalling that it is widely believed that N P = PSPACE, it follows that interactive
proofs seem more powerful than standard noninteractive and deterministic proofs
(i.e., NP-proofs). In particular, since coN P ⊆ PSPACE, Theorem 18.1 implies that
there are such interactive proofs for every set in coN P, whereas some coNP-sets
are believed not to have NP-proofs.

17. See Section 19.3 for further discussion. The word “significantly” indicates that the known
transformation incurs a polynomial overhead in the verification time.
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18.3.2 Zero-Knowledge Proof Systems
Here the thrust is not on being able to prove more assertions, but rather on having
proofs with additional properties. Randomized and interactive verification proce-
dures as in Section 18.3.1 allow the (meaningful) introduction of zero-knowledge
proofs, which are proofs that yield nothing beyond their own validity. Such proofs
seem counterintuitive and undesirable for educational purposes, but they are very
useful in cryptography.

For example, a zero-knowledge proof that a certain propositional formula is
satisfiable does not reveal a satisfying assignment to the formula nor any partial
information regarding such an assignment (e.g., whether the first variable can
assume the value true). In general, whatever the verifier can efficiently compute
after interacting with a zero-knowledge prover, can be efficiently reconstructed
from the assertion itself (without interacting with anyone).

Clearly, any set in BPP has a zero-knowledge proof, in which the prover
says nothing (and the verifier decides by itself). What is surprising is that zero-
knowledge proofs seem to exist also for sets that are widely believed not to be in
BPP. In particular:

Theorem 18.2 (Goldreich et al. 1991) Assuming the existence of (nonuniformly hard) one-way
functions, every set in N P has a zero-knowledge proof system.

Interestingly, under the same condition any set in IP has a zero-knowledge
proof system [Ben-Or et al. 1990]. On the other hand, for the actual use of zero-
knowledge proof systems, it is crucial that the prover strategy asserted in Theo-
rem 18.2 can be implemented in probabilistic polynomial time, when given an
NP-witness for the common input. Of course, this zero-knowledge strategy does
not consist of just sending the NP-witness; it rather consists of sending “commit-
ments” to many “randomized versions” of the NP-witness and allowing the verifier
to inspect few random location in each such randomized witness (by decommitting
to the locations selected by the verifier).

18.3.3 Probabilistically Checkable Proof Systems
Let us return to the noninteractive mode, in which the verifier receives a (alleged)
written proof. But now we restrict its access to the proof so as to read only a small
part of it (which may be randomly selected by it). An excellent analogy is to imagine
a referee trying to decide the correctness of a long proof by sampling a few lines
of the proof. It seems hopeless to detect a single “bug” unless the entire “proof” is
read, but this intuition is valid only for the “natural” way of writing down proofs,
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and it fails when “robust” formats of proofs are used (and one is willing to settle
for statistical evidence).

Such “robust” proof systems are called PCPs (for Probabilistically Checkable
Proofs). Loosely speaking, a PCP system for a set S consists of a probabilistic
polynomial-time verifier having access to an oracle that represents a proof in redun-
dant form, where (as in case of NP-proofs) the length of the proof is polynomial in
the length of the input. The verifier accesses only a constant number of the oracle
bits, and accepts every x ∈ S with probability 1 (when given access to an adequate
oracle), but rejects any x ∈ S with probability at least 1/2 (no matter to which oracle
it is given access).

Theorem 18.3 (The PCP Theorem [Arora and Safra 1998, Arora et al. 1998]18) Each set in N P has
a pcp system. Furthermore, there exists a polynomial-time procedure for converting
any NP-proof to the corresponding pcp-oracle.

Indeed, the proof of the PCP Theorem suggests a way of writing “robust” proofs,
in which any bug must “spread” all over.19 One important application of the PCP
Theorem (and its variants) is its connection to the complexity of combinatorial
approximation. For example, using the PCP system of Håstad [2001], it follows that
it is NP-complete to decide, when given a linear system of equations over GF(2),
whether the fraction of mutually satisfiable equations is greater than 99% or smaller
than 51%.

18.3.4 Doubly Efficient Interactive Proof Systems
Turning back to interactive proof systems, recall that their definition does not
restrict the complexity of the strategy of the prescribed prover. Indeed, the con-
structions of Lund et al. [1992] and Shannon [1949] use prover strategies of high
complexity. This fact limits the applicability of these proof systems in practice. (Nev-
ertheless, such proof systems may be actually applied when the prover knows some-
thing that the verifier does not know, such as an NP-witness to an NP-claim, and
when the proof system offers an advantage such as zero-knowledge [Goldwasser et
al. 1989, Goldreich et al. 1991].)

In contrast, the definition of doubly efficient interactive proof systems requires
the prescribed prover strategy to be implemented in polynomial time and the verifier’s
strategy to be implemented in almost-linear time. (We stress that unlike in argument

18. See also an alternative proof of Dinur [2007].

19. The analogy to error-correcting codes is indeed in place, and the cross fertilization between
these two areas has been very significant.
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systems [Brassard et al. 1988], the soundness condition holds for all possible cheat-
ing strategies, not only for feasible ones.) Restricting the prescribed prover to run in
polynomial time implies that such systems may exist only for sets in BPP, whereas
a polynomial-time verifier can check membership in such sets by itself. However,
restricting the verifier to run in almost-linear time implies that something can be
gained by interacting with a more powerful prover, even though the latter is re-
stricted to polynomial time.

The foregoing potential was first demonstrated in Goldwasser et al. [2015],
which presents doubly efficient proof systems for any set that has log-space uniform
circuits of small depth (e.g., log-space uniform N C). An incomparable recent result
of Reingold et al. [2016] provides such (constant-round) proof systems for any set
that can be decided in polynomial time and small amount of space (e.g., for all sets
in SC). That is, denoting by TiSp(T , s) the class of sets that can be decided by a
(randomized) algorithm that runs in time T while using space s, we have:

Theorem 18.4 (Reingold et al. 2016) For every polynomial p and s(n) =√
n, each set in TiSp(p, s)

has a (constant round) doubly efficient proof system.

Recall that each set having a doubly efficient proof system is in BPP, and note that
it is also decidable in almost-linear space.
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19On Some
Noncryptographic Works
of Goldwasser and Micali
Oded Goldreich

While this book focuses on the contributions of Goldwasser and Micali to cryptog-
raphy, their contributions to other areas of computer science are immense too. In
particular, while the original works reproduced in this book were all motivated by
cryptographic considerations and made significant contributions to the founda-
tions of cryptopgraphy, all of them have had a tremendous influence also outside
of cryptography. In fact, Chapter 18 traces the influences that these works have had
on complexity theory, but the story does not end there.

A different part of the story refers to works of Goldwasser and Micali that are not
naturally classified as belonging to cryptography. The current chapter endeavors to
briefly review some of these works.1 For each of the selected works, we shall repro-
duce the original abstract, and make a few additional comments about the work.

19.1 An O(
√|V | . |E|)-time Algorithm for Finding Maximum Matching

in General Graphs
The work of Micali and Vazirani [1980] still holds the record for the fastest algo-
rithm known for finding a maximum matching in general graphs, which is one of
the most classical problems in graph algorithms [Even 1979]. (For a brief histori-
cal account of the problem, the interested reader is referred to Micali and Vazirani

1. The works of Goldreich and Goldwasser [2000] and Goldwasser, Kalai, and Rothblum
[Goldwasser et al. 2015] were omitted from our selection since they are covered by other surveys
in this book (see Chapters 21 and 24, respectively).
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[1980].) The time bound of this algorithm (i.e., O(
√|V | . |E|)) matches the bound

for the bipartite case [Hopcroft and Karp 1973], which is considerably simpler. The
source of difficulty is the complex “blossom structure” introduced by Edmonds
[1965]. The abstract of the conference version of Micali and Vazirani [1980] reads
as follows:

In this paper we present an O(
√|V | . |E|) algorithm for finding a maximum

matching in general graphs. This algorithm works in ‘phases’. In each phase
a maximal set of disjoint minimum length augmenting paths is found, and
the existing matching is increased along these paths.

Our contribution consists in devising a special way of handling blos-
soms, which enables an O(|E|) implementation of a phase. In each phase,
the algorithm grows Breadth First Search trees at all unmatched vertices.
When it detects the presence of a blossom, it does not ‘shrink’ the blossom
immediately. Instead, it delays the shrinking in such a way that the first
augmenting path found is of minimum length. Furthermore, it achieves
the effect of shrinking a blossom by a special labeling procedure which
enables it to find an augmenting path through a blossom quickly.

While the original publication [Micali and Vazirani 1980] provided a detailed de-
scription of the algorithm, it did not provide its analysis, and the authors’ intentions
of publishing a full analysis at a later stage never materialized. A full analysis, which
is based on new graph-theoretic structural facts and a revised definition of blos-
soms, has been provided by Vazirani [2014]. Alternative algorithms meeting the
same time bound as Micali and Vazirani [1980] have appeared subsequently to it
(see, e.g., Gabow [2017]).

19.2 Certifying Almost All Primes Using Elliptic Curves
The work of Goldwasser and Kilian [1999] predated the deteministic primality
testers of Agrawal et al. [2004] by almost two decades. As the following abstract
states, at the time, primality testing were either randomized or relied on unproven
conjectures. The randomized tests place the set of primes in coRP; that is, they
always rule that a prime is a prime, but they may rule with small probability that a
composite number is a prime. The randomized procedure provided by Goldwasser
and Kilian [1999] efficiently generates (efficiently and deterministically verifiable)
certificates of primality, which always vouches that a prime number is indeed a
prime, for almost all primes. Indeed, on some primes, the procedure may always
fail to produce a certificate, but it never generates false “certificates” for composite
numbers. In some sense, this work asserts that the set of primes is in “average-case
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RP” (or “typical RP”). The abstract of the conference version of Goldwasser and
Kilian [1999] reads as follows:

This paper presents a new probabilistic primality test. Upon termination the
test outputs “composite” or “prime”, alone with a short proof of correctness,
which can be verified in deterministic polynomial time. The test is different
from the tests of Miller [M], Solovay-Strassen [SS], and Rabin [R] in that
its assertions of primality are certain, rather than being correct with high
probability or dependent on an unproven assumption.

The test terminates in expected polynomial time on all but at most an
exponentially vanishing fraction of the inputs of length k, for every k. This
result implies:

. There exist an infinite set of primes which can be recognized in
expected polynomial time.

. Large certified primes can be generated in expected polynomial time.

Under a very plausible condition on the distribution of primes in “small”
intervals, the proposed algorithm can be shown to run in expected
polynomial time on every input. This condition is implied by Cramer’s
conjecture.

The methods employed are from the theory of elliptic cures over finite
fields.

The starting point of this work is Pratt’s demonstration [Pratt 1975] that the set of
primes is in N P—that is, the fact that there exist (efficiently verifiable) certificates
of primality, albeit these certificates may not be easy to find. This is the case,
because these certificates are defined recursively such that the certificate for a
prime P consists of a generator G of Z∗

P
(i.e., a primitive element modulo P ), the

prime factorization of P − 1, and certificates for primality for each of its prime
factors. The prime factorization is used to verify that G has (multiplicative) order
P − 1 (in Z∗

P
), which in turn implies that P must be a prime.

Specifically, a valid certificate has the form ((P1, e1, C1), . . . , (Pt , et , Ct), G) such
that P − 1 =∏t

i=1 P
ei

i , the order of G in Z∗
P

is P − 1 (i.e., GP−1 ≡ 1 (mod P) but
G(P−1)/Pi ≡ 1 (mod P) for each i), and Ci is a certificante for primality of Pi. The
validity of this certificate relies on the fact that G may have order P − 1 in Z∗

P
if and

only if P is a prime. More abstractly, primes P yield groups of predetermined order,
denoted ord(P ), whereas composite numbers yield groups of a different order (i.e.,
if P is composite, then |ZP | = ord(P ) = P − 1). The problem with generating such
certificates is that it calls for factoring P − 1, which seems hard.

Suppose, instead, that given a prime P and random choices ω, we can define
a group RP ,ω, of order ord(P , ω) = P ± o(P ) such that the function ord and the
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group operation are easy to compute. If we can efficiently generate (possibly at
random) an element of order ord(P , ω) in that group, and if for composite P

the “order” of the “structure” RP ,ω disagrees with ord(P , ω), then the foregoing
reasoning would apply here too. The benefit is that, now, generating a certificate
for P calls for factoring ord(P , ω) rather than factoring P − 1, and if ord(P , .)
is random enough then we are in business. Specifically, if ord(P , .) is uniformly
distributed in a sufficiently large interval around P , then we can factor ord(P , .)
often enough, since in such a case with probability at least �(1/ log P), it holds
that ord(P , .) = 2Q for a prime Q. This is essentially what happens when using
(suitably) random elliptic curves mod P , and the complication arise because the
relevant interval has size

√
P (rather than, say, P/ poly(log P)).

Hence, the reviewed work asserted that the set of primes is in “average-case RP”
(or “typical RP”), and this begged the challenge of showing that the set of primes
is actually in RP. The challenge was met by Adleman and Huang [1992]. Fifteen
years later, Agrawal, Kayal, and Saxena [Agrawal et al. 2004] showed that the set of
primes is actually in P.

19.3 Private Coins versus Public Coins in Interactive Proof Systems
The work of Goldwasser and Sipser [1989] predated the discovery of the vast power
of interactive proof systems, and, in particular, the IP = PSPACE theorem [Lund
et al. 1992, Shamir 1992]. The starting point of [Goldwasser and Sipser 1989] is
the fact that Babai [1985] defined Arthur–Merlin games as a restricted form of
interactive proof systems, which were defined before by Goldwasser, Micali, and
Rackoff [Goldwasser et al. 1989], where the restriction is that the verifier is only
allowed to make uniformly selected queries (a.k.a use public coins). This difference
is not surprising given that Goldwasser, Micali, and Rackoff sought to capture the
most general notion of a proof system (with efficient verification) [Goldwasser et al.
1989], whereas Babai sought a minimal extension of the class N P (in order to place
some specific computational problem in it) [Babai 1985]. Surprisingly, Goldwasser
and Sipser [1989] showed that the aforementioned restriction does not weaken
the expressive power of the system; put differently, asking random questions is
as good as asking cleverly selected questions (i.e., questions that are the result
of an arbitrary probabilistic polynomial-time computation, whose coins are not
revealed to the prover but may be re-used when examining the prover’s answers).
The abstract of the conference version of Goldwasser and Kilian [1999] reads as
follows:

An interactive proof system is a method by which one party of unlimited
resources, called the prover, can convince a party of limited resources,
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called the verifier, of the truth of a proposition. The verifier may toss
coins, ask repeated questions of the prover, and run efficient tests upon the
prover’s responses before deciding whether to be convinced. This extends
the familiar proof system implicit in the notion of NP in that there the
verifier may not toss coins or speak, but only listen and verify. Interactive
proof systems may not yield proof in the strict mathematical sense: the
“proofs” are probabilistic with an exponentially small, though non-zero
chance of error.

We consider two notions of interactive proof systems. One, defined by
Goldwasser, Micali and Rackoff [Goldwasser et al. 1989] permits the verifier
a coin that can be tossed in private, i.e., a secret source of randomness. The
second, due to Babai, [B] requires that the outcome of the verifier’s coin
tosses be public and thus accessible to the prover.

Our main result is that these two systems are equivalent in power with
respect to language recognition.

The notion of interactive proof system may be seen to yield a probabilis-
tic analog to NP much as BPP is the probabilistic analog to P. We define the
probabilistic, nonderministic, polynomial time Turing machine and show that
it is also equivalent in power to these systems.

We stress that the result actually shown is stronger: The authors showed that any
r-round interactive proof system can be emulated by an (r + 3)-round interactive
proof system of the public-coin type. We comment that the mere fact that interac-
tive proof system can be emulated by interactive proof system of the public-coin
type follows from the subsequent demonstration that IP = PSPACE, because the
original demonstration actually shows that any set in PSPACE has a public-coin
interactive proof system [Lund et al. 1992, Shamir 1992] (whereas IP ⊆ PSPACE,
where IP denotes the class of sets having (general) interactive proof systems).

The fact that private coins are of no real help came as a surprise, especially in
light of the interactive proof system presented around the same time for graph
nonisomorphism, since that proof system makes essential use of private coins
[Goldreich et al. 1991]. In that proof system, the verifier selects at random one of the
two graphs, sends a randomly permuted (or relabeled) version of it to the prover,
and accepts if and only if the prover identifies correctly which graph was chosen. In
this specific case, the public-coin proof system derived by Goldwasser and Sipser
[1989] amounts to proving a lower bound on the size of automorphism group of the
graph consisting of both graphs (and an upper bound on the size of automorphism
groups of each of the individual graphs).2

2. An upper bound on the size of automorphism group of a graph G follows by a lower bound on
the number of different graphs that are obtained by relabeling the vertices of G.
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In general, a key ingredient of the construction of Goldwasser and Sipser [1989]
is a public-coin protocol, known as the lower bound protocol, that allows one party
to prove to another that the size of a set exceeds some given number (provided that
the set is in N P).3 This protocol, which is closely related to a “random selection”
protocol, was used extensively in subsequent works.

19.4 An Optimal Randomized Protocol for Synchronous
Byzantine Agreement
The work of Feldman and Micali [1997] presents a constant-round randomized
Byzantine agreement protocol for a synchronous communication model with pri-
vate channels. As in Ben-Or et al. [1988b], the private-channel model allows to
abstract away intractability assumptions and cryptographic tools, although imple-
menting this clean model on a network of insecure channels does require such
assumptions and tools. The protocol improved over a prior protocol of Bracha
[1987] that used logarithmically many rounds (and intractability assumptions). The
conference version of Feldman and Micali [1997] had no abstract, and the abstract
of the journal version reads as follows:

Broadcasting guarantees the recipient of a message that everyone else
has received the same message. This guarantee no longer exists in a
setting in which all communication is person-to-person and some of
the people involved are untrustworthy: though he may claim to send the
same message to everyone, an untrustworthy sender may send different
messages to different people. In such a setting, Byzantine agreement
offers the “best alternative” to broadcasting. Thus far, however, reaching
Byzantine agreement has required either many rounds of communication
(i.e., messages had to be sent back and forth a number of times that
grew with the size of the network) or the help of some external trusted
party.

In this paper, for the standard communication model of synchronous
networks in which each pair of processors is connected by a private
communication line, we exhibit a protocol that, in probabilistic polynomial
time and without relying on any external trusted party, reaches Byzantine
agreement in an expected constant number of rounds and in the worst
natural fault model. In fact, our protocol successfully tolerates that up to

3. In the general case, when claiming a lower bound of N , the prover is confined to an 1/N fraction
of the original set. Hence, if the set is smaller than N , then the prover may be confined to an empty
subset of it.
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1/3 of the processors in the network may deviate from their prescribed
instructions in an arbitrary way, cooperate with each other, and perform
arbitrarily long computations.

Our protocol effectively demonstrates the power of randomization and
zero-knowledge computation against errors. Indeed, it proves that “privacy”
(a fundamental ingredient of one of our primitives), even when is not a
desired goal in itself (as for the Byzantine agreement problem), can be a
crucial tool for achieving correctness.

Our protocol also introduces three new primitives—graded broadcast,
graded verifiable secret sharing, and oblivious common coin—that are of
independent interest and may be effectively used in more practical protocols
than ours.

Byzantine agreement, introduced by Pease, Shostak, and Lamport [Pease et al.
1980], is considered the archetypical problem of processor coordination, which
is a central theme in distributed computing [Lynch 1996]. Here, we consider ran-
domized protocols for Byzantine agreement in the synchronous model, since those
bypass the linear (in the number of parties) lower bounds on the round complex-
ity of deterministic protocols in this model.4 The protocol of Feldman and Micali
[1997] runs for a constant number of rounds and satisfies the following conditions:
(1) In each possible execution, each of the parties either terminates with the same
value v or terminates with failure, and if all honest parties enter with the same
value, then v equals this value; and (2) with constant probability, over all possible
executions, no party terminates with failure.

We comment that the private channels used by Feldman and Micali [1997] are
essential for a constant-round randomized Byzantine agreement protocol in the
full-fledged malicious model considered by Feldman and Micali [1997]: In fact,
even in weaker (adaptive) models with no private channels, a number of rounds that
grows roughly as the square root of the number of parties is necessary [Bar-Joseph
and Ben-Or 1998]. On the other hand, the full-fledged without private channels does
allow for randomized Byzantine agreement protocols with a sublinear number of
rounds [Chor and Coan 1985].5

4. In the asynchronous model, deterministic protocols face an impossibility result, whereas ran-
domized protocols do exist. But our focus here is on the synchronous model.

5. The models considered in Chor and Coan [1985], Feldman and Micali [1997], and Bar-Joseph
and Ben-Or [1998] are adaptive in the sense that an external adversary may adaptively select
parties to corrupt during the execution of the protocol (and control their actions). In contrast,
in nonadaptive models, the faulty parties are determine (arbitrarily) before the execution starts. A
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19.5 PCPs and the Hardness of Approximating Cliques
The work of Feige, Goldwasser, Lovász, Safra, and Szegedy [Feige et al. 1996] pi-
oneered the study of (what become later known as) “probabilistically checkable
proofs” and its relation to the study of approximation problems. A probabilistically
checkable proof system for a set S is defined via a probabilistic polynomial-time or-
acle machine, called a verifier, that satisfies the following completeness and sound-
ness conditions: For every x ∈ S there exists a proof π such that Pr[V π(x) = 1] = 1,
whereas for every x ∈ S and every π it holds that Pr[V π(x) = 1] ≤ 1/2. For func-
tions r , q : N → N, we let PCP[r , q] denote the class of sets that have a (non-
adaptive) probabilistically checkable proof system of randomness complexity r

and query complexity q. The reviewed work [Feige et al. 1996] shows that N P ⊆
PCP[Õ(log), Õ(log)], which is a “scale down” of a prior result [Babai et al. 1991a]
asserting that N EXP = PCP[poly, poly]. Feige, Goldwasser, Lovász, Safra, and
Szegedy [Feige et al. 1996] also showed that deciding sets in PCP[r , q] is reducible
in poly(2t .(r+q))-time to approximating the largest clique in a 2t .(r+q)-vertex graph
up to a factor of 2t . The abstract of the conference version of Feige et al. [1996] reads
as follows:

We consider the computational complexity of approximating ω(G), the size
of the largest clique in a graph G. We show that

1. If there is an approximation algorithm in P for ω(G) within some
constant factor, then NP ⊆ DT IME(nO(log log n)).

2. If there is an approximation algorithm in P̃ (= ∪k>0DT IME(nlogk n))
for ω(G) within a factor of 2log1−ε n (for some ε > 0), then NP ⊆ P̃.

We conclude that if such approximation procedures exist, then EXPTIME =
NEXPTIME and NP̃ = P̃.

This work uses the theorem of Babai, Fortnow and Lund that NEXP-
TIME has multi-prover interactive proofs. For our purpose, we scale down
[BFL90]’s protocol to the NP level, and improve its efficiency. Of indepen-
dent interest is our simpler proof of correctness for the multi-linearity test.

We mention that independently of Feige et al. [1996], Babai, Fortnow, Levin, and
Szegedy [Babai et al. 1991b] showed that N P = PCP[O(log), poly(log)]. Their re-
sults were stated in terms of what became later known as PCPs for promiximity
(cf., e.g., Ben-Sasson et al. [2006]); specifically, they showed a PCP for proximity
for NP-complete sets (which encode standard NP-sets) in which the verifier runs in
polylogarithmic time.

randomized Byzantine agreement protocols with a logarithmic number of rounds was later shown
in the non-adaptive malicious model with no private channels [Ben-Or et al. 2006].
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Subsequent work of Arora, Lund, Motwani, Safra, Sudan, and Szegedy [Arora and
Safra 1998, Arora et al. 1998] resulted in the celebrated PCP theorem asserting that
N P = PCP[O(log), O(1)]. A vast amount of research followed. Most of it has been
directed toward extending and utilizing the PCP-to-inapproximabilty connection,
often while optimizing some parameter of the PCP system that governs the quality
of the said connection. This type of research is the focus of Chapter 22. In addition,
much research has been devoted to exploring various aspects of the PCP Theorem
and providing various versions of it, while envisioning these systems as being
actually applied to verify the correctness of computations. In such settings, the
proof length seems a dominant parameter (and the interested reader is referred
to Goldreich [2017, Chapter 13]).

We conclude this review with two comments. First, we note that employing the
PCP-to-inapproximabilty connection may call for optimizing parameters signifi-
cantly differently than when seeking to apply the PCP system for actual verification.
For example, the PCP-to-clique connection used in Feige et al. [1996] motivated the
authors to minimize the value of r + q (using the setting r(n) = q(n) = Õ(log n)),
whereas the application to actual verification motivated the authors of Babai et
al. [1991b] to minimize r first and only then minimize q (using the setting r(n) =
(1 + ε) . log n for arbitrary small constant ε > 0, and q(n) = poly(log n)).6 Second,
we mention that Babai et al. [1991b] and Feige et al. [1996] used the formulation
of probabilistically checkable proofs, which was shown by Fortnow, Rompel, and
Sipser [Fortnow et al. 1988] to be equivalent to the formulation of multi-prover in-
teractive proofs, which in turn was introduced by Ben-Or, Goldwasser, Kilian, and
Wigderson [Ben-Or et al. 1988a]. However, the aforementioned works [Fortnow et
al. 1988, Babai et al. 1991b, Feige et al. 1996] refer to these proof systems by the
generic term “oracle machine” (which refers to the syntax of the corresponding
verifier). The term “probabilistically checkable proofs” was introduced in Arora
and Safra [1998], and used ever since, although the term “locally verifiable (or
testable) proofs” might have been much more appropriate (cf. Goldreich [2017,
Section 13.2.2]).

19.6 Computationally Sound Proofs
The work of Micali [2000] presented the notion of computationally sound proof
systems with relatively efficient proving procedures, termed CS-proofs. The notion

6. The point is that the proof length is closely related to the randomness complexity: Specifically,
a PCP of randomness complexity r and query complexity q uses proofs of (“effective”) length at
most 2r . q.
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of computationally sound proofs (a.k.a. arguments) was proposed before by Bras-
sard, Chaum, and Crépeau [Brassard et al. 1988], but in CS-proofs it is coupled
with a relative-efficiency requirement (which refers to the completeness condition).
Specifically, it is required that the complexity of proving valid statements be (poly-
nomially) related to the complexity of determining the validity of the statement by
one’s own (i.e., without a proof). The abstract of the conference version of Micali
[2000] reads as follows:

This paper put forward a computationally-based notion of proof and
explores its implications to computation at large.

In particular, given a random oracle or a suitable cryptographic assump-
tion, we show that every computation possesses a short certificate vouching
its correctness, and that under a cryptographic assumption, any program
for a NP-complete problem is checkable in polynomial time.

In addition, our work provides the beginnings of a theory of computa-
tional complexity that is based on “individual inputs” rather than languages.

The construction presented by Micali [2000] is similar to a previous construction
of Kilian [1992], but the fact that (unlike in Brassard et al. [1988] and Kilian [1992])
the notion of computational-soundness and the construction were de-coupled from
zero-knowledge aspects helped focus attention on the notion and the construction.

Micali [2000] also highlights the fact that CS-proof remain meaningful even if
P = N P and/or also when applied to decision problems in P. Indeed, CS-proofs are
related to doubly efficient arguments, which are the computationally-sound variant
of doubly efficient interactive proof systems, which were introduced a decade and
a half later by Goldwasser, Kalai, and Rothblum [Goldwasser et al. 2015].

19.7 Property Testing and its Connection to Learning
and Approximation
The work of Goldreich, Goldwasser, and Ron [Goldreich et al. 1998] initiated a gen-
eral study of property testing, while focusing on testing of graph properties (in the
adjacency matrix representation). Property testing emerged, implicitly and before,
in the work of Blum, Luby, and Rubinfeld [Blum et al. 1993]. The earlier line of
work, focusing on algebraic properties, culminating in the work of Rubinfeld and
Sudan [1996], where the approach was abstracted and captured by the notion of
a robust characterization, which corresponds to a special type of testers (i.e., non-
adaptive testers of one-sided error probability). The work of Goldreich, Goldwasser,
and Ron [Goldreich et al. 1998] advocated viewing property testing as a new type
of computational problems, rather than as a tool toward program checking [Blum
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and Kannan 1989] (as viewed in Blum et al. [1993]) or toward the construction of
PCP systems (as in [Babai et al. 1991a, Babai et al. 1991], and Feige et al. [1996]).
The abstract of the conference version of Goldreich et al. [1998] reads as follows:

We study the question of determining whether an unknown function has
a particular property or is ε-far from any function with that property. A
property testing algorithm is given a sample of the value of the function on
instances drawn according to some distribution, and possibly may query
the function on instances of its choice.

First, we establish some connections between property testing and
problems in learning theory. Next, we focus on testing graph properties,
and devise algorithms to test whether a graph has properties such as being
k-colorable or having a ρ-clique (clique of density ρ w.r.t the vertex set). Our
graph property testing algorithms are probabilistic and make assertions
which are correct with high probability, utilizing only poly(1/ε) edge-queries
into the graph, where ε is the distance parameter. Moreover, the property
testing algorithms can be used to efficiently (i.e., in time linear in the
number of vertices) construct partitions of the graph which correspond to
the property being tested, if it holds for the input graph.

As started in the original abstract, the main results of Goldreich et al. [1998] are
testers for a variety of graph partition problems all having query complexity that is
independent of the size of the graph (but rather depending only on the proximity
parameter).

In general, instances of the testing problems were viewed as descriptions of
actual objects—that is, objects that arise from some application. Consequently,
the representation of these objects as functions became a nonobvious step, which
required justification. For example, in the case of testing graph properties, the
starting point is the graph itself, and its representation as a function is an aux-
iliary conceptual step. In Goldreich et al. [1998] graphs are represented by their
adjacency relation (or matrix), which is not overly redundant when dense graphs
are concerned, but in some subsequent works other alternatives were considered
(see Goldreich [2017], Chapters 9–10).

As hinted upfront, the notion of a tester presented in Goldreich et al. [1998]
allows for adaptive queries and two-sided error probability, while viewing non-
adaptivity and one-sided error probability as special cases. While the bulk of their
work [Goldreich et al. 1998, Sections 5–10] focuses on testing graph properties,
the paper also contains general results (see Goldreich et al. [1998, Sections 3–4])
and its definitional treatment (see Goldreich et al. [1998, Section 2]) foresaw some
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directions that were pursued only in subsequent works. For more details on prop-
erty testing see a recent textbook [Goldreich 2017].

19.8 Pseudo-Deterministic Algorithms
The starting point of the work of Gat and Goldwasser [2011] is the observation that
probabilistic algorithms that solve search problem may output different solutions
in different executions. That is, even if on input x the algorithm outputs a correct
solution with high probability (say, with probability at least 2/3), it may be that no
solution appears as output with significant probability (let alone with probability at
least 2/3). Hence, their paper [Gat and Goldwasser 2011] initiates a study of search
problems that may be solved in probabilistic polynomial-time by algorithms that,
on each input x, output the same solution with probability at least 2/3. The abstract
of their paper reads as follows:

In this paper we introduce a new type of probabilistic search algorithm,
which we call the Bellagio algorithm: a probabilistic algorithm which is
guaranteed to run in expected polynomial time, and to produce a correct
and unique solution with high probability. We argue the applicability of
such algorithms for the problems of verifying delegated computation in
a distributed setting, and for generating cryptographic public-parameters
and keys in distributed settings. We exhibit several examples of Bellagio
algorithms for problems for which no deterministic polynomial time
algorithms are known. In particular, we show such algorithms for:

. Finding a unique generator for Zp, when p is a prime of the form
kq + 1 for q is prime and k = polylog(p). The algorithm runs in
expected polynomial in log p time.

. Finding a unique q’th non-residues of Zp for any prime divisor q of
p − 1, extending Lenstra’s algorithm for finding unique quadratic
non-residue of Zp. The algorithm runs in expected polynomial time
in log p and q. The tool we use is a new variant of the Adleman-
Manders-Miller probabilistic algorithm for taking q-th roots, which
outputs a unique solution to the input equations and runs in
expected polynomial time in log p and q.

. Given a multi-variate polynomial P = 0, find a unique (with high
probability) x such that P(x) = 0. Alternatively you may think of
this as producing a unique polynomial time verifiable certificate of
inequality of polynomials.
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More generally, we show a necessary and sufficient condition for the
existence of a Bellagio Algorithm for relation R: R has a Bellagio algorithm
if and only if it is deterministically reducible to some decision problem in
BPP.

In later works (e.g., Goldwasser and Grossman [2017]) such algorithms were called
pseudodeterministic, and the solution that they output, with high probability, was
called canonical.

We stress that although most research in complexity theory refers to decision
problems, search problems are at least as important. Recall that search problems
are associated with binary relations, R ⊆ {0, 1}∗ × {0, 1}∗, and each element of
R(x)

def= {y ∈ {0, 1}∗ : (x , y) ∈ R} is called a solution to x (and if R(x) = ∅ then ⊥ is con-
sidered the only solution). Saying that R can be solved by a randomized algorithm
A means that, for every x that has a solution, it holds that Pr[A(x) ∈ R(x)] ≥ 2/3
(and Pr[A(x) = ⊥] ≥ 2/3 if R(x) = ∅). Algorithm A is called pseudodeterministic if
for every x there exists a (canonical) solution sx such that Pr[A(x) = sx] ≥ 2/3.

The foregoing result of Gat and Goldwasser [2011] asserts that R can be solved
by a pseudodeterministic polynomial-time algorithm if and only if solving R is
deterministically reducible in polynomial time to some decision problem in BPP.
In contrast, it was shown in Goldreich [2011] that for every R that is recogniz-
able in probabilistic polynomial time, solving R is deterministically reducible in
polynomial-time to some promise problem in the promise class corresponding to
BPP. Hence, the difference between general randomized algorithms and pseudo-
deterministic algorithms is reflected in the difference between standard complexity
classes (which refer to decision problems) and classes of promise problems.

We mention that the study of pseudodeterministic algorithms was recently ex-
tended to RN C; in particular, finding perfect matchings in bipartite graphs (a
problem known to be in RN C (but not in N C)) was shown to have a pseudode-
terministic NC algorithm [Goldwasser and Grossman 2017].
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20Fundamentals of Fully
Homomorphic Encryption
Zvika Brakerski

A homomorphic encryption scheme is one that allows computing on encrypted
data without decrypting it first. In fully homomorphic encryption it is possible to
apply any efficiently computable function to encrypted data. This chapter provides
a survey on the origins, definitions, properties, constructions and uses of fully
homomorphic encryption.

20.1 Homomorphic Encryption: Good, Bad, or Ugly?
In the seminal RSA cryptosystem [Rivest et al. 1978], the public key consists of a
product of two primes N = p . q as well as an integer e, and the message space
is the set of elements in Z∗

N
. Encrypting a message m involved simply raising it

to the power e and taking the result modulo N , that is, c = me (mod N). For the
purpose of the current discussion we ignore the decryption process. It is not hard
to see that the product of two ciphertexts c1 and c2 encrypting messages m1 and
m2 allows us to compute the value c1 . c2 (mod N) = (m1m2)

e (mod N), that is, to
compute an encryption of m1 . m2 without knowledge of the secret private key.
Rabin’s cryptosystem [Rabin 1979] exhibited similar behavior, where a product
of ciphertexts corresponded to an encryption of their respective plaintexts. This
behavior can be expressed in formal terms by saying that the ciphertext space and
the plaintext space are homomorphic (multiplicative) groups. The decryption process
defines the homomorphism by mapping a ciphertext to its image plaintext.

Rivest, Adleman, and Dertouzos [Rivest et al. 1978] realized the potential advan-
tage of this property. In a time where complex computations required “buying com-
puting cycles” from a mainframe computer maintained by an external company,
one would be exposed to the danger of their private information being revealed to
the vendor of computing power. However, if the computation only involves group
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operations on the input data, then homomorphism will allow the vendor to per-
form the computation on the ciphertext, rather than the plaintext, so that sensitive
data is not revealed on one hand, and the heavy computational load is outsourced
to the vendor on the other. Remarkably, 40 years down the line, outsourcing com-
putation gained popularity once again with the introduction of cloud computing.
Indeed, privacy in the era of the cloud is one of the most fascinating topics in mod-
ern cryptographic research. Naturally, one would like to extend homomorphism
beyond group operations, and indeed [Rivest et al. 1978] put forth the question
whether there exist encryption schemes that are homomorphic also with respect to
ring (or field) operations, which would allow to perform arbitrary computation on
the input data.

Alas, plain RSA and Rabin’s scheme provide a very weak level of security (and
indeed today they are referred to as “trapdoor functions” and not as encryption
schemes; see for example, Goldreich [2001, Section 2.4.4.2]). The revolutionary
work of Goldwasser and Micali [1982] on randomized encryption defined a new
notion, semantic security, as a standard for encryption security. Since previous
schemes, such as the aforementioned plain RSA and Rabin schemes, were not
semantically secure, it was up to Goldwasser and Micali to present a different
candidate. Indeed, they presented one based on the hardness of the quadratic resid-
uosity problem (QR). The Goldwasser–Micali encryption scheme was again based
on N = pq as public key, but now each element in Z∗

N
was only used to encrypt a

single bit. Squares (a.k.a. quadratic residues) encrypt 0, and quadratic nonresidues
(nonsquares with Jacobi symbol 1) encrypt 1. Note that in such a scheme, as in
any semantically secure encryption scheme, each message is associated with a
super-polynomial number of possible ciphertexts, all decrypting to the same value.
Despite this significant conceptual difference, the Goldwasser–Micali encryption
scheme still exhibits group homomorphism, since a product of ciphertexts will
decrypt to the XOR of the plaintexts. The El Gamal scheme [El Gamal 1984] that
followed soon after exhibited similar behavior, even though it was based on the
hardness of a different type of problem (related to the discrete logarithm prob-
lem). A decade down the line, as lattice-based encryption emerged [Ajtai and Dwork
1997, Goldreich et al. 1997, Hoffstein et al. 1998], they also exhibited homomorphic
properties, despite being based on a very different mathematical structure.

It turned out that homomorphic encryption (at least for groups) is abundant
and one could have speculated that it is even unavoidable. As Rivest et al. [1978]
showed, this can have positive implications, since it could lead to private outsourc-
ing of computation. On the other hand, one could speculate that this property only
indicates that public-key encryption schemes have too much structure. Perhaps this
is a symptom of insecurity?
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Consider the following scenario: Alice and Bob are bidding for some goods in
an auction. Each one submits their bid in a sealed envelope, implemented using an
encryption scheme. Bob is willing to pay y and he knows that Alice’s bid x is much
lower than y, but he does not know what it is. Bob can see Alice’s sealed envelope,
in the form of a ciphertext Enc(x). If the encryption scheme is homomorphic, then
Bob can generate an encryption Enc(x + 1) thus creating the smallest bid to win
the auction, even without learning anything about Alice’s input. This demonstrates
that in some situation we would like a guarantee that it is impossible to perform any
alteration of the ciphertext, in particular homomorphism. This property is called
nonmalleability [Dolev et al. 1991]. One conclusion from this example is that one
should not think of homomorphism as intrinsically useful or intrinsically harmful,
but rather consider the specific situation.

In this context, we mention that the aforementioned notion of semantic security
is equivalent (in the public-key setting) to security under chosen plaintext attacks
(CPA) where an attacker gets access to the encryption function but no access at all
to the decryption function. In many situations one would consider stricter notions
where (limited) access to the decryption function is allowed—for example, to model
settings where an adversary can send “made up” ciphertexts to the decryptor and
observe the decryptor’s behavior upon receiving the message. This is formalized
via the notion of security under chosen ciphertext attacks (CCA), and it comes in
two main flavors. CCA1 is a notion that models a setting where an adversary has
access to the decryption function (as oracle) before the it gets hold of the challenge
ciphertext it wants to attack. CCA2 allows the adversary to access the decryption
oracle even after seeing the target ciphertext (with a nondegeneracy condition that
the adversary cannot use this access to decrypt the challenge itself). It is not hard
to see that homomorphism (or malleability) contradict CCA2 security. However,
homomorphic encryption schemes can be CCA1 secure [Cramer and Shoup 1998].

As explained above, group homomorphic encryption schemes emerged natu-
rally from attempts for constructing public key encryption scheme. However, ring
homomorphism seems much harder to construct. Indeed, over 35 years passed un-
til the vision of Rivest et al. [1978] was materialized by Gentry [2009b] in one of the
most inspiring works in cryptography in recent years.

20.2 Definition and Basic Properties
Motivated by the application of outsourcing computation, we might not want to re-
strict ourselves to algebraic terminology. Instead, we can define F -homomorphism
with respect to the class of operations F that can be applied to encrypted data.
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Notation-wise, a public-key encryption scheme consists of a (randomized) key gen-
eration process, that produces a secret key sk and a public key pk, a (randomized)
encryption function Enc and a (deterministic, without loss of generality) decryp-
tion function Dec. Throughout this chapter we will consider a plaintext space of
binary strings {0, 1}∗ and an encryption procedure that encrypts the message bits
one at a time. Syntactically, encrypting a message x using a public key pk is de-
noted Encpk(x). Decrypting a ciphertext c is denoted Decsk(c). We can now define
F -homomorphism.

Definition 20.1 Let F be a set of functions in {0, 1}∗ → {0, 1}. A public-key scheme is F -homo-
morphic if there exists an evaluation algorithm Eval s.t. Decsk(Eval(f , Encpk(x))) =
f (x) for all f ∈ F and x ∈ {0, 1}∗ of appropriate length.

A fully homomorphic encryption (FHE) is a homomorphic encryption scheme
where F is the set of all functions (or at least the set of all efficiently computable
functions).

That is, encrypting a value x, followed by applying homomorphic evaluation with
f , and decrypting the output, should result in the value f (x). This is the minimal
requirement for the purpose of private outsourcing. There are a few points that are
worth noting about this definition.

The syntax of the homomorphic evaluation procedure. It is simplest to define
the homomorphic evaluation procedure as only taking the respective cipher-
texts as input. While this is true without loss of generality (as we explain
momentarily), in many cases the evaluation procedure also uses the public
key of the encryption scheme. Syntactically this can be avoided by redefining
the ciphertexts as containing the public key, and thus allowing evaluation
using only the ciphertexts, without loss of generality. Still, often for reasons
of efficiency and syntactic elegance the Eval procedure takes the public key
as an additional parameter.

Furthermore, in many candidates, it is easy to identify a part of the pub-
lic key that is used for homomorphic evaluation, and a separate part that
is used for encryption. It is sometimes convenient to refer to the former as
the “evaluation key” of the scheme, thus characterizing a homomorphic en-
cryption scheme as having a secret key sk and two public keys pk, evk, one
used for encryption and one for homomorphic evaluation. This is particu-
larly convenient in cases where it is possible to amplify the homomorphic
capabilities of the scheme by modifying evk while keeping sk, pk unchanged
(e.g. via bootstrapping; see Section 20.3).
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Representation of functions. The evaluation procedure takes a function f ∈ F
as input. This means that it is not enough to think about F as a class of func-
tions, but rather we must consider the representation of these functions.
In particular, since Eval needs to be polynomial time computable, the rep-
resentation of f effects the permitted running time of Eval(f , .). It is most
common to consider the Boolean circuit model to represent f .

Homomorphic evaluation needs not preserve form.. We only required above
that the evaluated ciphertext (i.e. the ciphertext output by Eval) is decrypt-
able to the correct value. There is no requirement that cf = Eval(f , Encpk(x))

looks similar to a fresh ciphertext Encpk(f (x)). This choice is made in or-
der to capture the minimal meaningful definition for private outsourcing of
computation. However, this minimal definition opens the door to a degener-
ate FHE construction as follows. Consider any secure public-key encryption
scheme, and append it with the function Eval(f , c) that simply outputs the
tuple (f , c). Furthermore extend the decryption algorithm to decrypt pairs
(f , c) by first decrypting the c component and then applying the f compo-
nent on the output. This scheme is homomorphic with respect to the above
definition, but fails to capture a notion of nontrivial outsourcing.

To avoid this degeneracy, we present two properties that are natural re-
quirements in the context of outsourcing. Neither one of these is captured
by the aforementioned degenerate example.

Compactness. If our intent in homomorphic encryption is to delegate
the computational complexity of the computing f to a remote server,
then it is natural to require that the decryption complexity does not
depend on the complexity of the function being evaluated. Formally,
adopting the convention that the decryption procedure runs in fixed
polynomial time in its input length, it is sufficient to require that
the bit-length of the evaluated ciphertext cf does not depend on
the complexity of f (beyond the obvious dependence on the output
length).

Function Privacy. In certain situations, it may be important that cf does
not reveal any information about f itself (e.g. when the evaluator
uses a proprietary algorithm). Function privacy should hold even
with respect to an adversary that has the secret key; that is, the
requirement is that even the decryptor cannot learn anything about f

from cf , except for the value f (x). One could consider even stronger
notions of function privacy, for example one that considers public
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keys and ciphertexts that are maliciously generated in attempt to
extract more information about f than permitted [Ostrovsky et al.
2014].

Compactness and function privacy are both sought after properties in certain
situations, and in others it could make sense to require only one but not
necessarily both. More often than not, the term FHE refers to compact FHE,
and it is explicitly mentioned where a noncompact scheme is sufficient (e.g.
if only function privacy is needed).

It can be shown that a compact FHE scheme implies a (different) FHE
scheme which is both compact and function private via a nontrivial transfor-
mation (this is implicit in Gentry et al. [2010]).

No additional security requirements. Our definition of homomorphism above
did not make any requirements about security, except that the underlying
scheme (without homomorphic evaluation) is secure. Standard notions of
security (e.g. semantic security) are only concerned with information leaked
by freshly encrypted ciphertexts, and not about ones that are a result of some
manipulation such as homomorphic evaluation. Therefore, one might be
worried that post-evaluation ciphertexts might be more vulnerable. However,
since the evaluation procedure only uses public information, semantic se-
curity guarantees that homomorphic evaluation cannot assist in breaching
security of the original ciphertexts. This, in turn, also implies that post-
evaluation ciphertexts are protected, at least to the extent that it should not
be possible to reveal information about the output of the evaluation process
that can assist in learning something about the inputs.

We note that while we are guaranteed that cf cannot reveal any informa-
tion about x, it is allowed to reveal information about f (x), to the extent
that the information revealed is independent of x. For example, if f is the all
zero function, then cf might expose that f (x) = 0 (unless we impose stronger
guarantees such as function privacy).

Single-hop vs. multi-hop homomorphism. In the aforementioned definition
it is only required that the post-evaluation ciphertext decrypts properly. As
we explained above, this does not necessitate that the output ciphertext is
structurally similar to a freshly encrypted ciphertext. In particular, it might
be the case that it is not possible to re-apply the homomorphic evaluation
function to post-evaluated ciphertexts. Schemes that adhere to the basic
definition are sometimes referred to as single-hop homomorphic—as opposed
to multi-hop homomorphism, which allows multiple successive applications
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of homomorphic evaluation. These notions have been studied in Gentry et
al. [2010]. Gentry’s bootstrapping theorem [Gentry 2009a, 2009b] allows to
convert any compact single-hop fully homomorphic encryption into a multi-
hop scheme (see more details in Section 20.3).

Leveled fully homomorphic encryption. As explained above, a fully homomor-
phic encryption scheme is one that can evaluate any input circuit. Unfortu-
nately, in some cases, this goal is not directly achievable, or requires security
and functionality overhead. In those cases it is sometimes useful to define
the notion of leveled FHE, which refers to a family of FHE schemes that allow,
for any depth bound d, to generate an instance of the FHE scheme that sup-
ports the evaluation of depth-d circuits. The parameters of the scheme are
allowed to grow polynomially with d, and some definitions are even stricter
and require that evk is the only parameter that depends on d and that this
dependence is linear. Leveled FHE schemes are by themselves sufficient for
some applications, and in most cases can be upgraded to (nonleveled) FHE
using Gentry’s bootstrapping theorem [Gentry 2009a, 2009b], albeit with ef-
ficiency loss and an additional security assumption.1

20.3 Bootstrapping and Circular Security
We will now describe one of the most fundamental and useful tools in the con-
struction of fully homomorphic encryption, the bootstrapping theorem, introduced
in Gentry’s seminal work [Gentry 2009a, 2009b]. The bootstrapping theorem is, to
date, a necessary component in all FHE candidates. Using the bootstrapping theo-
rem in its strongest form requires introducing an additional hardness assumption
concerning the circular security of encryption schemes (we will explain this in detail
below). It is currently unknown how to relate this additional assumption to stan-
dard cryptographic assumptions, thus the use of bootstrapping subjects all known
FHE candidates to the additional circularity requirement.

Key Switching. We start by introducing the key-switching technique which is use-
ful for bootstrapping but can also be used in other settings. Perhaps the simplest
motivation for key switching is to show that given a (possibly non-homomorphic)

1. In early works on FHE, the term “somewhat homomorphic encryption” (SHE) was used to
indicate a scheme with homomorphic capabilities against a restricted class of functions (depth
bounded). The two terms are sometimes used interchangeably, however in the original SHE
scheme [Gentry 2009a, 2009b] the parameters of the scheme grew exponentially with d.
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scheme with very efficient encryption, and a different homomorphic scheme (pos-
sibly with very inefficient, but still polynomial time, encryption), it is possible to
create a scheme that inherits the encryption complexity of the former and homo-
morphic abilities of the latter.

We denote the keys of the nonhomomorphic scheme by (nhsk, nhpk), and its
encryption and decryption functions by NHEnc, NHDec. Let (hsk, hpk) denote the
secret key and public key of the homomorphic scheme (with encryption and decryp-
tion functions Enc, Dec). Consider a ciphertext c that encrypts a plaintext x under
the nonhomomorphic scheme, that is, such that NHDecnhsk(c) = x. Our goal is to
apply homomorphic evaluation of some function f —namely, to generate a cipher-
text that encrypts the value f (x) = f (NHDecnhsk(c)). Note that f and c are publicly
known and the only unknown in the expression f (NHDecnhsk(c)) is nhsk. We can
thus define an efficiently computable function f̃c(α) = f (NHDecα(c)) (we omit the
subscript c and write f̃ when it is clear from the context). Thinking of the value f (x)

as a function of α = nhsk instead of as a function of x itself, we can think about ho-
momorphic evaluation of the function f̃c. This means that we no longer care that c

is encrypted under a nonhomomorphic scheme, all we care about now is that α,
the input to f̃c, is encrypted under the homomorphic key hpk. That is, if we had a
ciphertext c∗ = Enchpk(α)—that is, a homomorphic encryption of a value α—then
we can compute cf̃ = Eval(f̃c , c∗) (note that the syntax here is correct since we are
applying Eval on a ciphertext encrypted under the homomorphic key hpk). What
can we say about cf̃ ? As the output of a homomorphic evaluation of a function f̃c

on a properly encrypted ciphertext c∗, we can say that cf̃ should decrypt under hsk

to the value f̃c(α) = f (NHDecα(c)). Since c is encrypted (under the nonhomomor-
phic scheme), this value will be meaningless for almost all values of α, but it will
be meaningful for α = nhsk, for which f̃c(nhsk) = f (x).

The conclusion is that if we can provide the auxiliary information c∗ = Enchpk

(nhsk), i.e. an encryption of the nonhomomorphic secret key under the homomor-
phic public key, then it would be possible, given f and c, to compute an encryption
of the value f (x), thus performing homomorphic evaluation over a ciphertext en-
crypted using the nonhomomorphic scheme—specifically, to generate a value cf̃

subject to

Dechsk(cf̃ ) = Dechsk(Eval(f̃c , c∗)) = f̃c(Dechsk(c
∗)) = f̃c(nhsk)

= f (NHDecnhsk(c)) = f (x).

The value c∗ should be posted publicly alongside the public keys hpk and nhpk of
the homomorphic and nonhomomorphic scheme.
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It is important to notice that the output ciphertext cf̃ indeed constitutes an
encryption of f (x), but under the homomorphic key hsk. In fact, what we showed was
a key-switching technique that allows to take a ciphertext encrypted under a certain
encryption scheme, and convert it into a ciphertext encrypted under a different
scheme (using the homomorphic properties of the latter). This explains why the
secret key nhsk is required for the generation of c∗ = Enchpk(nhsk), since otherwise
the ability to decrypt cf̃ using hsk would contradict the semantic security of the
nonhomomorphic scheme.

We will see next how to extend key switching into bootstrapping, but let us
mention that the switching technique by itself is quite useful. For example, the
encryption complexity of an FHE schemes might be quite high, or the ciphertexts
are long (which is indeed the case in many of the current candidates). With key
switching, it is possible to use a quick and cheap encryption procedure (in fact,
even symmetric key encryption will do), and defer all FHE related operations to the
evaluation phase.

From Key Switching to Bootstrapping. Let us assume that the homomorphic encryp-
tion scheme from above was only single-hop homomorphic. This still allows us to
define c∗ and compute cf̃ . However, this would still leave us stuck at single-hop
homomorphism, since cf̃ cannot undergo additional homomorphic evaluation.
However, equipped with our knowledge of key switching, we do not give up so easily.
We showed that using the appropriate auxiliary input, we can perform homomor-
phic evaluation even on ciphertexts that on the face of it cannot be evaluated. We
know that Dechsk(cf̃ ) = f (x), and let us assume we want to apply a function g on
top of this value. Then again we can define g̃(α) = g(Decα(cf̃ )) and define an ap-
propriate c∗∗ such that cg̃ = Eval(g̃ , c∗∗) decrypts to the right value g(f (x)).

What should the new auxiliary information c∗∗ be? It needs to be an encryption
of the homomorphic secret key hsk, otherwise the evaluation procedure produces
a meaningless value. So what we want is c∗∗ = Enchpk(hsk)—namely, an encryption
of the homomorphic secret key under its own public key.2 Given this value, we can
compute cg̃ = Eval(g̃ , c∗∗) as desired, and obtain cg̃ such that

Dechsk(cg̃) = g̃(hsk) = g(Dechsk(cf̃ )) = g(f (Decnhsk(c))) = g(f (x)).

We see that indeed cg̃ decrypts to the desired value, so given c∗∗ we can increase the
evaluation capacity of our scheme.

2. A knowledgeable reader may have noticed a circularity issue; we will discuss this aspect shortly.
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The critical observation is that c∗∗ is in fact much more useful than our previ-
ous c∗. While the latter allows to switch a ciphertext from the nonhomomorphic
scheme to the homomorphic scheme, and was completely useless afterward, the
former allows us to take homomorphic ciphertexts and produce homomorphic ci-
phertexts. This in particular means that the same c∗∗ can be used more than once.
Assume that we want to homomorphically evaluate an additional function h on top
of cg̃, we observe that this can be done with the same c∗∗—that is, without requir-
ing a new auxiliary information. Specifically, just define h̃(α) = h(Decα(cg̃)), and
set ch̃ = Eval(h̃, c∗∗). One can verify that ch̃ indeed decrypts to h(g(f (x))). Note that
in order for this to apply, we only require that our encryption scheme is single-
hop homomorphic. This is since the Eval function is only executed on the input
ciphertext c∗∗, which is a freshly encrypted ciphertext and not the result of a pre-
vious homomorphic operation. In a sense, we “tricked” the single-hop scheme to
perform multi-hop operations by embedding the “real” input inside the function
description. At this point we can forget about the initial nonhomomorphic scheme
(although, as we explained, this application is also sometimes useful) and just con-
sider the task of amplifying single-hop to multi-hop homomorphism. We see that
this is possible given the auxiliary information c∗∗, which should be placed as a part
of the public key of the new multi-hop scheme (or more accurately as a part of the
evaluation key).

To extract even more out of this technique, we notice that in a multi-hop homo-
morphic scheme, it is sufficient to only be able to evaluate the NAND gate (or any
other universal family of Boolean gates). This is since each Boolean circuit can be
written a sequence of such gates, and homomorphic evaluation of the circuit can
proceed by evaluating the gates one at a time (in topological order) on the output of
their predecessors. Plugging this observation into our construction of a multi-hop
scheme, we see that in order to allow the amplification from single-hop to multi-
hop, all that is required is that the single hop scheme supports the homomorphic
evaluation of functions of the form f̃ (α) = f̃c1,c2

(α) = NAND (Decα(c1), Decα(c2)),
where c1 and c2 are bit strings interpreted as ciphertexts for the single-hop scheme.
Thus, if we can devise a homomorphic encryption scheme (even single-hop) that
supports this family of functions (NAND-augmented decryption functions), then
this scheme can be amplified into full-fledged (even multi-hop) FHE for all func-
tions, at the cost of adding c∗∗ to the evaluation key (evk) of the scheme (recall that
evk is the part of the public key that is used for homomorphic evaluation).

Gentry’s bootstrapping theorem states exactly this fact: that once we are able
to achieve a certain level of homomorphism, then FHE readily follows. However,
our discussion so far neglected an important aspect of the above transformation:
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whether the addition of c∗∗ to the public evaluation key evk of our resulting scheme
(and thus revealing it to a potential attacker) preserves the security of the original
scheme. At first glance, this seems to be a nonissue, by definition c∗∗ is a properly
encrypted ciphertext, so the security of the single-hop scheme should guarantee
that revealing it to an attacker should do no harm. However, it turns out that stan-
dard notions of encryption security are only concerned with hiding messages that
can be generated by an adversary (that has the public key). Encrypting a scheme’s se-
cret key using its own public key does not fall under this definition. Indeed, almost
all proofs showing that encryption schemes are secure under certain assumptions
(e.g., factoring) do not extend to showing security for encrypting the secret key,
with the exception of schemes designed especially to have this property such as
Boneh et al. [2008], Applebaum et al. [2009], and Brakerski and Goldwasser [2010].
Therefore, the bootstrapping theorem requires that the homomorphic scheme to
be amplified is circular secure—namely, that it is secure even against adversaries
that see an encryption of the scheme’s secret key under its public key. To be precise,
circular security, or more generally the notion of security against key dependent
messages (KDM-security) [Black et al. 2002], is a stronger notion where the adver-
sary can adaptively ask for encryptions of messages with some dependence of the
secret key. Thus the notion required from bootstrapping is named “weak” circular
security.

Theorem 20.1 (Gentry’s bootstrapping theorem) If there exists an encryption scheme that is
single-hop homomorphic with respect to NAND-augmented decryption circuits,
and is weakly circular secure, then there exists a multi-hop FHE scheme.

A scheme that is single-hop homomorphic with respect to NAND-augmented
decryption circuits is called bootstrappable.

In particular, the bootstrapping theorem states that if we have a scheme that
supports depth bounded homomorphism, and its depth bound is strictly larger
than its decryption complexity, then this scheme can be amplified to an FHE (as-
suming that it is also weakly circular secure). Schemes with such homomorphic
capacity can be constructed from standard cryptographic assumptions, such as the
learning with errors (LWE) assumption (see Section 20.4). However, it is not known
how to prove weak circular security under a standard assumption for any boot-
strappable scheme. Furthermore, bootstrapping underlies all known (nonleveled)
FHE constructions, so the current state of affairs is that while leveled FHE can be
constructed from standard assumptions, nonleveled FHE requires an explicit weak
circular security assumption. This is the only remaining theoretical barrier towards
constructing FHE from standard assumptions.
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The Necessity and Plausibility of the Circular Security Requirement. As explained
above, it is not known how to prove circular security based on standard assump-
tions. However, in the proposed constructions, it is not known how to improve the
best known attacks using an encryption of the secret key. Thus, as a heuristic, it
appears plausible to assume the circular security holds for known FHE candidates.
Having said that, recent works [Goyal et al. 2017] show that weak circular security
does not necessarily hold for every encryption scheme that is secure under standard
assumptions. This is done by introducing contrived schemes where the secret key
is design so that its encryption provides additional power to the adversary.

Gentry [2009a] proposed a heuristic argument showing that any homomorphic
encryption scheme supporting high enough evaluation depth should be circular
secure. Assume there exists a hash function H such that providing the adversary
with (c̃ = Enchpk(ρ), σ = H(ρ) ⊕ hsk) for a random ρ does not make the scheme
insecure. This assumption indeed holds in the random oracle model as shown in
Black et al. [2002]. If we had such a function H in the standard model, then it would
have been possible to compute Eval(H̃σ , c̃) where H̃σ (α) = σ ⊕ H(α). Note that
the output of this homomorphic evaluation procedure is an encryption of hsk as
needed. While we do know that no explicit hash function can perfectly implement
the random oracle heuristic in all applications, in some applications it is possible.
Gentry’s argument suggests that refuting the circular security of FHE might require
showing that for this application it is impossible to replace random oracle with any
hash function.

One seemingly simple way to get around the circular security problem can be
devised by considering our original example of converting a nonhomomorphic
scheme into a homomorphic one. In that example, there was no circularity prob-
lem since hpk is used to encrypt nhsk, that is, we encrypted a secret key of one
scheme under the public key of another scheme. This allows the security proof to
go through, since we can argue that even if an adversary knows nhsk, it should still
not be able to breach the security of hpk, and thus it cannot distinguish whether
c∗ contains an encryption of nhsk or an encryption of an unrelated message. We
could therefore hope that the following trick could work for bootstrapping homo-
morphic encryption schemes: Rather than having a single c∗∗ = Enchpk(hsk), we
will generate two homomorphic key pairs (hsk1, hpk1), (hsk2, hpk2), and generate
two auxiliary ciphertexts c∗∗1 = Enchpk1

(hsk2) and c∗∗2 = Enchpk2
(hsk1). Then, during

homomorphic evaluation we will alternate between using c∗∗1 and c∗∗2 for each hop
of the computation. This indeed provides the intended functionality; however, in
terms of security we can see that the prior proof outline no longer works. Even if we
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only reveal hsk2 to the adversary, it is straightforward to extract hsk1 by decrypting
c∗∗2 , so we cannot rely on the hardness of hpk1. Indeed, such a 2-cycle is a type of
circular security and the same problems arise.

Before giving up completely on the key cycle concept, we notice that the problem
only arises because the chain of keys we generate is a closed loop, so that any
of the secret keys can be used to recover all other secret keys. We can consider
generating d key pairs (hski , hpki) and auxiliary information c∗∗

i
= Enchpki+1

(hski)

for i = 1, . . . , d − 1 (note that we do not close the loop since we do not provide
Enchpk1

(hskd), and in fact we do not provide any information at all on hskd beyond
its respective public key). This chain allows us to perform d − 1 homomorphic
hops, and the resulting scheme can be proven secure based only on the security
of the original scheme. Instantiating our hops with NAND-augmented decryption
circuits, we can get a leveled FHE for any polynomial depth bound d, where the
only parameter of the scheme that depends on d is the scheme’s evaluation key evk

(which now contains evki for all i, as well as all auxiliaries c∗∗
i

), and this evaluation
key only grows linearly with d. There is no need for circular security to prove security
for this leveled scheme.

Theorem 20.2 (Gentry’s bootstrapping theorem for leveled FHE) If there exists an encryption
scheme which is single-hop homomorphic with respect to NAND-augmented de-
cryption circuits, then there exists a leveled FHE scheme.

20.4 Constructing FHE
We will now explain how to construct homomorphic encryption schemes from the
learning with errors (LWE) assumption. The scheme we construct will be bootstrap-
pable so it is possible to apply Gentry’s bootstrapping theorem to achieve full FHE.

20.4.1 Learning with Errors: A Primer
The learning with errors (LWE) problem was introduced by Regev [2005] and has
had a profound effect on cryptographic literature, often allowing to realize crypto-
graphic primitives that are not known under any other assumption. LWE considers
a set of many random linear equations over a set of n variables that will be assigned
random values, modulo a global modulus q ( n (where the meaningful range of
parameters ranges from q being polynomial to subexponential in n). The vector of
variables is denoted by t ∈ Zn

q
(we set it as a row vector), and the (random) coeffi-

cients of the linear equations are represented by a uniform matrix B ∈ Zn×m
q

, where
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m = poly(n) is the number of equations.3 A set of linear equations is solvable even
modulo q, so given (B, tB) it is possible to efficiently find a solution t to the set of
equations. The LWE problem considers slightly perturbed equations, by adding a
small noise to each one. Specifically, let χ be a distribution supported only over
integers smaller than some bound B.4 Consider sampling a noise vector e from χm

(a noise term for each equation) and setting b = tB + e (mod q). The (decisional)
LWE assumption with parameters (n, q , χ) states that for a uniformly sampled t,
the pair (B, b) is indistinguishable from uniform, even when m is allowed to be an
arbitrarily large polynomial. Note that information theoretically this distribution is
very far from uniform. The distribution χ is often taken to be a discrete Gaussian,
but this is immaterial for the purpose of this chapter. For our discussion we can
consider setting q = n10 and a distribution χ with a bound B = n. To further sim-
plify our notation, we will not explicitly write the noise vector e and instead write
b ≈ tB.

We now present a tool that proved extremely useful in LWE-based cryptography.
Let x ∈ {0, . . . , q − 1}, then x can be represented as a sequence of *log q, bits as x =∑

2i . xi, which can also be written as an inner product (1, 2, 22, . . .) . (x0, x1, . . .) =
g . x. More generally, considering a vector v ∈ Zn

q
, one can consider the vector v′

containing a concatenation of the binary representations of all elements of v. The

vector g can thus be generalized to a matrix G ∈ Z
n×n*log q,
q s.t. v = Gv′ (the matrix G

is a block diagonal matrix with each block equaling to g). We note that this matrix
found additional uses in contexts beyond what is covered in this chapter (see, e.g.,
Micciancio and Peikert [2012]). It is customary to denote the binary representation
of v by G−1(v), so that it will hold that GG−1(v) = v. We note that G−1 is not a
matrix, but rather a function. This notation can be even further extended to apply
to matrices so that G−1(V) for a matrix V ∈ Zn×m

q
is a matrix in {0, 1}n*log q,×m, whose

every column is the binary decomposition of the respective column of V, so again
GG−1(V) = V.

20.4.2 A Homomorphic Encryption Scheme Based on LWE
LWE-based homomorphic encryption was constructed in Brakerski and Vaikun-
tanathan [2011]. We present a later construction due to Gentry et al. [2013] (using
notation from the even later Alperin-Sheriff and Peikert [2014]). The public key is

3. We note that the standard notation for the LWE problem is using s, A instead of t , B. However,
this notation will be more convenient for us as we will use s, A to denote different quantities in
Section 20.4.2, below.

4. It is sufficient that the distribution is bounded with overwhelming probability.
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a matrix A =
[

B
b

]
, where B is uniform and b ≈ tB for a random t. The secret key is

a vector s = (−t , 1). Note that it holds that sA ≈ 0, but that A is indistinguishable
from uniform assuming LWE. This public key is identical to that of Regev’s original
LWE-based public-key encryption scheme. However, the ciphertext itself is quite
different. The encryption of a message is done in a bit-by-bit manner, where the
encryption of each message bit is a large matrix.5 The encryption of a bit x ∈ {0, 1}
is the matrix C = AR + xG, where R is a random binary matrix (whose dimensions
are chosen based on those of A and G to ensure syntactic compatibility).

Since A is indistinguishable from a uniform matrix, the leftover hash lemma
guarantees (for properly chosen parameters) that C is indistinguishable from a
completely random matrix, and in particular hides the value of the message x. On
the other hand, it holds that

sA = sA︸︷︷︸
≈0

R + xsG ≈ xsG,

and one can verify that x can indeed be recovered out of this value (knowledge of
s is naturally required). It is important to note that it was important to sample R
from a distribution over small values in order to argue that if sA ≈ 0 then sAR ≈ 0.
Multiplying by R will most likely somewhat increase the amplitude of the output
vector, and in the formal analysis we must keep guard that the amplitude of the
resulting vector indeed remains small (i.e., ( q).

To show that the scheme is homomorphic, we will show that starting with
two ciphertexts C1, C2 such that sCi ≈ xisG, where x1, x2 ∈ {0, 1}, we can construct
a ciphertext C′ such that sC′ = (1 − x1x2)sG, that is, C′ is an encryption of 1 −
x1x2 = NAND (x1, x2). After doing that, we will explain how this translates to full
homomorphism. We will be guided by the following intuitive observation: Since
sCi ≈ xisG, then we can think of Ci as “equivalent” to xiG (where the equivalence is
expressed by the two being approximately equal under multiplication by s).

To test the validity of this intuition, let us start by trying to implement the
negation functionality x → (1 − x). We can verify that indeed setting C′ = G − C1

leads to sC′ ≈ (1 − x1)sG. Now, let us try to implement conjunction x1, x2 → x1x2.
We notice that (x1G) . G−1(x2G) = x1x2G, and indeed letting C′ = C1G−1(C2), we get

sC1G−1(C2) ≈ x1sGG−1(C2) ≈ x1x2sG,

5. In other words, the information rate of this scheme is very low and approaches 0 asymptotically.
However, since the ciphertext is still polynomial in the key and message sizes, this is an acceptable
solution in a purely theoretical world. Discussion of more efficient solutions will follow.
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where as before it is important that G−1(C2) is low norm in order to propagate the
validity of the ≈ symbol. Putting our two observations together, we have that C′ =
G − C1G−1(C2) is indeed an encryption of NAND (x1, x2) = 1 − x1x2. We note that
this expression is asymmetric (since C1G−1(C2) = C2G−1(C1)) and this asymmetry
gives rise to useful properties in terms of efficiency and security [Brakerski and
Vaikuntanathan 2014].

Being able to evaluate the NAND function can be extended to evaluating arbitrary
Boolean circuit using the universality of NAND, as explained above. However, as we
noted, the approximation sC ≈ xsG becomes worse with every gate being evaluated.
This puts a bound on the maximal depth supported by the scheme. The depth bound
roughly corresponds to log(q/B), where B is the bound on the LWE noise distribu-
tion. Since the depth of the scheme’s decryption circuit grows polynomially with
log n + loglogq (since it essentially computes an inner product of vectors in Zn

q
),

one can choose parameters to allow the evaluation of the decryption circuit, and
thus make the scheme bootstrappable (subject to a circular security assumption,
if a leveled scheme is not sufficient).

20.4.3 Efficiency and Implementations
The GSW scheme presented above imposes a high communication and computa-
tion overhead compared to performing the evaluation on unencrypted data, which
is naturally an undesirable property. Nevertheless, various optimization methods
were introduced that reduce the computational overhead to a level that is useful for
some applications [Ducas and Micciancio 2015, Chillotti et al. 2016]. A significant
reduction of the communication overhead for GSW-style schemes remains an open
problem.

The information rate overhead problem can be solved in an amortized manner
using schemes that follow the prior Brakerski and Vaikuntanathan [2011] para-
digm. Such schemes allow to batch multiple messages into a single ciphertext in
a way that allows to perform homomorphic operations in parallel on all encrypted
messages. The ciphertext size grows only mildly with the total amount of infor-
mation. This idea goes back to the prior work of Smart and Vercauteren [2010],
and was applied to the Brakerski and Vaikuntanathan [2011] paradigm starting in
Brakerski et al. [2012]. The most liberal parameter settings allow to reduce the in-
formation rate to a constant, but it is currently unclear, even in this setting, whether
it is possible to achieve information rate approaching 1 while preserving full homo-
morphism.

Using either paradigm, the best efficiency is achieved when using variants of
the scheme over polynomial rings—that is, with symbolic polynomials replacing
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integer vectors, and polynomial multiplication (modulo some ambient polynomial)
replacing inner product. This allows for both improved computational complexity
and improved information rate. Specifically, current implementations are based
either on variants of the NTRU encryption scheme [Hoffstein et al. 1998] or on the
Ring-LWE assumption [Lyubashevsky et al. 2010, Lyubashevsky et al. 2013].

20.5 Beyond Vanilla FHE
To conclude this chapter, we mention a few uses and extensions of FHE that go
beyond the basic functionality.

Multi-Key FHE. The standard notion of FHE only considers a single user who owns
data and wishes this data is processed remotely. A natural extension is the case of
multiple users, each with their own individually generated secret key and public
key, and with their own data, and they wish to outsource a computation on the
aggregation of data from all users. To maintain security, it must be the case that
decryption of the evaluated ciphertext requires using all user secret keys. This
notion is called multi-key FHE and was first introduced by Lopez-Alt, Tromer, and
Vaikuntanathan [López-Alt et al. 2012]. Their original scheme was based on a
variant of the NTRU assumption [Hoffstein et al. 1998]. A scheme with improved
properties and relying on the LWE assumption was later introduced by Clear and
McGoldrick [2015].

Evaluating Quantum Circuits. Considering that a major use of FHE is private delega-
tion of computation suggests considering models where the computational power
of the evaluator is qualitatively superior to that of the client. One such case is where
the evaluator is in possession of a quantum computer. In such case, a classical
client may wish to delegate a quantum computation to the evaluator. It was recently
shown that this can be achieved under similar assumptions to those required from
classical FHE [Mahadev 2017].
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21Interactive Proofs for
Lattice Problems
Daniele Micciancio

Interactive proof systems are a central concept in computer science, and have
greatly influenced both cryptography and computational complexity theory. In this
chapter, we are concerned with interactive proof systems for lattice problems, a
specific area of mathematics that has received much attention during the last two
decades, both as a powerful tool to construct advanced cryptographic primitives
(like fully homomorphic encryption) and as a plausible defense against the threat
presented by the possible development of quantum computers. Starting from the
pioneering work of Goldreich and Goldwasser on the limits of inapproximability of
lattice problems, we describe the main ideas behind (zero-knowledge) interactive
proof systems for lattices, and a number of related papers that were either moti-
vated, influenced or inspired by that work.

21.1 Introduction
The work of Goldwasser and Micali on the development of interactive proof sys-
tems, the powerful notion of zero-knowledge proof, and the many applications of
these notions in cryptography and computational complexity theory are well cov-
ered elsewhere in this volume. In this chapter, we focus on interactive proof systems
for problems in a specific area of mathematics that also has proved to be very useful
in cryptography: the study of computational problems on point lattices. The study
of interactive proof systems for lattice problems was pioneered by Goldreich and
Goldwasser in their landmark paper “On the Limits of Inapproximability of Lattice
Problems.” Simple and elegant, this work has influenced, in more or less direct
ways, many other subsequent developments in lattice-based cryptography. In this
survey, we describe the original proof system of Goldreich and Goldwasser [2000],
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and a number of related works on (interactive and noninteractive) proofs, com-
putational complexity, and cryptographic applications of lattices. But, first things
first, let us begin by recalling the historical context and original motivations behind
Goldreich and Goldwasser [2000].

Historical Context. Lattices are regular arrangements of points in n-dimensional
Euclidean space, and they have been extensively used in cryptology since the devel-
opment of the LLL lattice reduction algorithm [Lenstra et al. 1982], but primarily as
a tool for cryptanalysis. A major shift occurred in 1996, when Ajtai discovered a re-
markable connection between the worst-case and average-case complexity of lattice
problems [Ajtai 2004]. In short, if certain problems related to finding short vectors
in arbitrary n-dimensional lattices are computationally hard to approximate within
factors polynomial in n, then one-way functions (arguably, the most basic build-
ing blocks of cryptography) exist. This discovery supported and motivated the use
of lattices not just for cryptanalysis, but also to design secure cryptographic func-
tions, and marked the beginning of modern lattice-based cryptography. Around
the same time, developments in computational complexity had also established
that the problem of finding the shortest vector in a lattice (the “Shortest Vector
Problem,” SVP) was NP-hard (under randomized reductions), even to approximate
within small factors [Ajtai 1998, Cai and Nerurkar 1999, Micciancio 2001]. These
discoveries opened up a possible avenue of attack toward the grand challenge of
basing cryptography on the minimal assumption that P is different from NP. But a
big gap existed between these works: While the one-way function of Ajtai [2004] re-
quired the inapproximability of lattice problems within polynomial factors nc (for
some fairly large constant exponent c), the NP-hardness results of Ajtai [1998], Cai
and Nerurkar [1999], and Micciancio [2001] only provided lower bounds for very
small (constant) approximation factors. Some serious obstacle on the way of bas-
ing cryptography on NP-hard (lattice) problems was already known: A sequence of
works [Håstad 1988, Lagarias et al. 1990, Banaszczyk 1993] had shown that the
(promise) problems associated to approximating SVP within a factor O(n) was in
the class NP ∩ coNP, and therefore not NP-hard under the widely believed conjec-
ture that NP = coNP. But it was conceivable that cryptography could be based on
smaller approximation factors. In fact, motivated both by computational complex-
ity [Håstad 1988, Lagarias et al. 1990, Banaszczyk 1993, Goldreich and Goldwasser
2000] and concrete security considerations, efforts on improving Ajtai’s proof lead
to cryptographic functions that are as hard to break as approximating lattice prob-
lems within factors essentially as low as n [Cai and Nerurkar 1997, Micciancio 2004,
Micciancio and Regev 2007, Gentry et al. 2008, Micciancio and Peikert 2013]. The
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work of Goldreich and Goldwasser [2000] lowered the factor for which one could
conceivably hope to prove NP-hardness even further, by showing that SVP (and the
related closest vector problem, CVP) is in the complexity class coAM for approxi-
mation factors O(

√
n/ log n). Under the standard complexity assumption that the

polynomial hierarchy does not collapse, this also rules out the possibility of SVP
and CVP being NP-hard problems, and this time for approximation factors as low
as O(

√
n/ log n). Establishing such limits on the inapproximability of lattice prob-

lems was indeed the primary motivation of Goldreich and Goldwasser [2000], as
clearly indicated by the title of the paper. Much progress has occurred since the
conference presentation of Goldreich and Goldwasser [2000] in 1998, both on the
front of lowering the polynomial worst-case inapproximability factors required to
build cryptographic functions [Cai and Nerurkar 1997, Micciancio 2004, Micciancio
and Regev 2007, Gentry et al. 2008, Micciancio and Peikert 2013] and proving NP-
hardness results for the shortest vector problem [Dinur 2002, Khot 2005, Khot
2006, Haviv and Regev 2012, Micciancio 2012]. But the “limits of inapproximabil-
ity” established in Goldreich and Goldwasser [2000] still stand as the main barrier
between worst-case lower bounds, and cryptographically useful assumptions. As
far as we know, approximating lattice problems within a factor O(nc) may be NP-
hard for c < 1/2, and imply one-way functions and other cryptographic applications
for c > 1/2.

Overview. While establishing limits of inapproximability of lattice problems is
an important goal, the constructions and proof techniques used in Goldreich and
Goldwasser [2000] are very interesting on their own. At a technical level, this work
gave simple, constant-round interactive proof systems to show that a lattice does
not contain short vectors, or vectors close to some target point.

Given a lattice, it is easy to prove that it contains short vectors: as lattice mem-
bership can be efficiently checked, just providing the candidate short lattice vector
offers a compact, easily verifiable proof that short lattice vectors exist. Similarly, one
can prove that a target point is close to a lattice by providing a lattice point close
to it. But how can one efficiently verify the optimality of these solutions? Check-
ing optimality of these solutions is the technical problem at the core of Goldreich
and Goldwasser [2000]. Since the number of candidate solutions is, in principle,
exponentially large, it would seem that optimality cannot be checked without going
through the time-consuming process of exhaustively enumerating all possibilities.
This problem is addressed in Goldreich and Goldwasser [2000] by resorting to
randomness and interaction, the key features of interactive proof systems. Interest-
ingly, the interactive proof systems of Goldreich and Goldwasser [2000] also have
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the important security property of being (statistical) zero-knowledge; that is, the veri-
fier does not learn anything interesting from the interaction with the prover, beyond
the validity of the assertion being proved.

Beside establishing clear limits on the inapproximability of lattice problems,
the work of Goldreich and Goldwasser also raised several natural questions. Is
interaction necessary to establish the inapproximability of lattice problems for
factors as low as O(

√
n)? (Prior to Goldreich and Goldwasser [2000] it was known

how to prove that lattices did not have short vectors only for substantially larger
approximation factors O(n).) Can statistical zero-knowledge proofs for hard lattice
problems be used to design useful cryptographic functions? Can similar proof
systems be designed for other lattice problems, beside SVP and CVP? Can the
approximation factor be lowered below O(

√
n/ log n)?

In the rest of this chapter, first, in Section 21.2 we give some general background
about point lattices. Next, in Section 21.3 we provide a description of the interactive
proof system of Goldreich and Goldwasser [2000], henceforth referred to as the GG
proof system. In Sections 21.4 and 21.5 we show how the GG proof system has been
adapted and extended to solve many other related problems, like the construction
of proof systems with efficient provers, noninteractive zero-knowledge proofs, or
(interactive) proof systems for several other lattice problems of interest to cryptog-
raphy. Finally, in Section 21.6 we describe how the ideas behind GG proof system
were instrumental to resolve one of the main questions related the cryptographic
applicability of lattice problems. Specifically, Ajtai’s work [2004] provided a sur-
jective one-way function (often described as the shortest integer solution, or SIS,
problem), useful to build collision-resistant hash functions, commitment schemes,
and digital signature schemes, but little more. A much wider range of cryptographic
applications, starting from public-key encryption, all the way to identity-based and
fully homomorphic encryption, was opened up by Regev’s landmark proof [Regev
2009] that learning with errors (LWE) problem (an injective version of SIS) is also
hard on average, based essentially on the same worst-case problems as those used
by Ajtai, but with a catch: Regev’s proof required quantum computation. This was
in part justified in Regev [2009] by the apparent difficulty of making any nontriv-
ial classical (nonquantum) use of an LWE oracle. In a surprising turn of events,
Peikert observed that an LWE oracle is precisely what is needed to implement the
prover strategy of the GG proof system, and this can be used to provide a classi-
cal (nonquantum) proof that LWE and its countless cryptographic applications are
secure under the assumption that certain lattice problems are hard to solve in poly-
nomial time [Peikert 2009]. These are only some of the works that were motivated
or somehow influenced by [Goldreich and Goldwasser 2000]. Additional references
and pointers to related works are provided in the individual sections.
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21.2 Background
In this section we recall the definition of the most important parameters asso-
ciated to a lattice. Each parameter naturally defines a corresponding computa-
tional problem: Given a lattice, compute or approximate the value of the param-
eter. We use column notation for vectors v ∈ Rd . For any p ≥ 1, the �p norm of a
vector v is ‖v‖p = (

∑
i |vi|p)1/p. Of special interest are the �1 norm ‖v‖1 =∑i |vi|,

the �∞ norm ‖v‖∞ = limp→∞ ‖v‖p = maxi |vi|, and the Euclidean norm (�2) ‖v‖ =
‖v‖2 =√∑i x2. The dot product between two vectors is 〈x , y〉 =∑i xi

. yi. We write
B(c, r) = {v: ‖v − c‖ < r} for the open ball of radius r centered around c.

A lattice is the set

� =
{

n∑
i=1

bi
. xi: xi ∈ Z

}

of all integer linear combinations of n linearly independent vectors b1, . . . , bn ∈ Rd .
In this survey we focus on full rank lattices, where d = n, and the basis vectors
b1, . . . , bn are the columns of a square nonsingular matrix B = [b1, . . . , bn] ∈ Rn×n.

The length of the shortest nonzero vector in a lattice is

λ1(�) = inf{‖v‖: v ∈ �, v = 0},

and it equals the minimum distance between any two lattice points. This definition
can be generalized to a sequence of n parameters, λ1, . . . , λn, called the successive
minima of a lattice, where

λi(�) = inf{r : span(� ∩ B(0, r)) ≥ i}
is the radius of the smallest ball (centered around the origin) that contains at least
i linearly independent lattice vectors.

The distance of a point t to a lattice � is the distance

dist(t , �) = inf{‖t − v‖: v ∈ �}
between t and the closest lattice point. The covering radius of a (full rank) lattice
� is the maximum distance

ρ(�) = sup{dist(t , �): t ∈ Rn}
between the lattice and any point in space. (If the lattice is not full rank, then t is
restricted to the linear span of the lattice.) A point t achieving dist(t , �) = ρ(�) is
called a deep hole of the lattice.

All these parameters arise naturally in applications—for example, when lattices
are used as codes in Euclidean space. In this setting, the minimum distance λ1 is
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related to the error correction capabilities of the code, while the covering radius ρ

is the maximum distortion when then lattice is used for vector quantization.
The dual of a lattice � is the set

�∗ = {x: ∀v ∈ �.〈x , v〉 ∈ Z}
of all vectors (in the linear span of the lattice) that have integer scalar product with
all lattice vectors. The dual of a lattice is a lattice, and if � has basis B, then its dual
has basis B−t , the inverse transpose of B. The dual lattice plays an important role
in the mathematical and computational study of lattices. For example, Banaszczyk
proved the following fundamental “transference theorem,” which allows to relate
the parameters of a lattice with those of its dual.

Theorem 21.1 (Transference theorem [Banaszczyk 1993]) For any n-dimensional lattice �, and
its dual �∗, we have

1 ≤ λ1(�) . λn(�
∗) ≤ n.

21.2.1 Worst-Case Lattice Problems
Each lattice parameter defines an associated computational problem: Given a lat-
tice � (typically represented by a basis matrix B), compute or approximate the value
of the parameter. Typically, there is a lattice vector (or small set of lattice vectors)
associated to the optimal value of the parameter, and applications may also re-
quire to find such vectors. The two most important computational problems on
lattices are the shortest vector problem and the closest vector problem, which cor-
respond to the lattice minimum distance λ1 and the distance to a given target t,
respectively. In complexity theory, the approximate versions of these problems are
usually modeled as promise problems—that is, the decision task of distinguishing
instances where the value of the parameter is small, from those where the param-
eter is large. The gap between small and large values of the parameter captures the
slackness of finding approximate solutions.

Definition 21.1 For any approximation factor γ ≥ 1, the shortest vector problem (GapSVP), given a
lattice basis B, asks to distinguish between the following two cases:

. (yes instances) λ1(B) ≤ 1.

. (no instances) λ1(B) > γ .

Sometimes the problem is defined to also include a target value d, and the
question is to distinguish between λ1 ≤ d and λ1 > γd. But one can always assume
that d = 1 by scaling the lattice by a factor d. Usually, the approximation factor γ is a
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function of the lattice dimension n, and γ (n) = 1 corresponds to the exact version of
the problem—that is, the problem of computing the exact value of λ1. An algorithm
solves GapSVP if it accepts all the YES instances, and rejects all the NO instances.
For γ > 1, there is a gap between YES and NO instances: lattices such that λ1 ∈ (1, γ ].
For instances in this range, any answer is acceptable, making the problem easier.
Clearly, the larger the approximation factor γ , the larger the gap between YES
and NO instances and the easier the computational problem. Algorithms to solve
GapSVP typically work by solving the corresponding search problem, denoted SVP,
which asks to actually finding a lattice vector of length ‖v‖ ≤ γ λ1. the closest vector
problem is the inhomogeneous version of SVP and it is defined analogously.

Definition 21.2 For any approximation factor γ ≥ 1, the closest vector problem (GapCVP), given a
lattice basis B, and a target vector t, asks to distinguish between the following two
cases:

. (YES instances) dist(t , B) ≤ 1.

. (NO instances) dist(t , B) > γ .

Finally, the promise problem associated to λn is called the Shortest Independent
Vectors Problem, and it is defined as follows.

Definition 21.3 For any approximation factor γ ≥ 1, the Shortest Independent Vectors Problem
(GapSIVP). given an lattice basis B, asks to distinguish between the following two
cases (where n is the dimension of the lattice):

. (YES instances) λn(B) ≤ 1.

. (NO instances) λn(B) > γ .

Search versions of these problems are denoted CVP and SIVP, and ask to find
a lattice vector v ∈ � within distance dist(v , t) ≤ γ . dist(t , �) from the target, or
n linearly independent lattice vectors v1, . . . , vn ∈ � all of length ‖vi‖ ≤ γ λn. The
bounded distance decoding problem (BDD) is a special version of CVP, where the
target t is chosen as a vector at distance < λ1/2 from the lattice. The importance of
this problem is due to the fact that for any target t there is at most one lattice vector
within distance λ1/2 from it. So, the solution to BDD is always unique. These are
just the most famous computational problems on lattices. Other lattice problems
will be introduced when needed.

21.2.2 Average-Case Lattice Problems and Smoothing Parameter
All problems defined so far are usually understood as worst-case problems: An al-
gorithm is deemed to solve the problem if it returns the correct answer on any
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input instance. In other words, the algorithm should be able to solve the hardest
(i.e., computationally “worst”) instances of the problem. We say that a problem
is computationally hard (in the worst case) if no such efficient algorithm exists.
This is the standard notion of hardness most commonly used in computational
complexity—for example, in the theory of NP-hardness. The above lattice problems
(in particular, GapSVP and SIVP) provide a complexity foundation for lattice-based
cryptography. However, they cannot be directly used in the construction of cryp-
tographic functions. (The inadequacy of worst-case complexity and NP-hardness
to build cryptographic functions is well known; for example, see Even and Yacobi
[1980] and the historical notes in Goldreich [2006, page 26].) In cryptography, one
needs problems that are hard on average, so that when one picks a cryptographic
key at random, one can be reasonably confident that that random key is hard to
break with high probability. So, lattice-based cryptography usually makes use of
the following average-case problems.

. The shortest integer solution problem (SIS): For integer parameters n, m, q

and bound β, given a uniformly random matrix A ∈ Zn×m
q

, find a nonzero
integer vector x of length ‖x‖ ≤ β such that Ax = 0 (mod q). There is also an
inhomogeneous version of this problem, which takes as input also a target
vector u, and the goal is to find a short x such that Ax = u (mod q).

. The learning with errors problem (LWE): For integer parameters n, m, q and
bound α, given a uniformly random matrix A ∈ Zn×m

q
and a vector b = Ats + e,

recover s. Here vectors s, e are also chosen at random, with s ∈ Zn
q

usually
uniform, and e ∈ Zm chosen with independent small entries with Gaussian-
like distribution of magnitude ≈ αq.1

Both problems can be seen as an average-case version of standard lattice prob-
lems as follows. For SIS, let �⊥(A) be the set of all integer vectors x such that
Ax = 0 (mod q). This set of points turns out to be a lattice, and a basis for it can
be easily computed by performing a sequence of elementary integer row opera-
tions on A. In fact, �⊥(A) is a special type of lattice, which repeats periodically
modulo q. This makes �⊥(A) particularly convenient for cryptography, which can
be implemented using only arithmetic modulo q on bounded-size integers. Then
SIS corresponds to finding a short vector (of length at most β) in the lattice �⊥(A)

defined by a randomly chosen A. The bound β is usually set to a small multiple

1. Specifically, each entry ei is chosen with probability proportional to exp(−π(ei/(αq))2). Other
variants of this distribution have also been considered.
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of the expected minimum distance of �⊥(A). So, SIS is essentially an average-case
version of SVP.

In the case of LWE the connection is even more direct, as recovering s is equiv-
alent to finding a lattice point (Ats, in the lattice generated by At (mod q)) close to
the target b. So, LWE is an average-case version of CVP, using a randomly chosen
lattice �(A) (which, also in this case, is periodic modulo q), and a random target de-
fined by a Gaussian-like error vector e. Usually, LWE is employed in a setting where
the length of e is small (with high probability) relative to the minimum distance of
the lattice, so that the solution s is essentially unique. So, LWE is an average-case
version of the bounded distance decoding problem, BDD.

In summary, the cryptographic problems SIS and LWE are average-case versions
of standard lattice problems, SVP and BDD. But there is an even deeper connec-
tion between SIS, LWE and lattices. As originally proved in Ajtai [2004] and Regev
[2009], for appropriate values of the parameters, solving these problem on the
average (even with very small, but non-negligible, probability) is at least as hard
as solving GapSVP and SIVP in the worst case on n dimensional lattices within
approximation factors γ = nO(1) polynomial in the lattice dimension. As the best
known polynomial-time algorithm to solve these problems only achieves approxi-
mation factors exponential in the dimension n, inapproximability within polyno-
mial factors is considered a fairly standard assumption in cryptography. Still, as
the concrete hardness of the problems (and security of cryptographic applications)
depends on γ , determining the smallest values of γ for which inapproximability
of GapSVP and SIVP (in the worst case) implies the average-case hardness of SIS
and LWE has been an important research problem in cryptography. The approxi-
mation factor γ for SIS has been improved to almost linear γ = Õ(n) in the lattice
dimension using Gaussian measures [Micciancio and Regev 2007]. Gaussian dis-
tributions are also used in Regev [2009] to select the error vector e and prove the
average-case hardness of LWE based on similar inapproximability factors γ .

Central both to the study of SIS and LWE, and most advanced applications
of lattice-based cryptography, is a quantity, introduced in Micciancio and Regev
[2007], called the smoothing parameter of a lattice. Due to its importance in lattice-
based cryptography, the smoothing parameter has become an important lattice
quantity, of much interest to the complexity study of lattices just like λ1 and λn.
This parameter and the computational problem of approximating it, is defined in
Section 21.5, where we described a “Gaussian” variant of the GG protocol.

Complexity Classes. In this survey we will classify computational problems on lat-
tices into a number of standard complexity classes, the most important of which
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is certainly NP, the class of languages (or, more generally, promise problems) that
admit efficiently verifiable proofs of membership. The class AM [Babai 1985, Babai
and Moran 1988, Goldwasser and Sipser 1989] generalizes NP by allowing the prover
and verifier to interact and use randomness. Specifically, in an AM (Arthur–Merlin)
protocol, the verifier (Arthur) first sends a uniformly chosen random query to the
prover, and then the prover (Merlin) replies with a proof. Finally, the verifier decides
(deterministically, in polynomial time) to either accept or reject the proof.2 The
acceptance guarantees are probabilistic (over the random choice of the verifier’s
query), and the proof system is parameterized by a completeness error c ≥ 0 and a
soundness error s ≥ 0. The proof system is complete if, on input any YES instance,
a prover following the protocol makes the verifier accept, except with probability
at most c. The proof system is sound if, on input any NO instance, no (compu-
tationally unbounded, possibly misbehaving) prover can make the verifier accept
with probability better than s. For a proof system to be useful, it should satisfy
both the soundness and completeness properties for appropriate values of c and s.
The completeness and soundness errors are customarily set to s = c = 1/3, but the
class AM is very robust with the respect to the choice of s , c. In particular, any AM
proof system with total error s + c < 1 − n−O(1) bounded away from 1 can be turned
into an AM proof system with perfect completeness (c = 0) and exponentially small
soundness error s = exp(−nO(1)), where n is the input size.

coNP and coAM are the complementary classes, where proofs are given to show
that an input instance does not belong to the language. Finally, SZK is the class
of languages admitting a statistical zero-knowledge proof system—that is, an in-
teractive proof system where the verifier does not learn anything from the proof,
except the fact that the assertion being proved in correct.3 The zero-knowledge
property can be defined either with respect to honest verifiers that follow the pro-
tocol, or arbitrary (probabilistic polynomial-time) verifiers that may deviate from
it. We remark that cryptographic applications usually require the latter notion of
zero-knowledge with respect to arbitrary verifiers. However, it turns out that any

2. Technically, this is the definition of AM2], the class of problems that admit a 2-round protocol.
But increasing the number of rounds to any constant k ≥ 2 does not change the power of these
proof systems. So, AM can be equivalently defined as the class of problems admitting a constant-
round public-coin interactive protocol.

3. The qualifier statistical refers to the fact that anything the verifier observes during a protocol
run can be efficiently simulated (without interacting with the prover) up to a small statistical
error. The weaker notion of computational zero-knowledge only requires the simulated view to be
computationally indistinguishable from a real interaction. In this survey, we are only concerned
with statistical zero-knowledge.
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honest-verifier SZK proof system can be transformed into a proof system achieving
statistical zero-knowledge against arbitrary (possibly cheating) verifiers [Goldreich
et al. 1998]. So, for simplicity, in this survey we drop the distinction between these
two notions. The inclusions NP ⊆ AM and coNP ⊆ coAM are trivial. However, it is
conjectured that NP ⊆ coNP and even NP ⊆ coAM. So, a standard method to prove
that a language is unlikely to be NP complete is to show that it belongs to coNP
or coAM. Finally, the class SZK is closed under complement [Okamoto 2000], and
SZK ⊆ AM ∩ coAM [Aiello and Håstad 1991, Fortnow 1989]. Still, SZK is not known
to be contained in NP.

21.3 The GG Proof Systems
Given a lattice B and a target vector t, proving that t is within distance γ from the
lattice is easy: just exhibit a lattice vector Bx such that ‖Bx − t‖ ≤ γ . While finding
the lattice vector Bx closest to t may be hard, once this vector is found, it is easy to
verify that Bx is close to t. In other words, the integer vector x serves as an efficiently
verifiable proof 4 that dist(t , B) ≤ γ . But how can one prove that this is indeed the
optimal, or almost optimal, solution? This requires proving that there is no lattice
vector at distance (substantially) smaller than γ from the target t. In other words,
one has to prove that a smaller ball B(t , r) (for some radius r < γ ) contains no
vectors from the lattice L(B).

A simple and elegant solution to this problem is offered by the GG interactive
proof system [Goldreich and Goldwasser 2000], which is based on the following
idea. First consider the simple (in fact, trivial) case where the target t either belongs
to the lattice (i.e., it is at distance 0) or it is far from it. In order to demonstrate that
t is far from the lattice (say, at distance larger than γ ) one may proceed as follows:

. The verifier picks a random perturbation vector r ∈ B(0, γ /2) from a ball of
radius γ /2 and a “uniformly” random5 lattice point v ∈ L(B). It then sends
either v + r or t + v + r to the prover. Equivalently, one can think of the
verifier as sending a vector u = b . t + v + r ∈ B(v + bt , γ /2) from a ball of
radius γ /2 centered around v + bt for a randomly chosen bit b ∈ {0, 1}.

4. Formally, for the problem to be in NP, one should also show that the size of the proof x is
polynomially related to the size of the problem instance B. This is also fairly easy to prove, using
known lattice bounds and simple linear algebra.

5. Technically, since a lattice has a countably infinite number of points, one cannot really choose v
with uniform distribution. We will address this technicality when presenting the actual protocol.
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. The prover checks if u is closer to L(B) or t + L(B), or, equivalently, which of
the two points u and u − t is closest to the lattice L(B). In the former case, it
sends the bit b′ = 0 to the verifier. Otherwise, it sends b′ = 1.

. The verifier checks if the prover correctly guessed the bit b, and accepts the
proof if and only if b′ = b.

Since we want to prove that t is far from the lattice, YES instances are those for
which dist(t , L(B)) > γ . Notice that, for these instances, the balls B(v , γ /2) and
B(v′ + t , γ /2) centered around lattice points v or their shifts v′ + t are disjoint.
So, the verifier’s message u uniquely identifies the center v + bt. In particular, the
prover can recover the bit b by checking which of u and u − t is closest to (in fact,
within distance γ /2 from) the lattice. This shows that the proof system is complete.
Conversely, for NO instances of our simplified problem, the target t belongs to the
lattice. So, v and v + t are both random lattice points, and the two distributions
(for b ∈ {0, 1}) are essentially identical. It follows that the proof system is sound;
that is, no prover (no matter how powerful) can determine the value of the bit b

with probability better than 1/2. (Here 1/2 is the soundness error, which can be
reduced by repeating the basic proof system an appropriate number of times.)

Notice the similarity between the above proof system, and the classic proof
systems for quadratic nonresiduocity, or graph nonisomorphism [Goldwasser et al.
1989, Goldreich et al. 1991]. For example, in the case of graph nonisomorphism, the
input is a pair of graphs (G0, G1) and the prover claims that the two graphs are not
isomorphic. To this end, the verifier sends an isomorphic copy G′ = π(Gb) of one
of the two graphs (for a random permutation π and random bit b ∈ {0, 1}), and the
prover is tasked with recovering the bit b. If the graphs are indeed nonisomorphic,
the bit b is uniquely identified by G′, and the (all-powerful) prover can recover b by
testing G′ for isomorphism with G0 and G1. On the other hand, if the graphs are
isomorphic, then the message G′ sent by the verifier is distributed independently
of the bit b, and no prover can recover b with probability better than 1/2.

In both problems, a prover can always guess b with probability 1/2 by picking
b′ ∈ {0, 1} uniformly at random. So, the proof system has soundness error 1/2; that
is, the verifier cannot hope to catch a cheating prover with probability higher than
1/2. In order to get high confidence about the assertion that t is far from the lattice
(or that the graphs are not isomorphic), the prover and the verifier will have to
repeat the above process a number of times. In general, if the verifier detects a
cheating prover with probability δ (i.e., the prover guesses b′ = b with probability at
most 1 − δ), then repeating the basic proof system n/δ times will allow the verifier
to catch a cheating prover except with exponentially small probability 2−O(n).
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Protocol 1: coAM protocol for GapCVP

Input: Lattice basis B

1. The Verifier selects b ∈ {0, 1} and r ∈ B(0, γ /2) uniformly at random. He then sends

u = (bt + r) mod B to the Prover.

2. The Prover checks if dist(u, L(B)) < dist(u, t + L(B)). If so, he responds with b′ = 0.

Otherwise, he responds with b′ = 1.

3. The Verifier accepts with b = b′.

Figure 21.1 The Goldreich–Goldwasser coAM protocol for GapCVP. The proof system has perfect com-
pleteness and achieves soundness error bounded away from 1 when γ = �(

√
n/ log n).

The error probability can be made arbitrarily small either by increasing γ or by standard
repetition techniques.

The simplified lattice problem, as described above, is not very interesting: mem-
bership of t in the lattice can be easily checked in polynomial time—for example,
by solving the linear system Bx = t and checking if the solution x has integer coor-
dinates. But the basic idea works also for the (nontrivial) case where the distance of
t from the lattice is small, though not necessarily 0. This time the two distributions
u = v + r and u = t + v + r are not identical. But if t is sufficiently close to the lattice
(relative to the size of the perturbation vector r), they will still overlap, making it
impossible for the prover to always correctly guess the bit b.

In the above informal description we have overlooked some technicalities, most
importantly formalizing what it means to choose a lattice point v ∈ L(B) at random.
In fact, since L(B) is a countably infinite set, there is no well-defined uniform
probability distribution over it. This problem can be addressed using standard
techniques, either by choosing v from a sufficiently large (but finite) subset of lattice
points, or, even better, by working modulo the lattice.6 The final proof system is
shown in Figure 21.1.

In the above proof system, one can think of the vector u as coming from one of
two balls: either B(t , γ /2), for b = 1, or B(Bx , γ /2), for b = 0, where Bx is the lattice
point closest to t. (The lattice point Bx disappears when reducing u modulo B.)

If the target is at distance ‖t − Bx‖ > γ from the lattice, then these two balls are
disjoint, and u uniquely determines the bit b. This allows the prover to always guess

6. A standard representative for the equivalence class of a target vector t modulo a lattice with
basis B can be efficiently computed by expressing the target t = Bx in terms of the basis vectors,
and then reducing its coordinates modulo 1, to bring them in the interval x ∈ [0, 1)n.
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the bit b and make the verifier accept with probability 1 the target t is at distance
larger than γ from the lattice.

On the other hand, if t is within distance ‖t − Bx‖ ≤ 1 ≤ γ from the lattice,
then the two balls have a nonempty intersection. If the perturbation r falls in
this intersection, the vector u is equally likely to come from either of the two
balls, and the prover will not be able to determine the bit b with better proba-
bility than guessing at random. So, evaluating the soundness error of the proof
system boils down to estimating the relative volume of the intersection of the two
balls. It turns out that, when γ = �(

√
n/ log n), this relative intersection is non-

negligible, causing the verifier to reject with probability at least δ = n−�(1). (See
Goldreich and Goldwasser [2000, Lemma 3.6].) The probability of the verifier ac-
cepting a target within distance 1 from the lattice can be made arbitrarily small
either by increasing γ or by repeating the basic proof system a polynomial number
of times.

Theorem 21.2 For any γ (n) = �(
√

n/ log n), Protocol 1 is a constant-round interactive proof sys-
tem for the complement of GapCVPγ with perfect completeness and soundness
error 1 − n−�(1). In particular, GapCVPγ is in coAM.

A similar proof system can also be given for the shortest vector problem,
GapSVP. As before, proving that a lattice satisfies λ1(B) ≤ d is easy: It is enough
to exhibit a nonzero lattice vector of length ‖Bx‖ ≤ 1. The GG proof system can be
used to show that a lattice does not have short vectors. One method to show this is
to resort to transference theorems relating a lattice and its dual. For example, Theo-
rem 21.1 allows to prove that a lattice has no short vectors by exhibiting n-linearly
independent vectors v1, . . . , vn ∈ �∗ in the dual lattice of length maxi ‖vi‖ ≤ n/λ1.
(These vectors certainly exist by the upper bound in Theorem 21.1.) In fact, by the
lower bound in Theorem 21.1, these vectors demonstrate that

λ1(�) ≥ 1/λn(�
∗) ≥ 1/ max

i
‖vi‖ ≥ λ1/n.

So, while this does not prove that λ1 > 1, it shows that λ1 is not much smaller
than 1, by a factor n. Technically, this proves that GapSVPn is in coNP. But what
about factors smaller than O(n)? For example, factors γ (n) = O(

√
n/ log n), as

those achieved by the GG proof system for CVP? Can one prove that a lattice
has no vectors smaller than O(λ1/γ ), possibly using interaction? Using similar
ideas to the CVP proof system in Figure 21.1, Goldreich and Goldwasser also give
an interactive proof system for (the complement of) GapSVP achieving the same
approximation factor γ = O(

√
n/ log n) as for GapCVP [Goldreich and Goldwasser
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2000]. We remark that this result for GapSVP can also be obtained by combining
the GapCVP proof system with a “gap-preserving” reduction from GapSVPγ to
GapCVPγ given in Goldreich et al. [1999]. This reduction solves a GapSVP instance
by making n calls to a GapCVP oracle. So, it may not be immediately obvious how to
combine it with an interactive proof system for GapCVP. This is possible because of
some specific properties of the reduction and the proof system. Specifically, when
starting from a NO instance of GapSVP, the reduction produces only NO instances
of GapCVP, and on such instances the GG proof system makes the verifier accept
with probability 1. (Recall that GG is a proof system with perfect completeness for
the complement of GapCVP.) On the other hand, starting from a YES instance of
GapSVP, the reduction produces at least one query to a YES instance of GapCVP,
which the GG verifier will reject with some probability. So, the verifier for (the
complement of) GapSVP may run the GG verifier on all GapCVP instances produced
by the reduction, and accept if they all accept. In fact, the main idea behind this
reduction, which appeared after the conference presentation of Goldreich and
Goldwasser [2000] in 1998, can be traced back to the GG protocol for GapSVP.
Specifically, the GapSVP protocol can be thought of, at least conceptually, as a
combination of the GapCVP protocol with the GapSVP to GapCVP reduction, where
the n independent GapCVP queries produced by the reduction are consolidated into
a single one using the Goldreich–Levin hardcore predicate [Goldreich and Levin
1989].

Adapting the GapCVP proof system to other lattice problems by reducing them
to GapCVP has been used to design coAM protocols for many other lattice problems
of interest to cryptography. Some of these variants of the GG protocol are described
in Section 21.5.

Beside offering a useful tool to design coAM protocols for many important lat-
tice problems, the results in Goldreich and Goldwasser [2000] also stimulated the
search for stronger coNP results than those implied by Theorem 21.1. While prov-
ing that GapSVP and GapCVP are in coNP for factors γ = O(

√
n/ log n) as small

as those in Goldreich and Goldwasser [2000] is still an open problem, the gap has
been almost completely closed by Aharonov and Regev [2003], [2005] for factor
γ (n) = O(

√
n) only slightly larger than those of the GG proof system. These works

first put the GapSVP and GapCVP problems in coQMA (the quantum analog of
coNP), and then achieved the same results without the use of quantum computa-
tion, putting the problems in coNP. We remark that the proofs in Banaszczyk [1993]
and Aharonov and Regev [2005] are substantially more complex than Goldreich and
Goldwasser [2000], making extensive use of harmonic analysis techniques that have
found countless application in lattice-based cryptography.
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21.4 Zero-Knowledge with Efficient Provers
An important feature of the GG interactive proof systems is that the verifier does
not learn essentially anything from the interaction, other than the validity of the
assertion being proved. For example, in the case of CVP, the verifier learns that the
target t is far from the lattice, and nothing more. This is so because the verifier
already knows the value of the bit b before interacting with the prover. The prover
demonstrates he can also recover the bit b from the verifier’s message, but does
not provide any additional information. More precisely, the protocol in Figure 21.1
shows that the complement of the GapCVPγ problem belongs to SZK, the class of
decision or promise problems that admit a statistical zero-knowledge proof system.

Zero-knowledge proof systems, introduced by Goldwasser, Micali, and Rackoff
in Goldwasser et al. [1989], are a fundamental building block for cryptography. One
of the most direct applications of zero-knowledge is the construction of secure
(public-key) identification schemes. In such a scheme, a user picks a public key
(used to represent the user’s identity) together with a matching secret key. The
public key may be stored on a remote server, or even made publicly available.
The user can later gain access to the system by demonstrating knowledge of the
matching secret key. Using a zero-knowledge proof system, no information about
the secret key is actually revealed, so that not even the server can later impersonate
the user. Specialized to the lattice setting, the user may pick a hard (solved) instance
(�, t) of the closest vector problem—that is, a random lattice � and target vector
t close to the lattice. The secret key (known only to the user) is a lattice point v ∈ �

close to t. Proving that t is close to � is easy enough: Just reveal the nearby lattice
point v. But, how can the user prove that t is close to the lattice without revealing
any information about the secret lattice vector v?

The class SZK of problems with a statistical zero-knowledge proof system is
closed under complement; that is, if there is a SZK proof system for the set of
strings x satisfying some property P(x), then there is a SZK proof system for the set
of strings satisfying the complementary property ¬P(x). In particular, the GG proof
system for showing that a target vector is far from a lattice immediately implies also
a zero-knowledge proof system to show that a target is close to the lattice (at least
approximately, within the same approximation factor γ = O(

√
n/ log n) achieved

in Goldreich and Goldwasser [2000].)
However, the prover strategy, both in the original SZK proof system in Goldreich

and Goldwasser [2000] and in the one for the complementary problem, is not
efficient. In fact, the prover in the GG proof system (see Protocol 1, Step 2) is
required to determine, given u, t and B, if dist(u, L(B)) < dist(u, t + L(B)) or not,
a hard computational task for an arbitrary challenge u. (In fact, it is not even clear
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what information may serve as a secret key to efficiently prove that a lattice point
is far from a lattice.)

Motivated by the proof systems of Goldreich and Goldwasser [2000] and the
cryptographic applicability of lattices [Ajtai 2004], the problem of prover efficiency
in statistical zero-knowledge proofs for lattice problems (and more) is investigated
in Micciancio and Vadhan [2003]. The main idea of Micciancio and Vadhan [2003]
is that implicit in the GG proof system is the construction of a lattice-based com-
mitment scheme. A commitment scheme is a cryptographic primitive that allows a
sender (the committer) to communicate a value in the digital equivalent of a sealed
envelope. The envelope hides the committed value, keeping it secret until the com-
mitment/envelope is opened. Still, the commitment is binding: The sender cannot
change the content of the commitment after its transmission, and open it to a dif-
ferent value than the one originally selected. The CVP instances in the GG proof
system provide a bit-commitment scheme as follows: Commitments to the bit b are
random samples u from the ball B(bt , γ /2) (mod B). The commitment is opened
by showing how it was computed, either starting from B(0, γ /2) or starting from
B(t , γ /2). This commitment scheme has the peculiar property of being binding
when the target is far from the lattice, and hiding when it is close.7 Indeed, if t is
far from the lattice, then the two balls B(0, γ /2) and B(t , γ /2) are disjoint, even
after reduction modulo B. So, no commitment u can later be opened both to b = 0
and to b = 1. On the other hand, if t is close to the lattice, then the commitment
scheme is somehow hiding, because the balls B(0, γ /2) and B(t , γ /2) intersect
(mod B), and when u is in the intersection of the two balls it provides no infor-
mation about the bit b. This is a very weak hiding property, but enough to build
stronger commitment schemes and other useful applications. (See Micciancio and
Vadhan [2003] for details.)

Using this commitment scheme as a building block, the GG proof system to
show that a target t is far from a lattice � can be abstractly described as follows:

1. The verifier picks a random bit b ∈ {0, 1} and sends a commitment to b to the
prover.

2. The prover determines if the verifier committed to 0 or 1, and sends b back
to the verifier.

3. The verifier checks that the prover correctly guessed b.

7. Following Nguyen and Vadhan [2006], these are called “instance dependent commitments.”
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Clearly, the prover strategy is not efficient because it requires the prover to “break”
the hiding property of the commitment scheme. In order to implement the prover
strategy efficiently, an alternative use of the same commitment scheme is proposed
in Micciancio and Vadhan [2003], leading to the following proof system to show that
the target is close to the lattice:

1. The prover sends a random commitment c to the verifier.

2. The verifier send a random bit b to the prover.

3. The prover opens the commitment c to show that it holds the bit b.

The proof system is sound because when the target t is far from the lattice, the
commitment scheme is perfectly binding, and no prover can successfully open the
commitment c both to 0 and 1. Since the query b ∈ {0, 1} is chosen at random by
the verifier after receiving the commitment c, and the prover can answer at most
one of the two questions, the verifier will reject with probability at least 1/2. On the
other hand, if t is close to a lattice point v, as the prover claims, then the prover can
open the commitment both ways with some probability, and this probability can be
amplified using repetition techniques.8 Finally, a lattice vector Bx close to the target
t can be used to efficiently implement the prover strategy. To see this, we show how
to compute a commitment to 1, and later open it as a commitment to 0. Recall
that a commitment to 1 is computed by choosing a vector u within distance γ /2
from the target t, and reducing it modulo the lattice, to produce the commitment
c = u mod B. In order to open c to 0, the prover will simply pretend that it was
chosen starting from a vector u′ = u − Bx, which is near the origin. In fact, since t
and Bx are close to each other, the vector u is also approximately within distance
γ /2 from Bx. So, the difference vector u′ = u − Bx is (with some approximation)
within distance ≈ γ /2 from the origin, and it can be used to open the commitment
(u − Bx) mod B = u mod B = c as 0. In the simplified (toy) version of the problem
considered at the beginning of Section 21.3, where the distance between t and
the lattice is either 0 or larger than γ , we have Bx = t, and the prover strategy we
just described achieves both perfect completeness and perfect zero-knowledge. Of
course, in reality, both properties hold only in an approximate sense, due to the
approximation Bx ≈ t, and a big part of the effort in Micciancio and Vadhan [2003]
goes into analyzing and reducing the error bounds in an efficient manner.

8. This has to be done carefully, in two stages, because one needs to reduce both the soundness
and completeness error. See Micciancio and Vadhan [2003] for details.
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This initial work on interactive proof systems for lattice problems seeded two
distinct and quite different developments in complexity theory and cryptography.
In cryptography, interactive proofs provided a method for the direct construction of
lattice-based digital signature schemes. Digital signatures, formally defined in the
seminal work of Goldwasser, Micali, and Rivest [Goldwasser et al. 1988], are among
the most important and useful cryptographic primitives used in practice, and, at
least in principle, they can be constructed from any one-way function [Rompel
1990]. However, using lattice problems like SIS simply as a one-way function,
and then building a digital signature from it using generic methods, is terribly
inefficient. The identification schemes from Micciancio and Vadhan [2003] can be
turned into digital signature schemes in a much more direct and efficient way using
the Fiat–Shamir heuristics [Fiat and Shamir 1986]. Interactive proofs are also at the
core of the construction of lattice-based (one-time) signatures provably secure in
the standard model (i.e., without random oracles), first proposed in 2008 in the
conference presentation of Lyubashevsky and Micciancio [2018]. Much progress
has occurred since then, producing a sequence of more and more efficient lattice-
based signature schemes. The most efficient of these schemes (e.g., see Ducas et al.
[2013]) are still based on a form of interactive proof system for lattice problems,
and achieve excellent performance in practice, competitive with traditional digital
signatures based on problems from number theory, but with the added benefit of
conjectured security against quantum attacks.

Another important development in cryptography has been the design of non-
interactive zero-knowledge proof systems for lattice problems [Peikert and Vaikun-
tanathan 2008]. These are closely related to proof systems for the covering radius
and smoothing parameter problems, and they are described in the next section.

On the complexity front, the work of Micciancio and Vadhan [2003] started the
investigation of SZK proof systems with efficient provers for arbitrary problems in
SZK ∩ NP, not just lattices. Already in Micciancio and Vadhan [2003], a statisti-
cal zero-knowledge proof system with efficient prover is presented for the SD1/2, 1

problem, a special case of the SZK-complete statistical distance problem SDa ,b,
which asks if two probability distributions (represented by two digital circuits C0

and C1) are close (within statistical distance a) or far (at distance b) from each other.
Here distance b = 1 corresponds to two distributions with disjoint support, putting
the problem in NP. This problem admits a SZK proof system with efficient prover,
which uses a sample in the intersection of the two distributions as a witness that
the distributions are not disjoint. Unfortunately the resulting problem is no longer
known to be complete for SZK or even for SZK ∩ NP. Still, building on Micciancio
and Vadhan [2003], and using additional ideas and extensions of the notion of
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instance dependent commitment, Nguyen and Vadhan [2006] were able to com-
pletely resolve the issue of prover efficiency for SZK, showing that any problem in
SZK ∩ NP has a statistical zero-knowledge proof system where the prover strategy
can be efficiently implemented given just an NP-witness for the input string. An-
other development specific to lattices, but still based on the instance dependent
commitments implicit in Goldreich and Goldwasser [2000], is the construction of
proof systems for lattice problems (and more) that are zero-knowledge even when
multiple instances of the protocol are executed concurrently, under any adversarial
schedule [Micciancio et al. 2006].

21.5 Other Lattice Problems
SVP and CVP are perhaps the two most famous lattice problems, but there are
several other interesting computational problems on lattices, and some are even
more directly related to cryptography. The shortest independent vector problem
(SIVP) is the main worst-case problem underlying both Ajtai’s one-way function
[Ajtai 2004] and Regev’s learning with errors problem [Regev 2009]. The covering
radius problem (GapCRP) was suggested as a possible way to improve Ajtai’s one-
way function using “almost-perfect” lattices [Micciancio 2004]. More recently, even
tighter connections have been established between lattice-based cryptography and
the computational hardness of approximating the smoothing parameter of a lat-
tice [Chung et al. 2013]. In this section we describe how the original GG proof
systems for CVP and SVP have been adapted to establish similar results for all these
problems.

The Covering Radius Problem (GapCRP). This is the problem, given a lattice basis
�, to determine if ρ(�) ≤ 1 or ρ(�) > γ (n), where ρ(�) = maxt dist(t , �) is the
covering radius of the lattice. From a computational perspective, this is a very
interesting problem, as it is not even clear if the problem belongs to NP. The most
natural formulation of the problem involves a quantifier alternation, putting it at
the second level of the polynomial hierarchy: ρ(�) ≤ 1 if for all x, there exists a lattice
point v ∈ � such that ‖x − v‖ ≤ 1.

Interestingly, if one allows for a small approximation factor γ = 2, the problem
is in AM; that is, it admits a public-coin constant-round interactive proof system
[Guruswami et al. 2005]. The proof is based on the following lemma, which allows,
probabilistically, to find a point t far away from the lattice.

Lemma 21.1 (Guruswami et al. 2005, Lemma 4.1) For any lattice �, if t is chosen uniformly at
random (modulo �) then Pr(dist(t , �) ≥ ρ(�)/2) ≥ 1/2.
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Protocol 2: AM protocol for GapCRP2

Input: Lattice basis B

1. The Verifier picks a uniformly random x ∈ B[0, 1)n and sends it to the prover.

2. The Prover finds a lattice point v ∈ L(B) within distance ρ(�(B)) ≤ 1 from x and sends

v to the verifier.

3. The Verifier accepts if ‖x − v‖ ≤ 1 and v ∈ L(B).

Figure 21.2 AM protocol for the covering radius problem [Guruswami et al. 2005].

In other words, a random point t may not be as far away from � as possible, but it
will achieve half that distance with good probability. An interactive proof system to
show that the covering radius of a lattice is small is easily obtained, and it is shown
in Figure 21.2. The verifier simply picks a random target point t, whose distance
from the lattice is (with high probability) within a factor 2 from the covering radius,
and the prover then shows that t is close to the lattice by sending a standard NP
proof for the CVP instance (B, t).

We recall that, differently from SZK, the class AM is not known to be closed
under complement. Notice also that the above proof system is not (statistical)
zero-knowledge because it reveals a lattice point close to the (random) target t.
In particular, we cannot conclude that GapCRP2 ∈ coAM. However, the GG coAM
protocol for GapCVP can be easily adapted to GapCRP [Guruswami et al. 2005].
The idea is to give a (polynomial-time, nondeterministic) reduction from GapCRPγ

to GapCVPγ , and then directly invoke the GG proof system for GapCRPγ . The
reduction simply guesses a “deep hole” for the lattice; that is, a target vector h
achieving the maximum distance dist(h, �) = ρ(�). Clearly, if ρ(�) > γ , then there
is a point h such that dist(h, �) > γ . On the other hand, if ρ(�) ≤ 1, then, no matter
how the prover chooses h, we have dist(h, �) ≤ 1.

Then, the prover uses the GG protocol for GapCVPγ to show that dist(t , �) > γ .
This provides a coAM protocol for GapCRPγ for the same approximation factor

γ = O(
√

n/ log n) achieved by Goldreich and Goldwasser [2000] for GapCVP. The
resulting proof system is shown in Figure 21.3.

Finally, while the protocol in Figure 21.2 is not zero-knowledge, it can be turned
into a statistical zero-knowledge proof system by letting the prover choose the
lattice point v ∈ L(B) at random—say, with a Gaussian-like distribution centered
around the target x and standard deviation above the smoothing parameter of the
lattice. In fact, Peikert and Vaikuntanathan [2008] do even more than that: they
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Protocol 3: AM protocol for GapCRPγ

Input: Lattice basis B

1. The prover selects a deep hole h (with dist(h, L(B)) = ρ(L(B))) and sends it to the

verifier.

2. The Verifier selects b ∈ {0, 1} and r ∈ B(0, γ ), and sends u = (bh + r) mod B to the

Prover.

3. The Prover replies with b′ = 0 if dist(u, L(B)) < dist(u, h + L(B)), and with b′ = 1

otherwise.

4. The Verifier accepts with b = b′.

Figure 21.3 coAM protocol for the covering radius problem [Guruswami et al. 2005].

observe that the only message sent by the verifier is a target point x chosen uni-
formly at random. So, one can think of x as a randomly chosen reference string,
available to both the prover and the verifier. This results in a noninteractive zero-
knowledge proof system, a particularly useful type of zero-knowledge proofs intro-
duced in Blum et al. [1988], where, after seeing a common randomly chosen string
x, the proof consists of a single (random) message sent by the prover to the verifier.
In the case of lattice covering radius proof systems, this message is a lattice point v
chosen with a Gaussian-like probability distribution centered around the reference
vector x. The protocol is statistical zero-knowledge because the verifier’s view of the
entire process can be simulated by first choosing v as a random vector with Gaus-
sian distribution, and then setting x = v mod B. The properties of the smoothing
parameter, described below, ensure that the distribution of the simulated reference
string x is essentially uniform.9 Essentially the same protocol can also be used to
give non-interactive statistical zero-knowledge proofs for other lattice problems,
like GapSIVP and the complement of GapSVP. Further improvements and variants
of this non-interactive zero-knowledge proof system have recently been proposed
in Alamati et al. [2018].

The Shortest Independent Vectors Problem (SIVP). This is the problem of computing
n linearly independent lattice vectors v1, . . . , vn ∈ L(B) of minimal length maxi ‖vi‖.

9. Technically, as described, x is uniform over the fundamental parallelepiped defined by the
lattice basis B. This point can equivalently be represented by its coordinates with respected to
the basis B, resulting in the uniform distribution over a set [0, 1)n that does not depend on the
problem instance.
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In the approximate decision version of this problem, given a basis B, the task is to
decide if λn(B) ≤ 1 or λn(B) > γ (n), where γ (n) is the approximation factor.

As for the covering radius problem, GapSIVPγ also is in coAM. This can be
shown by giving a nondeterministic10 reduction from GapSIVPγ to GapCVPγ

and then invoking the GG protocol for GapCVPγ [Guruswami et al. 2005]. This
time the reduction is more involved, and we only provide a brief sketch here.
For details, the reader is referred to the original paper. On input a GapSIVP in-
stance B, the reduction outputs a polynomial number of GapCVP instances (Si , ti),
such that:

. If λn(B) > γ , then for some nondeterministic choice of the reduction, every
GapCVP instance satisfies dist(Si , ti) > γ .

. If λn(B) ≤ 1, then for every nondeterministic choice of the reduction, some
GapCVP instance satisfies dist(Si , ti) ≤ 1.

More specifically, the reduction selects an appropriate basis S = [s1, . . . , sn] for
the lattice, and for every i, the ith GapCVP instances is defined by Si = [s1, . . . ,
sn−1, 2isn] and ti = 2i−1sn. Combining this reduction with the GG proof system
for GapCVP shows that GapSIVPγ is in coAM for the same approximation factors

γ = O(
√

n/ log n) as in Goldreich and Goldwasser [2000].

The Smoothing Parameter Problem (GapSPP). One last variant of the GG protocol
is proposed in Chung et al. [2013] to approximate the smoothing parameter of a
lattice. Technically, the smoothing parameter of a lattice ηε(�) is defined in terms
of Gaussian sums over the dual lattice �∗ [Micciancio and Regev 2007]. But for our
purposes, one can think of the smoothing parameters more intuitively as follows.
Consider a (continuous) Gaussian distribution11 D in Rn, scale it by a factor s,
and reduce it modulo the lattice. If s is large enough, the resulting distribution
sD (mod �) will be close to uniform over Rn/�. The smoothing parameter ηε(�)

is the smallest s > 0 such that the probability density function of sD (mod �) is
within a factor (1 ± ε) from the uniform distribution. Here ε > 0 is an accuracy
parameter, and it is assumed to be an inverse polynomial function ε = 1/nc of the
lattice dimension.

10. This has been extended to a deterministic polynomial-time reduction [Micciancio 2008], but
only for the search versions of the problems SIVPγ and CVPγ .

11. Here D is a distribution that selects a point x with probability proportional to exp(−π‖x‖2).
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The smoothing parameter plays a fundamental role both in the strongest known
connections between the average-case and worst-case complexity of lattice prob-
lems [Micciancio and Regev 2007], as well as many of their cryptographic appli-
cations (e.g., see Gentry et al. [2008] and Micciancio and Peikert [2012]). Under-
standing the complexity of computing the smoothing parameter of a lattice has
therefore become of central importance to lattice-based cryptography. Formally,
for any ε > 0, GapSPPε is defined as the problem of determining if a given lattice
satisfies ηε(�) ≤ 1 or ηε(�) > γ . We remark that since the smoothing parameter of
a lattice is determined by a summation with infinitely many terms,12 it is unclear
(just as for GapCRP) if GapSPPε is in NP or coNP.

Chung, Dadush, Liu, and Peikert [Chung et al. 2013] propose a Gaussian variant
of the GG protocol, where the perturbation vector r is chosen with Gaussian dis-
tribution, rather than uniformly in a ball. This Gaussian Goldreich–Goldwasser (or
GGG) protocol is shown in Figure 21.4. Interestingly, and perhaps surprisingly, this
results in a much tighter analysis of the GG protocol, with approximation factors
(for ηε) as small at 2 + o(1). The input to the GGG protocol is just a lattice basis B,
and the protocol approximates the smoothing parameter of the dual lattice L∗(B)

within a factor 2 + o(1). In this protocol the verifier chooses a perturbation vector
x with (scaled) Gaussian distribution 2 . D and sends x mod B to the prover. The
verifier accepts if the prover correctly recovers the original vector x. Since the Gaus-
sian distribution is spherically symmetric, the optimal prover strategy (maximum
likelihood decoding) is to return the shortest point in the lattice coset x + L(B). So,
without loss of generality, we may assume that even a cheating prover will follow
the strategy specified in the protocol in Figure 21.4. It is easy to see that the verifier
accepts if and only if the perturbation vector x falls within the Voronoi cell of the
lattice V(�)—that is, the set of points in Rn that are closer to the origin than to
any other lattice point. In summary, the optimal success probability for any prover
equals D(V(�)/2), the Gaussian mass of the Voronoi cell of the lattice. (The cell is
scaled by a factor 1/2 because the verifier sampled x with distribution 2 . D.)

The correctness of the GGG protocol is based on the following geometric charac-
terization of the smoothing parameter of a lattice, proved in Chung et al. [2013]: For
any lattice � with Voronoi cell V and (dual) smoothing parameter s = ηε(�

∗), the
Gaussian mass of the Voronoi cell satisfies D(2sV) ≥ 1 − ε and D(sV) ≤ 1/(1 + ε).

A γ = O(
√

n/ log n) approximation for λ1 (as achieved by the original GG proto-
col) can be recovered from the GGG protocol of Chung et al. [2013] simply using

12. We recall that the technical definition of the smoothing parameter, as given in Micciancio and
Regev [2007], involves a summation over all points of the dual lattice.
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Protocol 4: AM protocol for GapSPP

Input: Lattice basis B

1. The Verifier picks x ← 2 . D with Gaussian distribution, and sends x′ = x mod B to the

prover

2. The Prover finds the lattice point v ∈ L(B) closest to x′, and sends x′′ = x′ − v to the

verifier.

3. The Verifier accepts if x′′ = x.

Figure 21.4 The Gaussian Goldreich–Goldwasser (GGG) protocol for the smoothing parameter
problem GapSPP [Chung et al. 2013].

known bounds �(log n) ≤ λ1 . ηε ≤ O(
√

n) (for ε = n1/c) relating λ1 to the smoothing
parameter.

Other Norms. Lattice problems are most commonly defined with respect to the
�2 (Euclidean) norm, but it is often interesting and useful to consider the same
problems with respect to other norms—for example, �p norms for any 1 ≤ p ≤∞.
Lattice problems in the �2 norm can be reduced to the same problems in �p with
essentially no loss in approximation, using norm embedding techniques [Regev
and Rosen 2006]. This is useful to port hardness results for lattice problems in �2

to similar results in other �p norms. However, for positive results (e.g., algorithms,
or proof systems showing “limits on the hardness of approximation” as those
presented in Goldreich and Goldwasser [2000]), going from �2 to other �p norms
requires reductions in the opposite direction. This is easily achieved using the fact
that all �p norms are within a factor

√
n from �2, but only at the cost of worsening

the approximation by factors as large as
√

n. This suggests that lattice problems
with respect to �p norms (for p = 2) may be strictly harder than the corresponding
�2 problems. In fact, historically, hardness for non-Euclidean norms (e.g., with
respect to �∞) has been easier to achieve, or produced stronger results, than �2

[van Emde Boas 1981, Dinur 2002].
The problem of establishing stronger positive results in norms other than �2

is addressed by Peikert, who adapts many previous algorithms and proof sys-
tems to any �p norm for 2 < p < ∞ [Peikert 2008]. In particular, approximating
GapCVP, GapSVP, GapSIVP, GapCRP in the �p norm for any 2 < p < ∞ within a
factor γ = O(

√
n) is in coNP, matching the approximation factors for the �2 prob-

lems proved in Aharonov and Regev [2005]. Peikert also gives algorithms for the CVP
and BDD with preprocessing, and cryptographic functions based on the worst-case
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hardness of lattice problems in the �p norm, again matching the best previous re-
sults for �2. Interestingly, the techniques used to prove these results do not seem
to apply to the GG protocols, and it was left as an open problem to give coAM pro-
tocols for GapSVP and GapCVP in the �p norm for the same approximation factors
γ = O(

√
n/ log n) as in Goldreich and Goldwasser [2000].

21.6 LWE and the GapSVP to BDD Reduction
One last development where the use of ideas behind the GG proof system came most
unexpected is Peikert’s classical (nonquantum) proof of hardness for the learning
with errors problem [Peikert 2009], and a related reduction from GapSVP to the
bounded distance decoding (BDD) problem [Lyubashevsky and Micciancio 2009].

Most advanced applications of lattice-based cryptography are based on the
Regev’s LWE problem [Regev 2009]. LWE is closely related to the SIS problem [Ajtai
2004], via lattice duality, with the main technical difference that SIS provides sur-
jective one-way functions, while the one-way function associated to LWE is injective.
This technical difference between the two problems is key to the broad applicabil-
ity of LWE, but also results in very different worst-case to average-case reductions.
Interestingly, Regev’s reduction [Regev 2009] (from worst-case lattice problems to
average-case LWE) makes essential use of quantum computation. For several years
(since the conference presentation of Regev [2009] in 2005) it has been a puzzling
open question whether the use of quantum reductions (in the security proof) was
essential to the broad range of applications of lattices enabled by the LWE problem,
or if one could build similar applications under classic (non-quantum) reductions.
As we are going to explain, the puzzle was finally resolved using techniques that are
closely related to the GG proof system. But first, we need to explain why the use of
quantum computation was perceived as necessary to establish the hardness of the
LWE problem.

As usual in complexity theory, the average-case hardness of LWE is established
by assuming (for contradiction) that there is an efficient algorithm to solve LWE,
and then using this algorithm as an oracle to efficiently solve some other lattice
problem like SIVP or GapSIVP which is believed to be intractable. In particular,
this requires to generate random LWE problem instances (A, u), feed them to the
LWE oracle, and then trying to extract some useful information from their solution
v. The difficulty of proving hardness results for LWE under classic (nonquantum)
reductions is well illustrated by Regev [2009], which states:

. . . it seems to us that the only way to generate inputs to the [LWE] oracle
is the following: somehow choose a lattice point v and let u = v + r for some
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perturbation vector r of length at most d. Clearly, on input u the oracle outputs
v. But this is useless since we already know v!

By contrast, in the quantum setting, the ability to recover v from u is quite
useful: It allows to “uncompute” v, something quite nontrivial and useful in the
quantum setting because quantum computations are required to be reversible.
More precisely, the LWE oracle allows to efficiently transform the quantum state
|u, v〉 to the state |u, 0〉 in a reversible way, a key step in the reduction of Regev
[2009]. The main idea behind the GG proof system Goldreich and Goldwasser
[2000] is used in Peikert [2009] to make a nontrivial use of the LWE oracle, without
resorting to quantum computation! The main observation is that the prover in the
GG protocol, although not polynomial time, can be efficiently implemented given
oracle access to a BDD oracle. Since LWE is an average-case version of BDD, this
provides an interesting way to use an LWE oracle: Implementing the GG prover,
which, combined with the (polynomial time) verifier of the GG proof system, yields
a polynomial time algorithm to solve GapSVP.

Here we follow [Lyubashevsky and Micciancio 2009], and present the idea in the
context of a reduction between (worst-case) GapSVP and BDD problems.

Theorem 21.3 (Lyubashevsky and Micciancio 2009, Theorem 7.1) For any γ > 2
√

n/ log n there
is a polynomial-time (randomized) reduction from GapSVPγ to BDD.

In the GapSVPγ problem, on input a lattice B, one needs to determine if λ1(B)≤ 1
or λ1(B) > γ . The reduction to BDD works as follows:

1. Generate a random point r in a ball B(0, r) of radius r =√n/ log n, and
compute u = r mod B. Notice that this computation defines a lattice point
v = u − r within distance ‖r‖ ≤ r from u.

2. Query the BDD oracle on input u.

3. If the oracle returns the lattice point v, then output NO, otherwise output
YES.

We will show that the above reduction always rejects NO instances, and it accepts
YES instances with some non-negligible probability. The probability of accepting
YES instances can be made arbitrarily close to 1 simply by running the reduction
a polynomial number of times, and accepting the GapSVP input instance if any
execution of the reductions produces YES as an answer. The intuition behind the
reduction is the following:

. If B is a NO instance of GapSVPγ , then the lattice B has a large minimum
distance λ1 > γ = 2r , and (B, u) is a valid BDD instance. So, the BDD oracle
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is required to correctly recover the (unique) lattice point v = u − r within
distance r from u, and the algorithm outputs NO.

. On the other hand, if B is a YES instance, then B has a short lattice vector
x, of length ‖x‖ = λ1 ≤ 1 much smaller than r , and (B, u) is not a valid
BDD instance. So, the BDD oracle can answer arbitrarily, and may seem
to provide no useful information. Still, one can show that the BDD oracle
cannot possibly recover the vector v all the times, making the reduction
output YES with some non-negligible probability. To see this, recall that,
by construction, v is a lattice point within distance r from u. Since x is
a short lattice vector, also v + x is a lattice point not too far from u, and
(with some probability over the choice of r) the distance between v + x and
u will also be bounded by r . Specifically, this happens when r belongs to
the intersection of B(0, r) and B(x , r), an event of probability p equal to the
relative volume of the intersection of two balls of radius r with centers at
distance ‖x‖ = λ1 ≤ 1 from each other. As in the analysis of the GG proof
system, this probability is p = 1/nO(1) because r/‖x‖ ≥√n/ log n. Moreover,
since r was chosen uniformly at random in a ball of radius r , all lattice points
within distance r from u are equally likely, and the two points v and v + x are
perfectly indistinguishable to the BDD oracle. So, the oracle cannot output v
with probability higher than 1/2. This proves that the reduction outputs YES
with probability at least p/2.

Recall that both SIS and LWE are parameterized by an integer modulus q.
Peikert’s proof reduces GapSVP to LWE with exponentially large modulus q. This
has been subsequently improved in Brakerski et al. [2013] to a reduction with
polynomial modulus q, as typically used in lattice-based cryptography.

21.7 Conclusion
The study of interactive proof systems for lattice problems, initiated by Goldreich
and Goldwasser [2000], has proved very useful to understand the complexity of lat-
tices and has influenced the development of lattice-based cryptography in several,
sometime unexpected, ways. The main idea behind the GG proof system appears
in some form also in other works not covered in this survey, like the correctness
analysis of lattice-sieving algorithms [Micciancio and Voulgaris 2010, Ajtai et al.
2001], the first method to solve lattice problems in single-exponential time. Almost
twenty years after Goldreich and Goldwasser [2000], this work is still the strongest
known barrier to prove NP-hardness results for classic lattice problems GapSVP and
GapCVP within approximation factor potentially useful for cryptography. Achiev-
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ing smaller approximation factors γ = o(
√

n/ log n), or showing that for any such
factors GapSVP and GapCVP are NP-hard, is one of the most important unsolved
problems on the complexity of lattice problems.

Beside their technical contributions to the foundation of modern cryptography
and the study of interactive proof systems, Shafi Goldwasser and Silvio Micali had
much influence on the development of cryptography also as educators and mentors.
Much of what I know about cryptography, I learned it from them, and if I dedicated
much of my professional career to the study of the complexity of lattices and the
foundation of lattice-based cryptography, it is thanks to Shafi’s early interest in
the area.
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22Following a Tangent
of Proofs
Johan Håstad

We discuss a sequence of results, many related to various forms of probabilistic
proofs. The tangent I follow is that of single-prover interactive proofs, through
multi-prover interactive proofs, to probabilistically checkable proofs, and leading
to inapproximability results for NP-hard optimization problems.

22.1 Introduction and Notation
The objective of this paper is not to write scientific history in any objective sense,
and in fact in several places I omit the fine-grained history and just cite the final
publication. The purpose is rather to give an exposition of a sequence of results and
ideas that have evolved during my career and that I find beautiful and important. In
some instances I try to recall what I felt at the time when the result first appeared.
Any such memories should be taken with a grain of salt since it is easy to, hopefully
by mistake, adjust memories based on later experiences.

We use standard notation that we mostly introduce as we go or often just hope
is self-evident. We use [n] to denote the integers {1, 2 . . . n}. Addition is usually over
the integers, but sometimes we work modulo 2 or modulo a prime p.

We spend a significant part of the paper discussing proof systems. We have a
polynomial-time verifier, usually called V , and an all-powerful prover, usually called
P , which share a mathematical statement. The proof system is complete if P can
always convince V when the statement is correct. It is sound if P always fails to
convince V when the statement is false. In many situations both P and V can use
randomness. In such a situation a proof is perfectly complete if P can make V

accept with probability 1. We also consider proof systems where this probability
is slightly less than 1. The soundness of such a probabilistic proof system is the
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maximal probability with which a cheating prover can make the verifier accept any
purported proof for an incorrect statement.

In many situations the soundness can be improved by running the verification
several times with independent randomness. This results in a small increase in the
verifier’s use of resources, which, in most situations, is not important.

22.2 The Beginning, IP, ZK, and AM
The concept of an efficient proof was long felt to be captured by NP. A deterministic
polynomial-time verifier that checks a written proof. The verifier always accepts a
correct proof of a correct statement and never accepts any proof of an incorrect
statement. What more could we possibly hope for?

The key insight here is that also efficient algorithms can learn more quickly by
asking questions, and in 1985 Goldwasser, Micali, and Rackoff [Goldwasser et al.
1985]1 introduced the notion of an interactive proof. In such a proof a probabilistic
prover, P , and a probabilistic polynomial-time verifier, V , share a binary string x

and exchange messages. P wants to convince V that x ∈ L for some predetermined
language L. This is an interactive proof system if whenever x ∈ L is true, P can make
V accept with probability at least 2/3, while if x ∈ L, no matter how P behaves, the
probability that V is convinced is at most 1/3.

At almost the same time Babai [1985] produced a similar notion called Arthur–
Merlin games. Merlin plays the role of the prover, while Arthur plays the role of
the verifier but is more limited. In particular, every message sent by Arthur is a set
of random independent coin flips, and the only real computation performed by
Arthur is a polynomial-time computation after the interaction is over.

While the motivation of Babai was to make it possible to recognize more lan-
guages using the smallest possible extension of NP, an additional motivation of
Goldwasser, Micali, and Rackoff [Goldwasser et al. 1985] came from cryptogra-
phy, and the seminal concept defined was zero-knowledge. This notion captures
that P convinces V that x ∈ L without disclosing any additional information. This
is formalized using the notion of a simulator, but as we here focus on language
recognition, we refer to Goldwasser et al. [1988] for the details. To get a flavor of
zero-knowledge and at the same time see the difference between the two models, let
us give a nice protocol, proposed by Goldreich, Micali, and Wigderson [Goldreich
et al. 1991].

1. With the full version appearing in Goldwasser et al. [1988].
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We are given two graphs G0 and G1 on n nodes that the prover, P , claims are
nonisomorphic. We have the following interactive protocol:

1. The verifier, V , chooses a random bit b and a random permutation, π of [n],
and sends H = π(Gb) to P .

2. P responds with a bit b′.

3. V accepts iff b = b′.

This is a perfectly complete protocol since if G0 and G1 are indeed nonisomor-
phic then H determines the value of b, and since we assume that P is all powerful,
it can compute this value and make V always accept.

On the other hand, if G0 and G1 are isomorphic, then it is equally likely that a
given H is produced with b = 0 and b = 1. Indeed, if G1 = σ(G0) then (0, π) and
(1, π ◦ σ) are equally likely to appear and produce the same H . This implies that,
regardless of the strategy of P , the verifier accepts with probability 1/2. Repeating
the protocol t times can make this error probability decrease to 2−t .

This proof of soundness uses in a strong way that the random choices of V

remain hidden from P and that there are two different sets of random coins of
V that produce the same H . In particular, there is no obvious way to implement
this protocol idea in the AM model where Arthur can only send his random coins
to Merlin.

It came as a surprise when Goldwasser and Sipser [1986] proved that, not only
for this problem, but for any problem, there is no2 advantage to allowing hidden
coins. If there is a polynomial-time general interactive protocol, there is a different
protocol that also runs in polynomial time where the verifier simply sends its
random coins. Let us denote the set of languages that admit an interactive proof
(thus either in the model of Babai [1985] or Goldwasser et al. [1985]) by IP.

We note that IP contains NP and was known at this time to contain some highly
structured languages such as graph-nonisomorphism and some group-theoretic
problems studied by Babai [1985].

For the above protocol note that, in some intuitive sense, V does not learn
anything. When the graphs are nonisomorphic, P only sends a bit that V already
knows. This is correct for a verifier that follows the protocol. To get a protocol
that remains zero-knowledge even against a verifier that actively tries to extract
knowledge is more complicated, and we refer to Goldreich et al. [1991] for details.

2. This is in the black-and-white world of polynomial-time verifiers. If we look on a more detailed
level of complexity there might be differences.
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In the same paper Goldreich, Micali, and Wigderson [Goldreich et al. 1991] pro-
posed a zero-knowledge protocol for the NP-complete problem of three-colorability.
In this simple and beautiful protocol the prover knows a correct three-coloring of
the graph G and wants to convince a limited verifier that G is three-colorable with-
out giving any extra information.

1. P randomly permutes the colors in the coloring and for each vertex v,
chooses a fresh cryptographic key of a “good” encryption scheme, and en-
crypts the color of this vertex in a separate message. P sends all these
encryptions to V .

2. V chooses a random edge, e, and sends to P .

3. P reveals the keys to decrypt the colors of the endpoints of e.

4. V accepts if the two decrypted colors belong to {0, 1, 2} and are different.

Clearly this is a perfectly complete interactive proof because when P has a
correct three-coloring it simply follows the protocol as described and V always
accepts.

Suppose the encryption scheme has the property that once the encryptions are
fixed there is only one set of acceptable secret keys. Then the system is also sound.
If G is not three-colorable, then for any set of encryptions of P there is some edge
whose endpoints do not decrypt to distinct and legal colors and thus the probability
that V rejects is at least 1/m, where m is the number of edges. Repeating the protocol
nm times makes it very unlikely that V is fooled. Let us discuss the zero-knowledge
property.

The intuitive notion of a good cryptosystem is that before the secret keys are
given, any ciphertext looks like random bits. This notion can be made precise and
implies that the above verifier does not learn anything, provided that it is com-
putationally bounded. The difference from learning nothing in an information-
theoretic way and in a computational way should not be ignored and in order to
give information-theoretic zero-knowledge proofs, Ben-Or, Goldwasser, Kilian, and
Wigderson [Ben-Or et al. 1988] introduced multi-prover interactive proofs.

22.3 Multi-Prover Interactive Proofs
In a multi-prover interactive proof a single verifier interacts with several all-powerful
provers. The only restriction on these provers is that they cannot communicate
during the protocol.

An intuitive reason that this can be used to remove cryptographic assumptions
can be seen from the above protocol for three-colorability. V can simply ask the two
different provers for the colors of the two endpoints. It is not difficult to see that
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the best the provers can do is to supply the colors of a predetermined coloring. To
be more precise, each prover answers a question of the form (v , i) with the color of
v in the ith coloring where the two provers in advance have agreed on a sequence of
randomly permuted colorings of G. Each prover never answers two questions with
the same i. This is a complete, sound, and somewhat zero-knowledge protocol.

We say “somewhat” as, while a V that follows the protocol learns nothing, this
simple protocol is not zero-knowledge for a general V . If V asks for all pairs of
vertices (adjacent or not) and G has a unique three-coloring, then V can determine
which pairs of vertices have the same color and reconstruct the entire coloring.

As is clear from the title of Ben-Or et al. [1988], its main motivation was to
eliminate cryptographic assumptions. At this time I did not expect the language
recognition power of multi-prover interactive proofs to be much different from that
of single-prover interactive proofs, which in its turn I expected to be just slightly
above NP.

It is not difficult to see, and was noted by several people at the time, that
the maximal probability that the verifier accepts in an interactive proof can be
computed in PSPACE and thus any language that admitted such a proof must
belong to this class. This seemed, however, to be a crude and preliminary first upper
bound on the complexity of IP.

A result by Aiello, Goldwasser, and Håstad [Austrin et al. 2017] gave an oracle A

such that IPA (with an unbounded number of rounds) contained languages outside
the polynomial-time hierarchy relative to the same oracle, while Fortnow and Sipser
[1988] gave a different oracle, B, for which IPB (with a polynomial number of
rounds) did not contain coNPB.

My conclusion regarding these two papers was that we would need nonrelativiz-
ing techniques to prove that IP is small, while it turned out that we should use
nonrelativizing techniques for proving that it is large.

On a personal note, I recall that I felt that introducing multi-prover interactive
proofs was somewhat of a “cheat.” It seemed like an artificial model that would
not say anything interesting about “actual computation.” Single-prover interactive
proofs seemed to me a reasonable model, and thus a good plan was to work hard
and study this class rather than introducing another even more esoteric complexity
class adding more questions and confusion than answers. Fortunately, this view
was not shared by everybody.

22.4 The True Power of Interaction
The first real glimpse of the amazing power of interactive proofs came in the work
of Lund, Fortnow, Karloff, and Nisan [Lund et al. 1992], where it was proved that a
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prover can convince a verifier of the value of the permanent (over the integers) of a
Boolean matrix, which is a #P-hard task [Valiant 1979]. As the argument is not very
complicated, let us give it.

The proof goes by having a number of matrices Mi together with numbers ai,
and we let Per(Mi , ai) be shorthand for a claim by the prover that the permanent
of Mi equals ai. The original statement is then simply Per(M , a) for some n × n

matrix M and number a specified by the prover.
The first step of the verifier is to pick a random prime p and from this moment

on consider all equalities modulo this prime p. As the permanent is easy to bound,
it is not difficult to see that it is unlikely that an incorrect claim Per(M , a) is turned
to a correct claim when it is considered modulo a random prime p of size at least
n2. The two steps of the argument are now as follows:

1. Reduce one statement Per(M , a) where M is an n × n matrix to n statement
Per(Mi , ai) where each matrix is of dimension n − 1.

2. Reduce two statements Per(M , a) and Per(M ′, b) of dimension n to one
statement Per(M ′′, c) of dimension n.

The first step is easy and follows by taking the expansion along the first row, and
the second step is where something interesting happens. The great idea here is to
look at the permanent of tM + (1 − t)M ′ as a polynomial in t . This is of degree n,
and the prover can give the n + 1 coefficients of this polynomial P(t).

The verifier now checks that P(0) = b and P(1) = a, and then picks a random
value t0 modulo p and sets M ′′ = t0M + (1 − t0)M

′ and c = P(t0). Note that an hon-
est prover trying to establish a correct claim has no problem completing these
steps. Assume, however, that at least one of the two statements is incorrect. Then
Per(tM + (1 − t)M ′) and P(t) are two different polynomials of degree n. This fol-
lows as they take different values for t = 0 and/or t = 1. As two different polynomials
of degree n agree on at most n points, this implies that with probability 1 − n/p

also (M ′′, c) is an incorrect claim. To visualize this more clearly, let us give the an
example of this combination step.

Suppose we are working modulo p = 127 and we have

M =
⎛⎜⎝ 92 45 9

11 17 81

65 61 23

⎞⎟⎠ , M ′ =
⎛⎜⎝ 47 41 104

0 112 13

87 34 12

⎞⎟⎠ ,

and the current claims are Per(M , 77) and Per(M ′, 54). To substantiate this, the
prover supplies the polynomial
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P(t) = 54 + 88t + 9t2 + 53t3

and the verifier checks that P(0) = 54, the claimed permanent for M ′, while P(1) =
77 (remember that we are doing calculations modulo 127). The verifier picks the
random number t0 = 47, which gives

M ′′ =
⎛⎜⎝ 3 102 84

9 92 34

69 33 21

⎞⎟⎠ ,

and the claim turns into Per(M ′′, 31), as P(47) = 31. Given that we are down to a
single matrix, we use an expansion across one row to decrease the dimension.

In the general situation we start with one claim of dimension n, which we reduce
to n claims of dimension n− 1. By doing the above combination process n− 1 times,
we are down to a single claim of dimension n − 1, which is then expanded to yield
n − 1 claims of dimension n − 2, and so on. Eventually, after O(n2) combination
steps we end up with claims of dimension 1, which are easily checked without the
help of the prover.

If the original claim was incorrect and all final claims are correct, then at some
step two claims of which at least one is incorrect is reduced to a correct claim. The
probability of this happening in a single step is, as discussed above, bounded by
n/p. Thus with probability 1 − O(n3

p
) if we started with an incorrect claim, the final

claim will also be incorrect and the prover will be caught cheating. Thus choosing
a random prime p of size roughly n4 gives us a good proof system.

As computing the permanent is #P-hard, the result by Lund et al. [1992] greatly
increased the known power of interactive proofs. In particular, this implied that
any problem in coNP did admit such a proof. I was at this point in time back in
Sweden, which just barely had email, and thus I have little personal insight into
the discussions and exchanges of ideas that took place during a hectic period.
The next major step was Shamir’s classic result [Shamir 1992] that indeed all of
PSPACE admitted interactive proofs. The original proof of this result was not very
complicated and was simplified even further by Shen [1992] to fit in three pages. In
spite of this, let us here give a simplified sketch. It is enough to discuss the generic
PSPACE-complete problem, quantified Boolean formulas, abbreviated as QBF.

In QBF, one is given a sequence of quantifiers and then a formula in CNF. One
example is

∃x1∀x2∃x3∀x4(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄3 ∨ x̄4), (22.1)
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which is a true formula. One way to attack QBF is to think of integers as truth values
where zero corresponds to false and any nonzero positive value corresponds to true.
With this convention∃quantifiers turn into sums and∀ into product. Given formula
ϕ, we can write down a polynomial Pϕ such that if ϕ evaluates to true then Pϕ is
positive and otherwise Pϕ takes the value 0. This can be done by replacing ∨ with +
and ∧ with .. Finally, the negation x̄ is replaced by (1 − x). We do not require that
we can write down Pϕ in dense form; it is enough for us that we can evaluate it on
any input in polynomial time.

The expression corresponding to (22.1) is then

1∑
x1=0

1∏
x2=0

1∑
x3=0

1∏
x4=0

(x1 + x2 + x3 + x4)(4 − (x1 + x2 + x3 + x4), (22.2)

which evaluates to 576, showing the formulas is indeed true. We remark that it
might also be convenient to make sure that Pϕ never takes values outside 0 and 1,
leading to slightly more complicated formulas.

As above when discussing the permanent, it is also here convenient to have all
computations take place modulo p for a random prime p chosen by the verifier.

A straightforward evaluation of an expression such as (22.2) takes exponential
time, and hence we need the help of a prover. The idea is to think of the expression
(22.2) as

1∑
x1=0

P(x1),

where P is a polynomial, and ask the prover to supply the integer value of the total
expression as well as to give the description of P as a polynomial in the form of its
coefficients. The problem to be overcome, however, is that, as defined above, the
degree of the polynomial P is exponential. This problem was overcome by Shamir
and then in a simpler form by Shen by adding a degree reduction step. We do not
here discuss the technique to maintain low degree, but let us still illustrate the
method. If the formula to prove is a coNP statement, then we have no problem
with the degree and the argument is simple. Consider the formula

x1 ∧ (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x̄1 ∨ x̄3),

which we want to prove is a contradiction. One way to prove this is to establish that

1∑
x1=0

1∑
x2=0

1∑
x3=0

x1(1 + x2 − x1)(1 + x3 − x2)(2 − x1 − x3) = 0. (22.3)



22.4 The True Power of Interaction 607

The verifier randomly picks the prime p = 127 and from now on we consider all
computations modulo p. The prover claims that (22.3) equals

1∑
x1=0

P1(x1),

where P1(x) = 6x + 117x2 + 4x3. The verifier checks that P1(0) + P1(1) = 0 + 0 = 0
and then picks the random value x1 = 47. As P1(47) = 38, the verifier now wants to
check that

1∑
x2=0

1∑
x3=0

47(81 + x2)(1 + x3 − x2)(82 − x3) ≡ 38, (22.4)

and the prover claims that this sum is of the form

1∑
x2=0

P2(x2),

where P2(x) = 30 + 19x + 86x2. The verifier checks that

P2(0) + P2(1) ≡ 30 + 8 ≡ 38 mod 127

and picks the random value 61 for x2 and computes P2(61) = 12. The final verifica-
tion is now that

1∑
x3=0

47 . 15 . (67 + x3)(82 − x3) ≡ 24 + 115 ≡ 12, (22.5)

which the verifier can evaluate on its own and this convinces the verifier that the
formula was indeed not satisfiable.

Progress continued to be very fast and within a month Babai, Fortnow, and
Lund [Babai et al. 1992] proved that any language in nondeterministic exponential
time (NEXP) admitted a multi-prover interactive proof. Hence, the upper bound
proved by Fortnow, Rompel, and Sipser [Fortnow et al. 1994], which at first seemed
ridiculously high, turned out to be tight.

The proof of Babai et al. [1992] was more complicated than previous proofs
but, of course, used the idea of creating suitable polynomials and then picking
random inputs over a domain that is significantly larger than the original Boolean
domain.

The immense power of randomness combined with interaction was surprising
and wonderful, but this, at least as I felt it, did not really add much information
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about our favorite computational problems. After all, most problems that we care
about are close to NP, and the fact that much more difficult problems have efficient
interactive proofs seemed to give little information on problems close to NP.

22.5 Inapproximability Enters the Picture
Of course efficient proofs for NEXP do imply efficient proofs for NP, but since the
verifier needs to read the entire statement this is an obvious bottleneck. If the
statement is, however, coded in a suitable error-correcting form, Babai, Fortnow,
Levin, and Szegedy [Babai et al. 1991] established that it is possible to have the
verifier run in polylogarithmic time. Another novelty was that, as described in next
paragraph, it was more reasonable to think in terms of a written proof fixed before
the verification starts.

Of course in any proof system it is possible to write down the strategy of the
prover, but in the previously constructed cases there are exponentially many differ-
ent actions by the verifier resulting in an exponentially large proof if written down.
In the down-scaled version the written proof could be made to be of more reason-
able size. A written proof also eliminates the need for more than one prover.

Two parameters that are of key interest are the number of bits the verifier
reads in the proof, from here on called b, and the number of random bits, r , that
the verifier uses. Counting random bits is by tradition, and the total number of
different possibilities (which is closely related) for the randomness is probably
more fundamental because this notion, as we describe below, relates closely to
proof length.

Of course both the number of bits read in the proof and the number of random
bits used by the verifier are upper-bounded by the running time, but in many
situations tighter bounds can be found. In particular, the verifier can read the input
without any problems as this does not contribute to either measure.

The insight that these parameters are crucial and how this connects to approx-
imability of clique was first given in the seminal paper of Feige, Goldwasser, Lovasz,
Safra, and Szegedy [Feige et al. 1996]. The connection is not technically difficult, so
let us describe it.

We have a verifier that flips r random bits and always reads at most b bits of
the proof. We have 2r different random choices of the verifier to consider, and as
the value of each read bit also affects the execution we have a total of at most 2r+b

different possible executions of V . We can also note that the proof need be of size at
most b2r+b, as each execution reads at most b bits and bits that are not read under
any execution need not exist.
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Let us consider the behavior of this fixed verifier under all possible proofs. We
forget what is being proved and the details of the proof, we just think of all possible
proofs that are binary strings of length at most b2b+r .

Let us now consider a graph G where the vertices are defined by the at most
2r+b different possible executions of the verifier that causes it to accept. We have
vertices vc,a, where c is the set of coins and thus a string in {0, 1}r and a is the set
of bits read in the proof and thus a string in {0, 1}b. Note that the locations of the
bits read is determined by c and a because given these two strings we can run the
verifier and see what happens.

We connect vc,a to vc′ ,a′ if the two executions can appear in the same proof. This
is possible if and only if any bit position read in both executions is reported to return
the same value. Note that many pairs of vertices are connected simply because they
read disjoint sets of bits.

On the other hand, if c = c′ then for a = a′ the nodes are not connected. This
follows since once the randomness is fixed to be the same in two executions, the
same sequence of positions are read and unless one read bit takes different values
in the two executions, these executions are identical.

If you consider a clique in this graph and all executions described by the vertices
in this clique, then either none of them reads a particular bit of the proof or all exe-
cutions that read the bit agree on the value. Thus such a clique gives unique values
for some of the bits of the proof while the rest are undetermined. Vice versa, if you
start with a fixed written proof and look at the set of nodes that are consistent with
this proof they form a clique. Thus there is a very close correspondence between
cliques in this graph and written proofs. If the size of the clique is t , then the prob-
ability that the verifier accepts is t2−r . To get strong inapproximability results for
clique, one hence needs to construct proof systems with good soundness that use
small amounts of randomness and read few bits in the proofs.

The most efficient construction in Feige et al. [1996] uses both r and b of size
O(log n log log n), and one conclusion of the paper can be stated as follows.

Theorem 22.1 (Feige et al. 1996) Suppose that for some ε > 0 and constant c it is possible to
approximate the size of the largest clique in a graph with n nodes within a factor
2(log n)1−ε

using execution time exp((log n)c). Then NP ⊆ ∪dDTIME(exp((log n)d)).

In other words, a rather weak approximation algorithm for clique running in
quasi-polynomial time implies that all of NP can be done in quasi-polynomial time.

At this time very little was known about efficiently approximating clique. There
was no lower bound, and the upper bound of approximability n/(log n)2 was proved
by Boppana and Halldórsson [1992] only subsequent to Feige et al. [1996], although
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similar bounds were known for the related problem of coloring. I think it is fair
to say that we had no idea how well clique could be approximated. A polynomial-
time algorithm giving a

√
n-approximation (which we now know is impossible)

would not have been considered surprising. A manuscript claiming an efficient
log n approximation would, as far as I can guess and recall, have been greeted with
enthusiasm without any immediate suspicions of being flawed.

22.6 PCP-Theorem and Label-Cover
The need for the log log n factor in the bounds of Feige et al. [1996] was annoying
and needed to be removed but much more was achieved. The stage was set for the
PCP-theorem, proved by Arora, Lund, Motwani, Sudan, and Szegedy [Arora et al.
1998] with a very important next-to-last step by Arora and Safra [1998]. Let us state
this seminal theorem.

Theorem 22.2 (PCP theorem [Arora et al. 1998]) Any NP-statement has a polynomial-size written
proof that can be checked by an efficient verifier that uses r = O(log n) bits of
randomness and which reads b = O(1) bits. It always accepts a correct proof for
a correct statement, and for any purported proof of an incorrect statement the
probability that it is accepted is at most s. Here s < 1 is an absolute constant
independent of the input size.

As often in complexity theory there is a tradeoff of the constants involved, and
in the PCP theorem, the most important tradeoff is between the number of bits
read and the soundness. The first proof of Theorem 22.2 established that for any
b ≥ 3 a soundness sb < 1 is possible where sb tends to 0 as b tends to infinity.
That the latter is true follows from the possibility of checking the proof many
times using fresh randomness. This increases r and b by a constant factor but
reduces s.

By an additional adjustment of sb, it is also possible to make the verifier nonadap-
tive, which is the property that the positions read depend only on the randomness
of the verifier and not on values of the previous bits read in the proof.

The PCP theorem implied that there is a constant ε such that it is NP-hard to
approximate clique within nε (later results by Håstad [1999] established that this is
true for any ε < 1). More importantly it opened up for inapproximability results for
many new families of problems, and as often in computer science, a very popular
problem is 3SAT.
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Theorem 22.3 (Arora et al. 1998) There is a constant s3 < 1 such that it is NP-hard to distinguish
satisfiable 3CNF formulas from those where any assignment satisfies at most a
fraction s3 of the clauses.

Proof (Sketch) Take an arbitrary language in NP. Using the PCP theorem there is a poly-
nomial size proof checked by a nonadaptive verifier that only reads three bits in
the proof. Consider the bits of this proof as variables, and consider all possible
random tapes of the verifier. Each random tape determines three positions in the
proof to be read, and there is a constant size 3CNF in the variables of these three
bits that describes whether the verifier accepts. Take the conjunction of all such
local formulas.

A written proof is an assignment to all bits in the proof. If it is a correct proof
of a correct statement, the verifier always accepts and hence the corresponding
assignment satisfies all the above constraints.

If the statement to be proved is false, then any proof causes the verifier to reject
with constant probability and hence any assignment to the proof variables falsifies
a constant fraction of the clauses.

The connection described above is very tight and it is not difficult to derive
the PCP theorem (Theorem 22.2) from Theorem 22.3; thus the two statements are
equivalent.

The unspecified constant (which was extremely close to one in the first proof)
in Theorem 22.3 made it unsuitable for getting quantitative results for interest-
ing problems. With the aid of Raz’s parallel repetition theorem [Raz 1998] this
unspecified constant can be moved into other unknown parameters (i.e., R and
L in Theorem 22.4 below). This approach opens up for better quantitative results
and to describe this we start by defining the most useful variant of a problem called
label-cover.

Definition 22.1 An instance of projection label cover is given by a bipartite graph with disjoint sets
of vertices V and W and edges E ⊆ V × W . For each edge (v , w) there is a projection
πwv : [L] "→ [R]. A labeling assigns a label lw ∈ [L] for each w ∈ W and a label lv ∈ [R]
for each v ∈ V and satisfies an edge (v , w) iff πwv(lw) = lv.

The following theorem follows from the PCP theorem and Raz parallel repetition
theorem [Raz 1998] for two-prover games.

Theorem 22.4 For any ε > 0 there exists constants R and L such that it is NP-hard to distinguish
the following objects:
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. Label cover instances where there is an assignment that satisfies all con-
straints

. Label cover instances where any assignment only satisfies a fraction at most
ε of the constraints

In other words, any algorithm A that outputs “satisfiable” on satisfiable in-
stances and “not satisfiable” on instances where the best assignment satisfies only
a fraction ε of the constraints can be used to solve any problem in NP.

Let us point out that, on the high level, the proof of Theorem 22.4 is what can
be expected. One constructs a polynomial-time algorithm B that takes as input a
Boolean formula ϕ and produces an instance Iϕ of label cover. If ϕ is satisfiable, then
there is a labeling that satisfies all constraints of Iϕ, while if ϕ is not satisfiable then
no assignment can satisfy more than a fraction ε of the constraints. The algorithm
B is rather complicated, as it relies on the constructions of the PCP theorem, but
it is just an explicit and efficient (well, polynomial-time, so efficient in theory)
algorithm.

The hardness of label cover gives an efficient proof system for NP. The proof that
ϕ is satisfiable is given by a good labeling of the vertices of Iϕ. The verifier can check
this labeling by picking a random edge, reading the two labels corresponding to
the endpoints of the edge, and checking the constraint given by the corresponding
projection π .

This is a very interesting proof system; it reads only two symbols of constant size
(corresponding to numbers in [L] and [R] respectively), always accepts a correct
proof of a correct statement, and rejects any purported proof of a false statement
except with probability ε. The integers R and L are of constant size but we prefer
to read single bits and to achieve this we need a good code.

22.7 The Long Code and the Standard Written Proof
In order make the proof contain bits, we ask the prover to write down a binary
encoding of the labels. Instead of writing a label � the prover writes down a binary
string c(�) that is a unique but very redundant representation of �. A code that gave
the foundations of many results to come was introduced by Bellare, Goldreich, and
Sudan [Bellare et al. 1998] and we describe this next. It is called “the long code,”
and it is the longest possible3 binary code.

3. This assumes that we do not have two positions in the code that are the same for all codewords.
In other words for any positions i and j there is an � such that c(�)i = c(�)j .
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To be more precise, to code an element, x ∈ [R], we provide for each function
f : [R] "→ {0, 1} the value of f (x). From a practical coding perspective this is quite
wasteful as it codes d bits as 22d

bits and in particular it is not likely that mankind
will ever write down the full long code of a 10-bit string. From a theory perspective,
however, the long code is affordable and extremely useful.

A long code is slightly nonintuitive in that it takes as input a function, and
changing notation is useful to bring us to more familiar ground. A function, f ,
mapping [R] "→ {0, 1} can be described as an element in {0, 1}R where the ith
coordinate is f (i). In this notation a correct long code of an element � is a table
C� : {0, 1}R "→ {0, 1} where C�(x) = x�, a fixed coordinate. In view of this perspective,
long codes are also referred to as “dictators.” This comes from the view of Boolean
functions as voting rules, and in these functions only the vote x� counts.

The standard written proof of a label-cover instance, SWP4, supplies, for each
vertex v or w, the long code of the label. As R and L are constants this only increases
the size of the proof by a constant factor.

When thinking about a SWP it is important to think differently when reason-
ing about completeness and soundness. In the completeness case we can assume
that the table corresponding to a vertex v is a correct long code of an element,
and in particular of the good label �v. When discussing soundness, the table cor-
responding to v can be arbitrary. There is no reason for a cheating prover to make
this binary string be the long code of any element. Indeed, if one could assume
that this is a correct long code of a label then the soundness proof is usually
easy, and the difficulty of the argument is usually to handle tables that have little
structure.

There is a general scheme for verifying SWP as a written proof based on the
natural way of verifying a good labeling described above. The starting point is by
picking a random edge (v , w) with the same distribution as in the label cover and
looking at the two tables corresponding to the supposed long codes of the labels
for v and w.

The table corresponding to v is described by a Boolean function fv : {0, 1}R "→
{0, 1}, the table corresponding to w is gw : {0, 1}L "→ {0, 1}, and we have a mapping
πwv : [L] "→ [R]. We are interested in running a local check (sometimes called an
“inner test”) on (fv , gw , πwv). As we focus on such inner tests, thinking of v and w

as fixed, we leave out the subscripts of f , g, and π . In the next section we see two
such examples, but let us give a general idea of the approach.

4. This is a term introduced in Håstad [2001] but not widely used.
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As in the proof of Theorem 22.3, we think of each bit in the proof as a variable. In
that proof we had a property on three bits, and as any such property can be coded
as a 3CNF the acceptance of the overall proof could be written as a conjunction
of 3CNFs, and thus as a 3CNF. If we have a more specialized criteria given by a
predicate P in the inner test, we get a result for an optimization problem where
each constraint is the predicate P applied to a set of variables.

In many situations it turns out that it is possible to make sure that the tables f

and g respect negation. This is done by having a table of half the size and using one
bit to represent both f (x) and f (x̄) where x̄ is the bit-wise complement of x. If the
latter bit is needed, the read bit is complemented before use. As this mechanism
gives the correct answer for a correct long code it does not hurt completeness and
is often helpful in analyzing soundness. This mechanism is often referred to as
“folding” a long code, and we use it in the tests in next section. One consequence
of this folding is that, following the argument in the previous paragraph, we end up
with a set of constraints where the predicate P is applied to a set of literals instead
of variables. A negated variable corresponds to the case when we need f (x̄) and
f (x) is the bit that exists in the proof.

22.8 Two Inner Tests
Let us recall the situation. The written proof is SWP and we have selected a random
edge (u, w) according to the label-cover instance. We drop indices and we have
tables f : {0, 1}R "→ {0, 1} and g : {0, 1}L "→ {0, 1} and a projection π : [L] "→ [R], and
we want to test whether f and g are long codes of elements i and j , respectively,
such that π(j) = i. We want a test that (almost) always accepts if this is indeed
the case.

In a perfect world, we would like to have a strong converse—that if the test
accepts with high probability then the tables are (close to) two consistent long
codes. This is often too much to ask for,5 and by looking at the soundness criteria
of Theorem 22.4 we see that this is also not needed. What we need is to be able to
extract a coordinate, i, from the table of f and a coordinate, j , from g such that
π(j) = i happens with probability higher than ε (over the choice of a random edge
(u, w)). It is important that the extraction of i only depends on f and nothing else
and similarly with j and g.

We let these extraction procedures be randomized. This makes it possible to re-
late the probability that the inner test accepts, conditioned on (u, w) being chosen,

5. After all we are going to read very few bits in the tables of f and g.
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to the probability that π(j) = i conditioned on the same event. Averaging over all
edges proves that this probabilistic labeling satisfies a large number of constraints
on average, and hence we can conclude that a good labeling exists.

22.8.1 The Test Underlying Max-3Lin-2 Hardness
An instance of Max-3Lin-2 is given by a set of linear equations modulo 2 with three
variables in each equation. The task is to find an assignment that satisfies as many
equations as possible. An example is given below.

x1 + x2 + x3 = 1

x1 + x4 + x5 = 0

x2 + x4 + x5 = 1

x1 + x2 + x4 = 0

x3 + x4 + x5 = 1

x1 + x2 + x5 = 0

It is easy to see, by summing all equations, that it is impossible to satisfy all
equations in the example, but there are many ways to satisfy five equations. The
goal of this subsection is to give the test behind the following theorem of Håstad.

Theorem 22.5 (Håstad 2001) For any δ , ε > 0 it is NP-hard to distinguish instances of Max-3Lin-2
where there is an assignment that satisfies at least a fraction 1− ε of the constraints
from instances where any assignment only satisfies at most a fraction (1 + δ)/2 of
the constraints.

This is essentially a tight theorem in that if you can satisfy all equations then it is
possible to find such an assignment by Gaussian elimination. On the other hand, a
random assignment satisfies half the equations on average, and thus there is always
an assignment that satisfies half the equations independently of the quality of the
best solution.

As indicated above, the key to proving Theorem 22.5 is to design an inner test
such that:

1. The acceptance criteria is given by the exclusive-or of three bits.

2. The completeness is 1 − ε.

3. If the test accepts with probability (1 + δ)/2, then there is a way to extract
coordinates i from f and j from g such that Pr[π(j) = i] is a positive number
that only depends on ε and δ.

Such a test is as follows:
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. Pick a random x ∈ {0, 1}R.

. Pick a random y ∈ {0, 1}L.

. Construct z ∈ {0, 1}L by setting each zj , independently, to equal xor(yj , xπ(j))

with probability 1 − ε, and otherwise setting zj to equal the negation of this
value.

. Accept if g(z) = xor(g(y), f (x)).

We first note that the acceptance criteria of the test is indeed, as required, that
the exclusive-or of three bits takes a certain value. At first sight it would seem like the
condition is always that the exclusive-or of three bits of the proof is zero. This would
not make for a very interesting test, because the proof that only consists of zeros
would always be accepted. The reason that this is not the case is the mechanism of
folding described above. Indeed, for example, if the proof contains the values for
g(z̄), g(y) and f (x), then the test is that exclusive-or of these three bits is 1. If it
contains the values g(z), g(ȳ), and f (x̄), the exclusive or should be zero, and so on.

If f and g are correct long codes of �1 and �2, respectively, such that π(�2) = �1,
then the probability of acceptance is exactly 1 − ε. This follows as in this case
g(z) = z�2

, g(y) = y�2
, and f (x) = x�1

= xπ(�2)
and thus the test accepts if and only if

we set z�2
= xor(y�2

, x�1
), which happens with probability 1 − ε.

Let us discuss soundness. One interesting and, as it turns out, illuminating
special case is when both f and g are exclusive-ors of some subset of the variables.
Let us look at this.

Suppose that f (x) =⊕i∈αxi and g(y) =⊕j∈βyj for two sets α and β. Define the
set π2(β) to be the set of all i such that there is an odd number of elements j ∈ β

such that π(j) = i. Thus π2 is a “Mod 2-projection.” It is not very difficult to see
that if zj was defined to always equal xor(yj , xπ(j)) then the test would accept with
probability 1 iff π2(β) = α and otherwise would accept with probability exactly 1/2.
The “noise” introduced in the form of flipping zj with probability ε reduces the
former probability to (1 + (1 − 2ε)|β|)/2.

Notice in particular that small consistent (with respect to π2) exclusive-or tables
are accepted with high probability. These tables are very far from correct long codes
but do suggest a natural way to find a label—namely, to pick a random element from
the corresponding set. This gives a probability of at least 1

|β| of getting consistent
labels. This is enough since only small-size β give a large accepting probability.

The careful reader might have noticed that a subtle case is when β and α are
empty, which corresponds to the case when both f and g are constant functions.
This is indeed a problem for the analysis but cannot occur because of folding that
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guarantees that f and g are odd functions. In particular, if they are exclusive-ors
then the corresponding sets α and β must be of odd size and in particular nonempty.

It turns out that this simple analysis for tables that are exclusive-ors is the basis
for the general analysis through the Fourier expansion of the tables involved. We
refer to Håstad [2001] for suitable definitions and more details and here only give
a brief summary.

In this analysis it turns out that it is more convenient to use {−1, 1} for the two
Boolean values, as opposed to {0, 1}. By taking the Fourier expansion of f and g

and doing a small and not very difficult calculation, one can show that if the test
accepts with probability at least (1 + δ)/2, then

δ ≤
∑

β⊆[L]

f̂π2(β)ĝ
2
β
(1 − 2ε)|β|. (22.6)

By an application of Cauchy–Schwarz, the right-hand side of (22.6) is upper
bounded by⎛⎝∑

β

f̂ 2
π2(β)

ĝ2
β
(1 − 2ε)2|β|

⎞⎠1/2⎛⎝∑
β

ĝ2
β

⎞⎠1/2

=
⎛⎝∑

β

f̂ 2
π2(β)

ĝ2
β
(1 − 2ε)|β|

⎞⎠1/2

, (22.7)

where we used Parseval’s identity, which implies that
∑

β ĝ2
β
= 1 for any Boolean

function.
Now we can use the tables to define a probabilistic labeling as follows. For a

labeling on [L] we pick a set β with probability ĝ2
β

and then a uniformly random
j ∈ β. Here we again use Parseval’s identity to make sure that this a well-defined
probability distribution. Folding implies that any β with ĝβ = 0 is of odd size and
hence nonempty.

Similarly, to pick a labeling [R] we pick a set α with probability f̂ 2
α

and then a
random i ∈ α. The probability that these labels are consistent is at least∑

β

f̂ 2
π2(β)

ĝ2
β

1
|β| . (22.8)

Since (22.6) and (22.7) imply∑
β

f̂ 2
π2(β)

ĝ2
β
(1 − 2ε)2|β| ≥ δ2,

and using

1
2εx

≥ e−2εx ≥ (1 − 2ε)x
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for any x > 0, it follows that (22.8) is at least 2δ2ε. As stated above, the key is that this
probability of getting consistent labels depends only on ε and δ and is independent
of R and L. This ends the analysis of this inner test.

22.8.2 A Promise Problem Version of SAT
In this final section we study a problem that almost certainly is less fundamental
than the problems studied in previous sections. We do feel, however, that it is a
cute problem and has the potential to be useful as a starting point in reductions
and deserves to be better known. It is a promise problem version of k-SAT.

We are given a k-SAT formula ϕ and the promise is that there is an assignment
that satisfies at least d literals in each clause. The question is for what values of k

and d it is possible to find an assignment that satisfies ϕ in the ordinary sense—
that is, makes at least one literal true in each clause. The standard k-SAT problem
corresponds to d = 1, and in this case we know the problem is NP-hard for any k ≥ 3
but in P for k = 2. This problem was studied by Austrin, Guruswami, and Håstad
[Austrin et al. 2017], and it turns out that as long as d ≥ k/2 we do have an efficient
algorithm.

Theorem 22.6 (Austrin et al. 2017) Given a k-SAT formula ϕ such that there is an assignment that
satisfies at least k/2 literals in each clause. Then it is possible to, in polynomial time,
find an assignment that satisfies ϕ.

The interested reader is referred to Austrin et al. [2017] for the full proof of this
theorem, but let us point out that the probabilistic algorithm of Papadimitriou
[1991] for 2SAT extends to this situation. In this algorithm, one starts with any
assignment and creates a random sequence of assignments and within expected
O(n2) time finds a satisfying assignment.

The algorithm takes any clause that is not satisfied by the current assignment
and flips a random variable appearing in that clause. Any assignment that satisfies
at least d literals in this clause must give different values (compared to the current
assignment) to at least d of the k variables appearing in the clause. If d > k/2,
the number of positions in which the current assignment differs from the good
assignment is expected to decrease, whereas if we have equality, there is no change
in expectation. This implies that the distance to any assignment that has d true
literals in each clause is a random walk that is either unbiased or biased towards
zero. Any such walk will, with high probability, hit zero in time O(n2).

We note that in our case this distance will never go to zero as we will first run into
a situation where all clauses are satisfied in which case it is impossible to continue
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the walk. This does not matter as we have achieved our goal of finding a assignment
that satisfies the formula in the usual sense.

There is also a deterministic polynomial-time algorithm based on linear pro-
gramming, but we refer to Austrin et al. [2017] for a description of this algorithm.
Let us turn to the hardness side with the complementary result.

Theorem 22.7 (Austrin et al. 2017) Suppose ϕ is a (2m + 1)-CNF. Then it is hard to distinguish
the case when there is an assignment that satisfies m literals in each clause of ϕ

from the case when ϕ is not satisfiable.

This theorem is proved by designing a suitable test for the SWP; let us sketch the
inner test. We have tables f and g and a projection π . To avoid cumbersome nota-
tion we only address the first nontrivial case, which is m = 2 and hence considers
5SAT. We want a test with the following properties:

1. The test always reads 5 bits.

2. When the two tables are consistent long codes, it is always the case that at
least two of these five bits are true.

3. If it is always the case the at least one bit is true, then we can extract a
somewhat consistent labeling from the two tables.

The test consists of three parts, one that only tests f , one that only tests g, and a
combined test. The two first tests are analogous and we describe the former, which
we call T (f ).

. Choose random x1, x2, . . . x5 in {0, 1}R subject to the condition that for all
i ∈ R at least two of the five coordinates x

j

i equal 1.

. Read the five bits f (xj) for j = 1, 2 . . . 5.

It follows, more or less by definition, that if f is a correct long code of something
then at least two of the five bits are always true and we need to consider property
3. We have the following lemma, whose proof we omit. The curious reader might
attempt to prove it and otherwise consult Austrin et al. [2017].

Lemma 22.1 If T (f ) always sees at least one true bit, then f depends on at most 3 variables.

There is a natural generalization of T (f ) to general m, and the number that
appears in the lemma corresponding to Lemma 22.1 is 2m − 1.

The test C(f , g) for checking that f and g are consistent is very much in spirit
similar to T (f ). The idea is to take all five-tuples of inputs x1, x2, y1, y2, and y3 such
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that for any j at least two of the bits y1
j

, y2
j

, y3
j

, x1
π(j)

, and x2
π(j)

are true. The verifier

reads f (x1), f (x2), g(y1), g(y2), and g(y3). It is again easy to see that for consistent
long codes at least two of the five bits read are always true.

Using Lemma 22.1 we can establish property 3 for the overall test. Namely,
unless there is a pair (i , j) such that g depends on yj , f depends on xi and π(j) = i

one can argue that one of the tests T (f ), T (g) and C(f , g) at some point sees five
false bits.

We conclude that the probabilistic labeling of taking a random i such that f

depends on xi and random j such that g depends on yj has at least a probability
1/9 of giving a consistent pair of labels. The reader interested in the details should
consult Austrin et al. [2017].

We do not know of a proof of Theorem 22.7 that does not use the PCP theorem,
and we find it to be an interesting question whether it has a simple proof that avoids
this rather deep theorem.

Of the theorems given in this paper, Theorem 22.7 is a good candidate for being
the least important. The original motivation for studying this promise problem
version of SAT was that it would be useful as a starting point for further reductions.

It has turned out that Theorem 22.5 is a good starting point for proving inap-
proximability results. It refers to very simple local equations and says that in the
good situation almost all equations are satisfied whereas in the bad situation al-
most half of these equations are falsified. The hard problem in Theorem 22.7 is a
bit different. It says that in the good situation, all clauses have many true literals,
while in the bad situation some clause has no true literal. This would seem usable
as a starting point when reducing to optimization problems where the worst local
situation is the measure of interest. This has happened in a few cases, but not to
the extent that was originally hoped.

22.9 Conclusions
The aim of this paper has been to follow a sequence of results that I have really
enjoyed. Some of these results are likely to be important cornerstones of computa-
tional complexity for the foreseeable future. The power of the simple observation
that a nonzero polynomial is likely to be nonzero at a random point still amazes me.

I also find it interesting that some basic definitions, such as multi-prover in-
teractive proofs, were introduced for reasons that later have been dwarfed by their
importance in other situations. A conclusion may be that all aspects of natural defi-
nitions should be investigated even if we do not immediately have some application
in mind.
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The fact that it sometimes took me many years to realize the importance of a
theorem is also thought provoking when evaluating contemporary research. The
hope that one immediately recognizes the merit of great new ideas is taking a rather
optimistic view of one’s own abilities.
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R. Boppana and M. Halldórsson. 1992. Approximating maximum independent sets by
excluding subgraphs. BIT , 32: 180–196. DOI: 10.1007/BF01994876. 609

U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. 1996. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43: 268–292. DOI: 10.1145/
226643.226652. 608, 609, 610

L. Fortnow, J. Rompel, and M. Sipser. 1994. On the power of multi-prover interactive proto-
cols. Theoretical Computer Science, 134: 545–557. DOI: 10.1016/0304-3975(94)90251-8.
607

L. Fortnow and M. Sipser. 1988. Are there interactive proofs for co-np languages? Information
Processing Letters, 28: 249–251. 603

http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1137/15M1006507
http://dx.doi.org/10.1145/22145.22192
http://dx.doi.org/10.1145/103418.103428
http://dx.doi.org/10.1145/103418.103428
http://dx.doi.org//10.1137/S0097539796302531
http://dx.doi.org//10.1137/S0097539796302531
http://dx.doi.org/10.1145/62212.62223
http://dx.doi.org/10.1145/62212.62223
http://dx.doi.org/10.1007/BF01994876
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1016/0304-3975(94)90251-8


622 Chapter 22 Following a Tangent of Proofs

O. Goldreich, S. Micali, and A. Wigderson. 1991. Proofs that yield nothing but their validity,
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):
690–728. DOI: 10.1145/116825.116852. 600, 601, 602

S. Goldwasser, S. Micali, and C. Rackoff. 1985. The knowledge complexity of interactive
proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, STOC ’85, pp. 291–304, New York, NY, USA. ACM. DOI: 10.1145/22145
.22178. 600, 601

S. Goldwasser, S. Micali, and C. Rackoff. 1988. The knowledge complexity of interactive
proof-systems. SIAM Journal on Computing, pp. 186–208. 600

S. Goldwasser and M. Sipser. 1986. Private coins versus public coins in interactive proof
systems. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pp. 59–68, New York, NY, USA. ACM. DOI: 10.1145/12130.12137. 601
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23A Tutorial on Concurrent
Zero-Knowledge
Rafael Pass

In this tutorial, we provide a brief overview of concurrent zero-knowledge and next
present a simple proof of the existence of Concurrent Zero-knowledge arguments
for N P based on one-way permutations.

23.1 Introduction
Following the seminal works of Dolev, Dwork, and Naor [Dolev et al. 2000] and Feige
and Shamir [1990] from the early 90’s, concurrent security of cryptographic protocols
has been an active area of research. In this tutorial, we focus on concurrent se-
curity of zero-knowledge proof systems. Zero-knowledge (ZK) proofs, introduced by
Goldwasser, Micali, and Rackoff [Goldwasser et al. 1989] are paradoxical constructs
that allow one player P (called the Prover) to convince another player V (called the
Verifier) of the validity of a mathematical statement x ∈ L, while providing zero ad-
ditional knowledge to the Verifier. This is formalized by requiring the existence of
an efficient (i.e., polynomial-time) simulator Sim that can indistinguishably emu-
late the view of any malicious Verifier V ∗ in its interaction with the Prover P ; thus,
anything the Verifier V ∗ learns in a “real” interaction with the Prover, could have
been generated by the Verifier “on-its-own,” and as a consequence, the Verifier did
not learn anything new.

Soon after their conception, zero-knowledge proofs for all of N P were demon-
strated by Goldreich, Micali, and Wigderson [Goldreich et al. 1991]; subsequently,
Brassard, Crépeau, and Yung [Brassard et al. 1991], Feige and Shamir [1990], and
Goldreich and Kahan [1996] demonstrated the existence of constant-round zero-
knowledge protocols with negligible soundness error for all of N P.
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Beyond being fascinating in their own right, ZK proofs and arguments (i.e.,
proofs that only are computationally sound) have numerous cryptographic appli-
cations and are one of the most fundamental cryptographic building blocks. As
such (and as we shall also discuss below), techniques developed in the context of
ZK often extend to more general types of interactions (most notably, general secure
computations [Yao 1986, Goldreich et al. 1987, Ben-Or et al. 1988].)

Concurrent ZK. The notion of concurrent ZK, first introduced and achieved by
Dwork, Naor, and Sahai [Dwork et al. 2004], considers the execution of zero-
knowledge proofs in an asynchronous and concurrent setting. More precisely,
we consider a single adversary Verifier that participates in multiple concurrent
executions—called sessions—of a ZK proof. The same ZK protocol is used in all the
sessions, but the adversarial Verifier is communicating with multiple independent
instances of the Prover. At first sight it may seem like every ZK protocol also re-
mains ZK in such a setting, but as shown by Feige and Shamir [1990] and Goldreich
and Krawczyk [1996], this turns out to be false: There are ZK arguments that re-
veal the whole witness being used in the proof if a Verifier performs a coordinated
attack on just two simultaneous protocols!

Roughly speaking (following Feige and Shamir [1990]), one can come up with a
ZK protocol where the Verifier can select between two modes of operation: In Mode
1, the Verifier requests to hear a standard ZK proof of the statement x ∈ L, whereas
in Mode 2, the Verifier may instead attempt to prove x to the Prover using the same
type of ZK proof, and if the proof succeeds, the Prover simply reveals the witness
w to x (and otherwise aborts). It is not hard to see that such a protocol is ZK in
isolation, assuming L has unique witnesses: In Mode 1, this follows by definition,
and in Mode 2, this follows from the fact that the Prover only gives the witness w to
the Verifier if the Verifier already knows it! (Actually, the ZK protocol employed
needs to be a so-called proof of knowledge [Feige and Shamir 1990, Bellare and
Goldreich 1992] to ensure that the Verifier must convince the Prover that it actually
knows w before the Prover hands it out.) On the other hand, a malicious Verifier
participating in two concurrent executions can use Mode 1 in the first session, and
Mode 2 in the second session, and then simply forward the Mode 1 proof provided
by the Prover in session 1 as its Mode 2 proof in session 2, and thereby get the
Prover to reveal the witness in the session 2. So, by participating in two sessions of
a ZK proof, the malicious Verifier learns a witness for x (even thought it may not
have known one before the interaction). In fact, by adding a dummy message, one
can obtain a protocol that no longer is zero-knowledge even when two instances of
the protocol are repeated in parallel (i.e., the two instances proceed in a lockstep
fashion).
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What Makes Concurrent ZK Hard? Of course, the above construction is clearly
artificial—it was designed to break down under concurrent executions. One could
have hoped that more “natural” constructions of ZK protocols retain their ZK
property under concurrent sessions. Indeed, the constant-round protocols of Feige
and Shamir [1990], and Goldreich and Kahan [1996] are known to preserve their
zero-knowledge property under parallel composition (i.e., when we have an un-
bounded number of parallel sessions) [Feige and Shamir 1990, Goldreich 2002].

However, it is still unknown whether these protocol remain zero-knowledge
under concurrent executions (where the Verifier may decide the scheduling of the
messages in the different sessions). Even though concrete attacks are not known
against these protocols, we also do not know how to prove them secure. The prob-
lem is that the standard simulation method fails in the concurrent setting. For
concreteness, consider the constant-round ZK protocol of Feige and Shamir [1990]
(we are using this protocol as our example as the ideas underlying it will be useful
to us in the sequel). Roughly speaking, the protocol for proving a statement x ∈ L

proceeds in two stages:

. In Stage 1, the Verifier samples a different statement x̃ and witness w̃ from
some hard-on-the average language and next proves to the Prover that it
knows a witness to the statement x̃ using a, so-called, witness hiding [Feige
and Shamir 1990] proof system that does not reveal the witness w̃.

. In Stage 2, the Prover next provides a proof that it either knows a witness for
the true statement x, or that it knows a “fake” witness to the other statement
x̃; this second stage proof needs to be witness indistinguishable [Feige and
Shamir 1990] so that it does not reveal whether the Prover is using a witness
for x or x̃.

Each of these subprotocols (for Stage 1 and 2) can be implemented in just three
communication rounds using Blum’s Hamiltonicity protocol [Blum 1986].1 We will
refer to the Stage 1 messages as (α1, α2, α3) and depict them using (single) arrows,
and to simply our illustrations, we refer to the whole Stage 2 protocol as α4 and
depict it as a double arrow; see Figure 23.1 for an illustration.

The idea for why this protocol is ZK is that (a) clearly, the Verifier cannot learn
anything from the Stage 1 protocol, as here it is actually the Verifier who provides a
proof to the Prover, and (b) since the Verifier first proves to the Prover that is knows
a “fake” witness w̃, it can indistinguishably simulate Stage 2 on its own using this

1. As we shall see shortly, the reason why we are relying on Blum’s protocol as opposed to, say,
Goldreich et al. [1987], is that Blum’s protocol satisfies a strong proof-of-knowledge property that
will simplify the analysis.
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Figure 23.1 A standard ZK simulation.

fake witness (due to the fact that the Stage 2 protocol is witness indistinguishable).
A bit more precisely, to provide the actual simulation, the simulator will need to
“extract” out the fake witness from the Stage 1 proof, and can later use this fake
witness to complete the simulation of Stage 2.

In more detail, to simulate the view of a malicious Verifier V ∗, the simulator
honestly emulates the first 3 rounds (α1, α2, α3) of the protocol, and then “rewinds”
the Verifier, resending different second messages α′

2 until it gets a second accepting
third message α′

3 from the Verifier in order to extract out the fake witness which can
be used to complete the simulation. (Technically, the proof-of-knowledge property
of the Stage 1 protocol we here rely on is called “special-soundness” [Cramer et al.
1994]; it stipulates that a valid witness w̃ for x̃ can be computed in polynomial time
from any two accepting proof transcripts (α1, α2, α3), (α1, α′

2, α′
3) for the statement

x̃ with the same first message α1 but different second messages α2 = α′
2. Blum’s

Hamiltonicity protocol [Blum 1986] satisfies this property.) We refer to the second
and third message pair (α2, α3) as a slot, and rewinding this slot is the key tool that
enables simulation; see Figure 23.1.

This method no longer works in the concurrent setting. More precisely, a con-
current Verifier V ∗ may nest the concurrent sessions—putting session 1 inside the
slot for session 2, and session 2 inside the slot for session 3, and so on, and may
generate its randomness for the different sessions as some function of the prefix
of the execution up to this point. Then:

. Simulating the “innermost” session (i.e., session 1) will require running the
Verifier twice (just as in the stand-alone simulation).

. Simulating session 2 (which includes session 1 inside it) requires running the
simulation of session 1 twice, since every time we rewind session 2, session
1 restarts with new randomness.

. Simulation session 3 (which includes session 2 and 2 inside it) requires
running the simulation of session 2 twice (since every time we rewind session
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Figure 23.2 A simulation for 2 nested concurrent sessions.

3, session 2 restarts with new randomness), and which in turn requires
running the simulation of session 1 four times.

. And so on and so forth.

Thus, if we have n sessions, the running time becomes exponential in n (and the
simulator can no longer be a polynomial-time algorithm). See Figure 23.2 for an
illustration for a simulation with just two sessions.

To overcome this exponential blow-up, we instead need to come up with new
protocols and analyses. These protocols are significantly harder to construct and
analyze than “stand-alone” ZK protocols [Goldwasser et al. 1989, Goldreich et al.
1991, Feige and Shamir 1990, Goldreich and Kahan 1996].

Benign Schedulings and Set-up Assumptions. To overcome the above obstacle, the
original protocol by Dwork, Naor, and Sahai [Dwork et al. 2004] relied on so-called
timing assumptions: Informally speaking, the timing model assumes that every
party has a local clock, that all these local clocks are roughly synchronized, and
that all parties know a (pessimistic) upper bound � on the time it takes to deliver
a message on the network. In such a timing model, the Prover can use delays and
time-outs to prevent “bad schedulings.” Improved Concurrent ZK protocols in the
timing model were presented in Goldreich [2002], and Pass et al. [2010]; the idea
behind these works is to identify more expressive classes of schedulings that can be
handled and next to use timing contraints to restrict the attacker to those sched-
uling. For instance, the work of Goldreich [2002] demonstrates that the original
constant-round stand-alone ZK protocol of Goldreich and Kahan [1996] remains
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ZK under the more “benign” schedulings of parallel composition and bounded
simultaneity (where we have only a constant number of sessions running at the
same time), and next uses timing constraints to ensure that a combination of the
simulation techniques used for those special cases of schedulings suffice to get a
concurrent ZK protocol in the timing model. Whereas the protocols of Dwork et al.
[2004], and Goldreich [2002] required imposing delays/slowdowns that were longer
than the upper bound on the message delivery time, �, Pass et al. [2010] showed
that the slowdown can be significantly smaller than �; moreover, the slowdown
can be done adaptively so that only sessions that are slow anyways get “penalized”
with delays.

Various other concurrent ZK protocols were also obtained based on different
set-up assumptions (e.g., Dwork and Sahai [1998], Damgård [2000], and Canetti
et al. [2000]). In this tutorial, however, our focus will be on the “standard model”
without any set-up assumption.

Black-Box Impossibilities. In the standard model (without any timing assump-
tions), Canetti, Kilian, Petrank, and Rosen [Canetti et al. 2001] (building on earlier
works by Kilian et al. [1998], Rosen [2000], and Goldreich and Krawczyk [1996])
showed that concurrent ZK protocols for nontrivial languages, with so called
“black-box” simulators (i.e., simulators that simply use the Verifier as a black-box
but may rewind it), require at least �̃(log n) number of communication rounds,
where n is the length of the instance being proved; see also Chung et al. [2012]
for a simplified (and generalized) analysis of the impossibility result from Canetti
et al. [2001]. Thus, if we restrict to black-box ZK, the original constant-round ZK
protocols (e.g., Goldreich and Kahan [1996], and Feige and Shamir [1990]) cannot
be concurrently secure (but it is still open whether non-black-box techniques can
be used to prove security of them).

Feasibility of Concurrent ZK. Richardson and Kilian [1999] constructed the first
concurrent ZK argument in the standard model without any set-up assumptions.
Their protocol, which uses a black-box simulator, requires O(nε) number of rounds;
see also the work of Canetti, Goldreich, Goldwasser, and Micali [Canetti et al.
2000] for a somewhat different and more detailed analysis of this protocol. Sub-
sequent works by Kilian and Petrank [2001] and Prabhakaran, Rosen, and Sahai
[Prabhakaran et al. 2002.] improved the round complexity to Õ(log n); see also Pass
et al. [2014] for a simplified and generalized analysis of such more round-efficient
concurrent ZK proofs.
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The key idea for overcoming the above-mentioned blow-up in the running-time
of the simulator is to construct a protocol with many sequential slots, such that only
one of the slots needs to be rewound to ensure that the rest of the session can be
simulated. Then, intuitively, the above-mentioned nesting attack can no longer be
performed—an attacker would need to nest sessions within all of the slots, but
since it can only start polynomially many sessions, the nesting depth can never
become too big and thus, intuitively, the running time of the simulation remains
polynomial. Formalizing this, however, turned out to be quite complex and subtle.

Toward Constant-Round Concurrent ZK. The question of whether constant-round
concurrent ZK protocols exist still remains an intriguing problem: A breakthrough
result in this direction was obtained by Barak in 2001 [Barak 2001]. Barak presented
a constant-round ZK protocol for N P (based on standard cryptographic hardness
assumptions) that remains secure under an a priori bounded number of concurrent
instances—also known as bounded concurrency. More precisely, for any m (polyno-
mial in the security parameter), Barak demonstrates the existence of a ZK protocol
that remains secure as long as the number of concurrent sessions is bounded by m.
(On the flipside, however, the communication complexity of his protocol grows lin-
early with m.) Intriguingly, the black-box impossibility results of Canetti et al. [2001]
for constant-round concurrent ZK actually applies also to bounded concurrency,
and indeed Barak develops a new non-black-box simulation [Barak 2001] to obtain
his result. Note that bounded-concurrent ZK is different from concurrent ZK in
that for the latter we require the same protocol to be secure under any polynomial
number of concurrent sessions.

Toward getting a constant-round concurrent ZK protocol, in Chung et al.
[2013a], [2015], the existence of constant-round concurrent ZK arguments were
shown assuming the existence of certain types of “delegation of computation
schemes” for P (as well as standard cryptographic hardness assumptions—namely,
collision-resistant hash functions and one-way permutations); additionally, in
Chung et al. [2015] it was shown that such delegation schemes can be based on
the existence of indistinguishability obfuscation (iO) [Barak et al. 2001b, Garg et al.
2016] (as well as one-way permutations). Although iO is an extremely intriguing
concept in its own right, constructions of iO under standard assumptions are still
not known, and thus the question of basing constant-round concurrent ZK on
“standard” assumptions still remains open.

Public Coins vs. Private Coins. Whereas the original ZK protocols of Goldwasser
et al. [1989], Goldreich et al. [1991], and Blum [1986] are public coin—that is, the
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Verifier’s messages are its random coin tosses—all of the aforementioned parallel
or concurrent ZK protocols use private coins. Indeed, Goldreich and Krawczyk
[1996] showed that only trivial languages can have constant-round public-coin
(stand-alone) black-box ZK protocols with negligible soundness error, let alone the
question of parallel composition. Their result implies that (unless N P ⊆ BPP),
the constant-round ZK protocols of, for example, Goldreich et al. [1991], and
Blum [1986] with constant soundness error cannot be black-box ZK under par-
allel repetition (as this would yield a constant-round black-box ZK protocol with
negligible soundness error). More recently, Pass, Tseng, and Wikström [Pass et al.
2011] showed that no public-coin protocol (even those with a polynomial num-
ber of rounds) for a nontrivial language can be black-box ZK under parallel
composition.

These black-box barriers can be overcome: Pass, Rosen, and Tseng [Pass et al.
2013] show the existence of a constant-round public-coin ZK protocol for N P
(with negligible soundness error) that remains secure under (unbounded) parallel
composition with a non-black-box simulator (based on standard cryptographic
hardness assumptions), and Goyal [2013] demonstrates a (polynomial-round)
public-coin protocol that remains secure even under (unbounded) concurrent
composition.

Concurrency Beyond ZK: Secure Computation and Black-Box Impossibilites. As one
may expect, techniques developed for concurrent ZK enable reasoning about con-
current security of other types of cryptographic protocols:

. Lindell [2003], Pass and Rosen [2003.], and Pass [2004] show how to extend
Barak’s simulation technique to develop general secure computation proto-
cols [Yao 1986, Goldreich et al. 1987, Ben-Or et al. 1988] that remain secure
under bounded concurrency.

. Canetti et al. [2010] shows how to get general secure computation proto-
cols satisfying a relaxed notion of concurrent “super-polynomial-time” (SPS)
security [Pass 2003, Prabhakaran and Sahai 2004, Barak and Sahai 2005,
Canetti et al. 2010] based on standard assumptions using simulation tech-
niques similar to those employed by Richardson and Kilian [1999]. It is
known that concurrent secure computation satisfying the standard notion
of “polynonomial-time simulation” is impossible [Canetti and Fischlin 2001,
Lindell 2004] and thus going for a relaxed notion of security such as SPS is
needed here. (See also Goyal et al. [2015] for a protocol with improved round
complexity).
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But perhaps more surprisingly, techniques developed for establishing the feasibility
of concurrent ZK protocols turned out to also be useful for developing impossibility
results for seemingly unrelated tasks:

. As we showed in Pass [2011], concurrent simulation techniques are impor-
tant also when trying to show black-box separations: Pass [2011] shows that
black-box security reductions cannot be used to base the security of several
“paradoxical” protocols (such as, e.g., Schnorr’s identification scheme, com-
mitment schemes secure against selective openings, Chaum’s blind signa-
tures, etc.) on “standard assumptions.” As a black-box reduction may invoke
multiple (concurrent) sessions of the adversary, dealing with concurrency
(and nested sessions) is a key technical challenge in establishing such im-
possibility results.

And conversely, techniques developed to establish black-box impossibility results
for concurrent ZK turned out to be useful in establishing the feasibility of other
primitives:

. In Chung et al. [2013b], it was shown that black-box impossibility results for
concurrent ZK due to Canetti et al. [2001], and Chung et al. [2012] can be
used to develop so-called resettably sound ZK protocols [Barak et al. 2001a]
based on minimal assumptions.

As we hope to have conveyed, understanding concurrent ZK is important be-
yond just ZK—whether it is to study concurrent security of more general secure
computations protocols, or to establish black-box impossibility results for other
tasks. Furthermore, the question of whether constant-round concurrent ZK exists
is linked to other intriguing open questions in the context of delegation of compu-
tation and program obfuscation.

A Simple Concurrent ZK. Despite improvements, simplifications, and generaliza-
tions, the analyses of concurrent ZK protocols remain very complex and subtle. In
the remainder of this tutorial, we aim to present a concurrent ZK protocol with a
simple analysis: We do not try to minimize rounds or assumptions—the protocol
requires O(nε) rounds (just as the original work by Richardson and Kilian) and re-
lies on the existence of one-way permutations—but our hope is that this analysis
may make it feasible to teach the wonders of concurrent ZK in a graduate class on
cryptography.

Our analysis follows simulation techniques from Canetti et al. [2010], and Pass
[2011] (and is also closely related to a technique from Deng et al. [2009]) developed
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for concurrent simulation of more general interaction, but as far as we know, these
simulation techniques were not previously brought back to concurrent ZK.

A Personal Note. ZK proofs are, in my opinion, one of the deepest, intriguing, and
most surprising concepts in computer science. The fact that one can convince someone
of the validity of some statement without revealing anything else beyond it, just seems
impossible. Yet ZK proofs enable it! It was this notion that made me fall in love with
Cryptography: I had decided to go back to graduate school and Johan Håstad handed me
the paper “Resettable Zero-Knowledge” by Canetti, Goldreich, Goldwasser, and Micali
[Canetti et al. 2000] and said, “This is a paper by some of my friends; it may be fun.” At
this point, I had no background in crypto and had never read a research paper. So “fun”
it was not. It took me months to get even the most basic understanding of this paper—a
core technical component was a detailed analysis of Richardson and Kilian’s concurrent
zero-knowledge protocol—but, even though I didn’t understand the details, I had become
obsessed by ZK and even more so by the notion of concurrent zero-knowledge: How could
it be that something gave “zero-knowledge” when executed in isolation, but no longer
did so if one provided many concurrent proofs. How can 0 + 0 not be 0? Over a decade
later, I am still as obsessed with this notion, and it is an honor to contribute a piece on
concurrent zero-knowledge in this tribute to Shafi’s and Silvio’s work.

23.2 Preliminaries
We assume familiarity with probability ensembles, indistinguishability and in-
teractive proofs [Goldwasser et al. 1989], and arguments [Brassard et al. 1988];
recall that in interactive proof, soundness holds with respect to all computation-
ally unbounded malicious provers, whereas in an interactive argument, soundness
only needs to hold with respect to computationally bounded (i.e., nonuniform
polynomial-time) provers.

23.2.1 Black-Box Concurrent Zero-Knowledge
Let (P , V ) be an interactive proof/argument for a language L. An m-session con-
current adversarial verifier V ∗ is a probabilistic polynomial-time machine that, on
common input x and auxiliary input z, interacts with m(|x|) independent copies—
called sessions—of some prover P(x , w). There are no restrictions on how V ∗ sched-
ules the messages among the different sessions, and V ∗ may choose to abort some
sessions but not others. Let View(x , z) be the random variable that denotes the
view of V ∗(x , z) in an interaction with P(x , w) (this includes the random coins of
V ∗ and the messages received by V ∗). A black-box simulator S is a probabilistic ex-
pected polynomial-time machine that is given black-box access to V ∗ (written as
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SV ∗
). Roughly speaking, we require that for every instance x ∈ L, and every auxiliary

input z, the simulator SV ∗(x ,z)(x) (having only access to V ∗(x , z), but not the prover
P(x , w)) can generate the view of V ∗(x , z) in an interaction with P(x , w). Since we
provide V ∗ with an auxiliary input, we can without loss of generality restrict our
attention to deterministic V ∗ (as V ∗ can always receive its random coins as auxiliary
advice).

Definition 23.1 (Black-box concurrent zero-knowledge [Dwork et al. 2004]) Let (P , V ) be an inter-
active proof/argument for a language L ∈ N P with witness relation RL. (P , V ) is
black-box concurrent zero-knowledge if for all polynomials m, there exists a black-box
simulator Sm such that for every common input x and auxiliary input z, and every de-
terministic m-session concurrent adversary V ∗, S∗(x ,z)

m
(x) runs in time polynomial

in |x|. Furthermore, the following ensembles are computationally indistinguish-
able:

.

{
View(x , z)

}
x∈L,w∈RL(x),z∈{0, 1}∗.

.

{
S∗(x ,z)

m
(x)
}
x∈L,w∈RL(x),z∈{0, 1}∗.

It is worth noting that the definition of black-box concurrent ZK allows for a dif-
ferent simulator for every polynomial bound m on the number of sessions (whereas
the standard definition of black-box ZK does not need a different simulator for
each polynomial that bounds the verifier’s running time). The reason for this is
that we need to allow the simulator to run in polynomial time in m even just to read
all the messages sent by an m-session verifier.

23.2.2 Other Primitives
Witness-Indistinguishable (WI ) Proofs [Feige and Shamir 1990]. Roughly speaking,
an interactive proof is witness indistinguishable if the verifier’s view is “indepen-
dent” of the witness used by the prover for proving the statement.

Definition 23.2 (Witness indistinguishability) Let (P , V ) be an interactive proof system for a lan-
guage L ∈ N P with witness relation RL. We say that (P , V ) is witness indistinguish-
able (WI ) for RL if for every probabilistic polynomial-time adversarial V ∗ and for
every two sequences of witnesses {w1

x
}x∈L and {w2

x
}x∈L satisfying w1

x
, w2

x
∈ RL(x), the

following two probability ensembles are computationally indistinguishable:

.

{
View

P(w1
x)

V ∗ (x , z)

}
x∈L,z∈{0, 1}∗

.

.

{
View

P(w2
x)

V ∗ (x , z)

}
x∈L,z∈{0, 1}∗

.
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If, further, the above probability ensembles are identically distributed, we say that
(P , V ) is perfectly witness indistinguishable.

Proofs and Arguments of Knowledge (POK, AOK) [Feige and Shamir 1990, Bellare and
Goldreich 1992]. An interactive proof (respectively argument) is a proof (respec-
tively argument) of knowledge if the prover convinces the verifier that it possesses,
or can feasibly compute, a witness for the statement proved. Given two interactive
machine, A,B, let 〈A, B〉(x) be a random variable denoting the output of B in an
interaction with A given the common input x.

Definition 23.3 (Proofs and arguments of knowledge [Bellare and Goldreich 1992]) An interactive
protocol (P , V ) is a proof of knowledge (respectively argument of knowledge) of
language L with respect to witness relation RL if (P , V ) is an interactive proof
(respectively argument) for L, and additionally, there exists a polynomial q, a
negligible function ν, and a probabilistic oracle machine E, such that for every
interactive machine P ∗ (respectively for every polynomially sized machine P ∗) and
every x ∈ L, the following holds:

If Pr[〈P ∗, V 〉(x)= 1] > ν(|x|), then on input x and oracle access to P ∗(x), machine
E outputs a string from RL(x) within an expected number of steps bounded by

q(|x|)
Pr[〈P ∗, V 〉(x) = 1] − ν(|x|) .

The machine E is called the knowledge extractor.

Special-Sound Proofs [Cramer et al. 1994]. Special-sound proofs are proofs of knowl-
edge with a very rigid and useful structure.

Definition 23.4 (Special soundness) A 3-round interactive proof (P , V ) for language L ∈ N P with
witness relation RL is special sound with respect to RL if:

. (P , V ) is public-coin (i.e., the verifier message is its random tape), and the
length of the verifier message (also known as the “challenge”) on input x is
|x|.2

. There exists a deterministic polynomial-time extraction procedure E such
that for any x ∈ L, all α, β, β ′, γ , γ ′ such that β = β ′, and (α , β , γ ) and
(α , β ′, γ ′) are both accepting transcripts of (P , V ) on input x, the extractor
E(x , (α , β , γ ), (α , β ′, γ ′)) outputs a witness w ∈ RL(x) for x.

2. For most applications, including ours, it suffices that the length of the challenge is ω(log |x|),
but for notational simplicity, we simply require the length of the challenge to be |x|.
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23.2.3 Known Protocols
In our construction of concurrent zero-knowledge arguments we use:

. A WI special-sound proof for N P; this can be instantiated by a parallel
repetition of the Blum’s Hamiltonicity protocol [Blum 1986] based on one-
way permutations.

. For every ε > 0, an O(nε)-round perfectly WI argument of knowledge for
N P. This can be instantiated with a variant of Blum’s Hamiltonicity proto-
col using an O(nε)-round perfectly hiding (as opposed to perfectly binding)
commitment, which also can be based on one-way permutations [Naor et al.
1998].

Both of these primitives can, for instance, be based on the hardness of the discrete
logarithm problem [Goldreich 2001].

23.3 Black-Box Concurrent Zero-Knowledge
Arguments of Knowledge
In this section, we prove the following theorem.

Theorem 23.1 For any ε > 0, assume the existence of a WI special-sound proof for N P, and an
O(nε)-round perfectly WI argument of knowledge for N P. Then, there exists an
O(nε)-round concurrent black-box ZK argument of knowledge for N P.

23.3.1 The Protocol
Our concurrent ZK protocol ConcZKArg (also used in Pass and Venkitasubrama-
niam [2008], and Pass et al. [2014]) is a slight variant of the precise ZK protocol
of Micali and Pass [2006], which in turn is a generalization of the Feige–Shamir
protocol [Feige and Shamir 1990]. Given a common input statement x ∈ {0, 1}n, a
“round-parameter” k = nε, the protocol for language L proceeds in three stages:

Init Stage: The verifier V picks two random strings r1, r2 ∈ {0, 1}n and sends
their images c1 = f (r1) and c2 = f (r2) under a one-way function f to the
prover. Next, V then initiates k repetitions of a WI special-sound proof of
the N P statement “c1 or c2 is in the image set of f ” (a witness here would
be a pre-image of either c1 or c2), and sends the prover P the first messages
(α1, . . . , αk) for each of these k instances.



636 Chapter 23 A Tutorial on Concurrent Zero-Knowledge

Stage 1: k message exchanges occur in Stage 1. In the j th iteration, the prover
P sends βj ∈ {0, 1}n, a random “challenge” for the j th special-sound proof,
and V replies with the third message γj of the special-sound proof. These
k iterations are referred to as slots. A slot is convincing if V produces an
accepting proof. If there is ever an unconvincing slot, P aborts the whole
session.

Stage 2: The prover provides a perfectly WI argument of knowledge of the
statement “x ∈ L, or either c1 or c2 is in the image set of f .”

Completeness and soundness/proof of knowledge follows directly from the
proof of Feige and Shamir [Feige and Shamir 1990]; in fact, the protocol is an
“instantiation” of theirs. Intuitively, to cheat in the protocol a prover must “know”
an inverse to c1 or c2 (since Stage 2 is an argument of knowledge), which requires
inverting the one-way function f (due to the WI property of Stage 1). A formal
description of protocol ConcZKArg is shown in Figure 23.3.

Protocol ConcZKArg:
Common Input: an instance x ∈ {0, 1}n of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that w ∈ RL(x).
Init Stage:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V → P : c1 = f (r1) and c2 = f (r2) for a one-way function f .
V → P : the first messages α1, . . . , αk for k WI special-sound proof of the

statement (c1, c2) with respect to the witness relation:
Rf (c1, c2) = {r : f (r) = c1orf (r) = c2}.

Note that V acts as the prover in these special-sound proofs.
Stage 1: For j = 1 to k repeat the following slots:

P → V : The second message (a.k.a. the “challenge”) βj of the j th
special-sound proof.

V → P : The last message (a.k.a. the “response”) γj of the j th
special-sound proof.

Stage 2:
P ↔ V : a perfectly WI argument of knowledge from P to V of the statement

(c1, c2, x) with respect to the witness relation:
Rf∨L(c1, c2, x) = {(r , w): r ∈ Rf (c1, c2) or w ∈ RL(x)}.

Figure 23.3 Concurrent ZK argument of knowledge for N P with round parameter k(.).
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23.3.2 The Simulator Algorithm
We will show that the protocol is black-box concurrent ZK when k = nε. To simplify
notation, let ñ = nε/2, and thus the number of slots k = ñ2. We construct a simulator
Sim = SimV ∗(x ,z)(x) that given as input an instance x ∈ L and black-box access to
V ∗(x , z), outputs a view that is statistically close from the “real view” of V ∗(x , z) in
a multi-session interaction with P(x , w), for any w ∈ RL(x).

On a high level, the simulation follows that of Richardson and Kilian [1999].
The simulator simulates the Init Stage and Stage 1 of the protocol by following the
honest prover strategy, and attempts to “rewind” one of the slots (i.e., the last two
messages of the special-sound proofs provided by V ∗). If the simulator manages
to successfully rewind some slot (i.e., obtain two accepting responses to the slot),
it can use the special-soundness extractor to extract a “fake witness” r such that
f (r) = c1 or c2. This fake witness can then be used to simulate Stage 2 of the protocol
by straightforward emulation. The crux of the simulation is to provide a method for
rewinding slots that ensures the following two properties:

Property 1: Whenever the simulator reaches Stage 2 of the protocol in any of
the concurrent sessions, at least one of the slots for that session has been
“successfully rewound” (and thus the simulator has a fake witness that can
be used to complete Stage 2). We refer to such a session as being solved.

Property 2: The rewindings can be done in a way that does not “blow-up”
the running-time of the simulation. In particular, to ensure Property 1, the
simulator will have to recursively rewind the verifier, and will need to carefully
select which slot to rewind to ensure to ensure timely termination.

Description of Sim. Given some statement x, let n = |x|, and let m = m(n) be an
upper bound on the number of concurrent sessions invoked by V ∗ and T = T (n)

be a bound on the total number of messages exchanged to be exchanged with V ∗;
note that T = mk = poly(n). Recall that by the definition of black-box simulation,
we need only consider deterministic malicious verifiers V ∗; therefore, the view of
V ∗(x , z) is just the transcript of its interaction with the honest prover.

As mentioned above, our simulator Sim starts by honestly simulating the Init
Stage and Stage 1 for V ∗ (i.e., by replying just like the honest prover). We say that a
slot (of one of the sessions) “opens” when V ∗ receives a “ challenge” βj from Sim
(i.e., when it receives the first message of the slot), and that the slot “closes” when
V ∗ sends back its response to Sim. Formally, the opening of a slot is a partial view
v of V ∗ immediately after which the slot opens. In the sequel, we identify a slot
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simply by its opening (i.e., the partial view after which it opens). Analogously, the
closing of a slot s is a partial view v immediately after which s closes.

By definition, a slot can never close before opening. But what makes our life
complicated is that V ∗ may send lots of other messages (and start other sessions)
before responding to a slot (i.e., it can nest sessions as in Figure 23.2). Thus, we may
never see the closing of a slot unless we can simulate all the messages V ∗ expects
to see before closing the slot.

Once a slot closes, we would like to “rewind” it by sending a new slot opening
(i.e., a new challenge) and waiting for the slot to close again (so that we can solve
the session). But this requires simulating all the messages within the slot again:
We do this by recursively invoking the simulator. The problem, of course, is that if
the recursive depth (i.e., the number of nested recursive calls) becomes large, the
running time of the simulation will blow up. Our goal is to ensure that the recursive
(i.e., nesting) depth is some constant D: This will intuitively ensure that the expected
running time will be poly(n)D (as the expected number of rewindings for each slot
is 1 and there are at most poly(n) slots).

On a high level, we achieve this goal by carefully selecting which slots to rewind
(intuitively, ones that is “light” to simulate). The malicious verifier V ∗ may abort
in the rewinding, in which case we simply rewind the slot again. Furthermore,
although the slot was “light” in the initial simulation, V ∗ may change its scheduling
in the rewinding to make the slot “heavy”! Whenever, this happens, we artificially
abort the rewinding and restart with a new one. Sim continues rewinding in this
fashion until the session gets solved.

More precisely, Sim honestly emulates the Init Stage and Stage 1 for V ∗ until a
slot s closes for which the following property holds:

. Between the time when the slot s opened, and the time that it closed, the
number of other slots that opened is “small,” where “small” will be defined
shortly based on the recursive depth of the simulator.

Whenever this happens, Sim rewinds V ∗ back until the point where s opened, and
recursively invokes itself to simulate the messages within the slot s one more time;
additionally, if the number of slots s′ that V ∗ opens up in this rewinding (i.e., within
slot s) no longer is “small,” the rewinding is cancelled. Sim continues rewinding
V ∗ until it gets another accepting closing of the slot s, and can now use the special-
soundness extractor to recover a fake witness to use in Stage 2. (We remark that
in contrast to the simulation technique of Richardson and Kilian [1999], we do not
decide what slot to rewind based on the number of sessions that start within the slot,
but rather, following Deng et al. [2009], Canetti et al. [2010], and Pass [2011], decide
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what slot to rewind based on the total number of slots within the slot (regardless of
sessions).)

It remains to specify what “small” means. Note that the recursive depth of the
simulation corresponds to the number of “nested rewindings” in the simulation.
Recall that we want to make sure that the maximal depth (i.e., maximal number of
nested rewindings) becomes a constant so that the running time of the simulation
stays polynomial. To do this, the definition of “small” will need to vary based on
the recursive depth d of the simulation. Given the (partial) view τ of V ∗:

. We say that a prefix ρ of τ is d-good if the number of slots that open in τ

after ρ is less than T

ñd (recall that T is an upper bound on the total number
of messages);

. We say that a slot s is d-good in τ if s (i.e, the opening of s) is a d-good prefix
of τ . (In other words, a slot s is d-good if the number of new slots that opened
since its opening is less than T

ñd ).

Now, at recursive level d, whenever a slot s closes, we will only rewind it if it is (d + 1)-
good; thus, when we are “deeper” in the recursion (i.e., at a higher recursive depth),
we will only rewind slots that have fewer slots inside them (and this ensures that
the recursive depth of the simulation is a constant). In more detail, the simulation
proceeds as follows:

. On recursive level d ≥ 0, starting from a view V, Sim honestly emulates the
prover strategy for V ∗, until a slot s that opened inside the view V closes
and the slot is (d + 1)-good for the current view v. Whenever this happens, it
rewinds V ∗ back to the point when s opened, and invokes itself recursively
at level d + 1 to simulate the slot once more. If the slot closes after this
“rewinding,” Sim applies the special soundness extractor X to extract a fake
witness; if the extractor outputs a valid witness r (to the statement c1, c2

currently proved by V ∗), the pair (c1, c2, r) is stored. If the simulation in the
rewinding fails (the condition under which it fails will be defined shortly),
Sim simply attempts another rewinding of the slot, and continues doing so
until it encounters a closing of the slot.

. At each recursive level d ≥ 1 (i.e., on all recursive levels except the first one),
if V ∗ aborts in V, or V is not a d-good prefix of the current view v (i.e., if
the number of new openings of slots becomes T

ñd ), the recursive procedure
halts outputting a fail symbol ⊥ (returning to the earlier recursive call); this
ensures that all rewindings are “cut off” if V ∗ attempts to open more slots in
the rewinding.
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. Finally, whenever V ∗ is expecting to hear a Stage 2 proof for session j for a
statement (c

j
1 , c

j
2 , x), Sim checks whether a “fake witness” r for (c

j
1 , c

j
2 , x) has

been extracted; if so, it honestly completes Stage 2 using this witness, and
otherwise halts outputting fail.

23.3.3 A Formal Description of Sim
We proceed to a formal description of the procedure Sim, and analyze its running
time and success probability. Sim = SimV ∗(x ,z)(x) starts by invoking the recursively
defined procedure SIM (which we assume has oracle access to V ∗ = V ∗(x , z)),
described in Figure 23.4, on input (x , 0, ∅). Let us start by showing that the running
time of Sim is bounded in expectation.

Procedure SIM(x , d , V):
On input a statement x, the recursive level d and the partial view V of V ∗, proceeds as

follows. Let v = V. Repeat the following:
If V ∗(v) is expecting to hear any Init Stage or Stage 1 message, honestly generate

it and append it to v.
If d > 0 and v is the closing of the slot opened at V, return v.
If d > 0 and the partial view v is not d-good, or if V ∗(v) aborts (i.e., sends an

invalid message or simply terminates), return ⊥.
If v is the closing of a slot s that opened after V and that is (d + 1)-good for v,

repeat:
v′ = SIM(x , d + 1, s)

until v′ = ⊥.
Next, apply the special soundness extractor X on the transcripts corresponding to

the special-soundness proofs in the two views v , v′. If X succeeds in finding
a witness r for the statement (c1, c2) proved, store (c1, c2, r).

If V ∗(v) is expecting to hear a Stage 2 proof for a statement (c1, c2, x), check if
a tuple pair (c1, c2, r) has been stored. If so, use the “fake witness” r to honestly
provide the Stage 2 proof (one message at a time), and append the prover
message v; otherwise halt outputting fail.

Finally, if d = 0 and V ∗(v) aborts (i.e., sends an invalid message or simply
terminates), return v.

Figure 23.4 Pseudocode for the recursive simulation strategy employed by Sim.

Proposition 23.1 There exists some polynomial t (.) such that for every x ∈ L, Sim(x) runs in expected
time bounded by t (|x|).
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Proof Intuitively, the proposition is based on the following observations:

. The maximal recursive depth is bounded by a constant D = *logñ T ,, as on
level D, SIM returns ⊥ if it encounters T

ñD ≤ 1 new slots, so no new recursive
calls can be made at level D.

. The expected number of rewindings to solve each slot is 1, as by the perfect
witness indistinguishability property of Stage 2, the rewinding of a slot is
simulated using exactly the same distribution as the original simulation of
the slot.

. Since the total number of slots at each recursive level is bounded by T , the
expected number of recursive calls at each level is bounded by T , from which
we can conclude that expected running time of the simulator is bounded by
poly(T D).

We proceed to a formal proof. To simplify the analysis, let us consider a slight
variant of Sim that never gets “stuck”—instead of ever halting outputting fail, let us
assume that Sim has access to a witness w for x, which it can use in Stage 2 if Sim
is ever is required to provide a witness for a statement (c1, c2, x) for which it has
not recovered a fake witness. Clearly this change can only increase Sim’s running
time.

Note that the recursive depth is bounded by D = *logñ T ,, which is a constant
(since T is polynomial in n and thus also in ñ). Secondly, at each recursive level d,
there are at most T possible points from which we can rewind. As we shall argue,
from each of these points (i.e., partial views), the expected number of rewindings
is bounded by 1. Recall that for every view V, the execution of SIM(x , d , V), Sim
only starts “rewinding” a slot s if (1) the slot s opened after V, (2) the slot s closes
in the current view v (which extends V), and (3) the slot s is (d + 1)-good for v.
Furthermore, in each of the rewindings, the simulated view of the adversary on
the recursive level d + 1 (i.e., in the execution of SIM(x , d + 1, s)) is identically
distributed to its view in the execution on level d; note that we here rely on the
assumption that Sim never gets “stuck,” and the fact that the Stage 2 proof is
perfectly witness indistinguishable. Thus, the probability that the slot s becomes
(d + 1)-good for some view v′ in the recursive call on level d + 1 (i.e., that the
rewinding is successful) is at least the probability that the slot was (d + 1)-good
on level d.3 Since Sim rewinds the slot until it gets another accepting closings, the
expected number of rewindings from each partial view is thus at most 1.

3. The probability might actually be larger, since on level d we might also abort if the current view
is no longer d-good.
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So, for any recursive level d, and any view V, in the execution of SIM(x , d , V),
the expected number of rewindings (i.e., recursive invocations of SIM(x , d + 1, V ′)
for some view V ′) is bounded by T . It follows using a standard induction that for
each recursive level d ≤ D, and every view V, the expected number of messages sent
by SIM(x , d , V) (and its recursive sub-routine calls) to V ∗ is bounded by T D+1−d—
note that we here rely on the fact that the upper-bound on the expected number of
rewindings inside SIM(x , d + 1, V ′) is independent of the starting view V ′, and thus
the expectations can be multiplied.

Let us now argue that Sim generates a view that is statistically close to the
real view. First, note that if we consider a variant S̃ım of Sim that (1) never halts
outputting fail, and (2) always uses the real witnesses for x in Stage 2, then the view
output by S̃ım is identically distributed to a real view: This directly follows from the
fact that S̃ım honestly emulates Init Stage, Stage 1 and Stage 2 messages, and only
uses rewindings to learn a “fake witness,” which is not even used by S̃ım.

Next, consider a variant Sim′ of Sim that proceeds just as Sim but never fails and
instead uses a real witness in Stage 2 for any session for which it fails to extract a
fake witness; for all other sessions (i.e., those for which a fake witness is extracted),
it still uses the fake witness in Stage 2. It follows directly from the perfect witness
indistinguishability property of Stage 2 that the view output by Sim′ is identically
distributed to the view output by S̃ım (and thus also a real view).

Finally, note that Sim and Sim′ behave identically except in the event that Sim
outputs fail. Below, we show that Sim outputs fail only with negligible probability
which concludes the proof of the correctness of the simulation.

Proposition 23.2 There exists a negligible function μ such that for all x ∈ L, the probability that
Sim(x) outputs fail is bounded by μ(|x|).

Proof Intuitively, the proposition is based on the following observations:

. Whenever the simulator reaches Stage 2 of some session j , it is the case that
ñ2 slots for that session have closed. Since the maximal recursive depth is
some constant D, at least ñ2/D > ñ (for sufficiently large n) of these slots
closed in one invokation of SIM on some particular recursive depth d̃.

. As there can be at most a total of M = T

nd̃
slots that opened up in that

invokation of SIM (or else SIM would abort returning ⊥), we are guaranteed
that there is at least one slot for session j that has less than M

ñ
slots inside

it, and this slot must thus be (d̃ + 1)-good and will be rewound.

. Since a slot is rewound until it closes again, we are guaranteed that a witness
can be extracted for session j as long as the special-soundness extractor does
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not fail to extract a witness. But the special-soundness extractor only fails if
the challenge (i.e., slot opening) in the two transcript we feed him are the
same. This happens with negligible probability as the length of the challenge
is n and the expected running time of the simulator is polynomial (as shown
in Proposition 23.1).

We proceed to a formal proof. Let us consider the following two events:

. Let E1 denote the event that Sim is required to provide a Stage 2 proof for
some instance (c1, c2, x) without having previously “rewound” at least one
slot for a proof of (c1, c2).

. Let E2 denote the event that the special soundness extractor X fails to output
a valid witness in the execution by Sim.

Note that if neither E1 nor E2 happen, there always exists some slot that is rewound
for which the special-soundness extractor succeeds, which means that Sim can
never fail.

We show below that the these events can happen only with negligible probabil-
ity, and thus by a union bound, the probability that either of them happens is also
negligible, which concludes the proof.

Claim 23.1 For sufficiently large x ∈ L, the probability that E1 happens in the execution of
Sim(x) is 0.

Proof Assume for contradiction that Sim reaches Stage 2 of some session and is required
to provide a proof for (c1, c2, x), yet none of the slots for (c1, c2) were rewound. Fix
some random tape for Sim for which this happens—in the sequel of the proof, we
will be considering the execution of Sim with this fixed random tape. Let ṽ , d̃ be the
view and recursive level for which this happened. To reach Stage 2, Sim must thus
have previously encountered k = ñ2 slots for (c1, c2). These slots may not necessarily
have opened on recursive level d̃, but may instead have opened on some earlier
recursive level d < d̃—formally, we say that a slot s opened up on recursive level
d if the opening of the slot was generated by SIM(x , d , v) in the execution by Sim
(with the fixed random tape), where v is a prefix of ṽ. Since the recursive depth of
Sim is bounded by some constant D = *logñ T ,, there nevertheless must exist some
recursive level d such that at least k/D = ñ2/D of those slots opened on recursive
level d. For sufficiently large n, it holds that ñ2/D > ñ and thus there is exists more
than ñ such slots. Additionally, by the recursive construction of the simulator, there
exist a single partial view v such that all those ñ slots opened within the execution
of SIM(x , d , v).
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Since the total number of slots that can open up during the execution of
SIM(x , d , v) is bounded by M = T

ñd (for d = 0, this follows by the definition of T ;
and for d > 0, this follows since by definition of SIM, the simulation at recursive
level d is cancelled if more than T

ñd slots open), there exists at least one slot that

contains less than M
ñ

= T

ñd+1 slots; this slot is thus (d + 1)-good and would have
been rewound, which is a contradiction.

Claim 23.2 There exists some negligible function μ(.), such that for every x ∈ L, the probability
that E2 happens in the execution of Sim(x) is bounded by μ(|x|).

Proof Assume for contradiction that there exists some polynomial p(.) such that E2

happens in the execution of Sim(x) with probability 1
p(|x|) for infinitely many x.

Recall that by Proposition 23.1, the expected running time of Sim is bounded by
some polynomial t (.). By the Markov inequality, it follows that the probability that
Sim’s running time exceeds t ′(|x|) = t (|x|) . 2p(|x|) steps is at most 1

2p(|x|) . Thus, by
the union bound, we have that the probability that E2 happens while Sim takes less
than t ′(|x|) steps is at least 1

2p(|x|) (i.e., inverse polynomial).
Next, note that the special-soundness extractor can only fail to extract a witness if

the simulator sent the same verifier challenge in the two views v , v′. Since the length
of the verifier challenges is |x|, the probability that this happens for any given pair
v , v′ is 2−|x|. Consequently, it follows by a union bound that E2 can happen with
probability at most t ′(|x|)2−|x| (i.e., with negligible probability) when Sim takes at
most t ′(|x|) steps, which is a contradiction.

Using Claims 23.1 and 23.2, the proof of the proposition is completed.
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24Doubly Efficient
Interactive Proofs
Guy Rothblem

A Doubly Efficient Interactive Proof (DEIP) allows a polynomial-time prover to con-
vince a verifier, whose computational ability is significantly more restricted, of the
validity of complex statements (which are computable in polynomial time). This is
achieved by means of an interactive proof, where ideally the verifier’s running time
is nearly linear in the input length. Soundness of the proof is unconditional; it holds
against unbounded cheating provers and does not rely on unproved intractability
assumptions. Since their introduction in the work of Goldwasser, Kalai, and Roth-
blum [Goldwasser et al. 2008], there has been growing interest in DEIPs and their
applications. We survey some highlights of this study:

. DEIPs for all bounded-depth (polynomial-size) computations, a protocol due
to Goldwasser, Kalai and Rothblum [Goldwasser et al. 2008]

. DEIPs for all bounded-space (polynomial time) computations, a protocol due
to Reingold, Rothblum, and Rothblum [Reingold et al. 2016]

We also discuss applications of DEIPS for delegating polynomial-time compu-
tations to an untrusted server. This area has seem tremendous activity, spanning
theory and implementations. We also discuss complexity-theoretic and crypto-
graphic applications, and conclude by highlighting several central open questions
in the area.

24.1 Introduction
Proof systems allow weak verifiers to ascertain the correctness of complex compu-
tational statements. For example, to convince a verifier that a given graph contains
a k-clique, a prover can supply a proof specifying the vertices in the clique, and this
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proof can be verified in polynomial time. The power of efficiently verifiable proof
systems is a central question in the study of computation. Studying them has led
to some of the deepest and most influential insights of the theory of computing,
including NP-completeness [Cook 1971, Karp 1972, Levin 1973], zero-knowledge
[Goldreich et al. 1991, Goldwasser et al. 1989], the IP = PSPACE theorem [Lund
et al. 1992, Shamir 1992], and the PCP theorem [Arora and Safra 1998, Arora et al.
1998].

We focus on the study of interactive proof systems, introduced by Goldwasser, Mi-
cali, and Rackoff [Goldwasser et al. 1989] and independently by Babai and Moran
[1988], which are among the most celebrated achievements of cryptography and
complexity theory. An interactive proof system is an interactive protocol between
an efficient randomized verifier and an untrusted prover. The prover convinces the
verifier of the validity of a computational statement, usually framed as the member-
ship of an input x in a language L. Soundness is unconditional. Namely, if the input
is not in the language, then no matter what (unbounded and adaptive) strategy a
cheating prover might employ, the verifier should reject with high probability over
its own coin tosses. The celebrated IP = PSPACE theorem [Lund et al. 1992, Shamir
1992] showed that interactive proofs are remarkably powerful: a polynomial-time
verifier can use them to verify any statement/language that is decidable in polyno-
mial space.

The Complexity of Proving. The vast and rich literature on proof systems focuses
primarily (though not exclusively) on intractable computations, such as NP-
complete problems, where the proofs can be verified in polynomial time. Generat-
ing the proof in polynomial time, on the other hand, is implausible. This limits the
applicability of such proof systems, both from a theoretical perspective and in their
real-world impact.1 For example, focusing on interactive proofs, the IP = PSPACE

protocol places a heavy burden on the honest prover, who needs to perform in-
tractable computations. Indeed, this was unavoidable as the protocol was designed
for statements (in PSPACE) that are themselves intractable. If we consider tractable
computations—that is, languages that can be decided in polynomial time—can we
design interactive proofs with an efficient prover where verification is significantly
less expensive than deciding the language?

1. One notable exception is in the study of zero-knowledge proofs for NP languages, where the
honest prover should run in polynomial time given a witness for the statement’s validity [Goldreich
et al. 1991]. We, however, will focus on the setting where the prover should run in polynomial time
without knowing anything more than the verifier about the input.
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Doubly Efficient Interactive Proofs. Goldwasser, Kalai, and Rothblum [Goldwasser
et al. 2008, 2015] initiated the study of doubly efficient interactive proofs (DEIPs).2

These are interactive proofs for tractable languages, where both the honest prover
and the verifier run in polynomial time. The verifier should be super-efficient; for
example, it should run in linear or nearly linear time.3 In particular, verification
requires significantly less resources than it would take to decide the (tractable)
language. We emphasize that we still require unconditional soundness against an
unbounded cheating prover. With this goal in mind, a burgeoning study considers
the following foundational question:

Question 24.1 Which languages have doubly efficient interactive proofs? What are the possible
complexities (and trade-offs) in terms of number of rounds, communication, and
the time required for verification and for proving?

The protocols constructed in earlier works, such as the IP = PSPACE protocol,
do not yield doubly efficient interactive proofs (even when they are scaled down
to polynomial-time computations).4 Over the past decade, a sequence of works
has made significant progress on this question. In a nutshell, every language that
can be decided in polynomial time using a bounded-space Turing machine or
a sufficiently uniform bounded-depth circuit (ensemble) has such an interactive
proof. The primary goal of this chapter is providing a high-level survey of this
progress. The intrigued reader may also refer to the more detailed recent survey
by Goldreich [2018].

Outside Our Scope. A literature spanning both theory and practice has considered
doubly efficient proof systems in the context of delegating computations reliably.
This survey is focused on the study of DEIPs, though we mention some applica-
tions in Section 24.1.3. In particular, we do not attempt to survey the literature on
computationally sound argument systems [Brassard et al. 1988, Kilian 1992, Micali
2000], where soundness is only required to hold against polynomial time cheating

2. Early works have also referred to these as “interactive proofs for muggles” or “interactive proofs
for delegating computation.”

3. We use nearly linear to refer to complexity that grows as O(n1+δ) for a small constant δ > 0.
In some cases, the actual complexity is in fact quasi-linear, or O(n . polylog n); we ignore this
distinction throughout.

4. For languages decidable in time T = T (n) and space S = S(n), earlier protocols give a prover
whose running time grows as T O(S) [Lund et al. 1992, Shamir 1992, Shen 1992]. This is super-
polynomial, even for log-space languages.
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provers, and is proved under cryptographic assumptions (for a recent work on this
topic, see, e.g., Kalai et al. [2014] and the references therein).

24.1.1 DEIPs for Bounded-Depth Computations
The first result we discuss is a doubly efficient public-coin interactive proof for any
language computable by an ensemble of (logspace-uniform) Boolean circuits.5 This
protocol is due to Goldwasser, Kalai, and Rothblum [Goldwasser et al. 2015]. The
communication complexity and the number of communication rounds are related
to the depth of the computation; the running time of the verifier is nearly linear
in the input length, polynomial in the depth, and polylogarithmic in its size; and
the prover’s running time is polynomial (as required for a doubly efficient interactive
proof).

Theorem 24.1 (Doubly efficient interactive proofs for bounded depth [Goldwasser et al. 2015])
Let L be a language that can be computed by a family of O(log(n))-space uniform
Boolean circuits of depth d(n) and polynomial size (with fan-in 2). Then L has a
public-coin interactive proof where:

. The prover runs in time poly(n). The verifier runs in time (n + d(n)) .

polylog(n).

. The number of rounds is O(d(n) . log(n)) and the communication complexity
is d(n) . polylog(n).

. The protocol has perfect completeness and soundness 1/2.6

Several remarks are in order. First, as a primary implication, we conclude that
any language in logspace-uniform NC has a doubly efficient IP with polylogarithmic
rounds and communication and quasi-linear verification time. Second, it is actu-
ally the case that if the verifier has access to a low-degree extension encoding of its
input (see Section 24.2.2), then its running time can be reduced to d(n) . polylog(n)

(and, in particular, the running time can be sublinear). Third, the protocol of Theo-
rem 24.1 scales up to super-polynomial circuit ensembles; the communication
complexity and verification time scale polylogarithmically with the circuit size (the
prover’s work scales polynomially with the circuit size). The uniformity requirement
can be relaxed to space that is logarithmic in the circuit size. In particular, Theorem

5. A circuit ensemble {Cn}n is s(n)-space uniform if there exists a Turing machine that on input
1n runs in space O(s(n)) and outputs a description of Cn, the circuit for inputs of length n.

6. Throughout this chapter we focus on interactive proof systems with constant soundness. Sound-
ness can be amplified via parallel or sequential repetition.
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24.1 gives an alternative proof of the IP = PSPACE theorem (where the runtime of
the honest prover is improved).

A natural question is how can this be done when the verifier cannot even con-
struct the circuit in question (the circuit is larger than the verifier’s running time!).
This is where the condition on the log-space uniformity of the circuit family comes
in. For such circuit families, the circuit has a “short” implicit representation that
the verifier can use without ever constructing the entire circuit. We view logspace-
uniformity as a relaxed notion of uniformity. In particular, it captures deterministic
and nondeterministic logarithmic space uniform computations (the classes L and
NL), as well as uniform parallel computing classes. It has also been relaxed in sub-
sequent work [Reingold et al. 2016]. We elaborate on the protocol in Section 24.3.

24.1.2 Constant-Round DEIPs for Bounded-Space Computations
The result of Theorem 24.1 demonstrates that DEIPs can be obtained for a rich
class of polynomial-time computation (namely, bounded depth computations). It
is known [Goldreich and Håstad 1998] that languages that have interactive proofs
with very efficient verifiers can be decided in small space or depth. The space
(respectively, depth) required is at most polynomial in the communication and
space complexity of the verifier in the interactive proof. While the time (respectively,
size) needed to decide the language might be exponential in the space (respectively,
depth), this still presents an important barrier to the construction of DEIPs. For
example, constructing DEIPs for a P-complete problem would require showing
that such a problem (and thus also any other polynomial-time problem) can be
decided in nearly linear space. Another natural barrier is that any language that
has a DEIP must be decidable in (probabilistic) polynomial time, since the decider
can simulate the proof system.

Thus, a natural frontier for the study of DEIPs is focusing on languages com-
putable in polynomial time and bounded space. Focusing on nearly linear veri-
fication time, can we obtain DEIPs for all languages computable in polynomial
time and nearly linear space? Or, alternatively, languages computable in bounded-
polynomial space? Here and below, by bounded-polynomial space we mean space nσ

for some sufficiently small universal constant σ > 0.

Theorem 24.2 (Doubly efficient interactive proofs for bounded space [Reingold et al. 2016]) Let
L be a language that can be decided in time poly(n) and space S = S(n), and let
δ ∈ (0, 1) be an arbitrary (fixed) constant. There is a public-coin interactive proof
for L as follows:
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. The (honest) prover runs in time poly(n), and the verifier runs in time (Õ(n)+
poly(S) . nδ).

. The number of rounds is O(1) and the communication complexity is poly(S) .

nδ.

. The protocol is public coin, with perfect completeness and soundness 1/2.

Similarly to Theorem 24.1, if the verifier has access to a low-degree extension
encoding of its input, then its running time can be reduced to poly(S) . nδ. We
elaborate on the protocol in Section 24.4.

The Round Complexity of Interactive Proofs. The protocol in Theorem 24.2 uses only
a constant number of rounds. In contrast, the Lund et al. [1992] and Shamir [1992]
protocol requires poly(S) rounds of communication to prove membership in a
language that can be decided in space S = S(n) (and moreover does not yield a
DEIP, even for languages in L). Similarly, this is also in contrast to the protocol of
Theorem 24.1, where the number of rounds is proportional to the circuit depth
(multiplied by a logarithmic factor).

We note that there are several senses in which the result of Theorem 24.2 is
tight. The dependence on the space S in the communication or the verification time
is tight up to polynomial factors (see above). Also, under reasonable complexity
conjectures, no constant-round interactive proof for bounded space computations
can have sub-polynomial communication complexity, as this would lead to a super-
polynomial AM-speedup for that class of computations (see Reingold et al. [2016],
Remark 5.1 in the ECCC version).

An Iterative Construction via Batch Verification. The proof of Theorem 24.2 itera-
tively constructs a proof system for longer and longer computations. Assume that
we already have an interactive proof for verifying Turing machine computations
that run in time T and space S; it extends the proof system to verifying computa-
tions that run in time (k . T ) and space S, for some super-constant integer k. This
could easily be reduced to verifying k computations that run in time T , by having
the prover send the k − 1 intermediate states of the machine. Two simple but inef-
fective approaches are to either run k instances of the “base” proof system to verify
the k computations (which is inefficient) or to check only a small subset of the com-
putations, chosen at random (which drastically increases the success probability of
a cheating prover, known as the soundness error). The main ingredient of the proof
is therefore a batch verification theorem for (certain types of) interactive proofs. This
theorem allows for the verification of k computations in a much more efficient way
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than k independent executions (and while maintaining the soundness error); see
Section 24.4 for further details.

24.1.3 Applications and Further Related Work
Delegating Computation. Beyond their importance in the theoretical study of com-
putation, interactive proofs are also motivated by real-world applications, such
as delegating computation. As envisioned in Goldwasser et al. [2015], a powerful
server can run a computation for a weak client and provide an interactive proof of
the output’s correctness. The interactive proof should be doubly efficient, so that
generating the proof is tractable for the server and verification is feasible for the
weak client. Naturally, this scenario focuses on tractable computations that can
actually be performed by the server. The interactive proofs of Theorems 24.1 and
24.2 can be used to delegate bounded-depth or bounded-space polynomial-time
computations (without making computational assumptions or using cryptographic
machinery).

Several works have constructed systems for delegating computations. Cormode,
Mitzenmacher, and Thaler [Cormode et al. 2012] gave the first implementation
of a delegation system, with a protocol based on Goldwasser et al. [2015]. Other
systems based on Goldwasser et al. [2015] include Thaler et al. [2012], Thaler
[2013], Vu et al. [2013], Wahby et al. [2017], Zhang et al. [2017], and Wahby et al.
[2018]. Indeed, by now there are several different works on this topic using different
underlying theoretical results. See Walfish and Blumberg [2013] for a survey on this
line of work.

Cryptography and Complexity. Given the fundamental importance of interactive
proofs in cryptography and complexity, it should come as no surprise that the new
DEIPs described above have implications to a variety of foundational questions,
including:

. Succinct zero-knowledge proofs from one-way functions for any NP-language
whose witnesses can be verified in bounded depth or space. For bounded-
space NP relations, the zero-knowledge proofs require only a constant num-
ber of rounds. See Goldwasser et al. [2015] and Reingold et al. [2016].

. Sublinear time verification for interactive proofs. In an interactive proof of
proximity (IPP) [Ergün et al. 2004, Rothblum et al. 2013], the verifier is al-
lowed (sublinear-time) query access to the input, and can verify that the input
is “close” to the language. This follows (and is inspired by) the study of prop-
erty testing [Rubinfeld and Sudan 1996, Goldreich et al. 1998]. Rothblum,
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Vadhan, and Wigderson [Rothblum et al. 2013] use DEIPs to construct such
Interactive Proof of Proximity (with information-theoretic soundness). Plug-
ging the DEIPs of Theorems 24.1 and 24.2 into their transformation gives
IPPs for polynomial-time bounded-space and bounded-depth computations.
See Rothblum et al. [2013] and Reingold et al. [2016] for further details.

. Batch verification of UP statements. The study of DEIPs, and in particular the
iterative construction behind Theorem 24.2 (see above), has led to a study of
interactive proofs for batch verification of NP statements. Given k inputs in
an NP language, a prover wants to convince a verifier that all k inputs are in
the language. The prover, given k witnesses (one for each of the statements)
should run in polynomial time. The goal is to design protocols where the
communication and verifier work improve over the trivial protocol where
the prover sends the k witnesses to the verifier (where the improvement is
in terms of the communication and also the verifier’s running time). This
study has yielded interactive proofs for batch verification of UP languages
[Reingold et al. 2016, Reingold et al. 2018]: NP languages where each YES
instance has at most one accepting witness. See Section 24.4.1 for an overview
of such a protocol.

Further Work on DEIPs. A recent line of works by Goldreich and Rothblum at-
tempts to construct simpler and more efficient protocols for specific subclasses of
bounded-depth and bounded-space computations, as well as for particular struc-
tured languages in these classes. The first of these works [Goldreich and Rothblum
2018a] constructs simple DEIPs for a natural subclass of such computations. A dif-
ferent work [Goldreich and Rothblum 2018c] builds on the protocol of Theorem
24.1 to construct constant-round DEIPs for AC0 and NC1, under certain uniformity
constraints. A third work [Goldreich and Rothblum 2018b] constructs a DEIP for
counting the number of cliques is a graph, where the prover runs in nearly linear
time given an oracle for the problem.

24.1.4 Open Questions
We conclude by briefly outlining central open questions in the study of DEIPs.

The Complexity of Convincing. A foundational question in the study of interactive
proofs is whether (or when) the running time of the (honest) prover in an interactive
proof can be polynomial in the time required to decide the language (and for
what parameters of the proof system—e.g., in terms of the number of rounds,
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the communication, and the verifier’s complexity). We highlight the following
challenge:

Question 24.2 Given a language that can be decided by a Turing machine running in time T =
T (n) and space S = S(n), is it always possible to construct an interactive proof
system, where the (honest) prover runs in poly(T ) time, the communication is
poly(S , log T ), and the verification time is polynomial in the communication and
nearly linear in the input length?

For any constant δ > 0, the protocol behind Theorem 24.2 has communication
and verification time that grow with poly(S) . T δ. One might hope to answer Ques-
tion 24.2 in the affirmative by applying this result with δ = 1/ log T . This approach
fails because the communication and the number of rounds in that protocol are
exp(Õ(1/δ)).

Batch Verification for NP. Does there exist an interactive proof for batch verification
of every NP language? We note that known results only apply to UP languages—that
is, under the promise that every YES instance has at most a single accepting witness.

Question 24.3 Does there exist, for every NP language L, an interactive proof for verifying that
k inputs x1, . . . , xk are all YES instances of L, where the (honest) prover runs in
polynomial time given witnesses to the inputs’ membership in L, and the com-
munication is much smaller than sending the k witnesses? In particular, can the
communication be as small as sending polylog k witnesses?

Doubly Efficient Soundness Amplification. One approach to resolving both open
questions posed above is doubly efficient soundness amplification for interactive
proofs:

Question 24.4 Given an interactive proof with soundness error ε, where ε might be very close to
1, what are the possible complexities (and trade-offs) for obtaining an interactive
proof with soundness error max(εk , 1/2) (where k is a large positive integer)? What
are the overheads in terms of round complexity, communication complexity, prover
time, and verifier time?

We note that parallel repetition is known to reduce the soundness error of
interactive proofs, but it increases the communication, prover time, and verifier
time by a multiplicative factor of �(k) (to reduce the soundness error from ε to εk).
Is it possible to obtain other/better trade-offs? This question is motivated by the fact
that (trivial) interactive proofs with very large soundness error are easy to construct.
For example, to batch verify k instances of an NP language, the verifier can pick a
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single instance at random and ask for a witness. This naive protocol has soundness
error (1 − 1/k). If we could amplify to constant soudnness without paying a factor
of k overhead, we’d get a new NP batching result! Similarly, a naive interactive
proof for bounded-space computations can be obtained by repeatedly sending the
intermediate state of the (current) computation and recursing randomly on the first
or the second half (as chosen by the verifier). The communication is only (S . log T )

and the soundness error is (1 − 1/T ).

24.2 Preliminaries
We note that parts of this section are reproduced from Goldwasser et al. [2015] and
Reingold et al. [2016]. Parts of Section 24.3 are reproduced from Goldwasser et al.
[2015], and parts of Section 24.4 are reproduced from Reingold et al. [2016].

24.2.1 Interactive Proofs
An interactive protocol consists of a pair (P , V) of interactive Turing machines
that are run on a common input x, whose length we denote by n = |x|. The first
machine, which is deterministic, is called the prover and is denoted by P, and the
second machine, which is probabilistic, is called the verifier and is denoted by V. An
execution of the protocol is divided into rounds, where in each round first P sends a
message to V and then V sends a message to P. At the end of the interaction V runs
a (deterministic) Turing machine on the communication transcript, the input, and
its random coins, and generates an output.

Definition 24.1 (Interactive proof [Goldwasser et al. 1989]) An interactive protocol (P , V) (as
above) is an interactive proof (IP) for L if:

Completeness. For every x ∈ L, when V interacts with P on common input x,
the verifier V accepts with probability 1.7

ε-Soundness. For every x ∈ L and every (computationally unbounded) cheat-
ing prover strategy P̃, the verifier V accepts when interacting with P̃ with
probability at most ε(|x|), where ε = ε(n) is called the soundness error of the
proof system. If we do not explicitly note otherwise, the soundness error is
taken to be a small constant, say 1/2 (the soundness error can be reduced by
sequential or parallel repetition).

7. One could allow an error also in the completeness condition. For simplicity, and since all our
protocols do not have such an error, we require perfect completeness.
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An interactive protocol is public-coin if each message sent by the verifier is a
uniformly distributed random string, and at the end of the protocol, V decides
whether to accept or reject as a function of x and the messages it sent (there is no
secret randomness).

24.2.2 Polynomials and Low-Degree Extensions
In this section we recall some important facts on multivariate polynomials over
finite fields.Throughout this survey we consider fields in which operations can be
implemented efficiently (i.e., in polylogarithmic time in the field size). A basic fact,
captured by the Schwartz–Zippel lemma is that low degree polynomials cannot have
too many roots.

Lemma 24.1 (Schwartz–Zippel lemma) Let P : Fm → F be a nonzero polynomial of total de-
gree d. Then

Pr
r∈Fm

[P(r) = 0] ≤ d

|F| .

An immediate corollary of the Schwartz–Zippel lemma is that two distinct poly-
nomials P , Q : Fm → F of total degree d may agree on at most a d

|F| -fraction of their
domain Fm.

Low-Degree Extension. Let H be a finite field and F ⊇ H a field that contains H.
Fix an integer m ∈ N. A basic fact is that for every function φ : Hm → F, there exists
a unique extension of φ into a function φ̂ : Fm → F (which agrees with φ on Hm;
i.e., φ̂|Hm ≡ φ), such that φ̂ is an m-variate polynomial of individual degree at most
|H| − 1. Moreover, there exists a 2m-variate polynomial β̂ : Fm × Fm → F that has
degree |H| − 1 in each variable, and for every function φ : Hm → F it holds that

φ̂(z1, . . . , zm) =
∑

x∈Hm

β̃(x , z) . φ(x). (24.1)

The function β̃ can be evaluated in time poly(|H|, m, log(|F|)) (see, e.g., Proposition
3.2.1 in Rothblum [2009]). The function φ̂ is called the low-degree extension of φ

(with respect to F, H and m).

24.2.3 The Sum-Check Protocol
Fix a finite field F and a subset H ⊆ F. In a sum-check protocol, a (not necessarily
efficient) prover takes as input an m-variate polynomial f : Fm → F of degree ≤ d in
each variable (think of d as significantly smaller than |F|). His goal is to convince a
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verifier that ∑
z∈Hm

f (z) = β ,

for some constant β ∈ F known to both of them. The verifier only has oracle access
to f , and is given the constant β ∈ F. He is required to be efficient in both its
running time and its number of oracle queries. See the exposition in Rothblum
[2009, Section 3.2.3]. We denote this protocol (as described in Rothblum [2009]) by(
PSC(f ), V

f
SC(β)

)
.

Theorem 24.3 Let f : Fm → F be an m-variate polynomial of degree at most d in each variable,

where d < |F|. The sum-check protocol
(
PSC(f ), V

f
SC(β)

)
satisfies the following

properties.

. Completeness: If
∑

z∈Hm f (z) = β, then

Pr
[(

PSC(f ), V
f

SC(β)
)
= 1
]
= 1.

. Soundness: If
∑

z∈Hm f (z) = β, then for every (unbounded) interactive Turing
machine P̃ ,

Pr
[(

P̃ (f ), V
f

SC(β)
)
= 1
]
≤ md

|F| .

. Complexity: PSC(f ) is an interactive Turing machine, and V
f

SC(β) is a prob-
abilistic interactive Turing machine with oracle access to f : Fm → F. The
prover PSC(f ) runs in time poly(|F|m).8 The verifier V

f
SC(β) runs in time m .

d . polylog(|F|), and queries the oracle f at a single point. The number of
rounds is O(m), the communication complexity is O(m . d . log(|F|)), and
the total number of bits sent from the verifier to the prover is O(m . log |F|).
Moreover, this protocol is public-coin.

24.3 DEIPs for Bounded-Depth Computations
In this section we give some details about the protocol behind Theorem 24.1. In a
nutshell, our goal is to reduce the verifier’s runtime to be proportional to the depth
of the circuit C being computed, rather than its size, without increasing the prover’s

8. Here we assume the prover’s input is a description of the function f , from which f can be
computed (on any input) in time poly(|Fm|).
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runtime by too much. Toward this, let C be a depth d arithmetic circuit; that is, the
circuit C is composed of addition and multiplication gates with fan-in 2 (say, over
the field GF[2]). Assume, without loss of generality, that the circuit is in a layered
form, where there are as many layers as the depth of the circuit.9

The interactive protocol closely follows the (parallelized) computation of C, layer
by layer, from the output layer to the input layer, numbering the layers in increasing
order from the top (output) of the circuit to the bottom (input) of the circuit.10 For
each of the circuit layers, the prover computes the low-degree extension (see Section
24.2.2) of the values in that layer’s gates. The claim being made by the prover, about
the value of the circuit’s output gate, is, in particular, also a claim about the value
of the output layer’s low-degree extension at a particular point. The protocol will
“reduce” this claim to claims about the low-degree extensions of lower and lower
layers in the circuit (i.e., layers closer to the input layer). Indeed, the claims will
be about the values of these low-degree extensions at a single specific point. This
culminates in a claim about the value of the low-degree extension of the input layer
at a single point. The verifier can check this claim on its own in near-linear time.

An immediate difficulty with this idea is that the verifier cannot compute points
in the low-degree extension (of the computation on x) in an intermediate layer i:
This is the low-degree extension of the vector of values that the gates in the circuit’s
ith layer take on input x, and to compute it one needs to actually evaluate C, which
we want to avoid! Thus, the value of the point in the low-degree extension of the
ith layer will instead be supplied by the prover. Of course, the prover may cheat.
Thus, each phase of the protocol lets the verifier reduce verification of a single point
in the low-degree extension of an advanced layer in the parallel computation to
verification of a single point in the low-degree extension of the previous layer. This
process is repeated iteratively (for as many layers as the circuit has), until at the
end the verification has been reduced to verifying a single point in the low-degree
extension of the lowest circuit layer. As noted above, this lowest layer is simply the
input layer, and the verifier can compute the low-degree extension of the input x

on its own in nearly linear time.

Going from Layer to Layer. Given the foregoing outline, the main remaining chal-
lenge is reducing verification of a single point in the low degree extension of an ith

9. Every circuit can be converted into this format, without increasing its depth. The size is at most
squared and space uniformity is preserved up to constant factors.

10. That is, layer 0 is the output layer, and layer d is the input layer.
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layer in the circuit, to verification of a single point in the low-degree extension of
the previous—that is, the (i + 1)th—layer.

The main ingredient used to achieve this is a sum-check protocol (see Section
24.2.3) applied to the gates of layer i. We observe that every point in the low-degree
extension (LDE) of layer i is a linear combination, or a weighted sum, of the values
of that layer’s gates. Each gate in layer i is a function of the values of two gates in
layer i + 1 (because we assumed that C is a layered circuit with fan-in 2). Thus, we
can express the value of each point in the LDE of layer i as a weighted sum, over
all gates g in layer i, and over all possible gate pairs (k , �) in layer (i + 1), of a low-
degree function of (i) the values of gates k and �, and (ii) a predicate that indicates
whether gates k and � are indeed the “children” of gate g. Arithmetizing this entire
sum of sums, we run a sum-check protocol to verify the value of one point in the
low-degree extension of layer i.

To simplify matters, we assume for now that the verifier has access to (a low-
degree extension of) the predicate that says whether a pair of gates (k , �) are the
children of gate g. Then (modulo many details) at the end of this sum-check proto-
col the verifier only needs to verify the values of a pair of points in the LDE of layer
(i + 1). This is still not enough, as we need to reduce the verification of a single
point in the LDE of layer i to the verification of a single point in layer (i + 1) and
not of a pair of points. Thus, we use an interactive protocol to reduce verifying two
points in the LDE of layer (i + 1) to verifying just one.

We note that rather than assuming that the verifier has access to the low degree
extension of the predicate describing the “wiring” of circuit gates, it suffices for
the verifier to have access to any function that agrees with this predicate on inputs
that correspond to circuit gates, so long as the function has bounded degree when
viewed as a polynomial over a larger field. Thus, the (central) remaining question
is how the verifier gains access to such an extension of the predicates that decide
whether circuit gates are connected, without looking at the entire circuit (as the
circuit itself is much larger than the verifier’s running time). This is where we use
the uniformity of the circuit (see below).

The verifier’s running time in each of these phases is polylogarithmic in the
circuit size. In the final phase, computing one point in the low-degree extension
of the input requires only nearly linear time, independent of the rest of the circuit.
Another important point is that the verifier does not need to remember anything
about earlier phases of the verification, at any point in time, it only needs to
remember what is being verified about a certain point in the computation. This
results in very space-efficient verifiers. The savings in the prover’s running time
comes (intuitively) from the fact that the prover does not need to arithmetize the
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entire computation, but rather proves statements about one (parallel) computation
step at a time.

Utilizing Uniformity. It remains to show how the verifier can compute (a low-degree
extension of) a predicate that decides whether circuit gates are connected, without
looking at the entire circuit.

To do this, we proceed in two steps. First, we examine low-space computations—
for example, uniform log-space Turing machines (deterministic or nondeterminis-
tic). A log-space machine can be transformed into an ensemble of Boolean circuits
with polylogarithmic depth and polynomial size. We show that in this family of cir-
cuits, it is possible to compute the predicate that decides whether circuit gates are
connected in polylogarithmic time and constant depth. This computation can it-
self be arithmetized, which allows the verifier to compute a low-degree extension of
the predicate (a low-degree function that agrees with the predicate on inputs cor-
responding to circuit gates) in polylogarithmic time. Thus we obtain an interactive
proof with an efficient prover and super-efficient verifier for any L or NL computa-
tion. The number of rounds in this protocol is polylogarithmic.

Still, the result above took advantage of the (strong) uniformity of very spe-
cific circuits that are constructed from log-space Turing machines. We want to
give interactive proofs for general log-space uniform circuits, and not only for log-
space languages. How then can a verifier compute even the predicate that decides
whether circuit gates in a log-space uniform circuit are connected (let alone its
low degree extension)? In general, computing this predicate might require nearly
as much time as evaluating the entire circuit. We overcome this obstacle by ob-
serving that the verifier does not have to compute this predicate on its own: It
can ask the prover to compute the predicate for it! Of course, the prover may
cheat, but the verifier can use the above interactive proof for log-space compu-
tations to force the prover to prove that it computed the (low-degree extensions
of) the predicate correctly. This final protocol gives an interactive proof for gen-
eral log-space uniform circuits with low depth. We note that in more recent work,
Goldreich [2018, Chapter 3] employs a different approach, and directly shows
how to convert any logspace-uniform circuit ensemble into an ensemble where
the circuits’ “wiring predicates” can be computed in polylogarithmic time and
degree.

Organization. We proceed to elaborate on the main step of the protocol: reducing
the verification of coordinates in layer i to layer i + 1, where we assume access
to an extension for the circuit wiring predicates with sufficiently low degree. We
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refer to this version as the bare-bones protocol. The curious reader is directed to
Goldwasser et al. [2015] or the survey by Goldreich [2018, Section 3.3] for the full
details of how the wiring predicates are implemented.

We begin with preliminaries and notations in Section 24.3.1, the protocol is in
Section 24.3.2, and a proof of its soundness is in Section 24.3.3.

24.3.1 Setup and Notation
Parameters. Fix any circuit C : {0, 1}n → {0, 1}. We assume the circuit is layered
(see below). We denote the maximal width of any layer by S, and the circuit depth
by d ≤ S. Let H be an extension field of GF[2] such that

max{d , log(S)} ≤ |H| ≤ poly(d , log(S)),

and let F be an extension field of H, where

|F| ≤ poly(|H|).

Let m be an integer such that

S ≤ |H|m ≤ poly(S).

We associate the integers {0, . . . , S − 1} with the elements in Hm in a natural (easy-
to-compute) way. Finally, let δ ∈ N be a (degree) parameter such that

|H| − 1 ≤ δ < |F|.
Assumptions and Notation. Note that any Boolean circuit C : {0, 1}n →{0, 1} can be
converted into an arithmetic circuit C : Fn → F over the field F, while increasing
the size and the depth of the circuit by at most a constant factor. Note that any
arithmetic circuit can be converted into a layered arithmetic circuit of fan-in 2,
while increasing the size of the circuit by at most a polynomial factor and increasing
the depth of the circuit by at most a factor of O(log(S)). We assume for simplicity
that the circuit C : Fn → F is a layered arithmetic circuit of fan-in 2 (over the gates
× and + and over the field F) as follows.

A depth-d layered circuit is one where the gates are divided into (d + 1) layers.
We think of the 0th layer as the output layer (comprised of the output gate), and of
the dth layer as the input layer (composed of the input gates). For a layered circuit,
wires can only connect gates in adjacent layers; that is, the output wire of a gate in
layer i can only be the input wire for a gate in layer (i − 1).

For simplicity of notation, we also assume that all the layers in C are of the same
size, and we assume that the size of each layer is S. We note that any circuit (of size S)
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can be transformed into one with exactly S gates in each level, by adding at most
S dummy gates (that are the constant zero) to each layer. This increases the size of
the circuit by at most a quadratic factor (and does not increase its depth).

Wiring Predicates. For each 0 ≤ i ≤ d, we denote the S gates in the ith layer of C by
(gi , 0, gi , 1, . . . , gi ,S−1). For each i ∈ [d], we associate with C two functions

addi , multi : {0, 1, . . . , S − 1}3 → {0, 1},

defined by

addi(j1, j2, j3) =
{

1 if gi−1,j1
= gi ,j2

+ gi ,j3

0 otherwise
(24.2)

and

multi(j1, j2, j3) =
{

1 if gi−1,j1
= gi ,j2

× gi ,j3

0 otherwise
(24.3)

We say that the functions {addi , multi}i∈[d] specify the circuit C, and we sometimes
refer to these as the circuit’s wiring predicates.

Extensions of Wiring Predicates. For each i ∈ [d], let

ãddi , m̃ulti : F3m → F

be multivariate polynomials of degree at most δ in each variable that extend the
functions addi and multi, respectively. Namely, the functions ãddi and m̃ulti satisfy
that for every z1, z2, z3 ∈ Hm,

ãddi(z1, z2, z3) = addi(z1, z2, z3)

and

m̃ulti(z1, z2, z3) = multi(z1, z2, z3),

where we associate the indices in {0, . . . , S − 1} with the elements in Hm in the
natural way.

An Important Note. The fact that such functions ãddi and m̃ulti exist follows from
the fact that δ ≥ |H| − 1. In particular, ãddi (respectively m̃ulti) could be the low
degree extension of addi (respectively multi), though we will sometimes take them
to be different extensions (of slightly higher degree).

We say that the functions {ãddi , m̃ulti}i∈[d] are extensions of the functions that
specify the circuit C, or extensions of the wiring predicates. Note that unlike the
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functions {addi , multi}i∈[d] that specify C, the extensions {ãddi , m̃ulti}i∈[d] are not
uniquely determined by the circuit C. For δ > |H| − 1 there are many possible
extensions of the functions that specify the circuit C, and {ãddi , m̃ulti}i∈[d] are some
such extensions. We will specify {ãddi , m̃ulti} separately in each implementation
of the bare-bones protocol.

Oracle for the Bare-Bones Protocol. We are now ready to specify the oracle F ac-
cessed by the prover and verifier in the bare-bones protocol. This oracle consists of
the collection of functions {ãddi , m̃ulti}i∈[d]:

F = {ãddi , m̃ulti}i∈[d],

where the prover and verifier can access ãddi or m̃ulti by querying F with the proper
i, a bit specifying ãdd or m̃ult, and an input in (Fm)3.

Circuit Value Vector. For each 0 ≤ i ≤ d we associate a vector vi = (vi , 0, . . . , vi ,S−1) ∈
FS with the ith layer of the circuit C. The vector v0 is associated with the output
layer of the circuit, and the vector vd is associated with the input layer of the circuit.
These vectors are functions of the input x = (x1, . . . , xn) ∈ Fn and are defined as
follows: For each 0 ≤ i ≤ d we let vi be the vector that consists of the values of
all the gates in the ith layer of the computation of the circuit on input x. So, the
vector v0, which corresponds to the output layer, satisfies v0 = (C(x), 0, . . . , 0) ∈
FS. Similarly, the vector vd , which corresponds to the input layer, satisfies vd =
(x1, . . . , xn, 0, . . . , 0) ∈ FS.

For each 0 ≤ i ≤ d, let

Ṽi : Fm → F

be the low-degree extension of vi (with respect to H, F, m). The function Ṽi is of
degree at most |H| − 1 in each of its m variables and can be computed in time
poly(|F|m) = poly(S) (see Section 24.2.2).

24.3.2 The “Bare-Bones” Protocol
In this subsection, we present the bare-bones protocol (P1, V1) for efficiently veri-
fying that C(x) = 0. In this protocol we give both the verifier V1 and the prover P1

oracle access to the set of functions

F = {ãddi , m̃ulti}i∈[d],
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as defined in Subsection 24.3.1.11 The prover and verifier also take as input the
string x ∈ {0, 1}n.

Protocol Overview. The prover wants to prove that C(x) = 0, or equivalently, that
Ṽ0(0, . . . , 0)= 0. This is done in d phases (where d is the depth of C). In the ith phase
(1 ≤ i ≤ d), the prover reduces the task of proving that Ṽi−1(zi−1) = ri−1 to the task
of proving that Ṽi(zi) = ri, where zi and ri are values determined by the protocol
(initially z0 = (0, . . . , 0) and r0 = 0). Finally, after the dth phase, the verifier checks
on his own whether Ṽd(zd) = rd . Note that Ṽd is the low-degree extension of the input
x ∈ {0, 1}n (we view x as a vector of length S by padding it with 0’s). Computing a
single point in the low-degree extension of x can be done in quasi-linear time in
the input length (i.e., in time Õ(|x|)). This is the “heaviest” computation run by the
verifier. Moreover, if the verifier is given oracle access to the low-degree extension
of x, then this only requires a single oracle call.

The Bare-Bones Protocol.

Parameters. We use the parameters defined in Subsection 24.3.1: circuit size S,
circuit depth d, input size n, where n, d ≤ S. We also defined there the fields
H, F, integers m, m′, and a degree parameter δ. The layered arithmetic circuit
C : Fn → F is of fan-in 2 (over the gates + and ×), of size S, and of depth d.

Input. The prover and the verifier take as input a string x ∈ Fn, and are both
given oracle access to a set of functions F = {ãddi , m̃ulti}i∈[d] corresponding
to C (as defined in Subsection 24.3.1), where each function in F is of degree
at most δ in each variable.

The protocol. (PF
1 (x), VF

1 (x)) The prover needs to prove that C(x) = 0, or equiv-
alently, that Ṽ0(0, . . . , 0) = 0. This is done in d phases (where d is the depth
of C). In the ith phase (1 ≤ i ≤ d) the prover reduces the task of proving that
Ṽi−1(zi−1) = ri−1 to the task of proving that Ṽi(zi) = ri, where zi and ri are val-
ues determined by the protocol (initially z0 = (0, . . . , 0) and r0 = 0). Finally,
after the dth phase, the verifier checks on his own that Ṽd(zd) = rd .

In what follows we describe these phases in more detail. In each phase,
the communication complexity is poly(d , log S), the running time of the
prover is at most poly(S), and the running time of the verifier is poly(d , log S).

11. We note that the functions in F could have been given to the prover P1 as input (say, via their
truth tables). We decided to give P1 oracle access to these functions only for the sake of simplicity of
the exposition. Note also that given oracle access to these functions, the prover P1 can reconstruct
the circuit C in time O(|C|).
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The ith Phase (1 ≤ i ≤ d − 1). In this phase, we reduce the task of proving that

Ṽi−1(zi−1) = ri−1

to the task of proving that

Ṽi(zi) = ri ,

where zi ∈ Fm is a random value determined by the verifier and ri is a value deter-
mined by the protocol. By Equation (24.1) in Section 24.2.2, for every z ∈ Fm,

Ṽi−1(z) =
∑

p∈Hm

β̃(z, p) . Ṽi−1(p),

where β̃ : Fm × Fm → F is a polynomial of size poly(|H|, m) and of degree at most
|H| − 1 in each variable, that can be computed by a Turing machine that runs in
time ≤ poly(|H|, m).

Notice that for every p ∈ Hm,

Ṽi−1(p) =
∑

ω1,ω2∈Hm

ãddi(p, ω1, ω2) .
(
Ṽi(ω1) + Ṽi(ω2)

)
+ m̃ulti(p, ω1, ω2) . Ṽi(ω1) . Ṽi(ω2).

Thus, for every z ∈ Fm,

Ṽi−1(z) =
∑

p ,ω1,ω2∈Hm

β̃(z, p) .
(

ãddi(p, ω1, ω2) .
(
Ṽi(ω1) + Ṽi(ω2)

)
+ m̃ulti(p, ω1, ω2) . Ṽi(ω1) . Ṽi(ω2)

)
.

For every z ∈ Fm, let fz : (Fm)3 → F be the function defined by

fz(p, ω1, ω2)
def= β̃(z, p) .

(
ãddi(p, ω1, ω2) .

(
Ṽi(ω1) + Ṽi(ω2)

)
+ m̃ulti(p, ω1, ω2)

. Ṽi (ω1) . Ṽi(ω2)
)

.

Equation (24.1), together with the definitions of ãddi, m̃ulti, and Ṽi, implies that
the function fz is a 3m-variate polynomial of degree at most δ + |H| − 1≤ 2δ in each
variable, and can be computed in time of size poly(S). Note that, for every z ∈ Fm,

Ṽi−1(z) =
∑

p ,ω1,ω2∈Hm

fz(p, ω1, ω2).
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Thus proving that Ṽi−1(zi−1) = ri−1 is equivalent to proving that

ri−1 =
∑

p ,ω1,ω2∈Hm

fzi−1
(p, ω1, ω2).

This is done by running the interactive sum-check protocol (see Section 24.2.3).12

However, in order to carry out the verification task, the verifier needs to compute
on his own the function fzi−1

(p, ω1, ω2), on random inputs p, ω1, ω2 ∈R Fm (chosen

by the verifier). Recall that the verifier has oracle access to the functions ãddi and
m̃ulti. Moreover, computing the function β̃ requires time poly(|H|, m) = polylog(S)

(see Section 24.2.2). The main computational burden in this verification task is
computing Ṽi(ω1) and Ṽi(ω2), which requires time poly(S) (and thus cannot be
computed by our computationally bounded verifier).

In the protocol, the prover P1 now sends both these values, Ṽi(ω1) and Ṽi(ω2),
to the verifier. The verifier V1 (who knows ω1 and ω2) receives two values v1, v2 and
wants to verify that Ṽi(ω1) = v1 and Ṽi(ω2) = v2.

Thus, so far, using the sum-check protocol, we reduced task of proving that
Ṽi−1(zi−1) = ri−1 to the task of proving that both Ṽi(ω1) = v1 and Ṽi(ω2) = v2. How-
ever, recall that our goal was to reduce the task of proving that Ṽi−1(zi−1) = ri−1

to the task of proving a single equality of the form Ṽi(zi) = ri . Therefore, what re-
mains (in the ith phase) is to reduce the task of proving two equalities of the form
Ṽi(ω1) = v1 and Ṽi(ω2) = v2 to the task of proving a single equality of the form
Ṽi(zi) = ri. This is done via the following (standard) interactive process.

1. Let t1, t2 ∈ F be two distinct fixed elements known to the prover P1 and the
verifier V1. Let γ : F → Fm be the unique line (i.e., polynomial of degree
at most 1) such that γ (ti) = ωi for i ∈ {1, 2}. It is well known that for any
t1, t2, ω1, ω2, the conditions γ (ti) = ωi determine γ uniquely, and that γ can
be computed (by both P1 and V1) in time poly(|F|, m) and space O(log(|F|) .

m).

2. The prover P1 sends the function Ṽi ◦ γ : F → F to the verifier V1. Note that
this is a univariate polynomial of degree at most m . (|H| − 1), since Ṽi is an
m-variate polynomial of individual degree |H| − 1.

3. Upon receiving a function f : F → F from the prover (supposedly, f = Ṽi ◦ γ ),
the verifier V1 checks that f is a polynomial of degree at most m . (|H| − 1),

12. Note that in the interactive sum-check protocol the prover takes the function fz as input,
whereas our prover P1 does not take fz as input. This is not a problem since P1 can compute
the function fz (as a polynomial or as a truth table) using its oracles, in time poly(S).
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and that f (t1) = v1 and f (t2) = v2. If these tests pass, then V1 chooses a
random element t ∈ F and sends it to P1.

4. The prover and verifier continue to Phase i + 1 with zi
def= γ (t) and ri

def= f (t).

The Final Verification. After the last (i.e. d-th) verification phase, the verifier V1

needs to verify on its own that Ṽd(zd) = rd . This amounts to computing a single
point in the low-degree extension of the input x (Ṽd is the low degree extension of
the input, padded with 0’s). As noted above, this can be done in quasi-linear time
in the input length n: e.g., see Rothblum [2009, Claim 3.2.2].

24.3.3 Analysis of the Bare-Bones Protocol
Completeness. The perfect completeness follows immediately from the protocol
description, as well as the perfect completeness of the sum-check protocol (see
Theorem 24.3).

Soundness. For the soundness condition, fix any layered arithmetic circuit C :
Fn → F, any x ∈ Fn such that C(x) = 0, and any set of functions F that are low-degree
extensions of the functions that specify the circuit C (as defined in Section 24.3.1).
Assume that there exists a cheating prover P∗ such that

Pr
[
(P∗F

(x), VF
1 (x)) = 1

]
= s .

Recall that the protocol (PF
1 (x), VF

1 (x)) consists of d phases. Each phase consists
of a sum-check protocol and an additional short interactive protocol. According
to our notation, the sum-check protocol requires the values of Ṽi(w1) and Ṽi(w2)

for verification, and the additional interactive protocol reduces the verification of
Ṽi(w1) = v1 and Ṽi(w2) = v2 to the verification of a single equality Ṽi(zi) = ri.

For every 0 ≤ i ≤ d, let Ti denote the event that indeed Ṽi(zi) = ri. Thus, assuming
C(x) = 0 is equivalent to assuming ¬T0. Notice that

s ≤ Pr[¬T0 ∧ Td] ≤ Pr[∃i ∈ [d] s.t. ¬Ti−1 ∧ Ti] ≤
d∑

i=1

Pr[¬Ti−1 ∧ Ti].

For every i ∈ [d], let Ei denote the event that indeed Ṽi(w1) = v1 and Ṽi(w2) = v2.13

Then

Pr[¬Ti−1 ∧ Ti] = Pr[¬Ti−1 ∧ Ti ∧ Ei] + Pr[¬Ti−1 ∧ Ti ∧ ¬Ei].

13. Note that (w1, v1) and (w2, v2) depend on the phase i ∈ [d]. For the sake of simplicity, this
dependence is not captured in our notation.
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The soundness property of the interactive sum-check protocol implies that

Pr[¬Ti−1 ∧ Ti ∧ Ei] ≤ Pr[¬Ti−1 ∧ Ei] ≤ 3m . 2δ

|F| = 6mδ

|F| .

The fact that any two distinct univariate degree t polynomials agree on at most t

points implies that

Pr[¬Ti−1 ∧ Ti ∧ ¬Ei] ≤ Pr[Ti ∧ ¬Ei] ≤ m(|H| − 1)

|F| ≤ mδ

|F| .

Thus,

Pr[¬Ti−1 ∧ Ti] ≤ 6mδ

|F| + mδ

|F| =
7mδ

|F| .

All in all, we get that

s ≤ 7mdδ

|F| .

Taking F such that |F| ≥ 700mdδ = poly(|H|), we get that s ≤ 1
100 as desired.

Complexity. Recall that the bare-bones protocol proceeds in d phases (where d is
the depth of C). In the ith phase (1 ≤ i ≤ d) the prover reduces the task of proving
that Ṽi−1(zi−1) = ri−1 to the task of proving that Ṽi(zi) = ri. This is done by running
a sum-check protocol and an additional short interactive protocol. Hence, the
complexity of the ith phase of the protocol is as follows:

1. The running time of the prover P1 is poly(|Fm|) = poly(S), both in the sum-
check protocol (see Theorem 24.3) and in the proceeding interactive process.

2. The running time of the verifier V1 (with oracle access to F ), both in the sum-
check protocol (see Theorem 24.3) and in the subsequent interactive process,
is d . δ . log S . polylog(|F|). So long as δ = polylog(|S|) (which is the case in
the case in the bare-bones protocol’s instantiation), we get that the verifier’s
running time in this phase of the protocol is (d . polylog S).

3. The sum-check protocol has communication complexity δ . m . polylog |F|
(see Theorem 24.3), and the proceeding interactive process has communi-
cation complexity δ . polylog(|F|). Thus, in total, each phase has communi-
cation complexity (δ . polylog S).

Moreover, the verifier V1 is public-coin, and the number of random bits
it sends to the prover P1 in each phase is O(m . log |F|). This, together with
the fact that the only information that the prover needs to “remember” for
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the next phase is the values i , zi , ri (and does not need to remember any
information from previous phases), implies that each message sent by the
prover depends only on the preceding O(m . log(|F|)) = O(log(S)) random
bits sent by the verifier.

4. In each phase, the verifier queries each ãddi and m̃ulti only at a single loca-
tion. The verifier’s queries to ãddi and m̃ulti are determined by its (public)
coin tosses in the sum-check protocol and are thus also uniformly random
(over the verifier’s coin tosses).

Finally, the verifier V1 needs to verify on his own that Ṽd(zd) = rd . This can be
done in time n . poly(|H|, m) = n . poly(d , log(S)), see the discussion at the end of
Section 24.3.2.

24.4 Constant-Round DEIPs for Bounded-Space Computation
In this section we give some details about the protocol behind Theorem 24.2. This
protocol is built iteratively: starting with proofs for short bounded-space compu-
tations, and building up protocols for increasingly long (complex) bounded-space
computations.

An Iterative Construction. Assume we have a “base” interactive proof for verifying
the computation of Turing machines that run in time T and space S. We would
like to build on this protocol to construct an “augmented” interactive proof for
verifying “longer” computations that run in time k . T and space S, where k is an
integer (much) larger than 1. The protocol behind Theorem 24.2 employs a series of
such augmentation steps iteratively, starting with trivial interactive proofs for short
computations and gradually obtaining increasingly powerful interactive proofs for
longer and longer computations.

We proceed with a discussion of the augmentation step. We begin with a base
protocol, where prover and verifier agree on a (deterministic) Turing machine M,
an input x ∈ {0, 1}n, and two configurations u, v ∈ {0, 1}S (a configuration includes
the machine’s internal state, the contents of all memory tapes, and the position
of the heads). The prover’s claim is that after running the machine M on input x,
starting at configuration u and proceeding for T steps, the resulting configuration
is v. We augment the base protocol, using it to design a new protocol for verifying
longer computations running in time k . T .

Consider an augmented claim, where u is the initial configuration, and v is the
alleged configuration after k . T steps. The prover’s first message in the augmented
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protocol is (k − 1) alleged intermediate configurations

(w̃T , w̃2T , . . . , w̃(k−1).T ),

where w̃t is the alleged configuration of the machine M after t steps (with initial
configuration u and on input x).14 Defining w̃0 = u and w̃(k.T ) = v, the k − 1 inter-
mediate configurations sent by the prover specify k “base claims” about T -step
computations: For each j ∈ [k], the prover claims that the machine M, starting
from configuration w̃(j−1).T , and running for T steps, reaches configuration w̃j .T .

In a naive augmentation, the verifier runs the base protocol k times to verify
all k base claims. This increases the communication and verification time by a
multiplicative factor of k. While the resulting augmented protocol can be used to
verify computations that are k times longer then the base protocol, it is also k times
more expensive, so we have not made any real progress.

Another naive option is picking just one (or several) of the base claims, and ver-
ifying only them. This is less expensive in communication and verification time,
but the soundness error grows prohibitively. In particular, suppose that the prover
is cheating, and the computation path of length k . T that starts at w̃0 does not end
at w̃k.T . The cheating prover can still generate a sequence (w̃T , w̃2T , . . . , w̃(k−1).T )

where all but one of the base claims are true. For example, the cheating prover could
pick j∗ ∈ [k], set the configurations (w̃T , . . . , w̃(j∗−1).T ) to be the appropriate con-
figurations on a path of length (j∗ − 1) . T that starts at w̃0 (and ends at w̃(j∗−1).T ),
and set the configurations (w̃j∗.T , . . . , w̃(k−1).T ) to be the appropriate configura-
tions on a path of length (k − j∗) . T that starts at w̃j∗.T and ends at w̃k.T . Now all of
the base claims are true, except for the j∗th (since there could be no path of length
T from w̃(j∗−1).T to w̃j∗.T ). Unless the verifier checks all (or very many) of the base
claims, it will fail to detect any cheating.

What we seek is a protocol for verifying the k base claims, but with communi-
cation and verification time that is much smaller than running the base protocol
k times, and with soundness error that is not much larger than that of the base
protocol. Also, the number of rounds should not grow too much (so that we can get
interactive proofs with a small number of rounds), and the complexity of the (hon-
est) prover should only grow by a factor of roughly k (so we can get a doubly efficient
proof system). We refer to this goal as “batch verification for interactive proofs.” We

14. Here and throughout this section we use tildes to denote potentially corrupted strings that the
verifier receives from an untrusted prover.
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emphasize that, as described above, it is crucial that if even just one of the claims
is false, the verifier should still reject.

At the heart of the proof of Theorem 24.2 is an efficient batch verification theorem
for a certain class of interactive proofs (so-called unambiguous interactive proofs;
see below). The remainder of this section is devoted to an overview of key ideas un-
derlying the batch verification theorem. We begin by considering the more modest
goal of batching the verification of UP statements (NP statements that have at most
one witness), which gives a taste of the ideas and techniques. We then briefly discuss
the additional challenges in batching (unambiguous) interactive proof systems.

Unambiguous and Probabilistically Checkable IPs. The batch verification theorem
makes use of several new notions for interactive proofs. The first notion captures
proof systems where the prover has a unique strategy to convince a verifier (simi-
larly to the unique satisfying assignment of a unique-SAT formula); the moment the
prover deviates from the prescribed strategy it will likely fail in convincing the ver-
ifier even when the statement in question is true. We call this notion an unambiguous
interactive proof . The second notion can be thought of as an interactive analogue
of PCPs. These are interactive proof systems where the verifier only reads a few bits
of the input and the transcript when checking the proof. These proofs are called
probabilistically checkable interactive proofs (PCIPs).15

24.4.1 A Warm-Up: Batching the Verification of UP Statements
To illustrate some of the ideas behind the batch verification theorem, we con-
sider the simpler challenge of designing an interactive proof system for batching
the verification of UP statements. Recall that the complexity class UP (unambigu-
ous nondeterministic polynomial time) is the subclass of NP problems where the
nondeterministic Turing machine has at most one accepting path. That is, for a
language L ∈ UP, and an input x ∈ L, there is exactly one witness to x’s member-
ship (and for x ∈ L there are no witnesses). Batching the verification of general NP

statements is a fascinating open question.16

Consider a UP language L, with witnesses of length m = m(|x|). Our goal is to
design an interactive proof (P IP, V IP) where, given k inputs x1, . . . , xk, the verifier

15. A notion that is equivalent to PCIPs, called “Interactive Oracle Proofs,” was independently
introduced in work of Ben-Sasson et al. [2016c] (see also Ben-Sasson et al. [2016b], Ben-Sasson
et al. [2016a]). See Reingold et al. [2016] for further discussion of the relationship between the two
works.

16. We note that we do not see a way to deduce a similar theorem for general NP statements by
applying the Valiant-Vazirani randomized reduction from NP to UP [Valiant and Vazirani 1986].
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accepts only if ∀j ∈ [k], xj ∈ L (otherwise the verifier rejects with high probability).
We also want the prover strategy to be efficient: The (honest) prover should run
in polynomial time given witnesses to the inputs’ membership in L. A sound
but naive protocol is for the prover P IP to send all k witnesses w1, . . . , wk, and
for the verifier V IP to verify every pair (xj , wj). This protocol is sound (indeed, it
is an interactive proof system with soundness error 0), but it is very expensive,
requiring communication k . m (and k witness verifications). Our goal is to batch the
verification of these k UP statements via an interactive proof with communication
(and verification time) that is (much) smaller than k . m. In what follows we show
an interactive proof with communication (polylog(k , n) . (k + poly(m))).

Theorem 24.4 (Batch verification theorem for UP) Let L be a language in UP with witnesses
of length m = m(n) = poly(n), and take k = k(n) ≥ 1. Then, there is an interactive
proof that, on input (x1, . . . , xk) ∈ {0, 1}k.n, verifies that for every j ∈ [k], xj ∈ L, with
perfect completeness, soundness 1/2, and the following complexities:

. The communication complexity is polylog(k , n) . (k + poly(m)).

. The number of rounds is polylog(k).

. The running time of the verifier is polylog(k , n) . ((k . n) + poly(m)).

. The (honest) prover, given witnesses (w1, . . . , wk) ∈ {0, 1}k.m for the inputs’
membership in L, runs in time poly(k , n).

The remainder of this section is devoted to a proof sketch for Theorem 24.4. We
note that Reingold, Rothblum, and Rothblum [Reingold et al. 2018] construct an
improved protocol, where for any desired constant δ > 0, the batched communica-
tion complexity is kδ . poly(m) and the number of rounds is constant.

A Tantalizing (but Flawed) Protocol. We begin by considering a (flawed) attempt to
use PCPs in the design of a sound protocol. For this, assume that the language
L ∈ UP has a PCP proof system with proofs of length a = a(n) = poly(m), and a
verifier VPCP who makes at most q = q(n) = O(polylog(a(n))) queries. We assume
that the PCP verifier is nonadaptive, and its queries depend only on its random
coins (as is the case for standard constructions). As L ∈ UP, we can assume that for
each x ∈ L, there is a unique PCP string α ∈ {0, 1}a that makes the verifier accept
(on input x) with probability 1.17 We note that this is the main reason we need

17. In fact, we can allow more than one PCP string that makes the verifier accept with probability 1.
All that we require is that there exist a unique such PCP string α, where given x and a candidate PCP
α′ ∈ {0, 1}a, we can test in polynomial time whether α = α′. This property is satisfied by standard



676 Chapter 24 Doubly Efficient Interactive Proofs

L to be a UP language (rather than any language in NP). Using a PCP with the
above properties, we wish to design an interactive proof (P IP, V IP) for verifying that
∀j ∈ [k], xj ∈ L.

Consider the following tantalizing (but insecure) protocol. The verifier V IP runs
VPCP to generate k sets of PCP queries for verifying each of the k statements. By the
above assumption regarding VPCP, our verifier V IP can use the same random coins
for verifying all k statements, and they will issue the same set S ⊂ [a] of queries.
Now V IP sends the query set S to the untrusted prover, receives answers for each
of the k PCPs, and accepts if and only if for every j ∈ [k], the answers provided
for the j th PCP make VPCP accept on input xj . This requires roughly O(k . q) =
O(k . polylog(a)) communication, but it does not guarantee any soundness. The
problem is that a cheating prover in the interactive proof setting is completely
adaptive and can tailor its responses to VPCP’s queries in an arbitrary manner. Even
if xj∗ ∈ L, after the cheating (interactive proof) prover sees the queries made by
VPCP, it can tailor answers that make VPCP accept. The PCP’s soundness is only
guaranteed if the entire proof string is fixed in advance, before the PCP verifier’s
queries are made.

Toward Sound Batching. Building on the “tantalizing protocol,” we now present
our first attempt for a sound batch verification protocol. We assume that the honest
prover P IP is given as input k witnesses, from which it can construct k PCP proofs,
where αj ∈ {0, 1}a is a PCP for the j th statement xj . The protocol proceeds as
follows:

1. P IP constructs a k × a matrix A whose rows are the PCP proofs for the k

statements:

A =

⎛⎜⎜⎜⎜⎝
α1

α2

. . .

αk

⎞⎟⎟⎟⎟⎠ .

PCP constructions (applied to UP statements), and it comes for free when there is a single fully
correct α (as above), so long as q is a constant. We mention that Goldreich and Sudan [2006,
Definition 5.6] studied a stronger notion of PCPs, called strong PCPs, in which the rejection
probability of the PCP verifier needs to be proportional to the distance of the given PCP from
the prescribed PCP.
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P IP computes the parity of A’s columns and sends these parities to the
verifier. We view this vector of parities (one per column of A) as a “checksum”
chksum =⊕j∈[k] αj .

2. V IP receives a vector ˜chksum ∈ {0, 1}a. It proceeds to choose a single set of
random coins for the PCP verifier VPCP. These coins specify a set S ⊆ [a] of
q queries to the k (alleged) PCPs, and V IP sends S to P IP. (Recall that we
assume that the PCP verifier’s queries are nonadaptive, and depend only on
its random coins.)

3. P IP receives the set S of coordinates, and for every j ∈ [k] it sends back the
values of the j th PCP (the j th row), restricted to the q entries in S. We view
the answers for the j th row as an assignment φj : S → {0, 1}.

4. The verifier V IP runs two tests (and accepts only if they both pass):

(a) PCP check. For every j ∈ [k], the prover’s PCP answers {φj(ξ)}ξ∈S

make VPCP accept the input xj (the same random string, chosen
above, is used for all k PCP verifications).

(b) Consistency check. For every query ξ ∈ S, the ξ th bit of ˜chksum indeed
equals the parity of the values claimed for the ξ th column of A.
That is,

∀ξ ∈ S : ˜chksum[ξ ] =
⊕
j∈[k]

φj(ξ).

This batch verification protocol is quite efficient: The communication complex-
ity is only a + O(k . q) bits, a considerable savings over the naive sound protocol that
required k . a bits. The verifier V IP runs in time O(a + k . |VPCP|), where |VPCP| is the
running time of the PCP verifier. The (honest) prover’s running time is k . poly(m) to
construct the k PCPs (from the witnesses), and (given these PCPs) the running time
to compute its protocol messages is O(k . a). There are three messages exchanged.

Soundness for Single Deviations. The question, of course, is whether the protocol is
sound (completeness follows by construction). Unfortunately, the protocol is not
sound in general.18 However, it is sound against an interesting class of cheating

18. Consider inputs x1, . . . , xk−2 ∈ L and xk−1 = xk = x∗ for some x∗ ∈ L. Consider a cheat-

ing prover that generates the correct PCPs α1, . . . , αk−2 for x1, . . . , xk−2, and sends ˜chksum =⊕
j∈[k−2] αj to the verifier (i.e., the checksum excludes the last two inputs). Once the verifier

sends PCP queries S, the prover answers honestly on all but the last two rows. For the latter two
rows, it finds some assignment φ̃ : S → {0, 1} that satisfies the PCP verifier with respect to input
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provers, which we call single-deviation provers. For this, we focus on proving sound-
ness when there is only a single j∗ ∈ [k] s.t. xj∗ ∈ L. In Step 3 (answering the PCP

queries), we restrict the cheating prover P̃ as follows. For every j = j∗, P̃ knows the
unique “correct” PCP αj ∈ {0, 1}a (see above) that makes the verifier VPCP accept the
input xj with probability 1 (note that αj , being the unique correct PCP, is fixed in
advance before the protocol begins). In Step 3 of the protocol, P̃ answers all queries
to the j th PCP (for j = j∗) according to αj . We emphasize that P̃ is unrestricted in

Step 1, it can send an arbitrary ˜chksum, and it can send arbitrary and adaptive an-
swers to the j∗th PCP in Step 3 (after seeing the query set S). In particular, the
tantalizing protocol is completely insecure even against single-deviation cheating
provers.

We show that the protocol described above is sound against single-deviation
cheating provers. Suppose that a cheating single-deviation prover P̃ makes the
verifier accept with probability ε. We use P̃ to construct a fixed proof α̃j∗ that makes
the PCP verifier accept the input xj∗ ∈ L with probability ε, and conclude that the

interactive proof protocol is sound. We derive α̃j∗ from the checksum value ˜chksum
sent by P̃ in Step 1 (without loss of generality the cheating prover is deterministic
and its first message is fixed) by using

α̃j∗ = ˜chksum ⊕
⎛⎝⊕

j =j∗
αj

⎞⎠ .

We claim that on input xj∗ the PCP verifier VPCP will accept α̃j∗ with probability ε. To
see this, recall that P̃ answers all queries to rows j = j∗ according to αj . Whenever
P̃ makes V IP accept, it must pass the consistency check in Step 4(b), and thus it
must answer the queries to the j∗th PCP according to α̃j∗. Since it also needs to
pass the PCP check in Step 4(a), we conclude that whenever P̃ makes V IP accept, it
must also be the case that the PCP answers α̃j∗|S make the PCP verifier VPCP accept
on input xj∗.

Implicit Commitments and Soundness for d Deviations. Reflecting on the soundness

of the above protocol, observe that ˜chksum implicitly commits a single-deviation
prover to the PCP string α̃j∗ for xj∗ ∈ L. Once the prover is committed, soundness

of the protocol naturally follows from the soundness of the PCP. Of course, ˜chksum
is much too short to include an explicit commitment to the k PCP strings (for the k

x∗ and queries S (this is easy to do given S), and sends φ̃ as the answer to the PCP queries for rows
k − 1 and k. The two φ̃’s cancel out and so the consistency check passes and the verifier accepts.
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inputs xj ). Thus, we should not expect soundness against general provers (indeed, it
is not clear how to leverage the PCP’s soundness against general adaptive provers).
Nevertheless, it is not hard to generalize the above protocol to handle d deviations
as long as d is not too large.

To extend soundness, in Step 1 of the protocol, we ask the prover to send a
“more robust” O(d . log k)-bit checksum for each column of the matrix A, where
this checksum has the property that for every y ∈ {0, 1}k and z ∈ {0, 1}O(d.log k),
there is at most one y′ ∈ {0, 1}k (including y itself) at Hamming distance d or
less from y whose checksum equals z. Such a checksum can be constructed us-
ing standard techniques from the error-correcting code literature. Putting together
these checksums (one per column of A), we get a matrix chksum ∈ {0, 1}O(d.log k)×a,
which P IP sends to V IP. The verifier V IP receives a potentially corrupted checksum
˜chksum ∈ {0, 1}O(d.log k)×a, and in Step 4(b), it checks that the PCP answers are con-

sistent with this “more robust” checksum. The protocol is unchanged otherwise.
Note that this increases the communication to O((d . log k . a) + (k . q)), which re-
mains interesting so long as d ( k.

The new checksum matrix chksum is still not long enough to commit an arbitrary
prover to k PCP strings. But intuitively it can implicitly commit a prover as long
as it does not deviate on more than d rows. More formally, for every j = j∗,19 the
cheating prover P̃ knows the unique PCP αj . After the verifier specifies the query
set S in Step 2, a d-deviation prover P̃ (adaptively) chooses a set J ∗ ⊂ [k] of d of the
instances (or rows), and can provide arbitrary answers on queries to those d PCPs.
The only restriction is that for every j ∈ J ∗, P̃ answers the queries to the j th PCP

according to the predetermined PCP αj .
Similarly to the argument for single-deviation prover, it can be shown that

the possibly corrupt checksum string ˜chksum ∈ {0, 1}O(d.log k)×a induces an implicit
commitment to a PCP string α̃j∗ for xj∗ (the input that is not in L). In fact, it induces
commitments to all the k PCP strings. Of course, this argument only works because
we restricted P̃ to d deviations.

Amplifying Deviations and a
√

k Overhead. We described a batch verification proto-
col that is sound for d deviations. We will now show how to exploit it against a
general cheating prover (even though the protocol itself sound for such a prover).
The key observation is that while even the more robust checksum does not directly
induce a commitment to the j∗th PCP, it does tie P̃’s hands in an important way.

19. Recall that we assume that there is exactly one row j∗ such that xj∗ ∈ L (this assumption is for

simplicity and without loss of generality; see Theorem 24.1, below).
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In answering PCP queries for the inputs {xj}j =j∗ that are in the language, P̃ is faced
with two hard choices: It can provide answers that are mostly consistent with the
correct PCPs (on all but d of the rows), but then soundness against d deviations
implies that V IP will reject. Alternatively, if P̃ deviates on d or more rows, then it is
sending many answers that are inconsistent with the unique correct PCPs, and this
is much easier for the verifier to detect (as we show next).

To obtain a sound batching protocol, we add an additional round of commu-
nication, where V IP picks O(k/d) of the rows at random and asks P̃ to send those
rows’ PCPs (in their entirety). If P̃ deviated from the unique correct PCPs on at
least d rows, it is likely that there is some row j that V IP requested where P̃ has
deviated. Either P̃ sends a PCP that is inconsistent with its past answers, or it is
forced to send α̃j that is not the unique correct PCP for xj ∈ L. In either case, V IP

rejects. To “catch” a cheating prover whenever α̃j is not the unique correct PCP,
we crucially use the property that for each x ∈ L, there is a unique correct PCP α,
and the verifier can check whether α̃j = α in polynomial time (e.g., by extracting
the unique accepting UP witness wj from α̃j , and then building the PCP proof α

from wj ). This is also why our soundness argument applies to UP statement, but
does not extend to general NP statements.

The final check adds O((k/d) . a) communication bits (and verification time),
and results in a sound protocol for batching UP statements. Setting d = √

k, we
obtain a protocol with Õ(

√
k . a + k . q) communication (compared with k . a for

the naive protocol).
Here, we use the protocol that is secure against d-deviation provers as a “devia-

tion amplification” protocol. We find it noteworthy that this deviation amplification
forces P̃ to cheat (and get caught!) on inputs that are in the language. This is one of
the key insights in constructing our batching protocols.

Remark 24.1 (Many inputs not in L) We assumed throughout that there was only a single
j∗ ∈ [k] for which xj∗ ∈ L. More generally, the protocol is sound for any number
of inputs that are not in L. Soundness for the general case is shown via a similar
argument: If there are less than d inputs that are not in the language, then the above
argument goes through in a very similar manner. If there are more than d inputs
that are not in the language, then when V IP picks O(k/d) statements and checks
them explicitly, it will likely “catch” an input that is not in L and will reject, since
the cheating prover cannot supply an accepting PCP for a false statement.

Improving the Dependence on k. Finally, we turn our attention to improving the
communication to (polylog(k) . (a + k . q)), as claimed in Theorem 24.4. We begin
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with the d-deviation protocol. Recall that we can use this protocol to amplify de-
viations, forcing a cheating P̃ to send “incorrect” PCP values for at least d rows.
As above, V IP chooses a random set J1 ⊂ [k] of size O(k/d), and we know that with
good probability over the choice of J1 there is at least one row j ∈ J1 for which either
xj ∈ L, or xj ∈ L, but P̃ sent incorrect PCP values: ∃ξ ∈ S : φj(ξ) = αj |ξ (where αj is
the unique correct PCP for xj ). Above, V IP detected this by asking P̃ to send the
correct PCP for every j ∈ J1. This guaranteed soundness, but at a cost of (|J1| . a)

communication.
Observe, however, that once V IP picks J1, we are in a familiar situation: We have

a relatively large set J1 of statements, and we would like to detect whether P̃ is
“cheating” on at least one of these statements, but without explicitly sending all
|J1| witnesses. The natural approach is to recurse: Use the deviation amplification
protocol to amplify the number of deviations within J1 to at least d rows, pick a
smaller set J2 ⊂ J1 of size O(|J1|/d), and recurse again and again until we have a set
Jfinal of size O(d) and for some j ∈ Jfinal we have xj ∈ L (or the prover deviated from
the prescribed protocol PCP for j ). At the “base” of this recursion, the prover can
send explicit witnesses for each j ∈ Jfinal . Each run of the deviation amplification
protocol only requires O(d . log(k) . a + k . q) communication, so by setting d =
log k we can get a recursion of depth O(log k) and a total communication cost
of (polylog(k) . (a + k . q)) (with O(log k) rounds). More generally, we could use
different values of d to trade off the number of rounds for communication (and
in particular to obtain constant-round protocols).

There is a subtlety in the argument outlined above. Namely, in the recursion, the
UP language has changed. The statement we want to verify for each row j ∈ J1 is that
both: (i) The j th input is in the language—that is, xj ∈ L (as before)—and (ii) for S

chosen by the verifier and φj sent by the prover, the correct PCP αj for xj satisfies
φj(ξ) = αj |ξ . These two conditions define a new language L′ over triplets (x , S , φ),
and we want to verify that ∀j ∈ J1, (xj , S , φj) ∈ L′. First, observe that if L ∈ UP then
also L′ ∈ UP. Moreover, we can modify the PCP system for L to get a PCP system for
L′ with only a small loss in the parameters. Note that in further applications of the
recursion, we can keep using the same language L′, it is only the set S and values
φj that change. This yields the protocol of Theorem 24.4.

24.4.2 Batching Unambiguous Interactive Proofs
The iterative interactive proof construction of Theorem 24.2 is based on an efficient
batch verification theorem for interactive proofs, which builds on the ideas for
batch UP verification outlined in Section 24.4.1. Toward this goal, we describe
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interactive analogues of the building blocks used in the proof of the UP batching
theorem. We discuss these new proof system notions in Section 24.4.2.1, and
in Section 24.4.2.2 we provide an overview of the batch verification theorem for
interactive proofs. See Reingold et al. [2016] for further details.

24.4.2.1 Unambiguous and Probabilistically Checkable Interactive Proofs
In the setting of UP-verification, inputs in the language had a single (PCP) proof
string that convinces the verifier. Unambiguous interactive proofs are an interactive
analogue.

Unambiguous Interactive Proofs (UIPs). An unambiguous interactive proof system
for a language L is specified by a deterministic (honest) prover P, which we call the
prescribed prover, and a verifier V (as in any interactive proof system). Suppose that
a cheating prover P̃ follows the protocol in rounds 1, . . . , i − 1, but “deviates” in
round i, sending a message different from the prescribed message that P would
have sent. In an unambiguous interactive proof, we require that for any round
i where P̃ might first deviate, and for any history in rounds 1, . . . , i − 1 (which
is determined by V’s coin tosses and by the prescribed prover strategy), if the
prescribed prover would have sent message α(i), but the cheating prover sends a
message α̃(i) = α(i), then the verifier will reject with high probability over its coin
tosses in subsequent rounds. Note that this requirement also holds for inputs that
are in the language, whereas the classical notion of an interactive proof does not
make any requirement for such inputs. For inputs that are not in the language,
the prescribed prover’s first message is a special symbol that tells V to reject. In
particular, if x ∈ L, but a cheating prover P̃ tries to convince V to accept, then
P̃ needs to deviate from P’s strategy in its first message, and the unambiguity
property guarantees that with high probability V will reject. Thus, any unambiguous
IP for L also guarantees the standard notion of soundness. We note that UP proofs
correspond to 1-message deterministic UIPs.

Remark 24.2 It may be helpful to consider some examples of protocols that are unambiguous.
A prominent example is the classical Sumcheck protocol [Lund et al. 1992]. There,
in every round i, the (honest) prover sends the verifier a low-degree polynomial
P (i), and the verifier checks the value of P (i) at a random point β(i) (we gloss
over the details of this check). If a cheating prover sends a low-degree polynomial
P̃ (i) = P (i), then with high probability over the verifier’s choice of β(i) we have
P̃ (i)(β(i)) = P (i)(β(i)), and the verifier will end up rejecting. Building on this property
of the sumcheck protocol, we note that the GKR interactive proof [Goldwasser et al.
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2015] is also unambiguous. Another well-known example is the interactive proof
for Graph Nonisomorphism of Goldreich et al. [1991]. On the other hand, zero-
knowledge proofs are ambiguous by design: The honest prover is randomized, and
there are many messages that it can send that will end up making the verifier accept.

Probabilistically Checkable Interactive Proofs (PCIPs). Analogously to the UP setting,
where batch verification used the power of PCPs, we wish to use a notion of proba-
bilistic checking with low query complexity, but for interactive proof systems. That
is, we use interactive proof systems where the verifier only reads a few bits of the
transcript in checking the proof. These are called probabilistically checkable inter-
active proofs (PCIPs).

A PCIP for a language L is an interactive proof system, where the protocol is
partitioned into two phases. In the communication phase, the prover and verifier
interact for � rounds and generate a transcript (as in a standard interactive proof).
Restricting our attention to public-coin protocols, all that the verifier does in this
phase is send random strings β1, . . . , β� (one in each of the � rounds). In the checking
phase, the verifier queries q bits of the messages sent by the prover and accepts or
rejects. For the purposes of this survey, in the checking phase we allow the verifier
full access to the random strings β1, . . . , β� that it sent in the communication phase
(more generally, we could consider only allowing the verifier query access to these
strings). The verifier’s running time in a PCIP is just the time for the checking
phase (generating queries and deciding whether to accept). Thus, in a PCIP, the
query complexity and the verifier’s runtime can be much smaller than the transcript
length. One can think of the prover and verifier as interactively generating a PCP

(comprised of the prover’s messages), which is then checked by the verifier. Indeed,
a one-message PCIP is simply a PCP. For this overview, we assume that the queries
do not depend on the input, only on the random coins chosen by the verifier in the
communication phase. See Reingold et al. [2016] for formal definitions and further
discussions.

Putting the two foregoing notions together, we define unambiguous PCIPs, which
play a central role in the proof of the batch verification theorem. A subtlety that we
mostly ignore in this overview is that full unambiguity cannot be obtained with
small query complexity: If a cheating prover P̃ changes just one bit of the ith
message, and the verifier only makes a small number of queries to the message,
this change will likely go unnoticed, and unambiguity is lost. There are several ways
to reconcile these two notions, and the one most convenient for our purpose is to
restrict the family of cheating provers such that every message sent by the cheating
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prover (as well as by the prescribed prover) is a codeword in a high-distance error-
correcting code (the low-degree extension). We refer to this notion as unambiguous
PCIP with respect to encoded provers. We remark that any unambiguous PCIP with
respect to encoded provers can be easily transformed into a sound PCIP, by having
the verifier run low-degree tests on each message sent by the prover. Thus, we focus
our attention on the goal of constructing PCIP with respect to encoded provers. See
Reingold et al. [2016] for a more complete discussion and formal definitions.

24.4.2.2 Batching Using Unambiguous PCIPs
We are now ready to describe the batch verification protocol for unambiguous
PCIPs with respect to encoded provers. Given such a proof system (P , V) for a
language L, we obtain a batched proof system for verifying k instances of L, where
the overhead in terms of the communication is sublinear in k. We note that an
inefficient batch verification theorem for (general) interactive proofs also follows
from the IP = PSPACE theorem. However, that batched protocol does not preserve
the round complexity or prover efficiency of the base protocols (and is thus not
helpful for constructing interactive proofs with efficient provers or small round
complexity).

Controlling the Query Complexity. In this overview, we focus on the bounding the
communication complexity of the batched PCIP (in particular, the communication
will grow by a multiplicative factor that is only polylogarithmic in k). We note, how-
ever, that batching will degrade the query complexity and verification time by a mul-
tiplicative factor of k. In the iterative construction of Theorem 24.2, this becomes
a problem (because we need sublinear query complexity for efficient batching, see
below). This can be resolved, however, using a “query reduction” transformation
(see the details in Reingold et al. [2016]). Thus, the iterative construction of Theo-
rem 24.2 repeatedly uses a PCIP-batching step, followed by a PCIP-query-reduction
step (which also reduces the verifier’s runtime), gradually obtaining powerful PCIPs
(and interactive proofs) for longer and longer computations. This is similar in spirit
to the delicate balancing of parameters in the iterative constructions of Dinur
[2007], Reingold [2008], and Reingold et al. [2000] (also abstracted in Goldreich
[2011]).

Soundness for d Deviations. Let (P , V) be an unambiguous PCIP for L. Recall that
in the UP batching, we began by constructing a sound protocol for provers that
only deviate on d of the k inputs. We later use this protocol for “deviation amplifi-
cation.” The ideas translate to the UIP setting, where we use (P , V) to construct a
deviation amplification protocol (Pamplify , Vamplify). The high level is as follows: The
protocol starts with � rounds that correspond to the � communication rounds of
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the “base” protocol. In each round i, for each j ∈ [k], let α
(i)
j ∈ {0, 1}a be the mes-

sage that the (prescribed) “base” prover P would send on input xj in round i given
randomness β(1), . . . , β(i−1) (which Vamplify sent in previous rounds). The prover

Pamplify constructs a k × a matrix A(i), whose rows are the messages (α
(i)
1 , . . . , α

(i)
k ),

and sends its checksum chksum(i) ∈ {0, 1}O(d.log k)×a to the verifier. The verifier re-

ceives ˜chksum
(i)

, and sends random coins β(i) as sent by V in the base protocol (the
same random coins are used for all k inputs).

Next, Vamplify chooses random coins for V’s query/decision phase, sends the
queries S ⊂ [�] × [a] to Pamplify, and receives answers {φj : S → {0, 1}} to those
queries for each of the k base protocols j ∈ [k]. Now, Vamplify accepts if and only
if (i) V would have accepted the answers in all k protocols, and (ii) the answers are
consistent with the checksums sent in rounds 1, . . . , �. Note that running these
checks requires reading the values in {φj} in their entirety (k . q queries), and also
making d . q queries into the transcript in rounds 1, . . . , � to verify the checksum.

The proof of soundness against a d-deviation cheating prover is similar to the
analogous proof for UP batch verification: When a d-deviation prover sends the

robust checksum value ˜chksum
(i)

, it implicitly commits to messages in all k of the
protocols. Thus, if P̃ could get Vamplify to accept, we could derive a cheating prover
for the base protocol, breaking its soundness. We note that it is critically important

for this argument that P̃ sends ˜chksum
(i)

(and commits to the messages in round i),
before it knows the random coins β(i) that will be chosen by the verifier for round i.

Detecting Many Deviations. As in the UP batching, we leverage soundness against
d deviations to amplify a cheating prover’s deviations from the prescribed strategy,
and obtain sound batch verification (without any assumptions on the number of
deviations). Here too, a cheating prover P̃ is faced with a choice. It can deviate from
the prescribed strategy on d or fewer of the inputs, but then the verifier will reject
with high probability (by soundness against d deviations). So P̃ may well choose to
deviate on more than d of the inputs. Suppose this is the case, and there exists a
subset J ∗ ⊆ [k] of at least d of the statements, such that for every j ∈ J ∗, the query
answers in φj are not consistent with the prescribed strategy. The verifier Vamplify

would like to detect this.
Recall that in the UP batch verification, this was simple: The verifier could pick a

set J1 of O(k/d) of the statements, and request the “full proof” for the statements in
J1. Here, however, it is not sufficient to ask P̃ to send the entire transcript for those
statements. To see this, suppose that for j∗ ∈ (J ∗ ∩ J1), the values in φj∗ are not
consistent with the prescribed strategy on the chosen random coins (β(1), . . . , β(�)).
Unambiguity of (P , V) does not guarantee that every transcript that is consistent
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with φj∗ makes V reject (given the fixed coins (β(1), . . . , β(�))). Indeed, since the
coins are already fixed, there may well be many possible transcripts that make V
accept and are consistent with φj∗. Thus, if all Vamplify did was ask Pamplify to send an
accepting transcript consistent with φj∗, then P̃ could find such a transcript, and
Vamplify would not detect that there was a deviation in the j∗th statement.

To make soundness go through, we design an interactive protocol (P1, V1) for
verifying that φj∗ is consistent with the prescribed strategy on input xj∗ and ran-
dom coins (β(1), . . . , β(�)). We obtain soundness by running this protocol for each
statement j∗ ∈ J1. Loosely speaking, the protocol goes as follows. First we ask P̃ to
send the entire transcript for that statement, and let Vamplify verify that this tran-
script is consistent with φj∗ (and makes V accept). Let (α̃(1), . . . α̃(�)) be the prover
messages in this transcript. Now V1 simulates V in � parallel executions of the orig-
inal PCIP (P , V). At execution i, the protocol (P , V) is simulated from round i as
a continuation of the ith prefix of the transcript sent by P̃ (namely, assuming that
the first i − 1 verifier messages were (β(1), . . . , β(i−1)) and the first i prover mes-
sages were (α̃(1), . . . α̃(i))). It is important that the verifier uses fresh randomness
(γ (i), . . . , γ (�)) for the remaining rounds (the random strings (γ (1), . . . , γ (�)) could
be shared among the parallel simulations). Soundness follows, since if the tran-
script sent by P̃ first deviates from the prescribed proof at round i∗, then, by the
definition of unambiguity, V is likely to reject in the corresponding simulation of
(P , V) using i = i∗.

Sound Batch Verification. Building on the consistency-checking protocol (P1, V1),
we construct a batch verification protocol (Pamplify , Vamplify), where the prover and
verifier first run the deviation amplification protocol. Then, Vamplify picks at random
the set J1 of O(k/d) of the instances, and the prover and verifier run the above
protocol (P1, V1) explicitly on each j∗ ∈ J1. Taking the number of rounds � to be
a constant, (P1, V1) is not much more expensive than (P , V), and when using
d =√

k, this yields batch verification whose communication only grows by a factor
of roughly

√
k.

To improve the dependence on k, we recurse as in the UP batching theorem.
Pamplify and Vamplify use the protocol (P1, V1) as a “base protocol,” and run the
deviation amplification protocol to amplify the number of deviations within J1 to
at least d instances (note that Pamplify and Vamplify never explicitly run the protocol
(P1, V1)). Now Vamplify picks a smaller set J2 ⊂ J1 of size O(|J1|/d), and the prover
and verifier recurse again and again until they obtain a set Jfinal of size O(d) and a
protocol (Pfinal , Vfinal ) that will w.h.p. reject at least one of the instances in Jfinal .
At the “base” of this recursion, the prover and verifier explicitly run the protocol
(Pfinal , Vfinal ) on every instance in the set Jfinal .



References 687

While the complexity of the “base protocol” grows by a factor of � in every level
of the recursion, the set of instances under consideration shrinks by a factor of d.
Taking d = kτ for a constant 0 < τ ( 1, we only have a constant number of levels
in the recursion, and the final consistency-checking protocol (Pfinal , Vfinal ) is only
roughly �O(1/τ) times more expensive than the base protocol (throughout we think
of � as a constant). The resulting protocol (Pamplify , Vamplify) has roughly O(�) rounds,
communication complexity poly(�) . kτ . c, prover runtime poly(�) . k . Ptime and
verifier runtime poly(�) . k . Vtime. The query complexity is (poly(�) . k . q).

The soundness error grows linearly with the number of levels in the recursion,
yielding O(ε) soundness. For simplicity, we assume here that ε is larger than
(1/k2τ ), so we can take each set Jm ∈ {J1, . . . , Jfinal } to be of size O(log(1/ε) .

|Jm−1|/d) and still have a constant number of levels in the recursion. The size bound
on Jm guarantees that the probability that any set in the sequence J1, . . . , Jfinal

“misses” the deviating instances is smaller than ε.
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25Computational Entropy
Salil Vadhan

25.1 Introduction
The foundations of cryptography laid by Shafi Goldwasser and Silvio Micali in
the 1980s provided remarkably strong security definitions (e.g., semantic secu-
rity Goldwasser and Micali [1984]) and amazingly rich cryptographic functionalities
(e.g., zero-knowledge proofs Goldwasser et al. [1988]) that could be achieved from
precisely stated complexity assumptions (e.g., the quadratic residuosity assump-
tion [Goldwasser and Micali 1984]). This naturally led to an important project of
understanding what are the minimal complexity assumptions needed to each of
the many cryptographic primitives that were emerging.

The pinnacle of success in this effort was to show that a given cryptographic
primitive could be based on the existence of mere one-way functions, as defined in
the work of Diffie and Hellman [1976] that initiated complexity-based cryptography.
The notion of a one-way function is both very general, with many concrete candi-
dates for instantiation, and very simple to state, allowing the candidates to crypt-
analyzed more easily. Moreover, almost all primitives in complexity-based cryptog-
raphy imply the existence of one-way functions [Impagliazzo and Luby 1989], so
one-way functions are in some sense the minimal assumption we could hope for.

Remarkably, it was discovered that a wide array of cryptographic primitives
could be constructed assuming only the existence one-way functions. These in-
cluded such powerful objects as chosen-ciphertext-secure symmetric encryption,
pseudorandom functions, digital signatures, and zero-knowledge proofs and statis-
tical zero-knowledge arguments for all of NP [Goldreich et al. 1986, Goldreich et al.
1991, Håstad et al. 1999, Naor and Yung 1989, Rompel 1990, Naor 1991, Haitner
et al. 2009a]. All of these constructions begin by converting the “raw hardness” of
a one-way function to one of the following more structured cryptographic prim-
itives: a pseudorandom generator [Blum and Micali 1984, Yao 1982], a universal
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one-way hash function [Naor and Yung 1989], or a statistically hiding commitment
scheme [Brassard et al. 1988].

The goal of this survey is to convey how this conversion from one-wayness to
structured hardness is possible, focusing on the cases of constructing pseudoran-
dom generators and statistically hiding commitments. The common answer that
has emerged through a series of works is as follows:

1. The security properties of these (and other) cryptographic primitives can be
understood in terms of various computational analogues of entropy, and in
particular how these computational measures of entropy can be very differ-
ent from real information-theoretic entropy.

2. It can be shown that every one-way function directly exhibits some gaps
between real entropy and the various computational entropies.

3. Thus we can construct the desired cryptographic primitives by amplifying
and manipulating the entropy gaps in a one-way function, through forms of
repetition and hashing.

This viewpoint (of identifying and manipulating computational entropy) was al-
ready present in the original constructions of pseudorandom generators, universal
one-way hash functions, and statistically hiding commitments from arbitrary one-
way functions [Håstad et al. 1999, Rompel 1990, Haitner et al. 2009a], but those
constructions were quite complicated and inefficient, making it hard to distinguish
the essential ideas from technicalities. Over the past decade, a clearer picture has
emerged through the introduction of new, refined notions of computational en-
tropy [Haitner et al. 2009b, Haitner et al. 2013, Haitner et al. 2010, Vadhan and
Zheng 2012, Agrawal et al. 2019]. The resulting constructions of pseudorandom
generators and statistically hiding commitments from one-way functions are much
simpler and more efficient than the original ones, and are based entirely on natural
manipulations of computational entropy. The two constructions are “dual” to each
other, whereby the construction of pseudorandom generators relies on a form of
computational entropy (“pseudoentropy”) being larger than the real entropy, while
the construction of statistically hiding commitments relies on a form of computa-
tional entropy (“accessible entropy”) being smaller than the real entropy. Beyond
that difference, the two constructions share a common structure, using a very sim-
ilar sequence of manipulations of real and computational entropy.

In this survey, we will describe the main ideas behind these recent constructions
of pseudorandom generators and statistically hiding commitments from one-way
functions. We will warm up by “deconstructing” the classic construction of pseudo-
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random generators from one-way permutations [Blum and Micali 1984, Yao 1982,
Goldreich and Levin 1989] using the modern language of computational entropy, as
it will provide intuition and context for what follows. We will then present the state-
of-art construction of pseudorandom generators from general one-way functions,
using the computational entropy notions of “conditional KL-hardness” and “next-
block pseudoentropy” [Haitner et al. 2013, Vadhan and Zheng 2012]. Finally, we
will introduce the dual notion of “next-block accessible entropy” and explain how
it is used in constructing statistically hiding commitments from one-way functions
in a way that parallels the aforementioned construction of pseudorandom genera-
tors [Haitner et al. 2009b].

Beyond the specific constructions covered, we hope that the surveyed notions
of computational entropy and the tools for reasoning about them will prove useful
elsewhere, for example in some of the other application areas for computational
entropy mentioned below.

Other Reading. For general background on the foundations of cryptography and
the theory of pseudorandomness, we recommend Goldreich [2019], Goldreich
[2008, Ch. 8], and Vadhan [2012]. A more detailed and technical tutorial on the
constructions of pseudorandom generators and statistically hiding commitments
from one-way functions using computational entropy is given by Haitner and Vad-
han [2017]. While we focus on its role in constructions of cryptographic primitives
from one-way functions, computational analogues of entropy have been studied
from a number of other angles. Yao [1982] introduced a notion of computational
entropy for the purposes of studying efficient data compression and error correc-
tion. Barak et al. [2003] carry out a systematic study of several different notions of
computational entropy (some of which appear here). Forms of computational en-
tropy have also found applications in leakage-resilient cryptography [Dziembowski
and Pietrzak 2008], deterministic encryption [Fuller et al. 2015], memory delega-
tion [Chung et al. 2011], and differential privacy [Mironov et al. 2009], and these
areas of research have developed the theory of computational entropy in other
ways. Recently, Haitner et al. [2018] have introduced a computational analogue of
independence for outputs from a 2-party protocol that they use to characterize the
2-party cryptographic primitives whose existence is equivalent to the existence of
key agreement protocols.

Acknowledgments. I vividly recall the thrill of learning about the foundations of
cryptography from Shafi and Silvio with my fellow graduate students at MIT in
the late 1990s. Time and time again, it felt like we were seeing how the seemingly
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impossible could be achieved. We saw how philosophical and psychological con-
cepts (e.g., knowledge, persuasion, impersonation) could be given convincing
mathematical definitions, and cryptographic schemes for controlling these con-
cepts could be constructed based on simple complexity assumptions. Decades
later, the desire to better understand how this all could be possible has remained
with me, and is a major motivator for the line of research described in this survey.
At a more concrete level, much of this work was a direct outgrowth of the line of
research that Shafi started me on as her Ph.D. student—namely, the complexity
of statistical zero-knowledge proofs [Vadhan 1999]. Attempting to understand the
complexity of the prover in statistical zero-knowledge proofs led to a characteriza-
tion of statistical zero knowledge in terms of “instance-dependent” commitment
schemes [Bellare et al. 1990, Itoh et al. 1997, Micciancio and Vadhan 2003, Nguyen
and Vadhan 2006, Ong and Vadhan 2007]. The ideas underlying that characteriza-
tion inspired the construction of statistically hiding commitments from one-way
functions [Haitner et al. 2009a], including the use of computational entropies in
that work and the subsequent ones discussed in this survey. Thank you, Shafi and
Silvio, for creating and leading us to such a beautiful landscape to explore, and for
your mentorship and friendship throughout our lives!

I am grateful to Oded Goldreich for his unwavering support and patience for my
writing of this survey, and lots of helpful feedback. Thanks also to Hugo Krawczyk,
whose encouragement motivated me to write this survey based on my lectures at
the 2016 IACR-COST School on Randomness in Cryptography. The writing of this
survey was supported by NSF grant CCF-1763299.

25.2 Basic Information-Theoretic Notions
We review a number of information-theoretic notions, before introducing their
computational analogues, which will be the main focus of this survey.

Basic Definitions. We begin with the most intuitive measure of distance between
probability distributions:

Definition 25.1 (Statistical difference) Let X and Y be discrete random variables taking values in
a universe U . Then the statistical difference (a.k.a. total variation distance) between
X and Y is

d(X, Y ) = max
T⊆U

|Pr[X ∈ T ] − Pr[Y ∈ T ]| ∈ [0, 1].

We say X and Y are ε-close if d(X, Y ) ≤ ε.

We will also discuss a number of different measures of entropy:
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Definition 25.2 (Entropy measures) Let X be a discrete random variable. Then:

. The (Shannon) entropy of X is

H(X) = E
x

R←X

[
log
(

1
Pr[X = x]

)]
.

. The min-entropy of X is

H∞(X) = min
x

[
log
(

1
Pr[X = x]

)]
= log

(
1

maxx Pr[X = x]

)
.

. The max-entropy of X is

H0(X) = log | Supp(X)|.
Above, and throughout this survey, all logarithms are base 2 (except where

explicitly noted otherwise) and Supp(X) = {x : Pr[X = x] > 0} denotes the support
of the random variable X.

H(X) measures the average number of bits of randomness in X, while H∞(X)

and H0(X) are worst-case lower and upper bounds on H(X). Indeed, we have

H∞(X) ≤ H(X) ≤ H0(X),

with equality if and only if X is uniform on Supp(X); that is, X is a flat distribution.

Extraction and Compression. The usefulness of min-entropy in theoretical com-
puter science was advocated by Chor and Goldreich [1988]. Specifically, having a
random variable with high min-entropy is preferable to having a random variable
with high Shannon entropy because high min-entropy can be converted into nearly
uniform randomness via extractors:

Definition 25.3 (Randomness extractors Nisan and Zuckerman [1996]) A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is a strong (k , ε)-extractor if for every random variable X dis-
tributed on {0, 1}n with H∞(X) ≥ k, the random variable (Ud , Ext(X, Ud)) is ε-close
to (Ud , Um) where Ud and Um are uniformly distributed on {0, 1}d and {0, 1}m, re-
spectively, and X, Ud , Um are mutually independent.

Above, and throughout, when the same random variable appears twice in an expres-
sion (e.g., the Ud in (Ud , Ext(X, Ud))), they take the same value with probability 1.

Lemma 25.1 (Leftover hash lemma Bennett et al. [1988], Håstad et al. [1999]) For every n,
k ≤ n, and ε > 2−k/2, there is a polynomial-time computable strong (k , ε)-extractor
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Ext : {0, 1}n × {0, 1}d →{0, 1}m that has output length m = �k − 2 log(1/ε)� and seed
length d = n. Specifically, we can take Ext(x , h) = h(x) where h comes from a 2-
universal family of hash functions mapping {0, 1}n to {0, 1}m.

Note that the extractors given by the Leftover Hash Lemma extract almost all of
the min-entropy out of the source, except for a 2 log(1/ε) entropy loss, which is nec-
essary for any extractor [Radhakrishnan and Ta-Shma 2000]. The seed length d = n,
however, is suboptimal, and there is a long line of research on randomness extrac-
tors that gives explicit constructions of extractors with seed length depending only
logarithmically on n. (See Vadhan [2012, Chapter 6] and the references therein.)

Similarly, having a random variable with low max-entropy is often preferable to
having one with low Shannon entropy because low max-entropy allows for “com-
pression”.

Lemma 25.2 For every n, k ≤ n, and ε > 0, there is a polynomial-time computable encoding
function Enc : {0, 1}n × {0, 1}d → {0, 1}m with output length m = k + log(1/ε) and
seed length d = n such that for every random variable X distributed on {0, 1}n with
H0(X) ≤ k, there is a (not necessarily efficient) decoding function Dec : {0, 1}m ×
{0, 1}d → {0, 1}n such that:

Pr
[
Dec(Enc(X, Ud), Ud) = X

]≥ 1 − ε.

Again we can take Enc(x , h) = h(x) where h comes from a 2-universal family of hash
functions mapping {0, 1}n to {0, 1}m.

That is, if the max-entropy is low, then we do not need to reveal much informa-
tion (just the m bits output by Enc to uniquely determine) to determines x with high
probability.

Min-entropy and max-entropy are rather brittle, in that making a small change
to the probability distribution can dramatically change the amount of measured
entropy. For this reason, it is common to work with “smoothed” forms of these
entropies [Renner and Wolf 2005]. Specifically, we consider a random variable
X to have smoothed min-entropy at least k if X is ε-close to a random variable
X′ with H∞(X′) ≥ k, for a negligible ε. And we consider a random variable X to
have smoothed max-entropy at most k if X is ε-close to a random variable X′ with
H0(X

′) ≤ k. Notice that smoothed min-entropy and smoothed max-entropy sup-
port randomness extraction and compression, as above, with the smoothing error
adding to the error parameter of the randomness extraction or decoding.

Conditional Entropies. We will also make use of conditional forms of entropy. For
Shannon entropy, there is a standard definition:
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Definition 25.4 (Conditional entropy) For jointly distributed discrete random variables (X, Y ),
the conditional Shannon entropy of X given Y is

H(X|Y ) = E
y

R←Y

[
H
(
X|Y=y

)]
,

where X|E is the notation we use for conditioning the random variable X on event E.

There are a number of natural ways to define conditional min-entropy and
conditional max-entropy, but for the case of min-entropy the following has proved
to be particularly convenient in cryptographic applications.

Definition 25.5 (Average min-entropy Dodis et al. [2008]) For jointly distributed discrete random
variables (X, Y ), the average min-entropy of X given Y is

H∞(X|Y ) = log

⎛⎜⎜⎜⎝ 1

E
y

R←Y

[
2−H∞

(
X|Y=y

)]
⎞⎟⎟⎟⎠.

Despite the somewhat complicated definition, average min-entropy has a very
natural operational interpretation as measuring the maximum probability of guess-
ing X from Y :

Lemma 25.3 (Guessing min-entropy) For every pair of jointly distributed discrete random vari-
ables (X, Y ), the average min-entropy H∞(X|Y ) equals the guessing min-entropy of
X given Y , defined as

Hguess(X|Y ) = log
(

1
maxA Pr[A(Y ) = X]

)
,

where the maximum is over all functions A (regardless of computational com-
plexity).

The proof of this lemma follows from observing that 2−H∞
(
X|Y=y

)
= maxx Pr[X =

x|Y = y], which is exactly the success probability of an optimal strategy for guessing
X given that Y = y.

In addition to having this nice operational interpretation, average min-entropy
also supports randomness extraction. Indeed, it turns out that every randomness
extractor for ordinary min-entropy is also one for average min-entropy with only a
small loss in the error parameter:

Lemma 25.4 (Vadhan [2012, Problem 6.8]) Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k , ε)-
extractor for k ≤ n − 1, and let (X, Y ) be any pair of jointly distributed discrete
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random variables with X taking values in {0, 1}n such that H∞(X|Y ) ≥ k. Then
(Ud , Ext(X, Ud), Y ) is 3ε-close to (Ud , Um, Y ), where Ud , Um, and (X, Y ) are mutually
independent.

The above lemma is proven by showing that on one hand, a (k , ε)-extractor also
extracts nearly uniform bits when applied to sources of min-entropy k′ slightly
smaller than k, and on the other hand, if X has average min-entropy at least k

given Y , then XY=y is very unlikely (over the choice of y
R← Y ) to have min-entropy

much smaller than k, In fact, the extractor of the leftover hash lemma can directly
be shown to be an extractor for average min-entropy with no loss in the error
parameter [Dodis et al. 2008].

Flattening. Although min-entropy and max-entropy are more directly useful in
cryptographic applications, many of the results we will discuss will begin by es-
tablishing statements involving Shannon entropy. These can converted into state-
ments about (smoothed) min-entropy and max-entropy by taking many indepen-
dent samples:

Lemma 25.5 (Flattening) Let X be a random variable distributed on {0, 1}n, and let Xt consist
of t independent samples of X. Then for every ε ∈ (0, 1/2), the random variable Xt

is ε-close to a random variable X′ such that

H∞(X′) ≥ t . H(X) − O
(√

t . log(1/ε) . n
)

and

H0(X
′) ≤ t . H(X) + O

(√
t . log(1/ε) . n

)
.

The flattening lemma can be viewed as a quantitative form of the standard
“asymptotic equipartition property” in information theory. Various forms of it ap-
pear in the literature, including in Håstad et al. [1999]; the tight version above is
from Holenstein and Renner [2011].

Note that the Shannon entropy of Xt is exactly t . H(X), which grows linearly
with t . The above lemma says that, after some smoothing, the min-entropy and max-
entropy of Xt are close to the Shannon entropy of Xt , with a difference that grows
only like

√
t . In particular, for ε = n− log n and t = n2 . log3 n, the smoothed min-

and max-entropies are guaranteed to be t . (H(X) ± o(1)). This is referred to as a
“flattening” lemma because the only random variables where the Shannon entropy
equals the min-entropy or max-entropy are flat random variables (ones that are
uniform on their support), whereas Xt is close to a distribution in which the min-
and max-entropies are relatively close (i.e., are o(t) away). Flattening also works for
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jointly distributed random variables (X, Y ); see Holenstein and Renner [2011] for
a precise statement.

25.3 Basic Computational Notions
We review the standard notions of one-way functions, computational indistin-
guishability, and pseudorandom generators, highlighting notational choices and
conventions we will use throughout this survey.

One-Way Functions. A one-way function is a function that is easy to compute in the
forward direction, but very hard to invert, even on average.

Definition 25.6 (One-way functions Diffie and Hellman [1976]) A function f : {0, 1}n → {0, 1}n is
a one-way function (OWF) if:

1. f is computable in time poly(n).

2. For some s(n) = nω(1) and ε(n) = 1/nω(1), and all nonuniform algorithms A

running in time s(n), we have

Pr
[
A(f (X)) ∈ f −1(f (X))

]≤ ε(n),

where the probability is taken over X
R← {0, 1}n and the coin tosses of A.

Note that the asymptotics are somewhat hidden in the above definition. As usual,
the definition actually refers to an infinite family of functions {fn : {0, 1}n →
{0, 1}n}n∈N, one for each value of the security parameter n. Condition 1 means that
there should be a single uniform algorithm that can evaluate f = fn in time poly(n)

for all n. On the other hand, we require security to hold even against nonuniform
algorithms. We adopt this nonuniform model of security because it simplifies a
number of the definitions and proofs, but all of the results we will discuss have
uniform-security analogues. The time bound s(n) on the complexity of the nonuni-
form algorithm A should be interpreted as a bound on both the running time and
program size; this is equivalent (up to a polynomial loss) to taking s(n) to be a
bound on the size of A as a Boolean circuit.

The security bound nω(1) refers to any functions that is asymptotically larger
than every polynomial function. It is more common in the literature to state secu-
rity definitions for cryptographic primitives in the form “for every constant c and
every nonuniform algorithm A running in time nc, the success probability of A in in-
verting f is at most 1/nc for all sufficiently large n.” Definition 25.6 can be shown to
be equivalent to such formulations [Bellare 2002]. Note that the functions s(n) and
ε(n) in Definition 25.6 are not necessarily efficiently computable. However, we will
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ignore that subtlety in this survey, and pretend that they are efficiently computable
when it makes the exposition simpler.

Note that we have taken the security parameter n to equal the input and output
lengths of the one-way function. When we define other primitives (such as pseu-
dorandom generators below), we will allow their input and output lengths to be
polynomially related to the security parameter, rather than equal to the security
parameter. This will allow us to have a more fine-grained discussion of the complex-
ity of constructing these primitives from one-way functions, where we will keep the
security parameter n equal to the input length of the underlying one-way function.

We stress that Definition 25.6 does not require the function f to be one-to-
one, and thus the adversary A succeeds if it finds any preimage of its input f (X).
Overcoming the challenges introduced by general, many-to-one one-way functions
f is a major theme in this survey.

Computational Indistinguishability. The fundamental concept of computational in-
distinguishability was introduced in the seminal paper of Goldwasser and Micali
[1984]. It is the computational analogue of statistical difference (Definition 25.1),
obtained by restricting to statistical tests T that are efficiently computable:

Definition 25.7 (Computational indistinguishability Goldwasser and Micali [1984]) Let X and Y

be random variables distributed over {0, 1}m for m = poly(n), where n is a security
parameter. We say that X and Y are computationally indistinguishable, written
X

c≡ Y , if for some s(n) = nω(1) and ε(n) = 1/n−ω(1), and all nonuniform algorithms
T running in time s(n), we have

|Pr[T (X) = 1] − Pr[T (Y ) = 1]| ≤ ε(n), (25.1)

where the probability is taken over X, Y , and the coin tosses of T . If Y is identi-
cally distributed to Um, the uniform distribution on {0, 1}m, then we say that X is
pseudorandom.

If Inequality (25.1) holds for all (computationally unbounded) functions T (i.e.,
X and Y are ε(n)-close in statistical difference for some ε(n) = n−ω(1)), then we say
that X and Y are statistically indistinguishable and write X

s≡ Y .
Computational indistinguishability is the basis of many concepts in modern

cryptography, including the fundamental notion of a pseudorandom generator:

Definition 25.8 (Pseudorandom generators Blum and Micali [1984], Yao [1982]) A function G :
{0, 1}� →{0, 1}m, where �, m = poly(n) for a security parameter n, is a pseudorandom
generator (PRG) if:
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1. G is computable in deterministic time poly(n).

2. G(U�)
c≡ Um.

3. m > �.

We call � the seed length of G and m the output length.

Note that the above definition only requires that the output length is larger than
the seed length by at least one bit (m > �). Many applications of pseudorandom
generators require generating many pseudorandom bits from a short seed (m 0 �).
Fortunately, there is a generic length-expansion technique that converts pseudo-
random generators that stretch by one bit into ones that stretch by any desired
length (without increasing the seed length) [Goldreich and Micali 1984]. Thus in
this survey we will not specify the stretch of the pseudorandom generators.

Pseudorandom Generators from One-Way Functions. A celebrated result in the foun-
dations of cryptography is that pseudorandom generators can be constructed from
any one-way function.

Theorem 25.1 (PRGs from OWFs Håstad et al. [1999]) If there exists a one-way function f :
{0, 1}n →{0, 1}n, then there exists a pseudorandom generator Gf : {0, 1}� →{0, 1}m.

The original construction of Håstad et al. [1999] proving Theorem 25.1 was quite
complex and inefficient. The pseudorandom generator Gf has a seed length of
� = �(n10) and requires evaluating the one-way function at least q = �(n10) times.
Quantifying these complexity parameters makes sense because the pseudorandom
generator construction is a “(fully) black-box” one [Reingold et al. 2004], where the
given one-way function is used as an oracle in the algorithm for computing G (so q

counts the number of oracle queries), and the security of the construction is proven
via a reduction that uses any oracle T that distinguishes Gf (U�) from Um to invert
f with nonnegligible probability. (The reduction also uses an oracle for f and may
use nonuniform advice when working in the nonuniform security model, as we are.)

One might think that the large polynomial complexity of the construction does
not matter because the “polynomial security” formulations of Definitions 25.6
and 25.8 are invariant to polynomial changes in the security parameter n. For
example, G could invoke f on inputs of length n1/10 and thereby achieve seed length
� = O(n). But this does not really change anything. In either case, the problem is
that the security of the pseudorandom generator on seed length � is related to the
security of the one-way function on inputs of length �(�1/10), which amounts to an
unsatisfactory loss in security. This becomes even more apparent when quantifying
the security more finely. For example, even if the one-way function had “optimal”



704 Chapter 25 Computational Entropy

hardness, with security against algorithms running time s(n) = 2cn for a constant
c > 0 on inputs of length n, we would only be guaranteed that the pseudorandom
generator is secure against algorithms running in time s(n)�(1) = 2�(�1/9), which is
very far from the 2c′� security that we might hope for. Thus it is important to seek
more efficient constructions.

25.4 Pseudoentropy
A pseudorandom generator G : {0, 1}� → {0, 1}m with large stretch (� ( m) starkly
demonstrates the difference between computational and information-theoretic no-
tions. On one hand, the output distribution G(U�) has entropy at most � (since ap-
plying a deterministic function cannot increase entropy), but it is computationally
indistinguishable from the distribution on {0, 1}m with maximal entropy—namely,
Um. Thus, as an intermediate step toward constructing pseudorandom generators,
it is natural to consider a more quantitative measure of the amount of “computa-
tional entropy,” as done by Håstad et al. [1999] in their proof of Theorem 25.1:

Definition 25.9 (Pseudoentropy Håstad et al. [1999]) Let X be a random variable distributed on
strings of length poly(n) for a security parameter n. We say that X has pseudoentropy
at least k if there exists a random variable X′ such that

1. X′ c≡ X.

2. H(X′) ≥ k.

If Condition 2 is replaced with H∞(X′) ≥ k, then we say that X has pseudo-min-
entropy at least k.

As discussed above, constructing a pseudorandom generator requires produc-
ing an efficiently samplable distribution whose pseudoentropy (and pseudo-min-
entropy) is larger than its actual entropy. We have formulated the definition of
pseudoentropy to only allow for expressing such lower bounds on computational
entropy (e.g., “X has pseudoentropy at least k”). Using the same template as a defini-
tion of “pseudoentropy at most k” yields a nonuseful definition, since every random
variable can be shown to have pseudoentropy at most polylog(n) via a probabilistic
argument akin to the one used in Goldreich and Krawczyk [1992]. In Section 25.7,
we shall see a different approach that leads to a useful definition of upper bounds
on computational entropy.

The Håstad et al. [1999] notion of pseudoentropy is very useful, thanks to the
power of computational indistinguishability, which says that two random variables
are essentially equivalent for the purposes of any efficient computation on them. In
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particular, pseudo-min-entropy supports randomness extraction, by any efficiently
computable extractor:

Lemma 25.6 Let X be a random variable distributed on strings of length m= poly(n) for a security
parameter n with pseudo-min-entropy at least k, and let Ext : {0, 1}m × {0, 1}d →
{0, 1}m′

be a strong (k , ε)-extractor computable in time poly(n), with error ε = n−ω(1).
Then (Ud , Ext(X, Ud)) is pseudorandom.

In particular, using the leftover hash lemma (Lemma 25.1), the pseudoentropy loss
k − m′ incurred by extraction is only 2 log(1/ε), which we can take to be any function
that is ω(log n).

As with the information-theoretic notions, randomness extraction requires
pseudo-min-entropy rather than plain pseudoentropy. Fortunately, flattening also
works in the context of pseudoentropy, and using Lemma 25.5, it can be shown
that if X has pseudoentropy at least k, then for any t = poly(n), the product Xt has
pseudo-min-entropy at least t . k −√

t . Õ(m), where m is the bitlength of X.1

In light of these facts, the approach of [Håstad et al. 1999] to constructing pseu-
dorandom generators from one-way functions is the following three-step process:

1. Computational Entropy Gap. From an arbitrary one-way function, construct
an efficiently samplable distribution X that has pseudoentropy at least
H(X) + � for some � ≥ 1/ poly(n).

2. Flattening. Use flattening to obtain an efficiently samplable distribution
whose pseudo-min-entropy is significantly larger than its (smoothed) max-
entropy.

3. Hashing. Use randomness extraction and hashing (as in Lemma 25.1 and
Lemma 25.2) to obtain a generator G whose output distribution is pseudo-
random while it is generated using a short seed (and in particular has small
max-entropy).

1. Here we are using the fact that we have defined computational indistinguishability with respect
to nonuniform distinguishers, in order to ensure that X

c≡ X′ implies that Xt c≡ (X′)t . The latter
implication does not hold in general for uniform distinguishers Goldreich and Meyer [1998]. The
implication does hold if X and X′ can be sampled in polynomial time, but the constructions we
will describe do not seem to have that property for X′. In [Haitner et al. 2013], this is remedied by
a more complicated definition, where we require indistinguishability even by distinguishers that
have an oracle for sampling from X′, but where we also allow X′ to depend on the distinguisher.
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Unfortunately, the construction of [Håstad et al. 1999] ended up being much more
complex and inefficient than this outline suggests. The main reasons are that in
Step 1, (a) we do not know the real entropy H(X) of the samplable distribution
X, and (b) the entropy gap � is quite small (and thus requires more repetitions
for flattening to preserve the gap). In Section 25.6 we will see how to avoid these
difficulties by using more refined notions of pseudoentropy.

Before proceeding, we define conditional versions of pseudoentropy that will be
useful in later sections.

Definition 25.10 (Conditional pseudoentropy Hsiao et al. [2007]) Let (X, Y ) be a pair of jointly
distributed random variables of total length poly(n) for a security parameter n. We
say that X has conditional pseudoentropy at least k given Y if there is a random
variable X′, jointly distributed with Y , such that:

1. (X, Y )
c≡ (X′, Y ).

2. H(X′|Y ) ≥ k.

If Condition 2 is replaced with H∞(X′|Y ) ≥ k, then we say that X has pseudo-min-
entropy at least k given Y .

Similarly to the unconditional versions, conditional pseudoentropy supports flat-
tening and randomness extraction by efficiently computable extractors.

25.5 One-Way Permutations to Pseudorandom Generators
In this section, we present the classic construction of pseudorandom generators
from one-way permutations using the language of computational entropy. Specifi-
cally, we will prove the following theorem:

Theorem 25.2 (PRGs from OWPs Blum and Micali [1984], Yao [1982], Goldreich and Levin [1989])
If there exists a one-way permutation f : {0, 1}n → {0, 1}n, then there exists a pseu-
dorandom generator Gf : {0, 1}� → {0, 1}m. Moreover, Gf makes q = 1 query to f

and has seed length � = O(n).

Note that this construction is extremely efficient, with only one query to the one-way
function and a linear seed length.

Our presentation of the proof of Theorem 25.2 will use more complex concepts
than the traditional presentation, in order to set the stage for Section 25.6, where we
handle general one-way functions. The construction and security reduction implicit
in the proof are actually the same as in the traditional presentation; they are just
described using different language.
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The first step of the proof is to observe that the definition of one-wayness can
be directly related to a computational analogue of guessing entropy, as defined in
Lemma 25.3, simply by restricting the guesser A to be efficient:

Definition 25.11 (Guessing pseudoentropy Hsiao et al. [2007]) Let X and Y be jointly distributed
random variables of total length poly(n) for a security parameter n. We say that
X has guessing pseudoentropy2 at least k given Y if for some s(n) = nω(1) and all
nonuniform algorithms A running in time s(n), we have

Pr [A(Y ) = X] ≤ 2−k ,

where the probability is taken over (X, Y ) and the coin tosses of A.

If we take Y = f (X) for a one-way function f , then the one-wayness of f implies
that the above definition is satisfied for 2−k = n−ω(1):

Lemma 25.7 If f : {0, 1}n →{0, 1}n is a one-way function, and X is uniformly distributed in {0, 1}n,
then X has guessing pseudoentropy ω(log n) given f (X).

Recall that guessing entropy is equal to average min-entropy in the information-
theoretic setting (Lemma 25.3). In the computational setting, however, they are not
equivalent; that is, guessing pseudoentropy is not in general equal to pseudo-min-
entropy. Indeed, if f is a one-to-one one-way function, then X has negligible pseudo-
min-entropy given f (X), since for every X′ such that H∞(X′|f (X)) is nonnegligible,
the efficient test T (x , y) that outputs 1 iff y = f (x) distinguishes (X, f (X)) from
(X′, f (X)).

Nevertheless, guessing pseudoentropy does support randomness extraction,
not by arbitrary extractors, but ones meeting the following definition, which re-
quires that the extractor is efficiently “list-decodable,” in the sense that any test
T that distinguishes the output of the extractor (on a fixed but unknown source
element x) from uniform can be used to efficiently describe a list of at most
2k elements that includes x. We will allow this list-decoding to be probabilistic
and require it to succeed with some constant probability over its randomness r .
Rather than asking the decoder to explicitly write down all 2k elements of the
list, we will index into the list by strings z of length k provided as input to the
decoder.

2. This was called “unpredictability entropy” by Hsiao et al. [2007], but we use the term guessing
pseudoentropy to highlight its relationship with guessing entropy (which happens to equal average
min-entropy).
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Definition 25.12 List-decodable extractors Trevisan [2001], Ta-Shma and Zuckerman [2004], Barak
et al. [2003], Vadhan [2012].3 A function Ext : {0, 1}n × {0, 1}d →{0, 1}m is a (t , k , ε)-
list-decodable extractor if there is a nonuniform time t oracle algorithm Dec :
{0, 1}k × {0, 1}� →{0, 1}n such that the following holds: for every x ∈ {0, 1}n and T :
{0, 1}d × {0, 1}m →{0, 1} satisfying

∣∣Pr[T (Ud , Ext(x , Ud)) = 1] − Pr[T (Ud , Um) = 1]
∣∣

> ε, we have

Pr
r

R←{0, 1}�

[
∃z ∈ {0, 1}k DecT (z, r) = x

]
≥ 1

2
.

It is known that if we remove the time bound on the decoder t (i.e., set t =
∞), then list-decodable extractors are equivalent to standard (k , ε) randomness
extractors up to an additive log(1/ε) + O(1) change in the min-entropy k and a
constant factor in the error parameter ε. (See Vadhan [2012, Props. 6.23 and 7.72].)

Our reason for considering list-decodable extractors is that they extract pseudo-
random bits from guessing pseudoentropy:

Lemma 25.8 (Extraction from guessing pseudoentropy Ta-Shma and Zuckerman [2004], Hsiao
et al. [2007]) Let X and Y be jointly distributed random variables of total length
poly(n) for a security parameter n, and where X has length m. Suppose X has
guessing pseudoentropy at least k given Y , and that for every t = nω(1), there is
an ε = n−ω(1) such that Ext : {0, 1}m × {0, 1}d → {0, 1}m′

is a (t , k − log(3/ε), ε)-list-
decodable extractor. Then (Ud , Ext(X, Ud), Y )

c≡ (Ud , Um, Y ).

Proof By the definition of guessing pseudoentropy, there is an s = nω(1) such that for every
nonuniform A running in time s,

Pr[A(Y ) = X] ≤ 2−k.

Let t =√
s = nω(1). By hypothesis, there is an ε = n−ω(1) such that Ext is a (t , k′, ε)-

list-decodable extractor for k′ = k − log(3/ε). Let Dec : {0, 1}k′ × {0, 1}� →{0, 1}n be
as guaranteed by Definition 25.12.

We will show that no nonuniform time t algorithm T can distinguish (Ud ,
Ext(X, Ud), Y ) and (Ud , Um, Y ) with advantage greater than 2ε. Suppose for con-
tradiction that there is a nonuniform time t algorithm T such that

3. This is a variant of definitions that appear in the literature under different names, such as
“reconstructive extractors” and “black-box pseudorandom generator constructions.” In particular
the definition in Vadhan [2012] of “black-box pseudorandom generator constructions” amounts
to a definition of locally list-decodable extractors, where we only measure the time complexity of
computing any one bit of the source string x, rather than all n bits at once.
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∣∣Pr[T (Ud , Ext(X, Ud), Y ) = 1] − Pr[T (Ud , Um, Y ) = 1]
∣∣> 2ε.

Then with probability at least ε over (x , y)
R← (X, Y ), we have∣∣Pr[T (Ud , Ext(x , Ud), y) = 1] − Pr[T (Ud , Um, y) = 1]

∣∣> ε.

When this event occurs, we have

Pr
r

R←{0, 1}�

[
∃z ∈ {0, 1}k′ DecT (., .,y)(z, r) = x

]
≥ 1

2
.

Therefore, if we define A(y) = DecT (., .,y)(Z , R), where Z and R are both chosen
uniformly at random, we have

Pr[A(Y ) = X] ≥ ε . 1
2

. 2−k′ > 2−k.

Moreover, being obtained from the time t algorithm Dec with an oracle T that is
also a time t algorithm, A is a nonuniform algorithm running in time at most t2 = s.
This contradicts the guessing pseudoentropy of X given Y .

One of the many interpretations of the celebrated Goldreich–Levin Hardcore Bit
Theorem is as providing a list-decodable extractor.

Theorem 25.3 (GL extractor Goldreich and Levin [1989]) For every ε > 0, the function Ext(x , r) =(∑
i xiri

)
mod 2 is a (poly(n, 1/ε), 2 log(1/ε) + O(1), ε)-list-decodable extractor.

Note that for any k = ω(log n), the GL extractor satisfies the conditions of Lemma
25.8. Indeed, for any t = nω(1), if we set ε = max{1/t1/c , k/4} for a large enough con-
stant c, then Theorem 25.3 ensures that Ext is a (t , k − log(3/ε), ε)-list-decodable
extractor.

We now can prove Theorem 25.2, constructing a pseudorandom generator from
any one-way permutation.

Proof (of Theorem 25.2) Let f : {0, 1}n → {0, 1}n be a one-way permutation, and let
Ext(x , r) = (∑i xiri

)
mod 2. Define

Gf (x , r) = (r , Ext(x , r), f (x)).

Note that Gf is polynomial-time computable with one query to f , has seed length
� = 2n, and has output length m = 2n + 1.

All that remains is to prove the pseudorandomness of Gf (U�). Let X and R be
random variables uniformly distributed in {0, 1}n, set Y = f (X). By Lemma 25.7, X
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has guessing pseudoentropy ω(log n) given Y . By Theorem 25.3 and Lemma 25.8,
we have

Gf (X, R) ≡ (R , Ext(X, R), Y )
c≡ (R , U1, Y ) ≡ U2n+1.

Before moving on to the case of general one-way functions, we revisit the re-
lationship between guessing pseudoentropy and ordinary pseudo-min-entropy. As
noted above, the example Y = f (X) for a one-to-one one-way function f shows
that X having noticeable guessing pseudoentropy given Y does not in general im-
ply that X has noticeable pseudo-min-entropy given Y . However, it turns out that
this implication does hold when X is short:

Theorem 25.4 (Guessing pseudoentropy vs. pseudo-min-entropy Zheng [2014], Skórski et al.
[2015]) Let (X, Y ) be jointly distributed random variables, where X is distributed
over strings of length �=O(log n) and Y is distributed over strings of length poly(n),
for a security parameter n. Then for every k ∈ [0, �], the following are equivalent:

1. There is a negligible ε = ε(n), such that X has guessing pseudoentropy at
least k − ε given Y .

2. There is a negligible ε = ε(n) such that X has pseudo-min-entropy at least
k − ε given Y .4

As discussed by Zheng [2014], the case of Boolean X (i.e., � = 1) amounts
to a reinterpretation of (tight) versions of Impagliazzo’s Hardcore Theorem
[Impagliazzo 1995, Klivans and Servedio 2003, Barak et al. 2009, Sudan et al. 2001].
We also remark that the version of Theorem 25.4 by Skórski, Golovnev, and Pietrzak
[Skórski et al. 2015] relaxes the condition that X is short (i.e., � = O(log n)) to the
pseudoentropy deficiency being small (i.e., � − k = O(log n)).

25.6 One-Way Functions to Pseudorandom Generators
We now turn to constructing pseudorandom generators from arbitrary one-way
functions. Specifically, we will sketch the most efficient construction to date:

Theorem 25.5 (Improved PRGs from OWFs Haitner et al. [2013], Vadhan and Zheng [2012]) If
there exists a one-way function f : {0, 1}n → {0, 1}n, then there exists a pseudo-

4. Actually, we can replace Item 2 with the statement that X has pseudo-min-entropy at least k

given Y , with no negligible loss, by exploiting the slackness afforded by indistinguishability. In-
deed, suppose (X, Y )

c≡ (X′, Y ) where H∞(X′|Y ) ≥ k − ε. It can be shown that (X′, Y ) is statistically
indistinguishable from some (X′′, Y ) such that H∞(X′′|Y )≥ k. Then (X, Y ) is also computationally
indistinguishable from (X′′, Y ), and hence X has pseudo-min-entropy at least k given Y .
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random generator Gf : {0, 1}� → {0, 1}m with seed length � = Õ(n3) that makes
q = Õ(n3) queries to f .

Pseudoentropy from One-Way Functions. Like the proof of Theorem 25.2 given
above, we will begin the proof of Theorem 25.5 by looking for some form of pseu-
doentropy in an arbitrary one-way function f . Note that the fact that X has guessing
pseudoentropy ω(log n) given f (X) (Lemma 25.7) holds for every one-way function,
regardless of whether or not it is one-to-one. However, when f is many-to-one, this
fact may hold for trivial information-theoretic reasons. Indeed, consider any func-
tion f that ignores the first half of its input. Then X has average min-entropy at least
n/2 given f (X), so in particular has guessing pseudoentropy at least n/2 = ω(log n)

given f (X), regardless of the one-wayness of f .
Thus, we need to replace guessing pseudoentropy with a notion that captures

the gap between the computational and information-theoretic hardness in X given
f (X). To do so, we need to exploit the fact that one-wayness guarantees that it
is hard to find any preimage of f (X), something that is not captured by guessing
pseudoentropy. We will do this by using a computational analogue of KL divergence
(a.k.a. relative entropy). We begin with the information-theoretic definition.

Definition 25.13 (KL divergence) Let A and A′ be two discrete random variables. The Kullback–
Leibler (KL) divergence from A to A′ is

KL
(
A‖A′)= E

a
R←A

[
log
(

Pr[A = a]
Pr[A′ = a]

)]
.

It can be shown that KL
(
A‖A′) ≥ 0, with equality iff A and A′ are identically dis-

tributed. Thus KL divergence can be thought of as a measure of “distance” be-
tween probability distributions, but note that it is not symmetric and does not
satisfy the triangle inequality. Also note that KL

(
A‖A′) is infinite if (and only if)

Supp(A) ⊆ Supp(A′).
For intuition about KL divergence, it is useful to consider the case of flat distribu-

tions (where A and A′ are uniform on their supports). Then, if Supp(A) ⊆ Supp(A′),
KL
(
A‖A′)= log(| Supp(A′)|/| Supp(A)|), so KL(A||A′) measures how densely A is

contained in A′. More generally, if A′ is flat and A is an arbitrary random variable
such that Supp(A) ⊆ Supp(A′), then KL

(
A‖A′)= log | Supp(A′)| − H(A) = H(A′) −

H(A).
We will also refer to a conditional version of KL divergence.

Definition 25.14 (Conditional KL divergence) Let (A, B) and (A′, B ′) be two pairs of discrete ran-
dom variables. The Kullback–Leibler (KL) divergence from A|B to A′|B ′ is
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KL
(
A|B‖A′|B ′) = E

b
R←B

[
KL
(
A|B=b‖A′|B ′=b

)]
= KL

(
(A, B)‖(A′, B ′)

)− KL
(
B‖B ′) .

Note that the dependence of KL
(
A|B‖A′|B ′) on (A′, B ′) involves only the family of

conditional probability distributions {A′|B ′=b}. In particular, it does not depend on
the marginal distribution of B ′.

The computational analogue of KL divergence we will use is the following:

Definition 25.15 (Conditional KL-hardness Vadhan and Zheng [2012]) Let (X, Y ) be a pair of jointly
distributed random variables of total length poly(n), where n is the security param-
eter. We say that X is �-KL-hard given Y iff for some s(n) = nω(1) and all nonuniform
algorithms A running in time s(n), we have

KL (X|Y‖A(Y )|Y ) ≥ �.

Equivalently, we require

KL ((X, Y )‖(A(Y ), Y )) ≥ �.

The goal of the adversary A is to minimize the divergence KL (X|Y‖A(Y )|Y ). To
make the divergence small, A(y) should output a distribution that is as close as
possible to the conditional distribution X|Y=y. That is, the distribution A(y) should
contain the distribution X|Y=y as tightly as possible.

A computationally unbounded adversary A can achieve zero divergence by hav-
ing A(y) be distributed exactly according to the conditional distribution X|Y=y.
Therefore, X being �-KL-hard-to-sample given Y for a nonzero � is a statement
purely about computational hardness, not information-theoretic hardness. This is
in contrast to guessing pseudoentropy, which can be large for purely information-
theoretic reasons (as discussed earlier).

We can still show that an arbitrary one-way function gives us KL hardness:

Lemma 25.9 (KL-hardness from one-way functions Vadhan and Zheng [2012]) If f : {0, 1}n →
{0, 1}n is a one-way function and X is uniformly distributed in {0, 1}n, then X is
ω(log n)-KL-hard given f (X).

Proof Sketch Like statistical difference, KL divergence has the property it cannot be increased
by applying a function. That is, for all functions T and random variables W and Z,
KL (T (W)‖T (Z)) ≤ KL (W‖Z). This fact is known as the data-processing inequality
for KL divergence. We will apply this inequality with the test T (x , y) that outputs
1 if y = f (x) and 0 otherwise. Specifically, for every adversary A running in time
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s(n) = nω(1), we have

KL ((X, f (X))‖(A(f (X)), f (X)))

≥ KL (T (X, f (X))‖T (A(f (X)), f (X))) (data-processing inequality)

= log
(

1
Pr[T (A(f (X)), f (X)) = 1]

)
(Pr[T (X, f (X)) = 1] = 1)

= log
(

1
Pr[A(f (X)) ∈ f −1(f (X))]

)
(def of T )

= log(nω(1)) (one-wayness of f )

= ω(log n).

Similarly to Theorem 25.4, we can also relate KL-hardness to pseudoentropy
when X is short:

Theorem 25.6 (KL-hardness vs. pseudoentropy Vadhan and Zheng [2012]) Let (X, Y ) be jointly
distributed random variables, where X is distributed over strings of length � =
O(log n) and Y is distributed over strings of length poly(n), for a security parameter
n. Then for every � ∈ [0, � − H(X|Y )], the following are equivalent:

1. There is a negligible ε = ε(n) such that X is (� − ε)-KL-hard given Y .

2. There is a negligible ε = ε(n) such that X has pseudoentropy at least
H(X|Y ) + � − ε given Y .5

Note that, as we desired, the KL-hardness quantifies the gap between the pseudoen-
tropy and the real entropy H(X|Y ).

However, we cannot directly combine Theorem 25.6 and Lemma 25.9, since the
input X to a one-way function is not short. Fortunately, KL-hardness is preserved if
we break X up into short blocks:

Lemma 25.10 (Blockwise KL-hardness [Vadhan and Zheng 2012]) Let (X, Y ) be a pair of jointly
distributed random variables of total length poly(n), where n is the security param-
eter, and let X = (X1, . . . , Xm) be a partition of X into blocks. If X is �-KL-hard
given Y , then for I uniformly distributed in {1, . . . , m} XI is (�/m)-KL-hard given
(Y , X1, . . . , XI−1).

Proof Sketch Suppose for contradiction that there is an efficient adversary A such that

KL
(
(Y , X1, . . . , XI)‖(Y , X1, . . . , XI−1, A(Y , X1, . . . , XI−1))

)
< �/m.

5. Similarly to Footnote 4, the negligible loss of ε in Item 2 can be removed.



714 Chapter 25 Computational Entropy

That is, A samples one block XI given Y and the previous blocks X1, . . . , XI−1 with
approximately the correct distribution. We now construct an adversary B that uses
A iteratively to sample all of X given only Y . Specifically, B(y) defined as follows:

. For i = 1, . . . , m, let xi = A(y , x1, . . . , xi−1).

. Output x = (x1, . . . , xm).

Notice that if A achieves divergence zero—that is, A(y , x1, . . . , xi−1) is always dis-
tributed exactly according to the conditional distribution Xi|Y=y ,X1=x1, . . . ,Xi−1=xi−1

—then B will also achieve divergence zero, i.e., B(y) is always identically distributed
to X|Y=y. More generally, it can be shown that the divergence achieved by B equals
the sum of the divergences achieved by A over the m blocks. That is,

KL (X|Y‖B(Y )|Y )

=
m∑

i=1

KL
(
Xi|(Y , X1, . . . , Xi−1)‖A(Y , X1, . . . , Xi−1)|(Y , X1, . . . , Xi−1)

)
,

= m . KL
(
XI |(Y , X1, . . . , XI−1)‖A(Y , X1, . . . , XI−1)|(Y , X1, . . . , XI−1)

)
,

< �,

contradicting the KL hardness of X given Y .

Combining Lemma 25.10 and Theorem 25.6, we see that if X is �-KL-hard given
Y and we partition X into m short blocks, then, on average, those blocks will have
pseudoentropy larger than their real entropy by �/m (given the previous blocks and
Y ). The latter conclusion can be reinterpreted using the following blockwise notion
of pseudoentropy:

Definition 25.16 (Next-block pseudoentropy Haitner et al. [2013]) Let X = (X0, X1, . . . , Xm) be a
sequence of random variables distributed on strings of total length poly(n) for a
security parameter n. We say that X has next-block pseudoentropy at least k if there
is a sequence of random variables (X′

0, X′
1, . . . , X′

m
), jointly distributed with X, such

that:

1. For each i = 0, . . . , m, (X0, X1, . . . , Xi−1, Xi)
c≡ (X0, X1, . . . , Xi−1, X′

i
).

2.
∑m

i=0 H(X′
i
|X0, . . . , Xi−1) ≥ k.

That is, to an “online” adversary that observes the random variables (X0, . . . ,
Xm) in sequence, at each step the next block Xi looks like a “higher entropy”
random variable X′

i
. For comparison, consider the notion of next-bit pseudo-

randomness, where each of the blocks is of length 1 and (X1, . . . , Xi−1, Xi)
c≡

(X1, . . . , Xi−1, X′
i
) where X′

i
is a uniformly random bit independent of (X1, . . . ,
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Xi−1). As asserted by Yao, next-bit pseudorandomness is equivalent to both the
notion of next-bit unpredictability of Blum and Micali [1984] as well as to pseudo-
randomness of the entire sequence as in Definition 25.7. Next-block pseudoentropy
can be thought of as a quantitative generalization of this classic notion, but, im-
portantly, it is not generally equivalent to pseudoentropy of the entire sequence as
demonstrated by the following theorem and discussion:

Theorem 25.7 (Next-block pseudoentropy from OWFs Vadhan and Zheng [2012]) Let f : {0, 1}n
→ {0, 1}n be a one-way function, let X be uniformly distributed in {0, 1}m, and
let X = (X1, . . . , Xm) be a partition of X into blocks of length O(log n). (For ex-
ample, we can set m = n and set Xi to be the i’th bit of X.) Then the sequence
(f (X), X1, . . . , Xm) has next-block pseudoentropy at least n + ω(log n).

As discussed earlier, the global pseudoentropy of the random variable (f (X), X) is
at most n + n−ω(1), since the test T (y , x) that checks whether y = f (x) distinguishes
(f (X), X) from every distribution of entropy noticeably more than n. Theorem
follows combining Lemma 25.9, Lemma 25.10, and Theorem 25.6.

Notice that the amount of next-block pseudoentropy in (f (X), X) is ω(log n)

bits larger than the number of random bits we need to generate it (choosing
a uniformly random X). Thus, if we can extract this pseudoentropy to produce
pseudorandomness, we will have a pseudorandom generator. Unfortunately, Theo-
rem 25.7 only guarantees pseudoentropy in the Shannon sense, whereas we need
(pseudo-)min-entropy to extract (Lemma 25.6). Thus, we first need to apply flatten-
ing (Lemma 25.5).

Flattening Pseudoentropy. By Theorem 25.7, there are real numbers k0, k1, . . . ,
km ≥ 0 such that if we let X0 = f (X) and X = (X1, . . . , Xm), we have:

1.
∑m

i=0 ki = n + ω(log n).

2. Xi has pseudoentropy at least ki given X0, . . . , Xi−1 for i = 0, . . . , m.

To flatten, we take t independent inputs X(1), . . . , X(t) sampled uniformly from
{0, 1}n for the one-way function f , define blocks for each by setting X

(i)
0 = f (X(i))

and (X
(i)
1 , . . . , X(t)

m
) = X(i), and create larger blocks X̃0, . . . , X̃m as follows:

. X̃0 = (f (X(1)), f (X(2)), . . . , f (X(t))).

. X̃i = (X
(1)
i , X

(2)
i , . . . , X

(t)
i ) for i = 1, . . . , m.

Then using Lemma 25.5 (and its generalization to conditional entropy) with ε =
n− log n, it can be shown that for each i, the block X̃i has pseudo-min-entropy at
least k̃i = t . ki − O(

√
t . log n . �i), where �i is the bit-length of the ith block.
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For t = n2, it can be checked that
∑

i k̃i = t . (n + ω(log n)), so the pseudo-min-
entropy in the blocks X̃i is (significantly) larger than the t . n bits used to generate
them. Applying a randomness extractor to each of these larger blocks, we obtain
the following pseudorandom generator.

A “Nonuniform” Pseudorandom Generator. The following construction requires
knowledge of the entropy thresholds ki, which may be hard to compute and thus
are provided as nonuniform advice to the pseudorandom generator. Later we will
see how to remove this nonuniformity.

The seed of our pseudorandom generator consists of the t independent inputs
x(1), . . . , x(t) to f , and descriptions of universal hash functions h0, . . . , hm where
hi has output length k̃i − ω(log n), and the output is

Gf (x(1), . . . , x(t), h0, . . . , hm) = (h0, . . . , hm, h0(x̃0), . . . , hm(x̃m)).

Pictorially:

x̃0 x̃1 . . . x̃m

‖ ‖ ‖
x(1) = f (x(1)) x

(1)
1

. . . x(1)
m

x(2) = f (x(2)) x
(2)
1

. . . x(2)
m...

...
...

...
...

x(t) = f (x(t)) x
(t)
1

. . . x(t)
m

↑ ↓ ↓ . . . ↓
seed → h0 h1 . . . hm → output

↓ ↓ . . . ↓
h0(x̃0) h1(x̃1) . . . hm(x̃m) → output

It can be proven, following the arguments sketched above, that the output of this
generator is indeed pseudorandom and longer than its seed length.

Entropy Equalization. We address the nonuniformity issue above by the following
“entropy equalization” technique, which converts any next-block pseudoentropy
generator into one where every block has guaranteed to have at least the average
amount of pseudoentropy of the blocks in the original generator. It works by con-
catenating many independent samples of the next-block-pseudoentropy generator,
but left-shifted by a random offset from {0, 1, . . . , m}, so that each block of the new
generator has equal probability of being each of the m + 1 blocks of the original
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generator. We do not use a cyclic shift, but rather drop appropriate parts of the first
and last blocks.

Lemma 25.11 (Entropy equalization Haitner et al. [2009b], Haitner et al. [2013]) Let X = (X0,
. . . , Xm) be a random variable distributed on strings of length poly(n), where n

is a security parameter. Suppose X has next-block pseudoentropy at least k. For a
parameter u ∈ N, consider the random variable X̂ defined as follows:

1. Let X(1), . . . , X(u) be u independent samples of X, with blocks X(i) = (X
(i)
0 ,

. . . , X(i)
m

).

2. Choose J
R← {0, . . . , m}.

3. Output

X̂ = (X̂0, X̂1, . . . , X̂(u−1).(m+1))

def= (J , X
(1)
J , X

(1)
J+1, . . . , X(1)

m
, X

(2)
0 , . . . , X(2)

m
, . . . X

(u−1)
0 , . . . ,

X(u−1)
m

, X
(u)
0 , . . . , X

(u)
J−1).

That is, X̂0 = J and X̂i = X
(�(J+i+m)/(m+1))�
(J+i+m)mod(m+1)

for i = 1, . . . , (u − 1) . (m + 1).

Then for every i = 1, . . . , (u − 1) . (m + 1), X̂i has pseudoentropy at least k/(m + 1)

given X̂0, . . . , X̂i−1.

As stated above, the left-shifting is not cyclic; we drop J blocks of X(1) and m +
1 − J blocks of X(u). Intuitively, X̂i has pseudoentropy at least k/(m + 1) given
the previous blocks because X̂i is a copy of X(J+i+m)mod(m+1) and (J + i + m) mod
(m + 1) is uniformly distributed in {0, . . . , m}. Notice that the total next-block
pseudoentropy guaranteed in the blocks X̂i for i > 1 is ((t − 1) . (m + 1)) . (k/(m +
1)) = (t − 1) . k. We generated X̂ using t copies of X, which had t . k bits of next-
block pseudoentropy, but we lost one copy’s worth of pseudoentropy by discarding
a prefix of the first copy and a suffix of the last copy.

Applying this to the next-block pseudoentropy generator of Theorem 25.7, with
k = n + ω(log n), we can take u = n/ log n and have

(u − 1) . k = u . (n + ω(log n)) − k = u . (n + ω(log n)),

so we still have much more pseudoentropy than the u . n + log u bits used to gen-
erate X̂.

Applying the flattening and extraction procedure to this entropy-equalized next-
block pseudoentropy generator (rather than to the one of Theorem 25.7), we obtain
a uniformly computable pseudorandom generator that makes q = u . t = O(n3)
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queries to the one-way functions (with a factor of t = O(n2) coming from flattening
and a factor of u = O(n) from entropy equalization), and has seed length O(q . n) =
O(n4).

To save an extra factor of n in the seed length as claimed in Theorem 25.5,
the idea is to show that the repetitions used for entropy equalization need not be
independent, and instead randomness can be (adaptively) recycled in a way that is
similar to the length expansion for pseudorandom generators. We refer to Vadhan
and Zheng [2012] for more details.

25.7 One-Way Functions to Statistically Hiding Commitments
In this section, we describe how another form of computational entropy, inacces-
sible entropy, is used to construct statistically hiding commitment schemes from
one-way functions. In doing so, we will highlight the duality between the con-
struction and notions used below and those that were used above for constructing
pseudorandom generators.

Commitment Schemes. Recall that a commitment scheme is a two-party protocol
between a sender S and a receiver R. The protocol consists of two phases. In the
commit phase, the sender takes as input a message m of length poly(n), in addition
to both parties receiving the security parameter n. In the reveal phase, the sender
reveals the message m to the receiver and “proves” that m is the message to which
it committed in the first phase, after which the receiver accepts or rejects. Without
loss of generality, the sender’s proof can consist of the coin tosses r she used in the
commit phase, and the receiver simply checks that the transcript of the commit
phase is consistent with the behavior of the sender algorithm S(m; r) on message
m and coin tosses r .

A commitment scheme has two security requirements. Informally, the hiding
property requires that the receiver should learn nothing about the message m

during the commit phase. The binding property requires that after the commit
phase, there should be a unique message m that the sender can successfully reveal.
Typically, one of these two security properties is statistical (with security against
computationally unbounded adversaries), while the other is computational.

Statistically binding commitments can be constructed from any pseudorandom
generator [Naor 1991], and hence from any one-way function by Theorem 25.1.
Thus, our focus in this section is on the analogous result for statistically hiding
commitments:

Theorem 25.8 (Statistically hiding commitments from OWF Haitner et al. [2009a]) If there exists
a one-way function, then there exists a statistically hiding commitment scheme.
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The original proof of Theorem 25.8 was even more complex than the original proof
of Theorem 25.1. Haitner, Reingold, Vadhan, and Wee [Haitner et al. 2009b] gave
a much simpler and more conceptual proof using a new computational notion
of entropy, called inaccessible entropy. That construction actually predated and
inspired the more efficient construction of pseudorandom generators from one-
way functions given in Section 25.6.

Commitment Schemes and Computational Entropy. We begin by explaining, at an
intuitive level, the relationship between commitment schemes and notions of
computational entropy.

A statistically binding commitment scheme is very related to pseudorandomness
and pseudoentropy. As mentioned above, Naor [1991] exhibited a very efficient con-
struction of statistically binding commitments from any pseudorandom generator.
Conversely, consider running a statistically binding commitment protocol on a uni-
formly random message M , and let T be the transcript of the commit phase. Then
the statistical binding property implies that M has negligible real entropy given
T (since with all but negligible probability over t ← T , there should be only one
message m in the support of M|T=t). On the other hand, the computational hiding
property implies that M is pseudorandom given T (i.e., (M , T )

c≡ (U , T ), where U

is a uniformly random message independent of M and T ). So the pseudoentropy
of M given T is much higher than the real entropy of M given T .

Let us now consider the case of a statistically hiding commitment scheme. The
statistical hiding property implies that M is statistically close to uniform given T

(i.e., (M , T )
s≡ (U , T )). On the other hand, the computational binding property says

that, from the perspective of a polynomial-time sender, M is effectively determined
by T . That is, although M has a lot of real entropy given T , a computationally
bounded algorithm cannot “access” this entropy. This motivates the following
definition of (next-block) accessible entropy, which should be thought of as “dual”
to (next-block) pseudoentropy (Definition 25.16):

Definition 25.17 (Next-block accessible entropy Haitner et al. [2009b]) Let n be a security param-
eter, and Y = (Y1, . . . , Ym) be a random variable distributed on strings of length
poly(n). We say that Y has next-block accessible entropy at most k if the following
holds for some s(n) = nω(1).

Let G̃ be any nonuniform, probabilistic algorithm running in time s(n) that
takes a sequence of uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a
sequence Ỹ = (Ỹ1, . . . , Ỹm) in an “online fashion” by which we mean that Ỹi =
G̃(R̃1, . . . , R̃i) depends on only the first i random strings of G̃ for i = 1, . . . , m.
Suppose further that Supp(Ỹ ) ⊆ Supp(Y ).
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Then we require

m∑
i=1

H(Ỹi|R̃1, . . . , R̃i−1) ≤ k.

For intuition, think of each individual block Yi as corresponding to a message
being committed to in a statistically hiding commitment scheme, and the prefix
Y<i = (Y1, . . . , Yi−1) as the transcript of a commit phase for Yi. The adversary G̃ is
analogous to a sender trying to break the computational binding property of the
commitment scheme. G̃ is trying to generate a message Ỹi with as much entropy
as possible, conditioned on its internal state after the commit phase, which is
represented by its prior coin tosses R̃1, . . . , R̃i−1. The condition that Supp(Ỹ ) ⊆
Supp(Y ) is analogous to the fact that the reveal phase of a commitment scheme
demands that the message revealed is consistent with the transcript of the commit
phase. Indeed, the security properties of a statistically hiding commitment scheme
can be captured by using a generalization of the definition of accessible entropy to
messages in interactive protocols [Haitner et al. 2009b].

(Next-block) accessible entropy differs from (next-block) pseudoentropy in two
ways:

1. Accessible entropy is useful as an upper bound on computational entropy,
and is interesting when it is smaller than the real entropy H(Y ). We refer to
the gap H(Y ) − k as the inaccessible entropy of Y .

2. The accessible entropy adversary G̃ is trying to generate the random variables
Yi conditioned on the history rather than recognize them. Note that we take
the “history” to not only be the previous blocks (Ỹ1, . . . , Ỹi−1), but the coin
tosses (R̃1, . . . , R̃i−1) used by G̃ to generate those blocks. This ensures that
the randomness we measure in Ỹi comes only from R̃i, so G̃ really needs to
operate in an online fashion. 6

The proof of Theorem 25.8 begins by showing that every one-way function has
next-block inaccessible entropy:

Theorem 25.9 (Inaccessible entropy from OWFs Haitner et al. [2009b]) Let f : {0, 1}n → {0, 1}n
be a one-way function, let X be uniformly distributed in {0, 1}n, and let (Y1, . . . , Ym)

6. If we had conditioned only on the prior output blocks Ỹ1, . . . , Ỹi−1, then an adversary that
runs an honest sampling algorithm once for Y = (Y1, . . . , Ym) would achieve accessible entropy∑

i H(Ỹi|Ỹ1, . . . , Ỹi−1) =
∑

i H(Yi|Y1, . . . , Yi−1) = H(Y ). Here the entire sequence is determined
by R̃1, the coin tosses for generating Y , but we can get nonzero entropy for blocks 2–m since Ỹ1

will not determine R̃1 in general.
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be a partition of Y = f (X) into blocks of length O(log n). Then (Y1, . . . , Ym, X) has
next-block accessible entropy at most n − ω(log n).

Notice that this statement is similar to Theorem 25.7, except that it refers to acces-
sible entropy rather than pseudoentropy, it asserts an upper bound rather than a
lower bound on the computational entropy, and that it requires partitioning f (X)

rather than X into short blocks.
Given Theorem 25.9, the construction of statistically hiding commitments from

one-way functions (Thm. 25.8) follows the same template as what we saw for pseu-
dorandom generators in Section 25.6:

1. An “entropy equalization” step that converts Y = (Y1, Y2, . . . , Ym+1) into a
random variable Ŷ = (Y0, Y2, . . . , Ym̂) generator where (a lower bound on) the
real entropy in each block conditioned on the prior blocks before it is known,
and the total next-block accessible entropy is significantly smaller than the
total real entropy. The construction is exactly the same as in Lemma 25.11.

2. A “flattening” step that converts the real Shannon entropy guarantees into
real min-entropy. Specifically, after flattening each block will have high
(smoothed) min-entropy, while the total next-block accessible entropy is sig-
nificantly smaller than the total smoothed min-entropy. This construction is
again exactly the same as what we saw for pseudorandom generators. Note
that we do not claim that the accessible entropy gets converted into acces-
sible max-entropy by flattening; the reason is that the adversarial generator
need not behave independently across the repetitions of flattening.

3. A “hashing” step that converts the high min-entropy in each block to nearly
uniform randomness, and turns the low accessible entropy into a weak bind-
ing property (uniquely determining the block with noticeable probability,
similar in spirit to Lemma 25.2). The reason that the binding property is weak
comes from the fact that we only have a bound on accessible Shannon en-
tropy (as discussed above) and from the fact that an adversarial generator has
freedom in how to spread the accessible entropy across the blocks. Moreover,
in order to tolerate potentially malicious senders (as is required for bind-
ing), it is not enough to directly apply universal hashing, as the sender could
then decide on the message/block Ỹi after seeing the hash function. Instead,
we use (information-theoretic) “interactive hashing” [Naor et al. 1998, Ding
et al. 2007], which is designed to address this issue. Constructing full-fledged
statistically hiding commitments in this step also utilizes universal one-way
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hash functions [Naor and Yung 1989], which can be constructed from one-
way functions [Rompel 1990], as well some additional repetitions to amplify
the weak binding property. Without universal one-way hash functions, we
obtain a non-standard weak binding property, which nevertheless suffices
for some applications, such as constructing statistical zero-knowledge argu-
ments for all of NP.

For the proof of Theorem 25.9, we recommend the recent work of Agrawal, Chen,
Horel, and Vadhan [Agrawal et al. 2019], which gives a new, more modular proof
that uses a strengthening of KL-hardness (Definition 25.15), which further illu-
minates the duality between next-block pseudoentropy and next-block accessible
entropy.
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26A Survey of Leakage-
Resilient Cryptography
Yael Tauman Kalai and Leonid Reyzin

In the past 15 years, cryptography has made considerable progress in expanding
the adversarial attack model to cover side-channel attacks and has built schemes
to provably defend against some of them. This survey covers the main models and
results in this so-called leakage-resilient cryptography.

26.1 Introduction
In most theoretical work on cryptography, parties are afforded complete privacy for
their local computations. An adversary may, perhaps, be able to obtain a signature
on a chosen plaintext or a decryption of a chosen ciphertext, but typically the
signing or decryption process itself is assumed to be entirely hidden from the
adversary. In particular, the only information correlated with the secret key that
the theoretical adversary can obtain is typically confined to well-defined interfaces,
such as signing or decrypting. Such an adversary is sometimes called a “black-box”
attacker.

Work in modern cryptography—much of it pioneered by Shafi Goldwasser and
Silvio Micali—demonstrated that it is possible to provably (based on certain com-
putational complexity assumptions) defend against black-box attackers for large
classes of cryptographic tasks, such as pseudorandom generation [Blum and Mi-
cali 1982, 1984, Goldreich et al. 1984, 1986], encryption [Goldwasser and Micali
1982, 1984], signatures [Goldwasser et al. 1984, 1988], zero-knowledge proofs
[Goldwasser et al. 1985, 1989, 1986, 1991], and secure multi-party computation
[Goldreich et al. 1987, Ben-Or et al. 1988].
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Real adversaries, unfortunately, do not always respect such clean abstraction
boundaries. A variety of successful side-channel attacks have demonstrated that in-
formation about the secret key and the internal state of a computation can leak out
to a determined adversary. These attacks exploit the fact that every cryptographic
algorithm is ultimately implemented on a physical device that affects the environ-
ment around it in measurable ways. To mention just a few prominent examples,
attacks have exploited the time taken by a particular implementation of a crypto-
graphic algorithm [Kocher 1996], the amount of power consumed [Kocher et al.
1999], or the electromagnetic radiation [Agrawal et al. 2003]. So-called cold boot
attacks [Halderman et al. 2008, Halderman 2009] have been used to recover some
fraction of a cryptographic secret key given physical access to a powered-off device.
More recent attacks [Lipp et al. 2018, Kocher et al. 2019] allow processes to vio-
late isolation boundaries and read information from other processes on the same
machine—even those in secure enclaves [Van Bulck et al. 2018]. In other words, the
real adversary may not be black-box.

The emergence of side-channel attacks caused the cryptographic community
to re-evaluate the black-box adversary model and to create new adversary models
and provably secure designs. This line of work became known as “leakage-resilient
cryptography.” Shafi Goldwasser and Silvio Micali were again prominent in this
effort, both because their past work on black-box security informed models for
leakage resilience, and because they themselves proposed models that formalize
side-channel leakage and designed leakage-resilient schemes.

In this survey we cover some of the work on leakage-resilient cryptography. It is
important to emphasize that our selection is biased toward more theoretical and
foundational works. Even among those, our choices are necessarily biased by work
we know. The field is vast and rapidly growing: As of Februrary 2019, Google Scholar
finds over 400 papers with the phrase “leakage resilient” or “leakage resilience” in
the title, and about 2800 with the phrase “leakage resilient” in the paper (98% of
them published after 2006).

We do not address the vast literature dealing with adversaries who actively
tamper with the memory or computation of the honest parties, rather than merely
observe it (see, e.g., [Gennaro et al. 2004, Ishai et al. 2006, Dziembowski et al. 2010,
Faust et al. 2011, Liu and Lysyanskaya 2012, Faust et al. 2014a, Jafargholi and Wichs
2015, Faust et al. 2015], and [Dachman-Soled et al. 2015a]), even though it is, of
course, connected to the literature on leakage resilience, and often includes leakage
resilience as one of its goals.

We apologize in advance to authors whose work we could not include and to
readers who will be left to discover other work on their own.
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Because leakage-resilient cryptography is a relatively young subset of cryptogra-
phy, the gap between theory and practice is fairly large. This gap manifests itself
in the debates about the practical relevance of theoretical models and the ineffi-
ciencies of provably secure constructions. This survey focuses on more theoretical
work. An excellent source of more applied research in this field is the Conference
on Cryptographic Hardware and Embedded Systems (CHES) and the journal IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES).

A Bibliographic Note. For most papers, we cite the conference version. In the few
cases we are aware of the journal version, we cite it, as well. Many papers we cite
have full versions that were too long to appear in conference proceedings, easily
found through an on-line search, more often than not posted on https://eprint.iacr
.org. These full versions sometimes correct errors that appeared in the conference
version.

26.1.1 Early Works
Early works—such as work on oblivious RAM [Goldreich and Ostrovsky 1996],
threshold [Desmedt and Frankel 1990] and proactive [Herzberg et al. 1997] cryptog-
raphy, and forward [Günther 1990, Bellare and Miner 1999] and intrusion-resilient
[Itkis and Reyzin 2002] security—can be thought of, in hindsight, as works on leak-
age resilience. There are many other examples, too numerous to mention here.

We now elaborate on two particular lines of work. The first of these considers
leakage of some of the bits of the secret key. The second one considers leakage
during computation.

Leaking Bits from Keys. Motivated by the problem of key exposure, Canetti et
al. [2000], followed by Dodis, Sahai, and Smith [Dodis et al. 2001], proposed an
approach of storing a cryptographic key in a redundant form, so that the key
remains hidden even when some of the stored bits are leaked to the adversary. They
introduced the notion of an “exposure-resilient function” and showed a connection
to “all-or-nothing transforms” [Rivest 1997, Boyko 1999]. See Dodis [2000] for a
detailed exposition of these results. These results were limited to leakage that
consisted of subsets of bits of the stored secret, rather than more general functions
of it.

This line of work was generalized by the long sequence of works on memory
leakage, pioneered by Dziembowski [2006], Di Crescenzo, Lipton, and Walfish [Di
Crescenzo et al. 2006], and Akavia, Goldwasser, and Vaikuntanathan [Akavia et

https://eprint.iacr.org
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al. 2009], who considered arbitrary (poly-time computable) partial leakage from
memory. We elaborate on these works in Section 26.1.2 and Section 26.2.

Leakage from Computation. Chari et al. [1999] considered a formal model of at-
tacks in which every bit produced in a computation (i.e., every wire of a circuit) can
be measured by the adversary, but each measurement has noise (their model was
informed, in particular, by the differential power analysis attacks of Kocher et al.
[1999]). Independently, Goubin and Patarin [1999], also concerned about differ-
ential power analysis attacks, considered how to keep individual wire values in a
smart-card circuit independent of the secret key. Both papers suggested the follow-
ing countermeasure: represent each bit b by k random bits whose exclusive-or is
equal to b (this approach is also known as XOR-secret sharing or Boolean mask-
ing). Chari et al. [1999] showed that, given the noisy reading of all k shares of b, the
adversary can distinguish b = 0 from b = 1 only with advantage that is exponentially
small in k. They did not, however, show how to compute on shared versions of bits.
In contrast, Goubin and Patarin [1999] showed how to compute certain functions
using the shared versions of bits, but without a formal model in which to argue
security.

Precise models and provable approaches to handling leakage from computa-
tion were pioneered by the works of Ishai, Sahai, and Wagner [Ishai et al. 2003]
and Micali and Reyzin [2004]. We discuss this line of work in Section 26.1.2 and
Section 26.4.

26.1.2 Formalisms of Leakage-Resilient Cryptography
We coarsely divide the works on leakage-resilient cryptography into two strands.
The first of these considers leakage from memory, while the second considers
leakage during computation.

Memory Leakage. In most common models of memory leakage, the adversary is
usually allowed obtain an arbitrary polynomial-time computable but bounded-
length leakage on the secret key. The goal is to build cryptographic schemes that
remain secure even if this partial information about the secret key is available to
the adversary.

Dziembowski [2006] and Di Crescenzo, Lipton, and Walfish [Di Crescenzo et al.
2006] defined the term bounded retrieval model, which assumes that the adversary
can obtain at most K bits of information about the secret key, for some (absolute,
large) value K . The secret key is allowed to be larger than K , as long as the effi-
ciency of the scheme is not negatively affected: The running times of the relevant
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algorithms should grow only polylogarithmically with K . They constructed leakage-
resilient symmetric password and authentication protocols in this model.

Akavia, Goldwasser, and Vaikuntanathan [Akavia et al. 2009] considered ar-
bitrary leakage in the public-key setting. They considered the so-called bounded
memory leakage, in which the amount of leakage is not an absolute value but rather
is expressed as a function of the secret-key size (but growing the key is expensive,
because the running times of the relevant algorithms can grow polynomially with
the key size). Public-key schemes in the bounded retrieval model of Dziembowski
[2006] and Di Crescenzo et al. [2006] were also subsequently constructed [Alwen et
al. 2009]. The bounded memory leakage model was later generalized to so-called
auxiliary input leakage [Dodis et al. 2009]. In this model, leakage is not neces-
sarily bounded in size: the only requirement is the minimum necessary for any
security to remain, namely, that the secret should remain computationally hid-
den even given the leakage. Memory leakage was also generalized to the continual
setting [Brakerski et al. 2010, Dodis et al. 2010b], in which the secret key is peri-
odically updated, without updating the public key, and it is assumed that there is
bounded memory leakage within each time period, but there is no bound on the
overall leakage.

We elaborate on this line of work in Section 26.2.

Computation Leakage. The line of work on leakage from computation considers the
situation in which side-channel information comes from the intermediate values
created during a computation, rather than only from the secret itself. Sometimes
memory leakage models discussed above can also model leakage of intermediate
values created during a computation, because these values are just functions of
the secret memory. However, this approach to modeling leakage from computa-
tion fails whenever secret randomness is used during a computation (though a few
papers on memory leakage do model leakage from secret randomness; see Sec-
tion 26.2 for details).

There are even more important distinctions between the models of memory
and computation leakage. Memory leakage models most typically consider one-
time leakage (but see Section 26.2.5 for exceptions), while computational leakage
models typically consider continual leakage over multiple uses of the secret key,
forcing constructions to update the secret memory in order to maintain security.
On the other hand, computation leakage models usually place more restrictions on
the allowed leakage, such as, for example, assuming that different components of
a computation that are separated in space or in time leak independently (i.e., the
adversary can obtain separate leakage functions of some intermediate values, but
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not a joint function of them all), or that some memory does not leak at all. This
is in contrast to memory leakage models, which usually allow the leakage to be an
arbitrary (bounded) function of the entire secret.

Ishai, Sahai, and Wagner [Ishai et al. 2003] built on the work of Chari et al.
[1999] to model leakage from wires of a circuit. In the model of Ishai et al. [2003],
the computation is performed by a clocked circuit with a secret state (e.g., a circuit
implementing a block cipher with a secret key). The circuit is run repeatedly on var-
ious inputs, producing outputs and possibly also updating the state. The adversary
is able to provide inputs and observe outputs as well as the exact values of some
internal wires during the computation. This model and its variants resulted in a
long line of work that we survey in Section 26.4.3.

Micali and Reyzin [2004] gave a more general model of leakage during computa-
tion. They modeled computation as proceeding in steps, and allowed the adversary
to obtain different side-channel information at each step. Specifically, they de-
scribed their model in terms of random-access machines (RAMs, which are Turing
machines augmented with addressable memory) rather than circuits, although cir-
cuit variants of their model were considered later. In this model, an adversary is
able to specify a leakage function (from a class of available functions) at each step
of the computation. The function is applied to the current state of the computing
machine and the output is given to the adversary, who uses this information to
specify the function for the next step. In order to enable security against such gen-
eral attacks, Micali and Reyzin assumed the existence of secure storage that is not
given to the leakage function. That is, values can leak when being computed on and
being read from or written to memory, but once they are in memory, the leakage
function has no access to them. This assumption became known as “only com-
putation leaks information,” commonly abbreviated as OCL. This assumption was
generalized in later work, as discussed in Sections 26.3 and 26.4 (see, in particular,
Section 26.4.1). The power of this assumption comes from enabling constructions
that separate computation into two or more components that leak independently,
as shown in Dziembowski and Pietrzak [2008] (see Section 26.4.2.2).

We elaborate on leakage from computation in Section 26.4.

26.1.3 Roadmap
In this survey, we address the two strands of works on leakage-resilient cryptog-
raphy: “leakage from memory” (Section 26.2) and “leakage from computation”
(Section 26.4).

We emphasize that this division is not perfect. Some papers consider both
memory and computational leakage. In addition, some papers on memory leakage
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use results on computational leakage, and vice versa. Nevertheless, we feel this
division is helpful for systematizing knowledge in this area.

There is yet another category of papers on “leakage-resilient storage”. This cate-
gory lies in between the two categories described above. It considers the problem of
storage, rather than computation, and thus considers leakage from memory. How-
ever, papers in this category typically restrict the leakage function in the same way
as works in the “computational leakage” category do: the stored secret is separated
into components, and leakage functions are applied separately to each component,
but never jointly to all of them. The works in this category are described in Sec-
tion 26.3.

We assume that the readers possesses a solid background in cryptography and is
familiar with such concepts as CPA-secure encryption, zero-knowledge proofs, and
secure multi-party computation. We assume the reader is reasonably comfortable
with commonly used tools, such as randomness extractors1 and pseudorandom
generators.2

26.2 Memory Leakage
The main goal of works discussed in this section is to build cryptographic schemes
that can remain secure even if some partial information about the secret key is
available to the adversary. It is important to recall the basic fact that the adversarial
inability to recover the full secret key is a necessary, but not a sufficient, condition
for the security of a cryptographic construction.

26.2.1 The Models for Memory Leakage
As already mentioned in Section 26.1.2, Dziembowski [2006] and Di Crescenzo,
Lipton, and Walfish [Di Crescenzo et al. 2006] considered arbitrary leakage from
memory, proposing the bounded retrieval model. In this model, the adversary can
obtain an arbitrary polynomial-time computable leakage function of the secret
key, but the output size of this leakage function is bounded. Security is achieved

1. The notion of a seeded randomness extractor, introduced by Nisan and Zuckerman [1996], is
defined as follows: A function Ext : {0, 1}n × {0, 1}d → {0, 1}� is said to be a (k , ε) extractor if for
any random variable X over {0, 1}n with min-entropy k, and for a uniformly chosen r ← {0, 1}d , it
holds that (r , Ext(x , r)) is ε-statistically close to a uniform string over {0, 1}d+�.

2. The notion of a cryptographic pseudorandom generator (PRG), introduced in Blum and Micali
[1982], Yao [1982], and Blum and Micali [1984], is defined as follows: A function G : {0, 1}k →
{0, 1}� is a PRG if, for a uniform secret s, the output G(s) is computationally indistinguishable
from a uniform string over {0, 1}�.
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by making the secret key longer than this leakage length bound. While in most
cryptographic schemes long secret keys would translate into long running times,
this model requires that essentially the only price for increased leakage should
be increased secret storage: The running time of the parties should grow only
logarithmically with the leakage length bound. In particular, the parties do not need
to access the entire long secret key for each operation. We discuss this model and
relevant constructions in Section 26.2.4. Initially, works in the bounded retrieval
model achieved only symmetric-key cryptographic constructions, because growing
the secret key size while maintaining the public key the same presents a challenge.

In the public-key setting, Akavia, Goldwasser, and Vaikuntanathan [Akavia et al.
2009] considered arbitrary leakage from the secret key, defining the term bounded
memory leakage, also known as relative memory leakage. In this model, similarly
to the bounded retrieval model, the leakage function is an arbitrary bounded-
output-length polynomial-time computable function, but the output length of this
function is expressed as function of the key length (or, more generally, of the min-
entropy of the key). Typically, the goal is to obtain security even if a large fraction
of the secret key (or its min-entropy) is leaked. Unlike the bounded retrieval model,
this model does not place any restrictions on running times, and thus increasing
key size in order to allow more leakage (in absolute terms) will negatively affect the
performance of most constructions. We elaborate on this model in Section 26.2.2.

Shortly after, Dodis, Kalai, and Lovett [Dodis et al. 2009] generalized the notion
of bounded leakage to so-called auxiliary input leakage. In this model, the leakage
function can have unbounded output length, and the only restriction is that given
the leakage (and the public interface) it is (computationally) hard to find the secret
key. This restriction seems to be the minimal necessary to achieve meaningful
security, because no security remains if the secret key can be computed from the
leakage. We elaborate on this model in Section 26.2.3.

Even though the auxiliary input leakage model seems the strongest possible for
one-time leakage, it cannot protect against continual leakage, where the secret key
is leaked continually a few bits at a time, since in this case the secret key can even-
tually leak entirely. To handle leakage over the long term, the continual memory
leakage model, defined by Brakerski et al. [2010] and Dodis et al. [2010b], consid-
ers the setting in which the secret key is periodically updated, without updating the
public key, and assumes that there is bounded memory leakage (in the sense of
Akavia et al. [2009]) within each time period, but there is no bound on the overall
leakage. We elaborate on this line of work in Section 26.2.5.

We emphasize that in all four models mentioned above, each bit of leakage can
be an arbitrary efficiently computable function of the secret key (with the minimal
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necessary restriction in the auxiliary input case). This is in contrast to the leakage
models that are considered in Sections 26.3 and 26.4, where the leakage functions
are restricted in some way (such as OCL, noisy, or low-complexity leakage).

In Sections 26.2.2–26.2.5, we define the foregoing leakage models and show
constructions of specific leakage-resilient cryptographic systems. We emphasize
that, in most cases, the leakage function is applied only to the secret key (and pub-
licly available information, such as the public key), and no leakage occurs during
computation. For example, leakage cannot depend on the secret randomness used
during a computation. There are a few exceptions, starting from the work of Boyle
et al. [2011b] (mentioned in Section 26.2.2, below), which constructs a signature
scheme in the bounded memory leakage that is secure even if the leakage is applied
to the secret key and the randomness used to generate a signature.

In Sections 26.2.2–26.2.5, we focus on constructing non-interactive crypto-
graphic primitives, such as leakage-resilient encryption schemes and signature
schemes. In Section 26.2.6 we consider leakage-resilient interactive protocols,
which are different from cryptographic schemes discussed in Sections 26.2.2–
26.2.5, in that the leakage does not necessarily come from the secret key. Thus,
in the setting of interactive protocols, it is more difficult to define security in the
presence of leakage, since we have to account for leakage coming not from secret
keys, which are meaningless on their own, but from protocol inputs (e.g., witnesses
to ZK statements), which carry meaningful private information.

26.2.2 Bounded Memory Leakage
As mentioned above, Akavia, Goldwasswer, and Vaikuntanathan [Akavia et al. 2009]
introduced the notion of bounded memory leakage. They considered an adversarial
model in which the adversary can request a bounded amount of leakage on the
secret key, adaptively one bit at a time. Let κ be the length of the secret key sk

and let α ∈ (0, 1) be the allowed leakage fraction. In this model the adversary can
make ακ oracle queries, where each query consists of a Boolean circuit C : {0, 1}κ →
{0, 1} and is answered by C(sk). Each circuit can be chosen based on previous
leakage information and other information known to the adversary from the public
interface (such as the public key, known signatures, etc.). We note that the size
of each circuit is obviously bounded by the running time of the adversary, and
hence leakage functions have bounded complexity. If the adversary cannot break
the scheme after at most ακ such leakage queries, then the scheme is said to be
α-leakage-resilient.

As observed in Akavia et al. [2009], any public key encryption scheme that is se-
cure against adversaries running in time 2ακ is also α-leakage-resilient. Intuitively,
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this follows from the fact that if one can break the scheme with L = L(κ) bits of
leakage in time T = T (κ), then one can break the scheme without any leakage in
time 2L . T . This observation was made in the context of Regev’s public-key encryp-
tion scheme [Regev 2005], but easily extends to any exponentially secure encryption
scheme.

Naor and Segev [2009] constructed a public key encryption scheme that is secure
against bounded memory leakage under standard polynomial-time assumptions.
They started with the observation that the circular secure scheme of Boneh et al.
[2008] is already leakage-resilient under the DDH assumption. More generally, they
showed how to construct a leakage-resilient public key semantically secure encryp-
tion from any hash proof system [Cramer and Shoup 2002], thus showing how build
leakage-resilient encryption schemes on a variety of assumptions, such as the qua-
dratic residuosity assumption, DDH, and Nth residuosity assumption. Moreover,
they prove that the Naor-Yung paradigm [Naor and Yung 1990] is applicable in
this setting, and thus obtain leakage-resilient encryption schemes that are CCA2-
secure. These schemes are reslient to 1 − o(1) leakage rate.

These schemes (as well as schemes in followup work) have the following blue-
print: The public key has exponentially many valid secret keys, so that even given the
leakage (and the public key), the secret key still has high min-entropy. For example,
in the encryption scheme of Boneh et al. [2008], the secret key is (g1, g2, . . . , g�, s1,
s2, . . . , s�), where g1, g2, . . . , g� are random generators in a group G of prime order
p, and s1, s2, . . . , s� are all randomly chosen in Zp; the public key is (g1, g2, . . . ,
g�, h) where h = g
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. g
s2
2

. . . . . g
s�
�

. In addition, there is an alternative mode for
generating ciphertexts (used only in the proof of security), such that even given the
entire secret key one cannot distinguish between an honestly generated ciphertext
and one that is generated via the alternative mode. Importantly, if the secret key
has sufficient min-entropy then a ciphertext generated via the alternative mode
information theoretically hides the message.

For example, in the encryption scheme of Boneh et al. [2008], the correct cipher-
text corresponding to a message m is of the form (gr
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m) for randomly chosen r in Zp. In the alternative mode, the ciphertext is generated
by (g
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in Zp. By DDH, even given the secret key (g1, g2, . . . , g�, s1, s2, . . . , s�), the cor-
rect and alternative ciphertexts are indistinguishable. The alternative ciphertext
information-theoretically hides the message m, as long as sufficient min-entropy re-
mains in the secret key after leakage, because for fixed (g1, g2, . . . , g�), the mapping
from (s1, s2, . . . , s�, r1, r2, . . . , r�) to g
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is a strong randomness
extractor when (r1, r2, . . . , r�) is viewed as the seed and (s1, s2, . . . , s�) is viewed as
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the source. Indeed, it was proven in Naor and Segev [2009] that this scheme is re-
silient to 1 − o(1) leakage rate, that is, security holds even if all but o(1)-fraction of
the secret key is leaked.

This blueprint (of analyzing security by showing indistinguishability to a setting
where security holds information-theoretically) is used in many followup works, in-
cluding constructions of leakage-resilient CCA secure encryption schemes, identity
based encryption scheme, pseudorandom functions, and more. See, for example,
Faust et al. [2010a], Dodis et al. [2010c], Braverman et al. [2011], Galindo and Vivek
[2013a], and Faonio et al. [2015].

We emphasize that leakage-resilient encryption schemes typically assume that
the leakage happens before the ciphertext is generated, and security is guaranteed
only for future ciphertexts. Halevi and Lin [2011], however, considered the model
of after-the-fact leakage. They formulated the notion of entropic leakage-resilient
public-key encryption, which captures the intuition that as long as the entropy of
the encrypted message is higher than the amount of leakage, the message still
has some (pseudo-) entropy left. They show that this notion is realized by the
Naor–Segev constructions mentioned above. In order to achieve more traditional
CPA security against after-the-fact leakage, they move to a weaker leakage model
(the so-called OCL model); we discuss this result and some follow-up work in
Section 26.4.2.6, after the OCL model is introduced in Section 26.4.1.

Katz and Vaikuntanathan [2009] showed how to construct a leakage-resilient
signature scheme in the bounded memory leakage model. Loosely speaking, their
blueprint is somewhat similar to the above: Start with a public verification key pk

that has exponentially many secret keys associated with it. In particular, the public
verification key contains a hash value y = h(x) and the secret key contains the pre-
image x.

Their first observation is that any target-collision-resistant hash function3 h is
leakage resilient. Namely, given y = h(x) and bounded (efficiently computable)
leakage L(x) on x, it is hard to invert h on y. The reason is that even given y and
L(x), x still has sufficient min-entropy, and thus if an adversary can invert y (given
L(x)), then with high probability it will output x ′ = x such that h(x′) = h(x) and
L(x′) = L(x). Thus, this adversary can be used to break the target collision resistant
property, which gives the adversary even more information (namely, all of x).

Their signature scheme has the property that an adversary that forges a signature
must “know” a secret key corresponding to y (which is part of the public key).

3. A function h is target collision resistant (also known as universal one-way hash function) if given
a random element x in the domain it is hard to find x′ = x such that h(x) = h(x′).
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This is achieved by having the signature contain an encryption of x, along with a
noninteractive zero-knowledge (NIZK) proof that indeed the ciphertext decrypts to a
pre-image of y. We note that in order to make the proof go through, one needs to use
what is known as a “simulation sound” NIZK [Blum et al. 1988, Sahai 1999]: When
using the adversary to break the target collision resistance property, we need to
provide this adversary with signatures to messages of its choice, and to ensure that
the secret key still has high min-entropy; these signatures will contain a ciphertext
that decrypts to 0 (rather than a valid secret key), along with a simulated NIZK. The
simulation soundness guarantees that the adversary must still generate a ciphertext
that decrypts to a secret key.

All the works mentioned above constructed leakage-resilient schemes based
on specific number-theoretic assumptions. Hazay et al. [2013], [2016] construct
a leakage-resilient CPA-secure encryption scheme from any (not leakage-resilient)
CPA-secure encryption scheme. Loosely speaking, Hazay et al. extend the work of
Naor and Segev [2009], and construct a leakage-resilient encryption scheme from
any weak hash proof system. In addition, they show how to build such weak hash
proof system from any CPA-secure encryption scheme. However, the leakage rate
α in their resulting scheme is quite low. They also construct a leakage-resilient
symmetric encryption scheme, weak PRF, and message authentication code from
any one-way function. In addition, they extend their results to the after-the-fact
leakage model of Halevi and Lin [2011] mentioned above and to the bounded
retrieval model (see Section 26.2.4).

We emphasize that in all the schemes mentioned above, the leakage is only a
function of the secret key (and publicly available information, such as the corre-
sponding public key). Boyle et al. Boyle et al. [2011b] (and follow-up works) con-
structed a signature scheme where the leakage can also depend on the randomness
used to generate the signatures. This leakage model is somewhat reminiscent of
the leakage models considered in Section 26.4, where the leakage occurs during
computation. In particular, such leakage-resilient signature scheme must have the
property that signatures hide the secret key, even given bounded leakage on the
entire state of this computation.

26.2.3 Auxiliary Input Memory Leakage
Shortly after the formalization of bounded memory leakage, Dodis, Kalai, and
Lovett [Dodis et al. 2009] formulated the notion of auxiliary input memory leakage.
The motivation for this model is that in reality side-channel attacks can leak many
bits about the secret key, more than the length of the secret key. Of course, if the
secret key is fully computable from the leakage, all hope is lost. On the other hand,
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even if many bits are leaked, as long as the secret key is not computable from them,
it may still be possible to build a secure cryptographic scheme.

Formally, the auxiliary input model considers any (efficiently computable) leak-
age function f applied to the secret key sk, even one with long output, as long as
given f (sk), together with other public information, it is computationally (suffi-
ciently) hard to find a valid secret key. Namely, in this model, the adversary can
choose an arbitrary leakage function f : {0, 1}κ → {0, 1}∗ (modelled as a Boolean
circuit) to be applied to the entire secret key sk, so long as f is (sufficiently) hard
to invert, given all the information known to the adversary, such as the public key.
As above, security is required to hold even against adversaries that are given f (sk).
This function f can be adaptively chosen based on all the information known to
the adversary.

Because this model requires only that the secret key should have computational
secrecy given the leakage, it is more general than the bounded memory leakage
model of Section 26.2.2, which requires that the secret key should have some
information-theoretic uncertainty given the leakage. The auxiliary input leakage
model attempts to consider the most general possible leakage that does not triv-
ially break security. This model is inspired by the work of Canetti [1997], which
studies cryptography with auxiliary inputs in the context of perfect one-way func-
tions.4

In their work, Dodis, Kalai, and Lovett [Dodis et al. 2009] constructed a symmetric
encryption scheme secure against auxiliary input leakage, as long as the leakage func-
tion satisfies the condition that every polynomial size algorithm can invert it with
probability at most 2−εn for some constant ε > 0, where n is the length of the secret
key. In what follows we outline the ideas behind their scheme. The first observa-
tion is that constructing a symmetric encryption scheme that is resilient to leakage
seems to be much easier than constructing a public key one, since intuitively, one
can apply a seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}� to the (partially leaked)
secret key, and use Ext(x , r) as the secret key, where r is a random seed that is
appended to the ciphertext, so that the party decrypting this message could recon-
struct the effective secret key Ext(x , r). We note that this general approach gives
only one-time (or bounded-time) security; i.e., security holds only if the adversary
is allowed to see only bounded number of ciphertexts. Indeed, if the adversary is
given many pairs (ri , Ext(sk, ri)) then he may be able to efficiently reconstruct the

4. We note that Goldwasser and Kalai [2005] considered the auxiliary input model in the context
of obfuscation. However, they obtained mainly negative results, demonstrating the impossibility
of obfuscation with auxiliary input.
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secret key sk. However, we can obtain many-time security by adding some “noise,”
as we explain next.

Specifically, consider the inner product seeded extractor Ext : {0, 1}n × {0, 1}n →
{0, 1}, defined by Ext(x , r) = 〈x , r〉. When using this extractor in the approach above,
with additional noise, we obtain the following symmetric encryption scheme: To
encrypt a message b ∈ {0, 1}using a (partially leaked) secret key sk, choose a random
r ∈ {0, 1}n and let the ciphertext be (r , 〈sk, r〉 ⊕ e ⊕ b), where e is 1 with small
probability ε and is 0 otherwise. Note that this ciphertext has a decryption error
of ε. This decryption error is overcome via repetition: Namely, an encryption of b ∈
{0, 1} will consist of many pairs (ri , 〈sk, ri〉 ⊕ ei ⊕ b), where each ei is sampled
independently and is 1 with small probability ε and is 0 otherwise. This is indeed
a symmetric encryption, and its (many-time) security follows from the assumption
that learning parity with noise (LPN) is hard. More importantly, one can argue that
even if the secret key is partially leaked (and only has sufficiently high min-entropy),
then this encryption remains secure. Intuitively, this follows from the fact that the
inner product is an extractor.

Recall, however, that our goal is to prove that security holds given f (sk), for any
polynomial-time computable function f that is sufficiently hard-to-invert.5 This
follows from the hard-core predicate theorem of Goldreich and Levin [1989], which
asserts that for every one-way function f : {0, 1}n → {0, 1}∗, the pair (r , 〈sk, r〉) is
computationally indistinguishable from uniform even given f (sk).

The foregoing idea was carried over to the public-key setting by Dodis et al.
[2010a], who constructed a public-key encryption scheme and proved that it is CPA
secure against auxiliary inputs under the learning with errors (LWE) assumption.
They proved leakage resilience against any sub-exponential hard-to-invert leakage
function (i.e., any leakage function such that poly-size circuits can invert it with
probability at most 2−nε

for some constant ε > 0, where n is the size of the secret
key).

They also showed that the BHHO encryption scheme [Boneh et al. 2008], which
was proven to be resilient to bounded memory leakage, is in fact CPA secure against
such sub-expontentially hard-to-invert auxiliary inputs under the DDH assumption.
Recall that the in the BHHO encryption scheme, the secret key is of the form
(g1, g2, . . . , g�, s1, s2, . . . , s�), where each gi is randomly chosen from a group G

of prime order p, and each si is randomly chosen from Zp, and the public key is
(g1, g2, . . . , g�, h) where h = g
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. The encryption of a message m is of

5. In particular, sk may have no min-entroypy conditioned on f (sk).
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the form (gr
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, hr . m). As mentioned in Section 26.2.2, even given the
secret key, this cipertext is indistinguishable from an alternative ciphertext of the
form (g
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. m), where r1, r2 . . . , r� are all chosen randomly and
independently in Zp. Denoting each gi = gαi , where g is an (arbitrary) generator of
the group G, we note that the (alternative) ciphertext masks m with g〈r ,s〉, where
r = (r1, r2, . . . , r�) and s = (s1, s2, . . . , s�). Thus, the result of Dodis et al. [2010a] is
obtained by extending the Goldreich–Levin theorem to provide a hard-core value
over large fields.

More generally, Dodis et al. [2010a] proved that these schemes are secure against
a richer class of leakage functions—for example, leakage functions that are polyno-
mially hard-to-invert with probability 2−polylog(n) (however, then the corresponding
assumptions are the sub-exponential security of LWE/DDH). Following this work,
Goldwasser et al. [2010] used a similar approach to argue that the LWE assumption
itself is robust to auxiliary inputs.

Brakerski and Goldwasser [2010] showed how to construct a public-key encryp-
tion scheme secure against sub-exponentially hard-to-invert leakage, based on the
quadratic residuosity (QR) and decisional composite residuosity (DCR) hardness
assumptions. Brakerski and Segev [2011] considered the problem of determinis-
tic public-key encryption in the presence of auxiliary leakage and proposed several
constructions based on the DDH assumption and subgroup indistinguishability
assumptions.

Summary of the Leakage Models Discussed So Far. In Section 26.2.2 we defined
bounded memory leakage, where the length of the leakage is bounded relative to
the length of the secret key, which in turn depends on the security parameter. In
Section 26.2.3 we defined the auxiliary input model, where the length of the leakage
is arbitrary, but it is required that given this leakage (and other public information),
finding the secret key should be hard. Unfortunately, the theoretical restrictions
on the leakage function are unsupported by the bitter reality that the key may
eventually leak completely over time. While at first glance it may seem impossible to
do anything about this problem, as the auxiliary input leakage seems to impose the
minimal necessary requirement on the leakage function, two approaches have been
proposed to address it. The first is the bounded retrieval discussed in Section 26.2.4,
and the second is the continual memory leakage model discussed in Section 26.2.5.

26.2.4 Bounded Retrieval Model
The bounded retrieval model (BRM), defined by Di Crescenzo, Lipton, and Walfish
[Di Crescenzo et al. 2006] and Dziembowski [2006], assumes that there is a bound B
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on the overall leakage. However, as opposed to the bounded memory leakage of
Section 26.2.2, this bound is thought of as being extremely large, and in particular,
can be significantly larger than the security parameter, and longer than the number
of steps it takes to decrypt or sign. For security, the minimum requirement is
that the secret key must be longer than B (else it could leak entirely); the goal of
constructions in this model is to make sure that the efficiency of the system does
not degrade with this bound B. That is, the goal of BRM is to protect against large
amounts of leakage by making the secret key even larger, while ensuring that this
necessary inefficiency in storage is essentially the only inefficiency of the system.
This means that for every operation, honest users should have to read only a small
portion of the secret (this property is called locality), and their computation and
communication should not be much larger than in conventional cryptosystems.
To put it differently, the bounded retrieval model studies the same problem as the
bounded memory leakage model, but allows the users to increase their secret key
size flexibly, so as to protect against large amounts of leakage, without degrading
other efficiency parameters. This model is motivated by various malware attacks, in
which a persistent virus may transmit a large amount of private data to a remote
attacker.

As mentioned above, this model preceded the bounded leakage model, and the
original work that introduced this model [Di Crescenzo et al. 2006, Dziembowski
2006] constructed leakage-resilient password and authentication protocols. The
work of Alwen, Dodis, and Wichs [Alwen et al. 2009] constructed leakage-resilient
identification schemes, signature schemes, and authenticated key agreement pro-
tocols in this model, and shortly after, Alwene et al. [2010] constructed a leakage-
resilient public-key encryption scheme in this model.

Loosely speaking, these schemes are constructed via a generic leakage-resilience
amplification process. Namely, start with a leakage-resilient primitive in the
bounded memory leakage model of Section 26.2.2 (also known as the relative leak-
age model and use it to construct a B-leakage-resilient primitive in the bounded
retrieval model (for an arbitrary value of B).

The naive approach is to artificially inflate the security parameter to be larger
than the bound B. This approach clearly does not satisfy the desired efficiency
requirements. A better approach is to use parallel repetition. For the sake of con-
creteness, suppose we start with a public key encryption scheme that is secure in the
relative leakage model (described in Section 26.2.2). As a first attempt at converting
this scheme to the bounded retrieval model, store many secret keys sk1, . . . , skN ,
together with the corresponding public keys pk1, . . . , pkN . To ensure that the ci-
phertext remains succinct, to encrypt a message m, choose a few random indices
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i1, . . . , iκ ∈ [N ], secret share the message via a κ-out-of-κ secret sharing scheme
(e.g., by choosing κ random messages m1, . . . , mκ such that m = m1 ⊕ . . . ⊕ mκ),
and output (Encpki1

(m1), . . . , Encpkiκ
(mκ)). Intuitively, even if εN bits are leaked,

since the adversary does not know ahead of time which indices i1, . . . , iκ will be
chosen during the ciphertext generation, at least one of the secret keys {skij

}j∈[κ]

is likely to “still have sufficient min-entropy conditioned on the leakage,” which in
turn seems to imply that security holds. Unfortunately, formalizing this intuition is
currently beyond reach, because the leakage can be a complex function of all keys
sk1, . . . , skN .

Note that the ciphertext is small, independent of the absolute leakage bound B.
However, the length of the public key (pk1, . . . , pkN) is large (and grows with B).
This shortcoming is overcome by using an identity-based encryption (IBE) scheme,
as opposed to a standard encryption scheme. The public key of the parallel repeti-
tion scheme is simply the master public key of the IBE scheme. The secret key is
the secret keys corresponding to N fixed IDs ID1, . . . , IDN .

This scheme satisfies the required efficiency guarantees: the ciphertexts and the
public key are succinct (do not grow with B), encryption is efficient, and decryption
is efficient given random access to the secret key.

Security. Despite the intuition above, it turns out that this scheme is not neces-
sarily secure. In particular, Alwene et al. [2010] construct an artificial IBE scheme
for which this blueprint results in an insecure scheme. Loosely speaking, this IBE
scheme has the property that given secret keys of many identities, one can compress
these keys to a short “digest” (of size independent of B) such that from this digest
one can reconstruct all the compressed secret keys. To get around this problem,
Alwene et al. [2010] construct an IBE scheme with an additional special structure,
which they call “identity-based hash proof system,” and prove the security of the
above blueprint if the IBE scheme used is an identity-based hash proof system.
They construct such an identity-based hash proof system based on several stan-
dard assumptions (such as quadratic residuosity, learning with errors, and bilinear
Diffie–Hellman).

We refer the reader to Alwen, Dodis, and Wichs [Alwen et al. 2010] for a fantastic
survey on the bounded retrieval model.

26.2.5 Continual Memory Leakage
The continual leakage model considers the setting in which the total leakage is
unbounded and yet all the parameters of the scheme (including the length of the
secret key) are bounded (and depend only on the security parameter). In particular,
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the leakage can eventually reveal as many bits as there are in the secret key, and we
still want to argue security in this case. This seemingly impossible task is achieved
by periodically updating the secret key, without changing the public key. Namely, as
is often the case in leakage-resilient schemes, in this setting a public key pk has
(exponentially) many secret keys associated with it. The initial secret key is sk1;
it is updated every time period, to sk2, sk3, and so on, so that all the secret keys
sk1, sk2, sk3 . . . correspond to the same public key pk. The security guarantee is
that even if the adversary obtains bounded leakage on each ski (but unbounded
leakage overall), the scheme remains secure.

Specifically, in the continual leakage model security holds even given L1(sk1),
. . . , LN(skN), where N is adversarially chosen, and L1, . . . , LN are adversarially
chosen functions (represented as circuits) of bounded output length. Of course,
for any security to hold, the output length of each Li must be smaller than |ski|.

The model was first considered by Brakerski et al. [2010] and Dodis et al. [2010b],
who constructed public-key encryption and signature schemes that are secure even
when the leakage length in each time period is a constant fraction |ski|, under
the decisional linear assumption in bilinear groups. These works allow no leakage
during the key updates.6

The encryption scheme (constructed in Brakerski et al. [2010]) is a variant of
the BHHO encryption scheme, discussed above. Let the secret key be a random
vector s = (s1, . . . , s�) ∈ Z�

p
. Let g be a generator of a group G of prime order p. Let

a = (a1, . . . , a�) be a random element in Z�
p

such that the inner product 〈a , s〉 = 0
modulo p, and the public key be (ga1, . . . , ga�). To encrypt a bit 0, choose a random
r ∈ Zp and output (ga1r , . . . , ga�r), and to encrypt the bit 1 output a random element
in G�. Decryption is done by raising the ciphertext to the power of s = (s1, . . . , s�)

coordinate-wise, multiplying all the coordinates together, and outputting 0 if the
resulting product is the identity element of G, and 1 otherwise.

This scheme is resilient to bounded memory leakage, and even to auxiliary
input memory leakage, via a similar analysis to the ones outlined in Sections 26.2.2
and 26.2.3, respectively. However, it is not clear how to (efficiently) update the secret
key, in order to make this scheme secure against continual memory leakage.

Given a secret key s = (s1, . . . , s�) and a public key (ga1, . . . , ga�), we can effi-
ciently update the secret key by choosing a random α ∈ Zp and setting the updated
secret key to be αs = (αs1, . . . , αs�). However, this scheme is not secure against con-

6. More generally, these works are resilient to logarithmic amount of leakage during key updates.
Very loosely speaking, this follows from the fact that such small quantity of leakage can be guessed
with nonnegligible probability and thus cannot be of much help to the adversary.
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tinual memory leakage, since an adversary can, for example, normalize the secret
key by dividing all the coordinates by the first coordinate and leak on this normal-
ized key, which remains unchanged.

To get around this attack, rather than setting the secret key to be s = (s1, . . . , s�),
set it to be gs = (gs1, . . . , gs�). In order to maintain the ability to decrypt we need
to rely on a group G with a bilinear map e : G × G → GT . To decrypt, pair the
ciphertext (gy1, . . . , gy�) with the secret key(gs1, . . . , gs�), to obtain

∏�
i=1 e(gyi , gsi),

and output 0 if the value obtained is the identity element of GT ; otherwise output 1.
To update the secret key, simply raise the secret key to the power of a random α ∈ Zp

(coordinate by coordinate).
One can prove that this scheme is secure against continual leakage under the

DDH assumption; however, this assumption is known to be false in groups with
bilinear maps. This obstacle is bypassed by either considering an asymmetric map,
and relying on the SXDH assumption, or setting the secret key to be a matrix with
two rows, and relying on the decisional linear assumption.

To prove security, we rely on the fact that under the SXDH assumption (or the
decisional linear assumption), an adversary cannot distinguish between the case
that the updates are done as prescribed, and the case that they are done by choosing
a fresh random secret s in the kernel of a, and raising it to the power of g; and this
indistinguishability holds even given the secret key. Moreover, one can prove that
if the key is updated in the alternative way described above, then security holds in
the continual memory leakage model.

Leakage During Updates. Lewko, Lewko, and Waters [Lewko et al. 2011] showed
how to achieve constant leakage rate during key updates; the security of their
scheme is under the subgroup decision assumption in composite order bilinear
groups. This work was improved by Dodis et al. [2011] and modified to achieve
leakage-resilient storage (see Section 26.3).

Dachman-Soled et al. [2016] showed a generic way to tolerate leakage during key
updates. Specifically, they showed how to use obfuscation to compile any public-
key encryption or signature scheme that satisfies a slight strengthening of continual
memory leakage (which they refer to as “consecutive” memory leakage) but does
not tolerate leakage on key updates, to one that is resilient to continual memory
leakage with leakage on key updates.

Further Strengthening the Model. The continual leakage model was further
strengthened in different ways. Yuen et al. [2012] considered the continual aux-
iliary input leakage model, in which the leakage per time period is not required
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to be bounded in length, but rather can be an arbitrary hard-to-invert function of
the secret key, like the leakage in Section 26.2.3. They construct identity-based
encryption which is secure in this model, by applying a modified version of the
Goldreich-Levin theorem, together with the ideas from Lewko et al. [2011], of using
dual system encryption systems for leakage-resilience.

Malkin et al. [2011] consider continual memory leakage, where leakage can
occur also during computations. They present a signature scheme that is resilient
to continual leakage, where leakage can occur during the signing process, and thus
the leakage is a function of both the secret key and the randomness used to sign a
message. We discuss other signature schemes that can handle leakage during the
signing process in Section 26.4.2.6.

Dziembowski, Kazana, and Wichs [Dziembowski et al. 2011] consider a combi-
nation of continual memory leakage with the bounded retrieval model described
in Section 26.2.4, and construct schemes that are resilient against such leakage
if the leakage function itself has limited space for its computation (see also Sec-
tion 26.4.2.4 for more on their model).

26.2.6 Interactive Protocols
So far, we mainly focused on leakage-resilient cryptographic primitives, such as
encryption schemes and signature schemes, with the goal of preserving the original
security guarantees in the presence of leakage.

In this section, we extend the notion of leakage resilience to the context of
interactive protocols. The initial works that construct leakage-resilient interactive
protocols focused on specific tasks, such as coin tossing [Boyle et al. 2011a], zero-
knowledge [Garg et al. 2011, Bitansky et al. 2012], secure message transmission,
message authentication, commitment, and oblivious transfer [Bitansky et al. 2012].
These works, as well as followup works, consider the setting where an adversary can
obtain arbitrary (bounded) leakage on the entire state of each (honest) party during
the entire protocol execution.

Boyle et al. [2011a] constructed a coin-tossing protocol with the standard secu-
rity guarantee upgraded for leakage resilience: Namely, even if the adversary leaks
a constant fraction of the state of each (honest) party, she cannot distinguish the
output from a random coin toss. In the context of zero-knowledge, it is easy to see
that achieving similar leakage resilience under the standard zero-knowledge defi-
nition is simply impossible. For example, consider an adversary that leaks � bits of
information from the state of the prover by leaking the first � bits of the witness.
Clearly, this adversary’s view cannot be efficiently simulated (assuming these bits
of the witness are hard to compute). Instead, the (concurrent) works of Garg, Jain,
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and Sahai [Garg et al. 2011] and Bitansky, Canetti, and Halevi [Bitansky et al. 2012]
weaken the zero-knowledge condition in the leaky setting, to require that the pro-
tocol does not reveal any information beyond the validity of the statement and the
leakage obtained by the adversary. Defining this formally is nontrivial, as we explain
below.

Bitansky, Canetti, and Halevi [Bitansky et al. 2012] presented a general frame-
work for expressing security requirements of interactive protocols in the presence
of arbitrary (poly-time) leakage. Noting that standard “ideal world” security, where
the side-channel adversary does not learn more than the inputs and outputs of the
malicious parties, is in general impossible, they defined the notion of leakage tol-
erance, as follows. Consider an adversary who leaks a total of � bits of information
from all the (honest) parties. A leakage-tolerant protocol ensures that such an ad-
versary learns at most what can be learned in the leaky ideal world, in which the
ideal-world adversary also gets � bits of leakage.7 Thus, a leakage-tolerant protocol
is one where the level of security gracefully degrades with the amount of leakage
(which may develop over time).

In more detail, they consider a “real world” in which the adversary can get
leakage on the entire state of any one party at any time (but cannot get joint leakage
on the states of many parties). To account for the security degradation this leakage
necessarily causes, they also allow the same amount of leakage in the “ideal world.”
More specifically, the leaky ideal model they consider is the so-called individual
leakage model, which allows the ideal world adversary to obtain leakage on the input
of each party separately, as long as the total number of bits leaked is at most �.

Constructing leakage tolerant protocols is highly nontrivial. Intuitively, the ini-
tial difficulty is that we need to simulate the protocol without knowing the inputs of
the honest parties and then later “explain” the leaked information. As observed
in Garg et al. [2011] and Bitansky et al. [2012], this is reminiscent to the diffi-
culty in constructing adaptively secure protocols. This connection was formalized
in Nielsen et al. [2013].

For example, consider the most basic task of message transmission. Typically,
in order to transmit a message m securely, one encrypts m with a secure encryption
scheme. However, note that given Enc(m; r) together with leakage L(m; r), it may
be possible to efficiently compute m, even if the amount of leakage is significantly
smaller than the length of m. Bitansky, Canetti, and Halevi [Bitansky et al. 2012]
observe that if instead of using any secure encryption, one uses a noncommitting

7. They formalize their notion in the UC framework, but in this survey we focus on the stand-alone
setting.
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encryption [Canetti etal, 1996], then the message transmission becomes leakage
tolerant.8

A noncommitting encryption scheme, a concept that was developed for adap-
tively secure communication, allows one to generate a simulated (equivocal) cipher-
text ct without knowing a corresponding plaintext and later given any plaintext m gen-
erate randomness r that explains this ciphertext—that is, such that ct = Enc(m; r).
This ensures that the ciphertex does not leak additional information, beyond what
is already leaked by the leakage function. Similar ideas were used in Bitansky
et al. [2012] to construct leakage tolerant zero-knowledge, message authentica-
tion, commitment, and oblivious transfer protocols. In particular, to construct a
leakage-tolerant zero-knowledge protocol, rather than using a standard commit-
ment scheme, they use equivocal commitments [Feige and Shamir 1990].

Ananth, Goyal, and Pandey [Ananth et al. 2014] extend the work of Garg, Jain,
and Sahai [Garg et al. 2011] (mentioned above) to the continual leakage setting.
Namely, they construct an interactive proof for every language L ∈ NP, such that any
PPT verifier cannot learn a witness corresponding to x ∈ L, even after interacting
many times with a prover who proves that x ∈ L (for the same x), and even if in each
such interaction a constant fraction of the prover’s memory is leaked. Their formal
requirement is that such an adversary cannot later convince an honest verifier that
x ∈ L. Loosely speaking, this is done by encoding the witness using an encoding
scheme that is robust to continual leakage.

General Leakage-Resilient MPC. While the works discussed above were for some
specific interactive tasks, such as coin tossing and zero-knoweldge, the works Boyle
et al. [2013], Boyle et al. [2012] consider the task of constructing arbitrary two-
party and multi-party secure computation that remain secure in the face of leakage.
Namely, these works consider the setting where during the protocol execution, the
state of the honest parties may be partially leaked. Clearly, one cannot hope to
achieve “ideal world” security in the face of leakage, since the adversary can leak
some of the bits of the input of the honest parties, and obtain information that is
not leaked in the ideal world. To deal with this limitation, in Boyle et al. [2013] the
ideal-world adversary is allowed to obtain some leakage. The difference between the
model of Boyle et al. [2013] and the leakage-tolerant model of Bitansky et al. [2012]
discussed above is that Boyle et al. [2013] allows both the real-world and the ideal-

8. This observation was previously used in Bitansky et al. [2011], in the context of constructing
obfuscation with leaky hardware.
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world leakage function to be a joint function of all the inputs, rather than locally
computed for each party; in addition, Boyle et al. [2013] allows the leakage length
to be arbitrary (but the same in both the real and the ideal world). In contrast, the
work of Boyle et al. [2012] does not allow leakage in the ideal world, but allows a
leak-free preprocessing stage, where the secret inputs are preprocessed and shared
among the parties before the adversary obtains any leakage. We now discuss these
works in more detail.

Boyle et al. [2013] define the notion of multi-party protocols that are secure
against adaptive auxiliary information. In their model, the adversary can corrupt an
arbitrary subset of parties and, in addition, can learn arbitrary auxiliary informa-
tion on the entire states of all honest parties (including their inputs and random
coins), in an adaptive manner, throughout the protocol execution. There is no a
priori bound on the amount of the auxiliary information that the adversary may
be able to learn. Their protocol guarantees that for any amount of information the
real-world adversary is able to (adaptively) acquire throughout the protocol, this
“same amount” of auxiliary information is given to the ideal-world simulator, thus
providing graceful degradation of security.9

For any (efficiently computable) functionality they construct a secure (two-party
or multi-party) protocol that realizes this functionality securely against malicious
adversaries in the presence of adaptive auxiliary input. Their protocols are in the
common reference string model, and the security is based on the linear assumption
over bilinear groups and on the nth residuosity assumption.

In Boyle et al. [2012], continual memory leakage was considered in the MPC
setting. This is in contrast to Boyle et al. [2013] and all the other leakage resilient
protocols that were mentioned so far, which consider the single execution setting.
Boyle et al. [2012] construct multi-party secure computation protocols that achieve
standard ideal-world security (where no leakage is allowed in the ideal world)
against real-world adversaries that may leak repeatedly from the secret state of each
honest player separately, assuming a one-time leak-free preprocessing phase, and
assuming the number of parties is large enough (larger than polylog(n), where n is
the security parameter).

More specifically, they construct a multi-party computation (MPC) protocol that
is secure even if a malicious adversary, in addition to corrupting 1 − ε fraction of
all parties for an arbitrarily small constant ε > 0, can leak information about the

9. Note that it is not immediately apparent how to formalize this notion. We refer the reader
to Boyle et al. [2013] for details.
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secret state of each honest party. This leakage can be continual for an unbounded
number of executions of the MPC protocol, computing different functions on the
same or different set of inputs.

Interestingly, even though their MPC is secure against continual memory leak-
age, they achieve their result by relying on techniques from the only computation
leaks (OCL) model (see Section 26.4.1). At a very high level, their basic idea is to
run the MPC protocol of Boyle et al. [2013] that is resilient to adaptive auxiliary in-
formation, but rather than running the protocol on the underlying function, they
run it on an OCL-compiled version of it. Roughly speaking, the OCL version has
the property that local leakage does not leak any sensitive information. Therefore,
even if all parties have leaked partial information at a certain point in the protocol
execution, this leakage corresponds to local leakage in the underlying circuit, and
since the underlying circuit is resilient to OCL leakage, no sensitive information is
revealed.

This connection between continual memory leakage and the OCL model was
further established in the work of Bitansky, Dachman-Soled, and Lin [Bitansky et
al. 2014]. Similarly to Boyle et al. [2012], they construct multi-party protocols in the
continual leakage setting, but as opposed to requiring a leak-free input-dependent
preprocessing phase, they only utilize a leak-free input-independent preprocessing
phase. As a result they can only achieve leakage tolerance (as opposed to leakage
resilience). However, as opposed to Boyle et al. [2013], where the ideal world leakage
is a joint function of all the inputs, in this work the real world leakage can be
simulated by individually leaking on each party separately in the ideal world, thus
giving a stronger security guarantee. Similarly to Boyle et al. [2012], their protocols
are resilient to the corruption of 1 − ε fraction of all parties for an arbitrarily small
constant ε > 0, where the number of parties grow with the security parameter.

Very recently, Benhamouda et al. [2018] showed that in the honest-but-curious
setting, and assuming the number of parties n is large enough, the GMW compiler
Goldreich et al. [1987] implemented with a high-threshold version of the Shamir
secret sharing scheme [Shamir 1979] is robust against leakage one-time leakage
in the preprocessing model. However, the leakage rate is quite small (roughly, O(n)

|C|
where C is the circuit the parties are computing). We refer the reader to Section 26.3
for further details.

26.3 Leakage from Storage
In this section, we consider the following generalization of exposure-resilient func-
tions, mentioned in 26.1.1. Suppose a secret is encoded before being stored in



26.3 Leakage from Storage 751

memory; the adversary can repeatedly and adaptively apply a leakage function (from
a set of allowed functions) to the encoding. The adversary’s goal is to distinguish
the stored secret from uniform. Thus, the security requirement for protecting the
secret is stronger than in Section 26.2, where some information about the secret
is allowed to leak as long as the leakage does not enable the adversary to break
the underlying cryptographic scheme (e.g., encryption or signatures). On the other
hand, the set of allowed leakage functions, which will depend on the construction,
will be generally more restricted than in Section 26.2.

This model, called “leakage-resilient storage,” was introduced by Davi, Dziem-
bowski, and Venturi [Dav̀ı et al. 2010]. They propose two constructions, both secure
only if the leakage is applied a bounded number of times (in their constructions, the
encoding is not updated, which makes unbounded leakage impossible to achieve).

The first construction splits the stored secret into two components, and the
assumption is that the two components leak independently (i.e., the two compo-
nents are given to separate leakage functions rather than a single one; this model is
known as the OCL model—see Section 26.4.1). Their construction uses a two-source
extractor10 2-Ext as follows: To hide a secret s ∈ {0, 1}, simply choose at random
u, v ∈ {0, 1}n such that 2-Ext(u, v) = s, and store the string u in one component and
the string v in the other.11 The secret s is reconstructed by simply evaluating 2-Ext on
the two stored strings u and v. This approach has proven quite fruitful, resulting,
in particular, in the leakage-resilient encryption and signatures of Dziembowski
and Faust [2011] (Section 26.4.2.6) and circuit compilers of Dziembowski and Faust
[2012] (Section 26.4.3.4).

The second construction of [Dav̀ı et al. 2010] does not require the leakage to
be applied to two parts independently; rather, the leakage function is restricted
to a limited complexity class. The idea is to use a deterministic extractor, instead
of a two-source extractor. While deterministic extractors do not exist in general,
Trevisan and Vadhan [2000] constructed, for any polynomial-time bound T , a de-
terministic extractor for sources that are sampleable in time T (and have suffi-
cient min-entropy). Thus, if the leakage function is restricted to be computable

10. A two-source extractor produces an output that is close to uniformly random as long as the
two sources are independent and each has sufficient entropy

11. Storing a secret s ∈ {0, 1}k that consists of many bits can be done in a bit-by-bit manner, but
this approach can be secure only against 1/k-fraction leakage of each component. To improve
the leakage bound, we can use a two-source extractor 2-Ext with k-bit outputs. However, it may be
hard to choose at random u, v ∈ {0, 1}n such that 2-Ext(u, v) = s, since it may be hard to sample
u and v given s. Instead, one can choose at random u, v ∈ {0, 1}n, let 2-Ext(u, v) = sk, encrypt the
secret s using the secret key sk, and store (u, sk) in one component and store v in the other.
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in some a priori bounded time T (and its output length is also bounded), then one
can store a secret s by simply choosing a random u ∈ {0, 1} such that Ext(u) = s,
where Ext is a deterministic extractor for T -time sampleableable distributions.
Both constructions require no computational assumptions, except on the leakage
function.

Protection against continual leakage requires the ability to update the stored
secrets. In the OCL model (in which components leak independently), components
should be updated before they leak too much information. Akavia, Goldwasser,
and Hazay [Akavia et al. 2012] provide such a construction with two components,
where the update requires interaction between the components. More generally,
they construct a leakage-resilient public-key encryption scheme, where the secret
key is stored in two components, and the assumption is that the leakage on each
component happens separately (we refer the reader to Section 26.4.2.6 for details).
This scheme relies on computational assumptions; in particular it assumes that
there exists a group with a bilinear map, for which the linear assumption holds
and the bilinear decisional Diffie–Hellman assumption holds.

Eliminating communication during updates presents an additional challenge.
This challenge was solved by Dodis et al. [2011] (they also consider extensions to
more than two components and allow full compromises of some). In their scheme,
the updating of each component happens independently of the other, without
the need for communication or synchronization. Technically, this work builds on
Lewko et al. [2011]: They encrypt the secret, store the ciphertext in one component
and the secret key in the other component, and update both the key and the
ciphertext, separately. This work also improves and simplifies the construction
of Lewko et al. [2011] for the continual leakage model (see Section 26.2.5). Their
scheme assumes the existence of a group with a bilinear map, for which the linear
assumption holds.

Faonio and Nielsen [2017] consider the problem of leakage during the encoding
process itself, to obtain so-called fully leakage-resilient codes. Leakage during the
encoding process means that the secret cannot be completely protected; instead,
the requirement is relaxed to leakage-tolerance of Bitansky et al. [2012] (see Section
26.2.6), in which the simulator is allowed to obtain some leakage on the secret.

Benhamouda et al. [2018] consider storage of a secret in n shares produced via
additive or high-threshold Shamir secret sharing over a prime field. Assuming each
share leaks independently (i.e., in the n-component OCL model), they show that
storage remains secure even if each share leaks about a quarter of its bits, for large
enough n and field size. While this result requires many independently leaking
components, its advantage is that the secret sharing technique is standard, and
readily usable in multiparty protocols. They use this result for secure computation
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(assuming leak-free preprocessing), in which each uncorrupted party can leak,
once, a short function of its entire state.

Leakage-resilient storage is often an implicit ingredient in many constructions
of leakage-resilient computation, because the master secret must be stored in a
leakage-resilient way. Thus, many works discussed in Section 26.4 also provide
some form of leakage-resilient storage.

26.4 Leakage from Computation
In this section, we consider leakage models that focus on adversary’s access to the
entire computation rather than just the secret memory. In general (with some ex-
ceptions, noted throughout this section), the goal of works discussed in this section
is to protect against continual, rather than one-time, leakage. Thus, some models
considered in this section are similar to models considered in Section 26.2.5, and
some works could be placed into either section. On the other hand, the classes of
leakage discussed in this section are typically more restricted than the classes of
leakage discussed in Section 26.2.

The work on leakage from computation can be roughly divided into two cate-
gories: constructions of specific cryptographic primitives (Section 26.4.2) and gen-
eral compilers that work for any cryptographic primitive and, in fact, for any com-
putation (Section 26.4.3). There are, naturally, interactions between the two cate-
gories, and general compilation techniques are often applied to specific schemes,
as we discuss throughout this section.

The most common leakage models are noisy or probabilistic leakage of each
wire introduced in Chari et al. [1999], wire-probing leakage of Ishai et al. [2003],
only-computation leaks (OCL) model of Micali and Reyzin [2004], and leakage of
limited computational complexity introduced in Faust et al. [2010b]. There is con-
siderable debate as to whether these models correctly capture actual side-channel
attacks. Thus, heuristic, rather than fully provable, evaluation approaches are also
common, because of the difficulty of capturing actual side-channel attacks with
theoretical leakage models. We discuss these briefly in Section 26.4.4.

Because so many constructions are in the only-computation-leaks model, and
because this model has slightly different variants and interpretations, we start by
giving an overview of this model and its many versions.

26.4.1 The Only Computation Leaks (OCL) Model
The general model of leakage during computation introduced by Micali and Reyzin
[2004] (see Section 26.1.2) contains one crucial assumption: the existence of leak-
free memory. The model allows for values to be moved to that memory when they
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are not needed in a computation. Formally, the adversarial leakage function at each
step of the computation takes as input the entire state of the Turing machine,
including the values on its tapes, except the state of the leak-free memory. It is
important to note, however, that leak-free memory does not mean leak-free values,
because values in this leak-free memory cannot be used directly; they have to be
read from the memory to the working tapes when needed for computation, and
written from the working tapes into the leak-free memory when stored. Leakage
functions have access to the values when they are on the working tapes and, in
particular, during the reading and writing operations. (Recall that in the general
model of Micali and Reyzin [2004], leakage functions come from some allowable
class, and if the class is sufficiently limited, the adversary doesn’t simply see what-
ever the leakage function sees.) A good analogy is a computer whose CPU, caches,
and memory bus leak, but RAM doesn’t. Alternatively, one can push the leak-free
assumption one level lower in the memory hierarchy, and imagine a computer in
which everything leaks except the hard disk. This assumption became known as
“Only Computation Leaks Information,” commonly abbreviated as OCL. See Sec-
tion 26.4.2.1 for the first constructions in this model.

Dziembowski and Pietrzak [2008] showed that the following special case of this
general OCL model suffices to get strong results. In their model, the state of the
computation is broken up into a few (specifically, three) parts. The computation
proceeds in steps, and each step uses only some (specifically, two) of the parts. Each
step leaks a bounded amount of information (specified by an adversarially chosen
polynomial-time leakage function with a bounded output), and the part that is not
used does not leak (i.e., is not given to the leakage function). See Section 26.4.2.2
for the first constructions in this model.

As pointed out by Dziembowski and Pietrzak [2008], the restriction on when
each part leaks is not important for security; what is important, rather, is that the
parts leak independently (i.e., any given leakage function does not have access to
all of the parts at once), and only a bounded amount of leakage is available at each
step of the computation. This independent leakage assumption became commonly
used in many subsequent constructions of leakage-resilient cryptographic schemes
(Section 26.4.2) and leakage-resilient storage (Section 26.3).

The OCL assumption was also used for the purpose of building general leakage-
resilient circuit compilers in the style of Ishai et al. [2003] (see 26.1.2 and 26.4.3.1)
rather than specific cryptographic schemes. This line of work, discussed in Sections
26.4.3.4 and 26.4.3.5, assumes that the transformed computation can be broken up
into parts that leak independently. Each part can leak an arbitrary (or, depending
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on the model, any polynomial-time) function of its state, as long as the output
size of the function is bounded. Since the leakage function on each component
is powerful enough to simulate the inner wires of the component, we do not need
to provide the wires explicitly as inputs to the leakage function; it suffices to provide
the inputs and the randomness used in each component. Thus, the situation for
each component is similar to bounded memory leakage (see Sections 26.2.1 and
26.2.2), and techniques for protection against such leakage are often helpful in
this setting.

This line of work can be interpreted in the original OCL model of Micali and
Reyzin [2004], in which the CPU leaks and memory does not. Each component
corresponds to reading some data from memory, performing the component’s
work on the CPU, and writing the data back. It can also be interpreted in the
circuit model of computation (like the work of Ishai et al. [2003]); the circuit
is broken up into separate topologically ordered components, and the leakage
function specified by the adversary is limited to working separately on the wires of
each component (again, for each component it suffices to give the leakage function
only the wires going into it and the randomness generated within it). The latter
model is articulated in Goldwasser and Rothblum [2010]. The connection between
the models is explained in, for example, Goldwasser and Rothblum [2015, Section
1.2].

Constructions in the OCL model can be also naturally viewed as protocols be-
tween two or more stateful parties; the adversary can obtain leakage from each
party, but the leakage is independent for each party. Parties can correspond to cir-
cuit components in the previous paragraph, with inter-component wires modeled
as inter-party communication. More generally, however, each party can be invoked
more than once per execution of the protocol, and so there may be fewer parties
than components (every invocation of a party corresponds to writing and reading
nonleaking memory in the model of Micali and Reyzin [2004] and to a new circuit
component in the model of Goldwasser and Rothblum [2010]). The parties are as-
sumed to be able to erase parts of their state that they are no longer using (otherwise
the adversary could obtain unbounded leakage about the first invocation by leaking
information in subsequent invocations). This model is articulated in Dziembowski
and Pietrzak [2008] and Juma and Vahlis [2010] for the two-party setting; the ob-
servation that the number of parties can be flexible is made in Dziembowski and
Faust [2012]. For some protocols, such as Dziembowski and Pietrzak [2008] and
Juma and Vahlis [2010], communication between the parties is fully available to the
adversary; for others, such as Dziembowski and Faust [2012], it counts against the
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adversary’s leakage allowance (the adversary can use the leakage function to com-
pute sent messages; received messages are given as input to the leakage function
of the receiving party).

Several papers observed that their constructions are secure against a stronger
class of leakage functions than just OCL as defined in Micali and Reyzin [2004]:
Namely, leakage need not be restricted to computation. The adversary can obtain
leakage from any of the parties at any time, repeatedly and adaptively, as long as
the amount of leakage is bounded. This bound may be per party, as in Bitansky
et al. [2011] and Dziembowski and Faust [2012], or total, as in Goyal et al. [2016].
This view is equivalent to having leakage computed by viruses that have infected
all the parties but have limited ability to communicate with each other (virus
communication messages correspond to the outputs of the leakage functions);
Goyal et al. [2016] call it “bounded-communication leakage” or BCL (note that
“communication” here refers not to the computing parties, but to the leakage
functions).

This connection between the OCL model and the multi-party protocol model
was made more formal and exploited by several works (e.g., Boyle et al. [2012],
Bitansky et al. [2014], Damgård et al. [2015], Dachman-Soled et al. [2015b], and
Benhamouda et al. [2018]—see Sections 26.2.6, 26.3, and 26.4.3.4).

It should be noted that the leakage functions in the OCL model need not neces-
sarily be limited by the number of output bits, although this is how the limitation
on the leakage functions is most commonly stated. What matters, informally, is the
amount of useful information contained in the leakage. In particular, if the leak-
age is noisy, it may be able to hide information even if it’s long (see, in particular,
Section 26.4.3.5).

26.4.2 Specific Schemes
Because leakage can occur during every computation on a given secret key, the main
challenge in most constructions discussed in this section is to evolve the secret
key (while securely erasing the previous versions), so that repeated leakage of, for
example, one key bit at a time cannot lead the adversary to discover the entire key. In
this way, the problems considered in this section are often similar to the problems
encountered in the continual memory leakage model discussed in Section 26.2.5.
Such key evolution is generally harder to achieve for public-key primitives, because
the public key must remain the same as the secret key changes.

Similarly to works on the continual memory leakage model, most works dis-
cussed in this section assume that key generation is completely leak-free, and that
secure erasure is possible—once erased, values do not leak. However, in contrast to



26.4 Leakage from Computation 757

continual memory leakage, most constructions discussed here assume OCL leak-
age model described in Section 26.4.1.

26.4.2.1 Pseudorandom Generators of Micali and Reyzin [2004]
Micali and Reyzin [2004] showed constructions of leakage-resilient pseudoran-
dom generators out of simpler leakage-resilient building blocks (such as leakage-
resilient one-way permutations). These “physical reductions” are analogous to cryp-
tographic reduction based on complexity-theoretic assumptions. This approach
makes assumptions on the leakage of the building block as it processes data, but it
allows full leakage whenever other code is executed. The reasoning behind this ap-
proach is that it may be easier for hardware designers to protect a simple building
block.

Specifically, the work of Micali and Reyzin [2004] shows that if the output of a
length-preserving one-way function is indistinguishable from random even given
the leakage, then the Blum–Micali [Blum and Micali 1984] construction (specif-
ically, iterating the one-way function) with the Goldreich–Levin [Goldreich and
Levin 1989] hard-core bit (used as an extractor to “remove” the leakage) is next-
bit-unpredictable when the bits are output in reverse order. The same paper also
showed that indistinguishability is harder to achieve than unpredictability. Sub-
sequent work on unpredictable generators (which became known as “leakage-
resilient stream ciphers”) is discussed in Sections 26.4.2.2 and 26.4.2.3.

26.4.2.2 The Power of Only-Computation-Leaks: The Stream Cipher of
Dziembowski and Pietrzak [2008]
The remarkable power of the only-computation-leaks (OCL) assumption was
demonstrated by Dziembowski and Pietrzak [2008], who built a stream cipher that
provably provides leakage resilience based on very mild assumptions. In addition
to the OCL assumption, they assume that a bounded number of bits is leaked dur-
ing an evaluation of two basic cryptographic primitives: a pseudorandom generator
and a randomness extractor. They do not make any other restrictions on the leak-
age function. In fact, like in the model of Micali and Reyzin [2004], the adversary
can choose any leakage function to be applied to the currently used portion of the
state, as long as it is efficiently computable and its output is not too long. More gen-
erally, the leakage function can have arbitrary output length, as long as the secret
maintains (pseudo)entropy given the leakage.

The specific use of the OCL assumption in Dziembowski and Pietrzak [2008] is
quite simple. The stream cipher proceeds in rounds, outputting a fresh string of
pseudorandom bits in each round and evolving its state. The stream cipher state
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is stored in three variables: two variables M0 and M1 that are used and updated in
alternate rounds (never together), and the third variable K that is used and updated
in every round. The one variable not used in the current round is assumed not to
leak (equivalently, is stored in nonleaky memory); formally, it is not given as input
to the leakage function. The variable K that is used in every round can be fully
public without compromising security.

Dziembowski and Pietrzak also pointed out that in their setting, the OCL as-
sumption can be viewed simply as a restriction on the leakage function. Instead
of assuming that some parts of the state do not leak, we can simply assume that
a separate leakage function is applied to different parts the state. In other words,
different parts of the state leak independently rather than jointly. This view of the
OCL assumption was adopted by many subsequent works.

The construction of Dziembowski and Pietrzak [2008] works as follows. Let
G be a pseudorandom generator (PRG). The nonsecret variable K is an extractor
seed. In each round �, K is used to extract three values from Mi (where i = � mod
2): the stream cipher output bits, a new value for the extractor seed K , and a
PRG seed X. Mi is then replaced with G(X). Note that in this construction, the
extractor seed that is used for Mi is itself extracted from M1−i in the previous round,
using a seed extracted from Mi in the round before, and so on. This technique,
introduced in Dziembowski and Pietrzak [2007], is known as alternating extraction.
As already shown in Dziembowski and Pietrzak [2007], if M0 and M1 start with
sufficient entropy, alternating extraction will keep producing uniform values even
in the presence of leakage, as long as the leakage function does not get to see M0

and M1 simultaneously. Alternating extraction is not enough, however, because it
works only until the information-theoretic entropy of M0 and M1 is exhausted. To
make a stream cipher that outputs more random bits than its seed, Dziembowski
and Pietrzak introduce the second ingredient: the PRG, which replaces limited
information-theoretic entropy with as much computational entropy as needed. To
prove security of the overall scheme, they had to prove that a PRG will work even in
the presence of leakage (i.e., when the PRG seed X is not uniform to the adversary).
This result, independently also shown in Reingold et al. [2008], became known as
the “dense model theorem”: It quantifies the amount of entropy in a PRG output
given a certain amount of leakage from the PRG seed or computation (see Fuller and
Reyzin [2012] for an entropy-based formulation). We note that PRGs secure against
specific leakage (rather than the arbitrary bounded leakage of the dense model
theorem) have also been considered—for example, Ishai et al. [2003], [2013].

Note that because the stream cipher never needs to output past values, the
construction of Dziembowski and Pietrzak [2008] is able to update the secret state
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in a one-way fashion. This fact allows the construction of Dziembowski and Pietrzak
[2008] to be more efficient than the construction of Ishai et al. [2003], which is
forced to create fresh randomized representations of the same logical secret state
in order to allow for general computations, and thus must use fresh randomness
at each iteration and work with a state that is represented via XOR-based secret
sharing (also known as masking).

26.4.2.3 More Leakage-Resilient Stream Ciphers
Following the breakthrough result of Dziembowski and Pietrzak [2008], work con-
tinued on provably secure leakage-resilient symmetric encryption and pseudoran-
dom objects, such as stream ciphers, pseudorandom functions (PRFs), and pseu-
dorandom permutations (PRPs, also known as block ciphers). A number of results
offered various trade-offs between construction complexity, assumptions used, and
security achieved. We briefly mention only some of the relevant work.

Pietrzak [2009] simplifies the construction of Dziembowski and Pietrzak [2008]
by assuming a stronger underlying primitive (a so-called weak PRF instead of just
a pseudorandom generator used in Dziembowski and Pietrzak [2008]).

Standaert et al. [2010] argued that a different leakage model than OCL may
be more reflective of real side-channel attacks and may also improve efficiency of
constructions. The difficulty in designing a good leakage model is that without suf-
ficient restrictions on the leakage class, the adversarially supplied leakage function
can perform a “precomputation” attack, in which the leakage function precom-
putes the value that the pseudorandom object would output far in the future, thus
making the value no longer random-looking when it is finally output. To design a
leakage class that is both reflective of reality and prevents these theoretical attacks
is a difficult task (OCL is one such design). Standaert et al. suggested not allow-
ing the adversary to choose the leakage function adaptively (as already suggested
in Micali and Reyzin [2004]), or employing a random oracle that can be queried by
the construction, but not by the leakage function. Both of these leakage models
were considered by Yu et al. [2010]; following the discovery by Faust et al. [2012] of
a mistake in one of the proofs of Yu et al. [2010], fixes and further improvements
were proposed by Yu and Standaert [2013]. The random oracle of Yu et al. [2010] is
replaced by a so-called “simulatable leakage” assumption in Standaert et al. [2013],
where it is argued that though the assumption may seem strong, it is more realistic
than length- or entropy-based restrictions on the leakage function; see Longo et
al. [2014] for a discussion on how to break various simulators and Fuller and Ham-
lin [2015] for connections between simulatable leakage and other leakage-function
restrictions.
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Leakage-resilient pseudorandom generators “with input” (i.e., whose state can
be continually updated by additional input) are considered in Abdalla et al. [2015].

26.4.2.4 Leakage-Resilient Key Evolution
One-way key evolution, which is the main ingredient in leakage-resilient stream
ciphers, was considered as a separate primitive by Dziembowski, Kazana, and
Wichs [Dziembowski et al. 2011]. Like the authors of Yu et al. [2010], they work in
the random oracle model. However, they do not assume that the leakage function
cannot evaluate the random oracle; instead, they assume the leakage function is
space bounded, and use graph-pebbling problems to protect against such leakage.
They show applications of their construction to authentication and to obtaining
security against continual leakage in the bounded retrieval model (see Sections
26.2.4 and 26.2.5). Their construction was improved by Smith and Zhang [2013].

26.4.2.5 Leakage-Resilient Block Ciphers, Encryption, and Authentication
A significant stumbling block for achieving efficient leakage-resilient construc-
tions of PRFs, PRPs, and higher-level symmetric primitives, such as encryption and
authentication, is the fact that the secret state does not naturally evolve in the math-
ematical description of the primitive, in contrast to stream ciphers, which naturally
evolve their secret state in a one-way fashion. The state does not naturally evolve for
PRFs and PRPs because they need to repeatedly produce the same output on the
same input. Higher-level primitives, such as encryption and authentication, have
multiple participating parties who cannot be assumed to update the state synchro-
nously (in particular, what was encrypted yesterday needs to still be decryptable
today).

Such primitives are sometimes called “stateless” in the literature (which is a
bit of a misnomer, because they have a secret state—they just don’t change it),
in contrast to “stateful” stream ciphers discussed above. If such a primitive is used
repeatedly with the same secret state, and the leakage class is sufficiently rich, then
the adversary will eventually obtain the entire secret state.

General compilers discussed in Section 26.4.3 can be used for any cryptographic
primitive and, therefore, can be used to address this challenge. Some works have
optimized general compilation techniques for particular symmetric primitives,
especially block ciphers. We review these approaches in Sections 26.4.3.2, 26.4.3.5,
and 26.4.4. For the remainder of this section, we focus on approaches that have less
general applicability. Many of these approaches split the secret key into multiple
parts that can evolve even when the secret key remains the same, and thus provide
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some form of secure storage (see Section 26.3) in such a way that the stored value
can be used in the computation by the symmetric primitive.

Dodis and Pietrzak [2010] get around the problem of evolving state for PRFs
and PRPs by limiting the leakage class: They consider nonadaptive OCL leakage, in
which the adversary must fix the leakage function in advance and keep it the same
every time the PRF or PRP is invoked. They construct a PRF and a PRP that are
reslient to such nonadaptive OCL leakage without the need for key evolution. They
also show generic side-channel attacks on Feistel-based PRP constructions. Faust,
Pietrzak, and Schipper [Faust et al. 2012] consider models in which the adversary
does not get to choose the leakage function and/or the inputs adaptively, showing
that these relaxations lead to more efficient constructions of PRFs and PRPs secure
against OCL leakage.

Another way to get around the problem of evolving state is to force all partici-
pants to evolve it. In particular, leakage-resilient MACs in which both sides evolve
the secret key were considered by Schipper [2010].

Some states can be easily split into multiple evolving components using alge-
braic techniques (instead of more traditional symmetric primitives), even when the
underlying secret (which is never reconstructed) does not evolve. Following ideas
from the public-key encryption scheme of Kiltz and Pietrzak [2010] (discussed in
Section 26.4.2.6), Martin et al. [2015] use bilinear groups (in the generic group
model) to construct a leakage-resilient MAC in the OCL model. The construction
splits the secret into two parts multiplicatively and assumes the two parts leak in-
dependently. Since their scheme does not allow leakage during verification, it can
be seen as a weaker variant of a PRF, with output that is unpredictable rather than
pseudorandom. Barwell et al. [2017] demonstrate both a PRF and a MAC that re-
sists leakage during verification using a three-share variant of this construction.
Note that bilinear pairings are considerably less efficient than typical block-cipher-
based MAC constructions, though they are competitive with public-key schemes.

Andrychowicz, Masny, and Persichetti [Andrychowicz et al. 2015], propose, as an
application of their general compiler discussed in 26.4.3.4, a particularly efficient
leakage-resilient implementation of interactive secret-key authentication protocol
Lapin [Heyse et al. 2012]. The construction splits the secret into two parts that are
assumed to leak independently, using the inner-product extractor (see Section 26.3)
over large finite fields.

Pereira, Standaert, and Vivek [Pereira et al. 2015] obtain symmetric encryption
and MACs by combining a leak-free block cipher in which the key does not evolve
with a leaking primitive that evolves its key, emphasizing that the leak-free primitive
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is more expensive and thus used sparingly. The key of the leak-free block cipher is
the master key of the entire scheme, and is used to generate temporary keys for
the leaky primitive. The approach of generating temporary keys using a master
key is sometimes called re-keying. While Pereira et al. [2015] assume a leak-free
primitive for re-keying, some works design leakage-resilient re-keying schemes:
At each invocation, such a scheme generates a fresh key for a stream cipher and
updates its own state. Re-keying was addressed in theory and practice well before
leakage-resilient cryptography was formalized (e.g., Abdalla and Bellare [2000],
Kocher [2003]); in the context of leakage-resilience, see Abdalla et al. [2013] and
Dziembowski et al. [2016], and references therein. The idea of combining a low-
leakage (expensive to implement) primitive with a higher-leakage (inexpensive) one
is sometimes called the “leveled leakage setting.”

Authenticated symmetric encryption (which protects both secrecy and authen-
ticity of the message against chosen-ciphertext attacks) presents more opportuni-
ties for leakage, because, in addition to leakage during computation, the decryption
oracle may leak information about how exactly an invalid ciphertext failed to de-
crypt. This problem was addressed via generic composition of leakage-resilient
PRFs, MACs, and symmetric encryption in Barwell et al. [2017], and via the leveled
approach (as discussed in the previous paragraph) in a series of works (see Guo et
al. [2018] and references therein); some of these works also provide protection in
case of poor randomness or nonce generation. One suggestion for implementing
the expensive PRF is to use the bilinear-pairings-based PRF construction of Barwell
et al. [2017].

It’s important to note that there is no consensus on the leakage model for
symmetric encryption schemes, because a single bit of leakage about the plaintext
trivially breaks the standard indistinguishability notion. Some works (e.g., Barwell
et al. [2017]) prohibit leakage during the challenge phase; others (e.g., Pereira et
al. [2015] and Guo et al. [2018]) permit it, but provide designs that first hide the
plaintext via some operation assumed to leak nothing useful.

26.4.2.6 Leakage-Resilient Public-Key Objects
Micali and Reyzin [2004] construct the first leakage-resilient signature scheme
in the OCL model. Specifically, they observe that the following classical stateful
signature scheme is already leakage resilient in the OCL model: The public key
is the root for a Merkle tree [Merkle 1988] of one-time public keys, where each
one-time public key is for Lamport’s one-time signature scheme [Lamport 1979].
Leakage resilience in the OCL model is trivial, because the model assumes there is
no leakage during key generation, and after key generation, there is no computation
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on secret values, except to output some of them as part of a signature. The proposed
scheme requires an a priori bound on the total number of signatures that will ever
be produced and key generation time that is proportional to that bound; it is also
stateful.

Faust et al. [2010a] reduce key generation time and remove the a priori bound on
the number of signatures by replacing the Merkle tree in the signatures of Micali
and Reyzin [2004] with a signature tree. They observe each secret signing key is
used at most three times (to sign two leaves and a message), and therefore if the
underlying signature scheme is resilient against memory leakage that results from
three signatures, the resulting tree-based signature scheme will be leakage resilient
in the OCL model. This signature scheme is still stateful, however.

Malkin et al. [2011], building on techniques of Alwen et al. [2009], Katz and
Vaikuntanathan [2009], and Brakerski et al. [2010] for memory leakage (see Section
26.2.1), construct signature schemes that resist leakage during the signing process
without the OCL assumption.

Kiltz and Pietrzak [2010] construct a leakage-resilient public-key encryption
scheme resistant against continual leakage in the OCL model (however, unlike the
one-time leakage results discussed in the previous paragraph, in their model no
leakage is allowed once the challenge ciphertext is given to the adversary). The main
idea of their construction is as follows. Start with ElGamal encryption [ElGamal
1985], but use bilinear groups (i.e., a bilinear pairing operator e that takes two
elements of a source group into a single element of a target group) in order to enable
multiplicative sharing of the secret key. That is, instead of the usual secret key x, let
the secret key be gx in the source group, where g is the group’s generator. The public
key is its image in the target group, X = e(gx , g). Encryption is the usual ElGamal,
except the first component is in the source group: An encryptor chooses a random
r , outputs gr , and uses Xr as a symmetric key to encrypt the message. Decryption is
done by first computing e(gx , gr) = e(gx , g)r = Xr . To make this scheme leakage
resilient, multiplicatively share the secret key gx into two shares stored in two
separate components, and decrypt by working with each share separately within
each component and multiplying the results. To obtain security against continual
leakage, re-randomize these shares at every decryption. Both decryption and update
require a single message between the two components. Note that to obtain security,
it is essential for leakage resilience that x is stored in the exponent, because additive
secret sharing of x could allow an adversary to obtain sensitive information about
x via OCL leakage.

Kiltz and Pietrzak show that this scheme is CCA1-secure in the presence of
OCL leakage (i.e., independent leakage from the two shares of the secret key) in
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the so-called generic group model, an idealized model in which group elements
are assumed to have random representations that leak only equality information.
Galindo et al. [2016] show a software implementation of a variant of this scheme,
and then evaluate the implementation to determine whether the amount of leakage
is indeed sufficiently small per invocation, as required for security to hold.

Galindo [2013b], Galindo and Vivek [2013a] and Tang et al. [2014] adapt the
approach of Kiltz and Pietrzak [2010] to digital signatures, basing their schemes
on identity-based encryption (IBE) and signatures schemes of Boneh and Boyen
[2011], Boneh et al. [2004], Waters [2005.], and Schnorr [1991]; Wu, Tseng, and
Huang [Wu et al. 2016] extend it further to identity-based signatures.

Instead of multiplicative sharing of Kiltz and Pietrzak [2010], Dziembowski
and Faust [2011] use the inner-product-based sharing introduced in the leakage-
resilient storage work of Dav̀ı et al. [2010] (see Section 26.3) to construct CCA2-
secure encryption (that handles even post-challenge leakage), identification
schemes, and signature schemes in the OCL model. They build on ideas of Dav̀ı et
al. [2010] and on work in the memory leakage model, such as Naor and Segev [2009]
(see Section 26.2.2) and Alwen et al. [2009] (see Section 26.2.4). Their schemes oper-
ate in a prime-order group with generators g1, g2; the secret key for each scheme is
a pair of values x1, x2, and the public key is gx1x2 (thus ensuring, as in the continual
memory leakage model of Section 26.2.5, that there are multiple secret keys for each
public key). The secret key is shared into two parts, L and (R1, R2) (where L, R1, R2

are vectors), so that the inner product of L and Ri is xi for i = 1, 2. The encryption
scheme is similar to ElGamal [1985] (and similar to Naor and Segev [2009]), while
the identification and signature schemes are based on those of Okamoto [1993]
(which were analyzed in the bounded rertrieval model by Alwen et al. [2009]). The
most innovative part of this work is a two-message protocol to update the shares
L and (R1, R2) in a way that ensures security even if the adversary can obtain leak-
age during the protocol. The protocol requires a leak-free component that samples
pairs of values from a fixed, input-independent distribution (this assumption is
considerably weaker than the assumption of leak-free updating made in the many
works discussed in 26.2.5). The ideas of this work led to a general compiler by
Dziembowski and Faust [2012], discussed in Section 26.4.3.4.

Akavia, Goldwasser, and Hazay [Akavia et al. 2012] consider a model very similar
to the two-component OCL model of Kiltz and Pietrzak [2010] and Dziembowski
and Faust [2011]: There are two parties who hold shares of the secret and com-
municate over a public channel; the parties’ secrets leak independently. In this
model they construct CPA-secure public-key encryption and IBE, as well as CCA2-
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secure public-key encryption (using the IBE-to-CCA transformation of Boneh et al.
[2007]); no post-challenge leakage is allowed. They do not require idealized mod-
els or leak-free components. The main idea is to share the master secret key gα

of the Boneh–Boyen [Boneh and Boyen 2004] IBE between the two parties via en-
cryption that is similar to Naor and Segev [2009], with one party holding the secret
key and the other holding the ciphertext. Both decryption and share updates are
accomplished by a two-party two-message protocol that (again) uses Naor–Segev-
like encryption, relying on its homomorphic properties. This scheme can also be
used for leakage-resilient storage (see Section 26.3), using the interactive updating
protocol to update the stored shares.

Barthe et al. [2018] show how to implement the lattice-based signature scheme
of Güneysu, Lyubashevsky, and Pöppelmann [Güneysu et al. 2012] in the wire-
probing model of Ishai et al. [2003], using many of the recent advances developed
for masking-based circuit transformations (see Section 26.4.3.2), as well as devel-
oping additional techniques, such as conversion between masking modulo 2 and
modulo a large prime.

We close this section by discussing a few works that address one-time leakage
rather than continual leakage discussed above. (Most work addressing one-time
leakage is discussed in Section 26.2; we single out the following works for this
section because they work in the OCL model.) Halevi and Lin [2011, Section 4],
building on their result that the Naor–Segev [Naor and Segev 2009] construction
maintains entropic security against memory leakage even if it occurs after the
challenge ciphertext is known to the adversary (see Section 26.2.2), show how to
build a public encryption scheme in the 2-state OCL model that is CPA-secure for
one-time post-challenge leakage. The idea is to store two secret keys separately,
use each of them to decrypt a random string, and use the inner product of the
two random strings (which is a two-source extractor—see Section 26.3) to decrypt
the message. Zhang, Chow, and Cao [Zhang et al. 2015] show how to upgrade this
scheme’s security to CCA, as well as how to construct IBE schemes by building on
techniques from Alwene et al. [2010]. Fujisaki et al. [2015] show a similar upgrade to
CCA security as well as security against leakage from the encryptor’s randomness.

26.4.3 General Compilers
While Section 26.4.2 discussed specific cryptographic primitives, here we discuss
general transformations to achieve leakage resilience for any computation. They
are, of course, also applicable to the specific cryptographic goals discussed above,
but often less efficient than the specific constructions.
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The commonly used paradigm for general leakage-resilient compilers was intro-
duced by Ishai, Sahai, and Wagner [Ishai et al. 2003] (see Section 26.1.2). To recap,
they address the situation in which computation is performed by a clocked circuit
with a secret state (for example, a circuit implementing a block cipher with a secret
key). The circuit is run repeatedly on various inputs, producing outputs and possi-
bly also updating the secret state. They consider adversaries who are able to provide
inputs and observe outputs as well as observe some leakage function of the internal
wires during the computation. The security goal is to build a circuit in such a way
that the adversary learns nothing useful about the secret state from the leakage.
The notion of “learning nothing useful” is defined by the existence of a simulator
who faithfully simulates the leakage by observing only the input/output behavior.
The initial secret state is stored in some specially encoded form and is assumed to
be placed into the circuit without any leakage. In order to protect against repeated
leakage on multiple inputs, constructions must update the secret state and erase
the previous version, similar to constructions in Section 26.4.2.

General compilers achieve this security goal for any computation. The compu-
tation itself is specified by a stateful, but not leakage-resilient, circuit C. The goal
of a compiler is to create a new circuit C′ (and an encoding of the secret state) so
that C′ computes the same functionality as C and is leakage-resilient in the sense
described above.

The specific leakage function considered by Ishai et al. [2003] was wire probing:
The adversary could obtain leakage from t wires. We discuss their construction
in Section 26.4.3.1. We cover other transformations secure against wire-probing
leakage in Section 26.4.3.2.

Following the introduction of general leakage functions in Micali and Reyzin
[2004], researchers have considered other types of leakage. A folklore result, at-
tributed to Impagliazzo by Goldwasser and Rothblum [2015, Section 1], is that
general leakage-resilient computation is impossible under even a single bit of leak-
age without some constraint on the leakage function, because of the general im-
possibility of black-box obfuscation [Barak et al. 2001] (the connection between
leakage-resilient computation and obfuscation has been also explored by other
works—see, for example, Bitansky et al. [2011]). Thus, some restrictions on the
leakage functions, besides the amount of leakage, are necessary.

Transformations secure against a variety of leakage classes are discussed in Sec-
tions 26.4.3.3 (leakage of limited complexity), 26.4.3.4 (OCL leakage), and 26.4.3.5
(noisy and noisy OCL leakage).

Before proceeding, we should note the following folklore result (see, e.g.,
Bitansky et al. [2011, Section 1.1]): to achieve a general compiler secure against
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some leakage, it often suffices to build a leakage-resilient construction for decryp-
tion of a fully homomorphic encryption scheme. The secret state can then be stored
encrypted under such a scheme, and all computation and state update can be car-
ried out encrypted until the output is needed.

26.4.3.1 The Compiler of Ishai et al. [2003]
The transformation of Ishai et al. [2003] is similar to the one in Chari et al. [1999]:
Each wire carrying a bit b is a replaced by a bundle of t + 1 wires carrying the Boolean
masking of b—that is, t + 1 bits whose exclusive-or is equal to b. The main technical
tool is the design of a gadget for the logical AND operation: It takes two wire bundles
for bits b1 and b2 and outputs a wire bundle for the bit b1 . b2, in such a way that the
adversary cannot learn anything by observing t wires, because the distribution of
wire values is t -wise independent. The gadget is made up �(t2) bit gates and uses
�(t2) random bits.

The secret state is stored encoded in the same way: Each bit b is replaced by
t + 1 bits that XOR to b. Inputs are encoded and outputs are decoded to the same
representation (leakage during encoding and decoding is not a concern, because
the adversary is assumed to be able observe inputs and outputs). The encoded secret
state is updated (rerandomized) before being stored again, whether the actual
secret state changes or not.

As already mentioned, this construction is secure against continual leakage. At
its core is a transformation secure against one-time leakage. Specifically, given a
stateful circuit C, treat initial state as an additional input and the updated state
as an additional output, resulting in a circuit C̃ that has state, but only inputs and
outputs. The goal of a one-time-secure (also known as stateless) transformation is
to transform C̃ into C̃ ′ that leaks nothing useful about its input. To enable such
a transformation, we will allow C̃′ to receive its input already encoded, and to
produce encoded outputs. The stateful C ′ that is secure against continual leakage is
produced by taking C̃′, storing the encoded state in memory registers, and adding
input encoding and output decoding.

One-time-secure (stateless) transformations are sometimes interesting on their
own. They do not always result in secure transformations against continual leakage,
because it is not always possible to update the secret state so that cumulative
leakage does not add up to reveal it.

The transformation of Ishai, Sahai, and Wagner [Ishai et al. 2003] achieves
perfect security. The authors also show more efficient transformations for large
values of t that achieve statistical security, and a derandomized construction that
achieves computational security.
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26.4.3.2 Improved Compilers for Wire Probing Leakage
Considerable effort has been devoted to improving the compiler of Ishai et al.
[2003].

Many subsequent papers improved efficiency of Ishai et al. [2003]. Some papers
design special masking-friendly block ciphers (e.g., Piret et al. [2012], Grosso et al.
[2015]) or more efficient masking techniques (see, e.g., Groß and Mangard [2017],
Goudarzi and Rivain [2017], and Journault and Standaert [2017], and references
therein). Some consider automated synthesis and verification of masked circuits
for specific computations—see, in particular, Barthe et al. [2015], Barthe et al.
[2016], Beläıd et al. [2016], Coron [2018], Bloem et al. [2018], and Beläıd et al.
[2018] and references therein (a good overview of this area is given in Barthe
et al. [2017, Section 1.2]). Some reduce the amount of randomness used (e.g.,
Beläıd et al. [2016], Beläıd et al. [2017], Faust et al. [2017]). Some consider both
Boolean masking and masking modulo a power of two (see Bettale et al. [2018]
and references therein) or a large prime (see Barthe et al. [2018]); the ability to
switch between the two gives more efficient implementations. Masking is not the
only countermeasure used in this setting—see, for example, Coron et al. [2018] for
a randomized table countermeasure and a discussion of other countermeasures
used. Even though block cipher constructions are the primary goals of these works,
many of them present techniques of general applicability. Some works combine
leakage-resilience with resilience to glitches (e.g., Faust et al. [2018]).

Many of the works mentioned above try to optimize not only the circuit size, but
also the amount of randomness. Ishai, Sahai, and Wagner [Ishai et al. 2003] showed
that if we are willing to settle for computational, rather than information-theoretic
security against leakage, then their construction can be fully derandomized (except
for an initial random seed) with the help of a leakage-resilient pseudorandom
generator that they construct. For the case of perfect security, the randomness
complexity is improved from t2 per gate to t1+ε for the entire circuit in Ishai et
al. [2013] and Ananth et al. [2018], with the help of different leakage-resilient (so-
called robust) pseudorandom generators (t random bits are necessary according to
Ananth et al. [2018]).

A series of works by Balasch et al. (see Balasch et al. [2017] and references
therein) considers so-called inner-product masking instead of Boolean masking. It
presents both general compilation techniques and applications to AES. This basic
idea is similar to Ishai et al. [2003]—replace wires with wire bundles, and gates with
gadgets. However, this masking operates on words rather than bits, so, to start with,
a “wire” carries b-bit elements of the finite field GF(2b). Like in Faust et al. [2010b]
(see Section 26.4.3.3), the masking operation replaces each such wire with a wire
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bundle whose inner product with a fixed vector (which is a system parameter) is
equal to the wire value. We note that this usage of the inner product operation is
different from how the inner product is used in Dziembowski and Faust [2012] (see
Section 26.4.3.4), where a wire is represented by two vectors whose dot product is
equal to the wire’s value, because in Dziembowski and Faust [2012] both vectors
are random, while in Balasch et al. [2017] one vector is a fixed parameter. The
value of this fixed parameter is of little importance to the theoretical evaluation (as
long it has no zero coordinates), but matters to the heuristic security evaluation:
In addition to theoretical security evaluation, these and other similar works are
evaluated in heuristic evaluation frameworks we discuss in Section 26.4.4.

On the more theoretical side, a number of works considered the problem of
leakage rate (i.e., the ratio of leaking wires to total wires in the compiled circuit).
Because the circuit size in the construction of Ishai et al. [2003] increases by a factor
of t2 during compilation, the leakage rate is quite low and, in fact, decreases linearly
as t increases. If the choice of leaking wires is not completely up to the adversary
(for example, each wire leaks with some probability, or not too many wires leak
in any particular region of the circuit), then the leakage rate can be improved to a
constant [Ajtai 2011, Andrychowicz et al. 2016, Ananth et al. 2018].

26.4.3.3 Compilers for Leakage of Limited Complexity
[Faust et al. 2010b, 2014b] showed two compilers. Both compilers, in addition to the
leakage-class restriction, assume the existence of certain leak-free hardware (which
is input independent), thus providing a reduction from a simple leak-free piece of
hardware to a general leak-free circuit, in the spirit of Micali and Reyzin [2004].
The first compiler provides security against noisy leakage of every wire; we discuss
it in Section 26.4.3.5. Here we focus on the second compiler of Faust et al., which
is secure against a class of leakage functions that cannot decode a linear secret
sharing scheme (the specific linear secret sharing scheme determined the class of
leakage functions that could be tolerated). In particular, by using the same Boolean
masking as used by Ishai et al. [2003], but different AND gadgets, the compiler
achieves security against leakage functions in the complexity class AC0 (i.e., leakage
functions computable by unbounded fan-in constant-depth circuits with “and,”
“or,” and “not” gates). It is not practical: to tolerate leakage of λ bits of information
per round of execution, the circuit size has to increase by a multiplicative factor of
more than λ12. Its theoretical efficiency was been improved in subsequent work
[Andrychowicz et al. 2015], using techniques from multi-party computation (in
particular, working over large fields and using packed secret sharing), although
concrete parameters are not analyzed. It is improved to withstand more leakage,
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and, in a surprising application, used to construct zero-knowledge PCP by Ishai,
Weiss, and Yang [Ishai et al. 2016].

Several subsequent papers improved protection against leakage functions from
a restricted complexity class. Rothblum [2012] improved the AC0-leakage compiler
of Faust et al. [2010b] to remove the need for leak-free hardware, but at the cost of
adding a computational hardness assumption. This transformation (which builds
on the ideas of Goldwasser and Rothblum [2012], [2015] discussed in 26.4.3.4)
replaced the leak-free hardware with a leakage-resilient computation, and required
changes to the wire-bundle encoding and gate gadgets in order to make simulation
possible.

Miles and Viola [2013] proposed a circuit transformation that resists more pow-
erful classes of leakage functions, such as AC0 augmented with gates that compute
any symmetric function (including parity), and, under certain computational as-
sumptions, the class TC0 (i.e., leakage functions computable by unbounded fan-in
constant-depth circuits with “threshold” and “not” gates). Their transformation
follows the wire bundles and gadgets approach of prior work, but uses group oper-
ations over the alternating group A5 instead of Boolean masking for sharing each
wire (and, of course, completely new gadgets). Miles [Miles 2014] extended this
result to leakage functions in NC1 (all leakage functions computable by polynomial-
size logarithmic-depth constant fan-in circuits) under the assumption that L =NC1.
These compilers, like those of Faust et al. [2010b], require an input-independent
leak-free hardware. While precise parameters are not analyzed, they do not seem
to be in the realm of practical.

The above work is for continual leakage from stateful circuits. For the more
limited case of one-time leakage from circuits without persistent state (see Sec-
tion 26.4.3.1), Bogdanov et al. [2016] showed that constructions secure against
wire-probing leakage of t wires also achieve security against low complexity leakage,
where “low-complexity” means low approximate degree of the leakage function.
The main technical insight is an equivalence between the notion of low approxi-
mate degree of a function and the function’s inability to distinguish t -wise indis-
tinguishable distributions (i.e., distributions whose projections on t symbols are
identical). This result is similar to the result of Duc et al. [2014] for the connection
between wire-probing and noisy leakage (see Section 26.4.3.5). Bogdanov et al. ex-
ploit the connection between secure multi-party computation and circuits resilient
to wire-probing leakage (observed already in Ishai et al. [2003]) to obtain new con-
structions of circuits resilient to one-time low-complexity leakage. However, it is not
known how to extend their ideas to stateful circuits with security against continual
leakage.
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26.4.3.4 Compilers for OCL leakage
See Section 26.4.1 for a discussion of the “only computation leaks” (OCL) model
and its variants.

Two general compilers in the OCL model were shown by Juma and Vahlis [2010]
and Goldwasser and Rothblum [2010], using very different approaches.

Juma and Vahlis presented their result in two-component OCL model. One com-
ponent stores the secret state encrypted under a public key for a fully homomorphic
encryption scheme (FHE). The other component stores the FHE secret key. The facts
that the two components leak separately and only a bounded amount are used to
prove that information about the FHE plaintext is not accessible to the leakage func-
tion. In order to evaluate a circuit C, leakage-resilient computation is performed
homomorphically under the cover of FHE by the first component; the result is then
decrypted with the help of the second component. At the same time, fresh FHE keys
are generated to update the state of the second component, and the component’s
state is re-encrypted under these keys (using decryption under the cover of the FHE)
to refresh the ciphertext. The amount of leakage per invocation that this construc-
tion can tolerate is logarithmic in the FHE security; the leakage function must be
polynomial-time computable. The construction depends on an input-independent
leak-free component that produces FHE ciphertexts for a fixed (e.g., all-zero) plain-
text.

Goldwasser and Rothblum [2010] divide the computation into many more in-
dependently leaking pieces—as many as gates in C. They use a leakage-resilient
encryption scheme (with additional properties) as the underlying building block.
They replace each wire value of the original circuit C with its ciphertext, and each
gate of C with a gadget that takes ciphertexts as inputs and produces ciphertexts
as outputs. In order to make the gadget leakage-resilient, they use the encryp-
tion scheme of Boneh et al. [2008] and Naor and Segev [2009] (see Section 26.2.2),
slightly modified and augmented with (input-indepenent) leak-free hardware. The
encryption keys are updated for each iteration. Under the assumption that each
gadget leaks independently, the compiled circuit can tolerate a fixed amount of
polynomial-time leakage per gadget. Thus, in contrast to circuit compilers de-
scribed in Section 26.4.3.3 and the result of Juma and Vahlis [2010], the amount of
leakage they can tolerate grows with the circuit size.

Dziembowski and Faust [2012] and, independently, Goldwasser and Rothblum
[2012], [2015] eliminate the need for computational assumptions in Goldwasser
and Rothblum [2010], achieving security against arbitrarily complex (rather than
only polynomial-time) leakage functions. Miles and Viola [2013] provide another
construction, by observing that their compiler against computationally-bounded
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leakage also provides security in the OCL model; however, it tolerates less leakage
than the constructions of Dziembowski and Faust [2012], Goldwasser and Roth-
blum [2012], and Goldwasser and Rothblum [2015].

The compiler of Dziembowski and Faust [2012], like prior work, assumes some
leak-free hardware. It uses so-called inner-product masking: Each wire is repre-
sented by two vectors whose inner-product is equal to the wire value, as in the
leakage-resilient storage of Dav̀ı et al. [2010] (see Section 26.3). Because the inner
product function is a two-source extractor (which means the output is close to uni-
formly random as long as the two sources are independent and each has sufficient
entropy), as long as the two vectors leak independently and not too much, the wire
value is well hidden. Gadgets that operate on the vectors are constructed with the
help of (input-independent) leak-free hardware. This construction can be viewed
in the circuit model, having 2n independently leaking components (where n is the
number of wires in the original circuit). It can also be viewed as a two-party protocol,
where each party keeps one of the two vectors for each wire, and the parties com-
municate for each gate. The latter view allows for much less leakage. The efficiency
of this compiler has been improved by Andrychowicz et al. [2015].

The compiler of Goldwasser and Rothblum [2012], [2015] eliminates not only
computational assumptions, but also leak-free hardware, by replacing the compu-
tational encryption scheme of Goldwasser and Rothblum [2010] with an
information-theoretic one and replacing the leak-free components with leakage-
resilient computation. Thus, the only remaining assumption is on the leakage
function: that each component leaks independently, and the amount of leakage
per component is bounded (it is also assumed, like in previous work, that the com-
pilation itself, which is randomized and places the secret state into the circuit,
doesn’t leak; this assumption is shown necessary in Damgård et al. [2015]). The
number of components is the same as the number of gates in the original circuit.

Bitansky, Dachman-Soled, and Lin [Bitansky et al. 2014] obtain a protocol with
a constant number of independently leaking components without computational
assumptions or leak-free hardware. The number of parties is estimated to be about
20 in Dachman-Soled et al. [2015b]). Each component is invoked a linear (in the
circuit size) number of times. The main idea of the construction is to use the 2-
component version of the compiler of Dziembowski and Faust [2012], and replace
the leak-free hardware by the leakage-resilient computation of Goldwasser and
Rothblum [2012], [2015].

Dachman-Soled, Liu, and Zhou [Dachman-Soled et al. 2015b] reduce the num-
ber of components even further—down to the optimal two—without relying on
leak-free hardware, but at the cost of very strong computational assumptions. The
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technical idea behind their construction is to start with a two-component compiler
that requires leak-free hardware (such as Juma and Vahlis [2010] or Dziembowski
and Faust [2012]) and then replace the leak-free hardware with a leakage-resilient
two-party protocol. This protocol is what requires the computational assumption.

For the case of one-time security of stateless circuits (see Section 26.4.3.1), Goyal
et al. [2016] build compilers in the 2-component bounded-communication leakage
model (which is a generalization of the OCL model; see Section 26.4.1). In this
stateless setting, they are able to reduce the assumptions of Dachman-Soled et al.
[2015b] and increase efficiency compared to prior constructions, without resorting
to leak-free hardware. The technical idea of the construction is a result that shows
that protection against leakage functions that simply compute parities of wire
values is essentially sufficient. It is not known how to extend this construction to
protect against continual leakage in the stateful case.

Genkin, Ishai, and Weiss [Genkin et al. 2017] observe that leakage-resilient
stateless circuits make sense as implementation to trusted third parties, in which
multiple participants provide inputs and rely on the trusted third party to compute
an output. While the party is trusted to compute the output correctly and not leak
information deliberately, it may be under a side-channel attack by an adversary.
This setting presents its own challenges not present in the usual stateful compilers
(in particular, what happens if some participants provide invalidly encoded inputs).
Building on the work of Goyal et al. [2016] for stateless compilers and the work of
Ishai et al. [2016], they show how these challenges can be overcome.

Most of the papers discussed above focus on the theory feasibility results and
do not analyze the practical feasibility of their compilers. Further work is needed
to make any of them practical.

On the more applied side, Andrychowicz, Masny, and Persichetti [Andrychowicz
et al. 2015] propose a two-component OCL compiler using inner-product mask-
ing over large finite fields (and some leak-free components), and apply it to the
“Lapin” secret-key authentication protocol [Heyse et al. 2012], producing a working
implementation. They evaluate both the concrete leakage-resilient and concrete
performance of their proposal, reporting a 30-fold slowdown over the standard ver-
sion of Lapin for reasonable security parameters.

26.4.3.5 Compilers for Noisy and Noisy OCL Leakage
As already mentioned above, one of the compilers of Faust et al. [2014b] works in
a noisy leakage model that is reminiscent of the noisy leakage model of Chari et
al. [1999]. Specifically, the assumption is that every wire’s value is provided to the
adversary, but each one is flipped independently with probability p. The compiler
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uses the same Boolean masking as Chari et al. [1999] and Ishai et al. [2003], but
builds AND gadgets differently. Unfortunately, the compiler is far from practical,
requiring at least a million-fold increase in the circuit size even for small security
parameters (in particular, to achieve security 2−λ when the error probability for the
leakage of each wire is p ≤ 1

2 , the circuit size has to increase by a factor of more
than max(105 . λ2, p−12λ/100)).

Subsequent work considered more general noisy leakage functions, many of
them in a variant of the OCL model. In the version of the OCL model used in
most works mentioned in 26.4.3.4, the leakage can be an arbitrary polynomial-
time function of the relevant portion of the state, but of limited output length.
An objection to this model of leakage (raised in multiple forums; e.g., Standaert
et al. [2010], [2013]) is that it is both too strong and too weak. It is too strong
because in reality, the physical side channels do not compute arbitrary polynomial-
time functions, and ensuring protection against arbitrary polynomial-time leakage
forces the designs to have unnecessary complexity. It is too weak because real
side-channel attacks receive many bits of leakage—typically many more than the
amount of secret state.

Addressing these objections, Prouff and Rivain [2013] show a circuit compiler
in the OCL model (with a linear number of independently leaking components),
where the leakage from each component of the circuit reveals limited information
(in the statistical sense of biasing the distribution) about the value being leaked.
(Note that the model of power analysis attacks by Chari et al. [1999], discussed in
Section 26.1.1, has this property.) Their compiler uses additive secret sharing (also
known as masking) for the wires, and gadgets similar to Ishai et al. [2003] and Faust
et al. [2014b] for multiplication; it is specialized to block ciphers that consist of s-
box and linear operations, following the ideas of Carlet et al. [2012]. It uses some
leak-free components. The security model of Prouff and Rivain [2013] is weaker
than the model of Ishai et al. [2003]; in particular, it does not provide the adversary
with the input-output behavior of the circuit, but only with leakage under random
inputs.

Duc, Dziembowski, and Faust [Duc et al. 2014] show a much stronger compiler
for the class of leakage functions considered in Prouff and Rivain [2013]. They
demonstrate that the original compiler of Ishai et al. [2003], without any leak-free
components, and for arbitrary circuits, is also secure against noisy OCL leakage.
Moreover, security holds for the strong definition of Ishai et al. [2003], which allows
the adversary to probe the input-output behavior of the circuit while obtaining side-
channel leakage. They achieve this result by showing equivalence between noisy
and wire-probing leakage; this equivalence has been used in subsequent works,
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as well. Duc, Faust, and Standaert [Duc et al. 2015, 2019] further improve on the
result by measuring the “noisiness” of statistical distance via a mutual information
metric rather than statistical distance; it is argued that this metric is easier to
estimate in practice. The quantitative bounds (relating the amount of noise to
the security of the overall scheme) are further improved by Dziembowski, Faust,
and Skórski [Dziembowski et al. 2015, 2016]. Andrychowicz, Dziembowski, and
Faust [Andrychowicz et al. 2016] and Goudrazi, Joux, and Rivain [Goudarzi et al.
2018] (using techniques from Andrychowicz et al. [2015]) show how to improve the
leakage rate and the efficiency of the transformed circuit.

26.4.4 Heuristic Security Evaluation of Leakage-Resilient Constructions
Much effort has also been devoted to understanding the security properties of
masking in general and particularly in the context of block ciphers. As already
mentioned, the Ishai et al. [2003] compiler is secure against wire probing attacks
that do not touch more than t wires. However, most realistic attacks with current
technology do not obtain information about only a few wires; instead, they get noisy
information about many wires. This kind of leakage is discussed in Section 26.4.3.5,
in the simulatability framework of Ishai et al. [2003]. However, simulatability is
a very strong requirement, and is often unachievable within realistic efficiency
constraints. Thus, researchers have used approaches based on evaluating the best
known classes of attack strategies, in order to understand the security of designs for
which the simulation proofs either do not exist or do not give meaningful security
bounds. These approaches provide weaker security guarantees, because they do not
consider all possible adversaries, but rather the best classes of adversaries known
today. Nevertheless, they are often very useful for understanding the cost/benefit
tradeoffs of various designs, and are used extensively in applied literature.

A prominent heuristic evaluation framework was put forward by Standaert et
al. [2009]. A large number of cryptographic designs and side-channel countermea-
sures have been evaluated in this framework (many of these are referenced in Duc
et al. [2015, Section 1]). A comparison between this approach and the more theoret-
ical approach of Dziembowski and Pietrzak [2008] and Pietrzak [2009] (see Sections
26.4.2.2 and 26.4.2.3) is provided in Standaert et al. [2010]. An alternative evaluation
framework was proposed in Whitnall and Oswald [2011a], [2011b]. Some works
combine provable and heuristic evaluations—see, for example, Duc et al. [2015].
The heuristic evaluation frameworks continue to evolve and mature; see Grosso
and Standaert [2018] and references therein.

Barthe et al. [2017] observe that side-channel attackers are often faced with the
task of estimating statistical moments of random variables they receive as leakage



776 Chapter 26 A Survey of Leakage- Resilient Cryptography

functions. They therefore propose that the goal of a secure design it to make sure
these moments, up to some order, are independent of the secret state of the circuit
(the reasoning is that higher-order moments, which may be dependent, are very
difficult to estimate). They relate their security goal to the wire-probing leakage
of Ishai et al. [2003] and argue that their model is particularly suitable for highly
parallel (i.e., hardware rather than software) implementations.

Because of this survey’s focus on approaches with a provable security founda-
tion, we do not discuss heuristic evaluation frameworks in more detail, despite
their strong impact on applied work.
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method). In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems—CHES’99, vol. 1717, Lecture Notes in Computer Science, pp. 158–172.
Springer. DOI: 10.1007/3-540-48059-5_15. 730

D. Goudarzi, A. Joux, and M. Rivain. 2018. How to securely compute with noisy leakage in
quasilinear complexity. In T. Peyrin and S. Galbraith, editors, Advances in Cryptology—
ASIACRYPT 2018, Part II, vol. 11273, Lecture Notes in Computer Science, pp. 547–574.
Springer. DOI: 10.1007/978-3-030-03329-3_19. 775

D. Goudarzi and M. Rivain. 2017. How fast can higher-order masking be in software? In
J.-S. Coron and J. B. Nielsen, editors, Advances in Cryptology—EUROCRYPT 2017,
Part I, vol. 10210, Lecture Notes in Computer Science, pp. 567–597. Springer. DOI:
10.1007/978-3-319-56620-7_20. 768

V. Goyal, Y. Ishai, H. K. Maji, A. Sahai, and A. A. Sherstov. 2016. Bounded-communication
leakage resilience via parity-resilient circuits. In I. Dinur, editor, 57th Annual
Symposium on Foundations of Computer Science, pp. 1–10. IEEE Computer Society
Press. DOI: 10.1109/FOCS.2016.10. 756, 773

H. Groß and S. Mangard. 2017. Reconciling d+1 masking in hardware and software. In W.
Fischer and N. Homma, editors, Cryptographic Hardware and Embedded Systems—
CHES 2017, vol. 10529, Lecture Notes in Computer Science, pp. 115–136. Springer.
DOI: 10.1007/978-3-319-66787-4_6. 768

V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. 2015. LS-designs: Bitslice encryption for
efficient masked software implementations. In C. Cid and C. Rechberger, editors,
Fast Software Encryption—FSE 2014, vol. 8540, Lecture Notes in Computer Science,
pp. 18–37. Springer. DOI: 10.1007/978-3-662-46706-0_2. 768

V. Grosso and F.-X. Standaert. 2018. Masking proofs are tight and how to exploit it in
security evaluations. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology—
EUROCRYPT 2018, Part II, vol. 10821, Lecture Notes in Computer Science, pp.
385–412. Springer. DOI: 10.1007/978-3-319-78375-8_13. 775
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Johan Håstad was elected a member of the
Swedish Royal Academy of Sciences in 2001. He was an invited speaker at the ICM
in 1998 and winner of the ACM Doctoral Dissertation Award in 1986, the Gödel
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