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Preface

There are no privileges without duties.

—Advocate Klara Goldreich-Ingwer (1912-2004)

Cryptography is concerned with the construction of schemes that withstand any
abuse: A cryptographic scheme is constructed so as to maintain a desired function-
ality, even under malicious attempts aimed at making it deviate from its prescribed
behavior. The design of cryptographic systems must be based on firm foundations,
whereas ad hoc approaches and heuristics are a very dangerous way to go. These
foundations were developed mostly in the 1980s, in works that are all co-authored
by Shafi Goldwasser and/or Silvio Micali. These works have transformed cryptogra-
phy from an engineering discipline, lacking sound theoretical foundations, into a
scientific field possessing a well-founded theory, which influences practice as well
as contributes to other areas of theoretical computer science. The current book
celebrates these works, which were the basis for bestowing the 2012 Turing Award
upon Shafi Goldwasser and Silvio Micali.

SO0

Cryptography as we know it today is based entirely on concepts, definitions,
techniques, and feasibility results put forward and developed in the works of Gold-
wasser and/or Micali. A significant portion of this book reproduces some of these
works, whose contents is briefly outlined next.

“Probabilistic Encryption” (Chapter 7). The pivot of the aforementioned body of
work is the pioneering work “Probabilistic Encryption,” whose title reflects the real-
ization that a robust notion of secure encryption requires the use of randomization
in the process of encrypting each message (and not only in the process of generating
cryptographic keys). This work of Goldwasser and Micali defined the mind-set of the



XX

Preface

field by establishing conceptual frameworks and demonstrating their usefulness.

In particular:

This work suggested viewing computationally indistinguishable objects as
equivalent. This revolutionary suggestion has played a keyrole in all standard
cryptographic definitions and has served as the pivot of the acclaimed theory
of pseudorandomness (to be briefly reviewed below).

This work suggested interpreting security as the ability to emulate an ideal
setting. This suggestion, further clarified by Goldwasser and Micali in early
versions of “The Knowledge Complexity of Interactive Proof Systems” (briefly
reviewed below), has been adopted as the basic approach to defining security
in almost all cryptographic settings. This approach, known as the simula-
tion paradigm, resolves the Gordian knot that has frustrated previous attempts
to define security by trying to enumerate all desired properties. The simulation
paradigm bypasses this enumeration by asserting that security means that
anything that can be efficiently obtained by an attack on the cryptographic
system can be essentially obtained (as efficiently) without attacking the sys-
tem. Thus, any gain that an attacker claims is actually not due to the use of
the cryptographic system.

This work demonstrated the fruitfulness of the aforementioned paradigm
shift by providing robust definitions for the most basic cryptographic prim-
itive (i.e., encryption schemes) and by constructing a secure encryption
scheme based on a standard complexity assumption. In addition to demon-
strating the viability of the new-at-the-time approach, this paper set the
standard for the two-step process to be followed by all subsequent works:
= First, a robust definition is developed, based on the aforementioned
approach.
= Next, schemes satisfying this definition are proven to exist (and ac-
tually explicitly constructed) based on much better understood as-
sumptions.
For example, once defined, it was not a priori clear whether zero-knowledge
proofs exist at all, and thus relating this question to well-known conjectures
demonstrated the viability of zero-knowledge.

This work also introduced important techniques, one being later termed the
hybrid argument, which found numerous applications in cryptography and
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in the theory of pseudorandomness. Notably, this work also heralded worst-
case to average-case reductions (also known as random self-reducibility).

“The Knowledge Complexity of Interactive Proof Systems” (Chapter 8). The sec-
ond most influential work of Goldwasser and Micali is their joint work on zero-
knowledge, which after not being understood by most researchers for three years,
and being revised several times, appeared in the “formal verification” session of
STOC ’85 (indicating that it was misunderstood even by the program committee
that accepted it for presentation). I can testify to the fact that the lack of under-
standing has not been due to a poor presentation of the ideas, but rather to their
revolutionary nature. (By the way, their earlier work “Probabilistic Encryption” also
faced lack of understanding for a couple of years.)

Nowadays, it is well-understood that this work introduced two fascinating and
highly influential concepts: the concept of interactive proofs and the concept of
zero-knowledge. The concept of interactive proofs had a vast impact on complexity
theory, to be briefly reviewed below. The concept of zero-knowledge, on top of being
very intriguing (once one stops being confused by it), became a central tool in
cryptography and led to fundamental discoveries regarding general secure multi-
party computation. Initial indications to the vast potential impact of these concepts
were provided by the results and discussions in the conference version of this work
(reproduced in Chapter 8).

“How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits” (Chap-
ter 9). This work defined pseudorandom generators as producing a sequence of
unpredictable bits. This definition was later shown to be equivalent to being com-
putationally indistinguishable from the uniform distribution over bit-strings of
adequate length. The notion of computational indistinguishably used here is the
same as the notion introduced in “Probabilistic Encryption,” but subsequent works
introduced a variety of alternative definitions yielding a host of notions of pseudo-
random generators. This work also defined the notion of a hard-core predicate of
a one-way function, and established its existence for the modular exponentiation
function.

“How to Construct Random Functions” (Chapter 10). This work extended the theory
of pseudorandomness to functions, and showed how to construct pseudorandom
functions based on any pseudorandom generator. The notion of a pseudorandom
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function found numerous applications in cryptography, starting from the construc-
tion of message authentication codes and private-key encryption schemes that
withstand chosen ciphertext attacks.

“A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks” (Chap-
ter11). The result proved by this paper was considered impossible or at least “para-
doxical” at the time, because it was (falsely) believed that a “constructive proof of
unforgeability” (under passive attacks) implies a successful chosen-message attack.

“Proofs that Yield Nothing but their Validity or AllLanguages in NP Have Zero-Knowledge
Proof Systems” (Chapter 12). This work demonstrated the generality and wide
applicability of zero-knowledge proofs. In particular, assuming the existence of
secure commitment schemes, it showed how to construct zero-knowledge inter-
active proof systems for any set in NP, yielding a powerful tool for the design of
various cryptographic schemes. Loosely speaking, zero-knowledge proofs offer a
way for a party to prove that it has behaved according to a predetermined protocol,
without revelaing its own secrets, and so they can be used to force parties to behave
in “honest-but-curious” manner.

“How to Play any Mental Game—A Completeness Theorem for Protocols with Honest
Majority” (Chapter 13). This work presented constructions of secure protocols for
any multi-party computation problem. In other words, it shows how a trusted party
can be emulated by a set of mutually distrustful parties. This result combines the
construction of “privacy-preserving” protocols for the “honest-but-curious” model
with a method (presented in Chapter 12) of forcing parties to behave in an honest-
but-curious manner. The privacy-preserving protocols rely on the existence of a
public-key encryption scheme and an Oblivious Transfer protocol, which can both
be based on the existence of trapdoor permutations.

“Non-Interactive Zero-Knowledge (NIZK) Proof Systems” (Chapter 14). The model of
noninteractive proof systems introduced in this work includes a common random
string provided from the outside and available to both the prover and the verifier.
The work showed how to provide zero-knowledge (noninteractive) proofs for any
NP-assertion. Such NIZKs have been used as a building blocks in many subsequent
works (e.g., in constructing public-key encryption schemes that withstand chosen-
ciphertext attacks).

“Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computa-
tion” (Chapter 15). This work obtained general results similar to those of the work
presented in Chapter 13, except that it uses no intractability assumptions. Instead,
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this work presumes the existence of private channels between each pair of parties
(and a larger percentage of honest parties).

“Multi-Prover Interactive Proofs: How to Remove Intractability Assumptions” (Chap-
ter16). Motivated by the desire to construct zero-knowledge proof systems without
relying on intractability assumptions, this work presented a model of multi-prover
interactive proofs in which the provers cannot interact with one another during
their interaction with the verifier. This model, denoted MIP, turned out to be closely
related to the PCP model, which was introduced later and is briefly reviewed below.

Part II of this book reproduces the conference versions of the ten foregoing
works (while using the titles of their journal versions, which are different in a few
of the cases). These conference versions are extended abstracts that lack many of
the details that support the claims made in them, but they best portray the spirit of
innovation, boldness, and freshness that is characteristic of Shafi Goldwasser and
Silvio Micali.

LXK

Part III of this book presents scientific surveys of the works of Shafi Goldwasser
and Silvio Micali and of works that were directly inspired by their work. This part
starts with a survey of the foundations of cryptography.

On the Foundations of Cryptography. Before spelling out what these foundations
are, let us briefly reflect on the significance of such theoretical foundations to
cryptographic practice. While the following argument is widely accepted nowadays,
it required a convincing advocation in the 1980s. Needless to say, Shafi Goldwasser
and Silvio Micali provided such advocation when presenting their pioneering work.

Surely, providing sound theoretical foundations is of great importance for any
discipline, but more so for cryptography, since cryptography is concerned with
the construction of schemes that should be robust against malicious attempts
to make these schemes deviate from their prescribed functionality. A heuristic
may make sense when the designer has a very good idea about the environment
in which a scheme is to operate, yet a cryptographic scheme has to operate in a
maliciously selected environment that typically transcends the designer’s view. In
fact, the adversary is likely to take the very actions that were dismissed or ignored
by the designer. Thus, the design of cryptographic systems has to be based on firm
Jfoundations, as provided by the research project lead by Goldwasser and Micali in
the 1980s.
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The foundations of cryptography are the main paradigms, approaches and tech-
niques used to conceptualize, define and provide solutions to natural cryptographic
problems. These foundations will be reviewed in Chapter 17, starting with a presen-
tation of some of the central tools used in cryptography; that is, computational dif-
ficulty (in the form of one-way functions), pseudorandomness, and zero-knowledge
proofs. Based on these tools, the survey treats basic cryptographic applications such
as encryption and signature schemes as well as the design of general secure crypto-
graphic protocols. It is striking to note that the entire exposition is rooted directly
or indirecting in works of Goldwasser and Micali. Indeed, the history of laying the
foundations of cryptography is the story of the works of Goldwasser and Micali.

Impact on Complexity Theory. The revolutionary evolution of cryptography in the
1980s had a great impact on other areas of computer science, most notably on
complexity theory. Some of this impact will be reviewed in Chapter 18. Among the
direct contributions of the cryptographic evolution to Computer Science, I wish
to highlight the theory of pseudorandomness and the study of probabilistic proof
systems. Notably, Goldwasser and Micali played a key role also in the development
of these specific areas.

A fresh view at the “question of randomness” was taken in the theory of com-
puting: It has been postulated that a distribution is pseudorandom if it cannot be
told apart from the uniform distribution by any efficient procedure. This para-
digm, which was introduced in cryptography where efficient procedures were asso-
ciated with polynomial-time algorithms that may be stronger than the (purported
pseudorandom) generator, has been applied also with respect to a variety of lim-
ited classes of such distinguishing procedures, including polynomial-size circuits
that are smaller than the running time of the generator, constant-depth circuits,
space-bounded machines, local tests (cf., limited independence generators), linear
tests (cf., small bias generators), nondeterministic polynomial-time machines, and
more. Indeed, this paradigm has been the basis of a vast body of intriguing research
concerned with the role of randomness in computation. Also worth noting are the
application of pseudorandom functions (e.g., to hardness of PAC learning and to
“Natural Proofs”).

Various types of probabilistic proof systems have played a central role in the
development of computer science in the last decades. Such nontraditional formu-
lations of proof systems, which allow for a bounded probability of error and view
the proof as a dynamic process rather than as a static object, have many advan-
tages over the classical formulation of proof systems (which underlies NP). These
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advantages are demonstrated by the known results regarding interactive proofs,
zero-knowledge proofs, and probabilistically checkable proofs (PCP). The fruitful
connection between PCPs and the complexity of natural approximation problems
was also discovered in such a work. This connection has provided a breakthrough
in the study of approximation algorithms, which has been almost literally stuck for
two decades.

On Some Other Works of Goldwasser and Micali. Although the main topic of this book
is the contributions of Goldwasser and Micali to the foundations of cryptography,
it would be inappropriate not to mention their direct contributions to other ar-
eas within the theory of computation. Some of these contributions are surveyed in
Chapter 18, where the perspective is of the impact of cryptography on complexity
theory. In addition, Chapter 19 surveys a few other contributions, without mention-
ing the relations of some of them to cryptography. The selection of titles includes:

e “An O(J|V|-|E])-Time Algorithm for Finding Maximum Matching in Gen-
eral Graphs,” which still holds the record for the fastest algorithm for this
central computational problem.

e “Certifying Almost All Primes Using Elliptic Curves,” which presented a ran-
domized polynomial-time algorithm that produces (absolute) certificates of
primality for almost all primes.

e “Private Coins versus Public Coins in Interactive Proof Systems,” which pro-
vided a transformation of general interactive proof systems into ones in
which the verifier only poses totally random challenges.

e “An Optimal Randomized Protocol for Synchronous Byzantine Agreement,”
which provided a constant-round protocol for this central problem.

e “PCPs and the Hardness of Approximating the Size of Maximum Cliques,”
which provided a PCP system of almost logarithmic randomness and query
complexity for NP, and linked such systems to the complexity of a central
approximation problem.

e “Computationally Sound Proofs,” which presented natural notions of
computationally-sound proof systems.

e “Property Testing and Its Connection to Learning and Approximation,”
which initiated a general study of approximate decision problems that can
be solved in sublinear time, while focusing on testing properties of (dense)
graphs.
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e “Pseudo-Deterministic Algorithms,” which initiated the study of probabilis-
tic algorithms for solving search problems in a consistent manner (i.e., al-
most always return the same canonical solution).

For each of these selected works, the original abstract is reproduced, and a few
additional comments about the work are made. It should be stressed that although
Chapters 17-19 review many of the most influential works of Goldwasser and
Micali, they are far from exhausting this list, as illustrated by Chapters 21, 24 and 26.

Scientific Vignettes by Some of Their Former Students. A few of Goldwasser’s and
Micali’s former students were asked to write chapters about topics of their choice.
Most of them agreed, and some of them delivered. Certainly, Shafi and Silvio do not
educate their students to be timely. In their defense, one may say that they don’t
preach what they don’t practice.

Zvika Brakerski’s survey (Chapter 20), “Fundamentals of Fully Homomorphic
Encryption,” reviews a topic that was not pioneered by Goldwasser and Micali.
In fact, the partial homomorphic property of the Goldwasser-Micali encryption
scheme was considered more as a bug than as a feature, which led them to suggest
using it only for the establishing of a key for a symmetric encryption scheme (see
their “Why and How to Establish a Private Code on a Public Network,” with Po Tong
in FOCS 1982). Nevertheless, perspectives have changed, and the potential benefits
of fully homomorphic encryption, envisioned by Rivest et al. (in 1978), have been
materialized by the surprising discovery of fully homomorphic encryption schemes
whose security are based on computational problems regarding lattices.

Computational problems regarding lattices are also the pivot of Daniele Mic-
ciancio’s survey (Chapter 21), “Interactive Proofs for Lattice Problems.” The starting
point of this survey is a work of Goldreich and Goldwasser that presented perfect
zero-knowledge interactive proof systems for central problems regarding lattices
(in order to demonstrate that they are unlikely to be NP-hard). The survey provides
the basic background for the computational aspects of lattices, and focuses on sev-
eral interactive proof systems for various claims regarding lattices, while exposing
their underlying ideas.

Johan Hastad’s survey (Chapter 22), “Following a Tangent of Proofs,” also starts
with interactive proof systems, but its actual focus is on the non-approximability
results that can be derived from probabilistically checkable proofs (PCPs), which
in turn arised from multi-prover interactive proof systems. Hastad confesses that,
at the time, he considered the multi-prover model to be “artificial” and doubted
the justification of introducing an esoteric complexity class that corresponds to it.
His past reaction was reminiscent of the reactions that other notions introduced
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previously by Goldwasser and Micali have received (e.g., probabilistic encryption
and zero-knowledge). Needless to say, in all cases, these skeptic reactions were
proved wrong.

Rafael Pass’s “Tutorial on Concurrent Zero-Knowledge” (Chapter 23) addresses
the issue of preserving the zero-knowledge feature under “concurrent composi-
tion.” The point is that the original definition of zero-knowledge refers to a stand-
alone execution, and the preservation of security under sequential, parallel, and
even concurrent executions is far from clear. While augmenting the original def-
inition with auxiliary inputs suffices for sequential composition, preservation of
security under parallel and concurrent executions requires some work. Dealing
with concurrent executions is most challenging, and the tutorial presents the sim-
plest known solution, which did not appear is isolation before.

Guy Rothblum’s survey (Chapter 24), “Doubly-Efficient Interactive Proofs,” re-
visits the notion of interactive proof systems with a focus on more strict com-
plexity requirements. In particular, the (honest) prover strategy is required to
run in polynomial time, and the verifier strategy is required to run in almost
linear time. Such interactive proof systems, later termed doubly efficient, were
first defined and constructed by Goldwasser, Kalai, and Rothblum. Interestingly,
this notion was considered by Shafi, Silvio, and myself in the mid-1980s, but we
failed to find any appealing example (i.e., one in which interaction speeds up
verification).

The starting point of Salil Vadhan’s survey (Chapter 25), “Computational En-
tropy,” is the notion of computational indistinguishability, put forward by Gold-
wasser and Micali (see Chapter 7), as applied in the theory of pseudorandomness.
This starting point leads to the introduction of computational analogues of other
statistical notions such as entropy, min-entropy, KL-divergence, and more. These
notions play a major role in the constructions of pseudorandom generators and
statistically hiding commitment schemes, which are surveyed in this chapter.

Deviating for the framework that underlies all the foregoing, Yael Tauman Kalai
and Leonid Reyzin’s “Survey of Leakage-Resilient Cryptography” (Chapter 26) con-
siders cases in which the computing devices used by the honest parties may leak
partial information about the their computation or storage. That is, whereas the
foregoing views algorithms and strategies as functions (which, once feed with in-
puts, return adequate outputs), the leakage models attempt to account for the fact
that computation is taking place on a physical device that may be subject to various
physical measurements, and leakage-resilient schemes attempt to protect against
corresponding physical attacks. As noted in the survey, Goldwasser and Micali have
contributed significantly also to this research direction.
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In contrast to this preface, which started with a review of the works of Gold-
wasser and Micali, the book starts with their lives and voices. Specifically, Part I
contains a brief personal biography of each of them, an interview with each of them,
which touches on both the personal and the professional, and revised transcripts
of their Turing Award lectures.

Brief Biographies. Given the timidness of the theory of computation community,
writing personal biographies of its pioneers seems quite challenging. On top of
this, Iwas quite curious to see how a professional writer, who has no background in
computer science, will view and portray Shafi and Silvio. I feel that both challenges
were well addressed by Michelle Waitzman. It is quite remarkable that Michelle
was able to identify key features of their personalities and link these features to
characteristics of their scientific research. Her success is well reflected in the titles
she choose for the personal biographies: “A Story Behind Every Problem: A Brief
Biography of Shafi Goldwasser” and “One Obsession at a Time: A Brief Biography
of Silvio Micali.”

Interviews. Given that both Shafi and Silvio are very interactive personalities, in-
terviewing them must have been a pleasure. The pleasure was shared among Alon
Rosen, who interviewed Shafi Goldwasser, while building on his expertise in cryp-
tography, and Stephen Ibaraki, who interviewed Silvio Micali (as part of an interview
series with outstanding computer professionals). The interviews refer both to the
personal life and professional work of Goldwasser and Micali, and the former as-
pects have some overlap with the biographies, where a common theme is indeed
the relation of the personal and the professional. Lightly edited extracts from the
two interviews are included in this volume.

The Turing Lectures. Finally, this volume includes lightly edited versions of the
Turing lectures given by Shafi Goldwasser and Silvio Micali during the 46th Annual
Symposium on the Theory of Computing, which took place in New York, in June 2014.
Shafi’s lecture focused on the influence of cryptographic research on the rest of
computer science, whereas Silvio’s lecture focused on the evolution of the notion
of proofs.

(VAVAV)

I believe that the work of Shafi Goldwasser and Silvio Micali is of historical
dimension. Its impact on the development of cryptography and related areas in
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complexity theory has the flavor of a scientific revolution (in Kuhn’s sense). Hence,
whoever performs research in these areas is living in a world created and shaped
by their work. In light of the above, it is our professional and personal duty to
acknowledge our debt to these works. This assertion definitely holds about myself,
having had also the privilege of benefiting from numerous interactions with Shafi
and Silvio.

Oded Goldreich
Tel-Aviv, July 2019

Postscript: The ACM production of this book included re-typing the original papers
(for Part II), rather than using facsimiles of these papers, and changing various as-
pects of the texts of Part III (e.g., the bibliographic conventions and the numbering
of theorem-like environments). These production decisions were forced upon the
editor, who strongly objected them both per merits and due to the likelihood of
errors caused by implementing them.
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A Story Behind
Every Problem:

A Brief Biography of
Shafi Goldwasser

Shafi Goldwasser has always loved a good story. As a little girl, she couldn’t get
enough of them and sometimes returned to the library several times a day to
exchange one book for another. Early on, she expected that this would lead her
to become a writer, but life had other plans for her.

Discovering that mathematics was even more exciting than literature, Shafi’s
path changed direction and she became a leading theoretical computer scientist.
Her way of seeing the world—connecting ideas that may seem unconnected to most
people—has led to a career full of accomplishments, awards, and admiration. But
the storyteller in Shafi never left. Instead, it has given her a creative approach to
working on mathematical problems. Shafi sees the “story” behind each problem
that she researches. Where some might see a verifier checking a proof, she can
picture a detective questioning a suspect.

Shafi says, “I usually find a problem interesting if there’s a story associated with
it. If I can think of the story of why a problem is interesting, not necessarily an
application—something I could grab onto: a model, a story. I think my love of
stories is kind of the way I think of these models.”

One of Shafi’s former students, Guy Rothblum, summarizes her talents this way:
“Shafi is both incredibly brilliant and creative as a researcher. She makes things
that used to be impossible—or that you would think were impossible—possible.
She makes these incredible leaps between fields and finds these connections and
you think, ‘How in the world did she come up with this?"”’
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1.1

Fellow researcher Oded Goldreich agrees that Shafi’s ideas can seem so unusual
at first that it’s tempting to dismiss them as impossible. “When Shafi suggests
anything, one should resist the immediate reaction of saying ‘this cannot work’
and examine the core idea carefully,” he says. “Carefully think about the core of
what she said, rather than dismissing it on the spot as being ‘odd.”

Shafi recognizes that she sees things differently than some of her peers, as she
explained in an interview with technology journalist Stephen Ibaraki. “I don’t think
in narrow ways, I try to see things from a larger perspective. I try to think of a
problem from different perspectives and I see connections to problems I've thought
about in the past, or maybe something that other people are working on.”

When Shafi was invited to present an AMS/MRSI congressional briefing on
the topic of data protection in 2017, she explained how theoretical research like
hers can have surprising applications many years later. After all, her early work
on cryptography took place long before we lived in a world of online commerce
and big data. She told the briefing attendees, “A problem that seems unsolvable
actually often has technical solutions that are based on some basic research that
was done 30 or 40 years ago by people who didn’t know about the problem—or care
about it.”

In a field where the value of creativity is often not recognized, Shafi is a living
example of what can be accomplished when a precise mathematical mind and a
creative outlook are combined in one dedicated researcher.

Beaches and Books: An International Childhood

Shafi’s parents grew up in very different circumstances. Her father, Zvi, was ayoung
man studying law in Poland when the Second World War interrupted his plans. He
fled to Russia, and eventually returned to Poland to help drive the German army
out. Not knowing whether any of his relatives had survived the war, Zvi moved to
Israel to get a fresh start. He would eventually reconnect with his mother and sister
and bring them to Israel, too.

Rachael, Shafi’s mother, was born in Israel and raised in an agricultural commu-
nity. She was a student during the late 1940s, and returned home from her studies
to find Zvi renting a room in her parents’ house. She began teaching him Hebrew,
and soon he asked her to be his wife. They married in 1948.

Zvi never completed his legal studies, but instead found work with the new
Israeli health service. The young country lacked everything: doctors, hospitals, and
of course funds. Zvi and his family were sent to New York City to try to entice Jewish
Americans to help. Young doctors were encouraged to move to Israel, and wealthy
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members of the community were asked to donate to the health service. The couple
already had a young son, Nathan, when they moved overseas. In 1958, while they
were living in New York, they had a baby girl and named her Shafrira, but she would
be called Shafi by everyone she knew.

From her first day, Shafi had two nationalities. She was American-born to Israeli
parents. She spent her earliest years in a coastal community just outside New York
City, called Seagate. The community is surrounded by beaches and very close to the
famous Coney Island beach and boardwalk. Shafi has fond memories of daily trips
to the beach with her mother. She attended a local kindergarten in New York. In
true urban fashion, the school’s playground was on the roof of the building.

When Shafi was about six years old, her father was transferred back to Israel,
and the family moved to Tel Aviv. They settled in an area known as the “Old North”
of the city, and brought with them a Dodge Dart that they had bought in New York.
It was a common car in the United States at the time, but a real novelty in Israel.
“At that time in Israel they didn’t exist,” says Shafi. “In the United States we had
this car, and it was just a small car. Then it arrived on the ship to Israel and it was
huge—it was like the biggest car ever in the streets.”

She had moved across the world, but Shafi still continued to have a strong
connection to the sea. “My parents used to go to the beach every day in Tel Aviv,
because my father loved swimming, and so did my mother since she grew up in
Kfar Vitkin, which was near the beach. And we used to go every day—six o’clock
in the morning,” Shafi recalls. Her parents’ love of swimming rubbed off on Shafi,
who cherished their daily swims throughout her childhood.

She also had the opportunity to learn about rural life by going to visit her
grandparents. Growing up in the urban surroundings of New York and Tel Aviv, this
rural experience was a precious opportunity. “My grandparents from my mother’s
side, they lived in Kfar Vitkin. They had an agricultural farm or unit—they had cows
and chickens—and I had cousins there. Every weekend we would go there to spend
time with them, have lunch, go to the beach. Sometimes Iwould spend weeks there
in the summer. So this connection with this farming place, or moshav, is very strong
in my mind. That is really childhood, that and the beach.”

Her family had arrived in Tel Aviv well after the beginning of the school year,
so Shafi had to quickly adapt to a new type of schooling in a new language. She
was a novelty to her fellow students, who were not used to people immigrating
from the United States. “I think that for the rest of my duration at school, which
was eight years—and even today, they remember me as the girl who came from
America. Which shows you how Israel was at that time, that that was such a rare
occurrence. And because I didn’t know Hebrew for the first few weeks, I think they
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sort of remembered me as someone who didn’t know how to speak Hebrew in the
beginning,” she says.

The school was far from her home and she had to take a bus there, but it was
recommended to Shafi’s parents because it was affiliated with the ruling political
party in Israel at the time, and it had long hours and provided a good education
with strong fundamentals. However, not everything there was good, according to
Shafi. “I kind of hated the food. I remember that one day they wanted me to stay
and eat everything, because you’re supposed to clean your plate, especially at that
time in Israel. My mother happened to pass by and she told the teacher that there’s
no need to force me to eat anything. That’s a very strong, protective memory of
my mother, that I knew that I could really do whatever I want, which was always
true.”

It was during these school days that Shafi developed her love of reading and
stories. She read novels, historical dramas, short stories—anything that would
feed her imagination. Her mother was also a great lover of literature and history.
Although writing stories of her own seemed like a natural progression for her,
she was not prolific. “I liked to write essays and short stories, but I didn’t write
that much. With all my fantasies about being a writer, I don’t have a bunch of
manuscripts hidden in my drawers,” she says.

She did team up with one of her friends to create a newspaper. Shafi wrote the
articles and her friend was the business manager. But sales of the first issue were
disappointing (she thinks they sold one or two copies) and the venture didn’t last.

As for those short stories, Shafi was a shy author and didn’t share her creative
endeavors. “I think they were so full of my own desires and fantasies for the future
that I would have considered them extremely personal and I don’t think I would
have shown them to anyone,” she says.

Shafi’s childhood took another turn when at age 11 she became a big sister to
a new baby girl, Ricky. “I remember when she was born. I was in the sixth grade
or something like that. In fact, I remember that I'd made a deal with my parents. I
really wanted a dog, and they said that the dog, I won’t get. So then I said, ‘Okay, so
either a dog or a sister,” and we wrote this contract. And I have it actually. I found
it a few years ago, when I was cleaning my parents’ apartment. In any case, I got a
sister.”

Given her reluctance to share her writing with the world, it is perhaps fortunate
that she found a new area of interest in high school: mathematics and science. It
became clear to Shafi that she was good at these subjects, and in Israel at that
time they were considered to be very important areas of study. “And that’s still
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true in Israel,” she says. “Those in math and science, those are the people who
are respected. I think it was the combination of finding it interesting, being good
at it, and realizing that this is what was expected of me.”

“I think that growing up in Israel during those times—and it’'s maybe not so
much growing up in Israel as growing up as children to a generation of parents
who either came to Israel after the (Second World) War, or grew up during the war
for independence in Israel—there’s a great deal of pragmatism in the education
system and what they teach you, and in terms of your approach to life. There’s
always a goal; you always have the future in mind. There’s a goal you’re working
toward.”

The 1960s and early ’70s was a difficult time to grow up in Israel. The country was
at war at times during Shafi’s childhood, and the threat of war was never far away.
During the Six-Day War, which took place in June 1967, Shafi was in fourth grade
and remembers hiding in a bunker when sirens sounded. Years later, her brother
Nathan was doing his compulsory military service when the Yom Kippur War began
in October 1973, and Shafi recalls that he came home briefly before heading off to
war. “He told us that there’s going to be a war. And my father said to him, ‘What are
you speaking nonsense for?’ Because for Jews that came from the (Second World)
War, the whole idea of talking about death and war—it was something that you just
don’t talk about because it’s just bad luck or you just don’t say things like that. Then
he was called and he left, because he had to go back to the army, and we didn’t see
him for a few weeks.”

Shafi’s parents were worried about their son’s safety. Zvi had lived through
the horrors of the Second World War, and both parents were in Israel during the
country’s war of independence. That war lasted from 1947 to 1949, and a large
number of the young soldiers lost their lives.

The Yom Kippur War also took its toll on Nathan. “I remember when he came
back home the first time, he had a lot less hair. It was amazing that this kind
of traumatic experience can do that. So he went with a full head of hair, and it
receded.”

After the war, Nathan had planned to study mathematics at Hebrew University
in Israel. But Shafi’s parents feared that he might be involved in another war and
wanted him to leave Israel. “My father just wanted him out of Israel as fast as
possible. He was so afraid for his safety that he wanted him to go to school in
the States. And he got accepted to Carnegie Mellon and he left. That affected me
because that started some sort of chain reaction in the family,” says Shafi. In fact,
all three siblings eventually ended up living in the United States as adults.
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Shafi would not join her brother at Carnegie Mellon for several more years.
In the meantime, she was exploring her interest in math and science. At Shafi’s
high school, students specialized for their final two years. “When we went into the
specializations, there was a class that specialized in math and physics. There were
a few girls, not too many. But they were very strong, the ones who were there were
very strong.” Despite being in the minority, Shafi never felt that her teachers treated
her differently because she was a girl. “I was a good student always. And I felt that
the teachers respected me.”

“I enjoyed math, because there’s always a right answer. At least in high school it
seems like there’s always a right answer. But I loved physics even more.” Shafi was
particularly attracted to physics because it gave her the tools to find solutions. “The
understanding from axiomatic or first principles, how you get to a conclusion.”
She also felt that the problems associated with physics had stories associated with
them. Physics was not just about manipulating numbers, it was about understand-
ing how things in the real world affect one another.

Even at this early age, Shafi was looking at problems differently from her peers.
Not many teenagers would describe the derivation from principles as “beautiful,”
but that’s how Shafi felt about it. Her approach to problems was not tied to rote
learning. On exams, she would consider the problems in more creative ways and
come up with answers that took her teachers by surprise. Shafi’s high school physics
teacher may have been the first person to get a glimpse of the talent for making
unexpected connections that has been the hallmark of her research.

Shafi credits her high school math and science teachers for encouraging her
love of these subjects and igniting her curiosity. They sparked an interest in her that
continued to build throughout her studies. What began as a general curiosity about
these subjects in high school had opened her eyes to the excitement of studying and
the pursuit of knowledge, which would lead her to explore fundamental questions
throughout her career. She feels that she was lucky to have had those teachers early
onwho fed her curiosity and sent her down that path of investigating problems that
excited her.

Shafi’s parents also had a big influence on her decisions. Throughout her child-
hood, Shafi was encouraged to pursue great things in her life. Her father did not let
traditional gender roles alter his expectations. “You know, there was no difference
between men and women here, and he thought we could do anything. That was very
unusual, and that was true all along. This whole idea that women should behave a
certain way, they should get married, they should have families, that was completely
beside the point for him. And he was very vocal about that. And he thought I was big-
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ger than life. That was a good thing, to grow up having that image of yourself—that
empowerment.”

Although Shafi’s mother was a homemaker, she also encouraged her daughters
to be strong and not depend on anyone else to take care of them. “She would say to
us, both me and my sister throughout growing up, that a woman has to take care of
herself and she has to be independent, it’s extremely important. And I think that
probably was because she wasn’t. My father was the one who was the breadwinner.
And I think in her mind, anything that was a step toward accomplishing that was
a good step.”

At the time, Shafi’s thoughts had not yet turned to the next stage in her educa-
tion. In Israel, compulsory military service normally takes place between graduat-
ing high school and going to university. Students will take their exams at the end
of high school, but applying to universities still seems a long time off. However,
Shafi found herself in an unusual situation. Having her birthday late in the year
meant that she was younger than most of her classmates. So even though she had
completed high school, it would be almost a year before she was due to report for
her military service. She had a substantial amount time on her hands.

“My father wanted me to go to the U.S. to study so that I didn’t waste any time.
This idea of wasting time is something very problematic, or was very problematic
when I was growing up. Now it seems like everybody’s just taking trips around the
world as soon as they finish the army, or before the army, and wasting time is not
called ‘wasting time’ any more but ‘gaining life experience.” In any case, my father
wanted me to go to the States, and as usual I did what he recommended.”

The Mind-Blowing World of Computer Science

Sending their 17-year-old daughter overseas did not seem to worry Shafi’s parents.
Not only was she a bright, hard-working student, she was going to be studying
at Carnegie Mellon University, where her older brother Nathan was a graduate
student, and he would be nearby if she needed him.

Her flight landed in New York City and Shafi had her first opportunity to revisit
the home of her early childhood. “I wasn’t there for 11 years, but when I took the
taxi from the airport to the city it seemed extremely familiar.” Her brother met her
in New York and traveled with her to Pittsburgh, where she would move into the
student dorms at Carnegie Mellon and wait for the new academic year to begin.

Her brother knew the math professors at the university, and told them that
his sister was spending a year there and that she was good at math. Based on his
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word alone, Shafi was able to start classes as an undergraduate student in the math
program without ever officially applying to the program.

Shafi’s plan was to spend the year studying and then return to Israel in time
for her military service. However, things didn’t go according to plan. During that
first year, Shafi decided that she’d rather not interrupt her studies, and she applied
to the Israeli government to defer her military service. That deferral took several
months to secure, and in time it became a permanent deferral and Shafi was able
to focus on her education with no interruptions.

Shafi’s first lecture was difficult for her to understand, and she thought perhaps
she’d made a mistake and wasn’t ready for these university-level math courses.
But after telling her brother about her struggles, he realized that her problem
was not with understanding the math, it was simply that she hadn’t learned the
mathematical terminology in English. After she got a rundown of how the Hebrew
words translated into English, everything made much more sense, and Shafi had no
more problems understanding the lectures. But the courses were still a big change
from what she’d been used to at high school.

“When you get to math in college after high school, it’s very abstract. There’s
this gap between the beautiful abstractions and this field (of computer science) that
seems to capture things about life.” Although Shafi felt that these abstract concepts
were interesting, she was not sure that this was the field she wanted to pursue. She
thought that this approach to mathematics was going to take too long to come to
fruition, and that perhaps she should try studying computer science instead. The
undergraduate mathematics program had a computer science specialization that
students could select, and that was what Shafi chose to do.

That turned out to be a life-changing decision for Shafi. Soon, she had her first
computer science classes and her first experience with computers. She recalls, “I
was fascinated by their potential; I was fascinated by the first courses I took on
computer programming, which had alot of algorithm design. You design a program
to resolve an algorithmic problem and there are many ways to do it and there are
efficiency constraints and technical constraints and then—the program just did it!
Now it’s taken for granted, but that idea that you can use a computer to solve a
mathematical task was sort of mind-blowing to me.”

She had decided to study mathematics at Carnegie Mellon simply because her
brother was there, but that decision was one that likely affected the rest of her
career. She arrived in 1976, when there were few computer science departments
at universities anywhere in the world. Carnegie Mellon was one of the pioneering
institutions in the field and had attracted some of the top academics of the time.
In fact, computer science was already well established at the university by the time
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Shafi arrived. They had introduced their first computer science course in 1958, the
year of Shafi’s birth. By 1961, they had added a Ph.D. in the field, and in 1965 they
established a computer science department.

“I think being at Carnegie Mellon was a godsend,” she told Stephen Ibaraki. “It
was a very exciting time. There were all these greats in the field: I took artificial
intelligence with Raj Reddy, and I took my first algorithms course with Jon Bentley,
and I took a course in software engineering from Anita Jones. All these people were
tremendous lecturers and they taught me a tremendous amount. That made me
realize how exciting computer science was.”

Turing Award-winner Raj Reddy was a leading artificial intelligence researcher
and one of the first academics to explore speech recognition. He sparked a strong
interest in AI for Shafi. “I loved the idea of doing artificial intelligence. I thought
that’s maybe what I would do—understand the brain, understand how people think
and how machines can mimic our thought process.”

Shafi drew on her love of literature to help create a program that could generate
poetry using artificial intelligence. “Compared to what they do today, it’s probably
totally childish,” she said in an interview with the Heidelberg Laureate Forum. “But
at the time, the whole possibility of writing down a sort of linguistic map of how
language can be derived was fascinating.”

The computer programming professors at Carnegie Mellon included Anita
Jones and Mary Shaw. Jones would later become Director of Defense Research and
Engineering for the U.S. Department of Defense and Vice-Chair of the National Sci-
ence Board, which advises the President on science, engineering, and education.
Shaw has been a faculty member at Carnegie Mellon since completing her Ph.D.
there in 1972. She is considered one of the founders of the field of software architec-
ture. Studying in a faculty with female professors who were “figures of importance”
in computer science was empowering for Shafi. Women were far outnumbered
by men in her classes, but Shafi had no trouble demonstrating to her professors
that she was a very capable student. Professor Jones was working at the time with
the university’s 50-processor computer on a project called Cm*. She brought Shafi
onto the project, making her one of the first people to work with a multiprocessor
computer.

Shafi was excited about her newly discovered love of computer science, but she
was still a teenager away from her friends and family for the first time. Most of her
high school friends were doing their military service, and Shafi wrote letters back
and forth with some of them, but they eventually drifted apart. At the same time,
her fellow students in Pittsburgh were very welcoming. “The people I met were very
curious about the world, and they were curious about me.”
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When she’d moved from the United States to Israel at the age of six, she’d grown
up as the girl from America. Now, her American peers thought of her as the girl from
Israel. It seemed as though Shafi was destined to be “exotic” no matter where she
went. She found that her fellow students were more adventurous than she was. “I'd
lived a very sheltered life, I think. At that time kids (in the United States) were much
more adventurous in high school than I was. So that was surprising, to be in this
place where everybody’s exploring different aspects of life.”

During her first year in the United States, Shafi’s only contact with her parents
was through writing letters. “I think in their minds I was capable of this journey.
But really, internally, I was just a kid. I missed my parents very much. At that
time, in Israel, somehow the idea of a phone call to the U.S.—it was like an im-
possibility. It wasn’t really an impossibility, but it seemed so expensive, nobody
called.”

Her family did come to the United States for a visit during summer break, re-
uniting with Shafi and her brother. Her father would later return to attend her
graduation. However, it would be several years before Shafi would have an oppor-
tunity to travel back to Israel. She spent her summers at Carnegie Mellon taking
courses that didn’t fit into her regular studies. Computer science was her pas-
sion, but she hadn’t abandoned her love of a great story. “I found the literature
courses that I took in the summer incredible—of course I was exposed to literature
in school, but all these wonderful English-language plays and writers—I loved it, it
was fabulous.”

Blue Skies and Green Hills

After completing her bachelor’s degree, Shafi had to decide whether to get a job
in the industry, return to Israel, or further her education in the United States. She
decided the third option was the most appealing and that she should apply to grad-
uate school. Despite having gone through her undergraduate education entirely in
the United States, however, nobody had informed Shafi about the required entrance
exam for U.S. graduate schools. “I decided to apply to grad school and then I found
out you're supposed to take this exam, the GRE. It’s like the day before. I never
opened a book. I'm not going to say what I got.” Despite her lack of preparation
and the feeling that she hadn’t done well on the test, Shafi was accepted into the
engineering program at Carnegie Mellon and the computer science program at the
University of California, Berkeley.

She decided that she would continue her studies at Carnegie Mellon, but first
Shafi needed to earn some tuition money. Her AI professor, Raj Reddy, recom-
mended her for a job at RAND Corporation and she was offered a position for the
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summer. Spending the summer in Santa Monica, California, was appealing, but
the job itself opened up Shafi’s eyes to the corporate world.

“Being at RAND and seeing that all these Ph.D.s were really running the show,
it became very clear to me that I wanted be able to be in charge and define my own
projects, rather than do what I'm told. I never really had any interest in business or
being on the corporate side,” she says.

During that summer, she met up with a friend who was also working in Southern
California, and the pair took a road trip up the coast to Berkeley. Shafi was struck by
the beauty of the California coastline, and her arrival at Berkeley for the first time
quickly changed her plans for the future. The clear blue skies, the rolling green
hills, and the charming buildings of the Berkeley campus were irresistible. Shafi
decided to attend the university for her graduate studies.

“The computer science department—TI loved the building where it was. There
were big windows with a view of the campanile. I thought I was going back to
Carnegie Mellon, but I had a look [at Berkeley] and I fell in love,” she says.

This decision would change more than the scenery and weather for Shafi. She’d
had every intention of pursuing artificial intelligence on her return to Carnegie
Mellon. Once she was at Berkeley, however, she found herself moving in a different
direction.

Shafi told the Heidelberg Laureate Forum, “On Mondays they’d have these
seminars and three professors would get up and talk about their research. And
based on that I decided to go into a master’s with Dave Patterson on the RISC
(restricted instruction set computer) project. The project was to collect statistics
for the Pascal programming language—how often different commands were being
used—because he was trying to optimize the instruction set, and those instructions
would be included in the hardware. So I wrote this very large system and that’s my
master’s.”

It was her first big project and she threw herself into it. The idea of being so
engaged in a project that she would continue working on it day and night was new
to Shafi. As an undergraduate she had done a lot of reading and studying for exams,
but this was different. She was in charge of her own project and deadlines, although
expected to accomplish things and deliver results to her supervisor. It was her first
taste of life as a researcher.

After completing her master’s, Shafi finally returned to Israel for the summer
to visit her family. Her family had come to the United States to see her, but Shafi
had not been back to the country she had called home for most of her life since
her departure after high school. Her sister was growing up quickly, and it had also
been several years since she’d seen her mother. But the reunion was temporary
since Shafi had already decided to return to Berkeley to get her Ph.D.
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Theory and the Cryptography Revolution

Although her master’s project had been programming based, once she returned
for her Ph.D. Shafi was won over by the theory students and professors. “I meet all
these theory students. And they’re telling me, this Manuel Blum, he’s great, and
Dick Karp, and I should really go and talk to them. So I talked to Manuel Blum, and
we hit it off and he says, ‘Yeah, if you want to work with me, you can work with me.’
The next year he teaches a course on computational number theory and I love it.
It’s clear to me that I've found something that I really like. Somehow it’s extremely
appealing to me,” she told the Heidelberg Laureate Forum. “And then in the last
few lectures he talks about RSA (Rivest-Shamir-Adleman) and cryptosystems and
it’s fabulous!” Shafi was fascinated by the combination of algorithms and number
theory, the use of randomization in algorithmic design, and the connection to
cryptography.

It was during that course in computational number theory taught by Manuel
Blum that Shafi and Silvio Micali started down their shared path toward revolu-
tionizing the field of cryptography—the work that would eventually earn them the
Turing Award. Shafi was inspired by Blum’s discussion of a theoretical problem in
one of his lectures. “He presents this problem at the end,” she says, and describes
the story of a couple who are fighting over custody of their dog. One of them lives in
San Francisco and the other in Los Angeles. They decide that flipping a coin would
be a fair way to decide, but they can’t do it in person, and neither one trusts the
other to do it fairly. Can they do it over a distance and be sure of the result? Shafi
was intrigued, as she told the Heidelberg Laureate Forum. “How would they do it
using computational number theory ideas? Silvio Micali’s also taking this class and
I'm telling him this is really tie problem. We should work on this. It’s clear—I want
to work on this.”

The question was fascinating mathematically, and there was an added appeal for
Shafi because Manuel Blum had presented the problem as a story, with characters
who needed to resolve their situation. The story behind the problem was easy to
see here, and the same could be said when Shafi and Silvio went on to work on
the problem of playing “mental poker.” The problem could easily be pictured by
imagining someone shuffling nonexistent decks of cards, and having to encrypt
52 different potential cards without letting their opponents know anything about
which cards they’ve been dealt.

When it came to those early research projects at Berkeley, Shafi claims that she
and her peers simply “followed our excitement.” It was not important to find real-
world problems that needed to be solved, or to see commercial applications for
their work. Intellectual curiosity and a challenging problem were enough to inspire
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their work. She has always felt that it is important for researchers to ignore the
current trends or popular problems that other researchers are working on. Only by
getting past the dogma of the time is it possible to do truly innovative work.

Shafi found her place in the areas of cryptography and complexity theory, and
also made some wonderful new friends. The theory students at Berkeley would
become constant companions for the next several years. They would work together,
eat together, relax together, and spend vast amounts of time talking to each other
about theoretical computer science with endless enthusiasm.

This close group of friends included Silvio Micali, who would co-write Shafi’s
first paper with her and remain her close friend throughout their careers. She also
became good friends with Vijay Vazirani, Faith Fich, Joan Plumstead, Mike Luby,
Eric Bach, and Jeff Shallit. The students were also friendly with their professors and
spent a lot of time with them. “The professors like Dick Karp and Manuel Blum and
Eugene Lawler—all three of them were such open personalities and so perceptive
and so wise, and they would go to a coffee shop with a group of graduate students
and we would ask questions and talk about research. It was such a marvelous
intellectual and dynamic and inspiring place,” Shafi says. “Their enthusiasm for
what they were doing and their clarity of thinking were priceless for me.”

While Shafi might have seemed exotic to her American peers, she was equally
fascinated by the other members of her multicultural group of friends, each of
whom was a wonderful new source of stories. Silvio could share his stories about
Italy, and Vijay had stories about India. Her new friends were worldly and colorful,
and they helped to expand her experience of the world. Most were a bit older than
Shafi, and she enjoyed talking about life and work with them when they hung out
on campus and in local restaurants. Shafi also had good friends at Carnegie Mellon,
but at undergraduate school there was a different atmosphere. People came to
graduate school at Berkeley from all around the world and they had very different
backgrounds and stories, which was an ideal atmosphere for Shafi.

Shafi and Silvio submitted their paper on playing mental poker to a confer-
ence held by STOC (Symposium on the Theory of Computing), which was attended
by members of the theoretical computer science community. Their paper was ac-
cepted, and it was Shafi’s first opportunity to talk about her research to her peers
outside of Berkeley. STOC is one of the two main conferences for theoretical com-
puter science. In those days there were no parallel sessions; only one presentation
was given at a time, so all of the attendees could see every presentation. Other stu-
dents might have been intimidated in this situation, but Shafi remembers feeling
good about it. “Somehow I had confidence as a presenter, maybe unjustified to
begin with.”
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According to former MIT graduate student Guy Rothblum, her confidence was
not misplaced. “Both Silvio and Shafi have this sort of magnetic field where, when
you’re listening to what they’re thinking about, it’s clear that it’s the most interest-
ing thing in the world.”

For Shafi, it was an eye-opening experience as a graduate student to attend and
give presentations at conferences during her studies. “I realized that there was a
community of theoretical computer science at large that was very excited about
research we were doing. And I realized that there was this whole world out there
of people who were really intensely dedicated to this, and that I was part of it as a
graduate student and as a researcher; being able to present at these things, being
able to be respected and listened to, to realize that my work was important.”

This enlightening experience came just two years into Shafi’s Ph.D. studies. She
would continue down this research path until she completed her thesis, “Proba-
bilistic Encryption: Theory and Applications,” in 1983.

A Mecca for Cryptography

With her studies complete, Shafi headed to the east coast to take up a postdoctoral
position at the Massachusetts Institute of Technology (MIT). She felt that there as
no better place for a cryptography researcher, describing it as a “Mecca for cryptog-
raphy,” in particular because pioneering cryptography researcher Ron Rivest was
on the MIT faculty, and because the RSA cryptographic system, invented by Rivest,
Adi Shamir, and Leonard Adleman, was associated with MIT, since all three were
members of the MIT community at the time. But MIT’s commitment to the field
of cryptography would soon become even more apparent. Within months of arriv-
ing as a postdoc, Shafi would be offered a staff position in the computer science
department, and within a year, they would add Silvio Micali to their staff. In addi-
tion, Adi Shamir and Michael Ben-Or were visiting professors for a year, and Oded
Goldreich started his postdoc there and eventually stayed for three years. In a brief
period, MIT built one of the leading cryptography groups in the world. “When I
came to MIT from Berkeley, it was just an explosion of research and research free-
dom. There was a very active group of researchers who I collaborated with and who
made everything very exciting,” she told Stephen Ibaraki.

This atmosphere enabled Shafi and Silvio to enjoy more of the productive col-
laboration that had begun between them back at Berkeley, and they continued to
work on papers together, sometimes with other collaborators. Silvio reflected on
what makes Shafi such an interesting research partner. “I sometimes joke that she
has multiple personalities! So it’s great to interact with her because it’s like in-
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teracting with more than one person. For example, she will advocate A, then the
opposite of A, then B, then C. I find her unpredictable. I think unpredictability is a
good thing in research,” he says. “With some people, you talk to them and you get
what you’re going to get from them, but with Shafi you keep on going because she
changes, and that’s crucial.”

Shafi agrees that one of the reasons she and Silvio are such productive collabo-
rators is the differences in how they approach problems. “We don’t have the same
kind of mind. I think that collaboration between people with the same kind of mind
is sort of useless. Silvio is very ‘extrematic,” he’s very abstract, and I'm much more
intuitive.”

Other colleagues at MIT can confirm Silvio’s description of Shafi’s unpredictable
nature, and it’s one of the things they enjoy most about spending time with her.
According to Ronitt Rubinfeld, a professor in MIT’s computer science department
since 2004, Shafi’s spontaneity extends beyond the research realm into her social
life. Nights out with Shafi are such an adventure that her friends never turn down
the chance to see what will happen next.

“They drop anything to be with her,” Ronitt says, “knowing that if she suggested
to go to a movie, once arriving at the theatre, the plan may change to going for a
walk, but as soon as the walk starts, it changes to going to a cafe, and after five
minutes at the cafe, who knows what would be next. But they don’t really care
what exactly they are doing when they are with her, they just care about being
in her presence, because there is something about being with her that makes life
exciting.”

Shafi’s tendencyto act on her intuition can also be seen in the seemingly random
ways that she finds problems she’d like to work on. Oded Goldreich has seen this
in practice. “I believe that in most cases, she hears an idea (mostly in a talk) and
takes it to a totally different place, which would make little sense to the person who
communicated the idea but makes sense to her,” he explains. “I think one should
think of the ideas she hears and processes as raw material for her spontaneous
imaginative processes.” Oded also feels that Shafi’s creative nature plays a huge
role in her abilities as a researcher. “What is stunning with Shafi is her intuitive
creativity—her spontaneous nature. She just sees things that nobody does. Her
insights are totally out of the box.”

Shafi and her peers continued to produce research that would change the study
of cryptography going forward. They hadn’t necessarily set out on a mission to
revolutionize the field, but their approach to solving theoretical problems led to
just such a revolution and laid the groundwork for many eventual applications.
She told the Heidelberg Laureate Forum, “Nobody aims for revolutionary impact. I
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believe that basic research is the only way that this type of impact will come about. I
don’tbelieve that there’s anything that can be done that will have such fundamental
implications if you already know the applications, because everybody else can do
it. It can be interesting and good, but it’s not revolutionary.”

In addition to her research, Shafi was now teaching courses at MIT. During her
first experiences, she had the support of more experienced professors. “Nobody
really teaches you how to teach. At least in my time they didn’t. The lucky part was
that when they were teaching big undergraduate courses there were other people
teaching with me.”

Her teaching evolved over time, and she has developed her own courses over the
years that cover her research topics. “I used to really go through the process of how
you get to a result, especially if I was talking about my own research.”

As a former graduate student who was supervised by Shafi, Guy Rothblum found
Shafi’s lectures on her own work very compelling. “She has a grasp of the big picture
and she always knows how to explain what’s revolutionary about the work. She’s
good at explaining the conceptual aspects of the work, and not just the technical
part. In her talks, what she really homes in on and what she really gets across are
what the big, new, important ideas are: what’s exciting about this problem,” he
recalls. “It’s unbelievably exciting to be talking with someone like that, who’s sort
of fearless, not only in terms of the kinds of problems she approaches, but who has
also shown the right way, or the right direction to take in order to make progress
on these sorts of very basic, big problems.”

Creativity has continued to be a big part of Shafi’s motivation, whether applied
to her own work or to the students she is supervising. “The best part about be-
ing at a university is you meet new students and people are so talented and you
never know where their talents lie,” she says. “This creativity or this ability, it never
ceases to amaze you. And that’s one thing that I love about mentoring graduate stu-
dents. Some people are very creative mathematically. And some people are creative
in terms of finding problems. And some people are creative in seeing connections
between different kinds of mathematics. And some people understand the connec-
tions between mathematics and other fields of science.”

Because she puts so much value on creativity and individual talents, Shafi’s
students don’t all follow in her footsteps or work closely with her on her current
area of research. She has collaborated with several of her students on research
projects, but with others she has provided more hands-off guidance. Guy Rothblum
observed the range of research that has been produced by her students. “You
look at her students and every student has done something different. She’s an
extraordinary mentor in that way—she teaches you a lot about how to think. And
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she’s fearless about what kinds of problems to approach. It’s a type of environment
where any problem is fair game if you’re intellectually curious. Shafi was really good
at guiding, but also letting students determine how to follow their own taste, their
own curiosity.”

Guy says that Shafi has a natural talent for seeking out the right problems to
work on. “Shafi has this thing that can’t really be taught—Dbut it seems to rub off
on some of her students—which is having this intuition or taste for problems. Just
intuitively knowing what’s a good problem to think about and being able to make
a connection between two different areas.”

The field of cryptography has developed beyond what Shafi might have imagined
in the early 1980s, and she is now considering questions that were not on anyone’s
mind, perhaps even ten years ago. For example, how can a society balance the
power of big data to create solutions that improve people’s lives with the threats to
personal privacy that can come from the use of that data? And should governments
or law enforcement be able to override encryption protections in name of law and
order?

The ethical questions may remain for a long time to come, but according to
Shafi some technical solutions in the area of privacy already exist, they just need to
become more widely available. She told the BBVA Foundation that she feels it is vital
that people learn to value their personal data, and stop giving them away for free.
She believes that using the cryptographic tools that are available today, privacy and
security are compatible concepts. “We have effective cryptographic methods that
are still not being used,” she says, encouraging IT firms to “do more to build systems
to make use of the beautiful ideas we have come up with in the cryptographic field
that have never been implemented.”

The Traveling Professor
While Shafi was very happy to be part of the faculty at MIT, she still had a strong
attachment to Israel and her parents were still living there. In 1987 she became a
visiting professor at Hebrew University. It was an opportunity to spend time back in
the country of her childhood. Her stay there would also have a profound influence
on the rest of her life because it was during this visit that she met the man who
would become her husband: fellow computer scientist Nir Shavit. From that point
on, Shafi would have a foot in two worlds.

The added complexity of her renewed attachment to Israel didn’t slow down
Shafi’s progress as a respected researcher. She received the NSF (National Scientific
Foundation) Presidential Young Investigator Award from 1987 to 1996, and the NSF



20 Chapter1 A Story Behind Every Problem: A Brief Biography of Shafi Goldwasser

Award for Women in Science from 1991 to 1996. In 1993, she received her first Godel
Prize for outstanding papers in the area of theoretical computer science (which was
the first one ever awarded) along with Silvio Micali and their collaborators in the
field of interactive proof systems. She would win the prize again in 2001 with a
group of researchers who worked on the PCP theorem in the area of complexity
theory. The Godel Prize is presented jointly by the ACM Special Interest Group on
Algorithms and Computation Theory (SIGACT) and the European Association for
Theoretical Computer Science (EATCS).

When Shafi and Nir decided to get married, Shafi sought out a position at a
university in Israel in order to put down more enduring roots there. She received
several offers, and decided to join the prestigious Weizmann Institute in 1993.
“Shimon Ullman was there and Adi Shamir and David Harel,” she recalls. “Every
single person there was very interesting—the top of their field—and that’s still true
about them. They hire the best and the brightest.”

As a professor at two universities, Shafi split her time between Cambridge and
Tel Aviv. Her family, which would eventually include her two children, Yonadav and
Lior, moved from one place to the other every few years. Raising children is always
a big adjustment, and raising them in two countries added to the challenge. “Being
a parent is different than being a scientist. It’s all-consuming and the well-being of
these children is everything. It becomes everything. But having children and having
these sort of dual homes academically meant that we lived our life in a certain way
where we all spend a few years in Israel, then a few years in Boston, and then in
Israel, and then in Boston. The good side was that we always went to the same place
and the kids had the same schools. But the fact that it was kind of a predestined
departure gave an alternative structure to our life which I think is unique. But you
know what, they came out pretty good!”

It's not a lifestyle that all academics would seek out, but Shafi believes that work-
ing in two respected institutions gave her the best of both worlds in terms of her
career. “Both at Weizmann and at MIT there’s a very strong group for cryptography
and complexity theory. There’s probably more focus on complexity theory at Weiz-
mann and maybe more focus on applications at MIT. But both places are among
the best in the world,” Shafi told the Heidelberg Laureate Forum.

The two universities are quite different when it comes to the overall environ-
ment. The Weizmann Institute is a more intimate campus with only graduate-
level students, and a smaller number of them than MIT. (Weizmann currently has
around 1000 graduate students enrolled, while MIT has almost 7000, plus an un-
dergraduate program.) Most of the students at the Weizmann Institute are Israeli,
although they do attract some students from overseas. MIT, on the other hand, is
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a large, bustling campus. The students there, especially those pursuing postgrad-
uate degrees, come from all over the world. It’s a very stimulating and energetic
environment, but also one that can be distracting for a researcher.

“MIT is very intense. There’s a lot of people, a lot of graduate students. And
there’s continuous seminars and meetings, and you really feel like you're in the
midst of it,” Shafi explains. “Weizmann has fantastic faculty members, very, very
good graduate students, but fewer. So there’s more time to think, but there’s less
intensity, and I think that they’re very different that way. So I think that after a few
years in Weizmann, [ was very eager to go back to MIT, and after a few years at MIT,
I was very eager to rest a little bit and just kind of be able to think [at Weizmann].”

As her career has progressed, Shafi’s contribution to computer science has been
recognized in several ways. In 1996, she won the ACM Grace Murray Hopper Award,
which is awarded to the outstanding young computer professional of the year, for
her early work relating computation, randomness, knowledge, and proofs.

In 2006, she was named a distinguished alumna at the University of California,
Berkeley. Shafi’s position as a woman in a leading computer science role was rec-
ognized by ACM’s Committee on Women in Computing with their Athena Lecturer
Award in 2008.

In 2010, Shafireceived the Benjamin Franklin Medal from the Franklin Institute.
The Franklin Institute’s Awards date back to 1824 and provide public recognition
and encouragement of excellence in science and technology. As one of their hon-
orees, she is in the company of some of the biggest names in science, including
Nikola Tesla, Pierre and Marie Curie, Albert Einstein, Jane Goodall, and Stephen
Hawking.

Shafi was one of the final recipients of the IEEE (Institute of Electrical and
Electronics Engineers) Emanuel R. Piore Award for outstanding contributions in
the field of information processing in relation to computer science. The award was
established in 1977 and discontinued in 2012; Shafi received the award in 2011.

Shafi and her longtime friend and collaborator Silvio Micali won the ACM Turing
Award in 2012 for their work together. She joins a very exclusive list: Only three
women have received the Turing Award in its history of more than 50 years. The
award is considered to be the pinnacle of achievement in the field of computer
science, and she told Stephen Ibaraki that her peers were very supportive when
they found out about it. “The reaction from my colleagues was really overwhelming.
As soon as it was announced I heard from people who were graduate students with
me at the time—many, many years ago—my own ex-students, my colleagues around
the world, my friends, and everyone was extremely well-wishing. It seemed like they
were truly happy for us. It’s a wonderful feeling.” This recognition also confirmed
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to Shafi that her wide-ranging approach to research can pay off. “I certainly will feel
more confident giving my students the kind of advice I've always given them: that
they should work on risky projects, they should work on more general problems
rather than trying to solve a specific problem that was posed by other people.
Because in a sense that’s what the award is for—that’s the kind of work we did
that has been awarded.”

Her awards are not just recognition of her past achievements; they also help
Shafi to establish her authority as a researcher. “I'm not sure that they have a direct
impact on how I do research. I assume that they will affect my influence on the
directions of computer science. Maybe in some sense it does allow one to work on
more open-ended research.”

All of this recognition puts Shafi in the position of many famous scientists who
came before her: as someone who will inspire future generations of researchers.
However, Shafi did not draw inspiration from these kinds of legendary scientists
and mathematicians for her own career. She told Stephen Ibaraki, “I was inspired
by my mentors, my colleagues, and my students. If you're looking for historical
figures—that speaks less to me. Those who inspire me are people I was in contact
with, not people I read about in books.”

New Perspectives

Despite her many years of commitment to her research and her students, Shafi still
sees the value in removing herself from her day-to-day routines to work in a new
environment and get a fresh perspective. During the 2017-18 academic year, she
was a fellow at the Radcliffe Institute for Advanced Study, which is part of Harvard
University. The goal of the institute is to create an interdisciplinary, international
community of 50 fellows each year across the arts, humanities, sciences, and social
sciences. During her Radcliffe fellowship, Shafi turned her attention to applying
encrypted computation methods to the analysis of social science data. She also
took advantage of the time to work on a couple of projects that allowed her to flex
her creative muscles in a completely different way: a book on pasta and protocols
and a photography series on the women of New England.

Even when she’s working in more familiar surroundings, Shafi finds unique
approaches to expanding her way of looking at the world and to discovering new
connections to explore. She explains, “A few years ago [ was on sabbatical at Weiz-
mann and I took this course about the connection between dance and science. It
sounds like an unlikely connection, but there was a dance group, and a bunch of
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scientists who loved them, who were meeting once a week. Each scientist would
describe their research and a dance was choreographed about it.”

Shafi’s love of creative expression attracted her to this unconventional method
of bringing scientific research to life. She even found inspiration in it for her own
research. “There was a scientist whose research was about clocks and biological
processes; how every cell has a clock. It intrigued me, this issue about clocks and
individual cells. And after that I went on to start this research on how to model
biological cells as computer cells, maybe having a little memory, maybe having an
internal clock. How would they be communicating with each other?”

While biology and computer science are fields that have not had much interac-
tion in the past, this is beginning to change. It’s thanks to researchers like Shafi,
who can make these creative connections between the two fields, that new areas of
research are able to gain momentum.

In 2018, Shafi took her career in a new direction when she became the director of
the Simons Institute for the Theory of Computing at Berkeley, returning to her alma
mater (and the beautiful California campus) after more than three decades away.

The Simons Institute was founded in 2012 as a venue for collaborative research
in theoretical computer science. Its founding director was Richard Karp, one of
Shafi’s former professors from her graduate school days at Berkeley. She felt com-
pelled to move into this new leadership role that would put her wide experience in
the field to use by making her a guiding force in the current and future directions
of theoretical computer science research.

“I want to have impact, and the kind of impact that I'm talking about now is
impact as the director of the Simons Institute or someone who directs—someone
who has some influence about where the field is going in the sense of what’s
important and what’s not important. I feel I have an intuition to serve me, and
also a lot of experience.”

Shafi believes that theoretical computer science is a field of fundamental im-
portance in human society at this point, on equal footing with chemistry, physics,
and biology. When Shafi’s appointment to the Simons Institute was announced in
2017 she told the Berkeley News, “Algorithms govern our computing-based world
in the same way that the laws of nature govern the physical one. Their mathemat-
ical underpinnings are thus as important to modern society as the periodic table,
relativity or the genome.”

As she told Stephen Ibaraki, the fact that she has already accomplished so much
in her field does not mean that she is planning to slow down. “I've achieved some
of my life goals already, but this is not going to change my passion for science and
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the kind of problems I've been working on. I still hope that I have some important
work to do.”

As computers become a part of more and more human endeavors and interac-
tions, it is crucial to have researchers like Shafi involved in the ongoing evolution
of computer science. Seeing the connections between computer science and other
important fields of knowledge may take society in unexpected directions, or prevent
potential disasters. Her ability to identify ideas that others dismiss as impossible,
and to see how to make them possible, is a unique gift with the potential to con-
tribute to the advancement of society for years, and possibly generations, to come.

Shafi’s sphere of influence continues to grow, and there is no doubt that she is
creating a valuable legacy in the fields of cryptography and complexity theory, and
perhaps many others.



One Obsession at a Time:
A Brief Biography of
Silvio Micali

Obsession can be a debilitating problem for some people, but for Silvio Micali it’s
his modus operandi. “I'm a monomaniac,” he explains. “I pursue one thing at a
time, for a long time.” In Silvio’s world, a long time generally equates to about five
years. That’s how long he tends to spend investigating a subject and working on a
problem. Of course, some problems are solved more quickly than others, but for the
most part a field of research will hold his attention for about five years. Rather than
delving deeper and deeper into the same topic, or finding related problems that
still need resolving, Silvio prefers to walk away and find something new to obsess
over. “I'm leaving behind beautiful problems that ought to be solved. And they will
be solved—they are being solved—but not by me.”

Silvio’s tendency to become obsessed with a problem can be traced back to
his childhood anxieties. The first huge, theoretical problem he tried to tackle was
whether the world in which he lives exists at all, or whether it is just a construct of
his mind. This question plagued him, at times making it difficult to carry on with
the everyday activities and interact with people who suddenly were possibly just
figments of his imagination. It’s actually a condition known commonly as solipsism
syndrome, which calls into question whether reality is objective or subjective.
Clearly, staring into the unknown and looking for provable answers is something
that has intrigued Silvio throughout his life. This was the starting point for a
career spent asking, and attempting to answer, some of the biggest questions in
cryptography and beyond.

Natural curiosity is a big part of any great researcher’s personality. Looking back,
it may seem obvious that Silvio was born to be a researcher. But pursuing a career
in theoretical computer science was far from a given for a young Sicilian man who
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would not even encounter his first computer until graduate school. His journey
has involved a mixture of purposeful focus and serendipity. He has had the good
fortune to sometimes be in the right place at the right time, and the wherewithal
to realize it.

Silvio Micali the researcher is well known in the computer science community.
Less well known is Silvio Micali the devoted son and big brother, the husband and
father, the mentor and teacher to many, and the colleague and treasured friend to
a fortunate few.

A Childhood Among the Ruins

Sicily is a large island that lies just to the west of Italy’s southern “toe.” It is rich in
history and culture, having been alternately occupied by the Phoenicians, Greeks,
Carthaginians, Romans, Byzantines, Arabs, Normans, Germans, Spaniards, French
and others before uniting with Italy in the 19th century. In the 1950s, however, Sicily
was economically poor and underdeveloped. In October 1954, Silvio was born in the
island’s largest city, Palermo. It was his father’s hometown, while his mother hailed
from a nearby area.

His family soon relocated to Agrigento, a town perched on a hilltop near the
island’s southern coast. Silvio’s father, Giovanni, was a judge, following in the
footsteps of his own father, who’d been a lawyer and a judge as well. Silvio’s mother,
Franca, was a homemaker who looked after Silvio and his sister, Aurea, who was
born one-and-a-half years after Silvio.

Agrigento is best known for its historical importance as home to the “valley of
the temples”—a collection of ancient Greek temple ruins. In the 1950s, there was
no real industry in the town apart from some agriculture and a small but important
tourist trade. The town’s tourists gave Silvio a strong sense of place, as he watched
people from around the world who came to his town to see the temples. “You cannot
appreciate history if you're Sicilian,” he says, “because you are smack in the middle
of it with so many cultures all around you.” The present cannot be separated from
the past there.

To this day, Sicily’s population reflects its diverse history. Its people are de-
scended from the large number of different ethnicities that each dominated the is-
land at times. This was certainly true in Agrigento, where remnants of the past could
be seen everywhere. This immersion in his town’s multifaceted culture helped
Silvio to forge a strong identity as a Sicilian, which has remained with him even
after he adopted additional identities as an Italian and eventually as an American.
Agrigento’s much-admired ruins also instilled in him the idea that if you create
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something beautiful, it will be recognized and appreciated for a long time. He be-
gan to understand the concept of leaving a legacy.

Silvio spent his early years attending the local primary school, and fighting with
his sister the way only siblings can fight. “We’re very close now, but we fought like
cats and dogs until we were eighteen,” he says.

His education was taken very seriously from the beginning. The teachers in
Agrigento were very dedicated, and with little industry in the town, education was
a high priority. “It’s hard for people to understand, because we now live in a society
which is much more diversified in achievements. But I lived in a society where
[education] was the only possible level of achievement—perhaps to study the past,
or to do something cultural or scientific—there were no other venues available,”
Silvio says. Although the town was economically depressed, its residents had an
appreciation for education and culture that he has not experienced anywhere else—
not even in Rome, where he spent the later part of his youth.

A good education was considered to be not just the first step to a better life,
but the most noble pursuit. Education for the sake of education, and culture for
the sake of culture, were valued in Silvio’s upbringing. This idea, that the pursuit
of knowledge for its own sake was a noble endeavor, would certainly influence his
decisions later in life. “Education is the only thing that you can always keep with
you,” he says. “It’s completely portable. I had a sense of its intrinsic value. Your own
understanding of the world, your appreciation for research, nobody can take that
away from you.” In a town where there was little to do, discussion and debate were
favorite pastimes, and great training for anyone going into groundbreaking fields
of research where new ideas and theories must be fiercely defended.

Teachers were Silvio’s early role models for his future career in academia. In
fact, Silvio considers some of his middle school teachers to be among the most
influential mentors in his life. They instilled in him an appreciation of the past
and tradition, while preparing him for the road ahead. From an early age, he was
attracted to mathematics and science, and also to the idea of having a job where he
could discuss scholarly, important things. He felt that would be the best job in the
world! At an age where many young people are still hoping to become sports stars
or superheroes, Silvio was already dreaming of a career as a researcher.

Silvio’s father also played a large role in his education. Silvio describes him
as a “force of nature”—an influential man who liked to philosophize and debate.
Silvio, however, grew tired of philosophy and felt he should focus on something
else. Following the family tradition and becoming a lawyer was not something that
appealed to him, and his father did not push him in that direction. It was only
when Silvio was ready to enter university that his father urged him to consider
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law as a more practical choice than becoming a mathematician, fearing that his
son would find himself without a job. Having no experience with academic careers
and research himself, Giovanni Micali was understandably nervous about Silvio’s
prospects. By that time, however, Silvio has fallen in love with mathematics and the
legal profession was simply not an option for him.

While his mother was not as outwardly forceful as his father, she was at least
as influential in Silvio’s upbringing. Perhaps embodying a stereotype of Italian
mothers, she held “heroic” expectations of her children. So while his father set
a high bar in terms of educational achievement, his mother set a far higher bar,
“in another dimension” according to Silvio, in terms of what her children should
achieve in their lives. Since no child wants to disappoint his mother, Silvio took
these expectations to heart, realistic or not, and felt compelled to do something
great with his life.

It wasn’t all work and no play during Silvio’s childhood. During the summer
breaks, he would spend his time playing sports and doing other outdoor activities.
But during the school year his attention was on his schoolwork, and so he didn’t
really mix his summer activities into the rest of the year. Work time and play time
were kept separate from an early age, perhaps indicating that Silvio was already
developing the intense focus that would eventually make him such a dedicated
researcher.

Rome: The World as a Museum

At the age of twelve, Silvio was thrown into an entirely new environment. His father
was transferred to Rome to work for the Tribunale di Rome. He would be moved up
later to Rome’s Court of Appeals before eventually being offered a position at the
Corte Suprema di Cassazione (Supreme Court of Cassation), Italy’s highest court.

For a young boy from a Sicilian town with a population of around 50,000, Rome
was another world—a large, cosmopolitan city where school was no longer just
down the road and the sheer size of the city and the number of people were almost
incomprehensible to him. The family lived in an area called Nuovo Salario, north
of the city center.

Once he was in Rome, Silvio began to appreciate the legacy of the Romans in a
way he hadn’t in Sicily. Agrigento’s ruins are mainly Greek, so although the Romans
had ruled Sicily for a time, they hadn’t left their mark on Silvio’s childhood the way
the Greeks had. In addition to adapting to a new, larger city, he was absorbing the
new culture and history that it represented.
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Silvio began attending high school in Rome, which involved traveling into the
city center. High schools in Italy at that time took a classical approach to education.
Students did not specialize according to their interests or abilities; they all focused
on the same basic areas of study to give them the fundamentals of learning. “If you
wanted to become a scientist, that’s fine,” Silvio says, “but you started by studying
Latin, Greek, philosophy, history . . . and a little bit of Euclidean geometry.” De-
spite the lack of focus on science and mathematics, that bit of continued exposure
was enough to keep the flame lit under Silvio in his pursuit of a career in math and
science.

Learning about the classics wasn’t limited to the classroom. Living in Rome,
the classics were all around him on the streets—in the architecture, the ruins, the
fountains. “You’re walking down the street and you see the place where Galileo’s
trial was held,” he recalls. “It was really a fabulous time and it had a very, very big
impact on me.”

Silvio’s father was also a big influence when it came to appreciating the historical
treasures of Rome. “My father was an absolute maniac when it came to museums,”
he says. “I was fourteen or fifteen and we were living in Rome—all of a sudden it’s
like you’re a kid in a candy store. There are museums everywhere!”

Every Sunday the pair would wake up early in order to be the first visitors to
arrive at their museum of choice. They loved having the museum to themselves
for a little while, when most people lingered in bed. They would stay all day,
forgoing lunch (since museum cafes and snack shops were not common at the
time), and clutching a book with descriptions of each piece in the collection.
“Painting, painting, painting—stone, stone, stone—statue, statue, statue, until
your legs would crumble under you,” he recalls. At the end of the day they would
leave exhausted.

This activity continued even beyond the city’s many museums as Silvio’s seem-
ingly insatiable appetite for art and history drew him into Rome’s churches to see
famous works on display in their original settings. Masterpieces that appeared in
his art history books could be seen up close. He loved the idea of touring the city
on foot and enjoying art where it was meant to be displayed.

At the same time, Silvio was cultivating his mental capacity by trying to come
up with theories. The fact that he did not have the necessary data or skills to prove
any of his theories at the time was not an issue for him. Influenced by the study of
classical philosophers, he would devote much of his time to an attempt to extract
meaning from things and answer the most basic questions about life. “These basic
questions never left me,” he says.
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When he was introduced to basic proofs for geometric concepts like the con-
gruence of triangles in his classes at school, he would wonder how the proof was
created. He was very intrigued by statements like “two triangles are equal.” What
does that mean? How can you deduce more by starting with less? It seemed almost
magical to him. He felt like, as with the conservation of energy, you could not create
something (a meaning) that wasn’t already there. “Questions like ‘What is a proof?’
and these sorts of things fascinated me even when I was very young.” It would be
a while before Silvio had the mathematical and intellectual tools to start properly
addressing these problems, but his awareness of them can be traced back to his
teen years, when he began to question things that other students were willing to
accept as axiomatic.

This questioning of the world around him could be quite challenging for Silvio’s
teachers. Now and then he would present them with some incomprehensible pages
outlining his physical theory of the universe or other equally ambitious theories. His
teachers were very patient and took his ambitions seriously, rather than dismissing
them out of hand. It seems they had the foresight to understand that encouraging
a curious young mind, even if he was attempting things far beyond his current
abilities, was worthwhile and could build his confidence. If his early theories had
been mocked or dismissed by his teachers, it is possible that Silvio would have
become more cautious about attempting to answer those big questions he loves so
much, and that have been such an important part of his career.

Preparing for a Nobel Prize . . . Or Not

When it came time to begin his college education, Silvio was already quite sure that
his future would involve research. Silvio chose to attend La Sapienza University of
Rome. It was the early 1970s, and at the time it was common for Italian students
to attend a nearby university (if they lived in a major center) and continue living
with their parents. The campus culture of the United States had not caught on in
Europe, so the fully immersive student lifestyle that some of his future colleagues
were already experiencing at that time was unknown to Silvio. Because he was still
living in the family home, it was easy for Silvio to devote his time completely to
study and not have to worry about the burdensome details of living on his own, like
making his own food, doing laundry, or paying rent.

Despite his strong interest in mathematics, Silvio enrolled in the college’s phys-
ics program. Why physics? He was swayed by the fact that there was a Nobel Prize
for physics but none for mathematics. An ironic line of reasoning for a man who
would eventually enter the field of computer science—in which it is also impossible
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towin a Nobel Prize—and who would go on to win a number of prestigious prizes in
his field. These would include the Turing Award, which has earned the nickname
“the Nobel Prize of computer science.”

Silvio experienced his first research-oriented courses at the age of nineteen. His
classical high school education had perhaps left him behind some of his peers in
terms of this type of study. He was starting from scratch on his understanding of
advanced mathematics. But his enthusiasm for the subject made up for his lack of
knowledge, and he felt strongly that this was what he wanted to do with his life. He
wanted to become an academic and do theoretical research.

Although he was enrolled as a physics student, the Italian universities had
discovered that the students emerging from the typical high schools of the time,
where only the basics of mathematics were taught, were ill-equipped to understand
advanced physics; they simply couldn’t follow the calculations involved. So during
his first semester at college, before his physics education began in earnest, Silvio
spent his time learning about calculus and geometry. The following semester they
began to learn physics. This was a departure from the normal course structure at
the university, which generally involved full-year courses.

What was meant to be preparatory work for Silvio’s study of physics ended
up changing the direction of his education. “After six months of learning about
mathematics I began to think, who cares about physics?” he says. He had decided
that mathematics was a more interesting field and there was no looking back. Silvio
changed his course of study and pursued a degree in mathematics, abandoning his
dream of one day winning a Nobel Prize in physics.

Once he was learning math a higher level, Silvio was better equipped to explore
some of the questions that had begun to dog him during high school. This first
emerged when he began to study calculus during that fateful first semester of his
degree. The rigorous reasoning and impressive information architecture left an
impression on him.

Silvio considers his first calculus teacher, Luciano De Vito, a real gift and a big
influence on his love of mathematics. He did all of his teaching using problems.
He would come up with a sequence of problems that would push his students to
reconstruct the definitions to use in the theorems, helping them to arrive at the
definitions themselves rather than just presenting them to the students. This was
much more work than simply learning the curriculum out of a textbook.

For some of his classmates, studying calculus was simply a means to an end,
and they may not have valued a deeper understanding of it. But for someone with
an inclination toward research, this type of learning was quite inspiring. It was
a totally different approach to teaching than Silvio had experienced in the past,
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and it gave him a much greater appreciation for the subject. It also helped him to
see how having the right tools could help him to prove what he wanted to prove.
Since Silvio already had a long history of exploring difficult questions, it was a
revelation to understand that through his education he could obtain the tools to
finally start discovering the answers. Silvio would later use a similar approach to
teaching course material to his own graduate students.

During his mathematical studies, Silvio anticipated using the education he re-
ceived in this area to undertake mathematical analysis. Professor De Vito was disap-
pointed that Silvio had abandoned the idea of pursuing a career in physics, but felt
that if was determined to pursue mathematics instead, the most interesting field
was theoretical computer science. He thought that analysis was not a good pursuit
for someone young and ambitious, despite the fact that he was a mathematical ana-
lyst himself. De Vito told Silvio about the work of Alan Turing and others, and as far
as he was concerned, this was the only worthwhile area of research in mathematics.

At first, Silvio rejected this advice and pursued his interest in mathematical
analysis. But in his final year of undergraduate study, he got his first glimpse into
his future. He took a course in logic and one in lambda calculus, which functions
as a kind of abstract programming, with Professor Corrado Bohm. Silvio enjoyed
these courses more than many of the others he’d taken to date.

After those courses, he was convinced that he should pursue further studies in
computer science. For his undergraduate thesis, he worked under Professor Bohm,
who was one of the fathers of computer science in Italy and whom Silvio credits with
“discovering” him and seeing his potential. He gave Silvio a lot of encouragement
to pursue his interest in computer science, and they two wrote an article together,
marking Silvio’s first academic publication. Bohm advised Silvio to leave Italy for
his graduate studies. In the 1970s there was no Ph.D. program in computer science
available in Italy.

The Italian college system was quite different from the system he later experi-
enced in the United States. Part of this contrast was due to the difference in campus
culture. Many American students lived on campus in student residences or frater-
nities, while in Italy most students continued to live with their families. But the
college itself took a different approach—Iless structured than the American system.
Most courses were year-long courses, four per year, and exams could be taken when-
ever he felt he was ready for them. He didn’t have to deal with the pressure of exam
week or sitting in a lecture hall full of his classmates while everyone wrote the exam
together. Instead, he could prepare at his own pace, and spread out his exams over
several months if he wanted to. For someone who prefers to focus on one problem
at a time, this was an ideal arrangement. Sometimes he would learn new concepts
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very quickly and progress through the curriculum at a fast pace once he was “on
the scent” of things. In other situations, he’d have the opportunity to kick ideas
around for longer and to make sure he was confident about his understanding of
a problem before moving on. For Silvio, the absence of time pressure was funda-
mental to absorbing material and to thinking deeply about a topic. Throughout his
education and career, he has continued to consider unstructured time an absolute
necessity.

Now that he has the benefit of his experience with students at MIT, he can see
that the Italian system suited him very well. The American classes involve assigning
problem sets one after the other, each of which is graded, and culminating in a final
exam. For students who fall behind at the beginning, it can be very difficult to catch
up. The more self-paced Italian system allowed him to study at his own natural
rhythm. The notion of learning on a schedule was quite foreign to him when he
eventually arrived in the United States, and quite terrifying as well.

Silvio completed his undergraduate program in 1978. Despite his enthusiasm
to continue his studies, Silvio’s timing was off. He missed the application deadline
for the following year’s academic intake and found himself forced to wait.

To keep himself busy and productive, he took a course in computer science over
the summer. During this course, Silvio studied under another wonderful mentor
who introduced him to the use of algorithms. Silvio had never seen an algorithm
before (or a computer, for that matter). The teacher was Shimon Even, who hailed
from Israel. Silvio became fascinated with algorithms, which cemented his decision
to do a Ph.D. in theoretical computer science. Shimon Even would later refer to
Silvio as “the brightest student I ever met.”

If he’d wanted to remain in Italy and become an academic there, Silvio would
have entered a system with three levels: He would have started as a researcher, then
become an assistant professor, and eventually reached the level of full professor. By
this point he had a couple of publications on lambda calculus under his belt and
was considered a bit of an expert in this area. He did, in fact, take up a researcher
position for a while after completing his undergraduate degree. But this did not
seem like the right path for him, and he ended up resigning his position before
long in order to become a student again. He would leave behind lambda calculus
and forge ahead with algorithms.

Silvio applied to the University of California at Berkeley, and was accepted
conditionally. His English was not at an acceptable level, and he needed to raise
his score on the TOEFL (test of English as a foreign language) before he could
be admitted to the Ph.D. program. The test was only administered once every six
months, so if he failed again it would lead to another long delay in his plans. This
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was a challenge quite different from those Silvio was used to. He is not a natural
when it comes to languages. He studied French in middle school, and was able to
make himself understood in that language years later when he presented one of
his lambda calculus papers at a conference in France. However, French is closely
related to Italian. English is a different story.

Silvio was not starting from scratch when it came to learning English. His father
had had the foresight to decide that his children should learn English, long before it
was considered the “universal language.” They attended an English school in Rome
to learn the language. It was far from where they lived and required a one-hour
bus trip in each direction to attend the one-hour lesson. But half a day of sacrifice
seemed worthwhile to Mr. Micali, who wanted to give his children the opportunity
to embrace the world beyond Italy. However, it was not enough to prepare Silvio for
graduate studies in the United States, and he had to work hard on this English in
order to improve his test scores.

California, Here | Come!

Moving to America was a big decision, but it was one that Silvio was ready for. He’d
always planned on leaving Italy at some point. Not because he disliked Italy, or
wanted to leave it behind—in fact he still considers himself to be a “quintessential
Italian” who loves his home country and his culture, and he has always visited
regularly. He felt strongly, however, that leaving behind what he knew was essential
to being innovative. He had to shake off the past in order to move forward.

He felt that this was especially important for someone who grew up in Italy,
which is so steeped in history, tradition, and culture. The responsibility for preserv-
ing the past, this great history of Western civilization, weighs heavily on the Italian
population—especially in Rome. Silvio likens it to living in a house full of expensive
and delicate artwork. You aren’t allowed to run around because you might break
something. You have to show great respect for what is around you, and so your
freedom is limited. It’s easy to fall in with a uniform way of thinking in such an
environment, which makes it difficult to do something truly new. “You cannot be
disruptive and respectful at the same time,” he says. Great research, Silvio believes,
is disruptive. He confesses that his literary hero was Ulysses. He explores the world,
taking years to return to his family. Silvio needed to find his own path, and to go on
his own heroic journey of sorts, so that he could move beyond his roots.

Silvio arrived in Berkeley in March 1979. Despite his improved English scores
on the TOEFL, he soon discovered that his language skills were going to make
life in America difficult for him. Landing at the airport in San Francisco, he tried
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asking people how to find the shuttle that would take him to Berkeley. Nobody could
understand what he was trying to say.

He felt completely isolated in his new home. The language barrier was a major
setback, but that was only part of the problem. Compared with the American
students, Silvio had no real background in computer science. His undergraduate
work had been in mathematics, while his American peers had been learning about
the basics of computer science. Silvio’s experience was limited to the one summer
course he’d taken, so he found that he did not have the prerequisites for the courses
he wanted to take. In fact, he found himself enrolled in “CS1”—the introductory
course in computer science. Silvio, at 24 years old, was surrounded by 18-year-
old students, and some as young as 16, with whom he had little in common.
With no friends and a limited ability to have conversations in English, Silvio had
practically no social life outside of his lectures. Not long after embarking on his
great adventure, Silvio felt ready to pack up and go home. He spent a lot of time
coming up with reasons that he should leave, convincing himself that this wasn’t
what he was meant to be doing. He wanted to create a narrative that justified his
decision without admitting that he was doing it for purely emotional reasons.

When it looked like Silvio was ready to give up on Berkeley, it took just one
person to change his mind, and to redirect the remainder of his education and
possibly his career. He met a graduate student named David Lichtenstein, who
was almost finished his Ph.D., and who was much closer in age to Silvio than his
classmates in CS1. His new friend started to give him the helpful advice he needed
in order to break out of his downward spiral and take control of his situation. The
two remained friends for many years after David completed his doctorate.

David’s first recommendation to Silvio was to forget about the rules and enroll
in advanced courses even though he didn’t have the prerequisites. He figured it was
better to beg forgiveness later than to ask for permission. This one piece of advice
changed everything for Silvio. When he returned to Berkeley after the summer
break, he took courses with his graduate-level peers and began to make friends
who had similar interests. It was the turning point in what could otherwise have
been a very short career in computer science.

During that challenging first year at Berkeley, Silvio was on a fellowship provided
by the Italian National Council of Research. He was given in advance half the money
for the year; the other half he would receive in travelers checks that he collected at
the Italian consulate, the preferred method in the days before electronic money
transfers.

It was Silvio’s first time living away from home, and so it was the first time he’d
had to pay his own way and budget for himself. It was also the first time he had
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to eat on his own, without his mother’s delicious cooking. He hated the food at
the university cafeteria, calling it “cruel and unusual punishment,” and decided he
could not eat it. Instead he found a local restaurant that served very good food and
proceeded to eat there practically every night.

Soon enough, he ran out of money, having spent far too much on food. Rather
than return to the school cafeteria, Silvio decided to try cooking for himself. Al-
though he had sometimes helped his mother out in the kitchen, he hadn’t really
absorbed what she was doing in detail. He could remember many of the dishes
she’d made but was unsure how to cook them, so he was forced to experiment.
He made occasional (expensive) long distance calls home, sometimes waking
his mother in the middle of the night, to find out what ingredients went into
his favorite recipes. Even with her help, cooking Sicilian specialties was not easy
since many of the ingredients were simply not available in California in the late
1970s.

Necessity became the mother of invention as Silvio struggled to creatively sub-
stitute ingredients in the recipes from home. Even mozzarella cheese, a staple in
today’s American supermarkets, was not to be found. In the end, the recipes ended
up being his own, since if you keep substituting one ingredient after another you
eventually end up with a different dish altogether. His substitutions were hit and
miss, and some of Silvio’s friends were subject to failed experiments where the
recipes didn’t turn out as planned. But he developed a love of cooking, believing
it to be a “great aggregator” to bring his friends together. Silvio still enjoys having
people over to share a home-cooked meal. He also still believes that there’s no rea-
son to eat badly, food being one of the necessities of life. Later on, Silvio’s parties
would become a highlight for his friends and colleagues, and his cooking always
featured prominently.

Itwas also at Berkeley that Silvio finally had his first interaction with a computer.
Even then, he never actually saw the computer. After all, this was before the era of
desktop computing. He was able to use a console with a keyboard and a monitor,
but the computer itself was located in another part of the building, hardwired to
his console and those of other users. The one computer had to be shared among
the students and faculty at Berkeley.

The “Perfect Storm” of Cryptography

After spending the summer in Italy with his family, Silvio returned to Berkeley in
the fall and began to take the research courses he’d been missing out on during his
first year. He took an algorithm course under Professor Richard Karp, and along
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with Vijay Vazirani, who was a classmate, he developed an algorithm for maximum
matching. This would be presented at the 21st Foundations of Computer Science
(FOCS) conference in 1980. And so, in less than a year, he had evolved from taking
introductory computer science classes to doing research that he would present in
front of his academic peers in the field.

Vijay also would go on to a highly respected career as a researcher in the de-
sign of algorithms, as well as computational complexity theory, cryptography, and
algorithmic game theory. The two would spend a lot of time together during their
studies at Berkeley, along with a tight-knit group of their peers that included Shafi
Goldwasser and Mike Luby. He also got to know Michael Sipser, who would even-
tually become the Dean of Science at MIT. It was an exciting and inspiring time
for Silvio as he realized that he had found his “tribe” and was not alone in his love
of research and his fascination with mathematics. The group became friends and
supported one another. It finally seemed like enrolling at Berkeley had been the
right choice after all. Any doubts about his choice disappeared during his second
year on campus.

Silvio and his friends were a diverse group who had come together through a love
of problem solving and a keen interest in computer science. Silvio had come from
Italy, of course, while Shafi was from Israel, Vijay from India, and Mike from the
United States. They all had different experiences and perspectives to share. There
was much to discuss about each other’s backgrounds and views on the world, but
in the end most conversations would eventually steer themselves toward computer
science, such was their enthusiasm for the subject.

This led to an atmosphere of complete immersion in computer science for
Silvio. Whether he was attending lectures, doing research, or just hanging out with
his friends, his whole life revolved around computer science and the problems
that fascinated this group of budding researchers. They would strategize about the
direction their careers should take, what problems they ought to work on, and what
fields would be the most rewarding. Like students in every field of study, they were
anxious about the future and concerned about making the right choices. They felt,
even thought they were young and still learning, that they had important things to
say, and that they carried a big responsibility.

Perhaps the atmosphere at Berkeley exacerbated these feelings of responsibility.
Their studies during the early 1980s took place not long after the tumultuous
student protest movements that were triggered by the war in Vietnam, the civil
rights movement, and the free speech movement. Berkeley had been at the center
of American counterculture and social reform during the 1960s and 70s. Although
less famous, there were protests at Berkeley in response to earlier political issues as
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well. In 1950, students rallied in support of their professors, who were being forced
to take a McCarthy-era anti-communist loyalty oath.

The students of Berkeley had always felt that they could make a difference in the
world and should speak out about injustice. It was a legacy of youth empowerment
that would have been palpable to Silvio and his classmates. Perhaps computer
science was not a political hot topic at the time, but since the field was still young
and establishing itself, the sense of being responsible for its future direction was
not misplaced. But the excitement of the seemingly endless possibilities in the field
outweighed any anxiety on Silvio’s part. In fact, he believes that if you’re not a bit
anxious about your decisions, you’re not pushing yourself hard enough. Beginning
with his early research at Berkeley, Silvio has always done his best work outside his
comfort zone.

One of the courses Silvio took at Berkeley was in computational number theory,
taught by Professor Manuel Blum. The course included a few lectures on cryptog-
raphy, since it was not yet offered as a course of its own. Silvio was fascinated with
cryptography right away. For him, it created a “perfect storm” because he had dis-
covered an emerging field where there were a lot of things still to be done, and at
Berkeley nobody had really embraced this area yet. There was a need for notions,
for definitions, for tools. It fed his desire to theorize about a field and to start things
from scratch, rather than simply applying the work of others. At last he found the
field of study he’d been searching for. Blum would become Silvio’s thesis advisor,
supervising his work on cryptographically strong pseudorandom generation.

Manuel Blum’s lectures were also the inspiration for Silvio and Shafi Goldwasser
to begin collaborating on research projects. They were both very interested in a
problem that Blum had described to the class: How do you toss a coin over the
phone? The two found themselves compelled to solve this problem—obsessed, as
Silvio would say. They would eventually move on from flipping coins over the phone
to playing mental poker.

Although itwas the first problem they explored together, the coin problem would
be far from the last. The pair have worked together on and off for decades, and since
they are both professors at the same university, they have the opportunity to discuss
their research with one another even when they are not collaborating. Silvio enjoys
the fact that Shafi is unpredictable and can approach a problem from very different,
perhaps even conflicting, points of view.

In those early days, when doing something completely new was a big risk,
teamwork was essential to Silvio. “You need the companionship and, particularly
if you want to do something unusual, somebody else must believe in it too. It was
very important to have her on my side.”
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The pair’s paper “Probabilistic Encryption” was presented at a STOC (Sympo-
sium on Theory of Computing) conference in 1982, just as their time at Berkeley
was coming to an end. It would prove to be alandmark paper in the field of cryptog-
raphy. The Association for Computing Machinery (ACM) describes it as “one of the
most influential papers in the history of computer science. It set the foundations
on which thousands of researchers base their work.”

The friendship that was born at Berkeley has stood the test of time. In fact, when
Silvio got the call that he and Shafi were to receive the 2012 ACM Turing award, the
two already had plans for their families to spend the day together skiing.

“She is my best friend, and that’s really a gift,” he says. The fact that they have
a shared interest in the same field of research has contributed to their friendship,
because it can be difficult to find friends who can truly understand you, but Shafi
has anin-depth understanding of Silvio’s work as well as supporting him as a friend.

The field of computer science was exciting to Silvio during his studies because
it was so nascent at the time, and there seemed to be so much fundamental work
to be accomplished. To advance science, he felt, one needs a portfolio of different
approaches and different people putting ideas forward. Silvio admits that it is very
difficult to do great research in a field that looks like a desert, “with no structure
and everything looking the same in every direction.” It’s hard to know where to go.
And yet this was exactly the type of research landscape that appealed to him—he
aspired to tame the desert and unearth the structure on which future researchers
could build their innovations. Anything less would not keep his interest.

Although Silvio’s time at Berkeley was very focused on computer science once
he surrounded himself with his fellow graduate students, the summers were a time
to completely disconnect from this intense focus and return to his family and his
Italian home. This break was much needed in order to refresh his mind and allow
him to go back and be innovative. In his three months of leisure time, he would not
just relax, but also have a chance to mull over what to work on next.

Silvio spent every summer break in Italy, partly in Rome, and partly at a flat
that his parents rented on a quiet beach the Agrigento region of Sicily, in a town
called Siculiana Marina. There were miles of protected beach along the harbor, in
pristine natural condition. During the winter, the tiny fishing village was home to
only twenty people or so; in the summer it was a little busier, but far from crowded.
It was a perfect place to get away from it all, and certainly a contrast to the hot,
busy streets of Rome. His father had a small fishing boat, and for one month of
the year this respected judge would transform into an avid fisherman. Silvio would
wake up long before dawn to help him set the nets. Silvio remembers that when
he was younger these duties would keep him from socializing with the other kids
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his age, since he’d have to go to bed early just as the others were heading out to
have fun. As a graduate student who lived overseas for most of the year, he was able
to appreciate this precious time with his father. As his father grew older and Silvio
was rarely around to help, Mr. Micali eventually gave up fishing because it was too
dangerous to go out alone. Instead, he took up mushroom hunting in the Alps as a
new obsession. But Silvio still visits Sicily once in a while to see a childhood friend
who owns a farm near Palermo.

Siculiana Marina was certainly a world away from the academic world, and
this unstructured time was indispensable to Silvio. Perhaps because of his Italian
upbringing, he maintained thisvery “European” attitude toward vacations while his
American peers and professors seemed to feel more pressure to put their summers
to productive use. But Silvio did sometimes convince a friend or two to join him in
Italy. Silvio maintained these three-month breaks for as long as he could, until the
demands of his work, and his assimilation into the American schedule, gradually
reduced the time he was able to get away. Nonetheless, Silvio continues to visit Italy
regularly, twice per year if he can, to see his parents. Both of Silvio’s parents are
still enjoying life in their nineties, but they are no longer able to make the journey
to the United States for visits, so it’s up to Silvio and his family to make the trip
to Italy.

| Have a Ph.D., Now What?

After completing his Ph.D. in 1982, Silvio found himself heading to another new
country—Canada. He decided to do a post-doctoral fellowship at the University of
Toronto. The university had a strong theory group at that time, and Silvio would find
new mentors in Steve Cook, Charlie Rackoff, and Allan Borodin. Silvio had already
met both Steve and Allan, and it was Allan who had invited Silvio to pay them a
visit in Toronto and convinced him to join their research group. It turned out to
be a momentous decision for Silvio, and one that would have a great influence on
his career. He began working with Charlie Rackoff, “a first-class researcher—very
creative and also very obsessed about definitions,” Silvio recalls. The two would go
on to work together on many research collaborations over the years.

Thanks to the encouragement he received from the members of this group,
Silvio felt that the environment was perfect for someone like him who was just
beginning his career, and therefore had reason to be a bit nervous about putting
forward his theories. “If you really want to do something that is always at the point
of failure, you need support all the time,” he says. In Toronto, he found the kind
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of kinship and support that enabled him to undertake risky and uncertain work
that would attempt to break new ground. The more he pushed himself, the more
important it became to have this kind of support. From Steve Cook especially, Silvio
found intellectual support in addition to emotional support.

This intellectual support was invaluable in boosting Silvio’s confidence to pur-
sue his ideas. He had so much regard for Steve’s judgment that if Steve thought
he was onto something, he felt he could move forward with much less worry. The
result of all this was Silvio’s early work on zero-knowledge proofs, including his ex-
plorations of how to define a proof. Once again, it appeared that Silvio had found
himself in the right place, surrounded by the right people. While he considered
Manuel Blum to have been very influential when he undertook his first forays into
encryption at Berkeley, when Silvio moved onto this next phase of his research,
Steve Cook and Charlie Rackoff proved to be equally influential.

Intellectual support has been a key factor in Silvio’s success, but it was not
always a given. Any researcher looking to push the boundaries of his field will meet
with resistance, and Silvio was no exception. He calls the rejection of his theories
“devastating,” but at the same time rejection can be the impetus to commit to a
high standard of research and fight for what he believes to be true. In fact, he feels
that if a theorem is worth proving, it should be difficult to convince people of its
importance. Otherwise, you are dealing with a widely accepted concept already, not
something truly innovative. Silvio’s paper on zero-knowledge proofs, for example,
was rejected several times. But in the end, this made it a more thorough paper. If
you struggle because your peers don’t agree with you when you first argue your
theory, you need to have the stamina to keep yourself on target until you have
convinced them.

According to Silvio, great research requires the conviction to keep on your path
when everyone else seems to be heading in the opposite direction. When it comes
to being a researcher, Silvio believes that being stubborn is a prerequisite, but if
you are too stubborn you can end up committed to something that ends up being
wrong—it’s a delicate balance. There were times when Silvio feared that he had
taken an incorrect path in his research, and he had to make contingency plans in
case his theory turned out to be incorrect or he was unable to solve the problem he
had decided to tackle. He has had several occasions where he was close to admitting
defeat, but has been able (and stubborn enough) to keep trying until he worked
through the problem that was holding him back.

Along with being stubborn, Silvio is extremely focused when he’s involved in
a research project. He’s the sort of researcher who will work day and night on an
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interesting problem unless someone is there to make him stop. And even when he
is compelled to put his work on hold by family or friends, it remains at the back of
his mind while he is doing other things. He finds it very hard to step back from a
problem he’s trying to solve.

This is a tendency that was easier to indulge in his early days as a graduate stu-
dent, and as a young researcher at the beginning of his career at the Massachusetts
Institute of Technology (MIT). However, it became harder and harder as his life
filled with other priorities, like a wife and children.

And MIT was in fact Silvio’s next stop. In 1983, after his year in Toronto, a
position opened up at MIT, where his friend Shafi Goldwasser was already doing
post-doctoral work. It was a bold strategic move on the part of MIT. They already
employed cryptographer Ronald Rivest, and decided to hire on Shafi, who was also
doing research in cryptography. Creating an additional position for Silvio may have
seemed like a large commitment to what was a relatively minor field of computer
science—at the time, there were almost no cryptography courses offered at any
university other than MIT, and to some degree at Berkeley. But MIT was willing
to bet on cryptography becoming an important field, and they were setting their
university up to be the leader in this research area. Little did they know that it would
be essential to the security of the internet one day, making possible many of the
online activities that people now take for granted.

When Silvio was offered the position, he took a road trip with his mother to
make his way to his new home. Mrs. Micali had made the trip from Italy to Toronto
(Mr. Micali was not able to get away from his work at the time) and the two trav-
eled through Quebec and Maine, eventually arriving in Cambridge. It was a rare
opportunity to spend time together without the distractions of work or the other
members of the family.

Professor Micali of MIT

On arrival at MIT in 1983, Silvio became part of their growing cryptography group.
At that time, fellow cryptographer Oded Goldreich also arrived to do postdoctoral
work, and he would remain there until 1986. Oded had already been introduced
to Silvio and Shafi’s work on probabilistic encryption through Richard Karp. He
had immediately realized that the pair were redefining the field, and that their
work would form the basis of all future work in cryptography. Oded was even more
captivated once he had the opportunity to get to know Silvio personally at MIT.
“He was extremely charming and outstandingly inspiring and empowering,” Oded
recalls. The pair have worked together many times, and they also remain good
friends.
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Thanks to this team of enthusiastic and dedicated researchers, the atmosphere
in the cryptography group was friendly and lively. Silvio, Shafi, and Oded were
all young and single, and they spent much of their time together even outside of
work—dining together, going to movies, and chatting for hours. At work, Silvio
and Shafi had neighboring offices, and the whole department was an “open-door”
environment where discussions with a student or visitor would end up involving
multiple people. Research discussions would also bounce around the offices, which
made for an open and enthusiastic exchange of ideas.

In 1990, when he was well settled in his role at MIT and his life in Cambridge,
Silvio’s life took a new turn: Silvio met Daniela, the woman who would eventually
become his wife. The two met at a party in Cambridge. She is also Italian born, but
she spoke English so well that Silvio believed her to be British when they first met.
In his first attempts to engage this interesting woman in conversation, he found
himself tripping over his words and sounding less than impressive. Finally, after
an hour of difficult conversation, she interrupted him to tell him that it was fine
if he wanted to speak Italian. It was the beginning of a beautiful and enduring
relationship.

Daniela is a legal scholar and law professor at Boston University. When she and
Silvio first met, she had completed her master’s in law at Harvard and was attending
university in Florence to complete her Ph.D. This made for a very long-distance
relationship for the two at first. Nonetheless, after about a year and a half they
married.

Having a law professor as a daughter-in-law was, of course, welcome news to
Silvio’s father, the respected judge who’d reluctantly accepted that his son would
not be following in his footsteps. And to add to the irony, Daniela’s parents were
mathematicians, so they were equally pleased to find their daughter marrying
someone with a love of mathematics that she did not have herself.

The couple now have two adult sons, Stefano and Enrico. Enrico is currently
studying at MIT, with a keen interest in both biology and computer science. He’s
tackling computer science first, which is a brave decision considering the large
shoes he may be expected to fill.

The children are well acquainted with their Italian roots. Until the age of five,
they spoke only Italian at home. This has enabled them to have a stronger relation-
ship with their grandparents back in Italy, who don’t speak much English. In fact,
the boys have a facility with languages that Silvio finds very impressive. Apart from
fluent English and Italian, they can also speak French and Spanish.

Long before he had sons to think about, Silvio had to deal with other young
minds—his students. Taking on an assistant professor position (which would lead
to a full professorship in 1991) meant that Silvio was responsible for teaching and
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supervising both undergraduate and graduate students, along with doing his own
research. For someone who prefers to focus completely on one task at a time, this
was rather inconvenient. He was expected to teach one course per semester, so at
least he did not have to divide his attention between multiple courses. He typically
teaches undergraduates during one semester, and graduate students during the
other.

Silvio believes that his strength is teaching research courses because the mate-
rial is all in his head and he simply has to share it with his students. His theory is
that in order to understand a topic, one has to completely exhaust all of the possi-
ble ways to misunderstand it. He therefore examines all of the detours that can be
taken, and that the students would perhaps be tempted to take. He has great empa-
thy for the students who are exploring a new subject for the first time, because it’s a
journey he has already taken. Rather than just feeding the students his own results
and conclusions, he invites them to experience the entire process that was required
for him to reach those results. They see how he changed his mind at certain points
and arrived at his conclusions, and he feels that it gives them a more complete
understanding of the topic. As a side effect, it may also make them feel that their
own doubts and struggles are not unusual, or a sign that failure is imminent, as
they undertake their own original research. Surely if their eminent professor ex-
periences these struggles, it should not be surprising that they are going through
similar struggles themselves.

Leo Reyzin was a graduate student at MIT in the 1990s, and he took Silvio’s
course “Cryptography and Cryptoanalysis” during his first year at the university. He
recalls Silvio’s lectures with great admiration. “He’s very inspiring. He treats every
lecture as a performance. There’s drama, there’s tension—every lecture has to tell
a story and draw the audience in. You don’t give away the plot at first, you hold the
audience in suspense,” Leo says. “There’s the bad way to do things and the right way
to do things. And he deliberately misleads you and then says, ‘Aha! That’s what’s
wrong!” and you really have to stay on top of it to follow him. He does it to keep you
thinking, to keep you on your toes.”

Courses on basic topics outside his field of expertise are a different matter. These
are the courses that Silvio is less confident about teaching. The textbooks explain
how things should be done, but they don’t reflect on the genesis of the ideas behind
the lessons. The subjects he feels he teaches best are the ones he has struggled with
himself, because then he understands how to explain them to students who may
be struggling as well. To make up for this, he prepares more for the courses that are
outside his expertise. He’s also a terrible procrastinator when it comes to doing this
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because he’s usually involved in some research at the same time that is his main
focus. Yet somehow it all comes together.

Because Silvio’s path to understanding a topic involves an in-depth examination
of the process that was taken to reach a particular conclusion, he likes to undertake
this type of examination with his students so that the knowledge becomes an
integral part of their psyche—they own it. To Silvio’s dismay, the course curricula
are not designed with this kind of detailed analysis in mind. So Silvio struggles to
get through everything he is supposed to be teaching, and would much rather cover
less material in greater depth. His students are sometimes expected to cover certain
topics on their own using the course books, while they learn others in impressive
detail during Silvio’s lectures. In a system that relies on prerequisite courses as the
students progress, covering everything in the course outline is taken for granted.
Silvio must find a way to make that happen and to teach at a pace that does not
always come naturally.

As a supervisor, Silvio sees his students not as young minds to be molded but as
research peers. He will only take on a student who has taken a research course with
him, so that he has a good idea of that student’s understanding of his research and
the field in general. This prevents students from coming to him with preconceived
ideas about his research that aren’t necessarily accurate. It also helps students to
self-select as people who are fond of Silvio’s style and his personality.

Leo Reyzin was one of those students who wanted to work under Silvio even
before he arrived at MIT. He’d seen Silvio present at a seminar and a conference and
was very interested in what Silvio had to say. “He seemed creative and energetic,”
Leo recalls.

Since the relationship will be a close one, and will last for several years, personal
and professional compatibility are important. Together Silvio and his student will
find a subject that they are really interested in and then jointly “obsess” over the
research. He doesn’t look for topics that are specifically “suitable” for a first major
research project; he expects his students to take on the same kinds of big questions
and innovative research that have always attracted him. Silvio won’t hand off a piece
of research to a student that he doesn’t have the patience tolook at himself, as a sort
of outsourcing project. He takes an all-or-nothing approach, and the research takes
as long as it takes until they solve the problem. Because he doesn’t advocate lower-
level research, there’s a greater chance that his students may experience failure, but
Silvio feels that the lessons learned from this process are valuable and will help his
students to succeed going forward. Although they may have less experience, Silvio
believes his students to be just as intelligent as any colleague he works with.
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Because of this fully immersive approach to working with his students, Silvio
generally only supervises one student at a time. He doesn’t believe that he has the
capacity to properly participate in the research of more than one student. “If you
are obsessed about two different things,” he says, “you are not really obsessed.”
They work together until the thesis is almost complete, and then Silvio will begin
to look at another student to begin a new round of research with. This is another
reason that it’s so important that the pair find a topic they are both truly excited
about. For the duration of the project, this will be Silvio’s only research focus. He
does not undertake his own individual research at the same time.

Leo Reyzin says, “He’s very much goal and project oriented. It’s not like there’s
a weekly hour-long meeting. If we’re working on something then it’s very intense.
Silvio is all-consumed by things. When he’s consumed by something he’s really
consumed by it.”

During their time working together, both he and Silvio were at one point each
expecting a child (Leo’s first and Silvio’s second). Knowing that fatherhood would
soon be making more demands on their time, Silvio wanted to get as much work
done as possible before that happened. “He said, ‘I'm about to have a kid, you're
about to have a kid, let’s get to work now!””

Leo says that during the times the two worked on separate projects, it was
a challenge to get Silvio’s attention, since he’d be focused on something else.
“When he had time for you, he really did. He had hours and hours and hours.
But when he didn’t, he didn’t. The only way to communicate with him at the time
was to leave physical notes on his office door. He didn’t do email; calling him was
pointless.”

Leo recalls the long hours spent working together on a research project. “We’d
pace the halls and work on the whiteboard, and when the time came to write up
the results we’d actually sit at the computer together and write, which is a very rare
treat—to work with someone at one keyboard and just take over who’s driving. We
kind of completed each other’s sentences.”

This type of approach fits in well with Silvio’s preference for collaborative re-
search. Collaboration has been Silvio’s preferred research method since his early
work with Vijay Vazirani and Shafi Goldwasser at Berkeley. Of the more than 100 pa-
pers listed on Silvio’s curriculum vitae, only a handful were written alone. Whether
he was working with his fellow students during his graduate school days, with pro-
fessional colleagues, or with his own graduate students as a supervisor, Silvio has
almost always taken a team-based approach to research.

In fact, he traces his preference for working with others all the way back to his
childhood anxiety about whether the outside world really existed, or whether he
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was simply imagining it. Interacting with his parents and schoolmates helped him
to overcome his doubts at the time. As a researcher, his collaborators play a similar
role; they help to assure him that he’s not making things up and that the research
they’re undertaking is rooted in reality.

Silvio also feels that when you are coming up with a new theory, you're going out
onalimb and could be there for quite a long time as you work to confirm it. It can be
avery uncomfortable place to remain alone, and it’s easy to start doubting yourself.
Talking things out is an important part of the process for Silvio, and he prefers to
learn about new subjects through discussion rather than by reading about them.
When working with a partner (or several), there is thoughtful discussion about the
theory right from the beginning, and he believes that this makes the chances of
heading down the wrong path much lower. It is no accident that Silvio’s Turing
Award honors his collaborative work with Shafi Goldwasser.

Although the collaborative process involves a lot of mutual support, that doesn’t
mean that it’s all about agreement. “Argument is the essence of life!” Silvio pro-
claims. Perhaps this is another way in which his Italian upbringing comes through
in his work. He grew up with a very forceful father, who was skilled in the art of
argument through his legal training. Silvio describes their arguments as “incen-
diary,” although there was great love and respect between them. His sister Aurea
is also skilled at arguing, likely for the same reasons. As a result, Silvio grew up
learning that he would have to be persuasive in order to get his way, and that ar-
gument is not antithetical to friendship or respect. Instead, he feels that opposing
forces and clashes of opinions are required if you want to forge something new
and great. When it comes to his research, he has at times felt that opinions were so
divided that perhaps he and his partner should stop collaborating, but somehow
they always end up on the same page in the end.

Oded Goldreich, who has collaborated extensively with Silvio, feels that “Silvio’s
collaborators are presented with such forceful and beautiful arguments that they
do not feel bad when arguing with him. So tension does not arise, because one is
compelled by his arguments and captured by his charm. Later, one may find a flaw
in Silvio’s arguments, but one finds it hard to be annoyed at him even then, since
the charm stays and the beauty of the arguments stays too.” Oded can also attest to
Silvio’s steadfastness in defending his point of view. “As to changing Silvio’s mind
or making him do anything he does not want to do—this is definitely impossible.”

Oded offers support for the idea that Silvio’s facility for argument has its roots
in his earlier learning about philosophy. “I think that what Silvio talks about is not
arguing, but rather the articulation of views. Indeed, the articulation of views is a
key ingredient in interaction with him. Silvio does not just say ‘let’s do X,’ but rather
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articulates why it is a good idea to do X. Silvio’s articulations are always grounded
in philosophical considerations, and are richly framed in a wide context.”

In addition to collaborating on research, Silvio mentors his graduate students
in a variety of ways. One of his specialties is teaching his students how to present
their work at conferences and seminars. Silvio is well known for his compelling
“performances” when he lectures, and he tries to help his students to master “the
Silvio method.”

Leo Reyzin explains the process he went through with Silvio before his first big
presentation. “He makes you prepare your slides, and you give the talk, and by slide
five I can see he’s just not there, he’s tuning out. I say ‘This is not working, is it?’
and he says ‘No, it’s not, do you know why?”’ The student then needs to go off and
figure out what’s wrong, fix it, and present to Silvio again and again until all of the
problems are fixed and they are finally able to get through the whole presentation. If
astudent needs more specific feedback about what’s not working, Silvio will provide
it, but he prefers to let his students find the problems themselves. “I don’t know
how many times we rehearsed my first talk,” says Leo. “It was over and over and
over and every time we’d get a little farther into it. A lot of his former students are
now faculty at various universities and I know them pretty well, and they’re all good
presenters—so it works.”

Silvio also develops a strong personal relationship with his students. “He’s a
wonderful mentor,” says Leo. “The number of conversations we had about life and
career, and balancing what one wants out of an academic and nonacademic career,
and how to balance having kids and your family obligations. He was so generous
with his time and advice.” He was also generous in other ways. “He never let me
pay for our lunch while I was a student. Until you get your Ph.D. you can’t pay for
lunch. I guess I owe him a lot of lunches!”

Silvio’s time at MIT is divided between teaching and research, making for a full
schedule. Schedules and Silvio simply do not get along well. “If you don’t get bored
and spend time figuring out what to do, you cannot do original work,” he says.
During the month of January, he has no scheduled classes to teach. This gives Silvio
time to think about things more deeply, with no distractions. He thinks that this
time is crucial if you want to do something different; idleness and creativity go
together. Nothing happens for a while and then something clicks. For Silvio, it is
necessary to have unstructured time on your hands that you can shape any way
you want.

In addition to his work at MIT, Silvio’s career has taken him around the globe,
presenting his research at conferences and universities. It’s an inevitable part of
being a researcher, and the more successful one is, the more requests are made
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for this type of presentation. Silvio enjoys the opportunities to talk with his peers,
although the fact that he describes these pleasant talks as “confrontations” is
perhaps indicative of his argumentative conversational style. Rather than attending
scheduled sessions at conferences, he prefers to sit down with people to have a
discussion about a topic of interest.

While Silvio is never one to back away from an argument, his interactions
with his peers in his own field and others are always gracious. According to Oded
Goldreich, “Silvio is very generous. One may forget this when seeing him fight for
some cause or interest of his; when he is doing anything, he does it full-heartedly.
But when the fight is over, he is the most generous winner one can imagine. In the
rare cases that he loses, he is also graceful about it.”

When he is putting together a conference presentation about his research,
Silvio tries to imagine himself in the audience, because he considers himself to
be the worst kind of person to present to. When he attends another researcher’s
presentation, he often gets lost by the second slide. A complex illustration will
draw his focus, causing him to stop listening to the presenter and get completely
off track. He figures if he can understand a presentation, anyone can understand
it. For his own talks, he tries to distill everything down to the simplest terms,
which takes a lot of time and preparation. He uses his own hand-drawn cartoons
to illustrate concepts because he finds them less distracting than more complex
representations. He claims that he will use any trick in the book to make things
easier to understand. In a field like theoretical computer science, as many scholars
and interested laypersons can attest, this is no easy task.

Kudos and Companies

Another sign of his long and distinguished research career is the number of awards
and honors that Silvio has received. In 1993, work on interactive proof systems that
he did with Shafi Goldwasser and Charlie Rackoff was awarded the inaugural Godel
Prize. This prize is given jointly by European Association for Theoretical Computer
Science (EATCS) and the Association for Computing Machinery for outstanding
papers in the area of theoretical computer science.

In 2003, Silvio was elected to the American Academy of Arts and Science’s
Computer Science section. The Academy’s members include more than 250 Nobel
Prize laureates. Silvio was also elected to the National Academy of Sciences and the
National Academy of Engineering in 2007. Both of these honors illustrate the high
regard in which Silvio’s peers hold him. These academies only bestow membership
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on leaders in their fields and to be recognized by three such organizations shows
an exceptional level of achievement.

Silvio was also the winner of the RSA Conference Award in Mathematics in 2003.
His 2004 paper, co-written with his student Leo Reyzin, “Physically Observable
Cryptography” won the inaugural TCC Test-of-Time Award in 2015. This award is
presented at the Theory of Cryptography Conference (TCC) for a paper published
at TCC at least eight years earlier that made a significant contribution to the theory
of cryptography, preferably with influence in other areas of cryptography, theory,
and beyond. Silvio was also named Berkeley Distinguished Alumnus of the Year in
2006 by the Electrical Engineering and Computer Science department of his alma
mater.

Adding to this already impressive list of achievements, Silvio received the ACM
Turing Award with Shafi Goldwasser in 2012, in recognition of their “transformative
work that laid the complexity-theoretic foundations for the science of cryptography,
and in the process pioneered new methods for efficient verification of mathemati-
cal proofs in complexity theory.”

It is true that Silvio abandoned the hope of winning a Nobel Prize one day when
he changed his undergraduate major from physics to mathematics, but perhaps
his collection of other prestigious prizes has made up for that loss, at least in part.
While recognition from his peers is always welcome, Silvio believes that winning
major awards has additional benefits, both to himself and to computer science in
general. He feels that the awards bring more attention to certain fields of research
that might otherwise go unnoticed in the mainstream, and they invite outside
observations on the work.

This type of judgment from outside one’s field, although it might make some
researchers uncomfortable, is necessary according to Silvio. He thinks that there is
a danger to conducting research in a “bubble” where there is no outside judgment
of what you are doing. Diverse opinions provide the necessary perspective to help
researchers decide which paths to pursue.

Awards also help to introduce researchers in other fields to one’s work. Cer-
tainly, Silvio was well known among the cryptography community long before he
won the Turing Award, but afterward, researchers in other fields learned about him
and his work. It has given him an opportunity to become a sort of ambassador in
his areas of expertise, to answer questions, and to facilitate connections between
scholars in different areas.

Another benefit he sees in winning awards is the permission it gives him to
explore new areas of research that are not currently well recognized. These awards
give him the credibility he needs in order to take on more risk, because there is
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an implicit recognition that he is a top researcher and unlikely to be pursuing a
frivolous idea. The idea of taking bigger risks is also easier from his own perspective,
because the confidence boost of a major award makes him feel more energized
about doing something new and innovative.

Groundbreaking research can lead to awards, certainly, but it can also find its
way into the commercial realm. Silvio and Shafi’s early work in cryptography has
laid the groundwork for a number of online security features that are widely used
today.

While you might expect that this in-depth knowledge of online security would
make Silvio extremely cautious when it comes to his own online life, he does not
actually practise what he preaches. “I'm extremely suspicious as a cryptographer
when I'm doing research,” he explains, “but then I don’t even lock my door!” He
doesn’t use the best practices for creating passwords or lock his front door because
he’s more concerned about locking himself out than keeping his property safe. The
work itself, however, he takes very seriously.

The practical applications of Silvio’s work have continued throughout his career.
He often sets out to solve a purely theoretical question—to change the way that
an entire field is viewed or approached—but in the end the solutions usually have
practical implications. Silvio believes that technology transfer is crucial, whether
he is involved in the transfer himself or whether it is left to others who pick up
where he has left off and develop applications for his research. “Knowledge has to
be transferred to society,” he says. “I really believe that this is important.” Silvio
owns dozens of patents covering several different areas of his research.

Silvio finds that actually achieving technology transfer is a challenge. The types
of technologies he develops, such as digital signatures and simultaneous electronic
transactions, require a shift in the way large numbers of people do business. The
benefits of the technology must be so compelling that everybody is convinced to
make the change in a short period of time. He uses fax machines as an example of
this type of challenge. If you thought fax technology was interesting when it first
emerged and purchased a fax machine, it was useless unless everyone you wanted
to send faxes to also had one. The technology could only succeed if a certain level of
market penetration took place. The timing can be as important as the technology
itself. Introduce your technology to society before they’re ready for it, and it will be
passed by. Introduce it too late, and there will be a large number of competing
technologies on the market. So while the chances of coming up with the next
big thing are small, Silvio believes that in some cases, the benefit to society of a
technological shift are so great that it’s worth the risk.
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Despite these challenges, Silvio has delved into the commercial side of research.
He worked with a team in 2003 to develop CoreStreet, a credential validation
technology, while on sabbatical from MIT. He also worked with Ronald Rivest on
a micropayment system called Peppercoin. This type of endeavor is quite different
from academic research, and Silvio is well aware of his limitations. He tries to
bring in the best possible developers and engineers, plus those who can handle
the fundraising and other business aspects of a startup.

Among other challenges, Silvio had to present the products to venture capital-
ists. Accustomed to audiences of computer scientists, Silvio needed to find non-
technical ways to explain the products—a true test of Silvio’s dramatic presentation
style. Both of these companies were later acquired, and Silvio returned to his posi-
tion at MIT. Silvio recently took another sabbatical from MIT to focus on a business
called Algorand, which has created a new type of distributed ledger. Although the
field is already competitive, he thinks his product is superior and is optimistic about
convincing others that it is the right choice. It seems that his powers of persuasion
are strong, since in early 2018 he convinced venture capitalists to invest $4 million
in the company.

The Road Ahead

Now in his sixties, Silvio has no plans to take it easy. When asked about retirement,
hereacts as though it was the most absurd idea he’s ever heard. “Retire from what?”
he asks. “From life? It makes no sense to me.” He believes that if there comes a time
that he can no longer indulge his research obsessions, he will find something else
that he can do well and he will become obsessed with that instead. He thinks that
we all have an obligation to continue to contribute in our own way for as long as we
are able, and to be fully engaged in life.

Although he is certain that many more projects lie in his future, Silvio has no
idea what they might be. It’s part of his obsessive, in-the-moment nature that he
does not make long-term plans. Whatever comes up when his current project winds
down, he’ll decide on a direction at that time. Retrospectively, he can see that every
five years or so he tends to switch to a new project, but it’s not a timeline that he
plans in advance, and the next project is never intentionally lined up and waiting
in the wings.

What is clear is that Silvio will continue to commit himself completely to his
undertakings, to enjoy time with his friends and family, to cook his mother’s
wonderful recipes, and to live his life one obsession at a time.



An Interview with
Shafi Goldwasser

This is a partial transcript of an interview of Shafi Goldasser by Alon Rosen. The
interview took place on November 23, 2017. The transcript was lightly edited for
clarity.

Rosen: Hi. My name is Alon Rosen. I am a professor of computer science at the
Herzliya Interdisciplinary Center in Israel. Today is the 23rd of November 2017
and I'm here in Rehovot at the Weizmann Institute of Science together with Shafi
Goldwasser, who is being interviewed as part of the ACM Turing Award Winners
project.

Hi, Shafi. We are here to conduct an interview aboutyour life, about your achieve-
ments. Generally speaking, we will go chronologically and we will talk at two levels.
The first level will be a general audience type of level and the second level will be
more specific, more oriented towards people that specialize in the subject and are
interested in the details. So let’s begin with your high school experience.

Goldwasser: Okay. Well, first of all, thank you Alon for taking this opportunity to
interview me.

High school. Right. Those years I remember quite vividly. The orientation
changed a bit for me from sort of being interested in the sort of more human-
ity subjects to more the mathematical subjects. You know, mathematics, and the
sciences. I remember I loved physics. I didn’t really like life sciences, but physics
and math I liked quite a bit. And I had a great math teacher from eleventh and
twelfth grade. Somehow I did well and I think that was part of why I wanted to do
it. I also had a great teacher for physics, and physics in my mind was just fantastic.
You know, things made sense, you could derive things. I think early on that’s what
I wanted to study.

Rosen: What about mathematics?
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Goldwasser: In mathematics, again I was good at it, but mathematics itself at that
time was not described as mathematics with some sort of motivation. It was more
the method, you know? So taking derivatives, integrals, and it was in trigonometry
and all that. And I could perform it well, but it didn’t have the stories associated
with them that physics did.

Rosen: So it was more about the technique and less about . . . ?
Goldwasser: About technique rather than about motivation.

Rosen: And did you already then have the sense that you missed the concepts and
the...?

Goldwasser: I had no idea that there were concepts, you know? All I knew was that
Iliked the concepts in physics. The whole derivation from principles was beautiful
in my eyes. And I remember questions on the exam and then you would have to
think. And I have the impression of some memory where my [laughs] answer was
different than others and he was surprised, the professor. But I cannot, for the life
of me, remember what the question was or what the derivation was.

Rosen: So it sort of sounds like this professor, he had an encouraging influence
on you.

Goldwasser: Yes, both of them. Yes.

Rosen: Okay. How significant do you think it is to have a good professor? To have
someone who influences you that early?

Goldwasser: Extremely significant. I think if you’re very lucky, there is someone
early on—and that could be high school, it could be maybe college, but better in
high school—that awakens something in you, a spark, an interest, so that maybe
later you're not going to do exactly that but you know there’s something about
studying and about pursuing knowledge that is exciting. I think it’s fundamental,
and I don’t think that it has to be more than one.

I had other good teachers there, you know. The literature, I remember the
teacher. The history teacher. I remember learning Shakespeare in English class.
But something about . . . there was some spark there in the science classes and in
the math classes that I recall.

Rosen: So by then, your self-image was sort of that you were set towards studying
scientifically oriented subject?

Goldwasser: No, not at all. [laughs] Iloved to write, and I think that my inner image
was that I was going to be a writer. But I guess—you’re right—by the time we got to
the eleventh and twelfth grade, my parents, or especially my father was very kind
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of insistent that I should follow the realistic . . . this is what we call in Hebrew
“realistic studies,” or mathematics and physics studies. Because as people of his
generation, and maybe people of the current generation in Israel as well, there was
a real emphasis on pragmatism and the exact sciences, and that everything else is
a bit less . . . It might be enjoyable, but it’s not as real as what one must do in life.

Rosen: I'd be interested to hear now about your view on the global experience of
Israel at the time.

Goldwasser: Sure. Yeah, I do have the tendency to talk about the personal stuff, but
it’s what I know best. But let me tell you a little bit about my memories about Israel.
First of all, I lived here through a few wars, right? I remember the Six-Days War [of
June 1967]. I think Iwas in fourth grade. I remember that. And I remember we went
down to the bunker. I remember the sirens. And I remember right after the war, my
family and I, we drove to Jerusalem. I remember still seeing the Wailing Wall before
they kind of opened up the huge square. It was somewhat of a euphoria. Who knew
that this would be a “tragedy forever.”

But in any case, this is fourth grade. Then I remember Yom Kippur [October
1973] War. Yom Kippur War is a different story. Then I'm already in tenth grade I
think and my brother was a soldier. I remember the first phone call that he made.
My father asked him how was his commander, who was someone that my father felt
that was going to protect him. And he said, “He is no longer.” And I remember my
father just burst out crying. He was just so worried about him. Then I remember
when he came back home the first time . . . I don’t know how long it was really,
because he stayed in the army for about six months afterward. He was supposed to
be released but he stayed longer because of the war. But I remember that he had a
lot less hair. He had like those two sides of his forehead, his hair receded quite a
bit. It was amazing that this kind of traumatic experience can do that.

Rosen: Do you think any of this had any effect on you in the long term, on your
personality, outlook?

Goldwasser: I think it had an effect on my father. I think that when my brother
came back from the army, he joined the Hebrew University, because he was going
to go and study mathematics, and he went right away. They postponed the semester
because of all these soldiers. They started a new semester in January, like a new
school year. But my father just wanted him out of Israel as fast as possible. He was
so afraid for his safety that he wanted him to go to school in the States. And within
a year, like the second year he just sort . . . he somehow arranged . . . he kind of
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made him apply abroad. And he got accepted to Carnegie Mellon and left. That
affected me because that started some sort of chain reaction in the family.

Rosen: And okay, you said your brother wanted to study mathematics. What did he
end up doing and how did it all affect you?

Goldwasser: He studied mathematics as his first degree, and then he went to busi-
ness school at Carnegie Mellon. It’s called GSIA, Graduate School of Industrial
Administration. And then he went to work.

AndI,whenIarrived at Carnegie Mellon, I had like ayear or so before my military
service, since my father wanted me to go to the U.S. to study so that I don’t waste
any time. This idea of wasting time is something very problematic, or was very
problematic when I was growing up. Now it seems like everybody in Israel is taking
trips around the world as soon as they finished the army, or before the army, and
wasting time is not called “wasting time” anymore but “gaining life experience.”
In any case, my father wanted me to go to the States, and as usual I did what he
recommended and went to Carnegie Mellon, and I went to study mathematics.

So I arrive to the U.S., it’s summer 1976.Iland in the U.S. and my brother comes
and picks me up in New York, and we spend a few days in New York. Then we took
a bus to Pittsburgh. I knew nothing about Pittsburgh. I spent the summer in the
dorms waiting for the school year to start. I actually never applied to the school. Just
my brother told his professors that his sister is coming for a year and she’s good
at math. And since he was good at math and they knew that he was a talent, they
said, “Does she want to come and study here?” and he said, “Yes,” and they said,
“Okay.” And that was it. I became an undergraduate in mathematics, in applied
mathematics.

But then it was applied mathematics and computer science. Now there’s a
undergraduate computer science program at Carnegie Mellon. At the time, there
wasn’t. And the truth is that I actually loved studying. This was a revelation. When
you go to high school, you sort of do what you’'re told, right? But I found it really
interesting. I found the math interesting, I found the computer science interesting.
Itook this introduction class in FORTRAN programming. In the beginning, Thad no
idea. There were these cards where you put an instruction on every card and it goes
through a machine and then it executes each instruction. I've never seen a computer
before, I haven’t really heard about computers before, but it was fascinating. It was
really marvelous.

Rosen: Okay, I have two questions now about the admissions, you said the admis-
sions process was unorthodox in your case?
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Goldwasser: I would say. [laughs]
Rosen: Now, I want to ask what would have happened today with admissions?

Goldwasser: Ah, today. Today, no, the whole college admissions in the U.S. is some-
thing bordering on insane. You know, there are standardized tests, there’s grades,
there’s extracurricular activities, there are huge committees that sit and deal with
every case. They accept legacy and people with talents that supplement whatever
the needs of the school are, and who knows what else. And there’s also a big mys-
tery about this. All, in my opinion, geared toward making money on the admissions
process. So, is the outcome any better? I believe serendipity is a big part of one’s life
trajectory, and maybe some of the serendipity is lost with this whole process that
is very meticulous. But they’re talking these days about having machine learning
take over the admissions process, so we are in for a whole new era if that’s going to
be the case.

Rosen: Okay, so undergrad years?

Goldwasser: Right. Undergrad years I'm in Carnegie Mellon. I start in mathematics.
There is even this program called Math Studies, which only a few kids go to, where
there are these two professors who teach a handful of kids. It’s supposed to go
through all mathematics, you know, topology, geometry, algebra of course, logic,
and everything in two years. And they spend essentially the first semester arguing
with each other how to define each concept, definition, back and forth, back and
forth. It’s abstract beyond anything that I've ever seen because in Israeli high
school, things are very method-oriented. They are teaching you how to perform,
how to solve exercises. They don’t really teach you . . . at least at that time, they
didn’t teach you about the concept of a limit or why are you taking derivatives and
why you’re integrating. Here, we are completely . . . it’s all axiomatic.

So I go through this semester, maybe a year, and the whole thing is a two-year
program, and after a year I quit. And I think to myself, “This is going to take too
much time and I'm not the best at the class,” and I decided I'm going to go and do
computer science, sort of the computer science specialty within the math. So I take
this class on—I think—combinatorics or data structures or algorithms, whatever,
and it’s trivial because my mind of course was so sharpened by this one year of
dealing with abstractions and dealing with definitions that even if you don’t think
you’re understanding them, you’re completely in a different level. Then when you
go back to something of a lower level, it’s a triviality.

This is an interesting experience that I have seen time and again with myself,
with my kids. You push yourself to a place which is much more abstract and much
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more formal than maybe you care to be, and inevitably you start thinking more
clearly, and you are able to sort of verbalize and conceptualize and define and
understand. It’s a fabulous discovery. Somebody has to prove a theorem about it
explaining why is it that being able to verbalize, being able to define, and using
precise concepts and precise thinking makes everything else simpler.

Rosen: So now you defend the very same thing that caused you to quit, like the
abstraction?

Goldwasser: I know, I know. I mean in retrospect, maybe I should have stuck it out
for another year, but that’s what I did.

Rosen: Okay, so then you moved to computer science?

Goldwasser: I moved to computer science. I remember a lot of my professors at
Carnegie Mellon. I remember Raj Reddy, who taught AI. He was the founder of
real speech recognition. At the time, it was the Harpy project. And I remember
Anita Jones. She taught software engineering. She was one of my recommenders
to graduate school later. So was Raj Reddy. And I remember there was another
professor, Nico Habermann, who taught us compilers and I had a compiler project
that I did with a friend. I remember we wrote this compiler which never compiled.
[laughs] I remember writing this program for generating poetry. Today, they talk
in machine learning about GANs, these things that can generate let’s say poetry in
a way that’s indistinguishable from let’s say poetry of a particular poet. But at the
time, the way these programs generating poetry would work is that you would have
some sort of a notion of a verb and a noun and how a sentence is structured, then
you would have a dictionary and you would form a poem. I loved that.

Rosen: How large were the classes back then?

Goldwasser: The classes were small. I would say there were like about twenty kids.
Again, very few women. That I do remember, that I was one of two and the professor
also treated us a little bit with, you know, half . . . I was going to say “forgiveness,”
but “forgiveness” might not be the right word. A little bit, you know, like we were
silly, even though we weren’t really. And that, after I start doing very well in the
class, he realized that. But that was my feeling. It didn’t matter to me much because
I didn’t think of myself that way, but I do remember that.

I remember coming from Israel, my command of English was not perfect to say
the least, and on every program that I wrote there always were these comments
where he says, “Indent, indent, indent.” I didn’t know what word “indent” meant
until the end of the term, but then I realized that “indent” meant that I was
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supposed to like, you know, indent the “for loops” and the different commands. So
now I know what that means. But it was these silly things.

It was like. I remember the first lesson of calculus when you come from Israel
to America, and I remember telling my brother, who was in school at that time, I
said, “I can’t do this. It’s too difficult.” So he sat down with me. This is the first class
ever in calculus, and he said, “Okay, so what didn’t you understand?” and then it
turned out that I didn’t know the words “multiply” and “divide” and “integrated”
and “differentiate.” Then he told me what they all meant in Hebrew and I said “Ah.”
That was it. Then it wasn’t difficult.

Then I'had to make a decision at the end of that year whether to go back to Israel
to my army service or ask for a deferral. I asked for a deferral, because I actually kind
of liked studying and I kind of wanted to continue.

Rosen: Happy moments?

Goldwasser: Oh, lots of happy moments. I made lots of new friends and also I
became ayoung woman, so there’s also like personal relationships that you develop
which happen when you are a young woman, and that regardless of where you’re at
is very exciting, right? You’re coming of age. And I came of age in Carnegie Mellon
during those years, between the age of 17 and 20.

Rosen: Okay. Just to be a bit more specific about those years, any particular topics
that you related to, specific ones, beyond the aspectof . . . ?

Goldwasser: Yeah.Iwas very interested in artificial intelligence at the time, I think
because of the class that I took, because of this poetry generation, because of the
whole concept of speech understanding and so forth, and also I think because this
whole idea of understanding the brain and how we think and how we dream and
why we dream, what we dream. That was fascinating to me.

So it was very clear to me when I finished that I would like to study this further.
That’s why I applied to graduate school. And I applied to graduate school at the
same time that I applied for jobs, because I wasn’t very clear about what I was going
to do. There were sort of three options. In fact, this is the story of my life—there’s
always at least three options, sometimes four, but never one. And the options then
were to go back to Israel or to go to graduate school or to get a job. The idea of
going back to Israel was complex: I wanted to go back to Israel, but I was very afraid.
Because at this point I was kind of distanced from it, and furthermore, I felt that I
would like to go back to Israel, but at least I'd like to show something for all these
years that I was away.
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And I feltlike I think a lot of people feel when they finish undergraduate school.
At least I think they feel. That I knew nothing. Even though I studied for . . . I did
my degree in three years in the States, although usually it’s four. I studied during
the year and I studied during the summers because I wanted to finish quickly so I
could gobackto Israel. At the end, you feel like, “What do I know more than anybody
else? I want to own something. It'll be something that I'll understand better than
anybody.” It’s not even so much the idea of understanding better than anybody, but
actually going into some subject in depth. At that point, it could have been related
to artificial intelligence or algorithms. I remember also an algorithms course that
was taught by Jon Bentley, and it was fascinating. I loved that as well.

So I wanted to know, understand something really well. I was told that there is
this thing called graduate school. You have to understand, I didn’t come from an
academic family, it wasn’t something that was standard, but . . .

In any case, I was told that there was this thing called graduate school. I think
that like a day or two before, they said that I'm supposed to take this exam called
the GRE. I didn’t prepare at all, but I signed up and I went to the GRE. I didn’t even
know you were supposed to prepare, you know? It seems ridiculous how naive I
was. So I took the GRE. I don’t think I did very well. But in any case, I applied to
graduate school and I got accepted to Carnegie Mellon in engineering and Berkeley
in computer science. First, I said to Carnegie Mellon that I'm going to go there,
and I went for the summer to the RAND Corporation, where Raj Reddy actually
recommended me as an intern. This was in Santa Monica, in California on the
beach. And I remember this California. Wow. The beach. Fantastic, you know? I
lived in Venice Beach and there’s the roller skaters and the bikers and . . .

Rosen: Mellon ... ?

Goldwasser: So I was admitted to Carnegie Mellon, which was the place I spent my
undergraduate, and I was debating between the two, and I also had a bunch of job
offers, but it was clear that I wasn’t going to get a job. I was going to go to graduate
school. And I decided I'll go to Carnegie Mellon. I mean I wasn’t sure, but I decided
I'll go to Carnegie Mellon, because I had friends there. You know, I had a boyfriend,
whatever, you know the kind of things that people have, and friends.

But I had the summer job at RAND. And I remember that summer. I cannot tell
you what I worked on, but I do remember that I was thinking to myself that the
supervisors were all Ph.D.s, and they were telling me what to do. It was some sort of
Al-related project. I remember thinking to myself, “Why should they tell me what
to do? I should get a Ph.D. and I should tell somebody else what to do.” [laughs]
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In any case, so that summer was a fabulous summer. First of all, there was
research and it was interesting, although I can’t tell you what it was about because
I really have no recollection whatsoever. And second of all, all of a sudden it was,
you know, I had an apartment of my own on the beach, it was California as I said
before. You know, there were the roller skaters and the bikes. And then one day
me and [a friend of mine from CMU], we decided to take a drive up the coast,
up the California coast and go and see Berkeley, and go visit somebody that she
knew in Palo Alto. Anyway, we drove up the coast. And I remember driving into the
Berkeley exit on University Avenue, and it was just blue skies that like you’ve never
seen and the green hills in the background. I'm just sort of driving to campus. It’s
such a glorious image. I can’t tell you . . . This is something you don’t forget. And
it was “Wow, California, Berkeley.” Then I told CMU that I'm not coming and I told
Berkeley that I'm coming, because it was just captivating.

Rosen: What year was that?

Goldwasser: This was 1979. So I arrived at Berkeley. I had to find an apartment, the
usual things that graduate students do. I lived with a bunch of astronomer graduate
students. In any case, I wanted to do artificial intelligence. At the time, there were
few people at Berkeley doing artificial intelligence, but as I told you, serendipity
is the name of the game. I was a TA, I had to support myself, so I had a teaching
assistantship. Then I actually somehow got to work with Dave Patterson on the RISC
project, reduced instruction set computer.

Rosen: Maybe you can tell a bit about that.

Goldwasser: About the RISC project? At the time, the RISC project was this idea of
Patterson and other people at Intel at the time that the thing to do is to figure out
which of the instructions are used most often, let’s say programs in Pascal and C,
and those are the instructions that should be put in hardware in order to speed
up computation. My part of the project was to figure out which instructions in fact
are being used most often in Pascal programs. So I was quite the programmer at
the time. And I worked on this very large system, which I think adapted an existing
Pascal compiler, a sort of thing that collects dynamic statistics, and I modified it
sort of extensively to figure out which instructions should really be optimized or put
in hardware. And that was my master’s thesis, which I got at the end of that year.

Rosen: Did you enjoy it?

Goldwasser: Actually, it was Professor Powell and Professor Patterson. Did I enjoy
it? Yeah, it was interesting. You know, it was a lot of work. It was very intense. This
whole idea of being incredibly focused on a project and being in the office from day



62 Chapter 3 AnInterview with Shafi Goldwasser

to night was born at that time. I mean as an undergraduate, you spend a lot of time
in libraries and studying for exams, but this idea that you have your own project
and you set your own deadlines, although you know the professors expect things of
you, it really comes from that time.

But at that time also, all of a sudden I wanted to go back . . . after I had the
master’s, I wanted to go back to Israel. I wanted to see Israel again. It’s been four
years. And I went for the summer. That was one of the highest . . . After four years
not being in Israel, just being around here and with my mother and my sister. My
sister was already a big girl. I remember taking a bus to Yamit. This was a time
when they were actually withdrawing from the Sinai Desert. So I was in Israel then
for three weeks, and then I came back to Berkeley and I continued to my Ph.D.

Rosen: Is there something about the initial time in Berkeley that you recall that is
worthy of mentioning?

Goldwasser: I remember the professors. There were the theory professors. There
was Manuel Blum and Dick Karp and Gene Lawler. And I remember meeting theory
students, the theory graduate students. There was Silvio, which later on became a
very close friend and a close colleague of mine. There was Vijay Vazirani. There
was Faith Fich. There was Joan Plumstead. There was Mike Luby. They were all
contemporaries of mine and I liked them. You know, I liked some of them more
than others [laughs] as things are, and they’re interesting characters. I took a class
I think from Gene Lawler on scheduling, and there was a TA there called Chip
Martel. Anyway, and I did some projects on scheduling with Vijay and Silvio. I
remember that.

Rosen: That was your first collaboration with Silvio?

Goldwasser: Itwas a project—right—in class. Yeah, that was the first collaboration.
ThenImet...Itooka...ImetManuel Blum, and Manuel offered me to be his
student. I spent the summer working with him, and that was fantastic because he
was such an unusual thinker, and he wanted to work with me, or he suggested that
I would be his graduate student. It was a huge compliment.

Rosen: You felt like it’s a compliment at the time?
Goldwasser: Yeah, sure. It was a huge compliment.
Rosen: Who were his other graduate students at the time?

Goldwasser: I think that Vijay and Silvio were his graduate students. I think before
that it was Mike Sipser and Dana Angluin, and we were sort of the new wave. There
was the three of us, maybe Joan too, Plumstead.
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Rosen: What was it about them that you liked at the time, do you remember?

Goldwasser: They were extremely intense. They really loved what they were doing.
They would talk about this incessantly, but they were a lot of fun too. You know,
Silvio was from Italy and Vijay was from India, and they were so colorful and they
had fabulous sense of humor. And they went out to restaurants all the time and
talked about work and told stories. It was really just somehow these were people of
the world. So as much as Iliked Carnegie Mellon and had a lot of good friends, this
was like a different dimension of personalities. If you think about it, people come
to graduate school from foreign countries. They have lived a different life, each of
them. They’re older, they’re sort of more worldly, and I was taken by it.

Rosen: Any particular memories, events from that or before . . . ?

Goldwasser: Yeah. There is actually a memory or an event . . . I think it was after
about maybe like six months in or almost close to a year in Berkeley, I'm like a
graduate student, I had a down period. It was like it’s too hard and I don’t have any
original ideas and I'm never going to get through this, and I'm lonely, I don’t know
anybody, because I didn’t have friends yet, close friends. And who do I think I am?
And I was torturing myself continuously. What do I think about going to graduate
school? Who do I think I am that I can just do this?

You know, I decided to leave Carnegie Mellon where I had lots of friends and just
kind of conquer this new place totally on my own. I remember going through this
cycle again and again and again, and then I had this realization that okay, maybe
it’s all true. Maybe I will amount to nothing and maybe I know nothing, and maybe
I'm a failure. But if I'm going to be against myself and I'm not going to be my own
friend, then who else? I'm going to have to like myself whatever I am. I got to accept
that. And some of that was like a very kind of deep, decisive moment, that from then
on, everything became better.

Because I think it’s very important to realize that, for graduate students espe-
cially, which have moments like this, I'm sure it’s universal, where you go, you've
decided on this big adventure, and then it’s very unclear, right? Are you going to
succeed? Are you not going to succeed? There’s a lot of competition. Everybody
seems better than you. And there’s a—I think—tendency for self-beating, at least
for some people, and it’s very important to realize that it is what it is, you know you
got to like yourself, because at the end of the day, this is what you've got.

Rosen: Okay. Grad school, research, Manuel Blum.

Goldwasser: Research, grad school, right. Manuel Blum. Okay. Manuel Blum took
me as a student, but as things go, it takes time to find a research project. Then
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Manuel taught this class on algorithmic number theory. In this class, he taught
us about, first of all, the basic elements of number theory, primes and composite
numbers and quadratic residues and quadratic nonresidues and generators and
cyclic groups and all these things, and all from an algorithmic point of view. That
is, how to test that a number is prime, how to generate a prime, how to find the
quadratic residue, how to test that something is a quadratic residue, modular
arithmetic, and so forth, and always from an algorithmic perspective and analyzing
running times. I found it fascinating. I really loved it. You know, it’s very basic. I
like this stuff.

Rosen: Iremember you teaching me this.

Goldwasser: That’s right. So I really love this material. And at the end, he had a few
lectures where he talked about cryptography. At that point, there was essentially
[only] RSA encryption scheme, a public-key encryption scheme, which is a way to
send messages between people who have never met before, secret messages. Itall is
based on the fact that it’s hard to factor composite numbers which are a product of
let’s say of two primes, but it’s easy to generate prime numbers. And that was nice.
Then there was another lecture on another method by Merkle-Hellman which Adi
Shamir broke. And he did some cryptanalysis. That was interesting as well.

And then he asked the question, which was I think really defining for the rest of
my career. He said there is an Alice and Bob, and they are deciding to get a divorce.
Alice is in Boston and Bob is in San Francisco, or vice versa, and they have to decide
who gets the dog. And they want to be fair, so they decide to toss a coin, except
they’re not in the same place and they have to toss a coin over the phone, except
neither one wants a dog. Or both want the dog, whichever is the case. And the idea
that Alice just tosses the coin and then she says to Bob “It’s heads” doesn’t exactly
work because they don’t trust each other. So he asked, “How would you do that?
Can you use number theory to do that?”

So what’s the connection? You know, why number theory? And that was sort of
fascinating. Can you use sort of number theory? The idea that let’s say factoring
numbers is a hard problem, is there a way to toss coins over the telephone?

And I start thinking about it, and I had an idea. The idea was . . . that there
was this function, which is a modular exponentiation function, like g* mod p. The
idea was to essentially hide . . . for Alice to pick like a random x and send g* mod
prime p to Bob and have him guess what x is. This is a function which is hard to
invert: From g* mod p (and g) it’s hard to find x. And Bob tries to guess x, or actually
to be more precise, he tries to guess something about x, like whether x is odd or
even or greater than p over 2 or smaller than p over 2. And he makes a guess, then
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she tells him what x is and both can check if the guess is correct or not. If the guess
is correct, it’s like heads has been tossed, and if the guess is incorrect, it’s like tails.

And Silvio and I talked about it. I told Silvio about this. Then you needed to prove
something, right? You needed to prove that this is like a coin toss, that really it’s
impossible for Bob to guess better than 50-50 whether x was greater than p over
2 or smaller than p over 2. And we had some proof, but there was a bug in it. And
that was sort of the beginning of a lot of cryptography.

Rosen: And I want to ask at this point how much context about cryptography did
you have at the time beyond what Manuel [taught in the class]?

Goldwasser: Nothing. Zero. Uh . .. Zero.
Rosen: Did you know about Shannon’s work?

Goldwasser: Nothing. That was not part of the class. The class was about number
theory and applications of number theory. I think that’s what interested Manuel.

Rosen: Yeah, so why did Manuel Blum teach that class at that time?

Goldwasser: Because we’re talking about 1980. Was it 1980 or 1981? And the inven-
tion of public-key cryptography was 1976 and then the RSA . . .

Rosen: Maybe you can give some context to the general . . . ?

Goldwasser: Right. So 1976, there was this incredible paper by Diffie and Hellman
which suggested this idea that we are having this possibility of digital communi-
cation, that eventually everybody’s going to be communicating with everybody else
over the digital network. This is the case today. It wasn’t the case in ’76, but the
possibility was there. And they were asking, “How can we utilize this in order to
kind of shift the world into this mode of electronic commerce?” I think they even
talked about these things explicitly in this paper. And they brought up these two
suggestions.

One is what they call public-key encryption, which is a way for let’s say an Alice
and a Bob who’ve never met before to communicate secretly. Somehow there would
be a directory where Alice would publish something that they called a public key,
and Bob could read Alice’s public key and use that in order to send her coded
messages that only she, who knew also a corresponding private key, would be able
to read, but no one else could. This was one thing.

Another thing that they suggested is this idea of a digital signature, which is that
people could sign documents so that everybody can verify that, say, Shafi signed
it, but only Shafi could sign it. As you know, a handwritten signature, if I have
a signature, it looks the same no matter which document I put it on. Here the
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case was that you would take a document and you would do a transformation to
a new document which is called a signed document, and the ability to perform the
transformation would be something that each user in the system, Shafi or Alon,
could do in a way unique to them, because they knew some information or some
private key that enabled them to do so and yet there was a matching verification key
that would be able to verify that this was signed by Shafi or alternatively something
was signed by Alon. In any case, they proposed these two things. They didn’t give
ways to do it.

A year later, there was a paper by Rivest, Shamir, and Adleman where they
showed how to do it using number theory. Around the same time, there was also
a paper by Michael Rabin who showed yet a different way to do it also based on
number theory.

And Manuel taught those three papers, because they were just mind-boggling.
This whole idea, very tantalizing. Not only that; I think that Len Adleman was a
student of Manuel’s, so there was some affinity there as well. But one would have
to ask Manuel why he taught that class. I think it was the first time he did teach
that class, in any case. I think. You know what, maybe not. Maybe he has taught it
before. Maybe, because there are these notes, these lecture notes on number theory
by Dana Angluin. So he must have taught it before when Dana was a student, but I
don’t think he taught the public-key cryptography part of it.

Rosen: Who else was in the class besides you and Silvio?

Goldwasser: Me, Silvio, Vijay, Mike Luby. You know, the usual suspects. I mean all
of the crowd at Berkeley was there. Jeff Shallit was another good friend at Berkeley,
and Eric Bach.

Rosen: They went on to do computational number theory.

Goldwasser: That’s right. You know, that’s right. Eric has this very famous paper
about how to generate primes in factored form, which is an important paper for
generating generators for the multiplicative group mod a prime. Jeff Shallit also
had very interesting work, and they later wrote a book together on computational
number theory. And we were all colleagues, and friends. And we’re still friends.

Rosen: Okay, so now it begins?

Goldwasser: Now it begins. Right, so okay. So Silvio and I decided to work on the
following problem, and the problem was how to play mental poker. Because there
was one other paper that Manuel mentioned, and that was a paper by Shamir,
Rivest, and Adleman where they used their encryption scheme in order to show
how to play mental poker.
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What is mental poker? People probably know what poker is, although I didn’t
because my parents didn’t play cards and the whole idea of card playing was
supposed to be this thing that you did not do, somehow there was something
improper about it. Anyway, so this mental poker protocol by Shamir, Rivest, and
Adleman, the idea is again, we are two players, we don’t have a physical deck, we
want to play poker over the phone, over the computer line, and how are we going
to do that? How are we going to deal cards in such a way that you're going to get a
random hand, I'll get a random hand, and once we get the cards they’re not in the
deck anymore without knowing what each other’s decks are? They had an ingenious
idea where there was a way to deal cards in such away . . . I mean it seemed like you
don’t know what my cards are, that I did choose random cards, and same for you.

But Lipton noticed that this protocol, there was a problem with it, that there was
something about the implementation of this protocol that they proposed where
it’s true that you couldn’t tell what my cards were, but you could possibly tell
some information about my cards. For example, let’s say that you could identify
something was a high card versus a low card. So there was something about the
encoding of the cards that did not hide all information about the card. Now for a
card game, that’s detrimental, right? If you know that I have a high versus a low
card, then this changes your strategy completely.

So the problem we set out to solve was how are you going to play mental poker
hiding all partial information about the cards? I remember that we’re thinking
about this problem and what do we need, and Silvio had this idea that we need
to have some encryption scheme that . . . Not encryption scheme. We didn’t talk
about encryption. I think it was Silvio’s idea that we needed a decision question,
like a yes/no question, where it’s hard to tell whether it’s a “yes” or a “no” better
than 50-50. But this was like an abstraction, right? And a little bit like the Diffie-
Hellman.

Because I loved the number theory, I remember sitting in a seminar where
some people were talking about something else . . . and in fact I must say that
this repeats in my career over and over again. I get ideas while I sit in seminars
when people talk about something else, which is probably a good reason to go to
seminars. [laughs] And all of a sudden, I had this idea about quadratic residues. I
said, “You know what . . . ” I think to myself that the way to encode the zero and
one, the decision question would be to decide whether the number is a quadratic
residue or quadratic nonresidue modulo a composite number n, and this was a
hard problem. I mean Manuel told us this was a hard problem, a hard problem in
the sense that there were no efficient algorithms to solve it. And the reason why I
thought it was a good idea is because it seemed to be a problem which is hard on
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the average. In fact, not only that you cannot tell whether something is a quadratic
residue or nonresidue, but you couldn’t really do better than 50-50. And one would
have to prove that, right?

But there was something about this problem, which is a notion . . . later on
defined formally, which is called random self-reducibility. It was sort of a way of
showing that if you had one number, if it was a quadratic residue you can generate
lots of [random] quadratic residues, or if it was a quadratic nonresidue you could
generate lots of [random] quadratic non-residues. And then that means that if you
could sort of distinguish one sample from the other even a little bit, then you will
be able to distinguish whether your original number was a quadratic residue or a
quadratic nonresidue.

Rosen: How did you feel at that moment, or . . . ?

Goldwasser: That moment of thinking about the quadratic residuosity being the
right problem and then telling Silvio? God, excitement. It’s just incredible. Because
pretty quickly, we could sort of come up with a proof.

Andthen, just to come back to the mental poker, the idea was that this would be a
way to write down a card. Let’s say the card is five of diamonds, okay. Then you write
this down in binary, the five of diamonds—so that’s in zero/ones—and now you
want to encrypt the zero, encrypt the one, encrypt a zero, encrypt a one, each time
encoding it by a different quadratic or nonquadratic residue. Quadratic residue for
zeros let’s say, nonresidues for one. You choose them at random. And now you have
an encoding of the card, which is what we would call later probabilistic encryption.

Rosen: At the time, did you realize it’s public-key encryption, or . . . ?

Goldwasser: We didn’t even realize it was encryption. We had a card. We had a way
to encode cards so that we could prove that there is no way you can distinguish one
card from any other, because you couldn’t distinguish zeros from ones better than
50-50.

Then, we went to Dick Karp, I think because Manuel was on leave at MIT for
a semester, and we told him about this. He asked us, “What about other partial
information, not just with a zero/one?” These questions professors ask you are
incredibly significant, because you don’t think this way, right? I mean now it’s an
immediate question, but at the time it was a very fundamental question. And then
we went away and proved that if you could tell any partial information regarding
(the sequence of bits that encodes) the card—and you had to define what partial
information is—then you could actually reconstruct the individual bits of the card.
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Which implied that you could tell whether a number was a quadratic residue versus
a quadratic nonresidue, which was a hard problem.

Rosen: Can you tell something about the process of figuring out the right defini-
tion?

Goldwasser: The way I'm telling it to you, it’s really derived from the goal. The goal
was to play mental poker in such a way that it hides all partial information. In order
todo that, itwas clear thatyou had to encode every bit individually, and furthermore
it was clear that you would have to encode them in a probabilistic manner, because
otherwise you couldn’t hide all partial information. Then there was that question
of Karp’s, so we arrived to the question “What is partial information?” It should be
any function that kind of divides the world of cards into two parts. So any function
that partitions the cards into sort of the left and the right, you know?

The process was just . . . it was like being in some kind of a mad state of cre-
ativity. And working with Silvio was just a very intense experience, as anybody who’s
worked with him knows. I mean there’s no day and no night. And I think he’s still
that way. I'm not, but at the time I was. He was very intense, it was very exciting.
And of course we didn’t do it completely in isolation. There were these questions
that Karp asked us, and then I think maybe it was him or maybe we understood
already there was a way to encrypt here, that it doesn’t have to do with card games.
There’s a way to encrypt the zero and encrypt the one.

That’s something that was not known, because the public-key encryption of
Rivest, Shamir, and Adleman or even the Diffie-Hellman concept, it really was
intended for encrypting long messages which are unknown. And here zero and one,
you know that everybody knows you’re either encrypting a zero or a one, but they
can’t tell which is which. So this was a completely new way to encrypt information.
We understood this is much bigger than our original goal, but . . .

And we went to consult people in number theory, you know, in the math de-
partment. There was Lehmer and he was the expert. We were supposed to talk to
him and ask him, “Is it really the case that you cannot tell apart quadratic residues
from nonresidues? Maybe not just perfectly, but better than 50-50?” And I remem-
ber this quote. He said . . . We told him the whole story and we asked him what
would he do if he needed to distinguish whether a number was a square or a non-
square mod n. He said that if it was less than n over 2, he would bet it was a square.
We asked him why, and he said, “Because there’s a lot of small perfect squares.”
But he said he’s not a betting man. Then it turned out that this is okay because this
doesn’t give much of an advantage.

Rosen: When you came to him, did you feel the stakes are high?
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Goldwasser: No. We came to him as two young graduate students and he was very
accepting. A little bit maybe I thought he was a little humorous, because it’s such
a frivolous question, right? Playing cards, using quadratic residues. But I think the
whole attitude of mathematicians to computer science has changed radically. Not
to say that he wasn’t helpful. He was extremely helpful. But in general I think, at the
time, mathematics was this hard science and it was serious, right? And the whole
computer scientists and the algorithm aspects and using it for cryptography was
considered more of—I think—a toy activity. I think this is very, very different now.
If Ilook at the mathematicians at MIT, and I'm sure it’s true all over the world, they
have respect because we are studying hard questions, we are studying important
questions, we’ve made impact on the world. Cryptography certainly has made a lot
of impact. It's making a lot of impact today. And only more so, as you well know
as well.

Rosen: And I'm asking again about the stakes because I am curious to know, when
did you realize how big your discovery is at the time?

Goldwasser: Right. So we realized that we have actually a scheme for encrypting
single bits, something that was an open question that nobody addressed. And when
you encrypt a single bit, obviously it’s going to have to be a randomized method,
because it is a public-key encryption, so everybody can encrypt a zero and a one.
If all encryptions of zero were the same, when you see the encryption, you can just
yourself try to encrypt zero or try to encrypt one, and if it’s the same as what was sent,
you knowwhatwas sent. So it has to be the case that there’s lot of encryptions of zero
and lots of encryptions of one, and an adversary shouldn’t be able to distinguish
whether we’re encrypting zeros or ones. You cannot actually have any better than
50-50 plus negligible probability of success in guessing which random bit was
encrypted.

Now, in the context of a protocol, if you think about this mental poker example,
not only thatyou’re encrypting the cards but there’s a lot of other information going
around. There’s the dealing of the cards where many cards that are being encrypted.
You could ask the question whether, having been part of this game, playing the
cards, maybe you gain more and more knowledge as you go along so that now you
are able to guess something about the unrevealed cards better than what can be
inferred from the revealed cards. The definition, which we called semantic security,
covers this too.

In order to prove semantic security, we came up with this idea of a proof by
reduction, the idea being that you say . . . well, let’s suppose that your goal in the
world really, you have no interest in mental poker, but what you want to distinguish
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is quadratic residues, quadratic nonresidues. Okay? And somebody tells you that
there is this mental poker game that’s built on encoding cards with quadratic
residue and quadratic nonresidues, and they know how to cheat in this game. So
what you say to yourself, “Okay, I'm going to show a reduction now. I'm going to
show that if in fact there is this person”—or this adversary, which we usually call
them—*“who is able to cheat in the mental poker game, even by slightly better than
he should, then there is a way to use this strategy and turn it into an algorithm that
can distinguish quadratic residues from nonresidues.”

Since you believe that quadratic residues and nonresidues cannot be distin-
guished in polynomial time, it means that such strategy does not exist. But how
do you show such a reduction? In a sense you need to simulate everything, the en-
tire view of the adversary—that is, the encoding of the cards and the dealing and
everything that went on and was available to him to enable his cheating strategy.
This is what’s called proof by simulation, which later has become a big paradigm in
cryptography, in how to actually give security proofs. You can prove security if you
can sort of recreate the real world in which cryptography is used and its security is
supposedly violated. And if you can simulate it although distinguishing quadratic
residues from nonresidues is hard, then it means that this violation must have not
been that useful, because you could have simulated this violation anyway.

Rosen: In hindsight, you can view Shannon’s security as being the information-
theoretic sort of analogue of semantic security. Did you see that at the time, or you
cameup ...?

Goldwasser: No, we didn’t really know about Shannon’s paper, because we were
ignoramuses, [chuckles] which helped us actually. Shannon’s information theory
in fact, if you look at the definition, essentially says that the probability of two
messages is the same given the ciphertext. That’s one way to think of Shannon’s
security. An equivalent definition is the a posteriori and a priori probability of a
message is the same, where the a priori is without given the ciphertext, and the a
posterioriis given the ciphertext. In other words, the ciphertext gives no information
about the message. Or, if you think about the first definition, given ciphertext for
the bit zero or ciphertext for the bit one, there is no information in there that can
tell you whether it was a zero or one.

If you think about semantic security, it’s the computational analogue of it. That
is, in principle, information theoretically you actually do have enough information
to tell whether you're seeing an encryption of a zero or a one, because it’s a public-
key encryption scheme. But computationally within polynomial time, you don’t,
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if distinguishing quadratic residues from nonresidues is a hard problem, or if
factoring integers is hard.

Of course, it could be that factoring integers is easy. We know that for quan-
tum algorithms, factoring integers is easy. So if quantum computers can be built,
then this whole tower of cards collapses. But this is only for the first probabilis-
tic encryption scheme. Today we have a lot of other problems, not just quadratic
residues versus quadratic nonresidues, not just the factoring problem, but also
problems on integer lattices, which are problems essentially from geometry. Now,
we can apply this idea of a decision question which is hard to solve in the sense that
it is infeasible to decide better than 50-50, and encode zero by this decision ques-
tion where the answer is yes and one by a decision question where the answer is no.
And these lattice problems, I mention them because they are quantum-resilient. In
otherwords, we don’t know any quantum algorithms that can solve them efficiently.
They are what we call post-quantum cryptographic candidates.

Rosen: Okay, so at the time, the idea of basing something on an unproven assump-
tion, it was in the air, or was it kind of a bold move?

Goldwasser: Right. Well, if you think about RSA, they’re also basing it on an un-
proven assumption. They are the first. They are assuming that factoring integers
is a hard problem. We took another problem, which was distinguishing squares
from nonsquares. But obviously that’s an assumption, and you know mathematics
prides itself by having proofs, and proofs are proofs and not conjectures. So there’s
an underlying conjecture here, and that is that there’s a problem which we don’t
know how to solve efficiently. But if you think about it, all of complexity theory is
predicated on the conjecture that the class P of polynomial-time problems and the
class NP of problems which you can verify the correctness of the solution in poly-
nomial time are different. So to give meat to the entire field, there is an underlying
conjecture which is widely believed but not proven, and then one builds on that
conjecture.

Rosen: And at the time, what was the atmosphere? Did you experience any resis-
tance to this idea?

Goldwasser: To this probabilistic encryption? We submitted it to a conference and
it got in the first time. This was a conference in San Francisco, in 1982. I think it
was a STOC conference and I gave the paper, and the name of the paper was “How
to Play Poker Hiding All Partial Information and Probabilistic Encryption.” It was
along title. And I think that people were genuinely very positive, but speaking with
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people afterwards, I think they had no idea what I was talking about. [laughs] But
certainly in the cryptographic crowd, there was excitement.

Rosen: Was it your first talk in the conference?
Goldwasser: Yes.

Rosen: And how did you feel?

Goldwasser: I felt on the top of the world.
Rosen: How well attended was it, just . . . ?

Goldwasser: Oh. In that time, the conferences were very well attended. There were
no parallel sessions and people came to the entire conference, and it was a fairly
small community.

Rosen: Can you tell us a bit more about the atmosphere at the conferences back
then?

Goldwasser: I think that, you know, very intimate, very informed people. They were
already people who were working on different fields—you know, algorithms and
complexity theory, here’s a cryptography example, and distributed computing.
People started talking then about Byzantine Agreement. A lot of these big ideas that
are still around as sort of fundamental problems were being discovered at the time.

Rosen: Were you attending all talks?
Goldwasser: Yeah, I was. Everybody was.

Rosen: And was it accessible to everybody, to a wider audience than it is today? How
do you compare?

Goldwasser: Ithink so. Butit’s natural. When a field is young and not overburdened
by definitions and history and background, it’s easier to understand. On the other
hand, people give much better talks today. People have learned how to simplify
their talks—PowerPoint has helped quite a bit—and people have more respect to
distilling the essence rather than giving all details.

Rosen: And what happened next? How did things evolve?

Goldwasser: Then, I had been to Berkeley at that point for three and a half years,
and I had a very strong urge to get a job and leave. Somehow, I think about it now,
I don’t know why it was so urgent to leave, but Berkeley seemed to me then like
this small place and it’s time to go. I applied for a postdoc and I got a postdoc with
Ron Rivest at MIT. I was there for half a year actually. Then, they were looking for
faculty members and I started interviewing for faculty positions all over the country
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and also at MIT, and I got an offer for a faculty position and I started on the faculty
in '83.
Rosen: After having published what results at that time?

Goldwasser: There was this probabilistic encryption paper. Then there was another
paper which we start realizing that it’s not just this particular quadratic residues
versus nonresidue, but you can take actually any function which is what we call a
one-way function. That is a function which is easy to compute but hard to invert.
And in particular the RSA function. We asked what bit about it is well-hidden . . .
The RSA function is you take an x and you take it to some power modulo a com-
posite number n, like x3 or x®> mod n. The question is “What about x is really well-
hidden?”—well-hidden in the sense that you can guess better than 50-50. So the
paper was on that, looking at the bits of x and showing, proving that they are as
hard to guess as it is to invert.

Rosen: And this was still at Berkeley, or . . . ?
Goldwasser: This was still at Berkeley, yeah.
Rosen: With who was the paper, do you remember?

Goldwasser: Thiswas Silvio and Po Tong, who was another graduate student. I think
that those were the two papers that I had, yeah.

[Editor: Actually, there were another couple of papers on signatures, both with
Silvio Micali and Andy Yao. So, at that time, there were four conference publications
altogether, and no journal publications at all.]

Rosen: Okay, so you start as faculty at MIT?

Goldwasser: I started as faculty at MIT and Silvio came a semester later. He was
at University of Toronto and he also got a faculty position at MIT. It was like an
incredibly intellectually exciting time. Oded Goldreich, who is now at Weizmann,
came as a postdoc. There was Benny Chor, who was a graduate student there. Later
also Yoram Moses came. I think Michael Ben-Or was there for some period of time.
And all these people, they were young, they were brilliant, they were enthusiastic.
We would work from day to night and then we would have dinners and talk about
work and go to movies. And cryptography was starting to march along.

So I think that the next thing that I did was this paper on pseudorandom
functions. There was an early paper by Manuel Blum and Silvio Micali on how
to generate pseudorandom numbers in a way that you cannot distinguish these
pseudorandom numbers from truly random. And the next question was how do
you actually generate not just a polynomial-sized list of numbers but a very, very
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long list of numbers, an exponentially long list of numbers, in a way that you could
sort jump in the middle. Another way to think of it is a function. So . . .

Rosen: And what was the motivation for this specific question, given that you can
generate a polynomially long?

Goldwasser: The motivation was that there are a lot of applications where you
want to sort of random access. For example—I think this is one of the original
motivations we had in the paper—is what we called an “identify friend or foe”
system. We were saying, let’s say that we are in a group, and we want to identify
ourselves to each other, but there are some enemies that come along, and we don’t
want to use this password system where they ask, “What’s the password?” I tell them
what the password is, and now they know. Instead, I want them to ask me a random
sort of question, which I can answer. And if we are from the same group, they can
verify my answer is correct, but anybody else, really as far as they’re concerned it’s a
random answer. So if you had what we call a pseudorandom function, there is a way
for all of us who’ll know the secret of this function—or what we call the seed of this
function—to be able to compute this function f on any x, and then the random
challenge would be x and I will tell you what f of x is. But being pseudorandom
means that for anybody else, they can’t tell it apart from a random function, so
when they are asked x, to them f of x is like totally random. That’s an application.

Rosen: So on that thread, I'm curious to hear how much of a role did practical
motivation play in coming up with these notions?

Goldwasser: With these notions? That’s a very good question, because it’s not clear
what you mean by practical. When you say “practical” today, you mean there’s going
to be a startup that’s going to implement it. No such thing, no startups. Nobody
implementing. So the level of practical that made any sense at that time was to
say that there is a story, like identify friend-or-foe or people sending encrypted
messages or people trying to authenticate themselves. And somehow I think those
stories were important for narrative, because I've always liked stories, like the
biblical stories. And in general I think people have an easier time to read, especially
in a new field where there it isn’t a mathematical problem that’s been defined for
many years and that people are interested in and they don’t need any motivation.
In a new field, you need to compel people, and stories are helpful.

But for us, it was really more of an intellectual story. The pseudorandom-number
generator was just a polynomial sequence of numbers. Then the question about
being able to kind of have an exponential sequence where you can sort of jump in
the middle and just generate a polynomial number of them or this abstraction of a
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pseudorandom function is what interested us. And once you had it, you could tell
a story, many stories.

Rosen: So you didn’t feel any pressure to practically motivate any of your . . . ?
Goldwasser: No, no. None.

Rosen: And what do you think about this versus the alternative? The need to find
practical motivation.

Goldwasser: I think that every once in a while I have graduate students, and they
come up with a question. For example, I have these two students now, they asked
about pseudorandom functions, what happens if somebody knows the secret of
how to generate these pseudorandom values? Does it still possess some crypto-
graphic hardness? This is a very technical question. But some of the reactions they
got is that “What is the application?” And they came to me and they asked me if
they should work on it or stop, what’s my opinion, is it interesting? I said, “It’s very
interesting.” It’s intellectually interesting. They had a beautiful sort of approach
to it. They had a beautiful proof. And at the end, that’s the nugget, right? It’s sort
of something that captivates you, you have to use some ingenuity to solve it, and
you have insight. And if it’s important, even for applications, it will emerge, but it’s
not necessarily obvious in the moment that you start. And sometimes if it is very
obvious, first of all, lots of people work on it, and you know competition is good but
only to a certain extent. If everybody’s working on the same problem, there’s some
kind of . . . I don’t know. I don’t like to be in a space that’s very crowded.

Rosen: How did it feel back then in the early MIT days in terms of competition?

Goldwasser: Right. As I said, we were a big, happy family, but [laughs] a big, happy
family of a lot of people who wanted to do well. So we worked collaboratively, we’ve
gotalot of joint papers, also with Benny on this thing called verifiable secret sharing
and with Oded on pseudorandom function. But we each started, within a couple
of years everybody started going in their own way as well, because you are in an
academic system, they compare you, they promote you at different times, they tell
you that you should kind of shine individually.

And I personally . . . You asked how I felt. Remember we talked about the crisis
of becoming a graduate student. That was again a time which was extremely diffi-
cult, because you’re trying to do something new, you're trying to do it on your own,
you are always comparing yourself to the people around you who are always bril-
liant, and more brilliant than you are, and you don’t know that they’re all feeling
the same thing. You know this imposter feeling? Apparently they’re all feeling it.
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Some admit it, some don’t admit it. [laughs] But once you realize that this is the
name of the game, I think again it’s these moments of realization.

Rosen: So did you have such a moment?
Goldwasser: Yes, yes.
Rosen: When was that?

Goldwasser: Ithink I was talking to somebody . . . and I told them about how I feel
and they told me about the imposter syndrome. Now everybody knows it, but then
I never . . . I asked what it was and they explained, and it was like, “Ah, okay.”

Rosen: That was a person external to the . . . ?
Goldwasser: Yeah. Like a friend, yeah.
Rosen: Okay. What about teaching? Do you have any memories?

Goldwasser: Yeah. Teaching we really started . . . I started and then Silvio also to-
gether teaching this class on cryptography. It was the course of Manuel Blum but
with a lot more, because at this point the cryptography was a big part of it. There
was the definition of bit security and the semantic security of an encryption and
the mental poker, and the partial information, pseudorandom functions, pseudo-
random number generator. It started being a field. And we haven’t talked about
zero-knowledge yet.

Rosen: That was before zero-knowledge?
Goldwasser: Around the same time. It was before it got in, but . . .

Rosen: Before we get to zero-knowledge, who were the students in this class that
you remember?

Goldwasser: The students, yeah. There was Johan Hastad, there was Joe Kilian,
there was Bill Aiello. I think in the early years there was Yishay Mansour, but I think
he was a little bit later. Those are the students . . . there’s Paul Feldman, who was
a student of Silvio’s. The others were student of mine. And they’re all big names,
fantastic researchers in their own right.

Rosen: How did the other MIT faculty treat the young field of cryptography? How
did they perceive it?

Goldwasser: MIT is an incredible place. I think that they really have had the fore-
sight of hiring people who were not necessarily in the mainstream of theoretical
computing, but sort of doing something with the tools of theoretical computing
which is a little bit on the fringes. Rivest was like that. Public-key cryptography
after all was exciting, but it was unusual, right? And Silvio and I certainly, and
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Charles Leiserson was doing also things which were, you know, with applications.
Atthattime, I think it was data structures and stuff like that. Nancy Lynch was doing
distributed computing and Byzantine Agreement and lower-bounds on Byzantine
Agreement.

So I felt that they were incredibly proud of all achievements, and especially
Ron Rivest, who was a major mentor. Because now that I think of it, he wasn’t
really much older than we were. Maybe 5, maybe 10 years, no more. And he was
extremely supportive of us. We have a paper joined with him, digital signatures.
But by and large, we each did our own thing, and I think Ron started working
on computational learning fairly quickly, so he kind of left the cryptography field,
except for its commercial aspects, for a few years.

Rosen: What other faculty do you remember from the time being supportive?

Goldwasser: Albert Meyer was very supportive. I think he was really a very significant
mentor in his own way, sort of in the background. I mean Ron was in my field, so it
was sort of more of a daily advice or monthly advice. But Albert was at the head of
the theory group and he saw something in me and put me up for the Grace Murray
Hopper Award, which made me feel good, made me be recognized.

Rosen: Okay. Is it time for zero-knowledge?

Goldwasser: Yeah, I think so. So zero-knowledge. Alright. So this whole idea of
having a protocol where let’s say two people are sending messages back and forth
and there’s a goal for the protocol usually. The goal might be to . . . In the context
of going back to that mental poker, say you want to prove that the cards that you
encoded were encoded properly, but you don’t want to say what the encoding was.
So there’s a statement here, and that is thatall 32 . . . sorry, all 52 cards have been
encrypted and no two cards are the same, but you’re not going to tell me which card
is which. Then there is apparently a way to do it. Apparently. We showed a way to do
this, which amounts to actually showing whether something is a quadratic residue
or a quadratic nonresidue, so that I can prove to you that something is a quadratic
residue or that something is an encryption of zero, or let’s say the two things are
encrypting different bits, in such a way that you will have learned nothing else.

Rosen: So you had a protocol?

Goldwasser: So we had a protocol. And now we had to have a definition. What does
it mean, “prove so that you learn nothing else”? The definition went back to the
simulation paradigm and it is called zero-knowledge. Let me explain what it means.
So I'm a prover. I know something and I'm proving it to you. I'm proving you some
mathematical statement without actually giving you the proof, which seems a bit
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weird, so at the end you’ll be convinced that the statement is correct. But what do I
want? Iwant you not to be able to prove it to a third party. In fact, I want you to learn
nothing from it. So how do you define it? The way you define it is that whatever you
can compute after you interacted with me, that’s no different than what you could
have computed before you interact with me. And an equivalent definition to that
is that you could essentially simulate the entire interaction between us. And if you
could indeed do so, it means that interacting with me was useless to you, assuming
the theorem statement is correct.

Rosen: And the name “simulator,” when did it come about?
Goldwasser: Who remembers?
Rosen: At what stage? There’s a story about multiple rejections?

Goldwasser: Ah, okay. Right. So this paper, we started. We didn’t actually call it “sim-
ulation,” I don’t think. I think it had some other definition. They were many names
for this paper. It started, it was “Participatory proofs . . . ” “Interactive proofs such
that they hide all partial information.” There were many, many names until we
got to the final name, which was “Interactive proofs and zero knowledge” or “The
Knowledge Complexity of Interactive Proof.” And the paper was rejected three
times. God knows. But we were very persistent, you know?

Rosen: How did you feel with each rejection? What’s the . . .

Goldwasser: Well, you know there were three of us. I mean in the beginning there
were two of us actually on this paper, Silvio and I. And then Charlie Rackoff joined.
He improved the paper, but it also got rejected. Because there were three of us, we
could sort of build each other up. And how did we feel? We felt like everybody else
was an idiot. [laughs]

Rosen: You had this confidence back then that you’re onto something?

Goldwasser: But this concept was so interesting and we liked them, and it was clear
that this is a great paper.

Rosen: And Charlie Rackoff was at the time where?
Goldwasser: He was in Toronto.
Rosen: In Toronto, so how did the interaction work back then?

Goldwasser: I think Silvio and Charlie interacted when Silvio was in Toronto. They
had some paper on coin tossing or something. Then Silvio came to MIT and we
continued working on the interactive proofs, butI think there must have been some
interaction between them. Iwasn’t . . . It really wasn’t a three-way interaction.
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Rosen: But how was communication with people from other institutions working
in general?

Goldwasser: Well, there was email, but there certainly wasn’t the World Wide Web,
or it wasn’t immediate. There were phone calls, a lot of phone calls. There were
visits.

Rosen: Do you remember any notable visits, visitors and/or visits from the time or
from...?

Goldwasser: Adi Shamir used to come to work with Ron. Again, I told you that Oded
Goldreich was around. And that’s about it.

Rosen: Okay. So zero-knowledge was rejected and you said the manuscript im-
proved over time with the rejection?

Goldwasser: It did improve over time. Sort of in the beginning, I think the simula-
tion was under computational assumption, then it became without an assumption.
Finally, it got in. We were mighty happy. And we went to the conference. I'm trying
to remember who gave that talk, if it was me or Silvio. I don’t remember.

[Editor: Silvio gave the talk.]

But in any case, at the same time, at the same conference there was another
paper, which was called “Arthur-Merlin Games.” This was a paper by Babai, who
introduced this concept where there was a prover and a verifier like we had, except
the prover’s name was Merlin and the verifier’s name was Arthur. And the difference
between a verifier and Arthur was that Arthur was just tossing coins, he was very
naive, and Merlin then, based on Arthur’s coins, he would kind of teach him things
or prove to him things, such that if he was proving a correct statement, Arthur would
believe it, which we call completeness, and if he was proving an incorrect statement,
it doesn’t matter what strategy Merlin would employ, Arthur would not believe it.
That was the same as interactive proofs, except our verifier didn’t just toss coins.
He tossed coins and did computations, and based on these computations would
send messages.

Rosen: And his motivation was totally . . .

Goldwasser: His motivation, there was some group-theoretic problems that he
wanted to show were in NP, but he couldn’t, so he allowed this extension . . . In NP,
you also can think of it as a proof system where there is an all-powerful prover and
he writes down a string which is a short proof that can be checked in polynomial
time. An interactive proof, it can go back and forth, back and forth, so the prover
can send the string, the verifier asks the question based on some coin tosses, the
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prover sends another string, go back and forth, back and forth, and in the end the
verifier says, “I'm convinced.”

Rosen: So essentially in your paper, there are two main topics . . .

Goldwasser: Yes, there were the interactive proof systems and the zero-knowledge
ones, which are an important special case.

But, just to finish the previous thought: As I was saying, what Babai was trying
to show, some problem, some group-theoretic problem was in NP, but he couldn’t,
sowhat he did is he added this Arthur that was able to toss coins. And for an Arthur
that could toss coins, there was a short interaction by which you could show some
group membership problem.

Rosen: And when did you realize that it’s a similar related concept? At the confer-
ence? Was it at the time of the conference?

Goldwasser: I think it was at the conference.

Rosen: And did you already realize back then, view it as a generalization of proof
systems?

Goldwasser: Yeah, we did. I don’t know if he did, because for him it was really a
way to show a complexity bound, the complexity of certain problems. He defined a
complexity class and showed that these problems are in this complexity class. For
us, it was always a proof system, because we were coming from the cryptographic
setting. So there were parties. There were these Alice and Bob, where Alice was the
prover, say, and Bob was the verifier.

Rosen: To what extent did you understand the important open problems that
emerged from this new concept at the time?

Goldwasser: Yeah, they were abundant. One question was whether this system of
Babai and interactive proofs were the same. He had this system of Arthur-Merlin.
We had this verifier-prover. Arthur could only toss coins, the verifier could actually
toss coins and compute on them, and that seemed to be a very important feature
that enabled you to prove things you couldn’t do just with coin tossing. So that was
a clear question. Then Mike Sipser and I, we proved that those two classes were
the same.

Interestingly, it all started again from the quadratic residue question, which
was a question that kind of followed my career, because it seemed like to prove
that something was a quadratic nonresidue required, without sort of revealing
information, required a verifier’s power to hide the results of his coin tosses. And I
was talking to Mike about this, and then he had this idea that we could look at
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the set of all quadratic residues and the set of quadratic nonresidues, and talk
about what are the union of those sets. Anyway, we talk about size of sets and relate
that to the question of whether a number was a quadratic residue or quadratic
nonresidue, which is related in turn to the question whether Arthur-Merlin games
and interactive proofs are the same class or not.

Rosen: Did you have any applications in mind beyond the original mental poker
application?

Goldwasser: Not really. It was again a concept. How do you prove a theorem in such
a way that you will believe the statement but you will learn nothing else, with the
definition that I gave you, and that you won’t be able to prove the theorem to a third
party?

But very quickly after, as soon as the paper came out, Adi Shamir pointed out
the application for preventing identity theft. Here in this situation, you would think
about me. What identifies me is the fact that I know how to prove some theorem and
nobody else knows, because it’s a difficult theorem to prove. But I have the proof.
How do I have the proof? Maybe the proof is something like I know the factorization
of some number. How do I know it? Because I took two primes and I multiplied
them, so of course I know how to factor it. Now I want to prove to you that I know
this factorization or something about this factorization that only I will know. That
would identify Shafi: that there’s this composite number and she knows how to
factor it. He realized that this is an identification method, and he took actually a
protocol that we have for proving that something is a quadratic residue and made
it more efficient in terms of how many rounds you need to accomplish it, and it . . .
This is the work of Fiat and Shamir, and this became an identification scheme.

But the interesting thing about zero-knowledge is that is really the tip of the
iceberg. Really, “the tip of the iceberg” is the wrong analogy. In any case, that’s
just scratching the surface, because it turned out that even though we showed
the applications of zero-knowledge in the sense of particular number-theoretic
questions you could do in zero-knowledge, like whether something is a square or a
nonsquare, it had a much wider applicability.

There’s a follow-up paper by Silvio Micali, Oded Goldreich, and Avi Wigderson
where they showed how a prover can prove to a verifier that a graph is three-
colorable, and that’s an NP-complete problem, and what follows from this is that
you can actually show any NP statement in zero-knowledge. So I can prove to you
any statement that has a short proof in such a way that at the end, you’ll believe
the statement but you will have no idea of the proof. In order to do that, they
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used computational assumptions, so this was under the assumption that one-way
functions exist.

What this means—okay, going a little bit into the field—is that essentially we
can take any protocol, any protocol between let’s say multiple people, not just two,
where there’s a program say that specifies what messages I'm supposed to send to
Alon and what messages Alon has sent to a third party and so forth. The thing is that
the messages that I'm supposed to send are based, let’s say, on my passwords or
some private information I have. The messages you have, you’re supposed to send
are based on what you have received from me and your private information . . . So
I do my computation, I send the message. If we’re all honest, everything’s fine.

But suppose I'm a liar. I'm an adversary. We’'re in a cryptographic setting. We’re
allliars in some sense, or we have to protect ourselves in any case. How do you know
I'm sending the right message? How do you know I did the computation correctly,
based on my private information and all the messages I receive? Well, that’s an NP
statement, right? So there’s a statement to prove, and that is that I am sending the
correct message. If I can prove that in zero-knowledge, it means that I can actually
transform all protocols that work when people behave properly to protocols that
work when people behave improperly, because essentially every message I send is
accompanied with the proof that it is the correct message, and it’s a zero-knowledge
proof so I'm not revealing anything about my secrets.

Rosen: What about other applications?

Goldwasser: Lots of other applications. The next application is something called
multi-party computation, which is a little related to what I just said, but it’s actually
much more relevant to today. So let’s talk about the fact that we are now living
in this data-driven society and different parties, it might be different hospitals or
different national agencies, and they have a lot of data. If you think about hospitals,
it could be one hospital has my genomic information and another hospital has my
blood type, my blood test over the years. Another hospital might know something
about illnesses that I have experienced. And they would like to compute something
based on this data, but they don’t want to reveal to each other the data. Another
example might be that I am the tax authorities and you are the immigration office
and somebody else is, I don’t know, another governmental agency. And because of
regulations, they’re not allowed to share their information. Still, they would like to
compute some function that’s based on all of the data together.

That’s what we call multi-party computation. There’s multiple parties, each one
has data which is confidential, and they want to compute some function that de-
pends on all the data without revealing it to each other. It turns out that it can be
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done. And it can be done partially . . . there’s a little bit of algebra involved, it’s
beautiful theory, but what does zero-knowledge have to do with it? If everybody’s
honest, it can be done. It’s an interesting method of how. But what if somebody’s
not honest? Maybe they’re not following the protocol. Well, you just tag on zero-
knowledge proofs to each one of their messages, and then even if they are poten-
tially dishonest, you will be guaranteed correctness because they will be caught if
they deviate from the protocol.

Rosen: Did you foresee the generality of the method at the time?
Goldwasser: No, no. It’'s way . . . way ahead of its time.

Rosen: And again, what was the reaction back then?

Goldwasser: About multi-party computation?

Rosen: Yeah, to these new revolutionary ideas.

Goldwasser: First, there was a paper by Goldreich, Micali, and Wigderson, who did
this multi-party computation based on the existence of Oblivious Transfer. That
got in. I think it had strong reaction. I mean good reaction. But then there was a
follow-up paper that is by myself, Miki Ben-Or, and Avi Wigderson which happened
at a time that I was visiting Hebrew University on sabbatical, and that did not have
computational assumptions.

So there was a sort of a partition, within theoretical computer science, maybe
less so these days. Some of them are so intrigued by the concepts and they’re willing
to make assumptions like the existence of one-way functions or that it’s hard to
factor integers and so forth. Others, such assumptions discount results for them, so
when you can prove an information-theoretic result without assumptions, they’re
happier. So I think that the fact that there were information-theoretic analogues
was very helpful for this whole theory to be adopted.

Rosen: Okay. Before we move on, I'd like to ask more about applications.

Goldwasser: Actually, I want to say something more about zero-knowledge.

First, it was intellectual curiosity. Then Fiat and Shamir realized this is impor-
tant for preventing identity theft. Next step was that this enabled a conversion of
protocols from honest parties to potentially misbehaving parties. But then all of a
sudden in recent years, it had some very unusual usages.

One of them was by some researchers in Princeton together with Boaz Barak
where they talked about the use of zero-knowledge for nuclear disarmament. Now it
sounds like, you know, out of nowhere. The idea there is thatyouwant tobe able . . .
let’s say the Russians and the Americans want to make sure that they are disarming
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nuclear warheads, but they don’t want to show each other the technology. How
do you prove that a nuclear warhead is in fact a nuclear warhead without looking
inside? It sounds like you want to prove a statement but give zero-knowledge. And
it’s not just by association. There’s actually a concrete method that they use which
uses a lot of underlying principles from the mathematics of zero-knowledge.

Another example, which Moni Naor from Weizmann came up with, is suppose
you are a suspect in a crime and you want to prove that you did not commit it, so
they are asking you to give some DNA so that they can compare it to the forensic.
The point is you don’t want to give it because maybe you are planning on doing
a crime in the future or your children are. So how do you prove that you were not
in the crime scene, or your DNA does not match without actually giving the DNA?
Again, zero-knowledge is the answer.

So there’s all these applications all over the place. The last application is the
blockchains. Today, as you know, there’s this whole idea of Bitcoin, blockchains,
how do we put transactions out on a blockchain so that they are serialized in
time? And some of the questions are, okay, so you want to put transactions, or
transactions meaning things you’ve done, you want to have records that everybody
can see. But sometimes you don’t want everybody to know the details of the records.
You might want to prove that two records are the same, or other properties of the
records, and you want to do that in zero-knowledge. So it has actually become very
well known to people in the trade these days and there are even companies that
specialize in zero-knowledge.

Rosen: And also digital signatures?
Goldwasser: Yes, also digital signatures. Yes. So what are you asking about that?

Rosen: Fiat-Shamir, the standards digital signatures over the Web is based on ideas
going back to zero-knowledge, the ones that started in the late '80s.

Goldwasser: So digital signatures were invented, as I said, in Diffie-Hellman’s
paper. Then RSA had implementation, but there was really no definition of secu-
rity. So obviously . . . it shouldn’t be forgeable. But what would that mean exactly?
Let’s say someone’s a notary public, so they’re able to sign. You want to make sure
that even though I can go to the notary public and give him documents at will for
them to sign, that  am not able to learn how they sign and be able to sign any other
document in the future. This is what we call digital signature secure against chosen
message attack. In other words, I can choose the documents that I feed the notary
public to sign and yet, even though I see polynomial number of signatures, I'm not
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able to produce yet one more document for which I sign it without the help of the
notary public.

Rosen: And you came up with the first definition of what this means.

Goldwasser: Definition and construction, we had a way to do it.

[Editor: At the time, this notion of “existential forgery” was considered paradox-
ical and it was not clear if it could be achieved. Indeed, as in the case of encryption
and zero-knowledge, the utmost robust notion of security was coupled by a proof of
feasibility under better understood assumptions. That is, robust definitions were
coupled with constructions that achieve them under widely believed assumptions
such as the infeasibility of factoring.]

Rosen: And then eventually it became crucial to the development of electronic
commerce over the Internet.

Goldwasser: Absolutely.

Rosen: Okay, so moving onto information-theoretic and unconditional results.
Maybe first we talk about geographically, where are you located now, your area?

Goldwasser: Yeah, so thisis 1986andI . . . Actually, we should talk about primality
then before.

Rosen: Right. So let’s talk first about primality?

Goldwasser: Yeah. Okay, so as I told you, interactive proofs, or maybe I didn’t men-
tion it, but we were talking about the fact there’s a prover and there’s a verifier. The
verifier is tossing coins. They go back and forth. The big distinction of interactive
proofs from classical proofs is that there is a probability of error. I proved to you
something and with very, very high probability you know it’s correct. Or another
way to say that, there’s a very small probability that I managed to cheat and prove
an incorrect statement. That’s what enables zero-knowledge.

So, as I told you, I was always interested in number theory, and there was this
problem around, which was how do you test numbers for being prime? And a
beautiful old result by Solovay and Strassen and Rabin are algorithms for testing
numbers whether they’re primes or not, fast algorithms that have a probability of
error. So at the end, you run this algorithm, you know with very good probability
that your number is prime. In fact, what it is, is that if it’'s composite, you're likely
to detect that it’s composite, and if you don’t detect that it’s composite, you say,
“It’s probably prime.” So an interesting question was can you have a primality test
that doesn’t have any probability of error? Can we test that a number is prime or
composite and be 100% correct? And can you do that without actually factoring
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the number? That was work that I really enjoyed tremendously and did with my
graduate student Joe Kilian at the time.

Rosen: And do you want to tell us more a bit about it . . . the story?

Goldwasser: Yeah. I was in a conference again. As I told you, sitting in lectures
really works well for me. I was in a conference, and René Schoof gave a talk about
some algorithm he had for taking square roots mod p for small numbers. It had
something to do with elliptic curves over finite fields, which was something I knew
nothing about, but he described what an elliptic curve was and he had some
algorithm for counting how many points are on a curve. And this whole elliptic
curve was defined with respect to a prime. So there was some equation, you know,
like y? is equal to x3 plus ax plus » mod p, and you could count the number of
solutions (y, x) in this defined group, and he was doing some operations on the
group.

In any case, he had an algorithm. And when I was sitting in this lecture, I started
thinking to myself, “What if you’d run this algorithm mod p, exceptyou didn’t know
whether p was a prime or composite? How would the algorithm perform? Would it
work? Would it not work?” And I asked him that question. I think it sounded like
a really weird question and he was like, “Well, it probably would be garbage if you
ran it mod p where p was composite.”

So then I went back to Cambridge and I think I invited Schoof to come and give
the talk at MIT. And he came and gave the talk again, so I understood a bit more.
Then I start talking to Joe about the question of what if this prime was a composite,
and we start talking about how to use these elliptic curves working mod a modulus
which we’re trying to tell whether it’s a prime or composite, and then the rest is
history. We had a primality test based on elliptic curves that was randomized but
there was no error probability.

Rosen: That was in '86?
Goldwasser: That was in '86, yeah.
Rosen: Okay. And then what?

Goldwasser: Then what? So then just, you know, it was ’86 or ’87 and I haven’t been
in Israel for many years. I used to come visit, but I was really pining away in some
sense to being in Israel for some extended period of time. And I had a sabbatical
and I decided to spend it in Israel. And I came to the Hebrew University and there,
there was Avi Wigderson and Nati Linial and Michael Ben-Or. I didn’t know what I
was going to work on. I was teaching a course about primality and elliptic curves,
and they were very excited because elliptic curves were creatures that they didn’t
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use in computer science. They haven’t been used that much either since, but in
any case, I was teaching this class.

Then I remember that I was in Avi’s office and he asked me this question.
He says, “What else is there to do in cryptography? Because we’ve already done
encryption and we had like good definitions and signatures and identification
schemes and zero-knowledge, and what else is there?” So this is a question for
some reason people ask many times, many years later. At that time sort of under the
pressure of the moment, which was always very good for me to be asked questions
under the pressure of the moment, [laughs] I answered like, “Well, you know, we
make assumptions, and maybe we could make some sort of physical assumptions
rather than computational assumptions like that factoring is hard, and we could
prove results absolutely.”

Somehow that conversation led to two different papers. One of them was, when
I'told you about interactive proofs, I told you that there was that result that said that
you can actually prove any statement in zero-knowledge using an interactive proof
if one-way functions exist. If you like, if factoring is hard. And that’s a conditional
result, right? So one question is, can you do it without any assumptions? Well, what
we came up with at the time, and this was with Joe Kilian also, was this model where
there wasn’t a single prover and a single verifier, but there were two provers. Now
that sounds weird. Like, why two? You know, anyway this prover is supposedly very
powerful. Why does he need another powerful friend?

So there was this idea that these two provers, they are like committing a crime.
What’s the crime? The crime is that they are trying to convince you of an incorrect
theorem. And just like the police, the police is like the verifier, it’s interrogating
these provers. In order to check that their alibi holds up, they put them in separate
rooms. They ask some questions from one, you know, potential criminal, and then
they go and they ask the other, and they compare the answers. Now, this defines a
model. What’s the model? We have two provers. We have one verifier. The verifier
can ask questions from each one depending on the question he asked the other,
and the restriction on the two of them is they can’t speak to each other.

That’s a new definition of a proof system. We still want there should be proofs
for correct statements, and there shouldn’t be proofs for incorrect statements no
matter what these two guys. But now we have an assumption, except it’s not that
factoring is hard but that these two guys are isolated from each other. And of course
IThad someidea thatit’s not so bizarre, because we can think of an ID card, because I
was thinking about Adi’s motivation—that instead of having one ID card, you would
have two of them and you put them into a bank machine. There were already bank
machines at that point. Which might not sound interesting to you, but ATMs are
also an invention that occurred during that time. [laughs]



Chapter 3 An Interview with Shafi Goldwasser 89

Rosen: I'm not that young.

Goldwasser: You're not that young. [laughs] Okay. Neither one of us. In any case,
so there are two cards, and you think about there’s two cards, there’s two provers,
they’re proving that they are Shafi. And the ATM is the verifier and it could make
noise so they can’t talk to each other, they can’t see what questions are being asked.
We had a patent on this.

Rosen: Okay, so I think maybe now maybe we can actually go down the line with
this line of research and then I'll go back to the other area later.

Goldwasser: Right, right. In any case, we had this model, the two provers. Why
did we invent this model? Because it turned out that you could prove that every
theorem that has a short proof, can be proved in this model in zero-knowledge. That
is, there is a two-prover interactive proof, where these two provers are in separate
rooms, and they’re going to convince the verifier of the correctness of the statement
without giving him the proof in zero-knowledge, no assumptions. Okay, so there
was a system. We did it for zero-knowledge in order to remove the assumptions like
factoring is hard.

Then there was a paper by I think Fortnow, Rompel, and Sipser where they asked
how many rounds you needed for this two-prover system. Then a whole bunch of
results started to follow.

And then there was this incredible, incredible result by Noam Nisan, who was
a postdoc at the time at MIT. What he showed was you can, with a two-prover
system, prove the value of a permanent to a verifier. Now I don’t want to get into
the technical definition, but this is a very, very hard problem. It is extremely . . .
It’s beyond NP. And all of a sudden it seemed like. . . . And additionally it’s a
complete problem for counting sharp-P class and it seems like the two provers
were extremely powerful. And what followed after that is that using the techniques
that Noam used, within sort of a whirlwind of results it has been shown that
this class of interactive proofs with a single prover was as powerful as polynomial
space. And then again, within months or weeks, it was shown that this class of
two-prover interactive proofs was as powerful as non-deterministic exponential
time. All of a sudden, these weird creatures that we’ve introduced with provers
and verifiers and interactions and people locked in different rooms were sort of
grounded in the traditional complexity theory with classes like polynomial space
and nondeterministic exponential time and equivalences were shown.

Rosen: And how did you feel at that time?
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Goldwasser: I thought it was . . . first of all, the mathematics was fantastic. It was
really new matter . . . It was arithmetization, expressing decision problems using
polynomials. So the math was fascinating and I thought that . . .

Rosen: You were pleased?
Goldwasser: I was pleased. Yes, I was very pleased.
Rosen: Okay. Let’s continue on that line and then we’ll rewind back.

Goldwasser: Yeah, then I had a couple of years later, I think it was like 1990, I
was in Princeton for a sabbatical and I think Joe Kilian gave a talk there about
something about . . . I can’t remember anymore. Some two-prover proof system in
nondeterministic exponential time. And there was something about his talk that
made me think that you could sort of simulate nondeterministic . . . you could do
all nondeterministic exponential time in exponential time. Which like you would
show collapse of these deterministic and nondeterministic classes. And I told Muli
Safra about that, who was actually my postdoc at the time I think, and he was also
in Princeton.

We started talking about it and then it turned out that that would be true if—
now it seems like a rabbit out of a hat—if some graph-theoretic problem was easy
to approximate. The graph-theoretic problem is called the clique problem. It’s like
you have a graph and you would like to find a subset of the graph where all vertices
have edges between them. It turned out that if you could approximate the size of
the largest clique in a graph, then you could have showed that nondeterministic
exponential time was equal to exponential time. Turning this on its head, it says that
it’s hard to approximate the size of the largest clique in a graph if nondeterministic
exponential time is not equal to exponential time. Then when you sort of downsize
this, you get essentially a result that says that it’s hard to approximate clique if P is
different than NP. So there’s an NP-hardness result hiding in there.

Rosen: Soyou sortof started with complexity, went to cryptography, and came back?

Goldwasser: And came back, yeah. And this whole idea of using multi-prover inter-
active proofs, something that then morphed to something called probabilistically
checkable proofs, PCPs, started with that work, and how to use that in order to prove
hardness of approximation started with that work. That’s become a complete field,
which I'm very proud of.

Rosen: Rightfully so. So, okay. So now you want to continue a bit on this thread or
go back to the other paper with the . . . ?



Chapter 3 An Interview with Shafi Goldwasser 91

Goldwasser: Let me just say a few more things about this. We’ve talked about
interactive proofs, right? Single prover and verifier. We’ve talked about this multi-
prover interactive proof. What is this probabilistically checkable proof? So far,
everything wasjustvery general, right? There are these two provers, there’s averifier,
they exchange messages, at the end the verifier accepts the proof, doesn’t accept
the proof, there’s some probability of error. But now we start quantifying things
a bit. So you can talk about how much randomness is the verifier using? How
many coins does it have to toss? You can talk about the length of the messages
that are being sent. You can talk about how many questions are being asked and
you can talk about the probability of error. And once you start quantifying this,
I mean these are parameters, and if you change these parameters, they can be
sort of very tightly coupled to the problems that you can either approximate or
nonapproximate.

But let me say it in a different way. There’s this third creature, which I men-
tioned, probabilistically checkable proof. What is that? There the idea is much
easier to understand. In a sense, it doesn’t require the stories of provers and ver-
ifiers and so forth, even though I love stories and I would never have got into any
of this without stories. So probabilistically checkable proof, the idea is the follow-
ing. Usually people think of proofs, mathematicians think a proof is a string that
you can read in a book, right? It starts from statement one, statements follow, and
then QED. Probabilistically checkable proof is a way to write a proof in such a way
that you can actually . . . you don’t have to read the entire proof. You can probe it
at some locations, not in all of them, and you should think of it as if I'm choosing
these locations at random, and make some check on those locations you’ve probed,
some local checks, and if there is a mistake in the original proof, there’s a very good
chance you’ll find a mistake in the local check.

So it’s these proofs which are probabilistically checkable because you’re sort of
choosing the locations at random, and furthermore you have to read a lot less than
reading the entire proof. Of course, you don’t get certainty. You get probability of
error. And now the kind of parameters that I talked about a minute ago come into
play. How many places in the proof do you have to look at? What is the probability of
error? What are the sizes of the questions and answers? And these are parameters
that, in the original paper that I had with Muli, and then with Lovasz and Feige who
joined . . ., we joined forces, these parameters were improved, and subsequently
more by work by Arora and Safra and then by the well-known paper by Arora, Lund,
Motwani, Sudan, and Szegedy to be sort of optimal, where you really need just log
n randomness and look at constant number of bits of the proof and you will catch
a mistake if it exists.



92 Chapter 3 AnInterview with Shafi Goldwasser

Rosen: Now let’s rewind back to the late '80s to the second result you were allud-
ing to.

Goldwasser: Right. That’s a result with Ben-Or and Avi, and that’s about how to
do multi-party computation, the same problem I told you about with the different
hospitals that want to compute some function of their data without sharing it. What
we showed was how to turn this problem into an algebraic problem where the data
that you have is represented as essentially shares of a polynomial. This is called
secret sharing that was invented by Adi Shamir. It is a way to take a piece of data and
share it among n people so that only looking at some of the shares you have no idea
what the data is, but if you have sufficient number of shares you can reconstruct it.

But Adi’s secret sharing was just a way to share data. What we were asking is
how do you compute on data? So now we have these three hospitals. Let’s say each
one of them has shared their data, secret-shared among all three. But that’s not
enough. They want to do a computation on it, like they want to do maybe some
linear regression or they want to find out how many patients are there whose DNA
is of a specific type and it had infections in the pastand their blood testisin a certain
range. So they want to do maybe set intersection or something like that. You can
write any such function as essentially a sequence of operations on the data, which
essentially looks like summing and multiplying.

What we realized is how you can take these shares of secrets, which were essen-
tially values of polynomials, and compute with them. How can we add them and
multiply them where each of us only has their shares? I have the shares of your
data, I have shares of everybody else’s data, and using these shares I can essentially
compute a share of the sum of the data, a share of the product of the data. I can
keep doing this iteratively, so essentially any program that we want to run on this
data can be run in such a way that at the end I will only have a share of the result
and I will have learned nothing about the data except for that share of the result.
And since all of us have shares of the result, now we can reconstruct the result. That
means that I knew my input, I'm going to know the result, and I can tell whatever is
implied by knowing my input and the result, but nothing else. And this is . . . It’s
important. [laughs] Yeah.

Rosen: Why is it important?

Goldwasser: Again, for lots and lots of applications these days. If you want to con-
nect it, if we kind of zoom to 2017, you know all the rave now is machine learning,
right? Everybody’s talking about these neural nets and logistic regression and how
itis going to change our lives, for medical, for actual medicine, precision medicine,
for targeting consumers, for making decisions on who to set on bail and so forth.
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But there is a question, and that is a lot of this is driven by the fact that we have tons
and tons of data about people, and this data sometimes should not be shared. And
it’s held let’s say by either individuals or by entities that even are bound by regula-
tion not to share it. So how are you going to get them to use their data for running
a machine learning algorithm without sharing it; that is, in a way that respects the
privacy of individuals?

The technique of multi-party computation is essential for that, because you may
think of coming up with a machine learning algorithm, let’s say in the training
phase, taking the data, training on it and figuring out a model that can do pre-
dictions as a protocol that has access to data toward the end of coming up with a
prediction algorithm, but not for seeing the data explicitly. And multi-party com-
putation because of its generality can be used.

Now there’s a difference here between theory and practice. On paper all is good.
That is, we wrote papers and we proved theorems. But in order to use it in practice
in a way that’s efficient enough, you need to do a lot of optimization, you need to
improve, you need to implement. Only time will tell if these methods will be used
as they are or they will be modified, and hopefully not modified to such an extent
that they will be insecure.

Rosen: Well, they are already being deployed in a commercial context.
Goldwasser: Yes.

Rosen: Okay. Now I'd like to ask you about some retrospective about advising stu-
dents throughout the years. You’d had many great students, well known, very suc-
cessful, and in several ways, in several generations.

Goldwasser: Alright. First of all, I have had incredible students, and these students,
I am thankful for that every day. Early in my career I worked with my colleagues.
You know, I worked with Silvio and Oded and Avi and others, so I did not write
papers with my students. But now I do. In any case, then the students were really
more doing their own thing and I was advising them in the sense that they would
tell me about their stuff, and sometimes questions came from me, sometimes
questions came from them. Now it’s more that I'm in an advisory role, that most of
the questions come from me, but the students do a lot of the work. I think that my
advising style must have changed because it became much more working together
with the students than it was before.

I'm always in awe at the fact that there’s a new student and there’s a new talent
and that they really make something out of nothing. Not in the sense that they
are nothing. In the sense that they come up with new ideas and new questions,
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and where does it come from? That’s the incredible thing of working in university.
There’s this young generation one after the other, and they are so excited about
what they do and they are remarkable. So that’s really a gift of being able to be in
university.

Rosen: Okay. Can you mention different styles of students, of researchers that you
encountered? Different characters?

Goldwasser: Different characters. I've met lots of characters. [laughs] I remember
Joe Kilian was really into limericks and a great sense of humor and a very creative,
unusual researcher. Then there are people who are very like technically extremely
sharp, right? Like Johan, but so was Joe too. I'm mentioning them in the beginning,
because at my advanced age [laughs] it’s easy to remember the past rather than the
present. No, but I've had amazing students really all along. Some of my students are
faculty members at Weizmann where we’re sitting right now, like Zvika Brakerski
and Guy Rothblum, who’ve both done amazing things. Then some of my students
are faculty members at MIT, like Vinod Vaikuntanathan. Then there’s Yael Kalai.
And I have former students all over Israel, like Yishay Mansour and Adi Akavia, and
many others all over the world.

Rosen: So now let’s talk about the property testing and delegation?
Goldwasser: Sure. Okay, so property testing.
Rosen: How did it all start?

Goldwasser: How did it all start? I actually think that my first thoughts in the direc-
tion of property testing come again to a talk that I attended in Hebrew University,
of Michael Kearns’ actually, where he talked about learning. He had some model
of statistical query learning. In any case, and then I drove back with him to Tel Aviv
and we had some conversation in the car that made me start thinking about the
question of not learning where you have examples and you're trying to predict a
label of a future example, but more about being able to tell a property of whether
the examples you are seeing belong to one distribution or another distribution.

Or another way to say about it . . . What do I mean by examples? Let’s say that
you have a function and you can’t look at the function table. You actually don’t have
a description of the function, but you can query the function in different places.
And what you would like to find out is a property of this function. So what could be
an example of a function? An example could be . . . let’s say there’s a graph and I
actually can’t look at the whole graph because the graph might be extremely large,
but what I could apply a function to two vertices and the function will say one if
there’s an edge between them and zero otherwise.
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So that’s a description of the graph. It’s a function. So there’s sort of an indirect
description. Now I’d like to ask questions about this graph. Does this graph have a
large clique? Is this graph connected? Can this graph be partitioned into two sets
of vertices that there’s only edges going between the sets and not between vertices
within the two sets? It’s called a bipartite graph. So that’s a property. And obviously
some of these questions you have to look at the entire graph. You have to sort of
ask the function, the entire function table for every pair of vertices, what the edge
is and then solve the problem.

Then property testing paradigm says, “You know what, let’s relax the question,
because we really cannot write down the whole graph, we cannot query the function
in all places. We’d like to tell whether the graph that’s being described by this
function which I can sort of query is close to a graph that has that property.” So if we
think . . . Let’s look at a specific graph property that’s say bipartite. This graph that
the function is describing, is it bipartite or is it far from being bipartite? But what
do I mean by far from being bipartite? It means that if you look at the closest graph
to it by removing edges or adding edges, let’s say it’s epsilon apart, you have to add
epsilon or subtract epsilon fraction of the edges. So there’s a fraction of edges that
you have to insert or delete, and I'd like to tell which is the case. Is it a bipartite
graph or is it far from any bipartite graph? And I'd like to do that by querying the
function in very few places.

So for the layman, let’s think of it this way. We are not living in the age of
dinosaurs anymore, right? We find bones of dinosaurs. Can we just by looking at
bones of dinosaurs tell whether the entire dinosaurs was a tyrannosaurus? Was it
a meat-eater or herbivore? Apparently people make conjectures based on very little
data. So the question here is if I can only look at very little places in the graph, either
given or I can query the graph at places of my choice, can I tell something about
the graph more globally, like being bipartite or being far from bipartite?

This is the way I like to describe property testing, and that’s a field that was
kind of started in a paper together with Oded Goldreich and Dana Ron. We wrote
on testing properties of graphs and more generally testing properties of natural
structures. You know, graphs as a natural structure or other functions are possible
too, not just to describe graphs. And we would like to find out whether a function
let’s say is monotone and we can’t write down the whole function table. We can
just query the function in a few places. Can you tell if it’s monotone or far from
monotone? This is a direction that’s become a whole field. I mean that paper, I
think, was fairly influential.

And then you asked me about delegation?

Rosen: And lattices, if you want to mention some more about lattices.



96 Chapter 3 An Interview with Shafi Goldwasser

Goldwasser: So time moves on and people start talking about different models of
computation like cloud computing. And the idea of cloud computing is that there
are these computers out there and I'm a client, and I'd like to use the computers
and theywill do all the computation for me and then give me the results. So the clear
question is how do I know they are even computing it correctly? I am delegating my
computation to an outside computer. I want to get some proof that the result has
been correctly computed. We call this a delegation problem, and that’s a problem
that is a little bit similar to interactive proofs because this computer proves a
statement to me. The statement is that it did the computation correctly. That’s
been a problem that I've been very interested in.

And the delegation paradigm isn’t just delegating computation, but you can
think about it in other contexts, like you want to delegate in the context of error-
correcting codes. Let’s say I want to code a message in such away that even if there’s
noise on the line, you can detect it. Then there’s the question of how much work
you have to invest in order to encode and how much work do you have to invest to
decode, and you can talk about delegating work of the encoder to the decoder or vice
versa. So this whole delegation paradigm is something that I've been interested in
in the last, I don’t know, 15 years already. And that’s been fascinating. This is work
with my students Yael Kalai and Guy Rothblum. So that’s something that I'm still
interested in. I think that this delegation paradigm is very powerful in today’s sort
of modern computational world.

And you asked about lattices. As I mentioned, the theory of lattices has become
a source of hard computational problems. Like if you define some sort of integer
lattice via basis, find the short vector in the lattice . . . This theory and these hard
problems have become the basis of what we call post-quantum cryptography. And
implementing sort of essentially cryptographic primitive based on these type of
problems is a fascinating field which I've been involved in.

Rosen: And you were very early on.

Goldwasser: Yeah. This was work with Oded Goldreich, where we sort of asked this
question of interactive proofs to show that a shortest vector in a lattice is not so
short and we introduced some new methods in this field.

Rosen: You actually, yeah, introduced a method to show that it’s unlikely to be as
hard to approximate as other approximations.

Goldwasser: Yeah. But in any case, the method is more important than actually
the result, because the method is essentially what underlies a lot of proofs of



Chapter 3 An Interview with Shafi Goldwasser 97

security in modern cryptographic systems that are the basis of this post-quantum
cryptography.

And I want to mention actually one more student, Daniele Micciancio, who was
one of my students, which I love very much. He started working on logic actually
with Albert Meyer, this was his master thesis, then he came and worked with me
about digital signatures. And for his exam . . . There are these exams at MIT which
don’t exist anymore where you're supposed to give a student a few papers and then
they are supposed to read it and do some original contribution within three weeks.
So I gave him some papers on lattices and he came up with some beautiful new
result proving the hardness of approximation of shortest vector in a lattice, and
that became his field of research. I feel privileged to have suggested the problem to
him, or the papers to him. I think he’s one of the sort of guiding lights in the field
of lattice-based cryptography.

Rosen: Okay. You want to mention something more about students?

Goldwasser: I think that I have a new crop of students which are wonderful, and
they’re doing . . . Today it’s actually interesting. A lot of the students are not only
interested in sort of the science, but they’re actually interested also in impact on
society. So this is sort of a modern wave. I mean as you see people, you know there is
this generation that’s just interested in going to startups and the generation that’s
just interested in doing complexity theory and then doing cryptography. And the
new generation that I have at least, they're very interested in the impact of the
methods on today’s world. And when I say impact, I don’t mean just implementing
systems that are run efficiently, but really questions of like how is this going to
change the world from a society point of view?

Rosen: So for them, the application might be more of a guideline?

Goldwasser: The application might be more of a guideline but it’s not an applica-
tion that is necessarily only having to do with utility. It actually also has to do with
doing good. I mean privacy anyway is doing good, in my book, but it’s beyond that.

Rosen: And what’s your take on privacy, whether it’s doing good, whether it helps?

Goldwasser: Of course it’s doing good. I mean, you know the line that I think they
attribute to Judge Brandeis, but I think it was Brandeis and another lawyer that they
were in alaw firm together. This is after the original cameras were invented, the kind
of cameras, portable cameras that you could take out of the camera shop. And they
wrote this paper about “What about the right to be left alone?” You know, it’s very
nice that you can take photographs, but now I could have my pbotograph taken
without my permission. Now imagine where we are at. Right? Everything we do on
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our iPhone, every Google query we make, every email we send is being recorded
by these giant companies and they are deriving conclusions from it, like giving
us advertising for us. So the right to be left alone is something nobody imagines
anymore, you know with all these sensors and the cameras. It really alters our reality
and I think we need to think about it.

Rosen: And you don’t think it’s too late by now to do anything about it?

Goldwasser: You know, it’s just like talking about the environment, right? So with
the environment, we have a lot of pollution, but somehow it’s self-regulating. Not
as well as it should be, but there are climate agreements and people don’t sell the
kind of cars they used to. There’s emission controls. So my feeling is that every
revolution has at some point people realize that there are some things to fix. And I
don’t see why the lack of privacy is not going to be the same, because the methods
exist. And we can develop more methods. But people have to be aware, people have
to kind of pull back, people have to implement these methods on top of the existing
ability to spy or to have sensors and . . .

Rosen: And what about the negative implications of the ability to encrypt data and
hide it from others?

Goldwasser: I guess the negative implications is that we could go dark, right? This
idea that now that the encryption methods are being developed and they’re so
strong and they’re so well known, that we won’t be able to pursue criminals, right?
So being able to read messages, being able to wiretap, being able to listen to digital
communication is a police tool. It is a national security tool. We all know there’s
more and more threats. So by enabling this encryption for the public, you are in a
sense making it more difficult for law enforcement to behave. I buy it, but it’s a very
thin line, right?

On one hand, privacy has so many good outcomes. It’s enabled electronic com-
merce. It’s enabled a use of remote computers for delegating computation. It’s
going to enable doing machine learning on data while keeping it private. On the
other hand, there are these criminals who should be caught and we should enable
law enforcement to catch them.

How do you reconcile the two? One opinion is that you just say, “Well, tough.
Let the law enforcement figure out other methods to catch criminals and don’t
give up on privacy.” And another point of view, which is the other extreme, is let
the law enforcement have all the keys to all the encryption algorithms out there.
And maybe there’s a third sort of economic model where you sort of think of cost-
benefit analysis and you’re able to trade it off, so you can sort of trade off privacy
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in policing. I don’t think people have looked at it, but just again, if we go back to
the example of environmental science, there is sort of a cost-benefit analysis of
putting regulations, and there are resources that are renewable, resources that are
not renewable, and there’s measures. So this is not really my expertise, but I can
imagine a world where that kind of theory is developed also with respect to privacy.

Rosen: What about the future?

Goldwasser: That’s the thing about the future, you don’t know do you? As we say in
Israel, “all will be well.” [laughs] No, you’re asking about the scientific future.

Rosen: Not necessarily.

Goldwasser: Not necessarily. The future is that I'd love to continue doing research.
I love interacting with young people, with postdocs, with graduate students. I'm
still inventing new questions. We haven’t talked about them, but that might be in
another interview. And I still get excited from new questions and new answers.
I'm looking at what has happened to cryptography. It’s kind of amazing in terms
of the number of people and the impact and the excitement, so this is sort of a
future which is inevitable. There’s no question that cryptography has a future. And
personally I hope to do more. I hope the field will do more. I'm very optimistic.

Rosen: Where do you see yourself five years from now?

Goldwasser: You know what, I think that’s the one question I can’t answer. [laughs]
I don’t know.

Rosen: In terms of aspirations, just . . . ?

Goldwasser: I want to keep on working. I want to keep on creating. I want to have
ideas. I want to have impact, and the kind of impact that I'm talking about now
is also impact as let’s say the director of the Simons Institute or someone who
directs . . . someone who has some influence about where the field is going in the
sense of what’s important and what’s not important. I think that I've had a good
hunch and I feel I have an intuition to serve me and also a lot of experience. So if
I have made impact in the next five years both in terms of research and in terms
of leadership, if my kids do well and they’re happy, then I will be very happy in five
years.

Rosen: Okay. Thank you very much, Shafi.

Goldwasser: Okay. Thank you.
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Ibaraki: Welcome today to our interview series with outstanding professionals. I'm
Stephen Ibaraki, and I’'m conducting an exclusive interview with Professor Silvio
Micali, ACM Turing Award recipient in 2012. The Turing Award is widely considered
the Nobel Prize of computing. Professor Silvio Micali is also a world-renowned,
distinguished researcher, and a professor at MIT.

Now, Silvio, you have a lifetime of outstanding research contribution with last-
ing significant global impact. Thank you for coming in today and sharing your
considerable expertise, deep accumulated insights, and wisdom with our audience.

Micali: Thank you, Stephen. It is a pleasure talking to you and your audience.

Ibaraki: Now, Silvio, you have this extraordinary honor now. When did you hear
about this, and how did you feel at the time? What was the reaction of your col-
leagues and your family?

Micali: Well, I heard about it on a Friday afternoon. We were planning to leave for
a family ski trip with my colleague Shafi, my co-recipient of the Turing Award. And
then the telephone rang . . . So it was quite a coincidence, you might say.

How did I feel about winning the Turing award? What can I say? I felt good. I felt
good in particular to have won it with Shafi. You must know that we were graduate
students together. We worked for many years and overcame many difficulties, even
multiple rejections of our work, before we got an award. And so I was very happy
to get the award together with her. Shafi and I had good interaction. You know, we
were trying to develop a theory of interaction, it takes two to interact, and when
you interacted with Shafi you were actually interacting with at least seven people,
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(laughter) depending on which of her multiple personalities were in charge on that
day. So that was how I personally felt.

About the feelings of my colleagues, I actually was very happy to see that there
was a very large, positive reaction. You must know that we are a very interactive
community. We collaborate a lot across institutions, so, what can I say? I put a
premium on their opinion and I'm glad to see that it was positive. Some of my
colleagues were actually so kind, almost happier than we were. Of course, some
of them did not react at all. So, some may have disagreed on the importance of
our results, or taken them for granted. Whatever the case, it’s important to have
dissenting opinions, right?

In sum, I felt that the overall response was very positive. And my family was
ecstatic.

Ibaraki: Well, I can see how your family would be very pleased, because you're a
legend, you're an icon in the industry, and, of course, you're part of the historical
record forever. [laughter]

Micali: Well, maybe not forever. But it’s good enough for us, right?

Ibaraki: Now, Silvio, how will the ACM Turing Award impact your work, your influ-
ence, and your thinking?

Micali: Oh well, to tell you the truth, on the one side we should strive for absolute
truth and novelty. But on the other side, you know, we should strive, or at least
I do strive, also for universal recognition. Somehow, the coexistence of these two
goals is good, in my opinion. If the pursuit of absolute truth required disregarding
social judgment, then we would have a lot of trouble on our hands. OK, greater
recognition and strife for truth can be antagonistic. In the short term, somehow,
if you choose universal recognition, then you have to work on problems everybody
perceives to be important. In other words, that choice requires pursuing a more
established and conservative line of research. So: What do I hope from the Turing
Award? That, taking care of some of my desire for recognition, it leaves me free to go
on a limb and take some more scientific risk, to go and explore new wildernesses,
so to speak. This is the impact that, I hope, the Turing Award will have on my work.

As for my influence, let’s see . . . First of all, you know, I have nothing against
recognition or having some influence. After all, we work very hard to increase our
reputation. This said, my peers [laughter] will continue to judge my work according
to strict standards, as they should. However, I do see that the Turing Award can
actually give me some additional influence on researchers outside my field. So, I
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hopeIcanuse this additional influence wisely when interacting with scientists from
other disciplines.

Finally, if I may add another thing, awards tend to make us feel good. And if
we feel good, we can do more things, have more energy. So I hope to put this extra
energy to work in my thinking, my teaching, and everything else.

Ibaraki: Now, again, you have this amazing body of work, and you’ve got this sig-
nificant achievement in the ACM Turing Award. From that, then, what are your life
goals that you want to achieve, and how will you achieve them?

Micali: Oh, wow, life goals? . . . This is a hefty and difficult question, Stephen. In
fact, it’s so personal that if T answer it truthfully I will be a little bit enigmatic, OK?

My goals essentially are to understand the world and to be understood. And
these, in my mind, actually are quite the same goal. So how to achieve understand-
ing myselfand understanding others? By really getting into the minds of others, and
letting them into mine, if I can. And through a combination of supreme confidence
and supreme doubt.

Ibaraki: OK, we’re now going to talk about your work that led to the Turing Award.
And the first question is: What led you to co-write one of the most influential papers
in computing science as a graduate student in 1983?

Micali: All right, if you want me to outline [laughter] the story of that work, I’ll tell
you, it is a tale of fearlessness and shamelessness, luck and ignorance, everything
combined, OK?

Let me start with luck. You know, I’'m not ashamed to start with luck, because
nothing substantial can be accomplished without it. My good luck was to be in
Berkeley, in a wonderful atmosphere, with fantastic teachers and great fellow stu-
dents. In particular, I was lucky to be in a course taught by Manuel Blum on
computational number theory, whose last three lectures—maybe four, no more,
actually—were on public-key cryptography. Cryptography at that point was not that
developed, at least in academia. Manuel was an absolutely inspiring teacher, and
cryptographywas an incendiary material. So it was a match made in heaven. [Laugh-
ter] If you’ll allow me the pun, the match lit.

So that was how we started. A problem mentioned in class was that of mental
poker. In other words, can you and I play cards over the phone, or by email? There
was an approach to this problem proposed in the past, but it did not quite work. So
Shafi and I decided to solve it. That’s where fearless and shameless come in, right?
Because the problem was actually very hefty, and a satisfactory solution would’ve
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taken years of further development and many more techniques than we had at
the time. And we ultimately built those techniques, but at the time our youth and
inability to properly size the problem were a big help in taking on this challenge.
Simplifying things, we essentially thought first about encrypting the cards, and
then about implementing the dealing, the random shuffling of the cards. The first
step was actually challenging enough to make us understand that we needed a new
encryption scheme and a new notion of security.

OK, without getting into too many details, encryption at that time was deter-
ministic. This means that every encryption method used to have a single ciphertext
corresponding to a given message. What made a ciphertext hard to understand was
the “length” (technically speaking, I should say the “entropy,” but never mind) of
its corresponding message. In fact, you can imagine that it is hard to guess a long
message in its entirety, right? Yet, with deterministic encryption, if you were lucky,
ifyou guessed the message in its entirety, then, being encryption deterministic, you
could actually verify the correctness of your guess. What makes mental poker really
challenging is that the possible “messages” are only 52, because there are only 52
cards. So, in this application, it’s easy to guess the intended message, because it is
easy to cycle through all 52 of them, right? In other words, in this application, the
message space, so to speak, is very, very sparse. And so we decided that if we wanted
to encrypt such few messages, then we had to encrypt them probabilistically. That
is, we had to flip coins to choose a ciphertext of a given message.

Think of it like this. I have not just one way to encrypt a message, but I have
many, many, many, many, many ways, exponentially many ways (in the number
of coins you toss), and I flip coins to choose which one to use and then send you
the corresponding ciphertext. Now, a fundamental property should be that, even
though every message can be ciphered in so many ways, from every single one of
its ciphertexts, you can actually retrieve the original message that I send you. That,
essentially, is the idea.

Actually, we decided to further generalize the problem at hand and considered
a worse situation. How about having only two possible messages: say, 0 and 1?
That is, if you want to encrypt a single, randomly selected, bit? What should we
want from encryption in such a case? We should want to make sure that, from a
ciphertext, one should not be able to guess the corresponding bit with probability
better than 50-50. Mind you, that everybody can always get the bit correctly with
probability 50%, right? Indeed, even if you don’t know anything about encryption
at all, when you see a ciphertext, you flip a coin and say, “If heads, I predict zero;
if tails, I predict one.” You flip the coin, and you’ll be right with probability one-
half. So to claim that you are “breaking” the encryption scheme, you must at least



Chapter 4 An Interview with Silvio Micali 105

do a tiny, teeny better—“epsilon better”, as we say—than 50%. Perhaps, you must
be able to correctly guess the bit with probability 51%, or 50.1%, or 50.001%, or
something like this. A one-bit encryption scheme should be considered secure only
when it is practically impossible to have even such small advantages over random
guessing. (This essentially started our development of the notion of computational
indistinguishability, as we called it later on.)

We then proved the following theorem: Namely, if we can encrypt a single bit
in this way, then we can as securely encrypt arbitrarily many multi-bit messages.
The underlying proof technique came to be known as the hybrid argument. Thanks
to this theorem, to the hybrid argument, all that remained was finding a candidate
scheme for encrypting a single bit. The ability to securely encrypt arbitrary message
spaces would automatically follow.

Here is where ignorance actually came to the rescue. And not only ignorance,
but luck again, of course, because knowing a lot of things is tantamount to having
a haystack in your mind, right? And among so many, many, many, many pieces
of straw, you look for a special one, “the needle.” This means trouble because you
might never find the needle among so many pieces of straw, or you may find it when
it’s too late. Shafi and I were lucky, because we wanted to construct a candidate
one-bit cryptosystem based on computational number theory, and we didn’t know
much computational number theory. So, if some facts at all could be put together
to construct our cryptosystem, we had to choose them from the very few facts we
knew. We got lucky, because the needle was possible to find in our small stack. The
needle we zeroed in was the quadratic residuosity problem.

Essentially the problem is distinguishing squares from nonsquares modulo N,
where N is a large integer whose prime factorization you do not know. I will not
bother you with the details, but you can easily disregard some numbers from being
squares modulo N, but for another half of the numbers modulo N, when N is of
a certain form, it is not at all clear how to distinguish squares from nonsquares.
Thus, we thought that the difficulty of making such a distinction might be useful
to encrypt a single bit. But: Was the quadratic residuosity problem really computa-
tionally difficult?

We started by asking our advisor, then we started asking our other authorities,
and somehow nobody knew how to solve the quadratic residuosity problem. So
we said, what the heck? Let’s assume it is computationally hard and build on it
our candidate cryptosystem. We took a risk. The danger was that, after publishing
our system, somebody could come up the next day and say, “What are you talking
about, quadratic residuosity? Here is how to solve it.” But we took the risk. Again,
we were young, so we didn’t have a reputation to maintain yet, or perhaps we
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disregarded our reputations, or whatever. So, with ignorance, luck, and risk taking,
things worked out.

By the way, today we know much more, and if quadratic residuosity were to
become easy tomorrow, it would not be a problem, because at this point we have
enough candidates to base our cryptosystem on (in fact, we have a way to distill
them). So, in some sense, timing was crucial, and timing is another form of luck,
right? Again, I think I made it abundantly clear, I strongly believe that, never mind
all our good deeds and whatever we do to deserve our successes, luck has a major
part. I am Italian, right? My ancestors, the Romans—I mean, were very determined
people. They conquered a lot of the then-known world, but at the end they really
knew whom to thank, and they built a monumental temple to luck, to Fortune.
If you go to Rome, take a trip to nearby Palestrina. There is an entire mountain
transformed into a temple, the temple of the Fortuna Primigenia. In the end, luck
matters.

But then, you know, you have to work for your luck. So, Shafi and I developed
various techniques, in particular random self-reducibility, to help us prove that qua-
dratic residuosity, the problem we selected, really had all the properties we wanted.
We came up with the hybrid argument and with computational indistinguishabil-
ity. These actually were techniques that we introduced in our work on probabilistic
encryption for a particular context, but that also proved crucial in subsequent and
harder contexts. So in some sense, we were wise, or lucky again, to use them in a
simpler problem to begin with.

Ibaraki: Well, it’s a particularly amazing piece of work. It reflects an inflection point
in history, the work that you did. And when you talk about luck, I guess that’s where
preparation and opportunity meet, so . . . [laughter]

Micali: Absolutely. Luck favors the prepared, [laughter] but luck is needed anyway.

Ibaraki: Now, can you provide added details behind your approach, the simulation
paradigm?

Micali: Sure. I actually find the simulation paradigm the most natural thing. Let
me forget mathematics for a minute and put you in the right mood. It’s a simple
concept, really. It’s a very human concept. So let me recall a personal episode, which
I'm sure is actually common to all of us, and yet is very personal to all of us. Here
we go.

I remember, when I was a kid, of somehow getting an acute attack of classic
solipsism, which is a fancy way to say that I started being fearful that there was
no outside reality, that it was all in my head, that I was alone, that the world was
a product of my imagination, etc., etc. You know, it could very well have been a
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power trip. I'm sure it was. But somehow, at the time, I recall the feeling to be
one of loneliness and despair. So my mother got to work: You know, it lasted a
few days . . . She sat next to me on my bed and said, “I listen to what you say, but
I'm here. I do exist. Let me help you.” And I said, “No! You’re not here! I place you
next to me on my bed, I'm letting you say these things,” and so on and so forth. I
eventually got out of it, but somehow I was able to positively turn all these feelings
into science.

What impressed me at the time—I remember this distinctly—was how impossi-
ble itwas to break that symmetry,  mean, to decide which was virtual and which was
real. And, if T cannot distinguish the real from the virtual, then in what sense could
they be considered different? Somehow that thought stuck with me. Fast-forward
a few decades, and we have the simulation paradigm.

So what is the simulation paradigm? Essentially, it is the technique that ensures
that no information, or not much information, is leaked in a cryptographic inter-
action. In cryptography, there is no you, Stephen, or me, Silvio. What distinguishes
you from anybody else is a secret that only you have. It’s called a secret key in cryp-
tographic lingo. It is a secret number that only you know, and you use it to send
your messages in a cryptographic transaction. Of course, nobody’s going to be so
dumb to send his own secret key along with his messages in a cryptographic proto-
col. But you use your secret key to generate the messages you send. In some sense,
somebody who sees the messages you send essentially sees a kind of shadow of
your secret, projected on an imaginary wall, a hypothetical wall. And perhaps, if an
adversary sees enough shadows of your secret key—say, from many angles—then
he could reconstruct it.

Indeed, I may not know the shape of an object, but after seeing its projection
onto one wall, other projections onto other walls, I start getting the zest of it and
become able to reconstruct the unknown shape. So, when you’re taking part in a
cryptographic protocolyou are in a bind. If you never use your secret key, the secrecy
of your key is guaranteed, but you are not doing anything that’s cryptographically
relevant either. On the other hand, if you use your secret key, which you must do
to accomplish anything of interest, you actually reveal shadowed images of your
secret key. So, will it remain secret at the end?

The solution of the riddle is to send messages using your secret key in a way
that the adversary, without knowing your secret key, can simulate you, can repro-
duce what you say in essentially the exact same way in which you say things. So by
watching you, the adversary watches your reality, but you ensure that he, without
knowledge of your secret key, is able to generate a virtual reality that is actually
identical to the one you generate for him. And if you succeed in acting in a simu-
latable way, then your secret is secure. Why? Because if the adversary could imitate



108 Chapter 4 AnInterview with Silvio Micali

what you say without knowing your secret key, then what you say cannot inadver-
tently betray your secret key. So that’s the whole idea of how to ensure that the
amount of secret information you reveal is “contained.” This containment is what
the simulation paradigm gives you.

So if you go back now to solipsism, I could not decide whether [laughter] the
world is real or I am making my own virtual reality, but at least I could put this
impossibility to good use. Because the impossibility of distinguishing reality from
a creation of our mind is our best way to guarantee the security of a cryptographic
protocol.

May I abuse your patience a little bit more to give you a concrete example of
how to apply the simulation paradigm? Consider public-key encryption. What do
you do in this setting? Assume that you select a specific secret message to send
me. You probabilistically encrypt it in my key, and then you send me the resulting
ciphertext. Call it C. C is a good acronym for a ciphertext. Assume now that there
is an adversary in between us. Then, what is his real view? His real view (besides
my public encryption key) is this string, C, the ciphertext that you actually so
produced, OK? However, nothing stops the adversary, without ever seeing C, from
choosing a random message, a creature of his own mind without any objective
reality; then, from encrypting it probabilistically using my public key, so as to
obtain a virtual ciphertext D that nobody sent; and, finally, from looking at D. So
now the adversary has actually two worlds: one, C, that you created by encrypting
your specific message—M, call it; and another one, D, that the adversary himself
created probabilistically by encrypting a random message. And if a cryptosystem
guarantees that his real view—the ciphertext C that you sent—and his virtual view—
the D that he himself created—are essentially indistinguishable, then the secrecy
of your specific message is safe, right?

Simplifying a bit, this is what the simulation paradigm means in encryption,
but the principle is the same across other applications. It may actually become a
little bit harder to implement and to grasp in these other applications, but the idea
is the same.

Ibaraki: Now, can you further describe your notions of encryption security—for ex-
ample, semantic security and indistinguishability—and how these measures must
be met for schemes to provide security across a wide range of cryptographic appli-
cations?

Micali: All right, so we are going from technical to more technical. OK, let me try.
Semantic security is essentially what you intuitively want from an encryption

scheme. In some sense, it extends Shannon’s notion of perfect secrecy, which was

applicable only to a very constrained scenario; namely, when a sender and a receiver
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share beforehand a string of random bits, and only need to encrypt messages whose
total bit length does not exceed that of their shared random string.

When somebody is going to transmit a message, we have, from context, a
probability distribution—we call it a message space—of what he is going to say,
right? Consider all messages that are a thousand letters long. Then, some messages
actually have probability zero—for instance, those that contain five consonants in
a row, just because one cannot even pronounce them. Of the remaining messages,
some have higher probability than others, depending again on the contexts we are
in. In sum, there is an a priori probability distribution from which the message
sender is going to choose his message. In this setting, you want to guarantee not
only the secrecy of the chosen message in its entirety, but also that of partial
information about the message.

So, what should this partial information be? You can think that it’s a function
from the message space to some other, perhaps smaller, space. For instance, you
may be satisfied to figure out whether the sender’s message is about attacking or
retreating, or whether it expresses worry, and things like this. (Indeed, you would
like to understand that your enemy is worried, even though you cannot quite un-
derstand what he is saying.) For simplicity, assume that this “partial information”
function F you are interested in maps any message into a number between one
and 1,000, say, OK? Even if you’re not able to decrypt the message sent, you may be
satisfied to learn the value of F' on the message sent.

Now consider the following situation. Assume that somebody tells you that the
sender has selected a message m from the message space, and has sent it by magic,
by teleportation, to its destination. So, what is the value of F (m)? If you would like to
win this game, what would you answer? You would say: “Well, if I try to be as right as
I can be, what is the most popular value, the most probable value this F can take?”
Since F maps every possible message to a number between one and 1000, and
since you know from context what is the probability distribution over all possible
message, you figure out that, say, maybe 727 is the most popular value of F, and
it occurs with probability 2%. So, if you answer 727 you’ll be automatically correct
with probability 2%, right? You don’t need any cryptoanalysis. You don’t need to
know anything. You just know what the message space is, what the distribution is,
and you choose the most popular value for F, given this distribution.

OK, now consider a dramatically different situation. The sender not only has
chosen the message m from the given probability distribution, but also encrypts it,
transmits an encryption of it, and so you also see the encryption of this message.
Not only do you know that the message m has been selected according to the
given probability distribution, but, lo and behold, you have an encryption of m.
Now, can you guess what F(m) is better than before? Remember, before seeing the
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encryption of m, without any cryptanalysis, you could be right 2% of the time. Now,
by cryptanalyzing the encryption of m, can you improve your probability of correctly
guessing F(m)? If you cannot improve it to more than 2%, that is, not 2.01%,
not 2.001%, not 2 plus epsilon percent, then we call the encryption semantically
secure. OK, that is the whole idea. Now it’s computational complexity, rather than
information theory a la Shannon, that is being used to drive the notion of semantic
security.

Actually, we developed computational indistinguishability as a tool to prove se-
mantic security, and we proved that if we had a system which was computationally
indistinguishable, then it was also semantic secure. We actually proved that also
the opposite was true, that is, that semantic security implies computational indis-
tinguishability, and that other notions of security are all equivalent to each other.
And this is the most reassuring thing there can be in science, when you try to ap-
proach a new object. You use one avenue, then another one, then a third one, and
suddenly you realize that all these avenues are absolutely equivalent.

Going back to Turing, at the time in which the notion of computation was up for
grabs, people were trying to figure it out. “OK, I understand poetry. I understand
other human endeavors. But how should I define computation?” Turing defined
it using Turing machines. Church used lambda calculus. Another definition was
recursive functions. And then, at some point, it was figured out that all these
definitions were provably equivalent to one another. So one did not have to pick and
choose which definition was the right one, because they were one and the same. It
is this identity of different looking notions that reassures us that the right notion
has been achieved.

So the equivalence of semantic security and computation indistinguishability,
and other notions as well, tell us that a robust notion of secure encryption has been
reached. Being equivalent, you might prefer to use semantic security to best convey
what secure encryption means. But you may want to stick to computational indistin-
guishability when you want to prove that a particular encryption scheme is secure,
because proofs are simpler when you use computational indistinguishability.

Ibaraki: It’s just so amazing, [laughter] the level of thinking. And I can see now the
profound impact of your work. And speaking about that, how do you see your work
revolutionizing the study of cryptography, and laying the foundation for the theory
of cryptographic security?

Micali: Well, cryptography has existed since time immemorial. For thousands of
years people wanted to encrypt their messages. But they did not design a cryptosys-
tem so as to achieve a predefined rigorous goal of security. They simply designed a
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cryptosystem which “achieved whatever it achieved.” They tried the best they could.
They tried to poke their system as best as they could. There were no notions of secu-
rity, no proofs, only heuristics. They essentially considered a laundry list of possible
attacks, and then checked that each attack that they knew of failed. There was no
guarantee that a new, yet known, attack would fail too.

So, later, even when the encryption was based on a mathematical problem like
in the RSA, there was only a loose connection between the human problem of
decryption, that is, between breaking the system and the difficulty of the purely
mathematical problem that was chosen as the basis of a cryptosystem. Solving the
underlying purely mathematical problem is one thing, and may be very difficult.
But decrypting messages exchanged in a cryptosystem loosely based on that math-
ematical problem is a totally different thing, because you are helped by grammar
constraints, by logical constraints, by context, by a lot of other things. Right? So
these two problems are not quite the same.

Let me give you an example. Assume that the problem you have chosen as the
basis of your cryptosystem is factoring integers. This is actually a great problem.
Some numbers are primes, like two, three, five, seven. It turns out that you can
randomly pick two large primes—say, a thousand digits each. Then, you can easily
multiply them—in fact, you can still do it by pen and paper. But then, if you give
their product to someone else and say, “I multiplied two random primes to get
to this number; which primes did I use?” then nobody knows how to factor your
product and retrieve the two primes you started with. Gauss and plenty of other
mathematicians have looked at this problem without being able to solve it. So
factoring integers is a very difficult pure mathematical problem. But it has nothing
to do with decrypting.

When building a cryptosystem loosely based on factoring, we built it so that,
if you knew how to factor, then you knew how to decrypt. But this is not a very
interesting direction, right? The interesting direction is the opposite one. What
we really want is that nobody could decrypt our messages, or even gain partial
information about them, without being able to factor, so that, if factoring is hard,
then the system is absolutely unbreakable. And if somebody somehow decrypts
what I encrypted because he’s able to solve the factoring problem, thus succeeding
where Gauss and company failed, you know what? He deserves to know what I was
saying. [laughter] OK?

So, the main contribution of Shafi and me was building cryptosystems for which
one could rigorously prove that the purely mathematical underlying problem is
absolutely identical to the very human problem of decrypting or even getting partial
information about encrypted messages. In a sense, we found a way to rigorously
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reduce apples to oranges! By now, one routinely designs cryptosystems with this
notion of security embedded and with this type of reduction. In sum, I believe that
replacing heuristics with proofs, and introducing these sophisticated apples-to-
oranges reductions was our contribution to the field.

Ibaraki: And what a contribution! Again, an historical inflection point, [laughter]
which really marks a huge shift, in my opinion, so . . .

Micali: Thanks!

Ibaraki: Now, Silvio, can you talk more about your work with knowledge complexity
and zero-knowledge proofs?

Micali: Yes. Proofs are supposed to convey knowledge, right? There is a theorem
statement. You don’t know if it is true at all, so you ask somebody to prove it to you.
He or she provides you a proof, and at this point, at the end of the proof, if the proof
checks, after you verify it, you know not only that the statement as claimed is true,
but you also know a lot of other things. You know why the statement is true. You
must get a lot of details to get convinced that the theorem statement is true.

Assume instead that we want to reduce to a minimum the amount of knowledge
necessary to convince somebody that the theorem is true. What should this min-
imum be? Well, at the end of the day, the minimum should be that you learned
that the statement is true, which you didn’t know beforehand, right? That is the
minimum I really need to reveal in any proof. Now, a zero-knowledge proof is a
proof that reveals only that minimum: that the statement is true, without adding
any other piece of knowledge.

But the question is how can you tell that no other knowledge has leaked from
the proof? This is another application of a simulation paradigm, which we were
discussing before. Essentially, you want to prove a theorem in a way that ensures
that if somebody knew beforehand that the statement of a theorem was true, then
he could reconstruct the proof you give to him in exactly the same way in which
you provide it. In other words, how do I know that from this proof, from this big
interaction, I don’t learn much more than the statement of a theorem being true?
Indeed, from this interaction you learn that the theorem is true, and Iwanted to give
you this. But if you could simulate my proof in its entirety if you knew beforehand
that this theorem was true, then there is no other further information in my proof.
This is what a zero-knowledge proof is.

Sometimes you may want to reveal a little bit more. For example, think of
an election. There is no theorem here, but there may still be a “zero-knowledge
interaction.” Assume that you have a hundred people in a room, and they want to
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carry out a very simple election, the simplest election: a referendum. OK? So what
do we want to do? We want to tally our yeas and nays. Each one votes yea or nay,
and we want to tally how many yeas there are. Assume there actually are 60 yeas
and 40 nays. So you want to compute that there are 60 yeas and 40 nays, but you
don’t want to reveal who voted for what. You want to keep private the votes, but you
want to compute the tally correctly. So you want to have correctness and privacy at
the same time.

Now, correctness without privacy, that’s not a problem, because I can just say,
“OK, ladies and gentlemen, whoever votes yes raises their hands. I count 60 hands,
so there are 60 yeas in this referendum.” On the other hand, if I want to have privacy
alone, without the correctness of the tally at all, I can say, “Everybody writes a yea or
anay on a piece of paper, and throws the paper to the fireplace.” By so doing, total
secrecy is easily guaranteed. But then, what is the tally? So what we want, instead,
is that, without trusting anybody, we can compute the tally of 60 yeas in a way that
we have no idea who voted yes and who voted no.

Of course, if we trust somebody, she can just say, “Oh, just whisper in my ear
what your vote is and I promise not to tell anybody, and further, I promise to
announce the correct tally.” Sure! I mean, this is not going to fly with anybody, and
with cryptographers in particular. So, the idea is that we replace this trust in some
individual, in order to guarantee correctness and privacy simultaneously, by just
talking to each other, and trust that the majority of us are honest. Essentially, the
idea is a blending of correctness and privacy. And because correctness matters in all
human enterprises, and privacy matters to all humans, I believe that this blending
is a good building block for a theory of human interaction.

Ibaraki: That’s very interesting. So what do you see as the implications of this work,
and how does the work extend to other domains?

Micali: All right. The implications. First of all, you can imagine that in a general
cryptographic protocol, or in an economic transaction, you want to have both
correctness and secrecy. Let me give you an example. Assume that you go to a carpet
store, right? And you see a carpet there. As it happens, in such stores, carpets are not
tagged with their prices. So you say, “I'm interested in this carpet. How much does
it cost?” And the other guy says, “Well, wait a second. How much are you willing to
offer?” “No, no, no, you go first,” right?

The situation is very complicated, and we could benefit from a new transaction,
one that we didn’t quite have available before, such as the following. We engage in
a cryptographic protocol in which I, as the buyer, choose my input to the protocol
to be the maximum buying price I am willing to pay, and you, as the seller, choose
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as your input the minimum selling price you may consider. And now, through our
protocol, without telling each other these two values, we just compare them. If there
is no overlap, that is, if my maximum buying price is below your minimum selling
price, we only learn, “Sorry, guys, the two of you cannot transact. No carpet sale
today.” On the other hand, if there is an overlap, we end up with a contract, digitally
signed by both of us, stating that the carpet is sold and is now mine at the price
that, say, sits in the middle between my minimum buying price and your maximum
buying price, or whatever price formula we want to choose. So, this transaction is
something that somehow enlarges the realm of the possibilities we have in our
“paper world,” our ordinary-world transactions.

But in my opinion the implications of this theory go beyond business transac-
tions. Because enabling secure transactions enables more interaction. Let me give
you another example. Assume now we have a dating game, OK? There are two in-
dividuals, and I go first and say, “Hey, on a scale of one to ten, I like you ten. How
much doyou like me?” And the answer comes back: “Two.” [laughter] With such an
answer, I know I will never interact with anybody in the near future, because I need
to recover psychologically, right? But assume now that you can actually interact in
another way, in which you can somehow compare these two numbers but only fig-
ure out whether both of you like each other ten, or whether both of you don’t like
each other ten. In such an interaction, I've much less to lose in self-image, and thus
I can safely interact much more in this fashion. In other words, if I can control the
amount of privacy I might lose, I can confidently enter into many more transactions
than before. So this is another implication of correctness and privacy. It enables not
only business transactions, but also personal transactions.

You ask about other domains. There are plenty of other domains. Because
essentially, at this point, from just encryption, cryptography has become the science
of adversarial computing. And adversaries are everywhere, [laughter] as everybody
knows, not only cryptographers. In a proof, the adversary is whoever wants to
convince you of false statement. In encryption, the adversary is somebody who
wants to understand information about your messages. In pseudorandom number
generation, the adversary is somebody who wants you to generate biased rather
than unbiased coin flips, etc., etc. More generally, the best way to model a very
complex system is to model it adversarially. Because the more complex a system
is, the more it looks like there is really an evil guy there trying to wreck it apart, to
make sure that nothing works.

So, essentially, this theory is becoming more and more hand in glove with fault-
tolerant computing, where you really want to make sure that, you know, a network
of computers continues to work properly together, even though some of them fail,
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and fail in a way that is seemingly controlled by an adversary. In a different domain,
this theory has by now encompassed all pseudorandom number generation. It has
also provided bounds for what is learnable. Valiant and Kearns have somehow used
Shafi’s and my results together with Oded Goldreich on pseudorandom functions
to figure out what cannot be efficiently learned. In sum, because adversarial com-
puting is so pervasive, and allows us to model so many things, there are many, many
domains to which this work may apply.

Ibaraki: I see.lmean, that’s fascinating, I can see this now and in ten years’ time a
Nobel Prize.

Micali: [laughter] Thanks. I don’t know about this, but thanks.

Ibaraki: Now, you’ve somewhat addressed this in all the different kinds of answers
you've provided, and the dialogue we’ve had so far, but how does your work address
important practical problems, such as the protection of data from being viewed or
modified, and providing a secure means of communication and transactions over
the Internet?

Micali: All right, yes, sure. You know, encryption is not the only thing you want to
do on the Internet. Protection of data from being viewed, we have discussed, but
from being modified we have notyet discussed, right? About protection against data
modification, Shafi and Ron Rivest, my colleague at MIT and a prior Turing Award
winner, and I developed a digital signature scheme that actually has set the standard
for subsequent digital signatures. Can I describe briefly what this involves? Let me
go on a limb and take another five minutes.

Essentially, what is a digital scheme? A digital signature scheme involves a pair
of matching keys, a secret key that allows me to sign messages and a public key
that enables everyone to verify the messages I sign using my secret key. The crucial
property is that the public verification key does not betray the secret signing key.
That is, knowledge of the verification key should not enable one to compute the
signing key in any remotely feasible time, such as a few millions years, even with
the fastest computer. So to prove that a given message, M, comes from me, I use
my secret signing key to compute a short string S, my digital signature of M. Such
digital signature S depends on M, because different M’s would have different digital
signatures from me. But then you can use my signature S and M and my public
verification key to see whether S is indeed the correct signature of mine for the
message M. If this is the case, you can rest assured that I consented to the message
M, right?
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Now, for this to work, it is necessary that these signatures are unforgeable by
somebody else. OK, but what does this mean? In the past, it used to mean that
an adversary could not come in, look at my public verification key, and forge my
signature of his favorite message, such as, you know, “Silvio owes me a million
dollars.” But, we need more security than that. So what do we need? We also
need that somebody cannot modify a prior signature of mine so as to forge my
signature on a modified message. So, for instance, if I did sign, “I, Silvio, owe you,
Stephen, $1000,” somebody should not be able to change it “I, Silvio, owe Stephen
(or somebody else) $2000,” right?

Even more, you want that somebody cannot ask me to sign a few things, and
then, assuming that I do agree and sign them, learn to sign other messages. Think
of a notary public, who essentially is somebody who signs messages chosen by
other people. And of course, he could use digital signatures to digitally sign mes-
sages. So you don’t know how to forge the digital signatures of this notary public,
but you can ask him to sign a given message, and he does. Then you say, “Ah,
that’s interesting. I just learned something that I didn’t know before. I think I
start getting the idea how the signatures of this notary public look like, but I'm
not quite sure, so let me ask him for a second one. Could you please sign this sec-
ond message?” And the notary public signs it again. You say, “Oh, gee, now I'm
getting the gist of it.” And so you go on with this process a bunch of times. You
request signatures. The guy agrees and sends them back. So what one should really
want is that, at the end, you cannot sign any new message at all. In other words,
forging someone else’s signatures should not only be hard from scratch, but also
unlearnable.

When I arrived in this country, you know, English was a cryptosystem for me.
More or less, I could not really be understood by anybody. But then I was able to
ask questions, “How do you say this? How do you say that?” And slowly slowly,
I learned enough to get by. So we don’t want this to happen in a secure digital
signature scheme. We want a more stringent notion of security. We want signatures
that are unlearnable. I believe that this requirement is crucial if you really want to
prevent data from being tampered with over the Internet. And signature schemes
guaranteeing this stronger property have already been developed.

Ibaraki: Now, what is the impact of your work on computational complexity?

Micali: Well, interactive proofs were crucial to complexity theory, because they let us
understand which class of problems have an efficient proof. Remember, proving a
theorem is the most frustrating thing. Proofs are very frustrating to write down,
and it is very frustrating to read them. Interactive proofs actually transform this
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frustrating thing into a game between the prover and the verifier. Somehow, if the
theorem is true, and I act as a prover, then I should win a very simple game between
you and me. Say that the game has five moves: I move, you move, I move, you move,
and one of us wins, and then we can determine who wins. If the theorem is true,
then I should win all the time. If the theorem is false, I should win at most half of
the time. So if we play this game, say, 100 times, and you see that Iwin 100 timesina
row, you conclude, “Well, you know what? The best explanation is that the theorem
is actually true.”

Figuring out which theorems are easily provable is important in complexity
theory. As for another impact in complexity theory, my work on pseudorandomness,
with Manuel Blum first and with Shafi later, essentially has helped us understand
which problems can be solved deterministically. Thanks to Solovay and Strassen,
and Rabin, by now we know that there are plenty of problems that can be efficiently
solved probabilistically. But then what happens if your computer cannot flip coins?
Somehow the theory of pseudorandom number generation allows us to understand
what problems can be solved efficiently and deterministically.

More generally, a lot of my work depends on a one-way function, OK? A one-way
function F is a function that has two crucial ingredients, very antagonistic to each
other. The first is that the function F is easy to evaluate, which means on input x,
you can compute F(x) very, very quickly. The second is that the function is hard
to invert, meaning that given F(x), you have no idea how to retrieve one such x.
Essentially that is the mathematical analogue of the one-way phenomena that we
so commonly experience in the real world.

For instance, if I take a glass, and I smash it on the floor, that is very easy, but
to reconstitute the original glass from its pieces is much harder. So this a one-way
phenomenon. As for another example, it is easy to scramble an egg, yes? But to
unscramble it is a totally different (and in fact much harder) story. So a one-way
function essentially incorporates in itself both easy and hard computation. Thus,
it’s not surprising that understanding one-way functions increases our understand-
ing of complexity theory, which is the field devoted to figure out which problems
are easy to solve and which ones are not.

Ibaraki: Yeah, that’s fascinating. What are your thoughts about things like in quan-
tum mechanics and the twin particle effect, and sort of the impact that’s going to
have perhaps on your field? Or do you see sort of the work of Judea Pearl in causal-
ity and counterfactuals and external validity and artificial intelligence—do you see
some kind of connection between some of this research you’ve done and those
areas, at all?
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Micali: Well, certainly let me address the field that [laughter] is more dangerous to
mine, quantum computing. We need hard problems to base cryptography on. As
we said, we want to take a purely computational problem, a purely mathematical
problem, and massage it around and transform it by magic into a very human
problem, like proving “This message comes from Stephen,” right? Of course what
is easy computation and what is hard computation depends a lot on the available
computational model. If you have an abacus, what is hard and what is easy is
one thing. If you have now a modern computer, but still a classical computer, it’s
something else. The jury is still out on whether quantum effects can practically and
dramatically speed up computation or not, but they might. In this case, first of all,
we have to redefine what is easy and what is hard, and then define functions that
are one-way for quantum computers, rather than for digital ones. So some specific
candidates for one-way functions, such as factoring, may disappear, but that does
not mean that we cannot generate other candidates, because we now have a more
general theory of one-way computation.

Ibaraki: You know, amongst our listeners there’s people who are not necessarily
heavily involved in all the technical aspects, and in some ways they could be con-
sumers, because they’re in senior management now, and their technical years are
long past. So what are the practical implications and applications of your work
influencing all of our daily lives?

Micali: All right, the simple practical example is that of a password. I'm sure every-
body has dealt with passwords, right? For thousands of years, a password has been
some secret phrase, such as “Abracadabra,” that I use to enter, say, a castle. If 'm a
medieval knight, and I'm on the other side of a moat, and I see the bridge is drawn,
and I want it to be lowered, I say to the guard upstairs, “Abracadabra,” and recog-
nizing the password, the guard lowers the bridge and I can come in. You can use
your mother’s maiden name as a password. I can use the name of my favorite un-
cle. Either wayj, it is a secret that we actually need to communicate. This password
system, of course, has some drawbacks. Essentially, if in the moat of the castle, in
the water there, there is somebody, he can hear that the knight whispers “Abra-
cadabra” before getting into the castle. Thus, at a later time, he can impersonate
the knight with no problems. He puts on helmet and armor, says “Abracadabra,”
and the bridge will be lowered for him too.

In addition, a classical password system has another drawback: The gatekeeper
himself knows know the password, so if I use the same password for other systems,
say, not only to enter the castle but also to log in at MIT and to log into my bank
site and wire money out of it, I am in danger, because I actually am enabling any
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verifier of one of these systems to impersonate me to any other system. So, what
am I going to do?

I generate somehow a theorem whose proof only I know. For instance, I take two
large random primes and I multiply them together to generate an integer N, and
then I tell MIT, the castle, and my bank, “This number N here is Silvio’s number.
Anybody who proves to you that it is product of exactly two primes, let him enter
my castle, let him wire money on my behalf, let him access my files at MIT. With
my consent.”

But how do I prove that N is the product of two primes? Do I send over the
two primes I originally multiplied? Absolutely not: such a proof could be copied
and used to impersonate me to another system. I use instead a zero-knowledge
proof. That is, when, say, I want to log in at MIT, I engage its server with a zero-
knowledge proof that N is the product of two primes. Such a proof can be verified
by everybody, and thus by MIT’s server. But it’s a zero-knowledge proof, so nobody
having verified that N is indeed the product of two primes is able to prove this to
anybody else. Because, after a zero-knowledge proof, you don’t learn how to prove
the statement—you only learn that the statement is true.

So suddenly you essentially a have an ideal password system. It lets you safely
use the same passwords with multiple systems, it is very efficient, and it is imple-
mentable via a smart card. It is the most practical application that I can think of.

Ibaraki: Silvio, you're this giant in industry and education and research and so
on, and your work resonates throughout the world, and so I know our audience
would be interested if you can additionally profile your extensive research history,
its lasting impact, and some valuable lessons you wish to share from each of your
top research areas that we haven’t talked about yet.

Micali: [laughter] All right. First of all, let me just mention, without any details, that,
in addition to whatever else we just discussed, I've been working on distributed
computing, on private information retrieval, etc. But perhaps, you know, we should
move from the technical work to the lessons learned.

The most valuable lesson that has worked for me (and many others) is to really
generalize and simplify the concrete examples that motivate you. Concrete exam-
ples are wonderful. They really drive us. But they are also typically messy, right? They
contain an abundance of details that may blind us. So my lesson would be just, you
know, get rid of as many details possible. Generalize your problem as much as pos-
sible. Back up, and back further up until you see the whole picture in its simplicity.
Generalize a problem until it becomes either impossible to solve or very simple to
solve. Back up to get the full view and drive yourself to a corner. And once you have
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no escape you may lose, but you may also find additional strength and win big. At
the end of the day, who needs partial victories? So my lesson would be drive yourself
to a corner and go from there.

Ibaraki: That’s an interesting concept. So how many times have you done that?

Micali: Oh, I've done it as a graduate student. I've done it as an undergraduate
student. I've done it as an assistant professor. [laughter] I've done it a few times.
The amazing thing is that it often works. So I'm not advocating without practicing,
let’s put it this way.

Ibaraki: It seems to me that concept could be applied to so many other areas,
perhaps friends and family and business deals, as well.

Micali: Why not? Never sit at a negotiating table if you cannot get up and leave at
any time, and never shoot for “just friendship.” You know, sometimes I think it’s
worth it to risk it all.

Ibaraki: I see, Silvio. So this could be a book beyond your research [laughter] that
the general public will read.

Micali: [laughter] I'm sure I'm not alone, right? I'm sure many people would agree
with me.

Ibaraki: Now, Silvio, you talked about your past research, and you also talked about
some of the other areas that you have researched. Can you get into more detail
about your current research interests?

Micali: Yes. Somehow, at a late age, unfortunately, I encountered a beautiful notion
that was put forward some half a century ago by economists, mechanism design.
Essentially, this is a way to choose an optimal outcome without data. Optimizing
is never easy, even if you have the data, but if you don’t have the data it is actually
much harder. And so why don’t you have that data? Because other people, the so-
called players, have the data. You may say, “Why can’t you just ask them?” Well,
because they may have a stake in the outcome you choose, and therefore, when you
ask them for the data, they may lie so as to manipulate in their favor the outcome
you choose. And so you must engineer a game so that, when everybody plays it so as
to maximize his own utility, you learn, as a side product, which outcome you should
choose. It’s a fascinating field, and that’s what I'm currently working on, from my
own special perspective, of course.

Ibaraki: And then what are the broad implications and applications of this work?

Micali: Well, in principle, any decision-maker, in particular any politician, would
stand to benefit from mechanism design. If you really want to go one step farther,
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mechanism design may be the best way to engineer a system, like the Internet, that
is very decentralized, in which no one is in charge. And because no one is in charge,
you can put all the rules and laws that you want, but unless you design the system so
that everybody is incentivized to stick to the rules, the system will never quite work.
So mechanism design may actually be used in engineering large decentralized
systems. And finally, you know, I'll not be surprised if mechanism design were
to provide us with key insights for understanding successful biological systems.
Perhaps our complex organisms are not the visible product of some unlikely kind
of equilibrium, a very fragile thing, but actually are the robust outcomes of properly
and slowly designed mechanisms.

Ibaraki: Oh, fascinating. And again I mention, gee, maybe a Nobel Prize, as well.
Micali: [laughter] Ahi Ahi Ahil!
Ibaraki: What are your future research interests?

Micali: Ifyou stress future, the answer is the brain. Yes, the brain might be my future
interest, and not only mine. [laughter] In fact, other computer scientists before
me—in particular, Les Valiant—started working on it. I think that I'm considering
working on it.

Ibaraki: Oh, that’s fascinating. In terms of that work, you’re thinking of applying
sort of a mathematical model to it, or getting more sort of into the engineering
side, or getting into sort of the works like external validity or causation and some
of that area? Sort of what’s the approach?

Micali: Remember that I truthfully answered your question by stressing future. So,
right now we don’t know, at least I don’t know which angle it’s going to be, but
certainly it’s going to be a computational angle. At the end, I believe that a big
part of the brain’s function, and memory in particular, should be modeled as a
computer, and you want to put things in memory, and retrieve them efficiently,
and with some redundancy. And we know a lot about how to store, retrieve, and
manipulate information when we have total liberty to decide the components. Here,
the components are decided beforehand, but perhaps some of the lessons we learn
from distributed computing may be applicable to the brain, too. More than this, I
do not know. Right now I'm working on mechanism design, as I was saying.

Ibaraki: It’s interesting, the whole concept of that kind of research, and I'm think-
ing of Daniel Dennett and Consciousness Explained, or Descartes and this sort of
mind/body connection, or Penrose and some of the work that he’s done in think-
ing about the brain, but from a model of a philosophical sense, or Kurzweil, and
this idea of a singularity, which in some circles is controversial. Do you have any
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feelings about that sort of idea about a soul and a brain, and is there something
more that we don’t understand?

Micali: We don’tunderstand a lo¢. But[laughter], ifyou ask me, remember whatever
I said about the simulation paradigm? Never mind the mind and the body. Really,
the question is whether the whole universe can fit in the brain, right? [laughter]
I mean, I'm a little bit of an extremist here. But again, there are tremendous
possibilities, but I have not given them the rigorous thought that I've given to some
other fields yet.

Ibaraki: Silvio, I could just see those roots of this kind of thinking going back to
when you were a child, and talking to your mother. [laughter] Now, what are your
most difficult challenges in research, and what valuable lessons do you wish to
share?

Micali: Well, my challenges, if I can be frank, are inability to work alone and lack
of knowledge. And so the lessons I wish to share are the same ones that I used
to cope with my challenges: collaboration and imagination. So what if you cannot
work alone? You can always collaborate, provided that you hold on to your own
individual obsessions, no matter how extensively you collaborate. And again, who
cares if your arsenal is quite small? Be imaginative, forge your own tool, and march
ahead.

Ibaraki: Every time you get researchers together, or you get, I guess, any group or
cohort together, you're going to get a lot of discussion. You’re going to get debate.
You're going to get some controversy. You're going to get different points of view.
So what would you describe as additional areas of controversy in the areas that you
research?

Micali: [laughter] Well, controversy is . . . Everything is controversial. Actually, I
think that the main controversy, not only in my research area but in any area, is
the very definition of an area. This is the most contentious item in research. To be
clear, defining an area is both necessary and useful to focus the effort of future work,
to flesh out the problems, to attract fresh minds, etc., etc. But it’s also a constraint.
It’s a boundary, right? And boundaries may always incarcerate us. So we have to be
very, very, very careful.

Our theoretical community is just amazing. I really love my community. It has
invaded new territories with determination, ferocity, and cleverness, like a bunch
of conquistadores, but fortunately [laughter] no physical bloodshed. But even we,
a progressive and ready-to-abandon-all-boundaries society, risk to transform our-
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selves into ‘the guardians of the sacred fire’. And at a very great speed. We start
fighting to protect the purity of our field against outside contamination. It is mind-
boggling to me.

Suddenly, the game is not to find solutions to problems that do not yet exist,
but to solve older problems. And the older the better, because you get more credit
for solving, you know, a 50-year-old problem, than you get for solving a 10-year-old
problem, etc., etc. Of course, you need both to pose and solve new problems and to
solve old problems. But I don’t understand the emphasis on old problems, right?
That is really a disease.

If you chair a prestigious conference, or you are the editor in chief of a flagship
journal, somehow you start feeling that you are expected to become a businessman,
to satisfy the customers who put you there. So if you publish outlandish material,
the number of subscribers may drop in droves. How would you look? Can you ac-
cept this damage to your reputation? Publishing such material may cost you further
advancement. On the other hand, refusing to publish dangerous new material is
hidden from the public eye, so you may actually harm the growth of your field, but
no one will ever know. I'm actually saddened by the fact that journals and confer-
ences publish a disproportionate amount of small—but declared big—advances on
the status quo. I believe that the incentives are misplaced, and we can and must do
better and never define in too strict a way any area.

Ibaraki: Hmm, that’s quite fascinating what you just stated there. I mean, it kind of
reminds me of this idea of disruptive innovation or research, and this concept of
innovators being a platform where they sort of model what creates breakthrough in-
novation, what creates breakthrough disruptive innovation. They find sort of these
five qualities, one of which is always actively questioning everybody, everything and
everybody, always actively observing everything and everybody, always actively ex-
perimenting in diverse areas, even across areas that are outside of your domain, to
get a different perspective. And the final two elements are associating, and that is
synthesizing all the kind of different concepts in all the different areas, and integrat-
ing that information as you sort of proceed day to day. And then finally networking.
Networking with others, but particularly with those who hold diverse views, and
perhaps contradictory views, or even to the point where it could break the system,
or close to sort of your collaborative team. It sounds like you’re sort of speaking to
that, not to get into this sort of groupthink idea.

Micali: Oh, absolutely. Of course there is the risk that, if everything is innovating
so fast, then we cannot discern anything anymore. We need some rigidity, I don’t
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know, it’s an old question whether geometry could have been invented if we were
water animals. I mean, [laughter] we need some solid terrain, perhaps, to hypothe-
size a triangle, and so on and so forth. Or maybe not. But what I'm saying is that we
must do better than just barring this. It would be nice if every journal or conference
actually accepted, say, every ten articles, two oddball articles, if people actually ex-
pected two such articles. And I bet they would be read with interest. Even simple
policies like this would go a long way to incentivize us to question ourselves and
our own fields and to make progress.

Ibaraki: I see. So, actively embrace outliers. [laughter]

Micali: Yes, yes, bring them into the fold. We need outliers. But we also need, you
know, to make progress on very established questions. My problem is that I perceive
a disproportionate emphasis on traditional work. Of course innovation will break
through once in a while, but not at the right rate. We can actually control and
optimize the rate a bit. Actually, quite a bit.

Ibaraki: Now, Silvio, canyou describe the types of research being created or updated
that will drive our experiences in five or ten years, and what will these experiences
be like? Can you paint a picture for our audience?

Micali: Well, frankly, my prediction for future research can only be based on what
I know, so I expect more and better of the same. I don’t know how interesting that
may be. All expert predictions matter less than the developments we cannot predict.
I mean, if our predictions were exact, our future would be doomed to boredom and
missed opportunity. I personally look forward to major surprises, [laughter] and I
must confess that those I cannot anticipate.

Ibaraki: Now, you have this remarkable background—your educational back-
ground, that is—at the University of Rome and in Berkeley. So what specific chal-
lenges in your education at these two famous institutions were catalysts to inflec-
tion points in your lifetime of contributions, and how and why did this happen?

Micali: Oh, wow! Thanks for asking. [laughter] I really would like to give credit to
both great educational systems, in Rome and in Berkeley, and the actual people
behind them, who really shaped me . . . So let me have a crack at explaining. First
of all, both universities, and in particular the specific teachers I met, have been very
flexible. This really shaped my attitude towards research.

In the United States, to tell you the truth, a course is run more tightly than in
Italy. As a student, you are continuously monitored with problem sets, and the exam
coincides, so to speak, with the last day of the course. There is not much room for
negotiations [laughter] of alternative dates. In the Italian system, instead, you are
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much more in charge of yourself. There are lectures, of course, there are sessions
of exercises, but it’s totally up to you to attend or not to attend. And the exam, you
can actually take it when you feel ready: after a month, after a few months, after
a year, even. That for me was really ideal, because I would have not functioned
otherwise. Typically, I took four yearlong courses, where yearlong [laughter] meant
from November to May. Then I took, say, one exam in June, another in July, one in
September, and one in October. And then courses started again. It was crucial for
me to be able to take an exam when I felt ready. I absorb things slowly, and that
flexibility was extremely important to me.

People-wise, I really, really admire and I owe a lot to Professor Luciano DeVito.
He taught us mathematical analysis. You must know that, in the typical Italian
fashion of the time, I took a classical high school: lots of humanities, history, philos-
ophy, and very little math. In fact, the only math that I was exposed to was Euclidian
geometry, maybe because it was Greek. [laughter] Yet, Iwas fascinated by it enough
to decide to enroll in physics, and thus I was exposed for the first time to mathemat-
ical analysis. A marvelous field. You started talking about infinity in rigorous terms.
It was wonderful. But whatever made this course unique, as I realized later, was that
this guy, DeVito, organized the entire course around problems. He never engaged
in a classical definition-theorem-proof sequence. He would ask, “How might ‘area’
be defined?” And then a big debate started. Sometimes, he posed problems that
we could not solve right away, but we solved them very much later. The problems
were really center stage, and we were obliged, actually, to define things if we wanted
to make progress. And somehow this necessity to define things became an ability,
and helped me tremendously in my career.

So, in essence, his course was entirely devoted to research and that was the first
course that I ever took, OK? I loved it so much to conclude, “Who cares about phys-
ics? Actually, what I care about is mathematics.” I understood mathematics to be
analysis. So I told him, “Professor DeVito, I really want to switch to mathematics.”
To my surprise, the guy says no: “You cannot switch.” I said, “Why not?” Because, he
says, he’s proud to have been an analyst himself, but analysis was for older people
like him, and a young person like me would be better off staying in physics. OK!
[laughter]

I followed his advice, thinking that perhaps I could change his mind if I actually
proved something. At some point, he mentioned the general axioms of measur-
ability according to Lebegue and the existence of a set non-Lebegue-measurable.
Somehow I decided to find such a set. But I was unprepared for the problem, and
could not solve it, at least not right away. So I totally obsessed about it, to the point
that I actually neglected to follow his lectures. I was behind in the course. In fact, I
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dropped all the other courses as well. But eventually, I managed to solve the prob-
lem, and I presented a solution to him. He was very happy and gave me an A+ at
the first exam opportunity, while I was intending to take the exam much later. For
me, that was really a transformative experience. Somehow I got the notion that
it was OK to carve a path on my own, and that somehow research has to be cen-
ter stage. I really felt empowered. More importantly, he now gave me permission
to switch to mathematics, but he added, “If you really want to do mathematics,
then you should focus on . .. ” —he didn’t use the word, but he essentially de-
scribed theoretical computer science. He told me about Godel and Turing. But
then he says [laughter] “You really watch out, because to do this stuff you need
a big stomach.”

I switched to mathematics, but I neglected his advice and followed instead
courses in analysis. But, in the fourth year, I paid attention to what he said enough
to follow informally as a listener two courses, one on lambda calculus with Corrado
Bohm, which was and is the father of Italian computer science, and one in logic with
Giuseppe Iacopini. Corrado has always been very enthusiastic. He sought me out.
He convinced me to leave analysis, to actually formally enroll in his class, and also
he gave me a challenge. He said, you know, “Why don’t you take the class, and why
don’t you try to prove that?” That challenge then became my undergraduate thesis
and our first paper.

So now at this point, to tell you the truth, I was convinced that I wanted to
do computer science, but I was totally unprepared. At the time there was no CS
graduate program in Italy. So Corrado quite unselfishly suggested that I pursue
a doctoral degree in CS abroad. Before applying, I followed a one-month summer
schoolin computer science. The idea was to choose four courses out of some eight. I
chose my four, but then dropped two. Since no degrees were awarded, why not? The
course I liked the most was on graph algorithms, and it was taught by Shimon Even.
Shimon was a wonderful teacher from the Technion, in Israel. He really introduced
me to algorithmic thinking, and he became a beloved friend and mentor. The other
course was also on algorithms, but more general, and it was taught by Fabrizio
Luccio, from Pisa. At the end, they both gave me the same advice as Corrado: “I
think you have to go abroad.”

Somehow all three of them suggested Berkeley as the more suitable place for
me to study. So I applied, I actually was admitted, and eventually went. I must tell
you that was another lesson for me: Receiving caring advice on how to complete my
studies from people who were not my advisers and had no formal responsibilities
towards me, somehow gave me the impression that research really was an enter-
prise without borders, that I was helped by people who owed me nothing and who
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really encouraged me to go far, [laughter] in a way. I realized I was entering a com-
munity of the mind without borders, and that the people out there actually cared
to advance Science with a capital S. It was an amazing message, right?

I was saying that I was studying history in high school, but my history books
were de facto centered on the history of nation states. Or at least I read them that
way. So somehow I didn’t take notice of the fact that there was a parallel, in fact,
a transversal universe. I mean, I knew, on paper, that science was a big enterprise.
You know, Archimedes and Eratosthenes exchanged letters, Pythagoras traveled all
over the Mediterranean, medieval scholars moved from Bologna, to Prague, Paris,
etc., etc. Artists were born in one city, lived in another, worked in another, and died
in another yet. Really, all this I knew, but somehow I never registered it. So, from
that point on I must tell you that geopolitical boundaries faded in the background
forever. And so that’s it. Gotten this mythical view of what science ought to be, I
decided that, yes, I would go to Berkeley.

Now, Berkeley: I was admitted, but not right away. My score in the test of English
as a foreign language was actually abysmally low, so I had to take it again. Finally,
I got a barely decent score, and I could begin at Berkeley in, I think, March 1979.
And I was utterly miserable. First of all, I realized that my English was really poor,
that I could not communicate with anyone, that I knew no one, and that I had no
prerequisites in computer science, while Berkeley had a very tough prerequisite
tree. So the only course I could take was CS1—the name says it all—an entry
programming course attended by 18-year-old people, and even precocious younger
people. I was 25, so there was very little mingling there. The other courses were
equally elementary. So, bottom line, I decided I'd finish the trimester, I'd pack up,
and I'd go back home. Accordingly, I also decided I might as well enjoy the city.

Just when I lowered my guard—perhaps because I was a bit more open—I
actually met David Lichtenstein, who at that time was a Ph.D. student about to
graduate. He took me under his wing, really, and was another marvelous example
of the generous help that had been showered on me over the years. He showed me
around San Francisco. He told me: “Forget about prerequisites. I think you need
to do research. Why don’t you pick up along the knowledge you need?” He told
me that Professor Blum was actually finishing chairing the department of CS at
Berkeley that summer, and said, “He’s a great advisor, and you're lucky, because
he has not taken new students during his chairmanship, so in the fall when he
steps down he needs new students, so why don’t you propose yourself?” I said, “I
will try.” He actually had [laughter] another reason in favor of Manuel: Being from
Caracas, Manuel spoke Spanish. So, you know, “He can understand your Italian.”
[laughter] Because apparently my English wasn’t good enough.
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So I went to see Manuel. He was very kind, but he said that his hands were full,
that we should reconsider everything in the fall, that we should wait. But David
didn’t give up. He was determined that I started doing research and stay motivated.
And so he told me about a problem posed by another graduate student, who had just
graduated with a superb thesis, Mike Sipser, now a leading complexity theorist, and
the chair of MIT Math Department. In his thesis, Mike had left an open problem,
and David suggested that I should try to solve it. The problem was in automata
theory, which, of course, I knew nothing about it. So, he said, “No problem, so
I'll give you a crash course in it.” The “course” took two hours, or maybe three,
at a coffee shop in Berkeley. We were sitting there, sipping cappuccinos, and he
was telling me one definition, then giving a small exercise. He was patient and
understanding, and so on and so forth. And at the end, with the last cappuccino—
I call it the four-cappuccino course; that’s how many cappuccinos [laughter] I was
able to drink in one session—he says, “OK, now, here is the problem you should
try to solve.”

A few days later, Iwas actually able to solve it, and told David, and he says, “That’s
wonderful. Now you have to go back to Manuel and explain it to him too.” I said,
“But Manuel said his hands are full.” He said, “Never mind, Manuel knows the
problem. In fact, he was the advisor of Mike, so he would like to see the solution.”
So Iwent to Manuel, and David was right: Manuel wanted to hear the problem right
away. He cleared his schedule, cleared the board, and let me explain the solution.
And at that point, he agreed to pick me up as a student, and from that point on
we only spoke of research. I mean, I've never seen anybody so research-oriented as
Manuel. He really was wonderful.

So, at this point, you know, I decided to stay in Berkeley, and I showed up again
in the fall. By then, David actually was no longer there—he already went off to his
job—but that’s when I met Shafi, and actually Vijay Vazirani, too, and Mike Luby, a
group of extraordinary researchers and great people, as they turned out to be. We
formed a gang of sorts. We dined out with modest finances, but still enjoyed the
food, working together, and actually trying to solve the problem sets together. It was
really wonderful. We took a course of Dick Karp, which was to test the flexibility of
Berkeley [laughter] despite being a U.S. university.

DickKarpis a fabulous teacher, too, and he ran a famous algorithm class. And he
mentioned a problem, fortunately or unfortunately, kind of early on in the course.
It was a problem in algorithmic graph theory, the same subject that Shimon made
me enthusiastic about. The problem was extending the running time of the best-
known algorithm for matching from bipartite graphs, which are special types of
graphs, to general graphs. So Vijay and I decided to work together to try to solve
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the problem. We spent hours and hours together. Vijay was capable of satisfying
all the other courses and taking care of the other problem sets. As for me, I, again,
dropped out from all courses, including the one with Dick Karp. I only spoke to
Vijay. But at the end, by our good fortune, by the end of the course we found a
solution, right? (That solution, by the way, continues to be to this very day the most
efficient solution for general graphs.)

So now what do I do? Dick, I must say, to his honor, let me pass the course,
which by any standard I should have failed, with a B-minus. I mean, Dick is a very
generous and fair person. I'm sure I must have tested his patience, [laughter] but he
had to give me a B-minus. And now I was a little bit in trouble, because surviving as
a Ph.D. student with only one course with a B-minus on my transcript was no joke.
And to make things worse, I had to pass a barrier to continue the Ph.D. program,
the prelim exam, and having not taken any hardware classes, I failed the hardware
portion of this exam. So Dick and Manuel had to personally testify in front of the
relevant committee so that I could continue my doctorate. Somehow, they were very
persuasive, so I was allowed to continue.

And then our gang attended Manuel’s course on computational number theory,
and we all had a great time, we cemented our friendship, and at that point Shafi
and I joined forces on cryptography for many, many years. And she actually had a
tremendous influence on me in many ways. In particular, she convinced me that,
given that nothing came easy to me, I might as well focus on hard things only. I
must say that her insights, personal and scientific, really spurred me on in decades
of joint work. I was indeed very fortunate to join forces with such a scientist and
a friend and a colleague. So at this point I had a course that I loved, taken from
Manuel, and the companionship from great friends and researchers. The people
were much more flexible than the system, and I really felt, you know, that I really
was in the proper crowd.

Manuel, I don’t know if you know him, but he’s a permanent revolutionary. We
already spoke about Dick Karp. And then there was also another faculty member at
the time, Andrew Yao, who started also as a physicist but, unlike me, a real one,
with a Ph.D., a post-doctorate, etc., but then he got fascinated by computation
and switched to computer science, and was then a professor at Berkeley, too. And
I'm glad he was, because Shafi and I and he actually had a marvelous and fruitful
interaction.

All these guys were actually marvelous teachers, but in very different ways. I
mean, I have the fondest memories. Such a high standard to live by. It’s scary, really.
Manuel, I don’t know, he was a magician. He did not explain a theorem. He actually
forced you, actually all of his students, to prove the theorem on the spot: the trials,
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errors, anxiety, heartbeat accelerations, the whole shebang when you try to solve a
problem. Dick was most clear, organized, a perfect sense of timing. I mean, I have a
terrible memory, but whatever he explained I still remember. And Andy, he was not
formally one of my professors, but I attended all of the lectures that he gave, and
two of them really changed my life. You know, one was on Shamir’s secret sharing,
when I was a student, and another one when I was an assistant professor at MIT.
The latter was a lecture on what came to be known as Yao’s garbled circuit, which
had also tremendous influence, not only on the field but on me in particular.

At Berkeley, I really think that the flexibility, the focus on research, and the
ability to pardon cutting corners—provided that you actually strive forward at least
in one direction—was really what made me what I really am. I really felt I was in
a magical place. Remember, I had a very Europe-centered point of view, right? I
thought of Berkeley as the far edge of a civilized universe, in front of the Pacific
Ocean, that mythical barrier to mankind, right? I felt I was in heaven, but, keeping
with the metaphor, [laughter] I also felt, “Who could live in such a small city, except,
you know, monks?” I saw them as monks, Manuel and Dick and Andy, living in
this remote hermitage at the confine of Earth. Really, it’s hard to communicate
such a personal experience, you know. I learned so much. And I learned what I
really wanted to learn: that finally I was not alone. I learned that Science really had
the power to understand anything, even things that seem to be impenetrable to
quantification or rational analysis altogether. Ilearned the power of interaction. I've
never forgotten it. And really, I learned that experiences that cannot be written down
or repeated in any way, like these I just described, really are the most permanent
and precious. Ever since, I became a very big fan of the oral tradition. We should go
back to this oral tradition, the strongest and most effective tradition we ever had.

Ibaraki: Silvio, that’s just an amazing history, in terms of the mentors that you've
had, and continue to have, the collaboration with so many people, asyou indicated,
the flexibility that you were given, and I guess now that’s generated [laughter] some
questions in my mind. You had this very unique kind of program, both at University
of Rome and at Berkeley, where people have given you some agility and some, as you
indicated, some flexibility. Now, do you pass that on in terms of your interaction
with your students, and so on, your graduate students? Has that influenced your
interactions with potential researchers?

Micali: Oh, absolutely it has influenced. The extent to which I actually succeed at
giving back what I received, that I don’t know. But I certainly try. [laughter] I have
my own rigidity to worry about, of course, but you bet I try to be as flexible to others
as my teachers have been to me.
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Ibaraki: You know, it’s interesting: in this dialogue I can feel and sense your energy
and your passion for the research that you do and the things that excite you, and I
know that your collaborators, and those students that you influence, as well, would
feel that same passion, so they’d be very excited [laughter] to work with you, I think.

Micali: Oh, these are very passionate people. You're right.

Ibaraki: Another question is that, you know, you worked with your colleague Shafi
for some time, starting at Berkeley, and that collaboration has continued. You
know, any time you collaborate with somebody, sometimes there’s tension, and
how do you manage that tension? Or, you know, let’s say if you disagree on a point
of view, how do you manage that?

Micali: Well, the best thing is not to manage. Somehow, tension gets resolved.
Tension is good, right? Somehow you are pulled in two directions, but I think you
generate energy. I think that as long as there is goodwill, this energy gets released
in a positive direction. I've never tried to be, quote, “polite,” in an interaction. It
doesn’t work for me. And other people have been very genuine when interacting
with me. Sometimes, we start “polite,” but then as we become more and more
friendly with one another [laughter] and we become more and more direct, tension
rises. And to tell you the truth, I think it’s good. I don’t think we should manage
tension. If the tension becomes too high, and you have to say “Go to hell” for a day,
and “I’ll never work with you anymore,” you can always restart on the next day. But
if you try to keep everything at a quiet or moderate tension level, I'm not sure . . .
It may work for others, by the way. I don’t want to dampen it. But it just doesn’t
work with me, and with the people with whom I've had the pleasure or the honor
of working.

Ibaraki: In the past your supervisors and collaborators, but also your mentors in
the past, have given you a lot of flexibility, sort of allowing this sort of oral tradition
in terms of you proving that you had the expertise or the knowledge, or you've
done the required research in your problem solving. You know, there’s this new
idea that came out of Stanford—oh, I guess it’s not new, but it sort of got more
attention back in 2011. That’s this idea of massive, open, online courses, you know,
where they had the artificial intelligence course, 160,000 students enrolled from
190 countries, volunteers translating in 44 languages, and MIT and Harvard had
started something called edX, and it’s sort of in that same area, or Coursera, you
know, is all about MOOCs. What’s your opinion of MOOCs, and do you see that in
conflict with sort of the traditional side of teaching, or do you see it sort of aligned
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with how you were kind of mentored, and the kind of support that you’ve received
in your life?

Micali: So, we have to distinguish here the personal, what is good for me, from what
may be good for others. Tell you the truth, I really believe that enabling a very large
audience to get educated is something extremely beautiful and extremely useful.
Ideally, we’d like to do this one-on-one, but if we cannot, then these online courses
are perhaps, you know, a very good alternative. For me, actually, personally, it does
not work, but that does not mean that it’s not good. Just I'll be a very poor e-teacher.
Remember that I continue to struggle with the doubt of whether there is somebody
“on the other side,” right? So, I hate writing letters, because who knows if the other
one will ever receive it. And if it is received, in what state or mood he or she is.
So I prefer a phone call to a letter anytime. Actually, if it’s something that is very
important, I really insist on physical presence. And so the notion that I, personally,
could goin front of amicrophone and a camera and deliver an e-course givesme . . .
[laughter] I shudder at the thought.

But, however, that does not mean that it’s not good. Actually it may be a way. But
I really believe that there has got to be room for an old-fashioned way, for, as you
say, oral tradition, personal interaction within a small group of people. I believe
that you can actually subliminally transmit so much more this way. It’s just a way
that does not scale. So I don’t want that in order to guarantee scale we suppress this
other mode, but we can certainly augment it with e-learning and remote learning. I
think that it is, again, a beautiful project that I certainly applaud. I'm not sure that
I'll be successful in this particular mode. But that’s just me.

Ibaraki: Again illustrating your continuing leadership, one of the things you did was
you cofounded the information and security group, and because you’re one of the
cofounders of this very important group, can you detail your objectives in both the
short and long term?

Micali: Those are actually quite simple, really: to foster interest, education, and re-
search in cryptography. Pure and simple. I think that’s the goal of any research
group that has been founded, and ours is no different. It just focuses on cryptogra-
phy, that I still like [laughter] despite my recent adventures in mechanism design.

Ibaraki: Now, throughout this interview it’s clear that you have a lot of energy that
you put to different areas, and one of them is Advances in Computing Research, that
five-volume textbook series. Why are you so supportive of that series? You know,
what motivates you? What generates all of that passion?
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Micali: All right. First of all, about this specific series, let me tell you right away
that I'm very proud of that volume. I mean, the volume I edited was dedicated
to randomness in computation, and I believe that the interplay of randomness
and computation is crucial to our field, and I'm proud, actually, of the confidence
bestowed upon me by the many contributors—who, by the way, are all great leaders
in our field—and by the editor of entire series, Franco Preparata. So, I'm very proud
of that volume. I liked it, and I still like it.

But let me generalize your question a little bit. I believe that this volume, like
other volumes, in whatever form—because the form changes—are occasions of
common and focused reflection on what we try to understand, and are very im-
portant. To advance a given field, we need original technical contributions. But,
somehow, I also find that it’s important that, from time to time, we take a little
bit of time to record our coordinates in our journey, right? As the saying goes, iow
we got to know things is at least as important as what we know. And I could not
agree more. Unfortunately, it’'s much more efficient to communicate only the sleek
proof of whatever we found, ignoring the torturous path that usually leads to it.
The path is forgotten, and that is a pity. And those with any experience of scien-
tific discovery know only too well that such a path is very far [laughter] from sleek
and linear. No one could exactly guess in advance the conceptual barriers that pre-
ceded a solution. “Where were we, conceptually, beforehand?” I find this to be a
fascinating aspect of science, too. And it’s one which is very hard to reconstruct
afterwards.

Personally, I do not subscribe to the theory that history helps us avoid the
mistakes of the past. If it does, it may do so only in part, in a very indirect way. But I
believe in the history of ideas for its own sake. Period. I mean, knowing humanity’s
past journey may actually make us better men, and, if we are better men, then we
can actually do better science. And all this may be true. But if it’s not true, I don’t
care. I still want to know the history of our ideas. And this is because, at the end,
I really believe that, we develop one reality, but I don’t believe that there is a single
reality for us to discover over time, that we just, you know, peel off the reality. I
think science is a variegated process. We always choose what to discover, and, in
that sense, we continually define our own scientific reality. Most people like stories.
I think that scientific development is really a fascinating story. So I really believe
that once in a while we should really find the time to document the stage of the
path we are in. I think that’s important. It may slow us down a little bit, but it may
also motivate us, right?

Hopefully, it will not stifle us. Because if you start staring at your own navel,
pretty much you don’t look further up anymore. Nevertheless, I think it’s a risk
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worth taking. Ultimately, if we don’t care about how we got here, we may also not
consider it important to decide where we want to go.

Ibaraki: Silvio,whenIlookatyour profile of all the thingsyou’ve done in the past, it’s
just an incredible profile, just an inspiring list of contributions over so many years.
And as a result, you've also won some awards and recognitions. So can you share
some valuable experiences and lessons from your prior awards and recognitions?

Micali: Well, OK, valuable or not, you know, my experience seems to follow the
following track: First I'm happy, then I'm depressed, then I meet other awardees
and I feel better again. That’s the trajectory. Somehow I meet these other awardees
for the first time, like, let’s say, in the induction to an academy. Sometimes I actually
have first and very different discussions with these people I always wanted to know,
and because these are very motivated people, they tell me about their own goals.
These are their goals, not mine. But somehow I realize how worthy and clear their
very personal and very different goals are. We live in an era of extreme specialization
in science, right? Most of the time, you know, I don’t even walk to another floor, and
even less to another department. So these I find very special and very motivating
moments.

Ibaraki: Silvio, you laid many of the foundational pillars in your pioneering work,
and distilling from your experiences, what are the greater burning challenges and
research problems for today’s youth to solve, to inspire them to go into computing?

Micali: Get into computing! Because computation is everywhere. Perhaps compu-
tation is a mental construct that we superimpose to the world, but then we only
experience the world via ourselves. So computation is everywhere, in one way or
another. So the real questions that I'd like to know and try to induce others to solve
is to what extent can we use computation to understand physical, biological, and
social laws, and can we perhaps use computation to influence some of these laws?
I think these are very big questions, and we need all the manpower we can get to
answer them, or even to scratch at their answers.

Ibaraki: It’s interesting, your answer kind of reminds me of this folded game where
there’s these sort of problems of how proteins fold into enzymes, and now they use
computers, and just people. They crowdsource it. It’s a solution, where they throw
it out to math as a people, including middle-schoolers, and they solve problems in
this area that couldn’t be solved by supercomputers and experienced researchers.
Or there’s this other online game which they’re using to model economic behavior.
So it’s kind of interesting, this idea that computing is everywhere, and how can
it influence some of the other domains that are out there. Or perhaps it is very
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important, all the other domains out there, and how can we maybe further that
work in some way?

Micali: Yeah, I agree, but not only because somehow we can use humans to solve
computational problems. Certainly development, embryo development, is an un-
folding computation in one way or another, right? But even if you want to look at a
particle . . . [laughter] Maybe, a particle follows “the laws.” But, also maybe, it ac-
tually computes where it should go. I wouldn’t be surprised of that. We really don’t
know. I really believe that computation is the development of something. We our-
selves in the universe, and anything else are the development of something. I think
there ought to be a bit more explanation to gain by understanding computations.
For sure in biological systems, but almost also everywhere else.

Ibaraki: Now, again, because of the position that you hold in history, and also in
the computing field, but also many other domains, again, this question is directed
regarding our youth, to our youth, with an interest in the future of computing, but
without the educational foundation, how would you explain your work?

Micali: All right. Isaid that computation is everywhere, but perhaps Iwas not able to
study much of it. I chose to use computation to model, to study, and to augment our
ability to interact with others. I really used computation to cooperate with others
while retaining our individuality, our secrets, and to efficiently convince others of
what we laboriously found to be true. That’s my chosen aspect of computation.
That’s the one I cherish. That’s the one I'd develop. And my hope, for every single
one of you, is that you find what is your own aspect and develop that.

Ibaraki: Now, what specific qualities make you excel, and why?

Micali: Oh! I'm going to be very direct and therefore I'm going to be very brief, OK?
So, I'd say: the ability to convert emotions into science, creativity, admiration for
the past, willingness to gamble the present, and yearning for the future.

Ibaraki: Hey, I like those answers. [laughter]
Micali: Well, like them or not, these are my answers.

Ibaraki: Now, past, present, or future—and you’ve already discussed this, in a way,
when you discussed your journey at the University of Rome and then Berkeley, all
these sort of collaborators and people who’ve mentored you and so on, but can you
name three or more who inspire you, and why is this so?

Micali: Well, certainly I'll mention a few names, Stephen. [laughter] But actually let
it be known that we’d not have this conversation without the tremendous influence
of many other minds and friends, right? Ultimately, we are the people who inspired
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us. So I've got a few other people I've not yet mentioned but really should be men-
tioned. One of them is Charlie Rackoff, who was the co-author with Shafi and me
of zero-knowledge proofs. Oded Goldreich, with whom we co-authored pseudoran-
dom functions. Independent of that, you know, he just had a great influence, in
fact a crucial influence in transforming a set of theorems to a new theory. And Avi
Wigderson, without whom zero-knowledge might have remained a quite limited
intellectual enterprise. And Ron Rivest was the one, actually, who attracted Shafi
and me at MIT and nurtured our career and our intellectual development in innu-
merable ways. The list could, of course, go on.

But, that said, let me highlight three researchers whose research style really most
impressed me, right? And these are Alan Turing, Manuel Blum, and Michael Rabin.
And whatIsee in them is an innate ability of solving problems by conceptualization.
That is, these guys internalize the problem so well, and they metabolize it so
thoroughly, that at the end all they have to do is to pick flowers in a sunny field.
It is like magic. The problem solves itself. This naturalness, of course, is very hard,
[laughter] and maybe a little bit artificial. You have to work very hard for it. But we
should always strive towards it.

Ibaraki: Silvio, we’re down to our last two questions, and this is pretty open-ended.
And I'm telling you, you choose the topic area, and then what do you see as the
three top challenges facing us today, and how do you propose they be solved?

Micali: Three top challenges . .. Well, you know, one top challenge should be
enough for each one of us, right? Fortunately, there is many of us, [laughter] so
we ended up with many challenges. But let me try to multiply mine. The top chal-
lenge I see today is, as I mentioned before, really solving the mystery of the brain.
How do I propose to solve it? I don’t have an exact recipe, but somehow I really
believe that, to go after the opportunity, education is going to be crucial. So now
we have two challenges: the brain and education.

So why I think they are correlated? Because perhaps the brain puzzle could be
solved via one breakthrough, or a cascade of great insights in very rapid succession.
But we cannot sit down and wait for one of these events to occur, right? That
is hardly a proposal. I'm not the only one to believe that computation would be
crucial, as well as biology, for reaching a satisfactory understanding of the brain.
I was telling you that Les Valiant has certainly given this a lot of thought. In fact,
actually, he’s maybe a main motivator for me to think about this idea. But the role of
computation in this endeavor is still unclear. We need many more biologists with an
intuitive understanding of computation. Intuitive doesn’t mean simplistic, by the
way, but that you know something so well that it comes second nature to you. And
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we need plenty of computer scientists with an intuitive understanding of biology.
I must admit that, at least currently, I'm not one of them. But we don’t need one
person only, because we cannot put all the bets on one person. If we know who the
right one is, so be it. But we need to bring up many and hope to actually nurture the
one who really is going to solve the problem, right? So education is crucial, because
we need to foster the synergy between biology and computation.

Synergies at some point should really become the norm in science. Right now we
are scattering. We are going deeper and deeper in subfields. It’s scary. So we need to
come together. Certainly for the brain this will be crucial. So an attack maximizing
success should include a strong interdisciplinary educational component. And
education, I must say, is a challenge, was a challenge, and will always remain
a challenge. I actually repeat myself here, because I cannot stress education too
much, right? People, at the end, only use—and are motivated by—what they know.
So we must continually revise what we know and how we teach what we know. And
by understanding the world better, we are able to push knowledge and ideas earlier
and earlier in our educational system, and more intuitively, up to, say, middle
school. And even before, why not? When, as a society, we care a lot about a problem
we must accelerate its solution. We cannot just wait for just this natural percolation
in the earlier educational years. We may have to be creative here. And I think one way
to be creative—who knows—is allowing faculty members to teach only one course:
You teach a course and you take someone else’s course, in another discipline. In
any case, to enable further and deeper advances, I think we should always find ways
to generate shared knowledge more efficiently.

Now, let me go on a limb and mention something else that I think is really a
challenge. More a psychological challenge, perhaps, but why not? A main chal-
lenge, as I see it, is living outside our planet very soon. I view this as a psycho-
logical necessity. I think that there is great psychological harm in feeling trapped
on the surface of a small physical sphere. And our sphere used to be much big-
ger not long ago. Of course, there are going to be other “infinities” for us to ex-
plore. But, somehow, physical exploration, I believe, is in our DNA. I'm sure that
if you go back to what I said, I must have used “journey” as a metaphor several
times. So I don’t know if we can really survive this loss of, quote, “infinite,” end
quote, physical journeys. I think we are going to be suffering a lot unless we find a
solution.

Ibaraki: Just very fascinating, your take on that question. And now we’re down to
our last question. You've had this very long and distinguished career. What are your
top lessons that you want to share with a broad audience?
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Micali: Allright,ifitisthelastone,’m going torevertto my cryptographicrootsand
be a little bit cryptic, if I may, but hopefully not too obscure. So I think that power
is really the symbiosis of opposites. I believe that our emotions are our ultimate
power. And that nothing boils down to one thing.

Ibaraki: That’s a great closing set of lessons to pass on to our audience, and it
reflects the individual that you are, the professional that you are, the remarkable
scientist and researcher that you are. And I know your schedule is demanding.
You've spent considerable time sharing your deep wisdom with our audience, and
we are indeed fortunate, and thank you for coming in today.

Micali: Thankyou, Stephen. It’s been a great pleasure. [laughter] Thank you for your
provocative questions.

Ibaraki: I'm Stephen Ibaraki, and this concludes our exclusive interview with Pro-
fessor Silvio Micali, ACM Turing Award winner, recipient in 2012, and the Turing
Award is widely considered the Nobel Prize of computing. Professor Silvio Micali is
also a world-renowned, distinguished researcher and professor at MIT.
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I'm very happy to give the talk here at STOC 2014, because the first conference
I attended in Computer Science was a STOC conference. It was in 1982 in San
Francisco. It was also the first conference that I ever had a paper in, which was
on probabilistic encryption. We titled it “Probabilistic Encryption and How to Play
Mental Poker Keeping Secret all Partial Information” and it is mentioned in the
Turing Award citation. It was the first public talk I ever gave.

The deal with Silvio was that, because he had a STOC paper before, I was going
to give the talk. In exchange, I let him speak first this time, and I think it was a
mistake. Had I known better, maybe I would have done it differently.! But seriously,
I'mincredibly thankful to Silvio for all the years of collaboration and friendship and
inspiration and advice.

Okay, so today we are in 2014 and it is evident that theoretical computer science
has gone a tremendous journey, starting from the 1970s to today. Many fundamen-
tal ideas on the nature of computation have been discovered, including nondeter-
minism, randomness, synchronization, parallelism, fault tolerance, interaction,
locality, and more. Back in 1982, a lot of the things that we take as granted today
were not known. For example, we didn’t know that linear programming, or primal-
ity testing, can be done in polynomial time, and so forth. All these grand theorems
were proved later.

1. Editor’s note: But eventually, Shafi’s got her way, at least in the sense that her lecture appears
before Silvio’s (see Chapter 6). A few additional references to that lecture appear in the rest of this
text (see, e.g., “Silvio said”).
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5.1

Not only that we as a theoretical field have made amazing algorithmic advances
and explored fundamental notions, we’ve also made a lot of impact on the tech-
nology. When started out, theory may have been viewed as the ivory tower esoteric
side of computer science, whereas now it’s the backbone of search algorithms and
secure electronic commerce, routing and load balancing, and much more. We’ve
also had an impact on science. Indeed, many times you hear physicists talk about
getting interested in quantum computation due to Shor’s algorithm and so forth.
So much so that people have coined the phrase the Computational Lens to talk about
how you can view science, engineering, and technology through the prism of com-
putation, thinking about a computer as an abstract process that happens in biology,
physics, the brain, and so forth.

Today, I'm going to talk about a different lens, which I call the Cryptographic
Lens. I'm going to tell you how looking through this Cryptographic Lens you can
view theoretical computer science according to Shafi.

Historical and Social Perspective

Before we begin the story, let me add that it’s interesting historically to notice
that two of the grandfathers of the field, Shannon and Turing, the inventor of
information theory and the inventor of the Universal computer, were both also
known for their work in cryptography. In fact, probably for the popular public,
Turing is notable as someone who broke the Enigma machine, the German code,
rather than the inventor of the universal Turing machine.

Interestingly, Shannon, worked on two papers at the same time, one was “The
Mathematical Theory of Communication,” where he introduces information the-
ory. The other one was titled “A Communication Theory of Secrecy Systems,” where
he defined what it is that you should want from a perfectly private system, how
would you achieve it, and what are some bounds on what can be achieved. Appar-
ently, Shannon’s own testimony is that these two results were linked to each other.
They motivated each other, although one was published before the other, on ac-
count of being classified.

My main point here is not so much the love of history—I know very little of it—
but that those two guys were motivated in their interest in cryptography by wartime
research. The impetus for their work—in fact, I think they met in Princeton at
some point during the War—was their interest to win the War. And this is exactly
where we depart when we talk about modern cryptography. When we think about
modern cryptography, we don’t think just about fighting some bad guys, an enemy,
a wartime effort. Modern cryptography was born at a time when computers and
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communication using computers were becoming available beyond the military,
and when people were trying to think of how this progress could be used for
economic growth. Furthermore, the bulk of the work in the theory of cryptography
in the last 30 years concentrates on the correctness and privacy of computation.
Not just dedicated to protecting communication over enemy lines.

There are sort of three bullets that I'd like to hit on in this talk. One is that mod-
ern cryptography has enabled a lot of—in my opinion—fascinating computational
phenomena, which seem paradoxical in nature. The second is that it has been a
catalyst for many notions and techniques that led to a series of intellectual leaps—
new paradigms of thought—in theoretical computer science. And third, I believe
that cryptographic research has not only enabled these paradoxical and beautiful
abilities in the past, as well as led to progress in theory at large, it has a promis-
ing future in front of it. This is because today we have a tremendous amount of
data out there and tremendous connectivity, which present a truly pressing ques-
tion: Now what? It’s all out there, can we still keep some basic rights for privacy in this
world?

Judge Brandeis said, in 1890, that “we have a basic right to be left alone.” That
is a great quote. Can we still be “left alone” in some sense in this day and age? I
think that cryptography and its tools—some of which I’ll tell you about—provides
our best chance to somewhat be left alone. So, I know that Silvio says we should
interact all the time, but sometimes we want to just be left alone. I mean there’s
some merit, also, to that.

A List of Wonders

Let me start with a list of some catalytic, paradoxical abilities that crypto makes pos-
sible. Obviously, I'm not going to talk about all of them, but let me just mention
them in brief. Many people here are familiar with this list, mainly because cryp-
tography is very accessible—there’s something very sexy about it. Possibly, some
of you, even when you were in grade school, have tried to come up with codes and
break codes.

First and foremost, Iwould put public key cryptography, the fact that people can
exchange secret information without ever meeting, an amazing concept. You now
all take it for granted, but to start with, it seems absolutely impossible.

The second one is the fact that it is possible for two people sitting in remote
places around the world to actually sign a contract simultaneously. Obviously, they
cannot do it simultaneously. Information must travel from one to the other before
it travels back, but yet we can emulate the simultaneity using cryptographic means.
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A third one is that starting from very little true randomness, we can generate
deterministically very long strings that will behave, for all practical purposes, like
long random strings.

Next is that we can prove theorems without revealing anything about the proof;
that is, zero-knowledge proofs, which I’ll talk more about. Furthermore, we can play
games, digital games virtually around the world with each other, without access to
physical card games or boards, and without referees, and actually be able to trust
the result when somebody is declared a winner. Again, this is due to underlying
cryptographic ideas.

We can retrieve information from databases, where the database doesn’t know
what information we are after. These days, we can even compute on encrypted data
without decrypting it, and much more.

A Common Theme. This looks like a laundry list. You could give a course on each
one of them. What’s in common among all these inventions? The unifying theme,
among all of this—generating some random numbers, proving theorems in zero-
knowledge, and so forth—is the presence of an adversary, which is an integral part
of the definition of the problem.

Note that also in an introduction to algorithms class, we talk about adversaries.
When we prove that an algorithm runs in a certain amount of time, we can do so by
proving that even for an adversarially chosen input, the worst input, the algorithm
runs quickly. This talk of an adversary, however, is different in cryptography because
we’re not talking about analysis, but really about the definition of the problem in
itself—there wouldn’t be a problem to solve if there was no adversary.

For example, if two people communicate, and there is no curious adversary in
the world, why the heck would they encrypt? It only makes sense if somebody is
trying to listen. And if there’s a mathematical statement, which I claim I proved to
be true, why should I provide the proof unless you suspect that the claim is false and
my proof is wrong. In other words, the proof is needed only because an adversarial
claim and a false argument is a possibility. And when you talk about randomness,
I would ask randomness with respect to whom?

Adversaries are an integral part of the definition of problems in cryptography,
and as such, the quality of the adversary is going to determine also the quality of
the solution. We will say that a solution is good or bad for a problem, depending on
who the adversary is. Finally, as Silvio said, this approach is the key to how we can
analyze any complex system because if we could show that such a system works in
the presence of an adversary, then the system would work under all eventualities.
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What is the power of this adversary? We’re going to make no assumption on
its strategy. We’re not going to say that we know how he behaves and prove a
system secure with respect to this particular adversary. The adversary is going to
be worst case. However, we will make the assumption, through almost all that I'll
talk about, although not everything, that the adversary cannot work for as much
time as he wants, he doesn’t have an infinite amount of space or time. He has
only a polynomial amount of resources. We choose this limitation because it’s
realistic, and because it gives us great power. Once we think of the adversary as
computationally bounded, we can achieve the paradoxical seeming abilities above.
If he wasn’t computationally bounded, many of these tasks can be shown to be
impossible, but when we have computational limitations on the power of the
adversary, we can achieve the amazing abilities of cryptography.

Two Axioms
I'd like to give you two axioms that we use, in cryptography, when we prove our
results. The first is called “computational indistinguishability.”

Computational Indistinguishability. Look at this picture. There is the adversary sit-
ting on one side of a wall and on the other side there is one of two probability
distributions. We can view them as distributions over k-bit strings, D1 and D2. The
adversary wants to know whether he’s interacting with Distribution 1 or Distribu-
tion 2. He presses a button, and gets a sample. He can ask for a polynomial number
of samples, and at the end will declare a verdict. We will say that the distributions
are indistinguishable (by him) if he cannot tell from looking at a polynomial num-
ber of samples whether he was getting samples from D1 or getting samples from
D2. In that case, we say that, to the cryptographic adversary, these two distributions
are effectively the same.

This will enable us to talk about D1 being the same as D2, D2 as D3, D3 as D4,
and so on. We can start manipulating these probability distributions and reach
interesting conclusions at the end about what is and isn’t indistinguishable from
each other. This type of definition or axiom has been applied to encryption, to
pseudorandomness, to simultaneity, and verifying correctness. Let me show you
how through a couple of examples.

So, the first example, is how to define secure encryption, at least in that original
paper from 1982. The idea is the following. What would be the two distributions?
The first distribution might be the encryption of one message. Since the encryption
algorithm can be probabilistic, many ciphertexts may exist for the same message.
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So, one distribution are the ciphertexts for one message, and the other distribution
are the ciphertexts for another message. And the requirement is that the adversary
cannot tell them apart; that is, the adversary cannot tell whether an encryption is
of one message or the other. The adversary cannot tell this in polynomial time, no
matter how many examples he sees of encryptions of message M1 versus message
M2. He can’t tell which is which. If so, then the encryption system is called secure.
If a scheme satisfies such security, then it can be shown that ciphertexts will hide
all partial information about the underlying messages.

What’s another place you could apply this type of definition? How about ran-
domness? I think Avi talked earlier today about pseudo-random generators. Lets
think about randomness. What are the distributions now? One is the distribution
over say all k-bit strings, which is a totally random &-bit string. And the other distri-
bution is over a smaller set of pseudorandom strings. Now, an adversary would like
to know whether he’s looking at truly random strings or at pseudorandom ones. So
he asks for samples and after awhile he declares, “I think I know which is which.”
But if he can’t tell them apart, that is cannot tell whether he is getting random
strings or pseudorandom strings, then we say that these pseudorandom strings
were generated by a good pseudorandom generator.

What does this mean? It means that you can use these pseudorandom bits in
any application that runs in polynomial time and it will be as good as using ran-
dom bits. For example, you could use these pseudorandom bits for choosing which
patient to give a placebo versus the real drug to. You could use these bits in any
application that needs randomness as long as it runs in polynomial time. The appli-
cation should perform just as well when using pseudorandom sequences as it will
perform using truly random sequences. Clearly, this is the right definition. Further-
more, one can show that pseudorandom number generators and pseudorandom
functions exist, if one-way functions exist.

One more example is in the context of obfuscation, and this is very timely,
as there’s a lot of research now in cryptography on obfuscation. I don’t know if
some of you have heard of it. What does obfuscation mean? Say there is a program
which we want to scramble or hide its internals so that an adversary will not
know how to reverse engineer it. How would you define this goal formally? One
way to define it, using computational indistinguishability, would be to take two
programs with the same input-output relation and let one distribution be all of
the obfuscated versions of one program and the second distribution all of the
obfuscated versions of the second program. Then demand that you should not
be able to distinguish whether you are getting an obfuscation of the first program
or of the second one. That’s the definition of indistinguishable obfuscation. You
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can—it turns out—construct programs, which satisfy this definition under some
computational assumptions. This seems a very strong definition, which enables a
lot of applications that you may want from the intuitive obfuscation of programs.
That’s it for the first axiom.

The Simulation Paradigm. Sometimes, the adversary does not just sit behind a
curtain, pressing buttons and looking at samples. Sometimes the adversary is part
of the system itself. He may be one of the parties within the system. He’s not sitting
on the outside looking in. How would we talk about being secure in the presence
of such an adversary? What we say then is that the insider’s view, being an insider,
should give him zero extra knowledge. But how would we define that? Essentially,
we say that if he could have simulated the conversation, on his own, sitting at home,
it gives zero extra knowledge to be an insider.

This is what’s called the simulation paradigm; again, it essentially says that if
the adversary could simulate the execution on his own, he might as well stay at
home. He gains nothing from actually being in a protocol. So the protocol does not
introduce any vulnerability. Of course, he might gain something, which is the stated
goal of the system, say buying something on Amazon. But the issue is that he doesn’t
learn anything beyond the stated goal of the system. If you can show protocols
that have this kind of strength, then you can show that they can be composed
maintaining security.

To summarize, these two notions are useful to the way we think as cryptogra-
phers: Computational indistinguishability and simulation. Let’s now move on to
the catalytic developments—that Iwas referring to earlier—in theoretical computer
science.

Impact on Theory of Computation at Large
I'm going to have a few threads here, starting with the one that’s probably most well
known. I'll elaborate on the zero-knowledge proofs thread, which led to the notion of
probabilistically checkable proofs, which morphed into many other probabilistic
verification systems, and down the line to surprising results on the hardness of
approximation problems. I've listed it first, both because it’s well known, and
because of implications of this development for research today on how to delegate
computations to the Cloud.

Another development thread is that of pseudorandomness. Pseudorandom num-
ber generators and functions were also a very early cryptographic goal, because we
wanted to generate lots of randomness to use in our randomized cryptographic
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algorithms. And it turned out that there was an interesting duality between com-
putational hardness and randomness, and you could generate randomness based
on hardness. But they had other very surprising applications. The first application
is that if you have a pseudorandom number generator, you can use it to deran-
domize complexity classes. That makes sense. Maybe what makes less sense is that
it works so well. Next, using pseudorandom functions, we can present “concept
classes” that are not PAC learnable. So, it yields examples of the impossibility of
representation independent learning for concepts that are in low level complexity
classes. Finally, pseudorandom functions are behind some impossibility of lower
bound using natural proofs, as shown by Razborov and Rudich.

Let’s go on. This is one of my favorites threads, as it is an unusual develop-
ment. In cryptography, we want one-way functions whose pre-images have parts
that are “really hard” to compute, called hard-core bits. Hard-core bits should
be essentially impossible to guess better than 50-50. The first result about hard-
core bits for general functions was proved by Goldreich and Levin, with a very
interesting proof, which although set out to establish a cryptographic goal, ended
up showing how to come up with a polynomial-time list-decoding algorithm for
Hadamard Codes. Now, Hadamard is a well-known error-correcting code. This
was the beginning of an incredible development in error correction, where list-
decoding became almost the rule rather than the exception, whereas before its
existence for natural codes was an open question in information theory, in the
error-correcting code research community. All of a sudden there was list-decoding
of Reed-Solomon codes, by Madhu’s famous work, followed by a long list of works
till today, where work of Guruswami et al. gives list-decoding of explicit codes
that meet the list-decoding bound. This is an truly surprising development, going
from a proof technique that shows you how the inversion of a function is equiv-
alent to predicting a single bit about its pre-image, to fundamental progress in
list-decoding.

The next one is regarding oblivious transfer. Oblivious transfer is a seemingly
strange mechanism that Michael Rabin invented when he visited Berkeley one sum-
mer. For cryptographers this is a natural mechanism; for others it may seem bizarre.
The idea of oblivious transfer is that there are two parties, one of which intends to
send the other party some information, but instead of just sending it, we want the
information to be transmitted obliviously, without the sender knowing whether
it was successfully delivered or not. Although this may seem of dubious merit, it
turns out to be incredibly fundamental for cryptography, and has led to—among
other things—the concept of private information retrieval (PIR). With a PIR you
can search a remote database, say lookup keywords in a patent database, without
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enabling the database to know which keyword you were looking for. Of course, I
can’t show you the reduction, but there’s a direct connection from oblivious trans-
fer. And PIR, in turn, has led to other research, on locally decodable codes. These
are error-correcting codes where you can recover partial information about the en-
coded data without looking at the entire corrupted codeword but only looking at
a small number of places in the corrupted codeword. This is of incredible signifi-
cance, also practical significance. These days we already have linear-rate codes with
sublinear decoding time.

Finally, my last thread, although not the last development, is about techniques.
So far, we’ve talked about results, models, and questions that led to other questions.
What about techniques? At the heart of cryptographic security proofs, the goal is
to force the adversary to solve impossibly difficult computational problems. In a
cryptographic setting, it’s not good enough for these difficult problems to be hard
on a worst-case instance. They must be hard on an average-case instance. Thus, we
need techniques for mapping worst case instances to average case instances, such
as random self-reducibility techniques. When you can reduce solving any worst-case
instance to solving an average-case instance, the conclusion is that if the problem
is hard at all, then it is hard on the average. Equivalently, if a problem is easy on an
average instance, then it’s easy everywhere.

Through further work on program checking and so forth, the next idea was to
show how this mapping can work between different problems and not just different
instances of the same problem. Say that, in order to check a global property of a
combinatorial object, you would translate checking the global property to checking
average local properties. This is the fundamental technique of property testing. We
want to test global properties by making a few local random tests, and therefore be
able to work in sublinear time rather than linear or more.

Finally, I'm not going to recount the impact of trying to break RSA on improve-
ments in integer factoring and on Quantum computation. Those are sort of obvious.

Following One Thread

What I'd like to do now is to follow one of these threads in more detail, to give
you an idea of how the development took place. As Silvio said, classical proofs are
attributed to very famous mathematicians, well some more, some less. But they all
have the same blueprint. There is a theorem to prove, you start from some axioms,
follow intermediate reductive steps, and at the end, QED. That’s how classical
proofs work. However, one component is omitted: the verifier, who has to read
these proofs.
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Iwould like now to give the verifier his proper place and separate it out. Whereas
the prover may work very hard and solve computationally hard problems, we want
to make sure that the verifier can check the proof in polynomial time. These are the
kind of proofs we’re going to be interested in.

What’s an example? Take an equation in n Boolean variables, which is difficult
to solve, and a prover who claims there exists a solution to the equation. One way
to convince the verifier that the equation can be solved is for the prover to come up
with a solution to the equation and send it to the verifier. All the verifier has to do
is plug the solution into the equation and see if it solvable. If so, the verifier says,
yes, I believe there exists a solution to the equation. And if not, the verifier says I
don’t believe it, I reject it, this is an unconvincing proof.

The Knowledge Communicated by Proofs. Notice however that the verifier did not
only learn that there is a solution to the equation, he also learned a particular
solution. We ask “Is there any other way? Is it possible that the verifier will be
convinced there is a solution, but won’t get any idea of what the solution is?”

This is a cryptographer’s concern. Rather than learning from a proof, we want
to show that the theorem is true and reveal nothing else. And the answer is, that it
is possible. And the crux of the idea is for the prover to say, “I am not going to give
you the solution, but will prove to you that I could if I felt like it.” If the verifier is
convinced that the prover could provide a solution if she felt like it, he knows there
is a solution.

How do you do it? How do you convince one that there exists a solution by prov-
ing that you could show it if you felt like it? You use randomness and interaction.
Here is an example—it’s really the first example, in that original paper, with Silvio—
and indeed we’re looking at a particular equation. The equation is a very simple
equation. It is Q = X2 (mod N), where Q and N are part of the description of the
equation.

If N is hard to factor, then it is a hard equation to solve. If N is easy to factor, it’s
easy to solve. As the prover is powerful, she can factor N and solve the equation, and
compute X. However, she wants to convince the verifier, that naive guy, that there
exists a solution without giving it. So how does she do it? The idea here is that she
essentially comes up with two other equations, one is a random equation, S = R?
(mod N), the other one is the product of the random equation and the original one,
QS = (XR)? (mod N). If both are solvable, then the original one is as well.

The prover says, “Look at these two equations S = Y? (mod N) and QS = Z?2
(mod N). I will solve one of them for you—the first one or the second one. You
choose which one.” The verifier then chooses at random whether he wants to see a
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solution of the first equation or the second. The point is that if the original equation
has no solution, then at least one of the two equations has no solution, and there is
at least a 50-50 chance that the verifier will ask for that one and catch the prover at
a mistake. And if we repeat this again and again, and the prover provides each time
new random equations, the chance she can actually satisfy the verifier’s questions
when there isn’t a solution to the original one, is extremely small. On the other
hand, the verifier gets nothing from this interaction, except for being convinced of
the validity of the original claim, since he could generate the interaction by himself.
We call this zero-knowledge because he never sees both solutions, and therefore
can never derive the original.

This is just an example, but to some degree, all zero-knowledge proofs work
this way. We take a classical proof, somehow transform it into another one that is
split into pieces such that only if all of them are true the original proof exists. Then
the prover only exposes few of the pieces, which the verifier chooses at random.
Goldreich, Micali, and Wigderson’s theorem showing 3-colorability, and therefore
any NP language, has a zero-knowledge interactive membership proof, works in the
same fashion.

Interactive Proofs. Embedded here is a new notion of a proof, an interactive proof .
The parties interact for some time, and the required property is that if the theorem
is correct, then the verifier will accept, and if the theorem is incorrect, the verifier
will reject with extremely high probability. There is some small quantifiable chance
that the verifier will be convinced of an incorrect theorem.

Although zero-knowledge was very influential for cryptography and so forth,
perhaps even more importantly it was a catalyst. It was really the first time that we
decoupled verifying correctness of the theorem, from knowledge of the proof. And
once we’ve done this mental separation, we were now willing to accept these kind
of mechanisms as proofs, or “interactive proofs,” could start asking new questions
about what is a proof. For example:

e Can this kind of proof be used to prove harder theorems than those you could
prove by writing a proof in a book?

e Can it be more efficient to prove this way?

e Are there other forms of probabilistic verification?

These are the type of questions that have been asked and answered in the last 25
years.

Indeed, we may ask what’s interactively provable. With classical polynomial-
size proofs, we can verify membership in NP languages. How about coNP? That is,
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can we prove that an equation has no solutions? Can we verify how many solutions
the equation has? An amazing result by Fortnow, Karloff, Lund, Nissan and then
Shamir showed thatyou can verify more with interaction and randomness than with
classical proofs. You can, in fact, not only show that there exists a solution to the
equation, but that there are no solutions, exactly K solutions, and most generally
verify correctness of any polynomial space computation.

Mutti-Prover Interactive Proofs. Fabulous. Amazing! But we were not satisfied yet.
We asked, how about other ways to define proofs? The next step was what I call
“the arrival of the second prover.” This is joint work with Avi, Ben-Or, and Kilian.
We asked the following: What if we added another prover? To begin with, it seems
like it’s a frivolous idea, because we allowed the first prover to take as much time
as she wants. Why would another prover be of any use? Because what we do is to
separate the two provers, and allow the verifier to ask questions and interact with
each one separately but adaptively. Namely, each prover will not see the questions
the verifier is asking of the other prover, but these questions may be related or even
depend on the answers that the verifier obtained from the other prover, akin to two
suspects in a crime interrogated by the police (the verifier) while sitting in separate
jail cells.

Why would you expect this mechanism to be powerful? The idea is that by
comparing their answers, you might be able to catch them in an inconsistency if
there was no real proof of the statement at hand that they both claim to know. And
if the statement at hand is correct and a classical proof does exist, then the two
provers can always be consistent. Back to the analogy of interrogating suspects, by
asking them the right carefully chosen questions, chosen via a random process,
which they couldn’t have predicted in advance, we will be able to catch them and
disprove their alibi, or disprove the correctness of their proof.

Going back to cryptography being a catalyst, when we introduced the second
prover, we thought that it was useful for removing assumptions from cryptographic
constructions. As I mentioned, GMW proved that NP is in Zero-Knowledge. That’s
actually under the assumption that one-way functions exist. We instead wanted to
prove an unconditional result, and in fact, we showed that, with these two provers,
you can convince a verifier of membership in an NP language, unconditionally,
maintaining zero knowledge, soundness and completeness.

However, we were unprepared for the fact that this second prover seemed to be
kind of a game-changer in terms of recognizing more languages, which was shown
shortly after by Babai, Fortnow, and Lund. What they showed is that—actually—
two provers, guys, can convince the verifier of even harder statements than ones
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in PSPACE. That is, statements that require nondeterministic exponential time
to verify. Now this is an exponential gap in power from NP proofs. Classically, in
a textbook, noninteractive NP-type proof, you can verify membership in NP lan-
guages. With two provers, interactively, you can verify membership in NEXPTIME
languages. To prove this, a key concept that was used was linearity testing, devel-
oped in the work on program self-testing and self-correcting by Blum, Luby, and
Rubinfeld.

As beautiful as it is, one may dismiss this latter development as merely building
towers of abstractions in the air, using the language of probabilistically verifiable
proofs to capture previously defined complexity classes such as #P, PSPACE, and
nondeterministic exponential time. Does this teach us anything of significance for
“down to earth” questions beyond intellectual beauty?

Indeed it does. We can scale down this result on two provers capturing NEXP-
TIME problems, and address the verifiability of classical NP problems more effi-
ciently. The intuition is that since the verifier could verify NEXPTIME problems in
polynomial time, receiving polynomial size messages from the provers, it is possi-
ble that he could verify simpler NP statements with even less resources.

This was established in a sequence of works, starting with Babai, Fortnow,
Levin, and Szegedy, followed by Feige, Goldwasser, Lovasz, Safra, and Szegedy,
who also made a connection to hardness of approximation for NP-Hard problems.
Whereas in these two works the hope was to get shorter proof, perhaps logarithmic
in size, it turned out—in follow-up work by Arora-Safra and Arora-Lund-Motwani-
Sudan-Szegedy—that you can in fact verify NP statements in polynomial time by
interacting with a constant number of provers. The verifier uses only logarith-
mic amount of randomness and reads a constant number of bits in the proof to
be assured that, with constant probability, he can find a mistake in a fallacious
proof.

As people know this has led to much insight on the hardness of approximation
problems. Iwon’t get into that. I dowant to give you an idea of why these two provers
enable more succinct proofs than possible interacting with a single prover. Let’s
look at an example.

Say the verifier is given a set of linear equations mod 2, each equation here is
a function of 3 Boolean variables. And he is promised that one of two cases holds.
Either almost all these equations are satisfiable—say, 99% of them—or at most 50%
are satisfiable. The prover claims that in fact the first case holds; that is, more than
99% of the equations are satisfiable. A single prover could convince the verifier of
this fact by solving 99% of them, and sending over to the verifier—to check—the
solution that satisfies 99% of the equations. The length of this proof is essentially
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2.6

n, the size of the assignment. Not too bad, but it’s still as big as the size of the
problem. What can two provers do to improve on this?

In the case of two provers, the verifier does the following: Choose a random
equation, go to one prover and ask “Hey, could you tell me the value of the 3
variables that appear in this equation, for the solution that satisfies 99% of the
equations?” The prover gives the value of the requested 3 variables, 3 bits. Then the
verifier turns to the second prover, who doesn’t know which equation was chosen,
chooses one of the 3 variables at random, and asks its value from the second prover.
If the value of the variable in question is the same in both answers, the verifier will
accept, else he will reject.

Now if there is a 99% satisfying solution, the first prover gives the verifier the
values for that equation, and the second prover always gives the corresponding
value of the requested variable. The verifier gets a consistent answer, he accepts.
However, if there is no assignment satisfying more than 50% of these equations,
then there is no strategy for the two provers to not be caught in inconsistent answers
with probability at least half.

What I'm claiming is that we have a new proof system for an NP-complete
problem, shown by Hastad, in which the verifier receives 4 bits and will catch a
mistake with probability at least half. This should give you an idea of why verifying
inconsistency is so powerful, and allows you to communicate so much less and yet
catch a mistake in a proof.

I want to say that this method of using two provers in order to check the cor-
rectness of a statement has been shown in a completely different arena recently;
specifically, to enable two quantum polynomial-time machines to convince a clas-
sical verifier of the correctness of the computation.

The Future

I promised that there are three bullets. One was paradoxical abilities, two was
catalytic, and three was the future. And for the future, as usual, we only have five
minutes.

Let us talk a little bit about the future. As we know, the world of computation has
evolved, and these days we have a big Cloud and a small computer, whereas before
we had a big computer and a small Cloud. The whole paradigm of computation
is changing, with a migration of data, photographs, DNA information, our docu-
ments, our financial information—everything is migrating to the Cloud, because
we put it there, because someone has collected information about us.

It’s not only migration of data but there’s migration of computation. In the fu-
ture, all computation will be done in the Cloud. We will only have a device that
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sends inputs and receives outputs. This globalization of knowledge and connec-
tivity is quite impressive as well as what we can gain in terms of saving on local
storage and computation. It can help us in medical research, energy usage, traffic
rerouting, and much more. It is hard to summarize all the beautiful things that can
be done by being able to know so much.

However, there’s also enormous risk in this globalization of knowledge. And
some of the risks are that we lose control. Whereas before, the computation was
done at home, now it’s been done somewhere else. And what do I know if the
computation is done correctly? We lose privacy as well. We lose the “right to be
left alone.” We lose fairness. They know so much about me, they might profile me,
they might charge me more than I should be charged, they might not accept me to
graduate school, and so forth.

The question is: Can we essentially advance as a society without losing these
rights to the extent we have them today? Can we not relinquish individual control
entirely? I think that cryptography’s magic offers us a hope.

Even in what I've shown, verification in zero-knowledge means that you don’t
have to see the proof to verify the correctness of a computation, and in a similar
way, computation on data doesn’t necessarily mean that you have to see the data.
There is indeed a host of techniques that have been developed since the ’80s, and
matured remarkably in the last 5, 6 years, to this end. We should do exactly that.
These techniques show how you can compute on data without actually seeing it.

Let me just sort of very quickly breeze through the kind of problems that people
are working on these days, on Cloud computing, using cryptography. First thing is
verifying correctness of computation in the cloud: Trust but check.

Instead of trusting the Cloud, what we’d like to do is tell the Cloud, “Hey, listen,
why don’t you compute and then prove the results?” Of course, I would like to
take much less time than the cloud did, as the whole point is that I (the verifier) is
much weaker. So, I want the kind of proofs, which are extremely efficient to verify.
What would be the proof, interactive proof, the Cloud would say, “I actually ran
the program for this F, and that’s the result.” As we said IP is equal to PSPACE. Are
we done?

The problem is that these original results were about the complexity classes.
They didn’t care about specific computation. And they went through complete
problems. So, if you link up these results, the work that the Cloud is going to have
to do, in order to do the proofs, is going to be more than polynomial time. The
modern challenge is that you want to make sure that the Cloud, when it gives you a
proof, doesn’t have to work much harder to come up with that efficient proof. We
want both to verify superefficiently, but also the Cloud should not lose too much
time in overhead.
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This is an area of extremely active research. The results change depending on
whether you use interactive proof, which doesn’t make any assumptions on the
computational power of the cheating Cloud, or you want a computationally sound
proof like Silvio discussed in his talk. There’s incredible progress there. There’s a
paper in this conference, by Kalai, Raz, and Rothblum, who show how to take any
time T computation, and add only linear time overhead on top of what the prover
has to do.

Now, what’s nice about these results is, again, that they have also this catalytic
flavor to them, in that people are now aiming to go from theory to practice, apply-
ing a lot of these techniques to real-life programs. Writing compilers, designing
hardware, to take real programs and attach a proof to them quickly.

What’s the second challenge? The second challenge concerns privacy in the
Cloud. Do I really want to give the Cloud all my data? I could encrypt everything that
I putin the Cloud, but once I encrypt it, how is the Cloud going to do computations
on it now that it’s encrypted? Can we maintain privacy, and get utility?

That is a beautiful question posed by Rivest, Adelman, and Dertouzos many
years ago, and there have been an amazing trailblazing progress in the last few
years, in how to compute on encrypted data. New forms of encryption have been
invented to do exactly that. The most famous one is the Fully Homomorphic Encryp-
tion scheme by Gentry, presented in 2009, where he shows an encryption scheme,
where you could evaluate arbitrary polynomial-time functions on the encrypted do-
main.

When this was first shown, it was very slow, and it used assumptions we were
unfamiliar with. There has been incredibly rapid progress since. At this point,
the best assumption—as far as I know—is as good as the best nonhomomor-
phic cryptographic scheme based on lattices. Furthermore, a tremendous amount
of money was poured in by DARPA and other agencies to go from theory to
practice.

Third challenge: Okay, so we can encrypt our data in the Cloud, we can get proofs
that everything is correct. We can utilize the Cloud as computation engine. What
else? What else do we want? Well, we don’t necessarily always want to go back to
the client with encrypted data and say, “Hey, here is your answer, you can decrypt
it.” We want to do more than that. We want to aggregate information in the Cloud
and be able to compute on it and get the result. And this is the third challenge: Can
we encrypt data in the Cloud and allow the server to extract partial information on
this encrypted data and nothing else, without explicitly coming back to the client
who would decrypt the result of the computation each time?
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This would be useful for medical research, for traffic information, and so forth,
where can each server extract the information relevant to them and only that. The
answer in principal is, yes. But before I give you the sow, I want to give you two
beautiful applications.

Suppose you are a hospital, with loads of medical records. They’re all encrypted.
The hospital is not allowed to reveal to the drug company, let’s say, these medical
records because the patients didn’t give them the authority to do so. But the drug
company wants to run an algorithm that checks for a gene presence in a cohort of
patients. They don’t really care about looking at the entire medical file. Can it be
done and if so, how?

Another example is surveillance searching for suspects in photographs. Imagine
surveillance cameras would produce only encrypted photographs. Yet to make
these photos useful, you want to evaluate a comparison to a suspect database. Could
you do that? Could you just find out if there’s a suspect in the picture, and if so, get
the picture decrypted. Can I just extract that information and nothing else?

Surprisingly, this seems possible in principle. A new type of encryption called
Jfunctional encryption was introduced in 2005 by Sahai and Waters, to do just that.
It is a special encryption scheme, where for every program that you want to run on
data, there will be a special key that enables you to do just that, given the encryption
of the data, and nothing else. One program, one key. Another program, another
key. And so forth. Where are these keys coming from? There is a master key that
not only enables to decrypt, but also to come up with these auxiliary keys, which
enable someone just to compute specific functions. It’s a beautiful concept. And
raises beautiful questions. The progress has been to first address some interesting
functions, then for any polynomial time computation in a way that increases the
cipher-text size, then for multiple keys, and so forth.

Concluding Remarks
My talk has been long. There are two takeaway messages, before I express my
thanks.

First of all, our physical intuition today shouldn’t constrict our expectations
from the digital privacy of tomorrow. Often, even if a goal may seem paradoxical
in nature, once you define it the right way, find the right model, and add the
cryptographic toolbox, you can achieve it.

Second, given how much progress we made in complexity theory in the past
by thinking cryptographically, it may be worthwhile exploring how today’s new
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methods such as Fully Homomorphic, Functional Encryption, and so on, would
affect the complexity theory of tomorrow.

Finally, I want to thank my co-authors everywhere, but specifically the ones I
mentioned in the talk. I've co-authored with lots of people whose results I men-
tioned, but there’s always the Unknown Soldier out there.

I also want to thank my mentors in Berkeley and at MIT: Manuel Blum, Dick
Karp, and Ron Rivest, and my fabulous students, which are phenomenal. More
than all, I am forever grateful to my family for tolerating me so very well all this
time, thank you.
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Proofs, According to
Silvio: Silvio Micali's
Turing Lecture

Good afternoon, everybody!

It’s an honor and a pleasure to be here, and it’s even more of an honor and more of
a pleasure to be here together with Shafi. When the two of us strategized on what
to talk about in our Turing lectures, we decided to talk about proofs and agreed
on how to carve this huge topic between us. Shafi and I work together quite well.
But I'm not sure we coordinate that well. . . . Hence, the qualification “According
to Silvio” makes sure that my lecture represents my own take about proofs. I hope
Shafi covers the rest.

My lecture is articulated in three sections: Thanks, Science, and Advice. If you
get lost, just wait for the next section.

Thanks

If I am before you today, it’s because I have many thanks to give. But I'll be brief.

I'd like to thank my family (including my original one): my parents Giovanni and
Franca; my sister Aurea; my wife Daniela; and our kids Stefano and Enrico.

I'd like to thank my teachers: Corrado B6hm, for lovingly luring me from math-
ematics to computer science; Shimon Even, for introducing me to algorithms; and
Dick Karp, Manuel Blum, and Andy Yao, for providing me a lifetime of inspiration.
In particular, I'd like to thank Manuel for introducing me to cryptography, and for
simply being the best advisor one can hope to have. At the time of my arrival, Berke-
ley was, to computer science, what Gottingen must have been for mathematics at
the beginning of the last century. With Dick, Manuel, and Andy, I found myself at
a place and time of revolutionary progress. And I was terrified.
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Thankfully, I was helped by my fellow students. In this picture, David Licht-
enstein appears in his traditional rkzetorical pose, Vijay Vazirani in his traditional
defiant pose, Michael Sipser in his traditional cool pose. The picture was taken by
Michael Luby, appearing in here in his traditional pensive pose. I really could not
have survived the big stress, conceptual and otherwise, that Berkeley was for me,
without their scientific and human help. In particular, I'd like to thank them for
smartly decoding my Italian, and kindly ignoring my English.

Most of all, I'd really like to thank my best friend, Shafi, shown here in our
Berkeley days. As you know, Shafi is a very interactive person. In fact, thanks to her
multiple personalities, we could pack more interaction in a single day of joint work
than less fortunate souls could pack in a year. And interact we did, for many years.
We produced many works we are both proud of. We were fortunate in our scientific
quest. Fortune, they say, favors the prepared. If this is so, then it must have made
a huge exception, because in our case it favored the naive and the shameless, but
also the fearless. In fact, I must admit, we were totally unprepared to achieve the
goals that we set forward for ourselves. I thus feel doubly fortunate that we actually
managed to achieve them! But, work aside, the best thing for me is that, after so
many years, Shafi and I remain best friends. Given the personalities involved, this
really is a sort of miracle. So, thank you Shafi!

I'd like to thank that special place that is MIT, and my two guardian angels there,
Ron Rivest and Barbara Liskov. In particular, many thanks to Ron for continuing
to be a scientific and human mentor to me. I'd like to thank my other wonderful
colleagues—indeed, the best colleagues one can hope for.

My deep thanks to my stupendous Ph.D. students, Paul Feldman, Claude
Crépau, Bonnie Berger, Mihir Bellare, Phil Rogaway, Rafail Ostrovsky, Shai Halevi,
Ray Sidney, Rosario Gennaro, Moses Liskov, Leo Reyzin, Abhi Shelat, Matt Lepinski,
Chris Paikert, Rafael Pass, Paul Valiant, Jing Chen, Pablo Azar, Alessandro Chiesa,
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and Zeyuan Zhu, for injecting so many ideas in my mind and so much warmth in
my heart.

Special thanks to my wonderful neighbors, Michael Rabin, Les Valiant, and
Leonid Levin; and my neighbors in spirit, Charlie Rackoff, Oded Goldreich, and
Avi Wigderson for so many years of fun and science together, a truly heavenly
combination.

Finally, I'd like to thank our magnificent field. Last century, as it was said,
was meant to be the Century of the Atom, and it was instead the Century of the
Computer. The introduction of the computer in human history has been almost
as momentous as the invention of fire. Computation has really revolutionized the
world and us. Even more, since I am a theoretician, it has revolutionized the way
we think about the world and ourselves.

The charge of the light brigade at Balaclava, vividly recalled here in the painting
of Richard Canton Woodyville Jr., admittedly was a low-tech affair. But it may be
the best way to convey the impetus, the courage, and the intellectual ferocity with
which we are contributing not only to our own field, but also to other great fields
like biology, economics, quantum mechanics—you name it. I am mighty proud to
belong to such a generous and insatiable community. So, thank you all for being
such a community.

I would have more thanks to give, but wish instead to leave you with two sugges-
tions: (1) We really are those who have influenced us, and (2) Science is a collective
adventure.

Science

The evolution of the notion of a proof has taken more than two thousand years.
But I will summarize it in just 30 minutes: a real bargain! So, a better title for this
section would be “History of Proofs (Abridged).”

Classical Proofs. In my tradition, the classical notion of a proof started in ancient
Greece and ended up with Godel and Turing. The traditional iconography of these
two extraordinary individuals shows them older and marked by the hardships of
life. But I love to recall them in the glory of their student days, as we all should
be recalled, young and invincible. Here are their photos. Even though they had
very different approaches—very formalistic the first, very intuitive the second—they
agreed on one thing: Proofs are strings satisfying special syntactic properties. In
one formalization, a proof consists of a sequence of lines of text. In a line, you can
invoke an axiom. In another line, you may invoke a derivation rule. And so on. If,
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in the last line, you manage to write down the statement of the theorem you care
about, the theorem is proven.

The Need for Efficiency. Classical proofs ignore efficiency. But, in my opinion,
efficiency is really crucial to differentiate the notions of “truth” and “proof.” Truth
is something that you can achieve on your own, in isolation. Proof is a social process,
involving, at least implicitly, two different actors: a “prover” and a “verifier.” This
social process is truly meaningful only if the prover helps the verifier to ascertain
more efficiently the truthfulness of a given statement. Indeed, should the time
required to verify a proof be (essentially) equal to that required to find the proof,
there wouldn’t be much use for mathematicians!
So, which proofs are efficient?

NP. In the ’'70s, Steve Cook, Dick Karp, and Leonid Levin proposed the notion of
NP, short for nondeterministic polynomial time. (Too “techy,” right? We should hire
a good PR firm!) Colloquially speaking, NP proofs are strings that are short (i.e.,
polynomially long in the length of a statement) and easily (i.e., polynomial-time)
verifiable.

Interactive Proofs. About a decade later, Shafi, Charlie (Rackoff), and I, and inde-
pendently Babai and Moran, somehow stopped looking at proofs as purely syntactic
objects, and started looking at them as interactive processes. Very much like those
we remember from our good old school days, when proofs were Q&A sessions in a
classroom. To keep things simple, interactive proofs can be formalized as special
games. Let me be the prover, you the verifier, and S a statement we care about. We
both know (e.g., via a classical proof) that, corresponding to each such §, there is a
game G satisfying the following property. I can win G all the time, if S is true; else
I canwin G g at most half of the time. Assume now that we play G g a hundred times
and that I win every single time. Then, you may conclude that either (a) “Statement
S is true, and this is why Silvio has always won,” or (b) “S is false and Silvio has won
a hundred times in a row only because I have been extremely unlucky.” If I were you
I would conclude (a).

When interactive proofs were introduced, their power was far from clear. Oded
(Goldreich), Avi (Wigderson), and I showed that graph nonisomorphism, a famous
problem for which no NP proofs are known to exist, possesses very simple interac-
tive proofs. This result boded well for the power of the new notion.

But it was with Fortnow, Karloff, Lund, and Nisan that the power of interactive
proofs really started to take off. They indeed showed that all problems in #P have
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interactive proofs. And then Adi Shamir actually showed that the set of problems
having an interactive proof coincides with PSPACE. This amazing achievement
exactly captures how much interaction helps in a proof.

(By the way, interaction has actually proved helpful in a lot of other things.
For example, Noam Nisan has recently shown that it helps the communication
complexity of game-theoretic mechanisms. Interaction is a wonderful thing!)

Zero-Knowledge Proofs. From interactive proofs, we were able to develop zero-
knowledge proofs. Essentially, the latter proofs enable one to prove something
hiding all possible details. After the zero-knowledge proof of a given statement, you
know that the statement is true, but nothing else. Shafi, Charlie, and I introduced
the notion of a zero-knowledge proof and provided its first example. But Oded, Avi,
and I actually proved the power of zero-knowledge proofs. That is, we proved that
not just some theorems but actually all theorems in NP can be proved interactively
in a zero-knowledge manner. Actually, through a combination of other results, the
same holds for PSPACE.

By the way: Who cares about proofs that hide knowledge? Well, if you are in
cryptography, you care, because zero-knowledge is clearly crucial to guarantee se-
curity. In particular, zero knowledge has enabled general multiparty computation.
Let Py, ..., P, be parties, where each P; has a secret input x;; let f be an efficient
function on » inputs; and let (y4,...,y,) = f(x1, ..., x,). Then, secure computa-
tion guarantees that there is an efficient way for the n parties to talk back and forth
with each other so that, at the end, each P; correctly learns his own output y;, but
does not learn any other information about the inputs of the other parties that
is not deducible from y; itself. This result was first proved by Oded, Avi, and me
based on public-key cryptography (following an earlier two-party result of Andy in
a slightly weaker model). Soon after, Ben-Or, Shafi, and Avi, showed a noncrypto-
graphic proof of the result, assuming instead that each pair of parties is connected
by a separate secure channel.

In addition, zero-knowldge is important to achieve reliability. For example, zero-
knowledge has played a central role in Byzantine agreement, as defined by Pease,
Shostak and Lamport. Assume that we have a group of players, each of which starts
with his own initial bit. Then, informally, at the end of a Byzantine agreement
protocol, two properties must be satisfied. First, all honest players (i.e., all those
who follow all the instructions of the protocol) output the same bit. Second, the bit
output by all honest players must be 0, if the initial bit of every player was 0; and 1,
if the initial bit of every player was 1. Crucially, the above two properties must hold
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even if, during the execution of the protocol, 1/3 of the players can be corrupted by
an Adversary, who can force them to deviate from their protocol instructions in any
way she wants.

As defined, Byzantyne agreement has no privacy constraint whatsoever. Its only
constraint is an elaborate and delicate form of (reliable) correctness. Yet, somehow,
privacy—in fact, zero knowledge—really helps to enforce correctness, in Byzantine
agreement and in countless other protocols. Why? Because the best way to model
a sufficiently complex system is to assume that it is controlled by an Adversary. In-
deed, if a system is large enough and operates for long enough, then you can count
that it will eventually start to behave adversarially. So, how to defeat an adversary?
In any strategic setting, an adversary has little power if she knows little about what
you intend to do. Thus, although you only want to protect the correctness of your
system from the evil influence of an adversary, you may want to artificially inject pri-
vacy in your system, so as to curb the power of your adversary. It is thus no surprise
that zero knowledge has proved crucial to efficiently reach Byzantine agreement.

Probabilistically Checkable Proofs. Probabilistically checkable proofs (PCPs)
started with the works of Feige, Goldwasser, Lovasz, and Szegedy and Babai, Fort-
now, Levin, and Szegedy, and culminated with that of Arora, Lund, Motwuani,
Sudan, and Szegedy. PCPs are a remarkable achievement. As we all know, when
we verify a proof we must carefully read all its bits; otherwise, we may overlook
a fatal mistake. (If one assumes 0 = 1 somewhere in his proof, then he can prove
anything!) It is thus incredible that we can encode a proof so as to actually ascertain
its correctness by just sampling a few of its bits. Really amazing. These possibilities
were not at all on our radar screens just a few years ago.

Multiprover Interactive Proofs.. PCPs have found lots of applications, but, strictly
speaking, are not efficient. This is so, because they essentially transform a classical
proof into a longer, but “samplable” proof. Since receiving a string must have a
cost proportional to its length, the verifier may prefer receiving from the prover a
classical proof and read it in its entirety to receiving a longer proof that he can later
just read in a few places.

This problem cannot be avoided by having the prover ship to the verifier a piece
of random-access memory containing the longer, samplable proof. Indeed, I have
never heard that shipping a piece of hardware containing a string s is cheaper than
sending s! Nor can it be avoided by (1) having the prover compute and keep the
longer and samplable proof and (2) having the verifier simply ask the prover for the
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portions he wants to read. In this way, in fact, it becomes trivial for the prover to
cheat without being caught.

The problem is instead elegantly addressed by multiprover interactive proofs
(MIPs), proposed by Michael Ben-Or, Shafi, Joe Kilian, and Avi. Informally, in their
model, the longer and samplable proof is known to each of two distinct provers,
who are assumed to be unable of communicating to each other during the proving
process. By separately and cleverly interrogating them, the verifier can reconstruct
any piece of the proof he wants to read, without fear of being undetectably cheated.
Importantly, this property continues to hold even if, before their interaction with
the verifier starts, the provers have met and agreed on a joint strategy for answering
the verifier’s questions.

However, it is not trivial to guarantee that two provers cannot communicate with
each other during the proving process. Verbal communication may be prevented by
thick walls. Cell-phone communication by Faraday cages. But there may be many
other forms of communication . . .

CS Proofs. Computationally sound proofs (CS proofs for short) have been formal-
ized by me based on the work of Kilian. Such proofs envisage a single prover and
a single verifier (and do properly “charge” for any bit sent). Essentially, they are
super-efficient “proofs” for all statements. Did I say “all theorems?” No. I said “all
statements.” In fact, every statement is guaranteed to have a CS proof that is both
super short and super easy to verify. Thus, a CS proof system is both complete (i.e.,
all true statements are provable) and inconsistent (i.e., all false statements are prov-
able).

To be sure, inconsistency has been the big scarecrow of mathematics. Non-
Euclidian geometries have been developed out of the fear that the 5th postulate
could lead to some contradiction. In a CS proof system, however, the ability of
proving true and false statements alike is de facto rendered harmless by a crucial
asymmetry: Very roughly, proving a true statement is always feasible, while proving
a false one is always extremely hard.

The joining of two opposites is rarely inconsequential. The gods and goddesses
who combine opposite forces typically enjoy great powers themselves. In complex-
ity theory, the notion of a one-way function also combines two opposites. Infor-
mally, a function is one-way if it is easy to evaluate and hard to invert. The power
of such functions is almost inconceivable. Most of cryptography originates from
this power. By enjoying both completeness and consistency, CS proof systems are
extremely powerful too. Indeed, they finally succeed in simultaneously simplifying
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the job of the prover and that of the verifier. All prior notions of an efficient proof
only aimed at simplifying the job of the verifier. But this simplification may not
be very useful if the work of the prover is made astronomically more complex. In
such a case, in fact, no one in the real world will be able to play the role of the
prover. Finding the proofs of some theorems required a life-time of work. But if we
further demanded that such proofs should be checkable by verifiers with the atten-
tion span of a three-year old, finding them might require an astronomical (rather
than a human) amount of time.

A CS proof, instead, allows you to convince a most impatient verifier that a given
true statement S is true in roughly the same time it took you to convince yourself
that § is indeed true. But, if S is false, then convincing the verifier that § is true is
hopelessly hard.

Two-Message Delegation. Let me continue our abridged history of efficient proofs
with two-message delegation, as just discovered by Kalai, Raz, and Rothblum. What
is this? It is an efficient way to prove mathematical statements via a detour through
quantum mechanics. (Do not worry: The visit to physics is a round trip. At the end,
what is produced is a purely mathematical proof!) It’s a wonderful and unusual
result. It shows that fields are often artificially separate. There is one humanity and
one human knowledge.

SNARKS. SNARKS is short for Succinct Noninteractive ARguments of Knowledge.
Their essential bibliography includes the works of Valiant; Bitansky, Chiesa, Ishai,
Ostrovsky, and Paneth; Gennaro, Gentry, Parno, Raykova; Parno, Gentry, Howell,
Raykova; Ben-Sasson, Chiesa, Genkin, Tromer, and Virza; Lipmaa; and Bitansky,
Canetti, Chiesa, Tromer. An amazing sequence of works. Conceptually, a SNARK
can be constructed by starting with a CS proof. Then, by adding a nondeterministic
compiler. (Compilers are optimized to work for ordinary programs. But this time
you want to optimize things for the prover, who is indeed a nondeterministic
program.) And, finally, by adding some zero-knowledge. The end result is a proof
so compact as to consist of just 256 bytes. Thus, you can use a bar code to encode
your proof. Anyone can scan it with her phone and easily verify it.

In sum, even disregarding zero-knowledge, SNARKS enable one to use proofs
anytime and anywhere. SNARKS have a tremendous potential.

Rational Proofs. Last chapter in our abridged history are rational proofs. Such
proofs, introduced by Pablo Azar and me, are indeed the new kid on the block.
They include some ingredients that have been neglected so far. So, I'll take a bit
more time to discuss them.
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Let me start with a story: Call it a “CS Tale.” Merlin and Arthur, as you know,
have been living a happy life. Once in a while, Arthur asks, “Is X true?”; Merlin
replies “Yes” or “No,” whatever the case may be; and then they quickly interact,
until Arthur is convinced. Their arrangement has lasted for a long time. Suddenly,
Arthur asks “Is X true?” and Merlin replies “Go to hell!” Arthur: “What happened?”
Merlin: “Simple. Dumbledore works for Goldman Sachs; Gandolf for Citi; Potter
for J.P. Morgan. They are making money hands over fist. How about me? Now that I
have money on my mind, I don’t want to hear about proving your stupid theorems
any more.” Somehow, Arthur is practical. “You know what? If money is what you
want, okay, I'll pay.” The smile comes back on Merlin’s face.

The purpose of this tale raises a very serious question: How to pay a math expert?
The answer better be a lot, but there are various options. The first is the “fixed
price” one: $1 for a correct proof and $0 for an incorrect one. This option simply
mimics the standard interactive-proof setting and does not enlarge the range of
what is efficiently provable. So, can we, with more flexible monetary incentives, be
able to prove efficiently more theorems? In particular, can we prove them with fewer
rounds of communication? Communication rounds matter a lot. They actually
are the most expensive resource. General interactive proofs in principle require
polynomially many elementary computational steps (such as increasing a counter
by 1) and polynomially many rounds. Now assume that an interactive proof requires
n® computational steps and n? rounds of communication, where n = 1000. Then,
the first constraint is not a problem: The laptop I am using right now can easily
perform a billion elementary operations. However, we cannot feasibly exchange
e-mails back and forth a million times!

Rational proofs are very round-savvy. Currently, they are a theoretical model,
to be sure, but they address a real concern and may become practically relevant at
leastin some applications. To be more intuitive, I will discuss Rational Merlin Arthur
(RMA for short) as a set of functions, rather than languages. Moreover, I will infor-
mally describe only RM A[k], where k is the number of rounds of communication
utilized by Arthur and Merlin.

A function F belongs to RM A[k]if there exist two polynomial-time functions, a
conclusion function C and a reward function R, that, for any input x, enable Arthur
to learn F(x) as follows. Arthur and Merlin talk back and forth for & rounds. Like
in the classical Merlin-Arthur system, Arthur is a dumb interacting algorithm that
sends messages r; consisting of polynomially many (in the length of x) random bits.
Merlin, on the other hand, is an arbitrary interactive algorithm (thus capable of
performing an unbounded amount of computation) that sends polynomially long
messages s;. Merlin goes first. So the transcript of their conversation about x is of
the form T =5y, 7, . - -, Sg, Fg-
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At the end of their conversation, two things happen:

(a) The reward function R is evaluated, on the input x and the transcript 7, to
determine the amount of money that Arthur pays to Merlin.

(b) The conclusion function C is evaluated on x and T to determine a value y,
which Arthur concludes to be F(x).

That is, Merlin wanted to be paid and now he is paid. Namely, he is paid R(x, T)
dollars. Arthur wanted to know about the value of F(x) and now takes it to be
y=C(x,T).

Thus a natural question arises: How about verifying that C(x, T) = F(x)? The
answer is surprisingly simple: There is no such verification! However, the proof
system R M A[k] offers some guarantee. Assume you’re Merlin. Finally, you get paid.
OK, but: How much? As we have just discussed, according to rule R. Again, whatever
strings sy, §,, . . . you may choose, if Arthur chooses the random string r; as his own
ith message, then you will receive the amount of money R(x, (s1, 71, - - - , Sk, 7t))-
And if you had said s}, s7, . . . instead, then you would have received the amount
of money R(x, (s}, 7y, ...,5;,7)). In other words, it is your lucky day: you get
money no matter what you say. It’s a bonanza! True. But, what is best for you to
say? If you are rational, your optimal strategy for choosing your ith string is as

follows. Given the transcript generated so far, s7, 7y, ..., s r;_y1, find the string

*
*
s7 that maximizes your expected reward. This reward, of C(l)urse, is computed over
the possible continuations of the transcript (knowing that Arthur’s future strings
will continue to be chosen at random, and yours will be chosen by your optimal
strategy). Let T* denote a transcript so generated. Then the guarantee offered is
that, when you maximize your expected money, Arthur correctly learns F(x). That
is, C(x, T*) = F(x) for all inputs x.

To check our understanding, let us focus on RMA[1]. In this proof system,
Merlin sends a single random string, s;, Arthur replies with a single string, r;, and a
transcript has the form 7' = s4, ry. To show that a given function F is in RM A[1]we
must choose a reward function R and a proof function C so that Merlin maximizes
his money if and only if Arthur learns the truth about F (x). The first idea that comes
to mind is to choose R and C as follows: For any string s that Merlin may choose,
any random string r that Arthur may choose, and any input x for F,

e C(x,(r,s))=sand
® R(x,(r,s)) =1ifs = F(x), and 0 otherwise.
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Indeed, with such choices of R and C, to maximize his reward, Merlin must send
Arthur the string s = F(x). Thus, whenever Merlin so chooses s, Arthur correctly
learns F (x).

Of course, a problem with the above choice of C and R is that R cannot be
polynomial-time unless so is F. However, this problem does not exclude the possi-
bility, for some hard-to-evaluate function F, to find two efficient functions C and
R showing that F is in RM A[1].

Consider SAT, the NP-complete language of satisfiability, which can be equiv-
alently defined as a function as follows: for all Boolean formulas f,

SAT(f) =YES if there exists x such that f(x) = TRUE, and NO otherwise.

This function should be hard to evaluate. Yet let me argue that SAT belongs
to RM A[1] by informally and trivially constructing the required functions C and R
as follows. Arthur pays Merlin $2 if Merlin gives him a satisfying assignment of f,
and $1 in all other cases (e.g., if Merlin tells him that f is not satisfiable). Consider
first the case that f is satisfiable. In this case, Merlin maximizes his money by
giving Arthur a satisfying assignment, z, of f. Indeed, Arthur can easily verify that
f(z) = TRUE, and thus that Merlin should receive $2. But, in so doing, Arthur of
course correctly concludes that f is satisfiable! Consider now the case that f is
not satisfiable. In this case, Merlin maximizes his money no matter what he tells
Arthur, because he can only receive $1. At the same time, Arthur correctly deduces
that f is not satisfiable, because, no matter what Merlin can tell him, he cannot
tell him a satisfying assignment of f, if none exists. QED. What could be simpler?

On the basis of the above example, we might believe that trivial rational proofs
exist any function of interest. But not so fast. Consider the following two functions.

1. #:for any Boolean formula f, #(f) &« |x : f(x) = TRUE]|.

That is, # tells us the number of satisfying assignments of every possible
Boolean formula.

2. MinMax: for any (2k-input) finite function g, denoting by g a compact encoding

of g,

. — def . .
MinMax;(g) = min max . .. min max 8(X1y Y1y vy Xky &)+
X1 »1 Xk Vi

That is, MinMax,, tells us the value of any k-round game.

Hmm . . . OK, rational proof may not be as trivial for the above two functions,
but they still exist—and are not too hard to find either! Indeed, # € RM A[1] and
MinMax; € RM A[k]. The first of the above two results may be surprising, because it
trivially implies that there exist single-round rational proofs for # P. By contrast, in
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the traditional Arthur-Merlin model, one round does not suffice for # P, unless the
polynomial-time hierarchy collapses—something disbelieved by most researchers.
Thus, proving that #P can be decided one-round rational proofs (without any
unproven assumptions!) shows the power of rational proofs.

The rational proof model may be made more realistic by extending it to experts
who cannot perform arbitrary amounts of computation. A more robust model actu-
ally envisages that both parties incur monetary costs for the amount of computation
they perform, but that Merlin’s cost for computation is less than Arthur’s.

Rational proofs point out that efficiently conveying the truth can sometimes
be viewed as the maximization of an easy to evaluate function. Forget interpreting
the reward function as “money”: The truth you are looking for is the value that
maximizes a given function R. This perspective enlarges the applicability of rational
proofs. In the extreme, in a living organism, cells may not care about money or
produce written reports. However, some cells may care about receiving—say—some
proteins, and the production of these proteins may be strongly correlated to those
cells’ reports about the status of some vital aspect of the organism!

Efficient Proofs and the Computation Market. Computation is the new Atlas that
keeps the world up. OK, the world can stand on its own, but pretty much anything
else in the world needs computation. Computation may be more valuable than
oil, water, and lots of other resources. It is a good thing that those with more
computation power use it to solve the computational needs of those who have
less computational power. But we need good ways of selling computation. And
proofs will play a crucial role in ensuring that computation is correctly bought. This
was one of my original motivations behind interactive proofs. And this motivation
has never waned. Rather, the ability of proofs to power a vibrant and meaningful
computation market has increased.

Final and Personal Considerations. In mere 30 years, we have brought forward
NP, interactive proofs, zero-knowledge proofs, probabilistically checkable proofs,
multi-prover interactive proofs, computationally sound proofs, 2-message delega-
tion, SNARKS, rational proofs . . . . Cathedrals and other splendid architectures of
the past have been erected to the skies over multiple generations. It is thus amazing
that the notion of an efficient proof, this formidable conceptual architecture, has
been erected in a single generation. I cannot tell you how fortunate I feel to have
witnessed and participated to such a momentous development.

Everything is fair in love, war, and proofs. But with proofs we have abandoned all
restraints. Proofs used to be syntactic objects; now they are interactive processes.
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They used to be deterministic; now they are probabilistic. They had to be verified
by full reading, and now can be verified by spot reading. Proof systems had to be
consistent to be useful; and now some proof systems are more useful because they
are properly inconsistent. Like love and war, proofs demand total commitment. For
them, we must certainly summon our intellect, but also emotions, personal history,
and sense of aesthetics. All of these make us figure out which of the infinitely many
theorems out there we should try to prove and how.

Proofs are going to become more and more useful as the complexity of our world
increases. Our survival as a species will depend on proving that some very complex
mechanism, which will keep us alive, actually works.

Proofs are our past, our present, and our future.

Advice
I have always loved to give advice. And, at this point, I feel a little bit legitimized to
give it. . . . My advice, of course, is to the students among you. Here we go.

1. Collaboration. Collaboration wins over competition anytime. And on top of
it, it’s much more fun. Don’t ever believe that research is a zero-sum game.
Collaborate as much as you can!

2. Confidence and Doubt. Confidence and doubt are both crucial. If you're not
confident, you’re not going to attempt doing anything worth doing. But if
you have no doubts about succeeding in what you are trying to do, then you
are not pushing yourself hard enough.

Be confident, until you doubt yourself!

3. Fortune.Never be ashamed of luck. I'm not. Nothing of importance is ever ac-
complished without a good dose of luck. My ancestors, the Romans, defined
luck as “that without which nothing.” And, in Palestrina, they dedicated a
monumental temple—better a mountain turned into a temple—to Fortune.
And fortune has many forms. Particularly in Science.

One form of luck is timing. Working on the right problem, with the right
collaborators, at the right time.

Another form of luck is ignorance. Finding a needle in a haystack is very
hard. But if your haystack is very, very small, you’ll find the damned needle.
Along time ago, when we were graduate students, Shafi and I wanted to find
a candidate encryption scheme satisfying our new and demanding notion of
security. In part, we succeeded to find it thanks to our limited knowledge of
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computational number theory, because this feasibly restricted a potentially
enormous search space. Ignorance may occasionally help.

Yet another form of luck is myopia. Because, if we could really see what
you are up against, rather than charging forward we would run away. Failure
to grasp the magnitude of the task ahead gives us the courage to get going.

In sum, be lucky!

4. Stubborness.I’'m stubborn as a mule, and I'm proud of it. Stubbornness is be-
lieving in yourself when nobody else does. Consider zero-knowledge proofs.
Shafi and I started calling them “Proofs with Untrusted Oracles.” And we
were so proud of them, so confident. “This stuff will catch fire; everybody will
love it.” To make the deadline of the next conference, we wrote our paper
furiously: day after night, after day, after night . . . Rejected! Okay. It can-
not happen again. Let’s re-write it and re-submit it. We changed the title
to “Interactive and Minimal Computation.” To better convey the nature of
the beast, and to better hide the prior rejection from the next committee . . .
New rejection! Next conference, nexttitle: “The Information Content of Proof
Systems.” Way more respectable. It should have worked. It didn’t! Next, we
got ourself a wonderful collaborator: Charlie. He told us: “You guys! The way
you write! Leave the introduction to me.” We did. Let me read to you the
opening paragraph. “Communication is a tool for transferring or exchang-
ing knowledge. In traditional computational complexity or communication
complexity, the goal is to communicate as much knowledge as possible as
efficiently as possible. Since all participants are considered good friends, no
one cares if more knowledge than necessary is communicated. The situation
with respect to cryptographic protocols is very different.” Ah! Such a beautiful
prose . . . Canned! But, finally, some 30 years ago, “The Knowledge Com-
plexity of Interactive Proof Systems” was accepted by the 17th Symposium of
Theory of Computing.

Be stubborn!

5. Limitations.How canIdoresearch, limited asIam? Actually, ifyou are limited
you can think about a different approach to the problem. An approach that
less limited people will miss. Limitations can be strengths. In fact, it is a
powerful trick to artificially limit ourselves, so as to make ourselves stronger.
In 1519, Hernan Cortes, with a few hundred men, disembarked in what is
now Mexico. He was facing an unchartered territory and a huge enemy army.
He was in a pretty weak position. So, what did he do? He decided to fortify
his stance. He sank his own ships, thus depriving his men of any possible
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escape and ultimately securing victory. If you use the same strategy toward
peaceful ends, you’ll make a better world.
Enjoy your limitations!

6. Inspiration. Where do we find it? Leo Tolstoy had it right: “If you want to be
universal, start by painting your own village.” Actually, you do not have to
leave your house and roam around your village. Stay inside and look inside.
Speak about the deepest part of your heart and you’ll be universal. In any
artistic endeavor as well as in any scientific endeavor, what motivates us is
an emotional problem that has been bothering us since we were kids. And
we’ll never tire and we’ll never rest. Because we want to solve the damned
problem that has bothered us for so long. In my case: “Is there someone out
there with whom I caninteract? And if there is, should I fear the interaction?”
And in your case?

Find the true source of your inspiration!

I know it is hard. The path of self- discovery is long and tortuous. But then: Do we
have anything better to do in this world than figuring out who we really are and
what we really want? I don’t think so. So, let’s embrace our destiny;,let’s pack our
belongings, and let’s start our journey. Step after step, with hope, with joy, with
confidence, and most of all, with

GOOD LUCK!
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the intractability of some problems in number
theory such as factoring, index finding and
deciding whether numbers are quadratic resi-
dues with respect to composite moduli is
assumed. In this context, impossibility means
computational infeasibility and proving that a
problem is hard means to show it equivalent to
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The key idea in both the RSA scheme and
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We would like to point out two basic weaknesses

of this approach:

1) The fact that f is a trapdeor function does
nol rule oul the possibility of computing z
from f(z) when z is of a special form.
Usually messages do not consist of numbers
chosen at random but possess more struc-
ture. Such structural information may help
in decoding. For example, a function f,
which is hard to invert on a generic input,
could conceivably be easy to invert on the
ASCII representations of English sentences.

The fact that f is a trapdoor function does
not rule out the possibility of easily com-
puting some partial information about z
(even every other bit of x) from f (z). The
danger in the case that z is the ASCII
representation of an English sentence is
self evident. Encrypting messages in a way
that ensures the secrecy of all partial infor-
mation is an extremely important goal in
Cryptography. The importance of this point
of view is particularly apparent if we want
to use encryption to play card games over
the telephone. If the suit or color of a card
could be compromised the whole game
could be invalid.

2)

Though no one knows how to break the RSA or
the Rabin scheme, in none of these schemes is
it proved that decoding is hard without any
assumptions made on the message space. Rabin
shows that, in his scheme, decoding is hard for
an adversary if the set of possible messages has
some density property.

The novelty of our contribution consists of

1. The notion of Trapdoor Functions is
replaced by Probabilistic Encryption. To
encrypt each message we make use of a fair
coin. The encoding of each message will
depend on the message plus the result of a
sequence of coin tosses. Consequently,
there are many possible encodings for each
message. llowever, messages are always
uniquely decodable?

'Probabilistic Encryption is completely different from

the technique of appending random bits to a message as
suggested in {2} and [i€].



Probabilistic Encryption

This chapter reproduces the contents of the paper “Probabilistic Encryption and
How to Play Mental Poker Keeping Secret All Partial Information,” which appeared
in the proceedings of the 14th Annual ACM Symposium on Theory of Computing, pages
365-377, 1982.

This pioneering work of Shafi Goldwasser and Silvio Micali defined the mind-
set of the field by establishing conceptual frameworks and demonstrating their
usefulness. In particular, it advocated rigorous and robust definitions of security
aswell as reducing the security of complex systems to better understood complexity
assumptions; it presented computational indistinguishability as a proxy for equiv-
alence; it heralded viewing security as an emulation of an ideal setting (via the
simulation paradigm); and introduced techniques such as the hybrid argument.
The term “probabilistic encryption” reflects the realization that a robust notion of
secure encryption requires the use of randomization in the process of encrypting
each message (and not only in the process of generating cryptographic keys).
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Security is based on Complexity Theory and the intractability of some problems
in number theory such as factoring, index finding and deciding whether numbers
are quadratic residues with respect to composite moduli is assumed. In this con-
text, impossibility means computational infeasibility and proving that a problem
is hard means to show it equivalent to one of the above mentioned problems.

The key idea in both the RSA scheme and the Rabin scheme is the selection of
an appropriate trapdoor function; an easy to evaluate function f such that x is not
easily computable from f(x), unless some extra information is known. To encrypt
a message m, one simply evaluates f(m).

We would like to point out two basic weaknesses of this approach:

1. The fact that f is a trapdoor function does not rule out the possibility of
computing x from f(x) when x is of a special form. Usually messages do
not consist of numbers chosen at random but possess more structure. Such
structural information may help in decoding. For example, a function f,
which is hard to invert on a generic input, could conceivably be easy to invert
on the ASCII representations of English sentences.

2. The fact that f is a trapdoor function does not rule out the possibility of
easily computing some partial information about z (even every other bit
of x) from f(z). The danger in the case that z is the ASCII representation
of an English sentence is self evident. Encrypting messages in a way that
ensures the secrecy of all partial information is an extremely important goal
in Cryptography. The importance of this point of view is particularly apparent
if we want to use encryption to play card games over the telephone. If the suit
or color of a card could be compromised the whole game could be invalid.

Though no one knows how to break the RSA or the Rabin scheme, in none of
these schemes is it proved that decoding is hard without any assumptions made
on the message space. Rabin shows that, in his scheme, decoding is hard for an
adversary if the set of possible messages has some density property.

The novelty of our contribution consists of

1. The notion of Trapdoor Functions is replaced by Probabilistic Encryption.
To encrypt each message we make use of a fair coin. The encoding of each
message will depend on the message plus the result of a sequence of coin
tosses. Consequently, there are many possible encodings for each message.
However, messages are always uniquely decodable.!

1. Probabilistic Encryption is completely different from the technique of appending random bits
to a message as suggested in [12] and [16].
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2.1

2. Decoding is easy for the legal receiver of a message, but provably hard for an
adversary. Therefore the spirit of a trapdoor function is maintained. In addi-
tion, in our scheme, without imposing any restrictions on the message space,
we can prove that decoding is equivalent to deciding quadratic residuosity
modulo composite numbers.

3. No Partial Information about an encrypted message could be obtained by
an adversary. Assume that the message space has an associated probability
distribution and that, with respect to this distribution, an easy to compute
predicate P (such as “the exclusive or of all the bits in the message is 1”)
has probability p to be true. Let p > .5 without any loss of generality. Then,
without any special ability, an adversary, given the cyphertext, can always
guess that P is true for the cleartext, and be correct with probability p.

Based on the assumption that deciding quadratic residuosity modulo
composite numbers is hard, we prove that an adversary cannot guess cor-
rectly with probability p + ¢, from the cyphertext, whether the cleartext sat-
isfies the predicate P, where ¢ is a non negligible positive real number.

Probabilistic Encryption has been useful for the solution of Mental Poker. The
problem whether it is possible to play a “fair” game of Mental Poker has been raised
by Robert Floyd. Shamir, Rivest and Adleman proposed an elegant solution to this
problem in [14] using commutative encryption functions, but they could not prove
that partial information could not be compromised using their scheme. Indeed,
several problems in the implementation of their scheme have been pointed out by
Lipton in [10].

We present a solution for Mental Poker, for which we can prove, based on the
assumption that factoring and deciding quadratic residuosity modulo composite
numbers is hard, that not a single bit of information about a card which should re-
main hidden can be discovered. Our solution does not use commutative encryption
functions.

The Security of a Public Key Cryptosystem
All the number theoretic notation used in this section will be defined in Section
3.1.

What is a Public Key Cryptosystem?

The concept of a Public Key Cryptosystem was introduced by Diffie and Hellman in
their ingenious paper [8]. Let M be a finite message space, A, B, ... be users, and
let m € M denote a message. Let E,: M — M be A’s encryption function, which is



2.2

Theorem

Chapter 7 Probabilistic Encryption 179

ideally bijective, and D 4 be A’s decryption function such that D 4(E 4(m)) = m for all
m € M.In a Public Key Cryptosystem E , is placed in a public file, and user A keeps
D, private. D, should be difficult to compute knowing only E 4. To send message
m to A, B takes E 4 from the public file, computes E,(m) and sends this message
to A. A easily computes D, (E 4(m)) to obtain m.

The RSA Scheme and the Rabin Scheme

The two implementations of a Public Key Cryptosystem most relevant and inspiring
for this paper are the RSA scheme [13], due to Rivest, Shamir and Adleman, and its
particularization suggested by Rabin [12].

The key idea in both the RSA scheme and the Rabin scheme consists in the se-
lection of an appropriate number theoretic trapdoor function. In the RSA scheme,
user A selects N, the product of two large primes p; and p, and anumber s such that
s and ¢ (N) are relatively prime, where ¢ is the Euler totient function. A puts N and
s inapublic file and keeps the factorization of N private. Let Z}, = {x |[1<x <N —1
and x and N are relatively prime}. For every message m € Zy,, E,(m) =m* mod N.
Clearly, the ability to take sth roots mod N implies the ability to decode. A, who
knows the factorization of N, can easily take sth mod N. No efficient way to take
sth roots mod N is known when the factorization of N is unknown.

About the RSA scheme Rabin remarks that, for all we know, inverting the func-
tion x* mod N may be a hard problem in general, and yet easy for a large percentage
of the x’s.

He suggests to modify the RSA scheme by choosing s = 2. Thus, for all users
A, E4(x) = x> mod N. Notice that E, is a 4-1 function because our N is the prod-
uct of two primes. In fact, every quadratic residue mod N, i.e every ¢ such that
g =x* mod N for some x € Zy*, has four square roots mod N:+x mod N and
£y mod N. As A knows the factorization of N, upon receiving the encrypted mes-
sage m?> mod N, he could compute its four square roots and get the message m.
The ambiguity in decoding could be eliminated, for example, by sending the first
20 digits of m in addition to m? mod N. Such extra information cannot effectively
help in decoding: we could always guess the first 20 digits of m.

The following theorem shows how hard is it to invert Rabin’s function x> mod N.

(Rabin): If for 1% of the ¢’s quadratic residues mod N one could find one square
root of ¢, then one could factor N in Random Polynomial Time.

The theorem follows from the following lemma that we state without proof.
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Givenx, y € Zy* such that x> = y> mod N and x # +y mod N, there is a polynomial
time algorithm to factor N. (In fact the greatest common divisor of N and x £ y is
a factor of N).

Informal proof of Rabin’s theorem: Assume that we have a magic box B such that
given q, a quadratic residue mod N, for 1% of the ¢’s it outputs one square root of
g mod N. Then we could factor N by iterating the following step:

Picki atrandom in Z,* and compute ¢ = i2 mod N. Feed the magic box Bwith g.
If M outputs a square root of ¢ different from i or —i mod N, then (by the above
lemma) factor N.

The expected number of iterations is low, as at each step, we have a 0.5% chance to
factor N.

Objections to Cryptosystems based on Trapdoor Functions

Covering ones face with a handkerchief certainly helps to hide personal identity.
However:

1. Itwill not hide from me the identity of a special subset of people: my mother,
my sister, close friends.

2. I can gather a lot of information about the people I cannot identify: their
height, their hair color, and so on.

Essentially, the same kind of problems may arise in the RSA scheme and in the
Rabin scheme and, more generally, in any other Public Key Cryptosystem based on
Trapdoor Functions:

1. The fact that f is a trapdoor function does not rule out the possibility of
computing x from f(x) when x is of special form.

2. The fact that f is trapdoor function does not rule out the possibility of easily
computing some partial information about x from f(x).

Discussion of Objection 1

One may argue that Rabin’s Public Key Cryptosystem is as hard to break as factoring
in the following way; whoever can get a message m from their encryptions m? mod N
1% of the time, is actually realizing the magic box of Rabin’s theorem and thus could
efficiently factor n.

We would like to point out the following fact.
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If M, the set of messages, is “sparse” in Zy*, the ability to decode 1% of all messages
does not yield a random polynomial time algorithm for factoring.

By “sparse"” we mean that for a randomly chosen x € Zy*, the probability that x
is a message is virtually 0.

Let f(x) = x?>mod N. Assume that we are able to invert the function f only on
f(M). Then we would have a magic box MB which, fed m?> mod N, would output
m whenever m € M; and fed ¢, outputs nothing whenever ¢ ¢ {m> mod N | m € M},
except, at most, for a negligible portion of the ¢’s. With the use of such a magic
box we could decode, but not factor N efficiently. Using such MB, let us look at the
above informal proof of Rabin’s theorem. If we pick m € M and feed m? mod N into
MB, then we get back m and we cannot factor. If we pick i ¢ M and feed i> mod N to
MB, then the probability that one square root of i mod N different from i, belongs
to M is practically 0 and we get no answer.

Discussion of Objection 2

We would like to define a Public Key Cryptosystem to be secure if an adversary, given
the cyphertext, cannot obtain any partial information about the cleartext. This latter
notion needs to be formalized:

Let P be any easy to evaluate, non constant, boolean predicate defined on the
message space M. Let m € M. If, given the encryption of m, an adversary can
efficiently compute the value of P(m), then partial information about m can be
obtained from the encryption of m.

Notice that, according to the above definition, no Public Key Cryptosystem based
on trapdoor functions is secure. In fact, if E, is a trapdoor function, the following
predicate P, defined on the cleartext, is easy to evaluate from the cyphertext: P(x)
is true if and only if £ 4 (x) is even. We can avoid such problems using Probabitistic
Encryption.

We know that some decision problems may be hard to solve for particular
inputs, but easy to solve for most of the inputs. In view of the special purpose
of Cryptography, the requirement that obtaining partial information should be
difficult needs to be strengthened.

Assume that the message space has an associated probability distribution and
that, with respect to this distribution, a predicate P has a probability p to be true.
Without loss of generality, let p > 0.5.

An adversary has an ¢ advantage in evaluating the predicate P, if he can correctly
guess the value of P relative to the cleartext with probability greater than p + €.
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2.6

Example

We are now able to restate the previous partial information definition.

A Public Key Cryptosystem is ¢ secure if an adversary does not have an ¢ advantage
in evaluating, given the cyphertext, any easy to compute predicate relative to the
cleartext.

Based on the assumption that deciding quadratic residuosity modulo composite
numbers is hard, we introduce an ¢-secure Public Key Cryptosystem, for every non
negligible, positive, real number ¢. Let us first deal with the question of sending
securely a single bit in a Public Key Cryptosystern. This question, closely related to
the security of Partial Information, has been raised by Brassard in [7].

Attempts to Send a Single Bit Securely in Public Key Cryptosystems
based on TrapDoor Functions

Suppose that user B wants to send a single bit message to user A in great secrecy.
The bit is equally likely to be a 0 or a 1. Bwants no adversary to have a 1% advantage
in guessing correctly his message. B knows that E, is hard to invert and tries to
make use of this fact in the following way.

Idea 1: All users in the system agree on an integer i. User B selects r € M at
random, except for the ith bit of », which will be his message. B sends E 4(r) to A.

A can decode and thus get the desired bit. But what can an adversary do?

Danger: let y = E 4 (x), where E, is a one way function. Then, given y, it could
be difficult to compute x but not a specific bit of x.

Let p be a large prime such that p — 1 has at least one large prime factor. Let g
be a generator for Z,*. Then y = g* mod p is a well known one-way function. But,
even though it is difficult to compute x from g* mod p (the index finding problem),
it is easy to get the last bit of x. In fact, x ends in 0 if and only if y is a quadratic
residue mod p. For p prime we have fast random polynomial time algorithms to
test quadratic residuosity, see [10].

The following idea was suggested by Donald Johnson.

Idea 2: B selects 8 <i < 100 at random, and sets the ith bit of x to the bit he
wants to communicate. The remaining 93 bits of x are chosen at random, except
for the first 7 bits of x, which specify location i. B sends E 4(x) to A.

Danger: If, given E 4 (x), we can easily compute the first 7 bits of x and one of the
last 93 bits of x, then we could guess B’s message with a 1/93 advantage.

Summarizing: There are many ways in which a single bit could be “embedded”
in a binary number x. Taking the “exclusive or" of all the digits of x is just one
more example. However, given y = E ,(x), being able to discover some particular
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bits embedded in x DOES NOT CONTRADICT the fact that it is hard to compute
x. Then, what is a secure way to send a single bit? The answer to this problem is
discussed in the next section.

Deciding Quadratic Residuosity Is Hard on the Average

The symbol (x, N) will denote the greatest common divisor of x and N. We use
Pr(X) to denote the probability of the event X. We let Zy*={x|1<x N —1and
(x, N)=1}.

Background and Notation
Given q € Zy*, is ¢ = x2mod N solvable? If N is prime, then the answer to this
question is easily computed. If a solution exists, ¢ is said to be a quadratic residue
mod N. Otherwise ¢ is said to be a quadratic non-residue mod N. From now on let
P;, and P, be odd, distinct primes and N = P, P,. Then, ¢ = x> mod N is solvable if
and only if both ¢ = —x? mod P; and ¢ = x> mod p, are solvable. If this is the case,
g is said to be a quadratic residue mod N, otherwise ¢ is said to be a quadratic
non-residue mod N. We will call the problem of determining whether an element
q € Zy™ is a quadratic residue, the quadratic residuosity problem.

Let p be an odd prime and g € Z %, then the Jacobi symbol (¢/p) equalsi if g is
a quadratic residue mod p and —1 otherwise. The Jacobi symbol (¢/N), is defined
as (¢/N) = (q/p1)(q/p,)- Despite the fact that the Jacobi symbol (¢/N) is defined
through the factorization of N, (¢/N) is computable in polynomial time even when
the factorization of N is not known!

It is easy to see, from the above definitions that if (¢/N) = —1 then ¢ must be
a quadratic non-residue mod N. In fact, ¢ must be a quadratic non-residue either
mod P; or mod P,. However, if (¢/N) = +1, then either ¢ is a quadratic residue
mod N or ¢ is a quadratic non-residue for both the prime factors of N.

Let us count how many of the ¢’s, such that (¢/N) = 1, are actually quadratic
residues.

Let p be an odd prime. Then Z,* is a cyclic group.

Let 9 be a generator for Z,*, then g* mod p is a quadratic residue if and only if 5 is
even.

Half of the numbers in Z,* are quadratic residues and half are quadratic non-
residues.

Let N = P; P, where p; and p, are distinct odd primes. Then half of the numbers
in Zy™ have Jacobi symbol equal to —1 and thus are quadratic non-residues. The
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Definition

Jacobi symbol of the rest of the numbers is 1. Exactly half of these latter ones are
quadratic residues.

A Difficult Problem in Number Theory

If the factorization of N is not known and (¢/N) =1, then there is no known
procedure for deciding whether ¢ is a quadratic residue mod N. This decision
problem is well known to be hard in Number Theory. It is one of the main four
algorithmic problems discussed by Gauss in his “Disquisitiones Arithmeticae"
(1801). A polynomial solution for it would imply a polynomial solution to other
open problems in Number Theory, such as deciding whether a composite n, whose
factorization is not known, is the product of 2 or 3 primes, see open problems 9 and
15in Adleman [3]. Recently, Adleman [1] showed that a generalization of quadratic
residuosity is equivalent to factoring. Using this generalized notion in our protocol,
we could base the security of our cryptosystem on factoring. At present, we await
the final version of Adelman’s paper.

Let 0 < ¢ < 1. For each positive integer k, let C; , be the minimum size of circuits C
that decide correctly quadratic residuosity mod n for a fraction € of the k bit integers
n. Then, for every 0 < ¢ <1 and every polynomial Q, there exists §, o such that
k> 6, o implies C, > Q(k).

A Number Theoretic Result

We want to show that deciding whether ¢ is a quadratic residue mod N, is not hard
in some special cases, but is hard on the average in a very strong sense. In order to
do so, let us recall the weak law of large numbers:

If y1, 5 . . . ¥ are k independent Bernoulli variables such that y; = 1 with proba-

bility p, and S; = y; + - - - + y, then for real numbers ¢, 6 > 0, k > L implies

482
that
Pr ( > 1//) < 4.

Notice that k is bounded by a polynomial in ¢ ~! and v 1.
Let Ay*={x|x € Zy"and (x/N) = 1}.

Sk
P

For a composite number N, and for real number 0 < ¢ < %, we say that we can
guess with ¢ advantage whether ¢ drawn at random from A 5 * is a quadratic residue
mod N if we can, in polynomial (] N |) time, guess quadratic residuosity mod N
correctly for at least % + ¢ of the elements of Ay™.
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Let0 <¢ < %, 0 < § <1benonnegligible numbers. Suppose we could guess, with an
¢ advantage whether ¢, drawn at random from A ¥, is a quadratic residue mod N.
Then we could decide quadratic residuosity of any integer mod N with probability
1 — & by means of a polynomial in | N |, ¢! and § ! time probabilistic algorithm.

Assume, to the contrary, that we have a polynomial time magic box MB which
guesses correctly whether g € Ay* is a quadratic residue mod N, for % + ¢ of the
elements of A ™.

Let,

o =Pr (MB answers “q is a quadratic residue” | ¢ is a quadratic residue mod n)
B =Pr (MB answers “g is a quadratic residue” | g is a quadratic non-residue mod N,
q € AN").

The fraction of A ™ on which MB is correct equals %a + %(1 — B). In order for
MB to have a ¢ advantage, it must be that « — 8 > 2¢. How ever, « need not be equal
toe + % We will now show how to get a good estimate for a.

Construct a sample of k quadratic residues chosen at random in Z* (the value
of k will be defined later on). This can be easily done by picking s +1..... s at
random in Zy* and squaring them mod N.

Initialize two counters R and NR to 0.

Feed each s? to MB. Every time that MB answers “quadratic residue,” increment
the R counter. Every time that MB answer “quadratic non residue," increment the

NR counter.
Let ¢ = 2748. If k is chosen to be suitably large, k > #, the weak law of large
numbers assures that
R 8
Prl|la——|> < -
< k w) 4’

i.e. R/k is a very good approximation to how well MB guesses if the inputs are only
quadratic residues.
We are now ready to determine the quadratic residuosity of elements in A%,.
Let g be an element of A}, that we want to test for quadratic residuosity. Ran-
domly generate k quadratic residues, xq, ..., x;, elements of Zy* and compute
yi=qx;mod N fori =1, ...,k .Notice that

(a) if ¢ is a quadratic residue, then the y;’s are random quadratic residues in
Zy*

(b) if ¢ is a quadratic non-residue in Ay*, then the y;’s are random quadratic
non-residues in A *.
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Proof

Let us postpone the proof of (a) and (b) and assume, for the time being, that they
are true. Initialize two counters R* and NR* to 0. Feed the sample {Y;} into MB.
Increment R* every time that MB answers “quadratic residue,” and N R* every time
that MB answers “quadratic non-residue.” We know, that if ¢ is a quadratic residue,

then the
5\2
<2 >(1—--),
<20)=(1-5)

and if ¢ is a quadratic non-residue then

* 2
(|8 B n) <a (1),

k&
Thus if ‘ RT* — % ‘5 2y then with probability greater than 1 — §, ¢ is a quadratic

*
Pr( R_ER
k k

residue mod N, otherwise, again with probability greater than 1 — §, ¢ was a qua-
dratic non-residue mod N.

We still need to prove (a) and (b). We will only prove (a) as the proof for (b)
is similar. It will suffice to prove that, given any quadratic residue ¢, any other
quadratic residue y in Zy* can be uniquely written as y = gx where x is a quadratic
residue mod N. It is a well known theorem in algebra that Zy* = Z, * x Z,, . Thus
let a and b be generators for Z, * and Z, * such that (a, p,) =1 and (b, p;) = 1.
Then any element of Zy™* can be written uniquely as a'b/ where 1 <i < p; — 1and
I < j < p, — 1. Moreover, ¢q is a quadratic residue mod N if and only if it can be
written as ¢ = a*b* where 1< 2i < p; —land 1< 2j < p, — 1. Thus if y = a®>b*
is any quadratic residue and x = a?¢~)p2(=/) then y = ¢x part (a) is proved. =

Letr € Ay™* be a publicized quadratic non-residue mod N.Let0 < ¢ < %0 <38 <1be
non-negligible numbers. Suppose we could guess with an ¢ advantage whether ¢,
drawn at random from Ay*, is a quadratic residue mod N. Then we could decide
quadratic residuosity of any integer mod N with probability 1 — § by means of a
polynomial in I| N |, =1 and §~! time probabilistic algorithm.

Assume first that given any r quadratic non-residue mod N, r € Ay*, someone
could build a polynomial time magic box MB, that has a ¢ advantage in distinguish-
ing between quadratic residues and non-residues mod N. We will show that even
if one is not given such an r, quadratic residuosity can still be decided.

Construct a set 7' consisting of 20 elements chosen at random from A y*. With
probability 1 — (1/2)2° one of the elements in 7 will be a quadratic non-residue
mod N. For each x € T do the following:
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Choose k as in Theorem 1. Construct MB, and test its performance on k random
quadratic residues, S = {sq, . .., 5}, as we did in Theorem 1. Also pick y;, .. ., ¥59
atrandom from A y*. Again, with very high probability, at least one of the y;’s will
be a quadratic non-residue. Now, construct samples H; = {y;s | s € S}, and feed
them into MB,.

(a) If MB, performs on all the H,’s as it performed on S, then go to the next
element in 7. Halt if all elements in 7 have been used.

(b) If MB, performs “significantly” differently on, say H;, than it did on S, halt.

If case (b) occurs then y; is a quadratic non-residue and, most importantly, we
obtain a magic box, MB,, which distinguishes between quadratic residues and non-
residues in random polynomial time.

Case (b) occurs when there is an x € T which is a quadratic non-residue mod N,
and at least one of its corresponding y;’s is a quadratic non-residue mod N. Thus

case (b) occurs with probability (1 — %20)2. This contradicts our assumption that
deciding quadratic residuosity is hard.

In the above, we assumed that given any quadratic non residue r € Ay*, one
could construct a magic box MB,, having a ¢ advantage in deciding quadratic
residuosity, and we derived a contradiction.

Suppose one is able to build a MB,, having a ¢ advantage in deciding quadratic
residuosity, only for 1% of the quadratic non-residues, r € A y*. Then all that would
be changed in the above proof would be the size of the set 7', so that T will include
a suitable r. |

How to Send Messages in a Public Key Cryptosystem
in a Provably Secure Way
Every user in the system publicizes a large composite number N whose factoriza-
tion, N = p;p,, he alone knows, and y € A}, such that y is a quadratic non-residue
mod N.

Let N be the public key of user A. Suppose user B wants to send A a binary
message m = (mq, ..., my). Then, for each m;, B randomly picks an x; € Zy*, and
sets

x?mod N if m; isa 0
€ < 2 . .
yximod N ifm;isal

B sends (¢, ..., e) to A.
To decode m, user A, who knows the factors of N, reconstructs m by letting



188 Chapter7

Lemma 2

Proof

Definition

Definition

Definition

Probabilistic Encryption

1if ¢; is a quadratic residue mod N
m; <—

0 if e; is a quadratic non-residue mod N

Testing whether g € A}, is a quadratic residue mod N, when the factorization of N
is known, is easy by the following lemma.

If the factorization of N is known, we can test whether there exists an x such that
g = x?>mod N in polynomial time.

q is a quadratic residue mod N if and only if ¢ is a quadratic residue mod p;
AND p,. For a prime p, ¢ is a quadratic residue mod p if and only if ¢(P~1/2 =
1mod p. Thus, to test whether ¢ is a quadratic residue mod N we need only com-

—1)/2 —1)/2

pute g /1 mod p, and ¢ (P2 mod p,.

We now address the question of the security of the newly proposed Public Key
Cryptosystern. Let E(x) stand for our new encryption function and let M be the set
of all possible messages.

The definition of security in a Public Key Cryptosystem is very difficult. It de-
pends on the model assumed of the possible behavior of an adversary. At present, we
assume that an adversary may intercept E(m) and try to extract information about
m. He can make use only of a computer, the cyphertext and the a priori knowledge
of the message space M. No restrictions on M are assumed.

Notice that in our scheme, differently from the RSA, an adversary, given E (m),
may be lucky in guessing correctly m and yet not able to prove the correctness of his
guess. However, the possibility of understanding a message, without being able to
prove what it is, is still dangerous for the security of the Public Key Cryptosystem.

We show that, given E (m) for m € M, if an adversary can do better than guessing
m at random, then deciding quadratic residuosity of any integer mod N, is easy.

Recall that Ay* ={x € Zy* | (x/N) =1}.

Let x € Ay*. The signature of x, oy (x) is defined as

1if x is a quadratic residue mod N

on(x) <—{

0 if ¢; is a quadratic non-residue mod N

Let S, be the set of all sequences of n elements from A y*.

Let s = (xq,...,x,) € Sy". The n-signature of s, X (s), is defined to be the string

Yn(s) =on(x)oy(xy) - - on(x,).
A decision function is a function d: Sy, — {0, 1}.

Leta = (aq,...,a,) and b = (by, ..., b,) be n-signatures.
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The distance between g and b is defined to be the number of positions in which a
and b differ. We say that a and b are adjacent if the distance between them is 1.

For any decision function d and n-signature /, let P,;(/): {0, 1} — [0, 1] be defined
as

Py() =Pr(d(x) =1 | Sy(x) =1 forx € Sy")

Let0<¢e < % and 0 < § <1 be non-negligible numbers. If there exists a decision
function d which is easy to compute and two n-signatures, # and v, have been
found such that | P;(u) — P;(v) | > ¢, then we can decide quadratic residuosity of
any integer mod N with probability 1 — o by means of a polynomial (in | N |, &7},
and o ~1) time probabilistic algorithm.

Suppose there exists a decision function d and two n-signatures « and v such that
| P;(u) — P;(v) |> ¢. Let A be the distance between u and v. Let ag, aq, ..., dp
be a sequence of n-signatures such that aq =u, ay = v and q; is adjacent to a;
for <i <m. As | P;(u) — P;(v) |> ¢, there must exist i,0 <i < A — 1, such that
| Py(a;) — Py(a; 1) | €¢/n. For convenience, lets =a; and t = a; ;.

Let us choose ¥ = ;. Also, letk > 61//% Choose k elements, x4, . . ., x; atrandom
from Q; = {x € S}, | ¥y(x) =s}and k elements, yy, ..., y, atrandom from , = {x €
Sy | Xy (x) =t}. Then, by the weak law of large numbers,

LSO

Pr( Po(s) — d(x)) + -+ +d(x) >1ﬁ> _

k

and

SO

Pr( Pt) — dyy +---+dGp) | w) -

k
Set,

_dO) e dGy) [ dy) 4 d ()
o= - B = p

Ass=(sqy...,s,)andr=(t,...,t,) are adjacent, they differ in exactly one loca-
tion. Call this location r. Let us assume, without loss of generality, that s, =1 and
t, =0.

We will now show that we can decide quadratic residuosity mod N with prob-
ability greater than 1 — 4. Let ¢ be an element of A} that we want to test for

2

residuosity. Choose k random quadratic residues in Ay *: x . x,f and compute

e
yi=q -sz. mod N for 1< j <k.By Theorem 1, the y,’s are all quadratic residues if

¢ is a quadratic residue and all quadratic non-residues in A}, otherwise.



190 Chapter 7 Probabilistic Encryption

In Theorem 2 we showed that knowing a non-residue in A}, does not help in
deciding quadratic residuosity. Therefore we can assume that such a non-residue,
h, is known. This allows us to pick quadratic non-residues at random from A}, (by
computing hx?).

We are now ready to decide whether ¢ is a quadratic residue.

(* Construct a random sample of k elements (yq,1, -+, Y1,4)5 -5 (Vi,15 -+ +» Yi,n) €
Sy such that for all 1 <i <n,i #r,1<j<k,oyn(y;;)=s;, and forall 1< <
k7yj,r=y]*)

Fori=1,...,r—1,r+1,...,ndo

begin

Forj=1,...,kdo

draw x € A%, at random.

ifs; = 1theny; ;: =x>mod N

else if s; = 0 then y; ;: = hx®> mod N
end.

(* Evaluate the decision function d on each member of the sample *)
For j=1,...,kdo
X;i=djir -y Yjir—1Yjs Yjrt1r -+ Yjn)

Notice that the entire sample {y; 1, ..., ¥ ,—1, Vs Yj r41s--+» ¥j o | 1< j <k}is
either a subset of Q; or a subset of ;. Thus with probability greater than 1 — § one
of the following two mutually exclusive eyents will occur:

) ‘(X1+"'+Xk)_a'<i
k n
or
Kt +X) | e
(2) ‘ p ,3‘<2n.

If case (1) occurs, we conclude, with probability greater than 1 — §, that ¢ is a
quadratic residue. Otherwise, we conclude, again with probability greaterthan1 — §
that ¢ is a quadratic non-residue. ]

The notion of a decision function is immediately generalized to that of a dis-
criminating function. This is a decision function which can take on more than 2
values. For any non empty set , let D: S, — Q. Leta € Q,then Pp, ,(I) = Pr(D(x) =
a| Xy(x) =1forx € Sy). The following theorem is an easy extension of Theorem 3
and we will state it without proof.
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Let0<e¢ < % and 0 < § <1 be non-negligible numbers. If there exists a discrimi-
nating function D: S}, — A, which is easy to compute and two n-signatures, u and
v, have been found such that | Pp ,(u) — Pp ,(v) |> &, then we can decide quadratic
residuosity of any integer mod N with probability 1 — § by means of a polynomial
(in | N|,e7 % and § — 1) time probabilistic algorithm.

Let us introduce some more notation. Let, M" = {m;, m + 2, ..., } be the set of
messages whose length is n, where n is bounded by a polynomial functionin | N |.
Setk =| M" |. Let M; be the set of all possible encodings of message m; € M", using
the scheme described at the beginning of this section. Clearly, M; C S7, and for all
iand j, | M; |=| M; |. Set Xx =| M; |.

The Security of Partial Information

In the present version of the paper, we assume that all messages in M" are equally
likely. Let P be an easy to evaluate predicate, defined on M". Let p be the probability
that P(x) is true for a random x € M". Since M" is uniformly distributed, and
| M" |=k, P must evaluate to 1 on pk messages in M".

Let MB be a magic box that receives as input the cyphertext E(m) €}, where
m € M", and outputs 0 or 1, its guess for the value of P(m). Let 0; be the number
of 0’s and let 1; be the number of 1’s that MB guesses on encodings of m ;. Clearly,
0;+1;=X.Let

c { 1;if P(mj) =1
j .
C; represents the number of encodings of message m

j on which MB correctly
guesses the value of P(m;).

k
j=1
negligible real ¢ > 0, then we could decide quadratic residuosity of any integer

Let 0 < § < 1be a non negligible real number. If - 3~ C; > p + ¢, for some non-
X

mod N with probability 1 — § by means of a polynomial in | N |, ¢, and §~! time

probabilistic algorithm.

Let us partition M" into 10/¢ buckets, M" = Ullg/f B;, such that m € B; if and
D < (105_1)2k (i—Dp < 17’” < i+5. We show that there exist two non-

adjacent buckets, each containing a non-negligible portion of the messages. More

onlyif (i —

forrnally, we show there exist g, h where 1<h+1<g<10/¢suchthat| B, |, | B, |>
10 1)Zk Say, that B; is big if | B; |> a0 ,1)2
show that there are two non adjacent big buckets. Assume, for contradiction, that

————k and small otherwise. Then we want to

this is not the case. Then one of the following cases must apply:
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1. There are no big buckets.

2. There is only one big bucket: B;

3. There are exactly two adjacent big buckets: B; and B;_;.
Note that case 1 can never be true; otherwise k = Zilig[
2, ijeBi C; is maximum for i = {5, and if all messages m ; for which P(m;) =1

1
| B; |< ;o= < k. In case

belong to B-, i.e. when MB guesses 1 for all the encodings of all the messages for
which the predicate is true.
Thus,

1 1
P+8§k— Z Cj=a Z Ci+ Z G, §P+110<P+8

m;eM" m;€B; m;€By, k#i

In case 3, ijeBl_ C;+ Zm,eB,-_lcj is maximum when i = {5 and all the messages
for which P is true belong to B.c and all the messages for which P is false belong
to B%—l'

Thus,

1 1
pre=i ) Ci=v G+ Y G+ X G

m;eM" m;€B; m;€eB; 4 mjeBrk#i,i+1

< é {[pkx + Q= p)2e10 kx| + kxe1071}

2
< —(pkx + 381071]()() <p+ ¢
kx 2

In all three cases we reach a contradiction.

Thus there exist two non adjacent buckets B, and B, each containing at least
15k messages. By sampling, we can find, in a small expected time, two messages u
and v in B, and By, respectively. We view MB as a decision function D: Sy — [0, 1].
Then, Pp(u) — Pp(v) > {5 and Theorem 3 applies. ]

Next, we will see that an adversary cannot decode more than a negligible fraction
of the encodings of all messages.

An Adversary Cannot Decode

Let MB be a magic box that receives as input E (m) form € M", and outputs m;. MB’s
output can be interpreted as MB’s guess of what m is.
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Let r; ; denote the number of encodings of message m j, on which MB answers
m;. Clearly, r; ; will denote the number of times, over all possible encodings of m;,
that MB answers correctly.

Let 0 < § < 1 be a non negligible real number. If Zf.‘zl rk‘—x’ >e+ % for some non-
negligiblee <1 — %, then we can decide quadratic residuosity mod N with probabil-
ity 1 — § by means of a polynomial in | N |, e~*and § ! time probabilistic algorithm.

Say that a message m; is well decoded if r; ; > (1) x. Let, W be the set of well-
decoded messages and W/ = M" — W.
Claim 1: There exist at least % well-decoded messages.

Proof:
k
ekx <ek+x <Y rii=) riit ) rii

i=1 iew ieW

1 1 1
<)x|W|4+k—|W=ex=x |:(1__8>|W|+k_8i|
2 2 2
Hence, ',{ﬂ > %82/2) > £.(claim 1) m

Clearly, if we pick messages at random from M", we expect to find awell-decoded
message in 2¢ ! trials. Let Q C W such that | Q |> 2¢7 1 and let p > m
Claim 2: There exists two well-decoded messages m;, m; € Q such that r’X—l —

rios
It

- |> p.
X p

<p?

Proof : Fixm ; € Q. How many messages m; € Q can be such that

Tiio T
X X

There are at most 1;) < 2¢ 1+ 1such messages. Thus there exists an m; € Q that

2
satisfies the claim. (claim 2) ]

Let us transform MB into a discriminating function D: Sy, — M" U {y}. If x € S},
and MB, on input x, outputs m j, then set D(x) =m . If y is not the encoding of any
message, then one of 3 cases must occur:

1. MB outputs m; for 1 <i <t.Set D(y) = m;.
2. MB outputs m; fori < 1ori >t.Set D(y) =y.

3. MB does not answer within a certain time limit. Set D(y) = y.

Now, note that in claims 1 and 2 just proved above, we showed that we can

quickly find two well-decoded messages m; and m; such that | Pp , (m;)—
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5.1

Pp n,(mj) |> p. Thus the hypothesis of Theorem 4 holds and deciding quadratic
residuosity mod N is polynomial in | N |, e tand §~1.

Theorem 6 shows that inverting the function E on the encrypted messages is as
hard as deciding quadratic residuosity, independently of the sparsity of M".

Mental Poker

Mental Poker is played like regular poker except that there are no cards and no deck
The game is played over the telephone lines, or over a computer network. Since
we can not send physical cards over the phone lines, dealing and playing must be
simulated by exchanging messages between the players. The players do not trust
each other more than ordinary players do. A fair game on the telephone should
ensure that:

1. Neither player can have any partial information about the cards in his oppo-
nent’s hand or in the deck,

2. There is no overlap in the cards dealt to players,
3. All possible hands are equally probable for both players,

4. At the end of the game each player can verify that the game was played
according to the rules and no cheating occurred.

Note that in a fair game of Mental Poker it is not enough to show that it is
computationally difficult to get the exact value of a card. We must also show that
no partial information about the card can fall into the hands of an adversary.

We present a protocol for two people to play a fair game of Mental Poker, using
eneryption. We prove that there is no way a player can get any information about
cards not in his hand under the assumption that deciding quadratic residuosity is
hard.

There are two main tools used in our implementation of Mental Poker. One is
a method for coin-flipping over the telephone [5] and the other is the method for
sending a single bit securely in a Public Key Cryptosystem presented here.

A different solution to the problem of Mental Poker has been obtained inde-
pendently by Manuel Blum in [6]. His solution is based on the assumption that
factoring is hard and that completely secure one way functions exist.

Background For Coin Flipping

To flip a coin in the well—A and B stand far apart from each other. B is standing
next to a deep well. A throws a coin into the well from a distance. Now, B knows the
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outcome of the flip (by looking into the well) but can not change it, and A has no
way of knowing the outcome. Later on when B would like to prove to A that he won
(or lost), he lets A come closer and look into the well.

Essentially, if we can simulate a flip in the well by exchanging messages over
the telephone, A can send a random bit to B, where A does not know what he sent,
but B can, if necessary, prove to A what the bit was. This is especially applicable to
cryptographical games.

The notion of coin flipping in the well has been introduced by Blum and Micali
in [5], in which, based on the assumption that index finding is hard, they show
how to flip a coin in the well over the telephone lines. Another method based on
the assumption that factorization is hard has been found by Blum in [4]. We sketch
a third method, based on the difficulty of distinguishing quadratic residues from
non-residues with respect to composite moduli.

A and Bwant to flip a coin. A generates two large odd primes at random, P and Q
and sets N = P * Q. A publicizes N and y € Ay™ such that y is a quadratic non-
residue mod N. A picks a number g at random from A, * and asks B, who does
not know the factorization of N, whether ¢ is a quadratic residue mod N or not.
B tells A what his guess is. A now knows whether B won (lost), and can later prove
to B that he indeed won(lost) by releasing the factorization of N.

To avoid adding new assumptions to the ones that we already have, we propose
to use one of these latter two coin flipping methods in our protocol for Mental
Poker.

The next section will list some known results that will be used in the proof of
the protocol.

Useful Results
Let pq, p, be odd primes and N = pyp,.

If the factorization of N is known, we can find ¢ € Zy™* such that (¢/N) =1and ¢
is a quadratic non-residue, in random polynomial time.

Pick a € This can be done in 2 expected trials. Similarly, pick b € Z,, such that
(b/p,y) = —1. Using the Chinese Remainder theorem compute the Z, such that
(a/py) = —1.unique g € Zy* such that ¢ = a(mod p;) and ¢ = b(mod p,). Now, ¢ is
aquadratic non-residue and (¢/N) = (q/p1p2) = (q/p1) - (q/p2) = (@/p1) - (b/py) =
1. ]

Let N = p,p, such that p; = p, =3mod 4. Forall x, y € Z,*, if x> = y2 mod N and
x #+ymod N then (x/N) =—(y/N).
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Proof

5.3

5.3.1

Let

{ 1(mod py)
<«
0(mod p,)

{ 1(mod p,)
<«
0(mod p,)

We can find ¢ and d through the Chinese Remainder Theorem. Let a? = x2(mod p;)
and 5% = x>(mod p,). Then the four square roots (mod N) are given by ac + db,
—ac +db, —(ac + db) and (ac — db). Let x =ac + db, and y = —ac + bd. Since
N =1mod4implies (x/N) = (—x/N),we need only prove that (+x/N) = —(+y/N).
Thus, (x/N) = (ac + bd/N) = (ac + bd/p,)(ac + bd/p,) = (ac/p1)(bd/p,). And
(v/N) = (—ac + bd /N) = (—ac + bd/ py)(—ac + bd/ py) = (—ac/py)(bd/ py) = (=1/
p1)(x/N). Since p; = 3(mod 4), (—i/p;) = —1. [

By a theorem of de la Vallee Poussin [15], approximately half of all primes of
a given length are congruent to 3 mod 4. Thus, composite numbers of the form
N = p,p, where p; = p, = 3mod 4 constitute approximately 1/4 of all composite
numbers which are a product of two odd primes of a given length. Thus factor-
ing and deciding quadratic residuosity modulos such special N’s remains a hard
problem. Another method, which does not use special composite numbers, but in-
creases the number of messages exchanged in the protocol, will appear in the final

paper.

The Protocol

To represent 52 cards in binary we must use at least 6 bits per card. Thus at first A
and B agree on 52 different bit patterns which correspond to the 52 cards.

From now on, when we say that A flips k to B, we mean that B receives a number
k atrandom from A, and A has no information whatsoever about . k is actually sent
bit by bit through a sequence of coin flips into a well.

The Algorithm

STEP 1: B chooses at random 52 pairs of large prime numbers: (py, q;), (P2, ¢2),
(P3,43), - - -5 (P52, g52) such that p; = ¢; =3 mod 4 for 1 <i <52, and produces 52
large composite numbers whose factorization she knows, i.e. N;:= p; - q;, Ny:=
P2 Gy - - -y N5gt = Psy * ¢59. Next, she shuffles the deck of cards in her hands and
assigns Ny, ..., N5, to the shuffled deck, an N; per the ith card. She publicizes the
ordered 52 tuple < Ny, Ny, ..., N5y > .
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STEP 2: A does the same. Let us denote the primes chosen by him as (sq, t;), (s, t2),
($3,23), - - -, (S50, t5p) such thats; = ¢, = 3mod 4 for 1 <i < 52, and his 52 composite
numbers by My: =5 t;, My: =55+ 1y, ..., Msy: = 55, - 15,. He shuffles the deck of
cards and assigns My, ..., Ms, to the shuffled deck, an M;, per the ith card. He
publicizes the ordered 52 tuple < M, M,, ..., M5, >.

STEP 3: B publicizes his entire deck. The deck is encrypted in the following way.
For every card C; (with public key »;), B publicizes an ordered list of 6 numbers in
A’;\,i, (45 - - - qe) such that for 1 < j <6, g; is a quadratic residue if and only if the
jthbitof C;isa 1.

For example, let the first card in B’s deck be 010010. Then B publicizes (g, ¢4, 43,
4a, 45, 9¢) Where q;, g3, g4 and g¢ are quadratic non-residues mod N;, and ¢,, g5 are
quadratic residues mod N; with Jacobi symbol 1. The ¢;’s are chosen at random
among the elements of A}, with the desired properties. This can be done in random
polynomial time, by Lemma 3.

NOTE that, by Lemma 2, if A can factor N;, he can also determine whether the num-
bers that B posed as corresponding to the bits in the encoding of C; are quadratic
residues or not and therefore determine what the card is. If A can not factor N;, he
can not tell whether the numbers corresponding to bits in the cards encoding are
quadratic residues or not, and therefore can not tell what the remaining cards are.

STEP 4: A publicizes his deck in the exact same way that B did.

STEP 5 [B deals a Card to AJ: Suppose A decided to pick the K-th card from B’s deck.
Repeat the following procedure for each card in B’s encrypted deck. We describe

*
Ni?
x2mod N; and (x/N;). At this point A must follow one of two procedures: P1 if

it for the i-th card, to which N; corresponds. B flips x € Z},., to A. A computes

i = K and P2 otherwise.

P1: A sends x2 mod N; and —(x/N;) to B.
P2: A sends x2 mod N; and (x/N;) to B.

B computes the square roots of x> mod N;. Let the square roots be x,n — x, y and
n — y. Next, B sends the root whose Jacobi symbol she received from A : y if she
received —(x/N;) from A, and x otherwise. By Lemma 4, (x/N;) uniquely identifies
x, and —(x/N;) uniquely identifies y. Thus if A followed P1 then he will receive 4
square roots of x2 mod N;, and by Lemma 1 can factor. If A followed P2, he will get
no new information as to the value of C;. B from her side has no information as to
which card A selected. Later, B can verify what he flipped to A, and hence verify that
B has only found out the factorization of a single card.
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5.3.2
Claim1

Proof

Claim 2

Proof

Claim 3

Proof

STEP 6: At this point A knows the factorization of Ng. To reconstruct the actual card
Ck, A applies the polynomial time test of Lemma 2 to the encrypted representation
of Ck, (q1, - - -, qe). Next, A must delete Cx from his encrypted deck. B can see
which encrypted element in A’s deck is being erased, but this does not enable her
to decrypt it.

STEP 7 [A deals a card to B]: Clearly, the same procedure as in Step 5 and 6 is done
with the roles of A and B reversed. Now B will discover the factorization of one of
Ml, ooy M52.

STEP 8: If any more cards need to be dealt throughout the game, a similar protocol
takes place. Whenever A needs a card, he will pick a card from B’s deck, by following
the procedure in step 5 and 6. And similarly whenever B needs a card, she will pick
it from A’s deck.

STEP 9 [after game verification]: After the game is over, A can prove to B that
everything he claims she flipped him, was indeed flipped by her and in what order.
B can do the same. A releases the factorization of each of the M, forall 1 <i <52,
and B releases the factorization of each of the N; for all 1 <i < 52. They can both
prove to each other whatever claim they made in the game such as “N is a product
of two primes,” “all cards where present at the deck at all times," “these are the
quadratic residues you flipped to me," or “I won."

Proof Of Correctness
All hands are equally probable.

In step 9, A and B verify that both encrypted decks contained all 52 cards. In step 5,
A himself chooses which encrypted value from B’s deck he wants, thus he is equally
likely to get any card in the deck. Similar reasoning holds for B. ]

No overlapping or repeating hands.

When A is dealt a card, he erases that card from his encrypted deck. Thus B can
never be dealt the same card. A knows which cards he picked from B’s deck, and
thus will never pick the same card twice. ]

If player A knows the factorization of N; he can reconstruct C; in 0(| N |3) time.

We are given N; = p;py,and (¢4, - - -, g¢) such thatforall j,¢; € Zy*and (¢;/N;) = 1.
To reconstruct, C;, we must test whether g; is a quadratic residue mod N; for all ;.
That can be done in 0(| N |3) steps by Lemma 2.
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It still remains to be shown that neither player can have, at any stage of the
game, any partial information, about a single encrypted card not in his hand, or
any subset of encrypted cards not in his hand. A complete proof will be found in
the final paper. Here we restrict ourselves to proving that when two players A and B
publicize their respective encrypted decks, neither A nor B can answer quickly with
1% advantage a 1 bit question about a single card in the opponents deck. Examples
of such 1 bit questions are: is the i-th card in the deck black? Are the first and third
bit of the i-th card equal? Is the mod 2 sum of the bits in the i-th card 0 or 1?

If A, when B publicizes her encrypted deck, can answer, in polynomial time, a 1-bit
question Q about a single card in B’s deck with 1% advantage, then he can decide
quadratic residuosity modulo a random composite N with probability 1, by means
of a polynomial (| N |) time probabilistic algorithm.

Suppose A can answer a 1-bit question Q about card i, to which composite N;
corresponds. A’s ability to answer Q with a 1% advantage can be viewed as a decision
function d: S® — 0, 1 (S® = all 6-1ong sequences of elements from A}). Since A
answers Q correctly 51 times out of a 100, we can efficiently find two 6-silgnatures u
and v such that | P;(u) — P;(v) |> 1/100. Thus we can apply Theorem 3 and decide
quadratic residuosity modulo N; in polynomial time. Contradiction!

Implementation Details
In order to perform the protocol we must be able to do the following:

1. Generate large prime numbers, This can be done using Gary Miller’s test for
primality [11] .

2. Find square roots of x2 mod N when the factorization of N is known. Use
Adleman, Manders and Miller’s polynomial time algorithm [2] for finding
square roots.

Remarks and Further Improvements
In this paper we showed that it is possible to encrypt messages in such a way, that
an adversary, given the cyphertext, cannot extract information about the cleartext.
This is sufficient for protocols such as Mental Poker or for encrypting one’s private
files. An adversary can read these files but cannot understand them.

We also showed that Probabilistic Encryption can be used in a Public Key En-
vironment. However, in a Public Key Cryptosystem, getting hold of the cyphertext
and trying to understand it is the most obvious attack to the security of the scheme.
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e An adversary could, as a user, try to break the scheme by communicating.

e He could try to break the scheme by intercepting some other user’s messages
and changing them.

e Finally, he may try to break the scheme by making use of the decoding
equipment !

The Public Key Cryptosystem presented in this paper is not secure against these
possible attacks. However, by forcing the users to follow a particular protocol for
exchanging messages, we have built a Public Key Cryptosystem which is provably
secure against the above mentioned attacks. These results will appear in a future

paper.
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The Knowledge
Complexity of Interactive
Proof Systems

This chapter reproduces the contents of the paper “The Knowledge Complexity of
Interactive Proof-Systems,” which appeared in the proceedings of the 17th Annual
ACM Symposium on Theory of Computing, pp. 291-304, 1985.

This seminal work of Shafi Goldwasser, Silvio Micali, and Charles Rackoff intro-
duced two fascinating and highly influential concepts: the concept of interactive
proofs and the concept of zero-knowledge. The concept of interactive proofs had
a vast impact on complexity theory, to be illustrated in numerous chapters of this
volume. The concept of zero-knowledge, on top of being very intriguing, became a
central tool in cryptography (see Chapter 12), and led to fundamental discoveries
regarding general secure multi-party computation (see Chapters 13 and 15). Ini-
tial indications of the vast potential impact of these concepts were provided by the
results and discussions in this work.
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Introduction
In the first part of the paper we introduce a new theorem-proving procedure, that is
a new efficient method of communicating a proof. Any such method implies, directly
orindirectly, a definition of proof. Our “proofs” are probabilistic in nature. On input
an n-bits long statement, we may erroneously be convinced of its correctness with
very small probability, say, 2—1,,, and rightfully be convinced of its correctness with
very high probability, say, 1 — .

Our proofs are interactive. To efficiently verify the correctness of a statement,
the “recipient” of the proof must actively ask questions and receive answers from
the “prover.”
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In the second part of the paper, we address the following question:
How much knowledge should be communicated for proving a theorem T?

Certainly enough to see that 7 is true, but usually much more. For instance,
to prove that a graph is Hamiltonian it suffices to exhibit an Hamiltonian tour.
This appears, however, to contain, much additional knowledge than the single bit
“Hamiltonian/non-Hamiltonian.”

We give a computational complexity measure of knowledge and measure the
amount of additional knowledge contained in proofs.

We propose to classify languages according to the amount of additional knowl-
edge that must be released for proving membership in them.

Of particular interest is the case where this additional knowledge is essentially
0 and we show that is possible to interactively prove that a number is quadratic
non residue mod m releasing 0 additional knowledge. This is surprising as no
efficient algorithm for deciding quadratic residuosity mod m is known when m’s
factorization is not given. Moreover, all known NP proofs for this problem exhibit
the prime factorization of m. This indicates that adding interaction to the proving
process, may decrease the amount of knowledge that must be communicated in
order to prove a theorem.

Interactive Proof Systems

Much effort has been previously devoted to make precise the notion of a theorem-
proving procedure, NP constitutes a very successfull formalization of this notion.
Loosely speaking, a theorem is in provable in NP if its proof is easy to verify once it
has been found. Let us recall Cook’s [C] (and independently Levin’s [L]) influential
definition of NP in this light.

The NP proof-system consists of two communicating Turing machines A and
B: respectively, the prover and the verifier. The prover is exponential-time, the
verifieris polynomial-time. Both A and B are deterministic, read acommon input
and interact in a very elementary way. On input a string x, belonging to an NP
language L, A computes a string y (whose length is bounded by a polynomial
in the length of x) and writes y on a special tape that B can read. B then checks
that f; (y) = x (where f; is a polynomial-time computable function relative to the
language L) and, if so, halts and accepts. This process is illusuated in Figure 1.

What is intuitively required from a theorem-proving procedure? First, that it is
possible to “prove” a true theorem. Second, that it is impossible to “prove” a false
theorem. Third, that communicating a proof should be efficient in the following
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Figurel The NP proof-system®™,

sense. It does not matter how long must the prover compute during the proving
process, but it is essential that the computation required from the verifier is easy.

Theorem-proving procedures differ in the underlying definition of a proof. The
notion of a proof, like the notion of a computation, is an intuitive one. Intuition,
however, may and must be formalized. Computability by (deterministic) Turing
machines is an elegant example of formalization of the intuitive concept of a
computation. Each formalization, however, cannot entirely capture our original
and intuitive notions, exactly because they are intuitive. Following our intuition,
probabilistic algorithms [R] [SS] are means of computing, though they are not in
the previous formal model. Similarly, NP is an elegant formalization of the intuitive
notion of a theorem-proving procedure. However, NP only captures a particular
way of communicating a proof. It deals with those proofs that can be “written
down in a book”. In this paper we introduce interactive proof-systems to capture
a more general way of communicating a proof. We deal with those proofs that
can be “explained in class”. Informally, in a classroom, the lecturer can take full
advantage of the possibility of interacting with the “recipients” of the proof. They
may ask questions at crucial points of the argument and receive answers. This
makes life much easier. Writing down a proof that can be checked by everybody
without interaction is a much harder task. In some sense, because one has to
answer in advance all possible questions. Let us now formally set up the proper
computational model.

(9 (By —> we denote a read/write head. By — R a read-only head and by — W a write-only head).
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Figure 2 An interactive pair of Turing machines.

2.1

Interactive Turing Machines and Interactive Pairs of Turing Machines

An interactive Turing machine (ITM) is a Turing machine with a read-only input
tape, a work tape and a random tape. The random tape contains an infinite se-
quence of random bits. The random tape can be scanned only from left to right.
When we say that an interactive machine flips a coin we mean that it reads next
bit in its own random tape. This tape is the only source of randomness for the ma-
chine. In addition an interactive machine has a read-only communication tape and
a write-only communication tape. The head writing on the latter tape moves only
from left to right, writes only on a blank cell and cannot move to the right without
writing.

Two ITM’s A and B form an interactive pair of Turing machines (A, B) by

1. letting A and B share the same input tape and

2. letting B’s write-only communication tape be A’s read-only communication
tape and vice versa.

The interactive pair (A, B) is ordered and machine B starts the computation. The
machines take turns in being active. When, say, A is active, it can perform internal
computation, read and write on the proper tapes and send a messagc to B by writing
on the appropriate communication tape. The ith message of A is the entire string
that A writes on the communication tape during its ith turn. The ith message of B is
similarly defined. Either machine can, during its turn, terminate the computation
of the pair. Consider a computation of (A, B) on input x. Let the computation
consist of n turns and let a; be A’s ith message and b; be B’s ith message. Then
the text of the computation is defined to be the sequence {b,, ay, . .., b,, a,}. (a, is
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2.2

Example 1

empty if it is B that halts the computation of (A, B) in its nth turn). The text of all
possible computations of A and B on input x will be of relevance to our analysis
and it will bc denoted by (A, B)[x]. This set has the structure of a probability space
in the natural way. The probability of each computation in (A, B)[x] is taken over
the coin tosses of both machines.

Interactive Proof-Systems

Let L € {0.1}* be alanguage and (A, B) an interactive pair of Turing machines. We
say that (A, B) is an interactive proof-sysrem for L if A (the prover) has infinite power,
B (the verifer) is polynomial time and they satisfy the following properties.

1. For any x € L given as input to (A, B), B halts and accepts with probability
atleast1 — nlk for each k and sufficiently large n.

2. For any ITM A* and for any x not in L given as input to (A*, B), B accepts
with probability at most nik for each k and sufficiently large n.

Here n denotes the length of the input and the probabilities are taken only over B’s
own coin tosses.

Condition 1 essentially says that. if x € L, there exist a way to easily prove this
fact to B that succeeds with overwhelming probability. This way is A’s algorithm.
In other words, it is possible to prove a true theorem so that the proofs are easily
verified (B is polynomial-time). Condition 2 says that, if x not in L, there exist
no strategy, for convincing B of the contrary, that succeeds with non negligible
probability. In other words, no one can prove a false theorem. In fact, B needs not
to trust (or to know) the machine with which it is interacting. It is enough for B to
trust the randomness of its own coin tosses. Notice that, as for NP, the emphasis is
on the “yes-instances”: if a string is in the language we want to show it, if it is not
we do not care. Let us consider an example of an interactive proof-system.

Let Z* denote the set of integers between 1 and m that are relatively prime with m.
Anelementa € Z7 isaquadratic residuemodn ifa = x? mod m for somea € Zr, else
itis a quadruric nonresidue. Now let L = {(m, x) | x € Z* is a quadratic nonresidue}.
Notice that L € NP:aprover needs only to compute the factorization of m and send it
to the verifier without any further interaction. But looking ahead to zero knowledge
proof-systems, we will consider a more interesting interactive proof-system for L.
The verifier B begins by choosing n =| m | random members of Z , {ry, 5, ..., 1,}.
Foreachi,1<i <n,heflipsacoin,andifitcomesup heads he forms¢ = rl2 mod m,
and if it comes up tails he forms t, = x -rl2 mod m. Then B sends ty,1,,...,1, to
A. The prover, having unrestricted computing power, finds which of the ¢, are
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quadratic residues, and uses this information to tell B the results of his last # coin
tosses. If this information is correct, B accepts.

Why does this work? If (m, x) € L, then A correctly predicts all last n coin tosses
of B who will definitely accept. If (m, x) not in L, then the {,} are just random
quadratic residues, and the prover will respond correctly in the last part of the
computation with probability zi" In fact, for each of the last n coin tosses of B,
A has probability exactly 1/2 of guessing it correctly.

A more complex interactive proof-system for L, that releases essentially 0 addi-
tional knowledge, can be found in Section 4.2.

Interactive Complexity Classes

We define IP, Interactive Polynomial-time, to be the class of languages possessing
an interactive proof-system. In this case we may also say that L, is interactively
provable. To cmphasize that the prover has unlimited power, we may write IP,
for IP. To closer analyze the role of the prover, we define IP(, to be the class of
languages having an interactive proof-system whose prover runs in time 7'(n). To
focus on the role of interaction, we let IP[ f (n)] denote the class of languages having
a proof-system that, on input a string x of length n, halts within f(n) turns. Here f
is a non decreasing function from natural numbers to natural numbers.

Interactive proof-systems should be contrasted with the “Arthur-Merlin” games
of Babai [B]. In those games Merlin plays the role of A and Arthur the role of B. The
big difference is that Merlin sees all results of Arthur’s coin tosses. This allows Babai
to prove that arbitrary interaction is not necessary in his framework: it is sufficicnt
to allow Arthur to talk to Merlin and have Merlin respond; at least as long they
alternate a constant number of times. Actually Arthur’s message to Merlin consists
exactly of the sequence of its own coin tosses. (See Figure 3).

If membership in a language L can bc proved by an Arthur-Merlin game (L €
AM) then, for any random oracle O, L € N P? with probability 1. It is apparent
that AM C I P (actually, AM C I P[1]) and we believe that the inclusion is a strict
one. We also believe that our “interactive hierarchy” does not collapse, i.e. that
I P[k] is strictly contained in [ P[k + 1]. In any case, interactive proof-systems are
the right proof model to both analyze and reduce the knowledge complexity of
a language. Next section is devoted to the discussion of this more subtle notion.
Let us also mention Papadimitriou [P] “games against nature”. This is an elegant
characterization of PSPACE, though not an efficient method of communicating a
proof.
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K

Knowledge Complexity

Communication is a tool for transferring or exchanging knowledge. Knowledge
has received a lot of attention in a model-theoretic framework [FHV], [HM]. In this
context, roughly speaking,

1. All participanrs are considered to have infinite computing power. (E.g. each par-
ticipant “knows” all logical consequences of the information in his hands)
and

2. The object they try to “know better” is not an available public input. (Rather
some event occurs that is witnessed or noticed by some but not all partici-
pants. To give an elementary example, one participant flips a coin and tells
the outcome to a few others who now “know” it. The remaining participants
do not “know” what the outcome was and they have to decide between two
possible worlds: one in which “heads” came up and one in which “tails” came

up).

This scenario may not be realistic in many practical contexts. In physics. for ex-
ample, scientists have bounded resources and the object they try to know better is a
public input: nature. Our point of view is that

1. Knowledge is a notion relative to a specfic model of computation with specified
computing resources and
2. One studies and gains knowledge about available objects.

In this paper we mcasure the amount of knowledge that can be gained from a com-
munication by a participant with polynomially bounded resources and investigate
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how much knowledge must bc communicated for proving a theorem.! Our com-
putational complexity measure of knowledge is, howcver, of wider applicability.
For example, as sketched in Section 6, it constitutes a powerful tool for developing
a mathematical theory of cryptographic protocols. The following concept will be
crucial to our analysis.

Degrees of Distinguishability for Probability Distributions

Let I be an infinite set of strings and ¢ a positive constant. For each x € I with
length n, let IT, be a probability distribution over the n¢-bit strings. Then we say that
IT={I1, | x € I} is aI-c-ensemble. By saying that Il is an ensemble or a I-ensemble we
mean, respectively, that there exist / and ¢ or simply c¢ such that IT is a I-c-ensemble.

A distinguisher is a probabilistic polynomial-time algorithm D that on input a
string s outputs a bit b. Let I1; = {I1; , | x € I} and I1, = {I1, , | x € I} be two I-c-
ensembles. Let pr1 denote the probability that D outputs 1 on input a | x |*-bit
long string randorhly selected with probability distribution IT; ,. Symmetrically,
pf,z denotes the probability that D outputs 1 on input a | x |*-bit long string ran-
domly selected with probability distribution IT, ,. Let p: N — [0, 1]. We say that
the ensembles I1; and I1, are atl most p-distinguishable if for all distinguishers D,
| pr,l - a)?z < p( x|+ ﬁ for all k and sufficiently long x.

Of particular interest will be the notion of at most 0-distinguishability (or in-
distinguishability). In this case the two ensembles are “equal” with respect to any
polynomial-time computation. In Section 4.2 we will present an interesting exam-
ple of indistinguishable ensembles. In this example. the I1, , and I1, , are indis-
tinguishable in a stronger sense. In fact the probability that they assign to each
| x |°-bit string is identical except for a set of strings strings whose total probability
does not exceed ﬁ for some constant d between 0 and 1. Such strong indistin-
guishability is a luxury not always available and, in any case, is not necessary to
develop our theory.

Notice that our distinguishers are fed with a single | x |°-bit string at a time. One
may consider distinguishers that are fed with more strings of length | x |° at the
same time. In this case, if two ensemble are 0-distinguishable, they will remain
undistinguishable (as long “more” < poly(] x |)). If the two ensembles are at most
p-distinguishable, they may remain at most p-distinguishable or the probability of
“distinguishing” them may become much higher. (This plays a role for deciding

1. Our definitions may be given with respect to any time bound, but we restrict our attention to
polynomial-time both to simplify the matter a bit and because we believe that it constitutes the
most important case.
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whether a certain cryptographic protocol may be played securely more than once
using the same secret key).

Related notions of indistinguishability have been previously considered in [GM]
in the context of probabilistic encryption and then in [Y] and [GGM] in the context
of pseudo-random number generation.

The Knowledge Computable from a Communication

Which communications convey knowledge? Informally, those that transmit the
output of an unfeasible computation, a computation that we cannot perform our-
selves. For example, if A sends to B n random bits, this will be  bits of information.
We would say this contains no knowledge, however, because B could generate
random bits by himself. Similarly, the result of any probabilistic polynomial-time
computation will not contain any knowledge. With this in mind we would like to
derive an upper bound (expressed in bits) for the amount of knowledge that a poly-
nomially bounded B can extract from a communication.

Firsta bit of notation. Notice that any probabilistic Turing machine M generates
the ensemble M[-]= {M[x]},c;, where M[x]denotes the set of possible outputs of M
(on input x € /) taken with the probability distribution induced by M’s coin tosses.
Similarly, we will denote by (A, B)[-] the ensemble associated to an interactive pair
of Turing machines (A, B). We are now ready to introduce our definition.

Let (A, B) be an interactive pair of Turing machines and / the set of its inputs. Let B
be polynomial-time and f: N — N be non decreasing. We say that A communicates
atl most f(n) bits of knowledge to B if there exists a probabilistic polynomial-time
machine M such that the 7/-ensembles M[-] and (A, B)[-] are at most 1 — ﬁ-
distinguishable. We say that A conmmicates at most f(n) bits of knowledge if for
all polynomial-time ITM’s B’ A communicates at most f(n) bits of knowledge to

B'.

Assume M, on input x, tries to select a string “as undistinguishable as possible”
from a computation randomly selected in (A, B)[x]. Note that in this attempt no
information is hidden from M: A’s program, B’s program and x are all inputs of
M. M may have “built in” the description of A. This, however, is not of great help,
as A’s algorithm may be absolutely inefficient.

A non mathematical discussion: Let us try to illustrate the above definitions.
Assume that a crime x has happened, B is a reporter and A a police officer. A
understands the rights of the press but, for obvious reasons, also tries not to
communicate too much knowledge. Should reporter B call the police officer A
to know more about x? It depends. If he has probability essentially equal to 1 of
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generating at home, in front of his typewriter, the “same” conversations about
this specific x that he might have with A, he should not bother to call. A will
give him essentially 0 knowledge about x. If, instead, say, he may generate an
honest conversation about x with probability 1/4 (i.e. what he generates is at most
3/4-distinguishable from the “real” conversations), then the officer may tell him
something that he does not know. This knowledge however, will not exceed two
bits and may not be of the “useful” kind! Still, it may pay off to call. If, finally, B

has only chance 1 in 2190

of generating the possible conversations about x with the
police officer, then A is areal gossiper and B should rush to the telephone! Assume
now that B is so news-hungry that is ready to become dishonest during the phone
conversation, i.e. he is ready to transform himself to B’. Despite this, if the officer
is so skillful to be one who communicates, say, at most 2 bits of knowledge, no
matter how tricky questions B’ asks and how much he cheats, he will not get out of
him more than two bits about x. (Here we are implicitly assuming that a cheating

reporter still remains a polynomial-time one!)

Consider the ITM (A, B) of Example 1. Restrict its inputs only to the strings in
L. Then A communicates at most 0 bits of knowledge to B. In fact, there exists a
probabilistic polynomial-time machine M such that (for those inputs) generates
exactly the same ensemble that (A, B) does. Essentially, M can simulate B, as B is
polynomial-time, and simulates A by looking at B’s coin tosses as follows. When
B sends t; computed by squaring r,, M will answer “quadratic residue”. When B

sends f; computed by squaring r, and then multiplying it by x, M answers “quadratic
nonresidue”.

Notice, however, that, if the problem of deciding quadratic residuosity is not in
probabilistic polynomial-time, A does not communicate at most 0 bits of knowl-
edge. In fact, some machine B’, interacting with A, may decide to create the 7;’s
in a different way. For instance, such a B may send the, sequence of integers #; =i
and therefore receive an answer about their quadratic residuosity that it may not
be able to compute by itself.

An interesting ITM A that communicates at most 0 bits of knowledge may be
found in section 4.2.

The Knowledge Complexity of a Language

How much knowledge should be communicated to provide a proof of a theorem 7'?
Certainly enough to verify that T is true. Usually, much more. For example, to prove
thatacertaina € Z isaquadratic residue, itis sufficient to communicate an x such
that a = x> mod m. This communication, however, contains more knowledge than
just the fact that a is a quadratic residue. It communicates a square root of a. We
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intend to measure the additional knowledge that a prover gives to a verifier during
a proof, and investigate whether this additional knowledge may be essentially 0.

Let L be alanguage possessing an interactive proof-system (A, B).Let f: N — N be
non decreasing. We say that L has knowledge complexity f (n) if, when restricting the
inputs of (A, B) to the strings in L A communicates at most f (n) bits of knowledge.
We denote this fact by L € KC(f(n)).

An informal discussion. Let us recall that we are concentrating on the “yes-
instances.” When a string x is not in the language the prover “gives up” and we
do not measure knowledge. When, instead, x € L, what is the verifier’s point of
view at the end of an interactlve proof? First, it is “convinced” (correctly with
overwhelming probability) that x € L. This was the goal of the proof-system in
the first place. Second, it possesses the text of the entire computation with the
prover on input X. This text, has been used to verify that x € L, but does not
contain more than f(n) bits of additional knowledge. In fact, on input x € L, we
are guaranteed to be able to easily generate such texts with probability distribution
at most (I — 2f—l(n))-distinguishable from the “real” texts, no matter with which
machine B’ A is interacting. The special case L € KC(0) is of particular interest.
In this case, by interacting with A and from the text of the computation, B can
verify that x € L, but, with respect to polynomial-time computation, the text is
irrelevant for any other purpose, no matter with which B’ A is interacting. In fact,
on input a guaranteed x € L, such texts can be easily selected with essentially the
right probability distribution and without A.

We believe that knowledge complexity is one of the fundamental parameters
of a language or, equivalently, of a theorem-proving procedure. Theorem-proving
procedures are intended to communicate knowledge and it is very natural to classify
them according to the amount of knowledge they communicate.

Note that knowledge complexity is also defined for NP proof-systems as they are
a special type of interactive proof-system. However, their knowledge complexity
tends to be very high.

Avery important application of knowledge complexity is that it enables proving
correctness of cryptographic protocols in a modular way (see section 6).

Languages in KC(0)

Every language in P or RP or BPP has trivially knowledge complexity 0. If L is not in
probabilistic polynomial-time, no NP proof-system for L can release 0 additional
knowledge. However, there may be a more interactive proof-system for L that does
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release 0 additional knowledge. A natural question arises. Do meaningful examples
of languages in KC(0) exist or is KC(0)-BPP a fancy way to define the empty set?
A similar question could bc asked for, say, RP. Namely, is RP-P a fancy name for
the empty set? The best sign of a possible negative answer to the latter question is
constituted by the fact that primality testing is in RP [SS][R] and, while the problem
of deterministically deciding primality has received a lot of attention for centuries,
no polynomial-time algorithm is currently known. Similarly, it is of great interest
to find candidates for languages in KC(0) but not in, say, BPP. This is the best one
can do, given our current knowledge about proving lower-bounds.

We know of two interesting languages that have knowledge complexity 0. Both
are algebraic. The first one is the following language BL proposed by Blum in [BI1]
where he gives all the essential ingredients to prove BL € KC(0).Letn be an integer
with prime factorization n = pil S p,i"‘. Then n € BL if the number of different p;s
congruent to 3 mod 4 is even. The other language that is known to belong to KC(0)
is the well known quadratic non-residuosity language. We give a proof of this fact
in this section.

For y € Z» we define

0 if y is a quadratic residue mod m

Q(}’)={

1 otherwise

Then L ={(Y,m) | Q,,(y) =1} is the quadratic non-residuosity language.
Our proof that L € KC(0) does not depend on any unproved computational

complexity assumptions. We first review what is known about the complexity of

deciding membership in this language.

The Quadratic Residuosity Problem

The quadratic residuosity problem with parameters m € N and x € Z; consists of
computing Q,,(x). If the factorization of m is known, it is trivial to compute Q,,. If
the factorization of m is unknown, then there is no known efficient procedure for
computing Q,,. This decision problem is one of the four main problems discussed
by Gauss in “Disquisitiones Arithmeticae” (1801) (along with primality testing,
integer factorization and Solvability of Diophantine Equations). A polynomial time
solution for it would imply a probabilistic polynomial time solution for other open
problems in Number Theory such as deciding whether a composite integer m is a
product of 2 or 3 primes.

The Jacobi symbol (%) form € N and x € Z7 is a polynomial time computable
function that evaluates to 1 and —1 and provides some information about Q,,(x).
Namely, if (£) = —1then Q,, (x) = 1. However, when (£ ) = 1 then computing Q,, (x)
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is a hard problem. n fact, it is not even known how to efficiently produce a single
“guaranteed” quadratic nonresidue mod m with Jacobi symbol 1.

A “0” Knowledge Interactive Proof System for L

In the proof system, (A, B), that we exhibit for (y,m) € L the prover A is only
required to be a probabilistic polynomial time Turing machine with the additional
power of being able to evaluate Q,,. (Of course, it remains true that no infinitely
powerful A’ can convince B that y is a quadratic non-residue mod m if that is not
the case).

For simplicity, we only consider proving that (y, m) € L, when the Jacobi symbol
(£) = 1. The case where (£) = —1 is uninteresting. We specify A and B by giving
their explicit program at each step of the interaction.

The basic idea is that B generates numbers of two types: x =2 mod m (type
1) and x = y - 72 mod m (type 2) where r is randomly chosen, and quizzes A about
them. If indeed (y, m) is in L, then A can tell the types of these numbers. If (y, m)
is not in L, they look all the same to A and it will fail the quizzes with very high
probabiilty. The danger with this basic idea arises when indeed (y, m) € Z7 isin L as
A, when answering the quizzes, may release some knowledge other than (y, m) € Z*
(e.g. the quadratic residuosity of specific other x € Z* chosen by a cheating B’). We
overcome this danger, by having A make sure that the machine with which it is
interacting “knows” what are the types of the numbers it quizzes A about.

A and B’s Interactive Program
Input: (y, m) € L such that (£) =1and n =1log, m.
Initialize iteration = 0.

Step 1:.
B first chooses a random r,, from Z*, and then tosses a coin C,. If C, =0,
then B sets x =r2 mod n, else if C, =1, B sets x =y - r mod n. B sends x
to A.
Then, B chooses two random sets, each of size n,

2
T ={t;,tp,...,1, | t; =r modm}
and,
§= {tn+17 Lngoy ooyl | Li=Y Lyt gy ooy by | I = mOdm}

B sends to A the elements in 7 U S in random order.
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Step 2:.
A picks a random subset Z € T U S of size n and sends it back to B.

Step 3:.
For each z € Z, B sends to A r such that z=r2>mod m or z=y - 7> mod m.
Suppose that the sizes of T — Z and § — Z differ by d. Then. B chooses d

random elements from the larger set, 7; , . .., 1;, and sends their respective
Tiys -2 Ti, toA. (ie. 6, = rl.zj ore; =y -r;, mod m for some 1 <i; < 2n)). B sets
X:T—Z—{til,...,tid},andY:S—z—{til,...,t,-d}.

If x = rZ mod m, B lets:

X/={r()‘ri=mm0dn|tiex}
Y=y roen =y G modn e ).

else if x =y - g mod m, B lets:

X ={y-rg-r;=4y-x-t;modn|t; € X}
Y={y-rg-ry=+x-t;modn|t; €Y}.
B then sends the elements in X’ U Y’ to A in random order.

Step 4:.
A checks that X’ U Y’ is of the form specified in step 3 (i.e forallw € X' U Y/,
w? = t;x mod m or w? =t; -x - y mod m for some t; € X UY) and that | X’ U
Y’ |> 3. If this is not the case, A halts detecting cheating. Otherwise, A sends
B the value v = Q,,(x).

Step 5:.
If v # C,, then B halts detecting cheating, otherwise iteration = iteration + 1
(this is the end of an iteration).
If iteration > n, then B accepts (y, m) € L, otherwise B goes back to step 1.

Let us first prove that (A,B) constitutes an interactive proof-system for L.

Remark2 Note thatif A, B both operate according to specification, then each iteration of the

L for0<c<1.

program will be completed with probability > 1 — 5

The following claims 1& 2 hold for each completed iteration.

Claim1 If (y,m)isnotin L, then A (or any other A’) correctly guessed C, (i.e sends v = C,),
with probability exactly 1.
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Proof

Claim 2

Theorem 1

Proof

Theorem 2

Proof

The proof follows from the fact that C, = 0 with probability exactly % and that even
with infinite computation power A’ can’t distinguish between a computation with
B in which C, = 0 from one in which C, = 1. The latter can be seen as follows. =

Suppose C, = 0.
Then, in step 3 forall 1; € X, A receives rory = /;x = ,/r?r2 mod m. Note that
e; =t; -x mod m is arandom square, (as #; is) and ryr; is a random square root
of e; mod m. forall; € Y, Areceives y - ro - r; = \/y - f; - x =/ y>r?r§ mod m.
Note that f; =y -, -x = y*-r? - x mod m is a random square, (as r? is) and
y - rg - o - F; is a random square root of f; mod m.

Suppose C, = 1.
Then, in step 3, for all #; € X, A receives y -ro-r;=./y ;- x =,/y*r}-rg
mod m. Note that ¢; =y -, - x mod m is a random square, (as both y and
are now squares and 7; is arandom square) and y - ry - r;, is a random square
root of f; mod m.
foralls; € Y,Areceives y - rg - r; = \/f; - x mod m. Note that f; =1; - x = y* - r?-
rg mod m is a random square, (as rl.2 is)and y - ry - r; is a random square root
of f; mod m.

Thus, for both C, = 0 and C, = 1 Awill still receive random square roots of random
squares. Therefore A can’t have any advantage in predicting C,.

If (y, m) in L, then A correctly computed C, in step 4.
(A,B) is an interactive proof-system for L.

For every (y, m) € L given as input to (A,B), B halts and accepts with probability
greater than (1 — 55 ) forall constants 0 < ¢ < 1and sufficiently large n. This follows
by claim 2. For any machine A’ and for any (y, m) not in L. given as input to (A, B),
B accepts with probability at most % by claim 1 and remark 3. ]

We now proceed to show that L has knowledge complexity 0.
L has knowledge complexity 0.

To show that (A, B) constitutes a 0 knowledge proof-system for L we must show
that for each polynomial-time ITM B’, there exists a probabilistic polynomial-time
Turing Machine M, such that the two ensembles M[-] and (A, B’)[-] are indistin-
guishable. The basic idea is that M can easily simulate B, as B’ runs in polynomial
time. On the other hand, M will succeed in simulating A, by running B’ twice with
the same coin tosses.
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A more precise description of M is the following: On input (y, m) € L, M ran-
domly fills the random tape of B’ with a sufficiently long string R, and makes B’
perform “its own version” of step 1. (B’ may in fact execute a different algorithm
than B during step 1.) Simulating A in step 2 is easy for M, as all A does here is
picking a random subset. Next, M makes B’ perform its own version of step 3. Now,
M must simulate A in step 4. Notice that it is easy to check whether A will halt in
step 4. Therefore it will be easy for M to simulate A in a computation with B’ in
which A halts in step 4. Difficulties arise if A won’t halt but continue. This implies
that M must compute Q,,(x) correctly as A does. This is easy to do for A who has
enough power to decide the quadratic residuosity of x. Notice that this would also
be easy for M if B, either generated x by squaring mod m an r, that M may observe
(in which case M knows that Q,,(x) = 0), or if B’ generated x by squaring mod m an
ro and multiplying by y (in which case M knows that Q,,(x) = 1). However, life may
be not so easy. B’ might have generated x in some other way (e.g. at random) which
would make it hard for M to compute Q,,(x). We overcome this difficulty as follows.
By ¢4, ¢, c3, . . . we denote fixed, positive constants depending on A and B’. With-
out loss of generality, we may assume that on input (y, m) A will halt in step 4 with
probability less than 1 — 2% (Otherwise by simulating A and B’ for steps 1, 2 and
3, as above, and having A halt in step 4, we trivially generate computations which
are indistinguishable from (A, B))[(y, m)].

At the end of step 3, M saves all messages sent so far by B’ and the “virtual”
A. M now runs B’ again with the same input (y, m) and the same content R in the
random tape of B’. For this second compuation, M simulates A anew, by flipping
new coins. Four things will happen in this second computation.

1. B’sends in step 1 the same sets S and 7, as in its first computation.

2. In step 2, A will select a random subset Z C T U S. With probability greater
than 1 — ﬁ, Z # Z (where Z denotes the set chosen in the first computa-
tion).

3. In step 3, B sends the sets X and Y. (The respective sets in the first compu-
ation were X’ and Y’). With probability > 1 — 547, X and Y are of the right
form (i.e could not cause the legal A to halt).

4. With probability 1 — 4, X # X'and ¥ # Y.

M now selects an element #; € (T — X') N X. As t; € T — X/, in the first compu-
tation B’ sent its corresponding r;. As t; € X, in the second computation B’ sends
J/xt; mod m or ./xt;y mod m. Now, in whatever case, it is just a matter of algebra for
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9

Remark 3

M to easily compute ry such thatr? = x mod m orrg - y = x mod m.If (y,m) € L, ex-
actly one of these cases may occur. Therefore M, having computed r,, can simulate
A bysendingav=Q,,(x).). [}

A Parenthetical Section

A stronger way of saying that A communicates at most f(n) bits of knowledge with
respect to polynomial-time computation, is the following.

Forall ITM B’ there exista polynomial-time ITM M that by interactingwith B’ (but
also reading the random tape of B’!) produces an ensemble at most (1 - ﬁ)
distinguishable from (A, B)[-].

This notion is stronger as it allows B’ not to be bound to polynomial-time
computation while A needs not to know what the computing power of B’ is. Full
details will be given in the final paper. Interestingly, the interactive proof-system
for quadratic non-residuosity of section 4.2 releases 0 additional knowledge even
with respect to this stronger definition.

An informal dcfinition: One advantage of the point of view of Remark 3 is that
it allows one to express in a clean way notions like “the polynomial-time machine
B knew x at some point of its computation”. Let us consider a particular example.
Assume that machine B started computing on input £ and outputs a k-bit integer m.
B may have randomly selected two primes p; and p,, multiplied them together to
produce m, then “erased” p; and p, and output m. What could one mean by saying
that B knew the factorization of m? A natural choice is that B is able to compute
it. In a narrow sense, this may mean that, in performing next instruction, B will
output m’s factorization or that it was written, say, at the beginning of B’s work-
tape at some point in time. In a broader sense it may mean that if a probabilistic
polynomial-time machine M “monitors” the sequence of istantaneous descriptions
of B’s computation, then M outputs m’s factorization with very high probability in
poly(k) time. This, however, may not be general enough. In fact, “extracting” m’s
factorization may not be easy for M, and still B had enough “potential” to efficiently
compute it (though B’s program may never explicitly do so). We believe that the
following (informal) definition achieves the right level of generality. Let M be a
probabilistic polynomial-time machine that monitors B’s computation from the
start till it outputs m. In particular, M reads all the inputs (random and not) of B
and all its outputs. Informally we say that B knew m’s factorization if M can now use
B to compute m’s factorization. This use of B may be very general. For example, M
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may run B more than once after altering the content of its tapes. An example of this
is implicit in section 4.2. Full details will be given in the final paper.

Applications to Cryptographic Protocols

Given our current state of knowledge about lower bounds, the security of a crypto-
graphic protocol must be proved based on the intractability assumption of some
candidate hard problem. Thus one must accept that further analysis may reveal
some candidate hard problems to be efficiently solvable. What is not accept-
able is that a protocol may be broken without violating the relative intractability

assumption.
In traditional computational complexity or communication complexity, the goal

is to communicate as much knowledge as possible as efficiently as possible. Since
all participants are considered good friends, no one cares if more knowledge than
necessary is communicated. The situation with respect to cryptographic protocols
is very different. In this case there is generally no problem at all communicating
the knowledge efficiently, but the whole problem is making sure not too much
knowledge has been communicated.

Model theoretic knowledge has been used to analyze protocols. For example, in
[HR] it has been used to prove Rabin’s “Oblivious Transfer” correct in some setting.
However, as pointed out in [FMR], Rabin’s oblivious transfer still lacks a proof of
correctness in a complexity theoretic framework.

We believe that knowledge complexity provides the right framework to discuss
the correctness of crytographic protocols. Applying these ideas, [FMR] modified
Rabin’s oblivious transfer so that it can be proved correct. A sketch of this can be
found in section 6.1.

Knowledge complexity helps in proving or disproving the correctness of cryp-
tographic protocols as these are based on the secrecy of some private information
and should preserve this secrecy. The privacy of some information is what gives us
an advantage over our adversaries. Let A(lice) possess the prime factorization of an
integer n (say n = pq - p,), while B(ob) only knows n. During a protocol with B, A
must protect the privacy of her information. Assume that A can perform each step
of the protocol without having even to look at the value of p — 1 and p,. Then it is
easy to show that the protocol did not compromise the privacy of n’s factorization.
It is also easy to see, however, that the protocol could not have accomplished any
interesting task. In fact A has not made use of her “advantage”! The protocol may
accomplish a non-trivial task if, in at least one step of it, A performs a computation
¢ that depends on p; and p,. This raises the question:
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6.1

Will ¢(p p,) betray to much information about p; and p,?

Classical information theory does not provide an answer to this question. Knowl-
edge complexity can. In particular,

1. We can quantify the amount of knowledge about p; and p, that ¢ conveys
and

2. We can design protocols so to minimize this amount of knowledge.

If (A, B) is a 0 knowledge interactive proof-system for L, we already saw that, on
input x € L, A gives B at most one bit of knowledge, namely x € L. (That is 0 addi-
tional knowledge). More generally however, we define an upper bound, measured
in bits, on the amount of knowledge A gives to B in a particular protocol (to appear
in the final paper).

We use this to give an upper bound on the number of times a single protocol or a
combination of protocols can be played, using a common secret key, without giving
away too much information about the secret key. In addition, trying to measure the
amount of knowledge revealed during the execution of a protocol about the secret,
may pin point weaknesses in the design of the protocol. For example the amount
of knowledge revealed in a protocol of [BD] appeared to be unreasonably large.
Further analysis by [H] showed that this protocol could be broken if the encryption
function used in the protocol is RSA with low exponents or Rabin’s function.

A most important application of these ideas is that it allows us to prove cor-
rectness of protocols in a modular way. Complex protocols are usually composed
of sub-protocols. For instance, many protocols use a sub-protocol for “coin toss-
ing over a telephone” (Blum [Bl1). However, it is not clear how to use a “normal”
definition of correctness of “coin tossing” to prove the correctness of the main pro-
tocol. In general, it appears that much stronger definitions for these sub-protocols
are needed in order to fit them modularly and cleanly inside larger protocols. Full
details will be given in the final paper.

A Modification of the Oblivious Transfer That Is Provably Equivalent
to Factoring

This section is joint work of [FMR]. The notion of an Oblivious Transfer (OT) has
been introduced by Rabin [HR] who also proposed the first protocol implementing
it. OT appears useful as a design tool. See for example Blum [B12] and Even Goldre-
ich and Lempel [EGL]. Rabin introduced OT (to be described below) in a number
theoretic setting. More generally tbc OT can bc viewed as a protocol for transfering
alarge amount of knowledge with probability 1/2 [EGL]. Berger, Peralta and Tedrick
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[BPT] present a correct protocol for “obliviously transferring” a random number.
Different from OT, this protocol transfers no knowledge.

The notion of an OT involves two parties A and B and an integer n (product of
two large distinct primes) whose factorization is only known to A. A would like to
send the factorization of n to B with the following constraints:

1. B must have 50% chance of receiving the factorization of » and the other half
of the time B should not know any information at all about the factors of n.

2. A should not have any idea whether or not B received the factorization of n.

Rabin’s protocol relies on the computational difficulty of factoring. However, as
described below, there is a potential flow in his protocol: it is possible that B can
cheat and factor n with probability much higher than 1/2 even if the intractability
assumption of factoring holds. Although we cannot prove that B can really cheat,
no one has yet been able to prove that B cannot. Before proceeding any further, let
us describe Rabin’s proposed protocol. We assume that A and B both know n and
that A knows its factorization.

Step 1: B chooses a random x, 1 < x < n, relatively prime with n. Then B computes
y = x2 mod n and sends y to A.

Step 2: A computes a random square root (mod n) z of y and sends z to B. (If no
square root exists, A does nothing).

Step 3: B checks that z2 =y mod n. (If not, B halts detecting cheating). Let us
assume that z2 = y mod n. It is well known that y has four square roots mod n that
can be written as {x, —x, w, —w}, where B knows x. With probability 50% z will be
x or —x and B receives no knowledge. With probability 50%, however, z will be w
or —w, in which case ged (n, x 4 z) will be a factor of n, allowing B to compute the
factorization of n.

Party A cannot cheat by sending back some cleverly chosen square root z of of
n: no matter what n does, z € {x, —x} with probability 50% and z € {w, —w} with
probability again 50% and A cannot know which is the case.

Is it clear, however, that B cannot cheat? We wish it to be the case that at the
end of the protocol B cannot factor with probability (much) bigger than 1/2, even
if B cheats, and we wish to prove this assuming only that factoring is hard. What
happens if B does not square any x at all, but instead picks a particular cleverly
chosen square mod n y to send? Perhaps knowing any square root mod n of y will
allow B to factor n. That is, perhaps there is a polynomial time algorithm that given
n produces a “special” square mod » y, and another polynomial time algorithm that
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given y, n and any square root of y mod n factors n. The point is not that we have
such algorithms, but that no one has proved that the existence of such algorithms
contradicts the assumption that factoring is hard. Hence, the proof that Rabin’s
protocol is correct relies not only on the assumption that factoring is hard, but on
an additional complicated and unnatural assumption, essentially that the above
algorithms do not exist.

We have been able to prove that a modified version of Rabin’s OT is correct.
Le. the probability (taken over the possible choices of n and all possible random
choices of B) that B can factor n in k steps at the end of the protocol, equals 1/2 +
the probability that B can factor n in k steps before the protocol starts. The heart
of the modified protocol is that in addition to y, B gives A a minimum knowledge
interactive proof that he possesses a square root of y following the ideas in section
4.2.1In particular, such interactive proof will not reveal any information about which
square root B knows. Now that we have made sure that B knows one square root of
v, when A will give him one of them at random, it is easy to prove that B’s probability
of factoring n at the end of the protocol equals 1/2 + the probability that he had of
factoring n before the start of the protocol.

7 Open Problems

Many open problems arise. We only list a few of them.
. Is NP strictly contained in IP?
. Is KC(0) contained in NP?
. Is KC(0) contained in 7 P[1]?

1

2

3

4. Is IP[k] strictly contained in IP[k + 1]?

5. Are there NP Complete languages in KC(2(n))?
6

. For what time-bound T (n), if any, IP;, inire © IP7(n)?
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How to Generate
Cryptographically
Strong Sequences of
Pseudorandom Bits

This chapter reproduces the contents of the paper “How to Generate Cryptograph-
ically Strong Sequences of Pseudo Random Bits,” which appeared in the proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 112-117,
1982.

This pioneering work of Manuel Blum and Silvio Micali defined pseudorandom
generators as producing a sequence of unpredictable bits. This definition was later
shown by Yao to be equivalent to being computationally indistinguishable from the
uniform distribution over bit-strings of adequate length. This work also defined the
notion of a hard-core predicate of a one-way function and established its existence
for the modular exponentiation function.



1.1

How To Generate Cryptographically
Strong Sequences Of Pseudo
Random Bits*

Manuel Blum (University of California - Berkeley),
Silvio Micali (University of California - Berkeley)

Introduction

Randomness and Complexity Theory

We introduce a new method of generating sequences of Pseudo Random Bits. Any
such method implies, directly or indirectly, a definition of Randomness.

Much effort has been devoted in the second half of this century to make precise
the notion of Randomness. Let us informally recall one of these definitions due to
Kolmogorov [ ].

A sequence of bits A =ay, a,, ..., q; is random if the length of the minimal
program outputting A is at least k.

We remark that the above definition is highly non constructive and rules out the
possibility of pseudo random number generators. Also, the length of a program,
from a Complexity Theory point of view, is a rather unnatural measure. A more
operative definition of Randomness should be pursued in the light of modern
Complexity Theory.

Let us consider the following example.

* Supported in part by NSF grant MCS 82-04506.
0272-5428/82/0000/0112500.75 ©1982 IEEE
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Example

1.2

A and B want to play head and tail in 4 different ways. In all of them A “fairly” flips
a “fair” coin. In the first way. A asks B to bet and then flips the coin. In such a case
we expect B to win with a 50% frequency. In the second way, A flips the coin and,
while itis spinning in the air, she asks B to bet. We are still expecting B to win with a
50% frequency. However, in the second case the outcome of the toss is determined
when B bets: in principle, he could solve the equation of the motion and win !

The third way is similar to the second one: B is allowed to bet when the coin is
spinning in the air, but he is also given a pocket calculator. Nobody will doubt that
in this case B is going to win with 50% frequency, as while he is still initializing any
computation the coin will have come up head or tail.

The fourth way is similar to the third, except that now B is given a very powerful
computer, able to take pictures of the spinning coin, and quickly compute its speed,
momentum etc. In such a case we will not say that B will always win, but we may
suspect he may win 51% of the time !

The purpose of the above example is to suggest that

The Randomness of an event is relative to a specific Model of Computation with
a specified amount of computing resources.

The links between randomness and the computation model were first pointed out
by Michael Sipser in [ ]. where he shows that certain sequences appear random to a
finite automaton. In his very nice paper [ ], Shamir considers also the factor of the
computing resources, presents significant progress in this direction and points out
some open problems as well.

In this paper we investigate the Randomness of k bit long sequences with respect
to the computation model of Boolean circuits with only Poly (k) gates.

Our Generator

We show under which conditions it is possible to construct Generators of Cryp-
tographically Strong Sequences of Pseudo Random Bits. Such a Generator is a
program G that, upon receiving as input a random number s (hereafter referred
to as “the seed”), outputs a sequence of Pseudo Random Bits b, by, by, . . .

Our Generators have three main properties:

1. The bits b,’s are polynomially many in the length of the seed.

2. The bits b;’s are easy to generate. Each b; is output in time polynomial in the
length of the seed.
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3. The bits b;’s are unpredictable. Given the Generator Gand by, . . . , b, the first
k output bits, but not the seed s, it is computationally infeasible to predict
the k+1st bit in the sequence with better than 50-50 chance.

Related Results and Applications

Our Generator is an improvement of Shamir’s pseudo random number generator.
In [ ]. Shamir presents programs that from a short secret random seed, output a
sequence of “unpredictable” numbers x;’s. The main difierences between ours and
Shamir’s generators are:

(a) Shamir’s notion of unpredictability is more restricted. He proves that not all
the generated x;’s can be computed from knowledge of the program and the
preceding outputs, permitting that some of the x;’s could be so computed.

(b) Shamir’s generator outputs numbers and not bits. Such numbers could be
unpredictable and yet of very special form. In particular every bit of (infor-
mation about) the next number in the sequence could be heavily biased or
predictable with high probability.

The classical sequence x;,; = ax; + b mod n, provides a fast way of generating
pseudo random numbers. Such sequence is known to pass many statistical tests
(see Knuth [ ]), however it is not Cryptographically Strong. Plumstead [ ], shows
that the sequence can be inferred even when a, b and n are all unknown.

On the other hand, Yao [ ] proves a very interesting result about Cryptograph-
ically Strong Sequences of Pseudo Random Bits: they pass all Polynomial Time
statistical tests. As a consequence, under the intractability assumption of the Dis-
crete Logarithm Problem, Random Polynomial Time is contained in Deterministic
Time (2" ¢) for all ¢ > 0.

We finally point out the relevance of Cryptographically Strong Pseudo Random
Bit Sequences to Cryptography. In Private Key Cryptography, one time pads con-
stitute the simplest and safest type of Cryptosystem. Two partners who have ex-
changed one of our Generators and have secretly exchanged a random seed, are
actually sharing a long bit sequence that can be used as a one time pad.

Our Generators also find applications in Public Key Cryptography. In [ ], Gold-
wasser and Micali show that, under the assumption that deciding quadratic residu-
osity modulo composite numbers is hard, there exist Encryption Schemes possess-
ing the following property:

An adversary, who knows the encryption algorithm and is given the cyphertext,
cannot obtain any information about the cleartext.
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Definitions

Theorem 1

Such Encryption Shemes are Probabilistic: the encoding of a message m depends
on m and a sequence of coin tosses known only to the transmitter. In this context,
Cryptographically Strong Pseudo Random Bits Generators are needed as an adver-
sary might be able to decode not because he is able to efficiently decide quadratic
residuosity, but because he is able to predict the random numbers used to encrypt!
Such a worry is not an abstract one as shown by Plumstead.

An analysis of a particular simple pseudo random sequence generator appears
in Blum, Blum, and Shub [ ]. They point out that well-mixed sequences in which hard
problems are embedded can nevertheless be poor pseudo-random sequences. Some-
thing more is needed to construct good generators of pseudo random sequences;
what that is is pointed out below.

The Generator Model

1n this section we present a set of conditions that allow one to generate Crypto-
graphically Strong Sequences of Pseudo Random Bits. In the next section we show
that under the intractability assumptlon of the Discrete Logarithm Problem, it is
possible to find a concrete implementation for the Generator Model.

N={0.1,2,...}. Bis said to be a set of predicates if B={B; : D; - {0.1}/i € S,,n €
N}, where S, is a subset of the n-bit integers and D; is a subset of the integers with
at most n bits.

B is an accessible set of predicates if for all n € N it is possible in Probabilistic

Poly(n) Time to select any element in /, = {(i, x)/i € S,,, X € D;} with probability
1

-
. Let B be a set of predicates. For any e > 0, let C,, , denote the size (number of
gates) of a minimum size circuit C = C[i, x] that computes B;(x) correctly for at
least a fraction % + ¢ of the inputs (i, x) € I,,. Bis input hard if for any ¢ > 0 and any
given polynomial Q, C,, . > Q(n) for all sufficiently large n.

For example, suppose S, = set of all n-bit composite integers that are products
of two equal-length primes; D; = Z*(+1), the set of all integers x relatively prime to
i such that the Jacobi symbol (x/i) = +1; and B, : x — 1if x is a quadratic residue
mod i, 0 otherwise. Then it is easy to show that B is accessible. Furthermore, under
the reasonable assumption that deciding quadratic residuosity modulo composite

numbers is hard, B is input-hard.

Let B be an input hard and accessible set of predicates. Let ¢ > 0, let Q and P be
given polynomials. Letn € N and i € S,,, and suppose

1. the function f: i — f; is Poly(n) Time computable
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Proof

2. f;: D; — D, is a. permutation computable in Poly(n) Time
3. the function / : x € D; — B;(f;(x) is Poly(n) Time computable.

Then it is possible in Poly(n) Time to compute, from initial random seeds
(i, x) € I,, sequences S; ., each Q(n) + 1 bits long such that:
for each integer k € [1, Q(n)], for any circuit C of size less than P(n) with k Boolean
inputs and one Boolean output y: if C is fed the first k bits of an §; , sequence S,
then Prob {y is equal to the k+1st bit of S} < % + ¢ for all sufficiently large n. Le. for
all sufficiently large n [{(i, x) € I,,/y = the k+Ist bit of §; ,}| < (% + &)|1,]-

Let n be a natural number. As B is an accessible set of predicates, select (i,x)
at random in /,. (i,x) will be the seed of the Pseudo Random Bit Sequence. Set
¢ = Q(n) + 1, the desired length of the sequence.

Generate the sequence T; , = x, f;(x), fiz(x), ooy (0.

From right to left (1), extract one bit from each element in 7; , in the following
way: for j = c to 1, output the bit B; (fl.j (x)). (We note below that B,»(fij (x)) is easy
to compute because x is known, by (3)).

The above procedure constitutes the Generator that takes the random seed (i,x) and
stretches it into the sequence S; = (s;|1<j <c,s; = Bi(fl."_fH(x)).

We first prove that the Generator operates in Poly(n) Time. The sequence T; ,
can be constructed in Poly(n) time as the two functions f:i — f; and f; : D; = D;
are both Poly(n) Time computable (hypothesis (1) and (2) ).

Once the sequence T; , is computed and stored, it is easy, by virtue of hypothesis
(3), to compute each bit s; of the S;,x sequence fori<j<ec.

We now prove that, when n is large enough, for any k between 1 and ¢, a circuit C
with less than P(n) gates, cannot “predict” s, ; with probability greater than % +e.
The proof is by contradiction. Assume that there is a “small” circuit C predicting
Sx.1 with probability at least % + ¢. Then we will show that the set of predicates B
is not input hard. We will do this by showing that there is another “small” circuit
that computes B; (x) for a fraction bigger than % + ¢ of the (i, x) € I,. Such a small
circuit is derived by the following Poly(n) Time algorithm that makes calls to the

circuit C.
For each (i,x) eI, generate the sequence of bits (by,...,b;_q1, b)) =
(B,»(fik(x)), e, B,«(fiz(x)), B;(fi(x))). Input these k bits to the circuit C to com-
pute a bit y.

We reach a contradiction if we show that y equals B;(x) for a fraction at least
% + ¢ of the (i, x) € I,. Notice that the bits b4, . . . , b; are the first k bits of the Pseudo
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Definition

Random Bit Sequence S.

A
the k+1st bit of S, But this will happen for a fraction at least % + ¢ of the

Thus y = B;(x) if and only if C correctly predicts

’ fikfc(x).
(i, x) € I, as the function fl.k*" is bijective (as f; is a permutation) and we are now
assuming that C correctly predicts the k+1st bit of the §; , sequences for at least a
fraction % + ¢ of the (i, x) € I,,.

Qed

The Discrete Logarithm Problem

Let p be a prime. The set of integers [1, p — /] forms a cyclic group under multiplica-
tion mod p. Such group is denoted by Z7. Let ¢ be a generator for Z;. The function
SfpgiXx € Z; — g mod p, defines a permutation in Z;‘; computable in Poly(|p|) Time.
The Discrete Logarithm Problem (DLP) with parameters p,g and y consists in finding
the x € Z7 such that ¢* mod p =y. A circuit C[,, ., .] solves the DLP mod a prime p
if for any g generator for Z;j and any y € Z;;, Clp, g,y]l=x such that x € Z;; and
g* mod p =y. x will be simply denoted by index,(y) whenever no ambiguity may
arise about p.

Actual knowledge about the DLP

g* mod p seems to be a one-way function. The fastest algorithm known for the DLP
is due to Adleman and runs in time O(2°V 108 P 108 1og Py 1t jg easy to see that the dif-
ficulty of the DLP does not depend on the generator g or y. By this we mean that if
for a non negligible fraction (//Poly(|p|)) of pairs (g,y), g a generator and y € Z;,
the DLP with parameters p,g and y could be efficiently solved, then it could be
solved in Random Poly(|p|) Time for any g and any y. Thus our intractability as-
sumption for the DLP will depend only on the prime p.

Pohlig and Hellman [ ] show that the DLP mod a prime p such that p — 1 contains
only small prime factors can be efficiently solved. However such primes constitute
a negligible portion of all primes. We expect that for (nearly all) randomly selected
primes p, p — 1 has a large prime factor. No “small” circuits are known that solve
the DLP mod a single prime p, for the primes p such that p — 1 has a large prime
factor (thus the DLP seems to have a higher circuit complexity than factoring: for
any composite integer k there is a small circuit storing its factorization). In this
paper we show how to generate Pseudo Random Bit Sequences under either one of
the following assumptions.

A prime p is hard if p=P x + 1, where P is prime and 1 < x < Poly(|P|).
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Definition

It is known (De la Vallee Poussin [ ]) that asymptotically |—},‘ of the integers of the
sequence Px+1,x =1,2.3,...,are primes.

Using efficient primality tests, there is an efficient procedure to decide if an
integer, p, is a hard prime; and if so, to factor p — 1.

First intractability assumption for the DLP. Let ¢ > 0 be a fixed constant and Q
be a fixed polynomial. Then for all sufficiently large n, the size of any circuit that
solves the DLP mod p for at Ieast a fraction ¢ of the n-bits-long hard primes p, is
greater than Q(n).

Second intractability assumption for the DIP. Let ¢ > 0 be a fixed constant and
Q be a fixed polynomial. Then for all sufficiently large n, the size of any circuit that
solves the DLP for at least a fraction ¢ of the n-bit primes p, is greater than Q(n).

The DLP and the Principal Square Root Problem

We recall some known results about Z;.
An element T of Z;‘; is called a quadratic residue if and only if T = x2 mod p for
some x € Z;; such an x is called a square root mod p of T.

Fact1. Given any generator g for Z;, an element T of Z; is a quadratic residue
mod p if and only if T = g2 mod p for some s € [1, ”T_l]. We recall that such
a representation of T is unique. Moreover T has two square roots mod p:
¢* mod p and g*+(P=D/2 mod p. (see [ ])

Fact 2. There exists a polynomial time algorithm for testing whether an ele-
ment T of Z; is a quadratic residue mod p (See [ ]).

Fact 3. (Miller [ ], Adleman and Manders [ ], Berlekamp [ ]) Given any T, a
quadratic residue mod p, there exists a random polynomial time algorithm
to compute both square roots of T mod p.

We introduce the following basic definition.

Let g be a generator for Z;, T a quadratic residue mod p and 2s the unique index
of T such that 25 € [1, p — 1]. Then g* mod p will be called the principal square root
of T, and g**((»=)/2) mod p the non principal square root of T.

Let g be a generator for Z;. Notice that given T, a quadratic residue mod p, but
not the index of T in base g, one can still test efficiently that T is indeed a quadratic
residue and can effectively extract its two square roots mod p, say X and Y. However
the next theorem shows that deciding which square root of T is the principal one
is a much harder problem. In fact, even allowing a weak oracle for the Principal
Square Root Problem, the DLP becomes easy.
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Definition

Remark 1

Theorem 2

Lemmal

Proof

Let g be a generator for Z7 and x € Z7. The predicate B), ,(x) is defined to be equal
to 1 if x is the principal square root of x> mod p and 0 otherwise.

Notice that, given x, it is easy to evaluate B, ,(¢g* mod p): just check whether

. ) p.gl
P= p= ;
x < &~ orx > == and output a 1 or a 0 respectively.

Let ¢ > O, p prime and g generator for Z;’;. Then, given an oracle ME (Magic Box)
such that MB[x] = B, ,(x) for a fraction > % +cofthex e Z;, one can construct an
algorithm with oracle MB that solves the DLP mod p in Probabilistic Poly(|p|) Time.

We first establish some intermediate results.

Let ¢ > 0, P prime and g generator for Z7. Then, given an oracle ME such that
MB[x]= B, ,(x) forallthe x € Z;’;, there exist a Poly(|p|) Time Algorithm (with oracle
MB) for the DLP mod p.

We will exhibit a Poly(|p|) Algorithm, making calls to MB, that finds indices mod
p in base g. Such an algorithm will solve the DLP mod p as, for each generator h
for Z; and each y € Z;, index),(y)index,(h) mod p — 1= index,(y). The algorithm,
given y € Z;, finds x = index,(y) bit by bit from right to left. In the middle of the
execution, the variable index will contain the right half of the bits of x and the
variable element is such that indexg(element) equals the left half of x. Think of
index,(element) and index as lists of 0’s and 1’s. The algorithm, abstractly, transfers
the last bit of index,(element) in front of index until index,(element) vanishes (i.e.
element = g° = 1) and thus all of x has been reconstructed in index. “ ” denotes the
concatenation operator.

Step 0. (Initialization)
element := y; index := empty word.

Step 1. (Check for termination condition)
If element =1 HALT. index equals x.

Step 2. (find one more bit of x)
Test whether element is a quadratic residue mod p. If yes index := 0 index and
go to step 4 else index := 1 index and go to step 3.

Step 3. (element is a quadratic non residue, i.e. index, (element) is odd. Change
the last bit of index, (element) from 1 to 0)
element := g~ 'element mod p

Step 4. (Erase 0 from the tail of indexg(element) )
element is a quadratic residue. Compute both square roots of element mod p.
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Lemma 2

Proof

Have MB select the principal one. element := principal square root of element
and go to Step 1.

Qed

The algorithm in lemma 1 needs, for |p| times, to select the Principal Square Root
of a quadratic residue mod p. It does so by making |p| calls to the oracle MB that
computes B, , correctly 100% of the time.

We should ask what happens to the algorithm if it is allowed to make calls only
to an oracle M B, that evaluates B, , only slightly better than guessing at random,
L.e. correctly for a fraction 3 + ¢ of the x € Z.

The following lemma, making use of the algebraic structure of Z}, shows how
to “concentrate a stochastic advantage”, i.e. how to turn an oracle that answers
most of the instances of a decision problem correctly into an oracle answering a
particular instance correctly with arbitrarily high probability. Let us first recall the
Weak Law of Large Numbers.

If y;, ..., y are kindependent 0-1 variables such that y; = 1 with probability «,
and S, = y; + - - - + ¥, then for real numbers ¢ and ¢ > 0,

k > 2 implies that Pr (‘ﬁ -
49 y? k

Let us define trials(yr, ¢) = W. Notice that trials(y/, ¢) is a polynomial in v ~?
and ¢~ L.

>w><¢.

Let e € (0, %), 8 € (0, 1), p a prime and g a generator for Z;. Set n = trials(g, §) and
define IS, the initial segment of Z;*, as follows: IS={g* modp 1<x < pT_l}. Then,
given an oracle M B, such that M B,[x]= B, ,(x) for at least a fraction % + ¢ of the
x € Z3, there is a Probabilistic Poly(|p|, e~1, 871 Algorithm with oracle M B, that,
with Probability 1 — §, correctly selects the Principal Square Root of any quadratic
residue e mod p belonging to IS.

Select rq, ..., r, at random in [1, pT_l]. Compute 2r, ..., 2r,. Compute e; =
eﬁ’lmod Dyevey€y= ef,r”modp. Allthe ¢;’s are quadratic residues mod p as index, (e;)
is even for all i’s. In fact index,(e;) = (index,(e) + 2r;) mod p-1 and both index, ()
and p-1 are even. Compute the two square roots X; and Y; of each e;. (Note that
while these can be computed, it is not (yet) clear which of X; and Y; is principal.)
For each ¢; select PSQR;, your guess for the principal square root of ¢;, in the fol-
lowing way: if M B,[X;]= M B,[Y;], set PSQR; = one of M B,[X;], M B.[Y;] selected
at random with probability 1/2. Otherwise, if M B,[X;] =1, set PSQR; = X;; else set
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Lemma3

Proof

PSQR; =Y;. Notice that the ¢;’s have been drawn at random with uniform proba-
bility among the quadratic residues mod p: in fact every even index between 1 and
p-1 can be uniquely written in the form (index,(e) + 2r) mod p-l, for1 <2r < p — 1.
Thus, even if an adversary had chosen the x’s for which MB,[x] = B,(x), the Weak
Law of Large Numbers guarantees that with Probability 1 — §, |% — (% +e)| < 5.
L.e., with probability 1 — §, we have selected the principal square root of the ¢;’s
more correctly than incorrectly. We exploit this fact in the following way.

Initialize to 0 two counters Cy and Cy. Compute a square root of e, call it X. For
eachr; compute S; = Xg"i mod p. If S; = PSQR; then increment the counter Cy, else
increment the counter Cy.

Notice the following fact:

Let e = g2 mod p (25 € [1, p — 1]) be a quadratic residue mod p and let X and Y
be its square roots mod p. Let 2s + 2r < p — 1. Then Xg" mod p is the principal
square root of eg?” mod p if and only if X is the principal square root of e.

Without loss of generality, let Cy > Cy and let 2s be the index of e in base g. If for all
the r;’s, 2s + 2r; < p — [; then with probability 1 — §, X will be the Principal Square
Root of e.

2s is unknown, but we know that 2s € [1, ”T_l]. Thus all ;’s for which 2s + 2r; >
p — 1 must belong to the interval [(n — 1) ”;1, p — 1]]. But the 2r;’s are n even
integers drawn at random with uniform probability in [1,p-1]; thus each 2r; has the
same probability to belong to each of the n sub intervals [k”T_l, (k + 1)”7_1]. Lett
be the number of 7;’s belonging to the dangerous interval [(n — 1)”'—:1, p — 1]. This

twill be so small that also Cy — t will be greater than C,,. Thus still with probability

1 — §, X will be the Principal Square Root of e.
Qed

Let ¢ € (0, %) and ¢ € (0, 1), p prime and g generator for Z:. Set n = trials(e, %pl)
and define IS = {g* mod p|x € [1, p,—:l]}. Then, given an oracle M B, such that
MB,[x]= B, ,(x) for at least a fraction % + e ofthex € Z;‘,, there is a Probabilistic
Algorithm that finds indices of any y € 1S in Expected Poly(|p|) Time.

Let y be any element in IS. Apply the algorithm in lemma 1 to find the index ofy,

In Step 4, to select the principal square root of a quadratic residue in IS, instead of
1
2[pl*

4 will be performed correctly with independent probability equal to 1 — %p‘ Notice

that if x belongs to IS, so does xg ! mod p; and that if x is a quadratic residue mod p

calling MB, apply the algorithm in lemma 2 with § = In view of lemma 2, Step

belonging to IS, also its principal square root will belong to IS. Therefore. if in Step
4 the algorithm correctly selects the principal square root, the total computation
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Proof of Theorem 2

4.1

will be done in the initial segment IS. As Step 4 is executed at most |p| times, the
probability that the index of y will be found correctly is greater than (1 — 5171 > 7.
It is easy to see that the whole computation is polynomial in ¢! and |p|, thus
polynomial in |p| for sufficiently large p.

Qed

The following Probabilistic Poly(|p|) Time Algoriihm finds index,(y) forany y € Z;.

Set n = trials(e, ﬁ) and define IS = {g* mod p|x € [1, Plzl]}.

Step 0. (Initialization)
i:=1
Step 1. (guess thaty ¢ [ipT_l, i+ 1)”7_1] and map y into IS)

. p—1

w:=yg " modp

Step 2. (find the index of w)

Apply the algorithm in Lemma 3 to find the index of w. index(w) := the index
of w.

Step 3. (check whether the index of y has been found)
candidate := index(w) + i 21 if g¢@"¥da¢ mod p =y then HALT: candidate
is the index of y in base g. Else continue.

Step 4. (keep on guessing)
i:=i+/[.Ifi > ktheni:=1and go to Step 0; else go to Step 1.

Qed

A Concrete Implementation of the General Model
We merely sketch the proofs that will appear in the final paper.

First Implementation

This implementation is more efficient than the second one. It assumes the first
intractability assumption for the DLP and the constructability of the hard primes
(suggested, but not implied, by the De La Vallee Poussin Theorem, which is an
asymptotic result).

Letn € N. Let S,,, be the set of 2n-bit long integers i such that the first n bits of i
constitute a hard prime p, and the next n bits a generator g for Z;. Fori € S,,,i =pg,
set D; = Z; and, for xan n-bitinteger, set B;(x) = B, ,(x). Then the set of predicates
B = B;|i € S,, is an accessible, input hard set of predicates.

B is accessible : Flip 3n coins. An element (i, x) € I,, has been obtained if
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4.2

1. The first n bits constitute a hard prime p. This will happen in n? expected
trials (Prime theorem & De La Vallee Poussin Theorem). Moreover, success
can be easily detected by means of fast primality tests.

2. The next n bits constitute a generator for Z;. This will happen in a low ex-
pected number of trials as the fraction of generators for Z7 is asymptotically

greater than . Also notice that as we easily have the complete fac-

1
6 log log(p)
torization of p-l, it is easy to check whether g is a generator for Z;.

3. The last n bits constitute an integer x € [/, p — 1].

If the 3n flips have not generated a complete element of /,,, flip 3n coins again.

B is input hard : If there were a circuit C, of size less than Q(n) for some fixed
polynomial Q, that evaluates correctly B, ,(x) for a fraction of at least % + ¢ of the
n-bit inputs p, g, and x, then a counting argument shows that there would be a
fraction of pairs (p,g) for which the circuit guesses B, ,(x) correctly for at least a
fraction % +eofthex e Z;. By the results in the previous section, using C as an
oracle, there would be a Probabilistic Poly(n) Time Algorithm, for solving the DLP
for a fixed fraction of the hard primes of n bits. As the size of C is bounded by Q(n)
and any Probabilistic Poly Algorithm is easily seen to admit small circuits, the first
intractability assumption for the DLP has been violated.

B satisfies the hypothesis of Theorem 1 : Define f;(x) = g* mod p.

Second Implementation

Assume that we can pick a prime p with uniform probability, among those of a given
size, so that the factorization of p-1 is known. Then, set §,, equal to the set of 2n bit
integers i such that the first n bits of i constitute a prime p and the second n bits a
generator g for Z;. Set D; = Z;‘;. fi(x) = g* mod p. Then as in the previous section,
{B;:x— B, ,(x)|i €S,,}isan accessible set of predicates satisfying hypothesis (1),
(2) and (3) of Theorem 1. However we do not know how to pick at random a prime
p so that the factorization of p-1 is known. So, after having picked a prime p we
would have trouble picking a generator for Z;, as no way is known of proving
that x Z;‘; is a generator without having the factorization of p-l. However there
is an “abundance” of generators in Z;: one out of 6 log log (p) elements is a
generator. Thus having picked at random k =log(p) elements xq, ..., X; in Z;,
with probability greater than any fixed ¢ one of the x;’s will be a generator. Consider
each x; to be a generator for Z: and implement k Pseudo Random Bit Generators
G4, ...Gasabove. We now make use of the “exclusive or” function in a way similar
to Yao [ ]. Construct the following new Pseudo Random Bit Generator G: generate
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the ith bit by outputting the ith bit for G4, G,, . . ., G, and take their “exclusive or”.
It is easy to see that, if at least one of the G,’s is Cryptographically Strong so is G.
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How to Construct
Random Functions

This chapter reproduces the contents of the paper “How to Construct Random
Functions,” which appeared in the proceedings of the 25th Annual Symposium on
Foundations of Computer Science, pp. 464-479, 1984.

This influential work of Oded Goldreich, Shafi Goldwasser, and Silvio Micali ex-
tended the theory of pseudorandomness to functions, and showed how to construct
pseudorandom functions based on any pseudorandom generator. The notion of a
pseudorandom function found numerous applications in cryptography, starting
from the construction of message authentication codes and private-key encryption
schemes that withstand chosen ciphertext attacks.



How to Construct Random Functions
(Extended Abstract)

Oded Coldreich (Massachusetts Institute of Technology),
Shafi Goldwasser (Massachusetts Institute of Technology),
Silvio Micali (Massachusetts Institute of Technology)

Abstract
This paper develops a constructive theory of randomness for functions based on
computational complexity.

We present a deterministic polynomial-time algorithm that transforms pairs
(g, r), where g is any one-way (in a very weak sense) function and r is a random k-
bit string, to polynomial-time computable functions f, : {1, ..., 2%} — {1,..., 2.
These f;’s cannot be distinguished from random functions by any probabilistic
polynomial time algorithm that asks and receives the value of a function at argu-
ments of its choice.

The result has applications in cryptography, random constructions and com-
plexity theory.

Introduction

Measuring randomness has attracted much attention in the second half of this
century. However most of the previous work focused on measuring the randomness
of strings.

The first author was supported in part by a Weizmann Postdoctoral fellowship. The second author
was supported in part by the International Business Machines Corporation under the IBM/MIT
Joint Research Program, Faculty Development Award agreement dated August 9, 1983.
0272-5428/84/0000/0464501.00 © 1984 IEEE
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In Kolmogorov Complexity ([Kol], [Sol], [ZL], [Ch], [L2], [L3], [L4], [ML], [Sch]
and [Ga]) the measure of randomness of a string is the length of its shortest de-
scription: randomness is an inherent property of individual strings. This approach
is nonconstructive and far from being applicable to pseudo-random string genera-
tion. (Interesting generalizations of Kolmogorov Complexity have been considered
in [A], [Si], [HI] and [W].)

In [BM] and [Y] (following a result of [Sh]) a constructive approach to the ran-
domness of strings is introduced based on computational complexity. In this ap-
proach a set of strings is random if elements randomly selected in it retain, with
respect to polynomial-time computation, properties of elements randomly selected
in the set of all strings.

In this paper we further develop this latter approach by introducing a construc-
tive theory of randomness for functions. In particular,

1. We introduce a computational complexity measure of the randomness of
functions.

(Loosely speaking, we call a function random if no polynomial time al-
gorithm, asking for the values of the function at arguments of its choice,
can distinguish a computation during which it receives the true values of the
function, from a computation during which it receives the outcome of inde-
pendent coin flips. Notice the analogy with the Turing Test for intelligence.)

2. Assuming the existence of one-way functions, we present an algorithm for
constructing functions that achieve maximum randomness with respect to
the above measure.

Our result solves, and was motivated by, an open problem of [BBS].

Organization of the Paper

In the rest of this section we informally discuss the notion of a poly-random collec-
tion: a set of easy to select and to evaluate functions that achieve randomness with
respect to polynomial-time computation. We compare this new notion with the
previously considered notions of one-way functions and Cryptographically Strong
Pseudo-Random Bit generators (CSPRB generators). In section 2 we briefly recall
the basic definitions and results about CSPRB generators and the Blum Blum
Shub open problem. In section 3 we formally define poly-random collections and
show how to construct a poly-random collection given any one-way function. In
section 4 we characterize poly-random collections as extremely hard prediction
problems. In section 5 we briefly discuss various applications of poly-random col-
lections. We conclude this paper with some reflections on the internal coherence
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1.2

of polynomial-randomness: the approach that constructively bases randomness on
computational complexity.

Poly-Random Collections

Let 7, denote the set of all k-bit strings. Consider the set, Hy, of all functions from
I, into I;. Note that the cardinality of H, is 2 Thus to specify a function in H;
we would need k2F bits: an impractical task even for a moderately large k. Even
more, assume that one randomly selects subsets H, C H of cardinality 2K so that
each function in H; has a unique k-bit index; then there is no polynomial time
algorithm that, given the index of a function f € H] and x € I, will evaluate f(x).

Our goal is to make “random functions” accessible for applications. I.e. to
construct functions that can be easily specified and evaluated and yet cannot be
distinguished from functions chosen at random in H,. Thus we restrict ourselves
to choose functions from a subset F; C H; where the collection F' = (F};) has the
following properties:

1. Indexing: Each function in F; has a unique k-bit index associated with it.
(Thus picking randomly a function f € Fj is easy.)

2. Poly-time Evaluation: There exists a polynomial algorithm that given as input
an index of a function f € Fj and an argument x, computes f(x).

3. Pseudo-Randomness: No probabilistic algorithm that runs in time polyno-
mial in k can distinguish the functions in F, from the functions in H,. (see
section 3.1 for a precise definition).

Such a collection of functions F will be called a poly-random collection. Loosely
speaking, despite the fact that the functions in F are easy to select and easy to
evaluate, they will exhibit, to an examiner with polynomially bounded resources,
all the properties of randomly selected functions.

The above definition is highly constructive. We transform any one-to-one one-
way function (formally defined in section 2.3) to a poly-random collection. The
construction is in two steps: first, we use a construction due to Yao [Y] to transform
a one-to-one one-way function into a high quality pseudo-random bit generator,
called a CSPRB-generator; next, we use any CSPRB-generator to construct a poly-
random collection.

Comparison with One-way Functions
We construct random functions from any one-way permutation. This confirms the
great potential present in the notion of a one-way computation. However, this
power needs to be carefully brought out.



13

Chapter 10 How to Construct Random Functions 245

Although the inverse of a one-way function is somewhat unpredictable, this does
not mean that it is random. In fact, all permutations that are believed to be one-way
satisfy various algebraic identities (e.g., the RSA function [RSA] is multiplicative,
thus given its inverse on x and y, one can easily infer its inverse at x - y. This clearly
does not happen with truly random functions, and in fact will not happen with a
function randomly selected from a poly-random collection {F;}. In particular, our
construction hides all the identities of the one-way function upon which it is based
from any observer with polynomially bounded resources:

Choose and fix f € F;. Let a probabilistic poly(k) time algorithm A ask for the
value of f on polynomially many (in k) arguments of its choice: y;y,, ..., yu.
Then let A choose an argument x (x # y;, for all i’s) as an exam. If A is now given
two numbers in random order, one of which is f(x) and the other a random k-bit
number, it cannot guess which of the two is f(x) with probability greater than
1/2.

Not only that f(x) cannot be computed from the values of f at other arguments,
but it cannot even be recognized when given! The above test is a complete charac-
terization of poly-random collections (see section 4).

Comparison with CSPRB Generators

CSPRB generators are deterministic programs that stretch a (random) k-bit long
seed to a k'-bit long (pseudo-random) sequence that is indistinguishable from a
k'-bit long truly random sequence for some constant ¢ > 0 (see section 2.1). Their
existence has interesting implications with respect to probabilistic computation.

Performing a probabilistic polynomial-time computation that requires k' ran-
dom bits is trivial if we are willing to flip &’ coins. Interestingly, CSPRB generators
guarantee the same result of the computation by flipping only & coins.

We now address the problem of efficiently simulating more complex probabilis-
tic computations: computations with a random oracle.

A random oracle (see Bennet and Gill [BG]) is a special case of a random func-
tion: it associates the result of a single coin toss to each string. Notice that com-
puting with a random oracle has advantages over computing with a coin. The bit
associated with each string x, not only is random, but does not change in time.
That is, if one asks twice for the bit associated with string x, then he gets the same
(random) result. The advantages of computing with a random oracle are clarified
by all the applications listed in section 5.

It is trivial to simulate a random oracle that is queried on k' strings if one is
willing to use O(k'*!) bits of storage:
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For each query g, generate a random (or pseudo-random) bit » and store some
encoding of the pair (g, b) so to be able to recognize whether a query occurred
before and give the same answer.

Clearly, if the queries cannot be compressed (as for random queries) then this
simple simulation would require at least k™! bits of storage. An interesting feature
of poly-random collections is that they guarantee the same result of any computa-
tion with a random oracle for k-bit strings (by using only & coin flips and) by storing
only k bits! This can be done by randomly selecting and storing a k-bit index spec-
ifying a function in a poly-random collection.

Poly-Random Collections Allow to Share Randomness
in a Distributed Environment

An additional advantage of poly-random collections is that they enable many parties
to efficiently share a random function f in a distributed environment. By sharing f
we mean that if f is evaluated at different times by different parties on the same
argument x, the same value f(x) will be obtained. Such sharing is efficient as it can
be achieved by only flipping k coins, using k bits of storage (per party) and without
exchanging any messages at all. Again, each party (processor) will simply have in
memory a common, randomly selected k-bit string specifying a function f in a
poly-random collection.

Conventions

All definitions and results in this paper are stated with respect to the Turing Ma-
chine computational model. The results can also be stated and proved in terms of
circuit complexity.

Also, all definitions and results are stated with respect to the uniform probability
distribution. The results can be stated and proved with respect to more general
probability distributions.

The parameter k, when given as input to any algorithm discussed in this paper,
will be presented in unary.

Let A be a multiset with distinct elements «,, . . ., a, occurring with multiplici-
n

i=1
the element a has been randomly selected from the multiset A. I.e. an element

ties my, ..., m,, respectively. Then |[A| =7 . m;. By writing a €z A we mean that

occurring in A with multiplicity m is chosen with probabilility ﬁ.

CSPRB Generators

In this section we recall some of the basic definitions and results concerning
Cryptographically Strong Pseudo-Random Bit generators (CSPRB generator).
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The Notion of a CSPRB Generator

Improving a result of Shamir [Sh], Blum and Micali [BM] introduced the notion of
a Cryptographically Strong Pseudo-Random Bit generator (CSPRB generator). Let
P be a polynomial. A CSPRB generator, G, is a deterministic poly(k)-time program
that stretches a k-bit long randomly selected seed into a P (k)-bit long sequence
(called a CSPRB sequence) that passes all next-bit-tests:

Let P be a polynomial, S; is a multiset consisting of P (k)-bit sequences and
S = U, S;. A next-bit-test for S is a probabilistic polynomial-time algorithm 7 that
on input k and the first i bits in a srting s € S; outputs a bit . Let P, denote the
probability that b equals the i + 1st bit of s.

We say that S passes the next-bit-test T if for all e > O, for all sufficiently large k:

1
I — 3l <e.

A more general definition of string randomness has been suggested by Yao [Y] and
is formally stated below.

Polynomial-Time Statistical Tests for Strings

Let P and S = U; S, be as above. A polynomial time statistical test for strings is a
probabilistic polynomial-time algorithm 7 that, on input a P (k)-bit string, outputs
only 0 or 1.

The multiset S passes the test T if for any polynomial Q, for all sufficiently large k:

1
Ipi = Pl < —
£ T om
where p,f denotes the probability that 7 outputs 1 on s €, S; and p,f the proba-
bility that 7 outputs 1 on a randomly selected P (k)-long bit sequence.

Yao [Y] shows that by substituting ¢ by m in the definition of the next-bit-test
the following theorem can be proved.

(Yao [Y]): A multiset S = U, S;, of bit-sequences passes the next-bit-test if and only
if it passes all polynomial-time statistical tests for strings.

Thus, CSPRB sequences pass all polynomial-time statistical tests for strings.
Theorem 4 generalizes the above theorem. The reader can derive a proof of Theo-
rem 1 from the proof of Theorem 4.

Implementations of CSPRB Generators

Blum and MiCali [BM] presented an algorithmic scheme for constructing CSPRB
generators based on a general complexity theoretic assumption (a sketch can be
found in the Appendix). They also presented the first instance of their scheme based
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on a specific assumption: the intractability assumption of the discrete logarithm
problem (DLP). Namely, if the next bit in the sequences produced by their generator
could be predicted with probability greater than % + ¢, then there would exist a
poly(k, e~ 1) algorithm for solving the DLP for a fraction ¢ of all primes of length k.

Other instances of CSPRB generators based on various number theoretic as-
sumptions appeared in [Y] [BBS] [GMT][BCS] [VV1] [LW] [ACGS].

More generally, Yao [Y] showed how to obtain CSPRB generators if any (weak)
one-way permutation is given. Let us be more formal.

(Yao) Let D, C I;. Let f;: D, — Dy be a sequence of permutations and let the
function f be defined as follows: f(x) = f.(x) if X € D;. f is said to be a one-to-one
one-way function if

1. f is polynomial-time computable.

2. f is (moderately) hard to invert: there exists a polynomial Q such that for
every polynomial-time algorithm A and for all sufficiently large k, A(x) #
1

fk_l(x) for at least a fraction ) of the x € D;.

3. There exists a probabilistic polynomial-time algorithm that, on input &,
select an X € D, with uniform probability distribution.

(Yao [Y]) Given a weak one-to-one one-way function, it is possible to construct
CSPRB generators.

A sketch of the construction used by Yao is given in the Appendix.

Levin [L5] pointed out that Theorem 2 still holds with respect to “locally one-
way” functions, a notion weaker than the above defined notion of a one-way permu-
tation. Moreover he exhibits a function that is locally one-way if any locally one-way
function exists. An informal sketch of Levin’s definition is given in the Appendix.

CSPRB Generators with Direct Access

Blum, Blum and Shub [BBS] present an interesting CSPRB generator whose se-
quences pass all polynomial time statistical tests if and only if squaring modulo a
Blum-integer! is a weak one-to-one one-way function.?

1. ABluminteger is an integer of the form p, p, where p; and p, are distinct primes both congruent
to 3mod 4.

2. This generator has been proved [BBS] to be cryptographically strong based on the intractability
of deciding Quadratic Residuosity modulo a Blum-integer. Recently, it has been pointed out [VV2]
that the results in [ACGS] imply that this generator is cryptographically strong based on a weaker
assumption: the intractability of factoring Blum-integers.
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Notice that, even though a CSPRB sequence generated with a k-bit long seed
consists of polynomially many (in k) bits, a CSPRB generator and a seed s define
an infinite (ultimately periodic) bit-sequence b, b4, . . . An interesting feature first
present in Blum Blum Shub’s generator is that knowledge of the seed and of
the factorization of the modulus allows direct access to each of the first 2 bits.
Le. if log i <k, the ith bit in the string, b; , can be computed in poly(k) time.
This is due to the special weak one-way permutation on which the security of
their generator is based. However, this directly-accessible exponentially-long bit-
string may not appear “random.” Blum, Blum and Shub only prove that any single
polynomially long interval of consecutive bits in the string passes all polynomial
time statistical tests for strings. Indeed, it may be the case that, given b, ..., b;
and bysiygy by it is easy to compute any other bit in the string.

The Blum Blum Shub open problem consists of whether direct access to expo-
nentially far away bits in their pseudo-random pad is a “randomness preserving”
operation. This problem has also been discussed by Angluin and Lichtenstein [AL].

Notice that there is a natural one-to-one correspondence between “randomness
preserving” directly-accessible k - 2-bit long strings and random functions from
I to I;. By constructing a poly-random collection F' = {F}}, we virtually construct
k - 2k-bit strings {s; = f(1) f(2) - - f(2k)}ka which can be directly accessed in a
“randomness preserving” manner. This practically solves the Blum Blum Shub
problem in a strong sense since we construct poly-random collections not only if
squaring modulo a Blum-integer is a one-way permutation, but given any one-way
permutation.

Constructing Poly-Random Collections
In this section we show how to construct functions that pass all “polynomially
bounded” statistical tests.

A collection of functions, F, is a collection {F}}, such that for all k and all f € F},
[, — 1.

Polynomial Time Statistical Tests for Functions

A polynomial time statistical test for functions is a probabilistic polynomial time
algorithm 7 that, given k as input and access to an oracle O for a function f : [ —
Iy, outputs either 0 or 1. Algorithm 7' can query the oracle O only by writing on a
special query-tape some y € I; and will read the oracle answer, f(y), on a separate
answer-tape. As usual, O prints its answer in one step.
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Let F = {F;} be a collection of functions. We say that F' passes the test T if for
any polynomial Q, for all sufficiently large k:

o
Q(k)

where p ,f denotes the probability that 7 outputs 1 on input k and access to an oracle

I\l =P 1<

for a function f € Fj. pf is the probability that T outputs 1 when given the input
k and access to an oracle O for a function f €y H (i.e. a random function).

The above definition can be interpreted as follows. A function f is “judged” to be
random depending on its input-output relation. The test T consists of two phases.
Firstit gathers information about f by getting f’s values at arguments of its choice.
Then it outputs its “verdict”: 0 (if it “thinks” that f € F;) or 1 (if it “thinks” that
f €r Hy). If the collection F passes the test T, then the output of 7' given oracle 0
gives no information on whether f € F; or f € H;.In either case T will output 1
with essentially the same probability.

Passing all polynomial-time statistical tests for functions is an extremely gen-
eral randomness criterion. This can be intuitively argued as follows. Should some
efficient algorithm A find any dependencies among the selected input-output pairs
of f ey F, it can be converted to a statistical test T, that will halt outputting 0 (i.e.
judging that f € F,) when detecting these dependencies. Since such dependen-
cies cannot be found when f € H;, the collection F = {F}} will not pass the test
Ty.

We now exhibit a collection F that passes all polynomial time statistical tests,
under the assumption that there exisis a weak one-to-one one-way function.

The Construction of F

We construct poly-random collections given any CSPRB generator G that stretches
a seed x € [} into a 2k-bit long sequence, G(x) = bj ... b},. By Theorem 2, such
generator G can be constructed given any one-way permutation.

Let S, be the multiset of the 2k-bit sequences output by G on seeds of’ length k.
Recall that § = U, S passes all polynomial-time statistical tests for strings.

Let x € I;. By G(x) we denote the first k bits output by G on input x. L.e. Gy(x) =
by ...Db;.By G1(x) we denote the next k bits output by G. Le. G(x) = bij ...by . Let
a=aya, . ..q; beabinarystring. We define G, ,,, ., (x) = G, (- - - (G, (G4 (X)) -+ 0).

Let x € ;. The function f, : I;, — I} is defined as follows:

Fory=yiyy ... Yk, () =Gy, ., (X).
Set Fy = {/fxlyer, and F={F}.

Note that a function in F} needs not be one-to-one.
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The reader may find it useful to picture a function f, : [y — I, as a full binary
tree of depth & with k-bit strings stored in the nodes and edges labelled 0 or 1. The
k-bit string x will be stored in the root. If a k-bit string s is stored in an internal
node, v, then G(s) is stored in v’s left-son, v; , and G(s) is stored in v’s right-son,
v,. The edge (v, v;) is labelled 0 and the edge (v, v,) is labelled 1. The string f,(y)
is then stored in the leaf reachable from the root following the edge-path labelled
y. See figure 1.

Efficiency Consideration

Let 7, denote the (worst case) number of steps used in the computation of the
CSPRB sequence G(x) on input x € I;. Clearly, computing f,(y) on inputs x and
y can be done in at most & - 7} steps. Thus, the efficiency of the evaluation of a
function in our poly-random collection is reduced to the efficiency of the underlying
CSPRB generator. The latter question is referred to in the Appendix.

The Poly-Randomness of F

Note that the collection F just defined satisfies conditions 1 (indexing) and 2
(poly-time evaluation) of a poly-random collection. The main theorem shows that
condition 3 (pseudo-randomness) is also satisfied. We prove the main theorem
using a (new) variant of Yao’s statistical test.

(population test) Let P and P; be polynomials and S = U, S; be a set of sequences,
where S consists of P (k)-bit sequences. A polynomial-time population test for strings
is a probabilistic polynomial-time algorithm 7 that, on input P;(k) strings each
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P (k)-bit long, outputs either 0 or 1. We say that S passes the test T if for any polyno-
mial Q, for all sufficiently large k:

1
|pe = pfl< —

£ 0w
where p,f denotes the probability that T outputs 1 on P;(k) randomly selected
strings in S, and p,f denotes the probability that T outputs 1 on P; (k) random bit-
strings each of length P (k).

A set of bit-sequences S = U, S, passes all polynomial-time statistical tests if and
only if it passes all polynomial-time population tests.

The proof of the Lemma can be easily obtained by techniques similar to the ones
used for proving Theorem 4.

(Theorem 3) The collection of functions F passes all polynomial time statistical
tests for functions.

Let T be a polynomial time test for functions. Let p,f(plfl) be the probability that
T outputs 1 when given the input parameter k and access to an oracle O for a
function f ep Fi (f €g Hp).

Assume, for contradiction, that for some polynomial Q and for infinitely many
ki 1p{ = Pl > 4o

Let us consider computations of 7' in which, instead of an oracle O, an algo-
rithm A; answers 7’s queries. For 0 <i < k and for each computation of 7" with
oracle A;, A, is defined as follows.

Lety= y{y, ...y beaqueryto A;. Then A; responds as follows:

If y is the first query with prefix y; ... y;, A; selects a string r € I, at random,
stores the pair (y; ... y;, r), and answers G, ., (r).

Else, A; retrieves the pair (y; ... y;, v) and answers G, ... y;(v).

(In terms of the tree representation of f,, A; stores random k-bit strings in the
nodes of level i. The nodes of higher level will contain k-bit strings deterministically
computed as in the previous subsection based on the actual values in level 7).

For 0 <i <k, p} is defined to be the probability that 7 outputs 1 when given k
as input and access to the oracle A;.

Note that p{ = p[” and that p} = p}.

We will reach a contradiction by exhibiting a polynomial-time population test
for strings, A, so that S will not pass A.

Let k be such that | p? — pf| > ﬁ, without loss of generality let p) — pf > ﬁ

On input &, with probability greater than 1 — A finds ani (0 <i < k) such

1
8k-Q(k)’
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that pi — pi™' > =000 - Algorithm A does so by running a polynomial-time Monte-
Carlo experiment using 7' as a subroutine.

Let now R, be the set of all 2k-bit long strings and S; be as in section 3.2.

Algorithm A gives k as input to algorithm 7 and answers 7’s oracle queries
consistently using the set U, as follows. (U is either R; or S}).

Assume T writes y = y; ... y; on the oracle tape.

If y is the first query with prefix y; ...y;, A picks at random, in the set Uy,
u = uguq(ugu is the concatenation of u, and u4, and |uy| = |u;| = k) . A stores the
pairs (v ...y;0,u,) and (y; ... y;1, u;). A answers

ny,-+2...yk (uo) if Vil = 0 and
GinJrz---Yk(ul) ifyi =1

Else A retrieves the pair (y; . .. y;11, v) and answers Gy, ...y (v)ifi <k —2and
vifi=k — 1.

Note that, when U, = S;, A simulates the computation of T with oracle A;.
When instead U, = R, A simulates the computation of T with oracle A; ;. Since
T’s output differs, in a measurable way, on these two computations for infinitely
many k, letting A output the same bit that subroutine T does, we have reached a
contradiction. u

Generalized Poly-Random Collections

Let P; and P, be polynomials. In some applications, we would like to have random
functions from 1, ) — I, (e.g. in hashing we might want functions from /g
into /;,). We meet this need by constructing a generalized poly-random collection
{ kal’Pz}. The modified construction can be simply described in terms of two dif-
ferent CSPRB generators: G as above and G’ mapping k random input bits to P, (k)
pseudo-random bits. For x € [; the function f, € kal’Pz is defined as follows: on
input y € Loy fx(v) = G’(Gy(x)). By a proof similar to the one of the Main Theo-
rem one can prove that the collection {kal’Pz} possesses properties (1), (2) and (3)

of poly-random collections.

A Universal StatisticalTest

Our definition of a poly-random collection consists of passing all polynomial-
time statistical tests for functions. In fact it is enough to consider one universal
polynomial-time statistical test for functions (a collection will pass this universal
test if and only if it passes all tests). Essentially, this universal test will guess a
program of a statistical test and then execute it. Further details will be given in the
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full version of this paper. Similarly, universal tests exist also for all the other classes
of tests mentioned in this paper.

Prediction Problems and Poly-Random Collections
Physics may be viewed as a prediction problem. This problem may seem to be
tractable if

1. There is an a priori guarantee that the “laws of nature” are “simple” (the
functions one needs to predict can be computed in polynomial time once
some trapdoor information is given).

2. Itis possible to conduct selected experiments (one is given temporary access
to an oracle for the function).

3. The goal is only to approximately predict the “laws of nature” (the function).

Note that the ability to perform selected experiments (query the function) is a much
more powerful tool than learning from given examples. The power of this tool is
hereafter demonstrated.

Consider the set C of all integers product of two primes of equal length. No effi-
cientalgorithm is known for factoring the integers n € C: furthermore, the question
whether such an efficient algorithm exists constitutes one of the oldest computa-
tional problems. For n € C N [}, we define the following functions f, : [; — I; as
follows: f,(x) = the smallest square root of x> mod n if gcd(x, n) =1, and 0 oth-
erwise. These functions are “simple,” i.e. are polynomial-time computable if the
trapdoor information (the factorization of n) is given. If the factorization of n is not
part of the input then these f,’s may be hard to compute: Rabin [Ra] proved that
factoring n € C is probabilistic polynomial-time reducible to computing f,(y) on
input n and y. However, a simple extension of Rabin’s proof shows that (even when
the index n is not a part of the input), these “simple” functions can be computed
after being given temporary access to an oracle (0,) which on query ¢ returns the
value of the function at argument g (i.e. f,(¢)). In fact, after asking the oracle a few
questions, n can be easily computed and factored.

One might therefore wonder whether for all “simple” functions f, temporary
access to an oracle for f may enable one to hereafter easily compute f. We answer
this question negatively in a strong sense, under the assumption that one-way per-
mutations exist. Given any one-way permutation g, we construct “simple” functions
f(® that cannot be predicated (even in a weaker sense than discussed above).
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The f(®’s we construct cannot be weakly predicted after temporary access to an
oracle for them, even if the one-way permutation g at the base of the construction
can be easily computed after temporary access to an oracle for g.

Formal Setting

Let F be a collection of functions satisfying conditions 1 (indexing) and 2 (poly-time
evaluation) of a poly-random collection. Let A be a probabilistic polynomial-time
algorithm capable of oracle calls as in section 3.1. On input k and access to an
oracle O for a function f € Fj, algorithm A carries out a computation during
which it queries O about xy, ..., x;. Then, algorithm A outputs x € [; such that
X # X1, ..., x;. This x will be called the chosen exam. At this point A is disconnected
from O;, and is presented f(x) and y € I; in random order. A is asked to guess
which of the two is f(x).

Let Q be a polynomial. We say that A Q-Queries-and-Learns F if on input k the
probability that A guesses correctly which-is-which is greater than % + ﬁ

We say that F cannot be polynomially-inferred if there exists no probabilistic
polynomial time algorithm A and polynomial Q such that A can Q—-query-and-learn
F.

Note that polynomially-inferring the collection F is a much more easy task than
predicting f €y Fj in the sense discussed in the beginning of this section.

F cannot be polynomially-inferred if and only if F' passes all polynomial-time
statistical tests for functions.

Assume, on one hand, that F can be polynomially-inferred. Let Q be a polynomial
and A be a probabilistic algorithm that Q-queries-and-learns F. Clearly, A cannot
Q-queries-and-learns H = {H;}. Thus A can be used to construct a statistical test
T, which distinguishes F from H as follows:

Oninputk, T, initiates A with input k and answers A’s queries by forwarding them
to the oracle O (f € Fy or f €g Hy). When A asks to be examined on the exam x,
T, queries O on x, picks randomly y € ; and returns y and f(x) to A in random
order. If A guess right the identity of f(x) then 7, outputs 1; otherwise T, outputs
0. Note that the probability that T, outputs 1 is exactly % when (f €z H — k; while
it (the probability 7, outputs 1) is greater then 3 + 55 when f €g Fy.

Assume, on the other hand, that F' does not pass the statistical test 7. Then there
1

0k’

in section 3.1, relative to 7'. Let P be a polynomial. Without loss of generality, given

exist a polynomial, Q, such that |p/ — p{/| > where p{ and p;! are defined, as

k as input, T always asks P (k) oracle queries and all queries are different. Without
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loss of generality assume that |p/ — pf| > ﬁ We will construct a probabilistic
polynomial time algorithm, A, that 2 - P(k) - Q(k)-queries-and-learns F.
For f € Fy, the pseudo-oracle O;} is formally defined as follows:

Let x; be the j-th query presented to 0}.
If j <i,then 0} answers with f(x;),
Else O"f answers with a random k-bit string.

Define p}‘C to be the probability that T outputs 1 when given access to the oracle
O;. Here the probability is taken over all f € Fj, and all possible computations of
T. Note that p% = p and p:(k) =Pl

On input k with probability 1 — WlQ(k)’ Ar,findsani (0 <i < P(k)), such that
pi—pitt> 5P -p@ P running a Monte-Carlo experiment.

Ag uses T as follows: Ay starts 7 on the same input k it receives. Ay answers
the firsti queries of T using the oracle O ;. When T asks for its i + 1st query, x; 4,
Ar outputs x;,; as its (Ar’s) chosen exam. Upon receiving f(x;,;) and y where
y €g Iy, Ay chooses randomly z € { f(x; 1), y} and writes z on T’s answer tape (i.e.
as the i + 1st oracle answer). A answers all subsequent queries of T by randomly
selecting k-bit strings. If T outputs 1 then A7 guesses that z € I;; otherwise then

Ar guesses that z = f(x; ). [

Applications

In this section we briefly discuss some of the problems which can be solved using a
poly-random collection. Our solutions are the first which are proved secure under
the general assumption that one-way permutations exist. A detailed discussion
of these applications is presented in [CGM2]. Brassard [B] has pointed out that
application 5.2 could be possible if the BBS open problem had a positive solution.

Storageless Distribution of Secret Identification Numbers

Consider a distributed system with one or more servers and many users each hav-
ing a distinct name. The problem is to distribute, to each user, a secret user-
identification number (ID) such that the ID is verifiable by the servers but infeasible
to compute by any other user. An example of such a problem is assigning calling
card numbers to telephone customers.

Our solution uses the poly-random collection F' = { F} } in order to assign random
secret IDs to the users. First, the servers jointly pick a f €y F; in secrecy, and each
server stores the k-bit index of f. (This is all the servers need to store!) Then, every
user X in the system is assigned as an ID f(X).
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Note that each server can verify whether a given number is the ID of Alice, by
computing f(Alice). However, it is infeasible for any set of users to compute the ID
of any user not in the set.

Message Authentication and Time-Stamping

Using poly-random collections it is possible, for the first time, to construct de-
terministic, memoryless, authentication schemes which are highly robust, as dis-
cussed in the following concrete setting.

Assume that all the employees of a large bank communicate through a public
network. As an adversary may be able to inject messages, the employees need to
authenticate the messages they sent to each other (e.g. “transfer sum S from ac-
count A to account B”). A solution may consist of appending to the message in
an authentication tag which is hard to compute by an adversary. In particular, we
propose the following. Let all employees have access to authentication machines
which compute a function f; in a poly-random collection. The tag associated with
a message m is f;(m). We can tradeoff security for the length of the tag. For exam-
ple, if one uses only the first 20 bits of f;(m) as an authentication tag, then the
chance that an adversary could successfully authenticate a message is about 1 in a
million.

To avoid playback of previously authenticated messages, it is common practice
to use time-stamps. Namely, authenticate m concatenated with date it was sent.
So far, time-stamping was only a heuristic as an adversary who sees the message
m authenticated with date D could conceivably authenticate m with another date
(say D + 1). Using our solution for message authentication, time-stamping makes
playback provably hard. This is the case as for a random function f(x) is totally
unrelated to f(x 4 1), and therefore the same holds (with respect to polynomial-
time adversaries) for poly-random collections.

Another threat to the Bank’s security is the loyalty of its own employees. They
have the authenticating computer at their disposal and can use it to launch a chosen
message attack against the scheme, so that when they are fired they can forge
transactions. Our message authentication scheme remains secure even when the
employees are not trustworthy, if each message to be authenticated is automatically
time stamped by the computer. An employee who leaves the bank, after having
widely experimented with the machine, will not be able to authenticate even one
new message.

An Identify Friend or Foe System

The members of an exclusive society are well known for their brotherhood spirit.
Upon meeting each other, anywhere in the world, they extend hospitality, favors,
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advice, money etc. Naturely, they face the danger of imposters trying to take ad-
vantage of their generosity. Thus, upon meeting each other, they must execute a
protocol for establishing membership. As they meet in public places (busses, trains,
theatre), they must be careful not to yield information that can lead to future suc-
cessful impersonations. They go around carrying pocket computers on which they
may make calculations.

Clearly a password scheme will not suffice in this context, as the conversations
are public. An interactive identification scheme is needed where the ability to ask
questions does not enable future successful impersonations. Note that that the
questions that A may ask member B, must be picked from an exponential range to
prevent an active imposter from asking all possible questions, receiving all possible
answers and thereafter successfully impersonating as a member (or to prevent a
passive imposter from having a non-negligible probability of being asked a question
that he overheard the answer to).

Using our poly-random collection, we can fully solve this problem. Let the
president of the society choose a k-bit random string s, specifying a function f;
in a poly-random collection. Each member receives a computer which calculates
fs- When member A meets B, he asks z? where z € [;. Only if B answers f{(z),
will member A be convinced that B is a member. In addition, if the computers that
calculate f; can be manufactured so that they cannot be duplicated, then losing
a computer does not compromise the security of the entire scheme; it just allows
one non-member to enjoy the privileges of the society.

Note that using any of the “known” one-way functions in the role of f, may not
work here, since ability to ask questions may compromise the security of the entire
society as for the case of Rabin’s function (see section 4).

Dynamic Hashing

Poly-random collections from long bit-strings to short bit-strings constitute very
good hash functions. Note that such hash functions have advantages, with respect
to polynomial-time computation, over the Universal Hashing scheme suggested
by Carter and Wegman [CW]. In their scheme the hash functions perform well
with respect to a fixed a priori probability distribution for the keys. Our scheme
performs well even if an adversary does not fix his key distribution a priori, but can
dynamically change the key distribution during the hashing process upon seeing
the hash function values on previous keys.

Such a scheme may be useful in applications where accessing memory is more
expensive than evaluating the hash functions.
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Speeding-up CSPRB Generation

Assume that G is an “inherently-sequential” CSPRB generator. That is, on input a
k-bit seed, computing the i-th bit in the output sequence of G takes time i - 7' (k).
Assume that our application (see example below) requires to compute the bits in
the poly(k)-bit long sequence output by G in arbitrary order, and that only O (k)
bits of storage are available. Then it would be desirable to access the bits in the
pseudo-random sequence “directly” rather than “sequentially.”

Using G to construct a function in a poly-random collection, we effectively
construct an exponentially (in k) long pad each bit of which can be accessed in
time k - 2k - T (k).

Protecting a data base. Suppose that one would like to store a huge data base
on a public computer while maintaining the information contained in it private.
To achieve this one may encrypt each of the records of the data base, place the
encrypted records on the public computer and store only a relatively small secret
key on his home computer. Suppose that encryption has been done by using the
sequence output by a CSPRB generator as a one-time pad. In this case the private key
consists of the input seed to the generator. To retrieve the information on a record
one has to access the segment of the pseudo-random pad used for encrypting it.

Concluding Remarks

The Notion of Polynomial Pseudo-Randomness

A CSPRB generator can be viewed as a tool for simulating a source of truly ran-
dom coin tosses. Consider the following source of randomness: a probabilistic
polynoinial-time Turing Machine (TM) that, on input the security parameter «,
outputs polynomially many bits. Using a CSPBR generator, one can construct a
probabilistic polynomial-time TM that, on input k, simulates the source using only
k internal coin tosses. The simulation is perfect with respect to all polynomially
bounded observers.

Let its now consider interactive sources. An Interactive Source is an interactive,
probabilistic, polynomial-time TM which answers queries presented to it by an
inspection machine (another interactive, probabilistic, polynomial-time TM). The
interaction consists of a sequence of interleaved queries and answers. In this ex-
tended abstract, we considered a special case of interaction and showed how such
interactive sources can be perfectly simulated by a poly-random collection, using
only k internal coin tosses and k€ bits of storage (for some fixed C). We believe that
this case captures the notion of polynomial pseudo-randomness.
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A Tool for Cryptographic Protocol Design

As shown in the applications mentioned in section 5.1, 5.2 and 5.3, the poly-random
collections are a powerful tool in cryptographic protocol design. The following
methodology for protocol design appears fruitful. First, design a protocol which
uses truly random functions, and prove it correct. Then, replace the truly random
functions by functions randomly selected from a poly-random collection. This
implementation will provably maintain all properties of the original protocol with
respect to polynomially bounded adversaries. Also note that if two independent
random functions are substituted by two functions randomly selected from a poly-
random collection, then the latter will be totally uncorrelated (as the former ones).
This provable independence is very useful in protocol design.

Recently, Luby and Rackoff [LR] used polyrandom collections to construct col-
lections of polyrandom permutations. This result leads to the construction of ideal
private key cryptosystems.
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Appendix

Sufficient Conditions for Constructing CSPRB Generators

Let D, C I; and By : D, — {0, 1}. Let g; be a permutation over D;. Let D = U, D,
B ={B;} and g = {g;}. Blum and Micali [BM] showed that CSPRB generators can
be constructed under the following conditions:

1. The Domain is accessible: there exists a probabilistic polynomial-time algo-
rithm that on input &, chooses x € D; with uniform probability distribution.
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2. There exists a polynomial-time algorithm that on input & and x € Dy, com-
putes g;(x).

3. Let A be a probabilistic polynomial-time algorithm and Q be a polynomial.
Then for all sufficiently large &:

A(x) # By(x) for at least for a fraction 1 — ﬁ of the x € Dy.

4. There exists a polynomial-time algorithm that on input £ and x € D;, com-
putes By (g, (x)).

Note that the above conditions imply that g is a one-way permutation as defined
in section 2.3. Yao [Y] showed that the existence of a one-way permutation (over an
accessible domain) is a sufficient condition for constructing CSPRB generators.

A Sketch of Yao’s Construction

Yao’s construction [Y] can be viewed as a method to construct B and g as above,
when given any one-way permutation 4 = {/;} over the accessible domain E = U, E}.
Recall that no polynomial algorithm can invert # without being mistaken on a k—lc
fraction of the domain, for some constant ¢, when « is sufficiently large.

Set Dy, to be the Cartesian product of k?? copies of Ej.
Set gy (x1xy - .« Xg29) = hy(x)hp(xp) - . - hy(xp29), Where x; € Ej.
Set B,Ei’j)(x) to be the ith bit of hk_l(x), where x € E; and

ko k2t

Bi(x1Xy . . . Xp29) = @ @ B,El’])(kaq—l(i—nﬂ)

i=1 j-1

Then U, Dy, {g}, and {B,} defined above satisfy all 4 conditions of the Blum-Micali
scheme (a proof of this appears in [G]).

A Sketch of Levin’s Definition
A function (algorithm) A is (¢, e)—one-way on an input x € I; if

1. There exists an i such that A’ (x) = x.
2. The computation of A on input x takes time at most 7 (k).

3. An optimal inverting algorithm (for A) requires at least time e(k) in order to
compute and verify x on input A(x). (The existence of an optimal inverting
algorithm for NP-search problems was pointed out in [L6].)
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A function (algorithm), A, is locally one-way if there exist a polynomial ¢ and a
function e which grows faster than any polynomial such that A is (¢, e)-one-way
on at leasta % fraction of the inputs in /.

Levin has pointed out a universal algorithm, u, (with k?> time bound) which is
locally one-way, unless no function is locally one-way. Furthermore, in case u is
locally one-way it is (z,, e,)-locally one-way, where 1, (k) = k* and e, grows faster
than any polynomial. Note that, u can be used in Yao’s construction (of a CSPRB

generator) instead of the given one-way permutation.

On the Running Time of the Known CSPRB Generators

The running time of CSPRB generators should be compared with respect to the
intractability assumption on which they are based. Basing a generator on any weak
one-way permutation, though very appealing from a theoretical point of view, seems
to have a practical drawback: slow running time (see Yao’s construction above).
It seems that in order to get fast generators, one would have to rely on stronger
assumptions (i.e. on the intractability of specific problems). Let us consider the
following two assumptions:

1. The Intractability Assumption for the Discrete Logarithm Problem (DLA): 1t is in-
feasible to compute discrete logarithms modulos all but a negligible fraction
of the primes. (For a precise formulation of DLA see [BM].)

2. The Intractabilily Assurnplion for the Inleger Factorization Problem (FA): 1t is
infeasible to factor all but a negligible fraction of the Blum Integers. (For a
precise formulation of FA see [GMT].)

The fastest CSPRB generator known under DLA is presented in [LW]. It produces
O (log k) bits of output at the cost of one modular exponentiation of k-bit integers.

The fastest CSPRB generators known under FA can be obtained by the results
in [ACGS]. In particular, O (log k) bits of output can be produced at the cost of one
modular multiplication of k-bit integers.
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A Digital Signature
Scheme Secure

Against Adaptive
Chosen-Message Attacks

This chapter reproduces the contents of the paper “A ‘Paradoxical’ Solution to
the Signature Problem,” which appeared in the proceedings of the 25th Annual
Symposium on Foundations of Computer Science, pp. 441-448, 1984.

Assuming the intractability of factoring integers, this surprising (at the time)
work of Shafi Goldwasser, Silvio Micali, and Ronald Rivest provided a signature
scheme that is unforgeable under chosen-message attacks. Such a result was con-
sidered impossible at the time, because it was (falsely) believed that a “construc-
tive proof of unforgeability (under passive attacks)” implies a successful chosen-
message attack.
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Brief Abstract

We present a general signature scheme which uses any pair of trap-door per-
mutations (fy, f1) for which it is infeasible to find any x, y with f,(x) = f1(y). The
scheme possesses the novel property of being robust against an adaptive chosen
message attack: no adversary who first asks for and then receives signatures for
messages of his choice (which may depend on previous signatures seen) can later
forge the signature of even a single additional message.

For a specific instance of our general scheme, we prove that

1. forging signatures is provably equivalent to factoring, while

2. adaptive chosen message attacks are of no help to an “enemy” who wishes
to forge a signature.

Such a scheme is “paradoxical” since the above two properties were believed (and
even “proven” in the folklore) to be contradictory.

The new scheme is potentially practical: signing and verifying signatures are
reasonably fast, and signatures are not too long.

* This research was supported by NSF grant MCS-80-06038, an IBM/MIT Faculty Development
Award, and DARPA contract N00014-85-K-0125.
0272-5428/84/0000/0441501.00 © 1984 IEEE



Chapter 11 A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks 267
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Introduction

The idea of a “digital signature” first appeared in Diffie and Hellman’s seminal
papers, “New Direction in Cryptography” [DH76]. They propose that a user A’s sig-
nature for a message M should be a value which depends on M and on information
held secret by A such that anyone can verify the validity of A’s signature (using infor-
mation published by A) but no one can forge A’s signature on any messages. They
also proposed a way of implementing signatures based on “trap-door functions”
(see section II.A).

While the notion of a digital signature is robust, useful, and even legal [LM78,
Ma79], a number of technical problems arise if they are implemented as suggested
using trap-door functions; these problems have been addressed in part elsewhere.
For example, [GMY83] showed how to handle arbitrary or sparse messages sets
and how to ensure that if an enemy sees previous signatures it does not help him
to forge new signatures (this is a so-called “non-adaptive chosen message attack”).
For further discussion see section IV.

One difficult problem with simple trap-door signature schemes is proving they
are secure agains adaptive chosen message attackes, where the enemy can request
signatures of messages which depend on previously obtained signatures.

We present a new digital signature scheme that is seemingly “paradoxical”, in
that we prove that forgery is equivalent to factoring, even if the enemy uses an
adaptive chosen message attack.

We can restate the paradox as follows:

e Any general technique for forging signatures can be used as a “black box”
in a construction that enables the enemy to factor one of the signer’s public
moduli (he has two in our scheme),

but

e The technique of “forging” signatures by getting the real signer to play the
role of the “black box” (i.e. getting the real signer to produce some desired
genuine signatures) does not help the enemy to factor either of the signer’s
moduli.

Resolving this paradox was previously believed to be impossible and contradictory
[Wi80, misled by Rivest].
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Figure 1

From a cryptographer’s viewpoint, the following points might be judged to be
even more significant than resolving the apparent paradox:

What we prove to be difficult is forgery, and not merely obtaining the secret
trap-door information embedded in the signing algorithm (or obtaining an
efficient equivalent algorithm).

Forgery is proven to be difficult for a “most general” enemy who can mount
an “adaptive chosen message attack”: an enemy who can use the real signer
as “an oracle” can not in time polynomial in the size of the public keys forge a
signature for any message whose signature was not obtained from the oracle.
In contrast to all previous published work on this problem, we prove the
scheme invulnerable against such an “adaptive” attack (where each message
whose signature is requested may depend on all the signatures previously
obtained from the oracle). We believe that such an “adaptive chosen message
attack” to be the most powerful attack possible for an enemywho is restricted
during his attach to using the signature scheme in a natural manner.

The properties we prove about the new signature scheme do not depend in
any way on the set of messages which can be signed or on any assumptions
about an input probability distribution on the message set.

Our scheme can be generalized so that it can be based on “hard” problems
other than factoring whenever one can create (so-called “claw-free”) pairs of
trap-door permutations ( fy, f;) such that the hard problem is equivalent to
find x, y with fy(x) = f1(y) (a “claw”—see Figure 1). The paradoxical nature
of the signature scheme remains.

The scheme as a “pumping” nature: using any family of pairs of trap-door

permutations we can produce a signature scheme that is invulnerable to a chosen

message attack, even if the trap-door permutations are vulnerable to a chosen

message attack when used to make a trap-door signature scheme (see section II).
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Fundamental ideas in the construction are the use of randomization, signing by
using two authentication steps (the first step authenticates a random value which
is used in the second step to authenticate the message), and the use of a tree-like
branching authentication structure to produce short signatures.

We note that because our signature scheme is randomized it is not of the simple
Diffie-Hellman “trap-door” type. (For example, a given message can have many
signatures.)

The rest of the paper is organized as follows. In section II we review the funda-
mental notions of what it means to “break” a signature scheme and what it means
to “attack” a signature scheme. In section III we review more closely the nature of
the “paradox”, and present the folklore “proof” that it is impossible to have a sig-
nature scheme for which forgery is provably equivalent to factoring and which is
simultaneously invulnerable to an adaptive chosen message attack. In section IV
we review previously proposed signature schemes. In section V we give the details
of our proposed signature scheme, and in section VI we prove that it has the desired
properties.

I I Fundamental Notions
To properly characterize the results of this paper, it is helpful to answer the follow-
ing questions:

e What is a digital signature scheme?

e What kinds of attacks can the enemy mount against a digital signature
scheme?

e What is meant by “breaking” the signature scheme?

Il.LA  Whatls a Digital Signature Scheme?

A digital signature scheme contains the following components:

e A key generation algorithm k (R, k) which any user A can use to produce a
pair (Pj, Sﬁ) of matching public and secret keys from inputs k and (random)
input R. (The secret key is sometimes called the trap-door information. The
parameter & is called the security parameter; a number of quantities (e.g. the
length of signatures, overall security) may depend on k.

e A message space M which is the set of messages to which the signature algo-
rithm may be applied. We assume here that the messages are represented in
some encoding suitable for the signature algorithm.
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ILA.1

e A signature algorithm which produces a signature o (M, S, R) for a message
M usingthe secretkey S, and random input R. (This is the memoryless model;
it is also permissible to have the signature algorithm depend on the number
of messages previously signed and even how they were signed. The scheme
proposed in this paper is not memoryless.)

e Averification predicate (S, M, P,) which tests whether S is valid signature
for message M using the public key P,.

We note that there are other kinds of “signature” problems which are not dealt
with here; the most notable being the “contract signing problem” where two parties
wish to exchange their signatures to an agreed-up contract simultaneously (for
example, see [EGL82]).

Trap-Door Signatures
To create a signature scheme Diffie and Hellman proposed that A use a “trap-door
function” f: a function for which it is easy to evaluate f(x) for any argument x but
for which, given only f(x), it is computationally infeasible to find any y with f(y) =
f(x) without the secret “trap-door” information. Then A publishes f and anyone
can validate a signature by checking that f (signature) = message. Only A possesses
the “trap-door” information allowing her to invert f: f~(message) = signature. A
trap-door permutation is a trap-door function which is one-to-one and onto; then
any message can be signed since the domain of £~ is the entire message space.
We call any signature scheme that fits into this model (i.e. uses trap-door functions
and signs by apply f ! to the message) a trap-door signature scheme.

We note that not all signature schemes are trap-door schemes, although most
of the proposals in the literature are of this type.

Kinds of Attacks

The enemy may mount an attack knowing only the real signer’s public key—what
we call a direct attack. Of more concern, however, are what we call known or chosen
message attacks where the enemy is able to examine some signatures corresponding
to either known or chosen messages before his attempt to break the scheme. (These
are analogous to “chose ciphertext attacks” for encryption schemes.)

We identify the following four kinds of message attacks, which are characterized
by how the messages who signatures the enemy sees are constructed. (Here we let
A denote the user whose signature method is being attacked.)
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Known Message Attack: The enemy sees signatures for a set of messages
My, ..., M. The messages are known to the enemy but are not in any way
chosen by him.

Generic Chosen Message Attack: Here the enemy is allowed to obtain from A
valid signatures for a chosen list of message M4, ..., M, before he attempts
to break A’s signature scheme. These messages are chosen by the enemy, but
they are fixed and independent of A’s public key (for example the M;’s may
be chosen at random). This attack is nonadaptive: the entire message list is
constructed before any signatures are seen. This attack is “generic” since
it does not depend on the A’s public key; the same attack is used against
everyone.

Directed Chosen Message Attack: This is similar to the generic chosen mes-
sage attack, except that the list of messages to be signed may depend on A’s
public key. However, it is still nonadaptive as before. This attack is “directed”
against a particular user A.

Adaptive Chosen Message Attack: This is more general yet: here the enemy
is also allowed to use A as an “oracle”; not only may he request from A
signatures of messages which depend on A’s public key but he may also
request signatures of messages which depend additionally on previously
obtained signatures.

We use the term “non-adaptive message attack” to mean a know, generic chosen,

or directed chosen message attack.

What Does It Mean to “Break” a Signature Scheme?

One might say that the enemy has “broken” user A’s signature scheme if this attack

allows him to do any of the following with a non-negligible probability:

A Total Break: Compute A’s secret trap-door information.

Universal Forgery: Find an efficient signing algorithm functionally equiva-
lent to A’s signing algorithm (based on possibly different but equivalent
trap-door information).

Selective Forgery: Forge a signature for a particular message chosen a priori
by the enemy.

Existential Forgery: Forge a signature for atleast one message. The enemy has
no control over the message whose signature he obtains, so it may be random
or nonsensical. Consequently this forgery may only be a minor nuisance to A.
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We say that a scheme is respectively totally breakable, universally forgeable, selec-
tively forgeable, or existentially forgeable if it is breakable in one of the above senses.
Note that is it more desirable to prove that a scheme is not even existentially forge-
able than to prove that it is not totally breakable. The above list is not exhaustive;
there may be other ways of “breaking” a signature scheme which fit in between
those listed, or are somehow different in characer.

Our notion of forgery means that the enemy must produce a signature for a
message whose signature he was not given by A during his attack; it is not forgery
to obtain from A a valid signature for a message and then claim that he has now
“forged” that signature, any more than photocopying a signed document is an
instance of forgery.

To say that the scheme is “broken”, we insist that it be broken with a non-
negligible probability—for at least some positive fraction € of all possible public
keys.

We note here that the characteristics of the signature scheme may depend on its
message space in subtle ways. For example a scheme may be existentially forgeable
for a message space M but not existentially forgeable if restricted to a message
space which is a sparse subset of M;.

For examples of the notions, see section IV (where we review previously proposed
signature schemes).

The Paradoxical Problem of Proving Signature Schemes Secure
The paradoxical nature of signature schemes which are provably secure against
chose message attacks made its first appearance in Rabin’s paper, “Digitalized
Signatures as Intractable as Factorization”. The signature scheme he proposed
there works as follows. User A publishes a number » which is the product of two
large primes. To sign a message M, A computes as M’s signature one of M’s square
roots modulo n. (When M is not a square modulo n, A modifies a few bits of M
to find a nearby square.) Here signing is essentially just extracting square roots
modulo n. Using the fact that extracting square roots modulo n enables one to factor
n, it follows that selective forgery in Rabin’s scheme is equivalent to factoring if the
enemy is restricted to at most a known message attack.

However, it is true (and was noticed by Rabin) that an enemy might totally break
the scheme using a directed chosen message attack. By asking A to sign a value x>
(mod n) (where x was picked at random), the enemy would obtain with probability
% another square root y of x? such that ged(x + y, n) was a prime factor of n.
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Rabin suggested that one could overcome this problem by, for example, having
the signer concatenate a fairly long randomly chosen pad U to the message before
signing it. In this way the enemy can not force A to extract a square root of any
particular number.

However, the reader may now observe that the proof of the equivalence of
selective forgery to factoring no longer works for the modified scheme. That is,
being able to selectively forge no longer enables the enemy to directly extract square
roots and thus to factor. Of course, breaking this equivalence was really the whole
point of making the modification.

IIl.LA The Paradox

We now “prove” that it is impossible to have a signature scheme for which it is
both true that forgery is provably equivalent to factoring, and yet the scheme is
invulnerable to adaptive chosen message attacks. (This is essentially the argument
given in [Wi80].) By forgery we mean in this section any of universal, selective, or
existential forgery—we assume that we are given a proof that forgery of the specified
type is equivalent to factoring.

Let us begin by considering this given proof. The main part of the proof pre-
sumably goes as follows: given a subroutine for forging signatures, a construction
method is specified for factoring. (The other part of the equivalence, showing that
factoring enables forgery, is usually easy, since factoring usually enables the enemy
to totally break the scheme.)

But it is trivial then to show that an adaptive chosen message attack enables
an enemy to totally break the scheme. The enemy merely executes the constructive
method given in the proof. Whenever he needs to execute the forgery subroutine, he
merely performs an “adaptive chosen message attack” step—getting the real user
to sign a message. In the end the unwary user has enabled the enemy to factor his
modulus! (If the proof relates to universal or selective forgery, we have to get real
user to sign a particular message. If the proof relates to existential forgery, we can
get him to sign anything at all.)

IIl.B Breaking the Paradox

How can one hope to get around the apparent contradictory natures of equivalence
to factoring and invulnerability to an adaptive chosen message attack?

A major idea in both the construction and the proof is the notion of “random
rooting”. Each user publishes not only his two composite modulin1 andn2, but also
a “randomroot” R. Thisvalue R, is used when validating the user’s signatures. The
paradox is resolved using this notion as follows:
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e Itisprovablyequivalentto factoring for an enemy to have a uniform algorithm
for forging; uniform in the sense that for each pair of composite numbers n1
and n2, if the enemy can randomly forge signatures for a significant fraction
of the possible random roots R, then he can factor either n1 or n2.

e The above proof requires that the enemy be able to pick R, himself—the
forgery subroutine is fed triples (n1, n2, R,) where the R, part is chosen
by the enemy according the procedure specified in the constructive proof.
However, the user has picked a fixed R, at random to put in his public file,
so an adaptive chosen message attack will not enable the enemy to “forge”
signatures corresponding to any other values of R,. Thus the constructive
method given in the proof can not be applied!

Previous Signature Schemes
In this section we list a number of previously proposed signature schemes and
briefly review some facts about their security.

Trap-Door Signatures Schemes [DH76]. Any trap-door signhature scheme is existen-
tially forgeable with a direct attack since a valid (message, signature) pair can be
created by beginning with a random “signature” and applying the public verifi-
cation algorithm to obtain the corresponding message. A common heuristic for
handling this problem in practice is to require that the message space be sparse
(e.g. by having each message contain a reasonably long checksum); in this case the
proposed attack is not likely to result in a successful existential forgery.

Rivest-Shamir-Adleman [RSA78]. The RSA scheme is selectively forgeable using a
directed chosen message attack, since RSA is multiplicative: the signature of a
product is the product of the signatures. (This can be handled in practice as above
using a sparse message space.)

Merkle-Hellman [MH78]. Shamir showed the basic Merkle-Hallman “knapsack”
sehem to be universally forgeable using just a direct attack [Sh82]. (This scheme
was perhaps more an encryption scheme than a signature scheme, but had been
proposed for use as a signature scheme as well.)

Rabin [Ra79]. As noted earlier, Rabin’s signature scheme is totally breakable if the
enemy uses a directed chosen message attack. However, for non-sparse message
spaces selective forgery is as hard as factoring if the enemy is restricted to a known
message attack.
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Williams [Wi80]. This scheme is similar to Rabin’s. The proof that selective forgery
is as hard as factoring is slightly stronger, since here only a single instance of
selective forgery guarantees factoring (Rabin needed a probabilistic argument).
Williams uses effectively (as we do) the properties of numbers which are the product
of a prime p = 3 (mod 8) and prime ¢ = 7 (mod 8).

Lieberherr [Li81]. This scheme is similar to Rabin’s and Williams’.

Shamir [Sh78]. This knapsack-type signature scheme has recently been shown by
Tulpan [Tu84] to be universally forgeable with a direct attack for any practical values
of the security parameter.

Goldwasser-Micali-Yao [6MY83]. This paper presents two signature schemes, which
are not of the trap-door type. These schemes have the interesting property that their
characteristics hold for any message space (even a sparse one). The first signature
scheme presented in [GMY83] was proven not to be even existentially forgeable
against a generic chosen message attack unless factoring is easy. However, it is not
known to what extent directed chosen message attacks or adaptive chosen message
attacks might aid an enemy in “breaking” the scheme.

The second scheme presented there (based on the RSA function) was also proven
not to be even existentially forgeable against a generic chosen message attack. This
scheme may also resist existentially forgery against an adaptive chosen message
attack, although this has not been proven. (A proof would probably require showing
certain properties about the distribution of prime numbers and making a stronger
intractability assumption about inverting RSA.)

By comparison, the scheme presented here is much faster, produces much more
compact signatures, and is based on the much simpler assumptions (only the
difficulty of factoring or more generally the existence of sets of claw-free pairs of
functions).

Several of the ideas and techniques presented in [GMY83], such as bit-by-bit
authentication, are used in the present paper.

Ong-Schnorr-Shamir [0SS84]. Totally breaking this scheme using an adaptive cho-
sen message attack has been show to be as hard as factoring. However, Pollard
[Po84] has recently been able to show that the “OSS” signature scheme is univer-
sially forgeable in practice using just a direct attack; he developed an algorithm to
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forge a signature for any given message without obtaining the secret trap-door in-
formation. A more recent “cubic” version has recently been show to be universally
forgeable in practice using just a direct attack (also by Pollard).

El Gamal [EG84]. This scheme, based on the difficulty of computing discrete log-
arithms, is existentially forgeable with a generic message attack and selectively
forgeable using a directed chosen message attack.

Description of the Scheme

AGeneral Scheme. Itisconvenientto present our scheme in a general manner that
is divorced from any particular assumptions, such as that factoring is hard. This
clarifies the exposition, and helps to establish the true generality of the proposed
scheme.

We define a claw-free family to be a set of pairs of trap-door permutations such that:

e It is easy, given a security parameter k, to select members of the family at
random which have the given security parameter together with the trap-door
information allowing inversion of the permutations chosen. We note that
the family may contain many pairs of permutations associated with a given
security parameter, just as there are many composite numbers of a given
length.

e For each such pair (fy, f;) we have domain(f)) = domain(f;).

e Given a pair (f, f1) of permutations from the family it is computationally
infeasible (even by a probabilistic algorithm) given just a description of the
pair to find any (x, y) with fy(x) = fi(») (a “claw”—specifically, an “f-claw”)
with a non-negligible probability.

We also call each pair of permutations in the family “claw-free”.

Note that if it is infeasible to find claws, then it is infeasible to invert either permu-
tation, since an inversion algorithm enables one to create claws easily. It is thus a
stronger requirement that the pair of functions be claw-free than that they merely
be one-way in the sense that inversion is infeasible. Note, for example, that the RSA
functions fy(x) = x* (mod n) and f;(x) = x’ (mod n) are not easily invertible but are
also not claw-free, since their commutativity allows one to create claws easily.

This is a slight generalization of the notion of a “claw-free” function f (one for
which both inversion is hard and finding x, y with f(x) = f(y) is hard). This latter
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notion has previously been proposed in the literature, and has been proposed as
the proper notion of a one-way function. (See [Yu79, Li81], for example.)

If (fy, f1) and (g, g1) are claw-free pairs of functions, we extend the notation f; and
g; to handle the case i > 1 by:

[0 = fi (i iy o (i (Fi @) 2 D)
ifi = idid—l ‘e iliO in binary.
flfl is interpreted as (f;) ! so that flfl(f,» (x)) = x.

Prefix-Free Encodings.

We will be using the mapping from i to fi_l(x) as aone-way function, where the pair
(fo, f1) and the value x were previously known or proven to have been produced by
the real signer. Anyone will be able to check this result, since f; (fl._l(x)) =Xx.

It is important for this use that the value i be chosen from a set whose elements
have a prefix-free binary encoding. (An encoding scheme is prefix-free if no encod-
ing of an element of the set is a prefix of the encoding of any other element of the
set.) If a prefix-free encoding scheme were not used, an enemy could “forge” fj_l(x)
from flfl(x) if the encoding for j is a prefix of the encoding for i.

We do not care to fix a particular prefix-free encoding for use here, but note
that such encodings are simple to devise (e.g. code each 0 as 00, each 1 as 11, and
terminate the encoding with 01).

We do, however, introduce the notation [x] to denote the chosen prefix-free
encoding of the integer x. Thus, our basic one-way function can be represented

as f;j(x).

Message Space. The new signature scheme can use any countable set as a message
space, as long as a prefix-free encoding is used. Like the schemes presented in
[GMY83], the properties of the new scheme do not depend on the message space
used (even if it is, say, sparse).

An Atomic Authentication Step. Given an “authenticated” quantity Q, we can au-
thenticate two new quantities L and R if f[}]l(Q) = L. This is done is a bit by bit
manner: by examining the bits of [R] one-by-one, we can easily compute L. Only
someone who knowns how to invert the f;’s could have produced a valid (L, R)
pair from Q. (In [GM82] and [GMY83] very similar ideas appeared.)

Randomization. The signer flips coins; there are many valid signatures for any one
message.
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Signing by Two-Step Authentication. Signing the i-th message M; consists of first
authenticating a random message R;, and then authenticating the given message
M from the random starting point R;. (This is reminiscent of the routing scheme
for the boolean n-cube proposed by Reif and Valiant [RV83].)

Tree Authentication. We begin with an authenticated root R, (authenticated by
being in the public file), and from each authenticated point R; (resp. L;) we authen-
ticate two new values (Ly; 1, Ry; 1) (resp. (Ly;, Ry;)). Each R; is randomly chosen
and the L; values are determined from them. This defines a tree structure on the L;
and R; values. (This tree can either be grown as new signatures are needed or can
have a suitably large size defined initially.) A path from any node to the root is an
“authentication chain” which authenticates the node, assuming the root has been
authenticated.

Random Rooting. The initial value R, which is placed in the public directory, is
randomly chosen.

Signatures. The signature for the j-th message M; consists of

* The message M; itself.
* Arandom quantity R; and an authentication chain for it.
® An atomic authentication for M; beginning at R ;.

Thus, each message M; is authenticated by producing a pair (S;, M;) authenticated
from R; (which in turn is authenticated in the tree structure defined above).

How to Generate Keys

Each user publishes his public key, consisting of:

e two claw-free pairs of permutations ( f,, f;) and (g, g1), and

e arandom number R in the range of f; and f;.

How to Sign

Implicit. User Alice has an infinite list Ry, Ry, R,, . . . of random numbers in the
range of f;, f1. She will use one such number per signature, begining with R;. In
practice, Alice will create these as needed rather than all at the beginning.

Authenticators. Alice will include R; as part of her j-th signature, and provide an
“authenticator” that it is valid (really created by Alice). Define
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Here “A;” is the “authenticator” for R ;; only Alice could have created it but any-
one can check for it. The authenticators form a “tree-like” structure (see Figure 2).
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Vi

Theorem

Proof

Signature. Alice’s signature for the j-th message M; is (M}, A}, g[},}‘](Rj)).
J

How to Verify a Signature

First, authenticate R; using the published f;’s.
Then, authenticate M; using the published g;’s.

Efficiency of the Proposed Signature Scheme

Let us assume that all numbers and messages have length O(k), where k is the
“security parameter” for the system. Then the time to compute a signature is O (k)
function inversions (i.e. inversions of f, or f;).

Then length of the j-th signature is

O(log(j) - k).

Proof of Security

We recall that a signature scheme is existentially forgeable if the enemy is able to
forget any valid message/signature pairs at all. We also recall that in an adaptive
chosen message attack the enemy can use the real signer as an “oracle” for a while
before attempting to forge a new signature.

The proposed signature scheme is not existentially forgeable, even if the enemy
uses an adaptive chosen message attack.

Assume that there exists an adaptive chosen message attack which enables the
enemy to later forge valid signatures. We prove that this would enable an enemy
to create an f-claw or a g-claw, or to invert one of the f;’s or the g;’s.

We assume that the security parameter k is given.

Choose at random a claw-free pair of functions f;, f; with the correct security
parameter from the given family of pairs of claw-free functions, so we don’t know
fl._1 (i =0, 1). We will show that the existence of the effective attack by the enemy
would violate the claw-freeness assumption for the f;’s.

We choose g; at random with corresponding trapdoor information (i = 0, 1). We
can therefore invert each g;.

We consider two cases and apply the presumed attack to each:

Casel. Applythe attack to the (f, g) signature scheme—(i.e. as described above).
Note that we can “simulate” the attack (i.e. play the role of the actual signer when
asked to sign messages) even though we don’t know fi_l, since we can a priori create
the necessary tree in the “f-world” using f in the forward direction only (since
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all nodes in the “ f-world” are randomly chosen). So the attack can be executed
resulting in the forgery of a new message.

Case 2. Apply the attack as in case 1, but switching the roles of f and g (but not
their names). Here it is easy to simulate the attack by simulating the signing of
messages as needed, without using fi_l. To do this, given a message M to sign, we
can compute fiy 1(S) where § is randomly chosen, resulting in a avalue R;. We can

1

then “authenticate” R; in the “g-world” by using g~ as needed.

A successful attack will, when it forges its signature, either create an f-claw, a g-
claw.

We canview the authentication structure produced by the legitimate signer during a
chosen message attack as a collection of atomic authentication steps, each of which
authenticate two values from one previously authenticated value. (Some of these
steps are in g-world and some in f-world, but it doesn’t matter here.) To forge a new
signature means to produce new atomic authentication steps (otherwise nothing
new has been signed) which “link in” to values previously authenticated by the real
signer. If it “links in” in g-world we get a g-claw and if it “links in” in f-world we
getan f-claw. ]

By assumption about the ways in which the f;’s and the g;’s were chosen, the
attack could not tell if it was in case 1 or case 2. Therefore the attack will with
probability at least 1/2 (if it succeeds) “break” the given f;’s by creating an f-claw.
By assumption, however, (f,, f;) was a claw-free pair for which we did not know
the trap-door information. This contradiction proves that it is impossible to have
a uniform method of forging signatures with an adaptive chosen signature attack.

]

An Implementation of Our Scheme as Intractable as Factoring

The assumption of the existence of “claw-free” pairs was made in a general manner,
and not based on any particular number theoretic assumptions. Thus, the above
proof of security holds even if factoring turns out to be in polynomial time. However
for concretely implementing our scheme the following is suggested.

We first make an assumption about the intractability of factoring, and then
exhibit a family of claw free pairs whose existence is thereby implied.

Let H,={n=p-q||p|=|q| =k} (the set of composite numbers which are the
product of two k-bit primes), and let H = U, H,.
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Randomly selected members of H seem to be among the “hardest” inputs for all
known factoring algorithms.

The following assumption about the intractability of factoring is made through-
out this section.

The Intractability Assumption for Factoring (IAF). Let 0 < € < 1,let Q be an arbitrary
polynomial, and let C, ; denote the minimum size of a boolean circuit that can
factor at least a fraction € of the numbers in Hy. Then C, ; > Q(k) for all sufficiently
large k.

Consider the subset B of H whose elements are the product of a prime p =3
(mod 8) and prime g = 7 (mod 8). (These numbers were used in [Wi80, BI82].) We
note that forn € B,:

—1 has Jacobi symbol +1 but is not a quadratic residue (mod n).

2 has Jacobi symbol —1 (and is not a quadratic residue (mod n)).

Let 0, denote the set of quadratic residues (modulo n). Define f' and f' as
permutations of Q, as follows:

fH(x) =x* (mod n)
fl(x) = 4x* (mod n)

(It is not too difficult to prove that f and f]' are permutations of Q, when n € B,,.
See [B182] for example.)

Under the IAF, F = {(f¢, f{) | n € B} is a claw-free family of permutations.

Every x € Q, has exactly one square root y € Q,,, but has four square roots y, —y,
w, —w altogether. Roots w and —w have Jacobi symbol —1, while y and —y have
Jacobi symbol +1.

Let n € B and (f{, f{') € F. First f; and f; are permutations. Second they
are trapdoor under IAF, by Rabin’s proof. Finally, we show if there exists a fast
algorithm that finds x and y in Q, such that y? = 4x2 (modn) then factoring
is easy. Suppose such an x and y have been found. Then, x? = (2y)2 (mod n).
Since x € Q,,y€ 0,,2 ¢ Q,, we have 2y ¢ Q, so that x #% £2y (mod n). Thus
ged(x £ 2y, n) will produce a nontrivial factor of n. ]

Conclusions and Open Problems
e Can asignature scheme be developed with the properties of the new scheme
proposed here, except that it is “memoryless” in the sense that the signature
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algorithm does not depend on the number of messages previously signed or
how they were signed?

e Itisanopen question whether the RSA scheme is universally forgeable under
an adaptive chosen message attack.

e Can an encryption scheme be developed for which decryption is provably
equivalent to factoring yet for which an adaptive chosen ciphertext attack is
of no help to the enemy?
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Proofs that Yield Nothing
but Their Validity or

All Languages in NP Have
Zero-Knowledge Proof
Systems

This chapter reproduces the contents of the paper “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design,” which ap-
peared in the proceedings of the 27th Annual Symposium on Foundations of Computer
Science, pp. 174-187, 1986.

This influenial work of Oded Goldreich, Silvio Micali, and Avi Wigderson demon-
strated the generality and wide applicability of zero-knowledge proofs. In partic-
ular, assuming the existence of secure commitment schemes, it showed how to
construct zero-knowledge interactive proof systems for any set in NP, yielding a
powerful tool for the design of various cryptographic schemes. Loosely speaking,
zero-knowledge proofs offer a way for a party to prove that it has behaved accord-
ing to a predetermined protocol without revelaing its own secrets, and so they can
be used to force parties to behave in “honest-but-curious” manner.



Proofs that Yield Nothing
but Their Validity and a
Methodology of
Cryptographic

Protocol Design
(Extended Abstract)

Oded Goldreich (Dept. of Computer Sc., Technion),
Silvio Micali (Lab. for Computer Sc., MIT),
Avi Wigderson (Inst. of Math. and CS, Hebrew University)

In this paper we demonstrate the generality and wide applicability of zero-knowledge
proofs, a notion introduced by Goldwasser, Micali and Rackoft. These are proba-
bilistic and interactive proofs that, for the members x of a language L, efficiently
demonstrate membership in the language without conveying any additional knowl-
edge. So far, zero-knowledge proofs were known only for some number theoretic
languages in NP N Co-NP.

Summary of Our Results
Under the assumption that encryption functions exist, we show that all languages
in NP have zero-knowledge proofs. That is, it is possible to demonstrate that a
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CNF formula is satisfiable without revealing any other property of the formula. In
particular, without yielding neither a satisfying assighment nor properties such as
whether there is a satisfying assignment in which x; = x; etc.

The above result allows us to prove two fundamental theorems in the field of
(two-party and multi-party) cryptographic protocols. These theorems consist of au-
tomatic and efficient transformations that, given a protocol that is correct with
respect to an extremely weak adversary, output a protocol correct in the most adver-
sarial scenario. Thus, these theorems imply a powerful methodology for developing
secure two-party and multi-party protocols.

We also demonstrate that zero-knowledge proofs exist “independently of cryp-
tography and number theory”. Using no unproved assumptions, we show that both
graph isomorphism and graph nonisomorphism possess zero-knowledge interac-
tive proofs. The mere existence of an interactive proof for graph non-isomorphism
is interesting, since graph non-isomorphism is not known to be in NP and thus did
not possess so far any efficient proofs.

Introduction

It is traditional to view NP as the class of languages whose elements posses short
proofs of membership. A “proof that x € L” is a witness w, such that P; (x, w,) =
1 where P; is a polynomially computable Boolean predicate associated to the
language L such that P, (x, y) = 0 for all y if x is not in L. The witness must have
length polynomial in the length of the input x, but needs not be computable from
x in polynomial-time. A slightly different point of view is to consider NP as the
class of languages L for which a powerful prover may prove membership in L to
a polynomial-time deterministic verifier. The interaction between the prover and
the verifier, in this case, is trivial: the prover sends a witness (proof) and the verifier
computes for polynomial time to verify that it is indeed a proof.

This formalism was recently generalized by allowing more complex interaction
between the prover and the verifier and by allowing the verifier to toss coins and to
be convinced by overwhelming statistical evidence [GMR, B]. The prover has some
computational advantage over the verifier and for the definition to be interesting
one should assume that this advantage is crucial for proving membership in the
language (otherwise the verifier can do this by itself). In other words, we will im-
plicitly assume that there exist interesting languages (say in PSPACE) which are not
in BPP, and be interested in proof systems for such languages.

A fundamental measure proposed by Goldwasser, Micali and Rackoff [GMR] is
that of the amount of knowledge released during an interactive proof. Informally,
a proof system was called zero-knowledge if whatever the verifier could generate in
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probabilistic polynomial-time after “seeing” a proof of membership, he could also
generate in probabilistic polynomial-time when just told by a trusted oracle that
the input is indeed in the language. In other words, zero-knowledge proofs have
the remarkable property of being both convincing and yielding nothing except that
the assertion is indeed valid.

Besides being a very intriguing notion, zero-knowledge proofs promise to be a
very powerful tool for the design of secure cryptographic protocol. Typically these
protocols must cope with the problem of distrustful parties convincing each other
that the messages they are sending are indeed computed according to their pre-
determined local program. Such proofs should be carried out without yielding any
secret knowledge. In particular cases, zero-knowledge proofs were used to design
secure protocols [FMRW, GMR, CF]. However, in order to demonstrate the general-
ity of this tool (and to utilize its full potential) one should have come with general
results concerning the existence of zero-knowledge proof systems. Until now, no
such general results were obtained.

In this paper, we present general results concerning zero-knowledge proof
systems. In particular, we show how to give zero-knowledge proofs to every NP-
statement. A general methodology for designing secure cryptographic protocols
follows. Its core is a compiler which, making primary use of the above result, trans-
lates protocols correct in a weak adversary model to protocols correct in the most
adversarial environment.

What Is an Interactive Proof

An interactive proof system for a language L is a protocol (i.e. a pair of local pro-
grams) for two probabilistic interactive machines called the prover and the verifier.
Initially both machine have access toa common input tape. The two machines send
messages to one another through two communication tapes. Each machine only
sees its own tapes, the common input tape and the communication tapes. In par-
ticular, it follows that one machine cannot monitor the internal computation of
the other machine nor read the other’s coin tosses, current state, program etc. The
verifier is bounded to a number of steps which is polynomial in the length of the
common input, after which he stops either in an accept state or in a reject state. At
this point we put no restrictions on the local computation conducted by the prover.

We require that, whenever the verifier is following his predetermined program,
V, the following two conditions hold:

1. Completeness of the interactive proof system: If the common input x is in L
and the prover runs his predetermined program, P, then the verifier accepts
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x with probability > 1— | x |7¢, for every constant ¢ > 0. In other words, the
prover can convince the verifier of x € L.

2. Validity of the interactive proof system: If the common input x isNOTin L, then
for every program P*, run by the prover, the verifier rejects x with probability
> 1— | x |~¢ (for every constant ¢ > 0). In other words, the prover cannot fool
the verifier.

An important example of an interactive proof system is presented in section 2.1.

Note that it does not suffice to require that the verifier cannot be fooled by the
predetermined prover (such a mild condition would have presupposed that the
“prover” is a trusted oracle).

As is the case with NP, the conditions imposed on acceptance and rejection are not
symmetric. Thus the existence of an interactive proof for the language L does not
imply its existence for the complement of L.

The above “definition” follows the one of Goldwasser, Micali and Rackoff [GMR].
A different definition due to Babai [B], restricts the verifier to generate random
strings, send them to the prover, and evaluate a deterministic polynomial-time
predicate at the end of the interaction. Demonstrating the existence of proof sys-
tems is easier when allowing the verifier to flip private coins (i.e. [GMR] model),
while relating interactive proof systems to traditional complexity classes seems
easier if one restricts oneself to Babai’s model. Surprisingly, these two models are
equivalent, as far as language recognition is concerned [GS] (see Sec. 1.3).

The ability to toss coins is crucial to the non-triviality of the notion of an interactive
proof system. If the verifier is deterministic then interactive proof systems coincide
with NP.

Without loss of generality, we assume that the last message sent during an inter-
active proof is sent by the prover. (A last message sent by the verifier has absolutely
no effect.)

What Is a Zero-Knowledge Proof

Intuitively, a zero-knowledge proof is a proof which yields nothing but its validity.
This means that for all practical purposes, “whatever” can be done after interacting
with a zero-knowledge prover, can be done when just believing that the assertion he
claims is indeed valid. (In “whatever” we mean not only the computation of func-
tions but also the generation of probability distributions.) Thus, zero-knowledge is
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a property of the predetermined prover. It is the robustness of the prover against
attempts of the verifier to extract knowledge via interaction. Note that the verifier
may deviate arbitrarily (but in polynomial-time) from the predetermined program.
This is captured by the formulation appearing in [GMR] and sketched below.

Denote by V*(x) the probability distribution generated by a machine V* which
interacts with (the prover) P on input x € L. We say that the proof system is zero-
knowledge if for all probabilistic polynomial-time machines V*, there exists a prob-
abilistic polynomial-time algorithm Mj, that on input x produces a probability
distribution My «(x) such that My«(-) and V*(-) are polynomially-indistinguishable.

(For every algorithm A, let p,(x) denote the probability that A outputs 1 on
input x and an element chosen according to the probability distribution D(x).
Similarly, P} (x) is defined (w.r.t. D’). The distribution ensembles D(-) and D’(-) are
polynomially-indistinguishable if for every probabilistic polynomial-time algorithm
A, ps(x) — py(x) <| x |7¢, for every constant ¢ > 0 and sufficiently long x. This
notion appeared in [GM] and in [Y1].)

It is not difficult to see that if a language L has a zero-knowledge proof system
in which only one message is sent, then L € BP P. Thus, the non-triviality of the
interaction is a necessary condition for the non-triviality or the notion of zero-
knowledge.

Previous Results Concerning Interactive Proof Systems

Let Q be a polynomial. Denote by IP(Q) the class of languages L such that mem-
bership of x € L can be proved through a general interaction consisting of Q(| x |)
message exchanges. Similarly, let AM(Q) denote languages proven through the
restricted type interaction in which the verifier only tosses “public coins” (i.e.
Babai’s Arthur-Merlin framework). Babai [B] showed that for every polynomial Q,
AM(Q + 1) = AM(Q). This means that his finite level hierarchy collapses. (Note
that this does not imply the collapse of the unbounded level hierarchy! For more
details see [AGH].) Goldwasser and Sipser [GS] showed that, for every polynomial
Q,IP(Q) CAM(Q + 2). This means that from a complexity theoretic point of view,
the IP(-) hierarchy and the AM (-) hierarchy essentially coincide. Both the above re-
sults say nothing about the preservation of zero-knowledge by the transformations.
The bounded level IP hierarchy is related to the polynomial-time hierarchy by
Babai’s proof that AM (2) C ]_[5 and that AM (2) € NP® for almost all oracles B.
Several Number Theoretic languages, not known to be in BPP, have been pre-
viously shown to have zero-knowledge proof systems. The first language for which
such a proof system has been demonstrated is Quadratic Non-Residuosity [GMR].
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Other zero-knowledge proof systems were presented in [GMR], [GHY], [CF] and [G].
All these languages are known to lie in NP N Cy — NP.

Organization of the Paper

In Section 2 we present zero-knowledge interactive proofs for graph isomorphism
and graph non-isomorphism. We also discuss complexity theoretic implications of
the existence of an interactive proof for graph nonisomorphism. In Section 3 we
show how to use any one-way permutation in order to construct a zero-knowledge
interactive proof for any language in NP. This result is extended to any language
in IP.

In Section 4, we outline the methodological theorems for two-party and multi-
party cryptographic protocols.

Proofs of Graph Isomorphism and Graph Non-Isomorphism

We start by presenting a (probably nonzero- knowledge) interactive proof for graph
non-isomorphism. Next we present a zero-knowledge interactive proof for graph
isomorphism, and for graph non-isomorphism. Let us set some common nota-
tions.

Let A be a set. Then Sym(A) denote the set of permutations over A. When
writing a €z A, we mean an element chosen at random with uniform probability
distribution from the set A.

We will consider undirected graphs, G(V, E). V will denote the vertex set, and
E the edge set of the graph G. n will denote the size of the vertex set, and m the size
of the edge set (i.e. n =| V |, m =| E |). The graph G(V, E) will be represented by
the set E, in an arbitrary fixed order (e.g. lexicographic).

Two graphs G(V, E) and H(V, F) are isomorphic if and only if there exist a
permutation 7 € Sym(V) such that

(u,v) € Eiff (m(u), m(v)) € F.

The graph isomorphism problem consists of two graphs as input, and one has to de-
termine whether they are isomorphic. The graph isomorphism problem is trivially
in NP, is not known to be in Co-NP, and is believed not to be NP-complete.

We say that the graph H (V, F) is a random isomorphic copy of the graph G(V, E)
if H is obtained from G by picking = € Sym(V) and letting

F={(m@),n@):u,v) € E}.
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An Interactive Proof of Graph Non-lsomorphism

In this subsection we examplify the notion of an interactive proof system by pre-
senting an interactive proof for graph non-isomorphism. The fact that graph non-
isomorphism has interactive proofs is interesting as it is not know to be in NP, and
thus has not been know previously to have any efficient proofs. Moreover, the exis-
tence of an interactive proof for graph non-isomorphism has interesting complexity
theoretic consequences.

In the following protocol the prover needs only to be a probabilistic polynomial-
time machine with access to an oracle for graph isomorphism.

common input: Two graphs G,(V, E;) and G,(V, E,).

1. The verifier chooses at random » integers «; € {1, 2}, 1 <i < n. The verifier
computes n graphs H;(V, F;) such that H; is a random isomorphic copy of
G, - The verifier sends the H;’s to the prover.

2. The prover answers with a string of 8;’s (each in {1, 2}), such that H;(V, F})
is isomorphic to Gg(V, Eg).

3. The verifier tests whether «; = f;, for every 1 <i <n. If the condition is
violated then the verifier rejects; otherwise he accepts.

The above protocol constitutes a (two-move) interactive proof system for Graph
Non-Isomorphism.

If the graphs G, and G, are not isomorphic, and both prover and verifier follow
the protocol, then the verifier always accepts. If on the other hand, G, and G, are
isomorphic then, for each i, we have «; # §; with probability at least 1/2, even if the
prover does not follow the protocol. The reason being that in case G; and G, are
isomorphic,

Prob(a; = 1| verifier sent H;) = 1/2.

The probability that the verifier does not reject two isomorphic graphs is thus at
most 27",

The above Theorem has interesting implications on the traditional complexity
of the graph isomorphism problem. Namely,

Graph Isomorphism is in (N P N Co-NP)4, for a random oracle A. Also, Graph Non-
Isomorphism can be recognized by a (non-uniform) family of non-
deterministic polynomial-size circuits (i. e. non-uniform N P).
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By the Theorem 1, Graph Non-Isomorphism (GNI) is in I P(2). Using Goldwasser
and Sipser’s transformation of /P (k) protocols to AM (k + 2) protocols, GNI €
AM (4). By Babai’s proof of the finite AM(-) collapse, GNI € AM(2) € N P# for a
random oracle A. Finally, it has been pointed out by Mike Sipser that AM (2) is
contained in non-uniform N P.

Another interesting corollary concerning graph isomorphism is due to Boppana
and Hastad [BH].

If Graph Isomorphism is N P-Complete then the polynomial-time hierarchy col-
lapses to its second level.

Boppana and Hastad showed that if Co-NP C I P (k) (for some fixed k) then the entire
polynomial-time hierarchy collapses to AM(2) € ]_[5 Since Theorem 1 states that
graph non-isomorphism is in / P(2), the Corollary follows.

Corollary 2 may be viewed as providing additional support to the belief that
Graph Isomorphism is not NP-Complete.

A Zero-Knowledge Proof for Graph Isomorphism

In this section we examplify the notion of zero-knowledge proof systems by pre-
senting a zero-knowledge proof for graph isomorphism. The fact that graph iso-
morphism has efficient proofs is apparent, since it is in NP. However, the fact that
graph isomorphism can be proved in zero-knowledge, and in particular without
demonstrating the isomorphism is interesting.

In the following protocol, the prover needs only to be a probabilistic polynomial-
time machine which gets, as an auxiliary input, the isomorphism between the input
graphs.

common input: Two graphs G,(V, E;) and G,(V, E,).

Let ¢ denote the isomorphism between G and G,. The following four steps are
executed n times, each time using independent random coin tosses.

1. The prover generates a graph H, a random isomorphic copy of G;. This is
done by selecting a permutation 7 €, Sym(V), and computing H(V, F) such
that (7w (u), m(v)) € F iff (u, v) € E;. The prover sends the graph H(V, F) to
the verifier.

2. The verifier chooses at random « €3 {1, 2}, and sends « to the prover. (Intu-

itively, the verifier asks the prover to prove to him that # and G, are indeed
isomorphic.)
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3. Ifa €1, 2then the prover halts. If « = 1then the prover sends = to the verifier,
else the prover sends w¢ 1.

4. If the permutation received from the prover is not an isomorphism between
G, and H then the verifier stops and rejects; otherwise he continues.

If the verifier has completed n iterations of the above steps then he accepts.

The reader can easily verify that the above constitutes an interactive proof system
for graph isomorphism. Intuitively, this proof is zero-knowledge since whatever
the verifier receives is “useless”, as he can generate random isomorphic copies
of the input graphs by himself. This is easy to see in case the verifier follows the
protocol. In case the verifier deviates from the protocol, the situation is much more
complex. The verifier may set the «’s depending on the graphs presented to him. In
such a case it can not be argued that the verifier only receives random isomorphic
copies of the input graph. The issue is fairly involved, as we have to defeat a
universal quantifier which is not well understood (i.e. all possible deviations from
the protocol). We cannot really trust our intuition in such matters, so a formal proof
is indeed required.

The above protocol constitutes a zero-knowledge interactive proof system for Graph
Isomorphism.

It is clear that the above prover conveys no knowledge to the specified verifier. We
need however to show that our prover conveys no knowledge to all possible verifiers,
including cheating ones that deviate arbitrarily from the protocol.

Let V*be an arbitrary fixed program of a probabilistic polynomial-time machine
interacting with the prover, specified by the protocol. We will present a probabilistic
polynomial-time machine My« that generates a probability distribution which is
identical to the probability distribution induced on V*’s tapes during its interaction
with the prover. In fact it suffices to generate the distribution on the random tape
and the communication tape of V*.

Our demonstration of the existence of such V* is constructive: given an inter-
active program V*, we use it in order to construct the machine V*. The way we use
V*in this construction does not correspond to the traditional notion of (a subrou-
tine) reduction [K, C], but rather to a more general notion of reduction suggested
in [AHU, pp. 373-374]. Typically, we will try to guess which isomorphism the ma-
chine V* will ask to check. We will construct the graph H such that we can answer
V*in case we were lucky. The cases in which we failed will be ignored. It is crucial
that from the point of view of V* the case which leads to our success and the case
which leads to our failure look identical. By throwing away the instances where we
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failed, we only slow down our construction, but we do not change the probability
distribution that V* “sees”.

Following is a more detailed description of My«. On input G; and G,, the
machine My« will monitor the execution of the program V* on this input and will
“simulate” the prover to V*. My will start by choosing and fixing random coin
tosses r (random tape) for V*, and placing r on a special record tape. All subsequent
coin tosses are for My«. (The random tape of V*, denoted r, will remain fix and V*
is “deterministic” given its random tape r.) Machine My« proceeds in n rounds as
follows.

1. My chooses at random 8 €3 {1, 2} and a permutation 7= € Sym(V). It com-
putes H(V, F) such that (7 (), 7 (v)) € F ifand only if (u, v) € Eg. My places
H on the communication tape of V*. (Note that H is an isomorphic copy of
Gg.)

2. My« reads V*answer from the communication tape of V*. When V* answers
with o = B (lucky for My+), machine My places = on the communication
tape of V*, appends (H, o, ) to its record tape, and proceeds to the next
round. If o ¢ {1, 2} (V*is obviously cheating) then the machine My« appends
(H, @) to its record tape and stops outputting its record tape. If « + 8 =3
(unlucky for My ) then My« is going to repeat the current round. This is done
by “rewinding” V* to its configuration at the beginning of the current round,
and by repeating Steps 1 and 2 with new random choices. (V* configuration
consists of the contents of its tapes, the positions of its heads and its internal
state.)

If all rounds are completed then My« outputs its record and halts. It should be
noted that, for each repetition of the ith round, Pr(8 =1| | H®) = 1/2, where H®
is the list of graphs send to V* so far (this includes the graph sent in the current
repetition of round i, but does not include graphs after which V* was rewound).
Therefore, Pr(8 =a(r, HP|H") =1/2, where a(r, H") is V*’s answer on random
tape r and communication tape H"). It is left to the reader to verify that the ith
round is repeated j times with probability at most 27/. Machine My« stops and
outputs its record tape after n rounds were completed or after encountering an
improper « ¢ {1, 2}. In the first case the machine outputs a sequence of n triples of
the form (H, «, ), where  is an isomorphism between H and G,,. It is left to the
reader to verify that in both cases, My« outputs the right probability distribution.

]

In the above proof, the probability distribution output by the simulator My is
identical to the distribution during an interaction between V* and the prover. This
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is more than required by the definition of zero-knowledge, which only requires
that these distributions be polynomially-indistinguishable. We call a proof system
for which such a result (i.e. identical distributions) is demonstrated a perfect zero-
knowledge proof system.

Serial execution v. parallel execution: the case where the intuition fails? Although
one’s intuition may insist that the above zero-knowledge protocol, remains zero-
knowledge even when executed in parallel instead than serially, we do not know
how to prove this statement. We even doubt this intuition, and will explain why in
the full version of this paper.

Zero-Knowledge Proof of Graph Non-lsomorphism

The interactive proof for graph nonisomorphism presented in section 2.1 is prob-
ably not zero-knowledge: a user interacting with the prover may use the prover in
order to test towhich of the given graphs (G and G,) is a third graph G; isomorphic.
The way to fix this flaw, is to let the verifier first “prove” to the prover that he “knows”
an isomorphism between his query graph H and one of the input graphs. The mod-
ified protocol and the proof that it constitutes a zero-knowledge interactive-proof
system, are omitted from this extended abstract. We get

There exist a zero-knowledge interactive proof system for Graph Non-Isomorphism.

All Languages in NP Have Zero-Knowledge Proof Systems

In this section we assume the existence of secure encryption schemes (in the sense
of Goldwasser and Micali [GM]). Such schemes exist if unapproximable predicates
exist [GM]. The existence of unapproximable predicates has been shown by Yao to
be a weaker assumption than the existence of one-way permutations [Y1].

An encryption scheme secure as in [GM) is a probabilistic polynomial-time
algorithm f that on input x and internal coin tosses r, outputs an encryption
f(x, r). Decryption is unique: thatis f(x,r) = f(y, s) implies x = y.

We begin by presenting a zero-knowledge interactive proof for graph 3-colour-
ability. Using this interactive proof and the power of NP-Completeness, we present
zero-knowledge proofs for every language in NP. Finally, we show that “everything
that is efficiently provable” can be proved in zero-knowledge.

A Zero-Knowledge Proof for Graph 3-Colourability

The common input to the following protocol is a graph G(V, E). In the follow-
ing protocol, the prover needs only to be a probabilistic polynomial-time machine
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which gets a proper 3-colouring of G as an auxiliary input. Let us denote this colour-
ingby¢(¢: V — (1, 2, 3}). Letn = |V|,m = | E|. For simplicity, let V ={1, 2, ..., n}.
The following four steps are executed m? times, each time using independent coin
tosses.

1. The prover chooses a random permutation of the 3-colouring, encrypts it,
and sends it to the verifier. More specifically, the prover chooses a permuta-
tion 7 € Sym({1, 2, 3}), and random r,’s, computes R, = f (7 (¢ (v)), r,) (for
every v € V), and sends the sequence Ry, R,, ..., R, to the verifier.

2. The verifier chooses at random an edge e €z E and sends it to the prover.
(Intuitively, the verifier asks to examine the colouring of the endpoints of
eckE)

3. If e = (u, v) € E then the prover reveals the colouring of # and v and “proves”
that they correspond to their encryptions. More specifically, the prover sends
(m(¢pm)), r,) and (7 (¢ (v)), r,) to the verifier. If e ¢ E then the prover stops.

4. The verifier checks the “proof” provided in step (3). Namely, the verifier
checks whether R, = f(n(¢(u)),r,), R, = f (¢ (v)), 1), T($(w)) # 7w (P (v)),
and 7 (¢ (u)), m(¢p(v)) € {1, 2, 3}. If either condition is violated the verifier
rejects and stops. Otherwise the verifier continues to the next iteration.

If the verifier has completed all m? iterations then it accepts.

The reader can easily verify the following facts: When the graph is 3-colourable
and both prover and verifier follow the protocol then the verifier accepts. When
the graph is not 3-colourable and the verifier follows the protocol then no matter
how the prover plays, the verifier will reject with probability at least (1 — m=lym* =
exp(—m). Thus, the above protocol constitutes an interactive proof system for
3-colourability. Proving that the above protocol is zero-knowledge is even more
involved that the proof of Theorem 2.

If f(-, ) is a secure probabilistic encryption, then the above protocol constitutes a
zero-knowledge interactive proof system for 3-colourability.

As in the proof of Theorem 2, we will present a machine My for every interactive
machine V*. Typically, we will try to guess which edge the machine V* will ask to
check. We will encrypt an illegal colouring of G such that we can answer V* in case
we were lucky. The cases in which we failed will be ignored. It is crucial that from
the point of view of V* the case which leads to our success and the case which leads
to our failure are polynomially indistinguishable.
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The machine My« monitoring V*, starts by choosing a random tape r for V*.
My places r on its record tape and proceeds in m? rounds as follows.

1. My« picks an edge (u, v) €z E and a pair of integers (a, b) e {(i, j):1<i #
j <3} at random. My« chooses random r;’s and computes R; = f(c;, r;),
where ¢; is 0 for i € V — {u, v}, ¢, =a and ¢, = b. My« places the sequence
of R;’s on the communication tape of V*.

2. Myx reads e from the communication tape of V*. If e ¢ E(V* obviously
cheats) then My« appends the R;’s and e to its record tape, outputs the
record tape, and stops. If e # (u, v) (unlucky for My«) then My« rewinds V*
to the configuration at the beginning of the current round, and repeats the
current round with new random choices. If e = (u, v) (lucky for My.) then My«
proceeds as follows: First, it places (a, r,) and (b, r,) on the communication
tape of V*. Second, it appends the R;’s, ¢, (a, r,) and (b, r,) to its record tape;
and finally, it proceeds to the next round.

If all rounds are completed then My« outputs its record and halts. A technical
lemma (to be stated and proved in the final paper) guarantees that the three pos-
sible “answers” of the verifier (i.e.e € E,e € E — {(u, v)} and e = (u, v)) occur with
essentially the same probability as in the interaction of V* and the real prover.
Thus, the probability that the simulation of a particular round requires more than
k -m rewinds is smaller than 27, and My . terminates in polynomial time. The
only difference between the probability distribution of the true interactions and
the distribution generated by My is that the first contain probabilistic encryptions
of colourings while the second contains probabilistic encryptions of mostly 0’s.
However, a second technical lemma (postponed to the final paper) asserts that this
difference is indistinguishable in probabilistic polynomial-time.

The above protocol needs m? rounds. In the final version of our paper we will present
two alternative ways of modifying the above protocol so to get a four-round zero-
knowledge protocol for graph 3-colorability. In both modifications the idea is to
have the verifier commit himself to all his queries (i.e. which edge he wants to
check for each copy of the coloured graph) before the prover sends to the verifier
the corresponding coloured graphs. The two modifications differ by the manner
in which the verifier commits to his queries. One modification is based on the
intractability of factoring. The second modification is based on a relaxation of the
definition of a proof system so that the prover is also restricted to polynomial-time
(and his “computational advantage” over the verifier consists of an auxiliary input).
This relaxation is natural in the cryptographic applications.
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Zero-Knowledge Proofs for all NP

Incorporating the standard reductions into the protocol for graph 3-colourability,
we get

If f(-,-) is a secure probabilistic encryption, then every NP language has a zero-
knowledge interactive proof system.

Slightly less obvious is the proof of the following Theorem 6 that adapts Theorem
5 to a cryptographic scenario in which all players are bounded to efficient computa-
tion. What is needed is to notice that the standard reductions transform efficiently
also the solution to the instances.

If there exists a secure probabilistic encryption, then every language in NP has
a zero-knowledge interactive proof system in which the prover is a probabilistic
polynomial-time machine that gets an NP proof as an auxiliary input.

(Namely, in case the common input x is in the language L, the polynomial-time
prover gets an NP proof that x € L as an auxiliary input.)

The number of computational steps required by both parties in the above inter-
active proof is bounded by O(T?%(n) - F(n) -10g4 n), where n = |x| is the length of
the common input x, 7 (n) is the number of steps required by a non-deterministic
machine to accept x, and F(n) is the number of steps require to encrypt a bit when
the security parameter is n.

A Positive Use of NP-Completeness

So far NP-completeness have mostly had a “negative” utility: it was (and is) the most
practical way to give evidence to the infeasibility of a problem. Here we want to point
out a “positive” use of NP-completeness: its primary role in deriving the general
results of Theorems 5 and 6 (i.e. zero-knowledge proofs of every NP statement) from
Proposition 4 (i.e. a zero-knowledge proof of a particular NP-Complete problem).

An Example: Verifiable Secret Sharing

Due toits generality, Theorem 6 has a dramatic effect on the design of cryptographic
protocols. Let us first demonstrate this point by using Theorem 6 to present a
simple solution to a problem which until recently was considered very complex:
Verifiable Secret Sharing. The more general implications of Theorem 6, are outlined
in Section 4.
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3.3

Theorem 7

Proof’s Sketch

The notion of a verifiable secret sharing was presented by Chor, Goldwasser,
Micali and Awerbuch [CGMA], and constitutes a powerful tool for multi-party pro-
tocol design. Loosely speaking, a verifiable secret sharing is a n 4+ 1-party protocol
through which a sender (S) can distribute to the receivers (R;’s) pieces of a secret
s recognizable through an a-priori known “encryption” g(s). The n pieces should
satisfy the following three conditions (with respectto 1 </ <u <n):

1. Itis infeasible to obtain any knowledge about the secret from any/ pieces;
2. Given any u messages the entire secret can be easily computed;

3. Given a piece it is easy to verify that it belongs to a set satisfying condition

(2).

The notion of a verifiable secret sharing differs from Shamir’s secret sharing [Sha],
in that the secret is recognizable and that the pieces should be verifiable as authentic
(i.e. condition (3)).

Following the first implementation presented in [CGMA], improvements in effi-
ciency and “tolerance” appeared in [FM, AGY, F]. These solutions are conceptually
complicated, and rely on specific properties of particular encryption functions.

Assuming the existence of arbitrary one-way permutations, we present a con-
ceptually simple solution allowing u =/ + 1 < n. Our scheme combines Theorem 6
with Shamir’s (non-verifiable) secret sharing [Sha]. To share a secret s € Z, recog-
nizable through r = g(s), the sender proceeds as follows: First, the sender chooses
atrandom a/-degree polynomial over Z; and evaluates it in n fixed points (these are
the pieces in Shamir’s scheme). Next, the sender encrypts the ith piece using the
Public encryption algorithm of the ith receiver, and sends all encrypted secrets to
all receivers. Finally, the sender provides each receiver with a zero-knowledge proof
that the encrypted messages correspond to the evaluation of a single polynomial
over Z;, and that applying g to the free term of this polynomial yields r (note that
this is a NP statement ).

Everything Efficiently Provable Can Be Proven in Zero-Knowledge

We now generalize Theorem 5 to show that not only NP is in zero-knowledge, but
also “probabilistic NP” is. Namely,

If there exists a secure probabilistic encryption, then for every fixed k every language
in IP(k) has zero-knowledge proof systems.

Using the results of [GS] and [B], it suffices to demonstrate zero-knowledge proof
systems for languages in AM(2). The intuitive idea is to let the verifier send random
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coins and then let the prover prove that “he could have convinced the verifier with
respect to these coins”, which is an NP statement! To oblige the verifier to send
random coins and not strings of his choice, coin flipping into the well [Blu) is used.
It has to be proven however, that the substitution of certified random coins by coin
flips into the well preserves zero-knowledge. ]

Recently, Ben-Or extended Theorem 7 and showed that every language which
has an interactive proof system, has a zero-knowledge one [Ben]. As above, the
result of Goldwasser and Sipser [GS] is used to restrict attention to languages in
AM. This time we can not use Babai’s result [B], since the number of interactions
is unbounded. The idea is to first execute the AM protocol in an encrypted form
(only the messages of the prover need to be encrypted and this does not disturb the
verifier who only toss coins), and next have the prover convince the verifier in zero-
knowledge that the encrypted interaction corresponds to an accepting interaction
in the original AM protocol.

The following question was raised by Leonid Levin: Let M be a probabilistic
polynomial-time interactive machine having access to a machine P; which is able
to prove that x € L via an arbitrary predetermined interactive proof system. Can M
prove that x € L to another machine V, in a zero-knowledge manner? Clearly the
answer is negative if M first interact with P; and only later interact with V, (hint:
P; may use a zero-knowledge proof system). However, M is allowed to interleave its
interactions in an arbitrary manner. Theorem 6 answers Levin’s question positively
for the case that P; sends M an NP-proof. (In fact this was the motivation for
his question.) It is easy to answer Levin’s question positively for the case that P;
interacts with M via an AM protocol. Recently, using a result of Yao [Y2], we have
answered this question positively also for the general case (of IP protocols).

Related Results

Using the intractability assumption of quadratic residuosity, Brassard and Crepeau
have discovered independently (but subsequently) zero-knowledge proof systems to
all languages in NP [BC1]. These proof systems heavily rely on particular properties
of quadratic residues and do not seem to extend to arbitrary encryption functions.

Recently, Brassard and Crepeau showed that if factoring is intractable then
every NP language has a perfect zero-knowledge interactive proof system [BC2]. It
should be stressed that the protocol they proposed constitutes an interactive proof
provided that factoring is intractable. In other words, the validity of the interactive
proofs depends on an intractability assumption; while in this paper and in [BCI]
the validity of the proofs do not rely on such an assumption.
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Informal Theorem A

Independently, Chaum [Cha] discovered a protocol which is very similar to the
onein[BC2]. Chaum also proposed an interesting application of such “perfect zero-
knowledge proofs”. His application is to a setting in which the verifier may have
infinite computing power while the prover is restricted to polynomial-time com-
putations (see also [CEGP]). In such a setting it makes no sense to have the prover
demonstrate properties (as membership in a language) to the verifier. However, the
prover may wish to demonstrate to the verifier that he “knows” something without
revealing what he “knows”. More specifically, given a CNF formulae, the prover
wishes to convince the verifier that he “knows” a satisfying assignment in a man-
ner that would yield no information which of the satisfying assignments he knows.
A definition of the notion of “a program knowing a satisfying assignment” can be
derived from [GMR].

A Methodology of Cryptographic Protocol Design

Assuming the existence of arbitrary encryption functions, we will present extremely
powerful methodologies for developing secure two-party and multi-party proto-
cols. These methodology consists of efficient “correctness and privacy preserving”
transformations of protocols from a weak adversary model to the most adversarial
model. These (explicit) transformations are informally summarized as follows

There exist an efficient compiler transforming a protocol P designed forn =27 + 1
honest players, to a cryptographic protocol P’ that achieves the same goals even
if t of its n players are faulty. Faulty players are allowed to deviate from P’ in any
arbitrary but polynomial-time way.

In the formal statement of the corresponding Theorem, we avoid talking about
“achieving goals”. The “goal of a protocol” is a semantic object that is not well
understood. Instead, we make statements about well understood syntactic objects:
the probability distribution on the tapes of interactive machines. In the final version
of this paper we will define the notions of a “correctness preserving compiler” and a
“privacy preserving compiler”. Both notions will be defined as relations between the
probability distribution on the tapes of interactive machines during the execution
of protocol P (in a weak adversarial environment) and the distribution on these
tapes during the execution of P’ (in a strong adversarial environment). Loosely
speaking, “preserving correctness” means that whatever a party could compute
after participating in the original protocol P, he could also compute when following
the transformed protocol P’, properly. “Preserving privacy” means that whatever a
set of dishonest players can compute after participating in P’, the corresponding
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players in P can compute from their joint local “histories” after participating in P.
Similarly we formalize the following

There exist an efficient compiler transforming a two-party protocol P that is correct
in a fail-stop model, to a cryptographic two-party-protocol P’ thatachieves the same
goals even if one of the players deviates from P’ in any arbitrary but polynomial-time
way.

The proofs of the above Theorems make primary use of Theorem 6 to allow a ma-
chine to “prove” to other machines that a message it sent is computed according
to the protocol. In addition, these proofs make innovative use of most of the cryp-
tographic techniques developed in the recent years. Essential ingredients in the
proof of Theorem A are the notions of verifiable secret sharing and simultaneous
broadcast proposed and first implemented by Chor, Goldwasser, Micali and Awer-
buch [CGMA]. An essential ingredient in the proof of Theorem B is Blum’s “coin
flipping into the well” [Blu].

Further Improvement

Theorem A constitutes a procedure for automatically constructing fault-tolerant
protocols, the goal of which is to compute a predetermine function of the private
inputs scattered among the players. This procedure takes as input a distributed
specification of the function (i.e. a protocol for honest players), not the function
itself. It is guaranteed that this procedure will output a fault-tolerant protocol
for computing this very function (i.e. the “correctness” condition) and that the
“privacy” present in the specification will be preserved. Thus, the degree of privacy
offered by the output fault-tolerance protocol depends on the specification, and
not on the function to be computed. Furthermore, for some functions f it seems
to be difficult to write a distributed specification (protocol for honest players) which
offers the maximum degree of privacy. Recently, assuming the exist of an arbitrary
secure encryption scheme, we found a polynominal-time algorithm which on input
a Turing machine specification of a n-ary function f, outputs a protocol for » honest
players which offers the maximum possible privacy. Namely, at the termination
of the protocol, each subset of players can compute from their joint local history
only whatever they could have computed from their corresponding local inputs and
the value of the function. Essential ingredients in the algorithm are the “circuit
encoding” of Barrington [Bar], a modification of the two-party protocol of Yao
[Y2], and a general implementation of a variant of Oblivious Transfer using any
encryption function. Details will appear in a forthcoming paper [GMW].
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The algorithm claimed above can also be applied to any Turing machine speci-
fication of a probability distribution (depending on n variables). Equivalently, one
can view the algorithm as a compiler that on input a n-party protocol (for hon-
est players) outputs a fault tolerant n-party protocol, for computing the same dis-
tributed input-output relation, which offers the maximum degree of privacy. This
compiler, which may increase the privacy present in the input protocol, improves
on and uses as a subroutine the compiler of Theorem A (which only preserves the
privacy present in the input). The compiler of Theorem A, in turn, improves on
and uses as subroutine the compiler of Chor, Goldwasser, Micali and Awerbuch
[CGMA].
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How to Play Any Mental
Game: A Completeness
Theorem for Protocols
with Honest Majority

This chapter reproduces the contents of the paper “How to Play Any Mental Game,
or A Completeness Theorem for Protocols with Honest Majority,” which appeared
in the proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp.
218-229,1987.

This influenial work of Oded Goldreich, Silvio Micali, and Avi Wigderson pre-
sented constructions of secure protocols for any multi-party computation problem.
In other words, it shows how a trusted party can be emulated by a set of mutually
distrustful parties. This result combines the construction of “privacy-preserving”
protocols for the “honest-but-curious” model with a method (presented in Chap-
ter 12) of forcing parties to behave in an honest-but-curious manner. The privacy-
preserving protocols rely on the existence of a public-key encryption scheme and an
Oblivious Transfer protocol, which can both be based on the existence of trapdoor
permutations.
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Abstract
We present a polynomial-time algorithm that, given as a input the description of a
game with incomplete information and any number of players, produces a protocol
for playing the game that leaks no partial information, provided the majority of the
players is honest.

Our algorithm automatically solves all the multi-party protocol problems ad-
dressed in complexity-based cryptography during the last 10 years. It actually is a
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Such completeness theorem is optimal in the sense that, if the majority of the play-
ers is not honest, some protocol problems have no efficient solution [c].

Introduction

Before discussing how to “make playable” a general game with incomplete infor-
mation (which we do in section 6) let us address the problem of making playable a
special class of games, the Turing machine games (Tm-games for short).

Informally, n parties, respectively and individually owning secret inputs x, . . .,
x,, would like to correctly run a given Turing machine M on these x;’s while keeping
the maximum possible privacy about them. That is, they want to compute y =
M(xq, ..., x,) without revealing more about the x;’s than it is already contained in
the value y itself. For instance, if M computes the sum of the x;’s, every single player
should not be able to learn more than the sum of the inputs of the other parties.
Here M may very well be a probabilistic Turing machine. In this case, all players
want to agree on a single string y, selected with the right probability distribution,
as M'’s output.

The correctness and privacy constraint of a Tm-game can be easily met with the
help of an extra, trusted party P. Each playeri simply gives his secretinput x; to P. P
will privately run the prescribed Turing machine, M, on these inputs and publically
announce M’s output. Making a Tm-game playable essentially means that the
correctness and privacy constraints can be satisfied by the n players themselves,
without invoking any extra party. Proving that Tm-games are playable retains most
of the flavor and dificulties of our general theorem.

Preliminary Definitions

Notation and Conventions for Probabilistic Algorithms

We emphasize the number of inputs received by an algorithm as follows. If algo-
rithm A receives only one input we write “A(-)”, if it receives two inputs we write
A(+, +) and so on.

RV will stand for “random variable”; in this paper we only consider RVs that
assume values in {0, 1}x. In fact, we deal almost exclusively with random variables
arising from probabilistic algorithms. (We make the natural assumption that all
parties may make use of probabilistic methods.)

If A() is a probabilistic algorithm, then for any input x the notation A(x) refers
to the RV which assigns to the string o the probability that A, on input x outputs
o.If S is a RV that assigns positive probability only to a single element e, we denote
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2.2

the value e by S. (For instance, if A(-) is an algorithm that, on input x outputs x3,
then we may write A(2) = 8.) This is in agreement with traditional notation.

If f(-) and g(., - - -) are probabilistic algorithms then f(g(:,---)) is the proba-
bilistic algorithm obtained by composing f and g (i.e. running f on g’s output).
For any inputs x, y, - - - the associated RV is denoted f(g(x, y, - - ).

Let PA denote the set of probabilistic polynomial-time algorithms. We assume
that a natural representation of these algorithms as binary strings is used.

By 1* we denote the unary representation of integer .

Game Networks and Distributed Algorithms

Let us start by briefly describing the communication networks in which games will
be played. This is the standard network supporting the execution of multi-party
protocols.

Informally, a game network of size n is a collection of (interacting) probabilis-
tic polynomial-time Turing machines. Each machine has a private read-only input
tape, a private write-only output tape and a private read-write work tape. All ma-
chines share a common read-only input tape and a common write-only output tape.
The n machines communicate by means of n - (n — 1) special tapes. Machine i pub-
lically sends messages (strings) to machine j by means of a special tape i — j on
which only i can write and that all other machines can read. There is a common
clock whose pulses define time intervals 1, 2, . ... Messages are sent at the begin-
ning of a time interval and are received within the same time interval. We stress,
though, that our result is largely independent from the specific communication
mechanism, and also holds for “less equipped” communication networks.!

A probabilistic distributed algorithm § running in a game network of size n
is a sequence of programs S = (S;, ..., S,), where §; is the program of the ith
Turing machine in the network. We denote by P DA the class of all probabilistic
polynomial-time distributed algorithms.

Let S € PDAruninagame network of size n with common input C/ and (respec-
tive) private inputs x4, ..., x,,. Then HS(xy, ..., x,, CI) denotes the RV consisting
of the public history, that is the sequence of all messages sent in an execution of

1. For instance, there may be only one communication tape. In this case, digital signatures can be
used to authenticate the sender. In case that not all machines may read all communication tapes,
Byzantine agreement can be used to simulate the fact that all processors agree on what message
machine i has sent to machine j at time . The common clock may be replaced by local clocks
that don’t drift “too much”. The quite tight synchrony of the message delivery can be replaced by
a feasible upper bound on the time it takes a message to be delivered, and so on.
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2.3

2.4

S; HS; (x4, ..., x,, CI) denotes the RV consisting of the private history of machine
i, that is the sequence of the internal configurations of machine i in an execution
of S;forT C{1,...,n}, HSy(x4, ..., x,) denotes the vector of the private histories
of the members of T in an execution of S; and OS(x;, ..., x,, CI) denotes the RV
consisting of the private output of machine 7 in an execution of S.

Adversaries

We consider two interesting types of adversaries (faulty machines) in a game net-
work: passive ones (a new notion) and malicious ones (a more standard notion).

A passive adversary is a machine that may compute more than required by its pre-
scribed program, but the messages it sends and what it outputs are in accordance to
its original program. (Passive adversaries may be thought as machines who only try
to violate the privacy constraint. They keep on running their prescribed programs
correctly, but also run, “on the side”, their favorite polynomial-time program to try
to compute more than their due share of knowledge. In an election protocol, a pas-
sive adversary may be someone who respects the majority’s opinion -and thus does
not want to corrupt the tally- and yet wants to discover who voted for whom.)

A malicious adversary is, instead, a machine that deviates from its prescribed
program in any possible action. That is, we allow the program of such a machine to
be replaced by any fixed probbilistic polynomial-time program. (Malicious adver-
sary not only have a better chance of disrupting the privacy constraint, but could
also make the outcome of a Tm-game vastly different than in an ideal run with a
trusted party.)

We allow machines in a game network to become adversarial in a dynamic
fashion, during the execution of a protocol. We also allow adversarial machines
(of either type) to undetectedly cooperate. Adversarial machines are not allowed,
however, to monitor the private tapes or the internal state of good machines.

We believe the malicious-adversary scenario to be the most adversarial among
all the natural scenarios in which cryptography may help.

Jumping haed, we will show that all Tm-games are playable with any number of
passive adversaries or with < n/2 malicious adversaries.

Indistinguishability of Random Variables

Throughout this paper, we will only consider families of RVs U = {U,} where the
parameter k ranges in the natural numbers. Let U = {U,} and V = {V,} be two fam-
ilies of RVs. The following notion of computational indistinguishability expresses
the fact that, when the length of k increases, U, becomes “replaceable” by V in the
following sense. A random sample is selected either from U or from V, and it is
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Definition

Remark 1

handed to a “judge”. After studying the sample, the judge will proclaim his verdict:
0 or 1. (We may interpret 0 as the judge’s desicion that that the sample came from
Uy; 1 as the desicion that the sample came from V,.) It is then natural to say that
V, becomes “replaceable” by V, for k large enough if, when k increases, the verdict
of any computationally bounded judge becomes “meaningless”, that is essentially
uncorrelated to which of the two distributions the sample came from.

To formalize the notion of computational indistinguishablity we make use of
nonuniformity. Thus, our “judge”, rather than polynomial time Turing machine,
will be a poly-size family of circuits. That is a family C = {C,} of Boolean circuits C;,
with one Boolean output such that, for some constants ¢, d > 0, all C; € C have at
most k¢ gates and k Boolean inputs. In order to feed samples from our probability
distributions to such circuits, we will consider only poly-bounded families of RVs.
That is families U = {U,} such that, for some constant e > 0, all RV U}, € U assigns
positive probability only to strings whose length is exac:tly k¢. If U = {U,} is a poly-
bounded family of RVs and C = {C;} a poly-size sequence of circuits, we denote
by P(U, C, k) the probability that C; outputs 1 on input a random strings from Uj.
(Here we assume that the length of the strings that are assigned positive probability
by U, equals the number of Boolean inputs of C;.)

(Computational indistinguishability): Two poly-bounded families of RVs U and V
are computationally indistinguishable if for all poly-size family of circuits C, for all
constants f > 0 and all sufficiently large k € N,

|P(U,C,k)—P(V,C,k)| <k L

This notion was already used by Goldwasser and Micali [GM] in the context of
encryption and by Yao [Y] in the context of pseudo-random generation. For other
notions of indistinguishability and further discussion see [GMR].

Let us point out the robustness of the above definition. In this definition, we
are handing our computationally bounded “judge” only samples of size 1. This,
however, is not restrictive. It should be noticed that two families of RVs {U,;} and
{V,} are computationally indistinguishable with respect to samples of size 1 if and
only if they are computationally indistinguishable with respect to samples whose
size is bounded by a fixed polynomial in k.

Tm-games With Passive Adversaries
An Tm-game problem consists of a pair (M, 1¥), that is, the description of a Turing
machine M and an integer k, the security parameter, presented in unary.
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Letus now make some simplifications that will expedite our exposition. Without
loss of generality in our scenario, we assume that, when (M, 1) is the common
input in a game network, all private inputs have the same length / and that 7'(/),
the running time of M on inputs of size /, is less than k.

Let S € PDA. We say that S is a Tm-game Solver for passive adversaries if, for all
Tm-game problems (M, 1¥) given as common input and for all (respective) private
inputs xq, ..., X,

1. (Agreement constraint)
At the end of each execution of S, for all machines i and j, i’s private output
equals j’s private output.

2. (Correctness constraint)
0S8(x,...,x,, (M15) =M(x,,...,x,) and

3. (Privacy constraint)

VT c{1,...,n}andVA € PPT,3B € PPT such that {A;} and {B,} are com-
putationally undistinguishable RVs.

Here
Ap=A(M, 1%, HS(M, 1%), HS7(M1%)))
and
By =B((M, 1%, M(xy,...,x,),{(i,x):i €T}).

Let us now interpret the above definition.

The Agreement Constraint
This constraint essentially says that all machines agree on a single, common string
as the output of S.

The Correctness Constraint

This constraint ensures that the output of a game solver S coincides with the one
of M. As M may be probabilistic, the equality of the correctness constraint must
interpreted ss equality between RVs.

The Privacy Constraint

Notice that passive adversaries appear in the above definition in an implicit way.
Algorithm A can be thought as all the members of T being passive adversaries
computing after an execution of S. In fact passive adversaries are obliged to send
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messages according to S and their private history, in an execution of S, is an explicit
input to A. Let us stress that the private history of a machine i contains the name i,
the private input x; and M’s output as well. Thus the privacy constraint essentially
says that whatever the passive adversaries may compute after executing S, they
could also easily deduce from the desired M’s output, y, and their own private
inputs (which they are entitled to have!). In fact, if they are given y by running S,
the passive adversaries will see, in addition to y, only the public history and their
own private history. However, whatever they could efficiently compute with this
additional input, they could also have computed without it. In other words, S keeps
whatever privacy of the inputs of the good parties is not “betrayed” by the value y
itself. For instance, if M computes the sum of the x;’s, then the privacy constraint
will allow the adversarial players to compute (at the end of S) essentially only the
sum of the inputs of the good parties. As for another example, if M is the identity
function, then the privacy constraint holds vacuously. Same if the set T is the set
of all players.

Hints on How to Play Tm-games With Passive Adversaries

At a first glance enforcing both correctness and privacy constraints of a Tm-game
appears easy only for special cases of M, say the ones computing a constant func-
tion. None-the-less,

If trapdoor functions exist, there exists a Tm-game solver for passive adversaries.

In this extended abstract we limit ourselves to give a few indications, in an
informal manner, about the proof of the above theorem. Moreover, not to get
into further complications, we do not let the set of adversarial machines to be
chosen dynamically, during the execution of the protocol, but at its start. (We
stress, though, that the adversarial set is still unknown to the good machines). This
restriction will be removed in the final paper.

A New and General Oblivious Transfer Protocol

In [HR], Rabin proposes the beautiful notion of an Oblivious Transfer (OT). This
is a probabilistic polynomial-time algorithm that allows A(lice), who knows the
prime factorization of an integer n, to send it to B(ob), who knows just n, so that
B will receive n’s factorization with probability 1/2 and A does not know whether
or not B received it. Clearly, Rabin’s notion of an OT, supposes that factoring is
computationly hard. Under this assumption, he proposed a protocol that, if A and
B are allowed to be at most passive adversaries, correctly implements an OT. This
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protocol, however, may not work (i.e. no longer possesses a proof of correctness) if
A and B are allowed to be malicious. Using the interactive proof-systems of [GMR],
Fischer, Micali, Rackoff and Wittenberg [FMRW] found a protocol that correctly
implements OT under the simple (and in this context minimal) assumption that
factoring is hard. Rabin’s OT has proved to be a very fruitful notion, as exemplified
by various applications proposed by Blum [B].

A more general and useful notion of OT has been proposed by Even, Goldreich
and Lempel [EGL], the one-out-of-two OT. In their framework, A has two messages
mgy and m. By using a cryptosystem E, she computes oy, = E(my) and oy = E(m)
and sends o; and o, to B. B chooses one of these encryption, o;. A one-out-of-two
OT allows B to read the corresponding message m;, while A will not know which
message B has read (whenever m( and m, are different). This notion achieves the
right level of generality and is crucial to what follows. Even, Goldreich and Lempel
also proposed the first implementation of a one-out-of-two OT using public-key
cryptosystems. Their protocol has the merit of having freed the implementation of
an oblivious transfer from the algebraic setting to which it appeared to be confined.
Their protocol, though, requires a quite strong set of assumptions even when the
adversaries are only passive.

Below, we contribute a new protocol that correctly implements a one-out-of-
two OT in presence of passive advarsaries. The existence of trapdoor permutations
suffices to prove the correctness of our protocol.

Trapdoor and One-Way Functions

A satisfactory definition of a trap-door permutation is given in [GoMiRi]. Here let
us informally say that a family of trapdoor permutations f possesses the following
properties:

e Itiseasy, given an integer k, to randomly select permutations f in the family
which have k as their security parameter, together with some extra “trap-
door” information allowing easy inversion of the permutations chosen.

e [Itis easy to randomly select a point in f’s domain.

e Itis hard to invert f without knowing f’s trap-door on a random element in
f’s domain.

We can interpret the above by saying that a party A can randomly select a pair of
permutations, (f, f 1), inverses of each other. This will enable A to easily evaluate
and invert f; if now A publicizes f and keeps secret 1, then inverting f will
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be hard for any other party. We may write f;, to enphasize that k is the security
parameter of our permutation.

Trap-door permutations are a special case of one-way permutations. These are
permutations enjoying the three properties above, except that we do not insist that
the trap-door information exists.

Random Bits in One-Way Permutations

Our one-out-of-two OT protocol makes use of trap-door functions f hiding a ran-
dom bit B ;. Here B/ is a polynomial-time computable Boolean function; the word
“bit” is appropriate as B evaluates to 1 for half of the ’s in f’s domain.

We say that {B} is a random bit in a family { f} of trap-door permutations if V
predicting algorithm Alg that, on inputs f = f; and f(x), outputs, in T (k) steps,
a guess for B((x)) that is correct with probability £, 3Alg” that, on inputs f and
f(x), outputs x in poly(T (k), e~ 1) expected time.

Thus, being f trap-door, no probabilistic, polynomial-time algorithm given
fx(x), can correctly predict B (x) with probability > 1/2 + 1/poly(k). We might as
well flip a coin. Thus, for a one-way permutation f, given f(x) the value of B(x)
cannot be guessed in polynomial time essentially better than at random.

The notion of a random bit in a one-way permutation was introduced by Blum
and Micali [BM] who showed a random bit in the Discrete Logarithm Problem, a
well known candidate one-way permutation. Chor and Goldreich show random bits
in the RSA function. Do all one-way functions have a random bit? We do not know
the answer to this question, but Yao [Y] has shown the next best thing. Namely,
that given a one-way (trap-door) permutation f , one can construct a one-way (trap-
door) permutation F with a random bit BF (for a detailed proof of this theorem see
[BH]). Levin [L] has actually proved a more general version of this theorem.

Our Protocol

Without loss of generality, we assume that the two messages in the one-out-of-two
OT both consist of a single bit.

In our protocol, both A and B € PA. A’s inputs are a pair of bits (by, b;) and
their corresponding pair of encryptions (E(by), E(b;)) where E is a probabilistic
encryption algorithm [GM]. The pair (E (by), E(b;)) is also an input to B who has
an additional private input bit «. It is desired that even if some party is a passive
adversary the following two properties hold:

(i) B will read the bit b,, but will not be able to predict the other bit, by,
essentially better than at random.
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(i) A cannot predict « essentially better than at random.

We achieve this by means of the following protocol.
Step 1

Arandomly selects (f, f~1), a trap-door function of size k (having a random bit B )
together with its inverse. She keeps f~! secret and sends f to B.

Step 2
B randomly selects xy and x4 in f’s domain and computes z = f(xy) and sends A
the pair
{ (f(xg), xp) ifa=0
(u,v) = .
(xg, f(x9)) ifa=1
Step 3

A computes (cg, ¢1) = (B(f~(w)), By(f7'(v))). She sets dy = by xor ¢, and d; =
by xor ¢4 and sends (dy, d;) to B.

Step 4
B computes b, = d, xor B;(xy).

First notice that A, B € P A and that B correctly reads b,. Property i) is satisfied
as B only sees by, exclusived-ored with a bit essentially 50-50 unpredictable to him.
Thus he cannot correctly guess b; essentially better than at random. Let us now
show that ii) holds. As f is a permutation, randomly selecting x in f’s domain and
computing f(x) yealds a randomly selected element in f’s domain. Thus (u, v) is
a pair of randomly selected elements in f’s domain both if « =0 or « = 1. As (u, v)
is the only message B sends A, not even with infinite computing power A will find
out whether B has read b, or b;.

Notice that the protocol makes use that the adversaries are at most passive in a
crucial way. Should in fact B send (u, v) = (f(xy), f(x7)) in step 2, he will easily
read both bits. Thus, we will make use of additional ideas to handle malicious
adversaries.

Notice also that we never made use of the encryptions E (by) and E (by). by and by
could have been bits in “A’s mind.” We have added these encryptions for uniformity
with the next protocol in which the two messages must appear encrypted. Another
reason is that, when we will handle malicious adversaries, we will need these
encryptions to define the problem.



318 Chapter 13 How to Play Any Mental Game: A Completeness Theorem for Protocols with Honest Majority

4.2

It is easy to see that, having solved the single-bit messages case, we have also
solved the case of arbitrary messages m, and m, of equal, known length /. In fact,
we can repeat the above protocol / times, so that, if « is 0(1), B is required at the
ith time to learn the ith bit of m(m).

4.2 Strengthening Yao’s Combined Oblivious Transfer

In [Y2], Yao presented a protocol that we call combined oblivious transfer (COT).
The protocol involves two parties A and B, respectively owning private inputs a and
b and any chosen function g. It possesses the following property: upon termination,
A computes g(a, b),while B has no idea of what A has computed. If we think of a ad
b as secrets, B appears to obliviously transfering a prescribed combination of his
and A’s secret to A. Yao implemented COT based on the assumption that factoring
is hard, (which yelds, as shown by Blum [B]) a particular trap-door permutation. We
strengthen his result by showing that COT can be correctly implemented based on
any trap-door permutation. We do this by using the one-out-of-two OT of section
4.1 in Yao’s scheme. Let us consider first the case where « and b are bits and g is
the Boolean AND. Consider figure 1. Here E, ..., Eg are independently selected
encryption algorithms, respectively having decryption keys Dy, ..., Dg. E{ and E,
label the first input-wire, E; and E, the second input-wire, and E5 and Eg the
output-wire. Each row in the gate is formed by the encryption of two strings. m
and n are two randomly selected strings whose bit-by-bit exclusive-or equals Ds. p
and g are two randomly selected strings whose xor equals Dg; so are x and ¢; so are
u and v. The 4 rows have been put in the gate in random order. E;, E,andEs, Eg
are publically labelled by complementary bits. E; and E, are each secretely labelled
by a bit; more precisely, E5 is SECRETELY labelled 0 with probability 1/2 and Ey is
labelled with the complement of Ej’s bit. (This secrecy is pictorially indicated by
drawing E; and E,’s bits by a dotted line.) Define the value of a wire to be 0 (1) if
one ONLY possesses the decoding algorithm of encryption algorithm labelled 0 (1).
Then figure 1 is a or-gate. For instance, assume that both input-wires have value 0.
That is, one possesses only D; and D,. Then one is able to decrypt both entries only
in the third row. By taking the xor of u and v, one easily obtains Dg, but has no idea
what D5 may be. Thus the output-wire has value 0 = AN D(0, 0).

To COTransfer AND(a, b), B generates a COT AND-gate like in figure 1, keeping
for himself all decoding algorithms and all the strings in the rows. Then, he gives
A the decoding algorithm of the second input-wire that corresponds to the value
of b, his own input. Notice that as the association between E;, £, and 0, 1 is secret
(and Eq, E,, E3, E, enter symmetrically in the gate rows), this will not betray b at
all. Now A will get either D, or D,, according to the value of a, by means of our one-
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Figure 1

Figure 2

A COT AND-gate

out-of-two OT. Thus, B will not know which algorithm she got. At this point A can
easily compute the value of the output-wire. Thus she will be the only one to know
AND(a, b).

It is trivial to build a COT NOT-gate. Notice that B may also keep secret the
corresponding between 0,/ and Es, E¢. This allows the out-put wire to become
an input-wire of another gate. If the encryption algorithms of this second gate
are publically labelled 0/1 (see fig. 2), we see that A may evaluate any 2-gates
function on her and B’s inputs, without knowing intermediate results. Better
said, B can “COTransfer” the value of any 2-gates function. By cascading this
way COT AND-gates and COT NOT-gates (which are trivial to design), we can see
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4.3

that B can COTransfer the value of any function, provided that there is an upper
bound to the length of A’s and B’s inputs, (else, the length of the inputs will be
betrayed).

The Tm-game Solver for Passive Adversaries

Recall that a Tm-game solver wants to compute M (x4, ..., x,) while respecting
the privacy constraint. We want to use COT as a subroutine to construct a Tm-
solver. This does not appear to be straightforward. For instance, if two parties i
and j use COT so that i will compute g(x;, x;) for some function g, this would
already be a violation of the privacy constraint. Recall also that the Tm-game solver
has to be polynomial not only in M’s running time, but also in n, the number of
players.

We find a way out by making special use of a lemma of Barrington’s [Ba] that
simulates computation by composing permutations in S5, the symmetric group
on 5 elements. The general picture is the following. First transform the Turing
machine M of a Tm-game to an equivalent circuit C in a standard way. The Boolean
inputs of C will be b3, ..., b},...,b", ..., b}, the bits of the n, I-bit long, inputs of
tour parties. This circuit C is then transformed to straight-line program as in [Ba].
This straight-line program is essentially as long as C is big. In it,

e 0,1 are encoded by two (specially selected) 5-permutations
e the variables range in S5 and

e cach instruction consists of multiplying (composing) two 5-permutations o
and 7, whre o (7) is either a constant, or a variable, or the inverse (in S5) of a
variable.

At the start, each party takes each of his private bits and encodes it by a 5-
permutation o as in [Ba]. Then he divides ¢. That is, he selects at random n-1
5-permutations oy, . . ., 0,_1 and gives the pair (i, 0;) to party i (possibly himself).
He thensetso, = (o7 -+ - - - 0,_1) "1 -0 and gives (n, 0,) to party n. Now, inductively,
assume that each variable is divided among the parties. That is, for each variable o,

each player i possesses an index permutation pair (x, o,) so that I17_,0, = o and,

=1
given only n — 1 pieces, o cannot be guessed better than at random. We now want
to show that each instruction can be performed (i.e., each party can compute his in-
dividual piece of the result) respecting the privacy constraint. There are essentially
3 cases.

Case 1: The instruction is of the form o - ¢, where o is a variable and ¢ a constant.

By induction, each party has a piece of the form (x, o,). Then the party owning the
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piece (n, ,) sets his new piece to be (n, o, - ¢) and all each party leaves his piece
untouched. It is immediately checked that the ordered product of the new pieces
is o - ¢ and that privacy has been preserved against n — 1 passive adversaries.

Case 2: The instruction is of the form o ~! - ¢ where, again, o is a variable and ¢
a constant. It will be enough to show how to compute pieces for o ~! respecting the
privacy constraint. To do this, if a party has a piece (x, 0,), he sets his new piece to
be (n —x +1,0.").

Case 3: Theinstruction is of the form o - t,where both # and t are variables. Then
o-T=0y+0, 71" T,,and assume for simplicity that party i possesses piece o;
and 7;. Unfortunately, party 1 cannot compute his piece of o - T by multiplying his
own two pieces. In fact, they are n positions apart in the product and Sg is not
commutative (a fact crucial in Barrington’s argument). The idea will then consist
of making “partial progress”. That is, moving party 1's pieces closer together by
“swapping” o, and 7y. This can be correctly accomplished by giving party 1 a piece
7; and party n a piece o, so that 7/ - o) = 0, - 74. This way the product of the new
(and newly ordered pieces) would remain o - t. One way of doing this would be of
having party 1 and party n tell each other o, and 7;. However this would violate the
privacy constraint with respect to a set of n — 1 passive adversaries. Instead, we use
COT in the following way. Party n randomly selects a 5-permutation p. Consider
now the function g such that, for 5-permutations x,y, and z, g(x, (v, z)) = w where
w -z =1y - x. Let now party 1 (with the role of A and input a = ;) and party n (with
the role of B and input b = (0, p)) play COT with function g. Set 7; = g(a, b) and
0, = p. Then we have made the desired partial progress. In fact, not only the product
of the new pieces is unaltered, but we have also respected the privacy constraint.
Informally, party n’s new piece is a random 5-permutation selected by party n
himself and thus cannot give him any information neither about party 1’s old piece
nor the new one; moreover the transference of g(a, b) is oblivious and thus cannot
give party n any knowledge either. On the other side, party 1 is dealt a new piece
g(rq, (0, p)) and he knows t;. However, as for all z and y, g(x, (y;-)) is injective on
Ss, and p has been randomly and secretely selected by party n, also party 1 does
not get any knowledge that he did not possess before! Notice also that during this
“swap” we did not create any other pieces. Thus after n “swaps” the only two pieces
of party 1 will be in the first two positions in the product and he can thus multiply
them together. This product will be party 1’s piece for the variable ¢ - . It should be
verified that the entire walk of party 1 t-piece towards the left preserves correctness
and does notviolate the privacy constraint. Essentially because a new, random piece
is created at each step. This way, after O(n?) “swaps”, and in polynomial time, all
parties receive their piece of o - 7.
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At the end of the straight-line program, for each output variable y, each party
publicizes his own piece (x, y,), the ordered product of these pieces is computed
and the output bit recovered so to satisfy both the correctness and the privacy
constraint. (A more formal argument will be given in the final paper.)

5 Malicious Adversaries

The complexity of our Tm-game solver greatly increases when up to half of the play-
ers is allowed to be malicious and can more powerfully collaborate to try to disrupt
the correctness and the privacy constraints. We use essentially all the cryptographic
tools developed in the last ten years in the (correct) hope that they would make
possible protocol design. Also, the proof of its correctness is rather delicate and
unsuitable for an abstract. We will give it in the final paper. Here we only indicate
what making playable a Tm-game with malicious advesaries may mean and which
general ideas are involved in our solution.

As in this case some of the parties may not follow their prescribed programs at
all, it is necessary to clarify what a private input is. After all, what stops someone
from pretending that his private input is different from what it actually is? To avoid
this, we assume that the parties have established their private inputs by announcing
correct encodings of them. Their inputs are by definition the unique decryption of
their respective encodings. Moreover, it shoud be clear that seeking a solution to a
Tm-game problem makes sense only if the parties are “willing to play”. If, say, one of
them “commits suicide”, carrying with himself what his private input was, there is
very little one can do besides investing exponential time and break his encryption.
However we can, loosely speaking, prove that

Given n players willing to play, less than half of which malicious, all Tm-games
are playable.

The above term “willing to play”, indicates a technical condition rather than a
psychological one. Namely, having successfully completed the engagement protocol.
After completing this protocol, all players can be forced to play any desired game.
The engagement protocol consists of two phases.

1. For each player i, a protocol is performed at the end of which no minority of
the players can even predict a bit of i’s private input with chances essentially
better than 1/2. However, it is guaranteed that any subset of cardinality > n/2
can, without the cooperation or even against the actions of other players,
easily compute i’s private input.

2. The community deals to each player a sequence of encrypted “random” bits
so that a) the recipient knows their decryption, b) they appear unpredictable
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to any minority of the players, but c) they are easily computable by any
majority of the players.

We stress that while no one can be forced to complete the engagement protocol
(so to become “willing to play”), no one can decide not to complete it because he
received a better idea of what the result of the subsequent game may be. Completing
the engagement protocol will not give any player (or any small enough group of
players) any knowledge about the others’ private inputs.

Phase 1 of the engagement protocol consists of a verifiable secret sharing in the
sense of Awerbuch, Chor, Goldwasser and Micali [CGMA] . However, we contribute
a new protocol both tolerating up to n/2 malicious adversaries and using any trap-
door function whatsoever. Phase 2 of the engagement protocol is the multy-party
version of Blum’s coin flipping by telephone. Despite the (deceivingly) similarity
with the verifiable secret sharing of phase 1, to implement phase 2 we must make
use of a yet unpublished theorem (and algorithm) of ACGM.

We now give a bird’s eye view of how to make any Tm-game g playable despite
malicious adversaries. On input M, 1¥, we first run the engagement protocol, then
the passive-adversary playable version of the Tm-game. Here we require all parties
to use, as their private inputs, the strings they shared in phase 1 of the engagement
protocol and, as a source of randomness, the encrypted random bits each was dealt
in phase 2. The key point is that, now, no malicious adversary can deviate from his
prescribed program, and thus he becomes a simple passive adversary. In fact, he
is required to prove, in zero-knowledge (in the sense of Goldwasser, Micali and
Rackoff [GoMiRa]), that each message he sends is what he should have sent being
honest, given his private input, his random choices and the messages he received
so far. (Here, an essential tool is our recent result that all NP languages possess
zero-knowledge proofs [GMW] .) If a malicious party, frustrated at not being able
to send messages according to a different program, decides to stop, his input
and random bits will be reconstructed by the community who will compute his
messages when necessary, without skewing the probability distribution of the final
outcome.

We would like to stress our new use of NP-completeness. From being our most
effective way to prove lower-bounds, it now becomes our most effective tool to
construct correct protocols.

6 General Games

Many actions in life, like negotiating a contract, casting a vote in a ballot, play-
ing cards, bargaining in the market, submitting a STOC abstract, driving a car
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and simply living, may be viewed as participating with others in a game with pay-
offs/penalties associated with its results. This is not only true for individuals, but
also for companies, governments, armies etc. that are engaged in financial, polit-
ical and physical struggles. Despite the diversity of these games, all of them can
be described in the elegant mathematical framework laid out by Von Neumann
and Morgenstern earlier in this century. Game theory, however, exhibits a “gap”, in
that it neglected to study whether, or how, or under which conditions, games can
be implemented. That is, it never addressed the question of whether, given the de-
scription of a game, a method existes for physically or mentally playing it. We do fill
this gap by showing that, in a complexity theoretic sense, all games can be played.

In this extended abstract we will only informally clarify what and how this is. We
start by briefly recalling the ingredients used by game theory to model a n-players
game with incomplete information.

Games

Essentially, a game consists of a set S of possible states, representing all possible
instantaneous descriptions of the game, a set M of possible moves, describing all
possible ways to change the current state of the game, a set {K4, K, ..., K,,} of
knowledge functions, where K;(o) represents the partial information about state o
possessed by player i, and a function p, the payoff junction, that, evaluated on the
final state, tells the outcome of the game. Without loss of generality, the players
make moves in cyclic order and the set of possible moves in any state are the same
for all states. Also, WLOG, the game goes on for a fixed number of moves m. With
little restriction we do assume that the players make use of recursive strategies
for selecting their moves. (The classical model does not rule out selecting moves
according to an infinite table.)

Let us now see how a game evolves using, in parenthesis, poker as an example.
The game starts by having “NATURE” select an initial state o;. (For poker, oy is a
randomly selected permutation of the 52 cards; the first 5z cards of the permutation
representing the players initial hands and the remaining ones the deck.) Player 1
moves first. He does not know oy -nor does anybody else-, he only knows K(o4), his
own hand: the first 5 elements of permutation o). Based solely on K;(o;), he will
select a move p (e.g. he changes 3 of his cards with the first 3 cards of the deck).
This move automatically updates the -unknown!- current state to o,. (The new state
consists of the cards currently possessed by each player, the sequence of cards in
the deck and which cards were discarded by player 1. K;(o,) consists of the new
hand of player 1 and the cards he just discarded.) Now it is the turn of player 2. He
also does not know the current state o,, he only knows K,(0,). Based solely on this
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information, he selects his move, which updates the current state, and so on. After
the prescribed number of moves, the payoff function p is evaluated at the final state
to compute the result of the game. (In poker the result consists of who has won,
how much he has won and how much everyone else has individually lost.)

Note that a Tm-game is indeed a game in which the initial state is empty and
each player moves only once. State o; consists of the sequence of the first i moves.
Each player has no knowledge about the current state and chooses his move to be
the string x;, his own private input. The payoff function M is then run on o,,. (Having
probabilistic machines running on the final state, rather than deterministic ones,
is a quite natural generalization.)

From this brief description it isimmediately apparent that, by properly selecting
the knowledge functions, one can enforce any desired “privacy” constraints in a
game.

Playable Games

Game theory, besides an elegant formulation, also suggests to the players strategies
satisfying some desired property (e.g. optimality). That is, game theory’s primary
concern is how TO SELECT MOVES WELL. However, and ironically!, it never ad-
dressed the question of how TO PLAY WELL. For a general n-player game, all we
can say is that we need n + 1 parties to properly play it; the extra party being the
“trusted party”. The trusted party communicates privately with all players. At step
t, he knows the current state o, of the game. He kindly computes o = k; 04 ,(07),
communicates « to player  mod n, receives from him a move p, secretely computes
the new state S,,; = 1(S;), and so on. At the end, the trusted party will evaluate the
payoff function on the final state and declare the outcome of the game. Clearly,
playing with the trusted party achieves exactly the privacy constraints of the game
description, and at the end each player will get the correct outcome.

Now, the fact that, in general, a n-person game requires n + 1 people to be
played, not only is grotesque, but it also diminuishes the otherwise wide appli-
cability of game theory! In fact, in real life situations, we may simply not have any
trusted parties, whether men or public computers. Recently, complaints have been
raised about finantial transactions in the stock market. The complaints were about
the fact that some parties were enjoying knowledge that was considered “extra” be-
fore choosing their move, i.e. before buying stocks. Just another game, the stock
market, but one in which you may desire trusting no one!

We are thus led to consider the notion of a (purely) playable game. This is a
n-person game that can be implemented by the n players without invoking any
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trusted parties. In general, however, given the specification of a game with com-
plicated knowledge functions, it is not at all easy to decide whether it is playable
in some meaningful way. Here, among the “meaningful way”, we also include non-
mathematical methods. Yet, the decision may still not be easy.

Poker, for instance, has simple enough knowledge functions (i.e. privacy con-
straints) that makes it playable in a “physical” way. In it we use cards with equal
“back” and “opaque”, tables whose top does not reflect light too much, we shuf-
fle the deck “a lot”, and we hand cards “facing down”. All this is satisfactory as in
our physical model (world) we only see along straight lines. However, assume we de-
fine NEWPOKER as follows. A player may select his move not only based on his own
hand, but also on the knowledge of whether, combining the current hands of all
players, one may form a royal flush. NEWPOKER is certainly a game in the Von Neu-
mann’s framework but it, is no longer apparent whether any physical realization of
the game exists, particularly if some of the players may be cheaters.

This is what we perceive lacking in game theory: the attention to the notion of
playability. At this point a variety of good questions naturally arises:

Is there a model (physical or mathematical) which makes all games playable?
Or at least,

Does every game have a model in which: it is playable?
And if not,

Should we restrict our attention to the class of playable games?

We show that the first question can be affirmatively answered in a computational
complexity model.

A General Result

If any trap-door function exists, any game is playable if more than half of the players
are honest.

Essentially our result consists of a protocol for simulating the trusted party of
anideal game. That is, if more than half of the players follow our protocol, whatever
a player (or a set of players of size less than n/2) knows at any step of the game, he
would have also known in an ideal execution of the game with a trusted party. In our
context the knowledge constants are satisfied in a computational complexity sense.
Namely, any player (or collection of dishonest players) in order to compute anything
more than his due share of the current state, should perform an exponential-time
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computation. Unfortunaly, we cannot, in this extended abstract, elaborate on the
relationship between general games and Tm-games, nor how to pass from solving
the latter ones to solve the general case. We’ll do this in the final paper.

A Completeness Theorem for Fault-Tolerant Computation

Our main theorem has direct impact to the field of fault-tolerant computation. This
is so as protocols, when properly formalized (which we will do in the final paper),
are games with partial information. Thus, as long as the majority of the players is
honest, all protocols may be correctly played. Actually, slightly more strongly, the
correct way to play a game can be found in a uniform manner. Namely, we exhibit a
specific, efficient algorithm that, on input a protocol problem, outputs an efficient,
distributed protocol for solving it.

It should be noticed that, before this, only an handful of multi-party protocol
problems were given a satisfactory solution (e.g. collective coin flipping and poker
over the telephone, secret exchange, voting, and a few others). Moreover the security
of some of these solutions crucially depended on the “trap-doorness” of specific
functions satisfying some additional, convenient property (e.g. multiplicativity). By
contrast, our completeness theorem is proved based on any trap-door function
(multiplicative or not, associative or not, etc.). That is, we prove that, if public-
key cryptography is possible at all, then all protocols problems are (automatically!)
solvable if more than half of the players are honest.

Recent Developments

Recently, Haber and Micali found a Tm-game solver that is algorithmically much
simpler (for instance it does not use Barrington’s straight-line programs) but more
difficult to prove correct. Also, Goldreich and Vainish found a simpler solution
based on a specific assumption, the computational difficulty of quadratic resid-
uosity.
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Non-Interactive
Zero-Knowledge (NIZK)
Proof Systems

This chapter reproduces the contents of the paper “Non-Interactive Zero-Know-
ledge and its Applications,” which appeared in the proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pp. 103-112, 1988.

This influential work of Manuel Blum, Paul Feldman, and Silvio Micali intro-
duced a model that includes a common random string provided from the outside
and available to both the prover and the verifier. It then showed how to provide zero-
knowledge (non-interactive) proofs for any NP-assertion. Such NIZKs have been
used as a building blocks in many subsequent works (e.g., in constructing public-
key encryption schemes that withstand chosen-ciphertext attacks).
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Abstract

We show that interaction in any zero-knowledge proof can be replaced by sharing a
common, short, random string. We use this result to construct the first public-key
cryptosystem secure against chosen ciphertext attack.

Introduction

Recently [GMR] have shown that it is possible to prove that some theorems are true
without giving the slightest hint of why this is so. This is rigorously formalized in
the somewhat paradoxical notion of a zero-knowledge proof system
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If secure encryption schemes exist, though, these proof systems are far from
being a rare and bizar event. In fact, under this assumption, [GMW] demonstrate
that any language in NP possesses zero-knowledge proof systems.

Actually, as recently pointed out by Ben-Or, Goldreich, Goldwasser, Hastad,
Micali and Rogaway [BGGHMR], the same is true for all languages in IP; also, as
pointed out by Blum [B2], any theorem at all admits a proof that conveys zero-
knowledge other than betraying its own length.

Zero-knowledge proofs have proven very useful both in complexity theory and
in cryptography. For instance, in complexity theory, via results of fortnow [F] and
Boppana and Hastad [BH], zero-knowledge provides us an avenue to convince our-
selves that certain languages are not NP-complete. In cryptography, zero-knowledge
proofs have played a major role in the recently proven completeness theorem
for protocols with honest majority [GMW?2]. They also have inspired rigorously-
analyzed identification schemes [FFS] that are as efficient as folklore ones.

Despite its wide applicability, zero-knowledge remains an intriguing notion:
What makes zero-knowledge proofs work?

Three main features differentiate all known zero-knowledge proof systems from
more traditional ones:

1. Interaction: The prover and the verifier talk back and forth

2. Hidden Randomization: The verifier tosses coins that are hidden from the
prover and thus unpredictable to him.

3. Computational Difficulty: The prover imbeds in his proofs the computational
difficulty of some other problem.

At a first glance, all of these ingredients appear to be necessary. This paper
makes a first, important step in distilling what is essential in a zero-knowledge
proof. We show that computational difficulty alone (for instance the hardness
of distinguishing products of 2 primes from products of 3 primes) may make
inessential the first resource (interaction) and and eliminate the secrecy of the second
resource (randomness). That is, if the prover and the verifier share a common
random string, the prover can non-interactively and yet in zero-knowledge convince
the verifier of the validity of any theorem he may discover. A bit more precisely,
for any constants ¢ and d, sharing a k-bit long random string allows a prover p
to prove in zero-knowledge to a poly(k)-time verifier V any k¢ theorems of k¢ size
non-interactively; that is, without ever reading any message from V.

A Conceptual Scenario: Think of P and V as two mathematicians. After having
played “heads and tails” for a while, or having both witnessed the same random
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event, P leaves for a long trip along the world, during which he continues his math-
ematical investigations. whenever he discovers a theorem, he writes a postcard to v
proving the validity of his new theorem in zero-knowledge. Notice that this is nec-
essarily a non-interactive process; better said, it is a mono-directional interaction:
From P to V only. in fact, even if V would like to answer or talk to P, he couldn’t: P
has no fixed (or predictable) address and will move away before any mail can reach
him.

Our Model Versus the Old One

While the definition of zero-knowledge remains unchanged, the mechanics of the
computation of the prover and verifier changes dramatically.

Notice that sharing arandom string o is aweaker requirement than being able to
interact. In fact, if Pand V could interact they would be able to construct a common
random string by coin tossing over the phone [B1]; the converse, however, is not
true.

Also notice that sharing a common random string is a requirement even weaker
than having both parties accessarandom beacon in the rabin’s sense (e.g., the same
geiger counter). In this latter case, in fact, all made coin tosses would be seen by
the prover, but the future ones would still be unpredictable to him. by contrast,
our model allows the prover to see in advance all the coin tosses of the verifier.
That is the zero-knowledgeness of our proofs does not depend on the secrecy, or
unpredictability of 7, but on the “well mixedness” of its bits! This curious property
makes our result potentially applicable. For instance, all libraries in the country
possess identical copies of the random tables prepared by the rand corporation.
Thus, we may think of ourselves as being already in the scenario needed for non-
interactive zero-knowledge proofs.

The Robustness of Our Result

Aswe have already said, we guaranltee that all theorems proved in our proof systems
are correct and zero-knowledge if the string o is a truly random one. We may rightly
ask what would happen if o was not, in fact, truly randomly selected. fortunately,
the poor randomness of ¢ may upset the zero-knowledgeness of our theorems,
but not their correctness. That is, for almost all (poorly random) o’s, there is no
wrong statement that can be accepted by the verifier. This is indeed an important
property aswe can never be sure of the quality of our natural sources of randomness.
Unfortunately, due to the limitations of an extended abstract, we cannot further
elaborate on this and similar points. We wish, however, to point out the following
important corollary of our result.
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Applications of our Result

Avery noticeable application of non-interactive zero-knowledge is the construction
of encryption schemes a la diffie and hellman that are secure against chosen cipher-
text attacks. Whether such schemes existed has been a fundamenatal open problem
ever since the appearence of complexity-based cryptography. We will discuss this
application in Section 3.

What's Coming

The next section is devoted to set up our notation, recall some elementary facts
from Number Theory and state the complexity assumption which sufficies to show
the existence of non-interactive, zero-knowledge proofs.

In Section 3, we show that if a k*-bit string is randomly selected and given to
both the proven and the verifier, then the first can prove in zero-knowledge, for any
single string x (of length k) belonging, to a NP-language L, that indeed x € L.

Only in Section 4 we show that, for each fixed polynomial Q(:), using the same
randomly chosen k*-bit string, the prover can show in zero-knowledge membership
in NP languages for any Q (k) strings of length Q (k).

Preliminaries

Notations and Conventions

Let us quickly recall the standard notation of [GoMiRi].

We emphasize the number of inputs received by an algorithm as follows. If
algorithm a receives only one input we write “A(-)”, if it receives two inputs we
write “A(-, -)” and so on.

If A(+) is a probabilistic atgorithm, then for any input x, the notation A(x) refers
to the probability space that assigns to the string o the probability that A, on input
x, outputs o. If S is a probability space, then P Rg(e) denotes the probability that §
associates with the element e.

If f(-) and g(:, ..., are probabilistic algorithms then f(g(-,...,-)) is the
probabilistic algorithm obtained by composing f and g (i.e. running f on g’s
output). For any inputs x, y, ... the associated probability space is denoted by
Fgx,y,..0).

If s is any probability space, then z < § denotes the algorithm which assigns
to x an element randomly selected according to S. If f is a finite set, then the
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Definition 2.1

Definition 2.2

2.2

notationx < f denotes the algorithm which assigns to x an element selected ac-
cording to the probability space whose sample space is f and uniform probability
distribution on the sample points.

The notation Pr(z < S;y < T;...: p(x,y,..)) denotes the probability that the
predicate p(x,y,...) will be true after the ordered execution of the algorithms
x < S, y<T,...

The notation {z < S;y < T;...:(x,y,...)} denotes the probability space over
{(x,y,...)}generated by the ordered execution of the algorithmsx <— S,y < T, .. ..

Letus recall the basic definitions of [GMR]. We address the reader to the original
paper for motivation, interpretation and justification of these definitions.

Let U = {U/(x)} be a family of random variables taking values in {0, 1}*, with the
parameter x ranging in {0, 1}*. U = {U (x)} is called poly-bounded family of random
variables, if, for some constant e € \, all random variables U (z) € u assign positive
probability only to strings whose length is exactly |x|°.

Let C = {C,} be a poly-size family of boolean circuits, that is, for some constants
¢,d > 0, all C,, have one boolean output and at most |x|° gates and |x|? inputs. In
the following, when we say that a random string, chosen according to U (x), where
{U(x)} is a poly-bounded family of random variables, is given as input to C,, we
assume that the length of the strings that are assigned positive probability by U (x)
equals the number of boolean inputs of C|x.

(Indistinguishability) Let L C {0, 1}* be alanguage. Two poly-bounded families of
random variables U = {U(z)} and V = {V (x)} are indistinguishable on L if for all
poly-size families of circuits C = {C,},

|Pr(A«< Ux):Cya)=1) — Pr(a < V(x):C,(a)=1)| < |x|°
For all positive constants ¢ and suficiently large x € L.

(Approximability) Let L C {0, 1}* be a language. a family of random variables
U = {U(x)} is approximable on L if there exists a probabilistic turing machine M,
running in expected polynomial time, such that the families {U (x)} and {M (x)} are
indistinguishable on L.

Number Theory

Let Z, (k) denote the set of integers product of s > 1 distinct primes of length %.

Let N be the set of the natural numbers,x € N, Z; ={y | 1<y < x, ged(x,y) =1}
and Z;Ll ={y € Z;|(y|x) =+1}, where (y | x) is the jacobi symbol. We say that
y € Z* is a quadratic residue modulo x iff there is w € Z* such that w? = y mod x.
If this is not the case we call w a quadratic non residue modulo x.
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Define the quadratic residuosity predicate to be

0, ifyisa quadratic residue modulo x;

Qx(y) = {

1, otherwise;

and the languages QR and QNR as
OR={(y,0) | 0,(y) =0}
ONR={(y,) | (y€Z and 0.(y) =1}.

Let ~ be the relation so defined: y; ~ y, iff O + x(y,y,) = 0. Then ~is an equivalence
relation in Z". Two elements are equivalents if they have the same quadratic

character modulo each of the prime divisors of x. Thus, if x € Z,(k) there are 2
equivalence classes, if x € Z;(k) there are 4; in general if x = pl.h1

each p; isa prime > 2 and p; # p; if i # j, then there are 2" equivalence classes.

h
-+, p," where

For each y,, y, € Z! one has

O, (ny2) = 0,(y1) ® O, ().

Where “@” denotes the exclusive or operator. the jacobi symbol function x|n is
polynomial-time computable.

We now formalize the complexity assumption that is sufficient for non-inter-
active zero-knowledge. Namely, that it is computationally hard to distinguish the
integers product of 2 primes leftarrow the ones product of 3 primes.

A Complexity Assumption
20R3A: for each poly-size family of circuits {C;lk € N

|Pz) — Pzyaol <k~
for all positive constants ¢ and sufficiently large k; where
Pz (k) = PR(X < Z,(k) : C;(x) = 1) and
Pz = Pr(x < Z3(k) : Ci(x) = 1).

20R3A is a stronger assumption than assuming that deciding quadratic resid-
uosity is hard. (Having an oracle for Q,(-), allows one to prbabilistically count the
number of ~ equivalence in Z ! and thus, by fact 1, to distinguish whethern € Z, (k)
or n € Z;(k)). Thus we can freely use that quadratic residuosity is computationally
hard (as formalized below) without increasing our assumption set.
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Quadratic Residuosity Assumption (QRA)
For each poiy-size family of circuits {Cy |k € N},

Pr (x < Zy(k);y < Z1 1 Co(x, ) = 0, () < 1/2+1/k~ 0.

The QRA was introduced in [GM] and is now widely used in Cryptography. The cur-
rent fastest algorithm to compute Q, (y) is to first factor x and then compute Q,(y),
while it is well known that, given the factorization of x, O, (y) can be computed in
O(|x|3) steps. In what follows, we choose x € Z, (k) since these integers constitute
the hardest input for any known factoring algorithm.

Single-Theorem Non-Interactive Zero-Knowledge Proofs

To prove the existence of single-theorem Non-Interactive Zero-Knowledge Proof
Systems (single-theorem non-interactive ZKPS) for all NP languages, it is enough
to prove it for 3COL the NP-complete language of the 3-colorable graphs [G]]. For
k > 0, we define the language 3COL, = {x € 3COL||x| < k}.

A Single-Theorem Non-Interactive ZKPS is a pair (A, B) where A is a Probabilistic
Turing Machine and B(:, -, -) is a deterministic algorithm running in time polyno-
mial in the length of its first input, such that:

1. Completeness. (The probability of succeeding in proving a true theorem is
overwhelming.)

dc > 0 such that Vx € 3COL;,
Pr (U <« {o, 1}”"; y<A(o,x):B(x,y,0) = 1) -~ 1—p0Mm,

2. Soundness. (The probability of succeeding in proving a false theorem is
negligible.)
J ¢ > 0 such that Vx 3 3COL; and for each Probabilistic Turing Machine A’

Pr (cr «—{0,1)";y < A'(6,x): B(x,y,0) = 1) <n 00,

3. Zero-Knowledge. (The proof gives no information but the validity of the
theorem.)
J ¢ > 0 such that the family of random variables V = {V (x)} is approximable
over 3COL. Where

V(x)={o < {0,[}y < A(a, %) : (0, ),
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Notice that, as usual, the zero-knowledge condition guarantees that the verifier’s
view can be well simulated; that is, all the verifier may see can be reconstructed
with essentially the same odds. In our scenario, what the verifier sees is only the
common random string and the proof, i.e., the string, received by A. Notice that in
our scenario, the definition of zero-knowledge is simpler. As there is no interaction
between B and A, we do not have to worry about possible cheating by the verifier to
obtain a “more interesting view.” That is, we can eliminate the quantification “VB’”
from the original definition of [GMR].

Under the QRA, there exists a Single-Theorem Non-Interactive ZK P S for 3-COL.

This theorem will be rigorously proven in the final paper. Here we restrict
ourselves to informally describe the programs P and V of a single-theorem non-
interactive ZKPS (P,V) and, even more informally, to argue that they posses the
desired properties.

The Proof-System (P,V)

Instructions for P
1. Randomly select nq, n,, n3 € Z,(k)

2. Fori =1, 2,3 randomly select g; such that (¢;|n;) =1 and ¢; is a quadratic
non-residue mod n;.

3. Color G with colors 1,2,3.

4. For each node u of G whose color is 7, label v with a randomly selected triplet
(v1, Vg, v3) € ZH1 x Z;;l X Zjl'sl such that Q,,(v;) =0and Q, (v;) = 1for j #1i.
Call G’ the so labeled G
{Remark 1: WLOG (else purge o in the “right way”) let 0 =0;00,0030
04, -+, where all triplets (o, 0y, 03)(04, 05, 0¢), - - - belong to Z:{ll x Z11 x
Z+1) '

nz *
{Convention: The first 8k triplets are assigned to the first edge of G (in
the lexicographic order), the next 8k triplets to the second edge, and
so on.}

5. For each edge (a, b) of G’ (where node a has label (a, a,, a;) and node b
(b1, by, b3)) and each of its 8k assigned triplets (zq, z,, z3) compute one of the
following types of signature.

{Comment: Only one is applicable if steps 1-4 are performed correctly)}
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(V21 V22, V73) type 0
(Va121, V22, +/73) type 1
WA= type 2
(V71) V22, Vd323) type 3
(Vaiz1, v/aszs, v/aszs) type 4

(\/ byz1, v/ b3zs, v/ b323) type 5
(\/a1b121, Vasbyz, \/a3b3z3) type 6

(vf1121a V4222, v%zs) type 7

{Notation “by example”: Let x; be a quadratic non residue mod n4, z, a

quadratic residue mod n,, and z; is a quadratic residue mod #n,. Then the
signature of the triplet (z4, z,, z3) a triplet of type 1: (\/qz1, \/Z3, +/Z3) Where
+/qz; denotes a randomly selected square root of the quadratic residue ¢, -
zy mod ny; and for i =2, 3,/z; denotes a randomly selected square root of
z; mod n;}

6. Send V nq, ny, n3, 41, 43, 43, G', and the signature of the triplets composing
o.
{Comment: Note that the edges of G’ are labelled with triples, not with
colors!}

Instructions for V
1. Verify that nq, n,, and ns are not even and not integer powers. Verify that G’ is
a proper labelling of G. That is, each node u has assigned a triplet (v, vy, v3)
such that v; € Z fori =1, 2, 3.
2. Break o into triplets, verify that for each edge you received a signature of

some type for each of its 8k triplets.

3. If all the above verifications have been successfully made, accept that G is
3-colorable.

3.2 ARough Idea of why (P,V) is a Single-Theorem Non-Interactive ZKPS
First notice that, the communication is mono-directional: From P to V. Then let
us convince ourselves that the statement of Remark 1 really holds without loss of
generality. In our context, WLOG means with overwhelming probability.
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If G has a edges, our protocol assumes o to consist of 8 - k - a triplets in Z:[ll X
Z;;l X Z;:l. Such a string o is easily obtainable from a (not too much larger) random
string p. Consider p to be the concatentation of k-bit strings grouped into triplets

P = (p1, P2y P3)(Pas P5, Pg) * * *

Then obtain o by “purging” p. That is, obtain o from p by discarding all triplets
not in Z:ll X Z”‘Zl x Z;rsl. We now argue that p is not much longer than o. Let n
be either n; or n, or n;. Now a random k-bit integer (with possible leading 0’s) is
less than n with probability > 1; a random integer less than n belongs to Z* with
probability > 1; a random element of Z* belongs to Z ;! with probability > 1. Thus,
we expect that at least 1 in 64 of the triplets of p not to be discarded.

Now let us consider the question of V’s running time. V can verify in poly-time
whether n; = x* (where x, @ integers; « > 1) as only values 1, - - - , log n; should be
tried for « and binary search can be performed for finding x, if it exists. All other
steps of V are even easier.

Now let us give some indication that (P,V) constitute a single-theorem non-
interactive ZKPS.

Completeness: Assuming that o is already consiting of triplets in Z:[ll X Z:[Zl X
Z,;‘;l, if P operates correctly, V will be satisfied with probability 1.

Soundness: If the verification step 1 is successfully passed, by fact 1, there must
be > 2 ~ equivalence classes in each Z;:l (exactly two if P honestly chooses all the
n;’s in Z,(k)).

Thus, if we define two of our triplets (z4, z,, z3) (w1, w,, w3) to be equivalent if
z;w;modn; is a quadratic residue for i = 1, 2, 3, we obtain > 8 equivalence classes
among the triplets (exactly 8 if P is honest).

To exhibit a signature of a given type for a triplet, essentially means to put the
triplet in one of < 8 possible “drawers”. (there are 8 types of signatues, but they may
not be mutually exclusive; thus two drawers may be equal). Moreover, it is easy to
see that if two triplets are put in the same drawer, they must belong to the same
equivalence class.

As o is randomly selected, each of its triplets in Z,jll x Z,jzl x Z;rsl is equally likely
to belong to any of the > 8 equally-numerous equivalence classes. However, since if
there were > 8 classes, there would be (by fact 1) at least 16, the fact that all triplets
can be fit in < 8 drawers, “probabilistically proves” several facts:

1. There are exactly 8 equivalence classes among the triplets and exactly 8
distinct drawers.

2. The n;’s are product of two distinct prime powers.
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in(ql) = QnZ(QZ) = Qﬂs(Q3) =1

in(ql) + an(qZ) + Qns(QS) =2

That s, (aq, a,, a3) is a proper color (i.e., properly encodes a color: Either 1,2,
or 3).

That (b, by, b3) is a proper color.

That (a4, a4, as) and (bq, b12, b3) are different colors. Else drawer 6 and drawer
0 would be the same.

Item 6 being true for all edges in G’ implies that G is 3-colorable which is what

was to be proven.

Zero-Knowledgeness

Let us specify the simulating machine M that, under the QRA, generates a pair (o,
proof) with the “right odds” on input G (without any coloring!)

Instructions for M

1.
2.
3.

6.

Randomly select nq, n,, n3, € Z,(k) together with their prime factorization.

Randomly select ¢4, 5, g3 so that Q,, (¢1) = Q,,(q2) = Q,,,(q3) =0

For each node v of G, label v with a triplet (v4, vy, v3) € Z;‘l X Z;f2 X Z;lk3 such
that Oy, (vy) = Q,,(v,) = Q,,(v3) = 0. Call G’ the so labelled graph.

Construct o = (04, 05, 03)(04, 05, 0g) -+, such that each triplet (o3,
0342, 03j+3) s randomly selected so that Q,, (03;4;) =0fori =1,2,3.

{Remark: Also in the simulation we only deal with already 11purged strings”.
Itis not hard to see that M could also handle generating “unpurged strings”.}

For each edge (a, b) of G’ and each of its assigned 8k triplets (zq, z,, z3),
choose an integer i at random between 0 and 7, and compute a signature

of type i.

{Comment: By using the prime factorization of the n;.}

Output o, ny, ny, 13, 41, 42, 43, G', and the computed signatures.

We now informally argue that M is a good simulator for the view of V. Essentially,

this is so because efficiently detecting that the triplets of o are not randomly and

independently drawn from the space Z;Fll x Z:[Zl x Z:[: is tantamount as violating
the QRA (to be explained in the final paper). For the same reason, it cannot be
detected efficiently that G’ is an illegal labelling or that ¢4, ¢,, g3 are squares mod,
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respectively, nq, n,, n3. Given that, the distribution of the various types of signature
looks “perfect”.

{Remark: the reader is encouraged to verify that if (P,V) uses part of the used o
to show that another graph is 3-colorable, then extra knowledge would leek. For
instance that there exists 3-coloring of G and H in which nodes v; and v, in H
respectively have the same clolors as nodes w; and w, in G.)

Non-Interactive ZKPS

The Single-Theorem Non-Interactive ZKPS of Section 3 has a limited applicability.
This is best illustrated in terms of our conceptual scenario where the prover P is
leaving for a trip. It is unlikely that for each theorem 7 that P finds, a string oy
comes from the sky “devoted” to T and is presented to (is read by) both P and V. It
is instead more probable, that P and V have witnessed or generated (i.e., by flipping
a coin), the same common random event of “size n” when they were together.

However, the Proof System of Section 3 will enable P to subsequently prove in
Zero-Knowledge to V only a single theorem of size, smaller than n. He is out of luck
should he discover the proofs of many theorems or of a theorem of bigger size.

This drawback is eliminated by the following notion of non-interactive ZKPS.

Our formal definition is slightly oriented towards our solution. Namely, at the
beginning, independently of the theorems 7;’s we care about, we let the prover
choose a random theorem T and use the common string o to compute a string y,),
proving that 7 is true.

Subsequently, for each desired and important theorem 7}, the prover will pro-
duce a proof y;. The correctness of y; is checked by the verifier, not only on input
T; and o but also y,, the proof of the initial, random theorem.

This somewhat awkward mechanics, justified by the technical needs of our
proof, does not change the rules of the game of our conceptual scenario in any es-
sential way. In fact, notice in the definition that every important theorem is proven
ALONE. That is, P is able to select the zero-knowledge proof of each important
theorem INDEPENDENTLY from the proofs or the statements of every other im-
portant theorem. In other words, P may have forgotten what important theorems
he has already proved, and does not yet know what other important theorems he
will discover: A true mathematician!

Only the proof, y,, of the initial random theorem needs to be remembered.
This random theorem and its proof are selected before and independently of every
important theorem.
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Definition 41 A Non-Interactive ZKPS is a pair (P, V) where P is a pair, (P,, P;), of Probabilis-

tic Turing Machines and V (., -, -, -) is a deterministic algorithm running in time
polynomial in the length of its first input, such that:

1. (Completeness) For all polynomials P, Q, and for all (xq, x5, ..., Xp@)) €
(3COL p(,,)) 2™

0(1)
5

Pr(o < {0,1}"
Yo < Ag(0);

y1 < Aq(o, X1, Y0);

Yowm) < A1(0, Xomy, Yo)
Q(n)

/\ B(xj,yjyyOvG)zl
j=1

)>1-— n= oW,

2. (Soundness) For all polynomials P, Q,

(3COLp(,))?™ and for each A’ = (A}, , A))

for all (xq, xp, ... Xpm) &

0(1)
H

Pr(o < {0,1}"
Yo < Aé)(o);

Y1 < A;(G, X1, Y0);

You) < AL, Xom), Vo)

Q(n)

/\ BGxj, v, v0,0) =1
j=1

) <n= 00,

3. (Zero-Knowledge) For each polynomial Q, the family of random variables
V= {V(.Xl, e ,XQ(n))}, where
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V(-xb s 7xQ(n)) =
{ 0«0,
Yo < Ao(0);

y1 < A1(0, X1, Yo);

Yom) < A1(0, Xomys Yo)
(o, Yor Y15+ -+ Yom)
}

is approximable over | J,,(3COL) 2™,

The Proof System (P,V)

Below Gen is a cryptographically strong pseudo-random bits generator [RM] [YL.
(Not to increase our assumptions, Gen could be the generator suggested in [BBS]
that is based on quadratic residuosity , actually on factoring as shown in [ACGS].)

Common Inputs to P and V

A random string o o p, a security parameter k, a sequence of 4-colorable graphs
G17 GZ, e

Stage 1

P Chooses at random n € Z3(k) and non-interactively, in zero-knowledge proves
to V that indeed n € Z;(k). P does so as in Section 3 by reducing the statement
“n € Z3(k)” to the 3-colorability of an auxiliary graph H. P proves that H is 3-
colorable by only using o, the first segment of the common random string. Remark:
This is another example of the fact that proving a more general theorem is easier.
Here we only needed to prove membership in Z;(k). However, we were not able to
find a direct non-interactive zero-knowledge proof of it. (What is easy by using a
guaranteed random string, is proving membership in Z,(k) by sampling. Namely,
by fact 1, to prove thatn € Z, (k) is enough to show that half of the elements in Z;fl
are quadratic residues mod n). Only when we thought of generalizing the problem
of membership in Z;(k) to the more general 3-colorability problem, we succeeded
in proving the desired result.

Stage 2
For each input graph, G € 4 — COL;, G, P’s and V’s programs are as follows:
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Instructions for P

1.
2.
3.

Number the equivalence classes of Z** 1 through 4.
Find a 4-coloring for G.

For any vertex v in G, if v is colored i, randomly choose an element ¢,, in class
i and label v with ¢,. Call G’ the so labeled graph.

Send G’ to V.

For each edge (u,v) in G, randomly choose y,, € Z! so that ¢, - ¢, - y,,
mod+n is a square, compute a random square root of it, x,, and send y,,
and x,, to V.

for each y,, do: Output the next k" bits of Gen on input p (here 4 is a constant
to be determined later); group these bits into consecutive blocks of k bits
each; consider all blocks that represent elements in Z;rl; for each block
representing a square mod n, send a random square root of it to V; for each
block that is in the same ~ equivalence class as y,,,, send V a square root of
its product with y,,.

Instructions for V

1.
2.
3.

Check that all labels of G are Jacobi symbol 1 elements of Z7.
For all edges (u, v), check that x,, is a square root of ¢, - ¢, * y,, mod n

. h
For each y,,, check to have received correcrt square roots for more than %
. . h .
of its associated blocks and for more than ’% other blocks “times” y,,.

If all checks are passed “accept” that G is 4-colorable.

4.2 The Zero-Knowledgeness of (P,V)

We now very informally argue that (P,V) is a non-interactive ZKPS.

First notice that the communication is mono-directional: from P to V. Second

that all of V’s computation can be done in probabilistic polynomial time.

Completeness
If G is 4-colorable and P and V follow their instructions, V will accept with proba-

bility essentially 1. The reader can easily derive a proof of it. (Reading the ideas of

the proof about the soundness property may help.)
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Soundness
Since n has passed stage 1 successfully, with probability essentially 1 it is the
product of three distinct primes?. (All modular operations mentioned are mod n)
Second, with probability essentially equal to 1, the sequence of blocks associated
with each y,, contains more than % elements in each of the 4 equivalence classes.
In fact, a random sequence of Jacobi symbol 1 elements mod n would “visit” each
class with probability 1/4. This is also true for the output of Gen since it is poly-
indistinguishable from a truly random sequence? If "—Sh blocks “times” y,, have
square roots mod n, then they all belong to the same equivalence class as y,,.
Moreover, if another % elements have square roots mod n by themselves, then,
with probability essentially 1, y,, is a non-square mod n. (Otherwise # blocks
would be squares mod n rather than the expected % .) Finally, if y,, is a non-square
mod n, then the edge (u,v) is properly colored; that, is, e, and ¢, belong to different
classes. In fact, since e, - e, - y,, has a square root, (e, - e,)) belongs to the same class
as y,,;andife,,and e,, belonged to the same class, their product would be a square
and so would y,,. Each edge being correctly colored, so is G.

Zero-Knowledgeness

We must now argue that the above proof system is zero-knowledge. That is, that
there exists an efficient simulator that, given any sequence of 4-colorable graphs
(but not their colorings!), a probability distribution on the pairs (o, proof,) that
is computationally indistinguishable from the one vrrime' would “see” if listening
to P. What V’ would see is stage 1 and in stage 2, messages from P about each
input graph. The proof of zero knowledge is quite delicate. We restrict ourselves
to merely outlining its high level steps, without further details. We do point out,
though, which parts of the proof are easy and which are hard.

The Simulation of Stage 1
The first message a verifier receives from P is a random member of Z;(k). The
simulating machine M, instead, randomly generates two primes and multiplies

1. n is or is not product of 3 primes wheter or not it passed the first stage; but you know what I
mean and it is easier to read!

2. A subtle point: this is so even if in our application Gen’s seed, p, is not secret. In fact, all
efficiently checkable statistical properties hold for Gen’s output if the random seed is kept secret,
and the particular statistical property of interest to us cannot “disappear” if the seed is made
public!
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them together to generate a random member of Z, (k). So far, because of the 20r3A,
this will fool any polynomially-bounded judge.

Then M in a standard way constructs a graph H that is S-colorable if and only if
n e Zz(k).

Since the latter statement is false, H will not be 3-colorable. Nonetheless, M
follows the protocol described in Section 3 where H is the input graph.

Given the 20r3A, the distribution so obtained is polynomial-time indistinguish-
able from random a correct execution of Stage 1 (including the choice of o)!

This may appear paradoxical,. How can M generate such an “indistinguishable”
distribution on input n € Z,(k), if, after all, P’s message (which is an integral part
of V’s view) was proving that n € Z(k) # Z,(k)?

The paradox disappears when we consider that P’s message was convincing
since the random choice of o was not under its control. In the simulation, instead,
M chooses o

In fact, in stage 2, the simulator will label all vertices of any graph G by squares
mod n (€ Cy(k)). That is, to each vertex # he associates a randomly selected square
e,. (No efficient judge may reject this labelling, since the hardness of quadratic
residuosity implied by our assumption.) Then, to each edge (u, v), he associates a
randomly selected square y,,. Now the simulator correctly runs Gen on its random
seed to obtain a pseudo-random k”-long block sequence. Roughly half of the ele-
ments of Jacobi symbol 1 of these blocks will be squares mod r, as n is the product
of 2 primes. For a randomly selected half of them the simulator will extract a square
root, which it can easily done as he chose n in factored form. For each block in the
remaining half, he extracts a square root of its product with y,,. Again this will fool
the judge as he cannot efficiently decide quadratic residuosity.

Notice that faking the proof of a single theorem (membership in Z’;) allowes
us to fake the proof of an arbitrary number of other theorems. This is one of
the reasons to choose the computational difficulty of distinguishing products of
2 primes from products of 3 primes.

3. It should be noted where the 20r3A comes into play. Let L is a poly-time language, x ¢ L and
G is a graph 3-colorable if and only if x € L. Let M, or input G, follow the protocol in Section 3 to
(necessarily) fake P’s proof that G is 3-colorable.

Such proof will not fool a poly-time judge not because the quadratic-residousity labeling would
give away that the graph is not 3-colored; but because he can easily check that x ¢ L (and thus that
the underlying graph, without any labeling, is not 3-colorable).

The 20r3A guarantees that this easy check is not available to a poly-time judge. In the final paper
we essentially show that there are no other easy checks.
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A No-Longer Long-Standing Open Problem

One of the most beautiful gifts of complexity-based cryptography is the notion of
a public-key cryptosystem. As proposed by Diffie and Hellman [DH], each user
U publicizes a string P;; and keeps secret an associated string S;;. Another user,
to secretely send a message m to U, computes y = E(Py, m) and sends y; upon
receiving y, U retrieves m by computing D(Sy, y); here E and D are polynomial-
time algorithms chosen so that it will be infeasible, for any other user, to compute
m from y.

Notice that in this set-up any other user is thought to be a “passive” adversary
who tries to retrieve m by computing solely on inputs y and Py,. This is indeed
a mild type of adversary and other types of attacks have been considered in the
literature. It is widely believed that the strongest type of attack among all the natural
ones is the chosen-cipher-text attack. In such an attack, someone tries to break the
system by asking and receiving decryptions of ciphertexts of his choices. Rivest has
shown that Rabin’s scheme (whose breaking is, for a passive adversary, as hard as
factoring if the messages are uniformily selected strings of a given length) is easily
vulnerable to such an attack. Indeed, this is an attack feasible to any employee
who works at the decoding equipment of, say, a large bank. The power by this
attack is very well exemplified by an elegant scheme of Rabin [R] that is as secure as
factoring in the passive adversary model but is easily broken by chosen-ciphertext
attack. Since observing this phenomenon, people tried to design cryptosystems
invulnerable to such attacks, but in vain. A positive answer has been found [GMT]
only allowing interaction, during the encryption process, between legal sender
and legal receiver. However, for the standard (non-interactive) Diffie-and-Hellman
model, the existence of a cryptosystem invulnerable to chosen ciphertext attack has
been an open problem since 1978.

Non-interactive zero-knowledge proofs allow us to finally solve this problem.
The essence of our solution (instead of its details) is informally described as fol-
lows. Instead of sending U an encryption, y, of a message m, one is required to
send two strings: y and and o, where o is a zero-knowledge and non-interactive proof
that the sender knows the decoding of y. The “decoding equipment” (read: the de-
coding function) checks that o is convincing and, if so, outputs m, the decoding of
y; Otherwise, it outputs nothing. Notice that, now, being able to use the decoding
equipment provably is of no advantage! In fact, only when we feed it with ciphertexts
whose decoding we can prove we know, does the decoding equipment output these
decodings! In other words, the decoding equipment can only be used to output
what we already know. A detailed discussion of this powerful application will
appear in the final paper.
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(A formal setting and the proof require some care. For instance, the decoding
equipment may be used as an oracle to check whether a given string o is a “correct
proof of knowledge”. Thus, in particular, one should prove that such an oracle
cannot help. In the final paper we will essentially show that if one can generate
a legal (y, o) pair without having m as an input, then one can easily decrypt all
messages on input y and Py, only.)

6 Improvements

It has very often been the case in cryptography that new notions and results have
been first obtained under a specific intractability assumption. This is so because
one can exploit the additional properties of a specific, candidate intractable prob-
lem. Number theory has always played a leading role as a basis of new cryptographic
concepts. For instance, cryptographically strong pseudo-random number gener-
ators were first exhibited based on the computational difficulty of the discrete
logarithm problem [BM]. Only later a construction was presented based on a more
general assumption: the existence of one-way permutations [Y]. Finally it has been
established that cryptographically strong pseudo-random number generation is
possible if and only if one-way functions exist [L].

Non-interactive ZKPS have been introduced and still are based on the in-
tractability of algebraic problems. Very recently, our intractability assumption has
been relaxed. DeSantis, Micali, and Persiano have exhibited non-interactive ZKPS
based only on the quadriatic residensity assumption.

We hope this new notion will be given a sounder foundation; hopefully by basing
it on the existence of any general trap-door or one-way function.
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Completeness Theorems
for Non-Cryptographic
Fault-Tolerant Distributed
Computation

This chapter reproduces the contents of the paper “Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation,” which appeared in
the proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp.
1-10, 1988.

This influential work of Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson
obtained general results similar to those of Chapter 13, except that it uses no
intractability assumptions. Instead this work presumes the existence of private
channels between each pair of parties (and a larger percentage of honest parties).
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Abstract

Every function of n inputs can be efficiently computed by a complete network of n
processors in such a way that:

1. If no faults occur, no set of size t < n/2 of players gets any additional infor-
mation (other than the function value),
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2. Even if Byzantine faults are allowed, no set of size t < n/3 can either disrupt
the computation or get additional information.

Furthermore, the above bounds on ¢ are tight!

Introduction

The rapid development of distributed systems raised the natural question of what
tasks can be performed by them (especially when faults occur). A large body of
literature over the past ten years addressed this question. There are two approaches
to this question, depending on whether a limit on the computational power of
processors is assumed or not.

The cryptographic approach, inaugurated by Difiie and Hellman [DH], assumes
the players are computationally bounded, and further assumes the existence of
certain (one-way) functions, that can be computed but not inverted by the player.

This simple assumption was postulated in [DH] in order to achieve the basic task
of secure message exchange between two of the processors, but turned out to be
universal! In subsequent years ingenious protocols based on the same assumption
were given for increasingly harder tasks such as contract signing, secret exchange,
joint coin flipping, voting and playing Poker. These results culminated, through the
definition of zero-knowledge proofs [GMR], their existence for NP-complete prob-
lems[GMW1]in completeness theorems for two-party[Y1]and multi-party[GMW2]
cryptographic distributed computation. In particular the results of Goldreich, Mi-
cali and Wigderson in [GMW2] were the main inspiration to our work. They show,
that if (non-uniform) one way functions exist then every (probabilistic) function of
n inputs can be computed by n computationally bounded processors in such a way
that: (1) If no faults occur, no subset of the players can compute any additional in-
formation, and (2) Even if Byzantine faults are allowed, no set of size r < n/2 can
either disrupt the computation or compute additional information.

The non-Cryptographic (or information-theoretic) approach does not limit
the computational power of the processors. Here, the notion of privacy is much
stronger - for a piece of data to be unknown to a set of players it does not suffice
that they cannot compute it within a certain time bound from what they know, but
simply that it cannot be computed at all!

To facilitate the basic primitive of secret message exchange between a pair of
players, we have secure channels. (For an excellent source of results and problems
in the case no secure channels exist, see [BL]). Unlike the cryptographic case, very
little was known about the capabilities of this model. Two main basic problems
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were studied and solved (in the synchronous case): Byzantine agreement [LPS,
DS, . .. ] and collective coin flipping [Y2].

This paper provides a full understanding of the power and limits of this model,
by proving a few completeness theorems. Comparing these results to the crypto-
graphic case of [GMW?2], one gets the impression that one-way functions are “more
powerful” than secure channels. This should not be surprising, if one considers
the case of n = 2. Clearly, here a secure channel is useless, and indeed two (non-
faulty) players can compute the OR function of their bits using cryptography, while
the reader can convince herself (it will be proven later) that any protocol will leak
information in the information-theoretic sense. The lower bounds we provide show
that the same phenomenon is true for any value of n. A similar situation arises in
the Byzantine case where, using cryptography one can allow ¢ < n/2 faulty players,
but in the non-Cryptographic case one must have r < n/3.

Ashappened in the cryptographic case, the protocols are based on a new method
for computing with shared secrets. Our constructions are based on Algebraic Cod-
ing Theory, particularly the use of generalized BCM codes.

It is important to stress here that our main protocols require only a polynomial
amount of work from the players. (In fact, they are efficient enough to be practi-
cal!). Putting no bound on the computational power serves only to allow the most
stringent definition of privacy and the most liberal definition of faultiness, both of
which we can handle.

Essentially the same results we obtain here were independently discovered by
Chaum, Crepeau and Damgard [CCD]. We briefly point out the small differences of
this work from ours. The simple case of no faults is almost identical. Their solution
in the case of Byzantine faults is elementary and requires no error correcting
codes. The error correction is achieved using a clever scheme of zero knowledge
proofs. This has two consequences: They have to allow an exponentially small
error probability for both correctness and privacy (we can guarantee them with no
errors), and the frequent zero knowledge proofs increase the complexity of their
protocols. In the solution of [CCD] the simulation is of Boolean operations while
our solution allows direct simulation of arithmetic operations in large finite fields.
Thus, for example, computing the product of two n bit numbers using [CCD] calls
for O(log n) communication rounds. This can be done in O(1) rounds using our
solution.

We mention that the above results already found application in the new, con-
stant expected number of rounds protocol for Byzantine agreement of Feldman and
Micali [FM].
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We proceed to define the model, state the results and prove them. In the full
paper we mention generalizations and extensions of our results to other tasks
(playing games rather than computing functions), to other model parameters (syn-
chrony, communication networks) and other complexity measures (number of
rounds).

Definitions and Results

For this abstract, we define the model and state the results on an intuitive level.
Since even the formal definition of the notions of privacy and resiliency are non-
trivial, we give them explicitly in an appendix.

The model of computation is a complete synchronous network of n processors.
The pairwise communication channels between players are secure, i.e. they cannot
be read or tempered with by other players. In one round of computation each of the
players can do an arbitrary amount of local computation, send a message to each
of the players, and read all messages that were sent to it at this round.

We shall be interested in the computational power of this model when imposing
privacy and fault tolerance requirements. For simplicity, we restrict ourselves to the
computation of (probabilistic) functions f from n inputs to n outputs. We assume
that player i holds the i-th input at the start of computation, and should obtain the
i-th output at the end, but nothing else.

A protocol for computing a function is a specification of n programs, one for each
of the players. We distinguish two kinds of faults: “Gossip” and “Byzantine”. In the
first, faulty processors send messages according to their predetermined programs,
but try to learn as much as they can by sharing the information they received. In
the second, they can use totally different programs, collaborating to acquire more
information of even sabotage the computation.

A protocol is t-private if any set of at most ¢ players cannot compute after the
protocol more than they could jointly compute solely from their set of private inputs
and outputs.

A protocolis t-resilient if no set of  or less players can influence the correctness of
the outputs of the remaining players. For this to make sense, the function definition
should be extended to specify what it is if some players neglect to give their inputs
or are caught cheating (see appendix).

We can now state the main results of this paper.

Theorem1 For every (probabilistic) function f and 7 < n/2 there exists a 7-private protocol.
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Theorem 2

Theorem 3

Theorem 4

Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation

There are functions for which there are no n/2-private protocols.

For every probabilistic function and every t < n/3 there exists a protocol that is both
t-resilient and ¢-private.

There are functions for which there is no n/3-resilient protocol.

Proof of Theorem 1

Let Py, ..., P,_; be a set of players, and let n > 27 + 1. Let F be the function which
this set of players wants to compute ¢-privately, where each player holds some input
variables to the function F. Let E be some fixed finite field E, with | E| > n. Without
loss of generality we may assume that all inputs are elements from E and that F
is some polynomial (in the input variables) over E, and that we are given some
arithmetic circuit computing | F|, using the operations +, x and constants from E.

To simplify our explanation we divide the computation into three stages.

Stage I: The input stage, where each player will enter his input variables to the
computation using a secret sharing procedure.

Stage II: The computation stage, where the players will simulate the circuit
computing F, gate by gate, keeping the value of each computed gate as secret
shared by all players.

Stage III: The final stage, where the secret shares of the final value of F are
revealed to one or all of the players.

Stages Iand III are very simple and we describe them below, and delay the details
of the computation stage to the next section.

The Input Stage

Let (g, - . . , ®,_1 be some n disbinct non zero points in our field E. (This is why we
need |E| > n.) Each player holding some input s € E, introduces the input to the
computation by selecting  random elements q; € E, fori =1, ..., 1t, setting

f@)=s+ax+---+ax'

and sending to each player P; the value s; = f(«;).

As in Shamir’s [Sh] secret sharing scheme, the sequence (s, ..., s,_1) is a
sequence of t-wise independent random variables uniformly distributed over E,
thus the value of the input is completely independent from the shares {s;} that are
given to any set of 7 player that does not include the player holding the secret.
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Lemma

The Final Stage

To keep the 7-privacy condition, we will make sure that the set of messages received
by any set of ¢ players will be completely independent from all the inputs. During
the whole computation each gate which evaluates to some s € E, will be “evaluated”
by the players by sharing the secret value of s using a completely independent from
all the inputs, random polynomial f(x) of degree ¢, with the only restriction that
f(0) =s. In particular at the end of the computation we will have the value of F
shared among the players in a similar manner. If we want to let just one player
know the outputvalue, all the players send their shares to that particular player. This
player can compute the interpolation polynomial f(x) and use its free coefficient
as the result.

Note that there is a one-to-one correspondence between the set of all shares and
the coefficients of the polynomial f(x). Since all the coefficients of f(x), except
for its free coefficient, are uniform random variables that are independent of the
inputs, the set of all shares does not contain any information about the inputs that
does not follow from the value of f(0).

The Computation Stage

Leta, b € E be two secrets that are shared using the polynomials f(x), g(r) respec-
tively, and let ¢ € E, ¢ # 0 be some constant. It is enough to show how one can
“compute” ¢ -a,a + b,and a - b.

The two linear operations are simple and for their evaluation we do not need
any communication between the players. This is because if f(x) and g(x) encode
a and b, then the polynomials 4 (x) =c¢ - f(x) and k(x) = f(x) + g(x) encode c - a,
a + b respectively. Thus to compute for example a + b, each player P; holding f («;),
and g(«y) can compute k(o;) = f(«;) + g(¢;). Likewise, since ¢ is a known constant
P; can compute A(o;) = ¢ - f(«;). Furthermore, i (x) israndom if only f(x) was, and
k(x) is random if only one of f(x) or g(x) was.

As a corollary we immediately have

(Linear Functional) For any ¢, (t <n — 1), and any linear functional
F(xgy.ooyXy_q) =apxg+-+-4+a,_1x,_1

where each P; has input x; and the g; are known constants, can be computed ¢-
privately.

From the lemma we have
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Corollary

Proof

(Matrix Multiplication) Let A be a constant n x n matrix, and let each P; have an
input variable x;. Let X = (xq, ..., x,_1) and define Y = (y4, ..., y,) by

Y=X-A,

then for any¢, (r <n —[), we can t-privately compute the vector Y such that the only
information given to P, will be the value of ¥;, fori =0,...,n — 1.

Matrix multiplication is just the evaluation of n linear functionals. By the Lemma,
we can compute each linear functional ¥; independently, and reveal the outcome
only to P;. ]

The Multiplication Step

The multiplication step is only a bit harder. Let @ and b be encoded by f(x) and
g(x) as above. We now assume that n > 2r + 1. Note that the free coefficient, of
the polynomial i (x) = f(x)g(x) is a - b. There are two problems with using /(x) to
encode the product of a times b. The first, and obvious one, is that the degree of
h(x) is 2t instead of t. While this poses no problem with interpolating /(x) from its
n pieces sincen > 2t 4 1, it is clear that further multiplications will raise the degree,
and once the degree passes n we will not have enough points for the interpolation.
The second problem is more subtle. 4(x) is not a random polynomial of degree
2t (ignoring of course the free coefficient). For example, i (x), as a product of two
polynomials, cannot be irreducible.

To overcome these two problems we will, in one step, randomize the coefficients
of h(x),and reduce its degree while keeping the free coefficient unchanged. We first
describe the degree reduction procedure and then combine it with the randomiza-
tion of the coefficients.

The Degree Reduction Step

Let
h(x) =ho+hx + -+ hyx?
and let
s; = h(e;) = fla)g(e;),
fori =0,...,n — 1bethe “shares” of i(x). Each P; holds an ;. Define the truncation

of h(x) to be

k(x) =hg+hyx + -+ hx",
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Claim

Proof

andr; =k(a;) fori=1,...,n— 1.
Let S = (sg,-..,5,_1) and R = (ry, ..., r,_q) then there is a constant n x n matrix
A such that

Let H be the n-vector
H=(hyy...yhyyeenyhy,0,...,0)
and let K be the n-vector
K =(hyy...,h;0,...,0).

Let B = (b; ;) be the n x n (Vandermonde) matrix, where b; ; = ai. fori,j=o0,...,
n — 1. Furthermore, let P be the linear projection

P(XO,...,xn,1)=(x0,...,xl,O,...,O).
We have
H-B=S
H-P=K
and
K-B=R

Since B is not singular (because the ¢;-s are distinct) we have
S-(B"'PB)=R

but A = B~1P B is some fixed constant matrix, proving our claim. |

The Randomization Step

As noted above the coefficients of the product polynomial are not completely ran-
dom, and likewise the coefficients of its truncation k(x) may not be completely
random. To randomize the coefficients, each player P; randomly selects a polyno-
mial ¢; (x) of degree 2¢ with a zero free coefficient, and distributes its shares among
the players. By a simple generalization of the argument in Shamir’s [Sh] scheme, it
is easy to see that knowing 7 values on this polynomial gives no information on the
vector of coefficients of the monomials of x, x2, ..., x’ of g;(x).
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Thus instead of using h(x) in our reduction we can use

n—1

h(x)=h(x)+ ) q;(x)

j=0

which satisfies 7(0) = h(0) but the other coefficients of x’, 1 <i < ¢, are completely
random. Since each player can evaluate his point § = (e;), we can now apply
the truncation procedure using the matrix multiplication lemma to arrive at a
completely random polynomial k(x) which satisfies both deg k(x) =, and k(0) =
a ---b,and k(x) is properly shared among all the players.

Thus (omitting many well known details, see [GMW]) we have proved

Theorem1 For every (probabilistic) function F and ¢ < n/2 there exists a ¢-private protocol.

Remarks

(1) The complexity of computing F ¢-privately is bounded by a polynomial (in 7)
factor times the complexity of computing F.

(2) If F can be computed by an arithmetic circuit over some field using un-
bounded fan-in linear operation and bounded fan-in multiplication, in
depth d, then F can be computed ¢-privately in O(d) rounds of exchange
of information.

(3) In our construction we have to reduce the degree of our polynomial only
when its degree is about to pass n — 1. Thus if t = O (n!~¢), for some fixed
€ > 0, and we start with polynomials of degree 7, the players can simulate
many steps of the computation before the degree comes close to n, by doing
the computation each on their own shares, without any communication(!).
When the degree does get close to n, we reduce the degree back to ¢ in one
radomizing, degree reducing step.

Two simple examples are:

(a) Any Boolean function F : {0, 1} — {0, 1} can be represented as a multilinear
polynomial over the field F. Thus if t = O (n'~¢) we can compute ¢-privately,
in parallel, all the monomials of F in O (1) number of rounds and then use a
big fan-in addition to evaluate F'. This procedure may use exponentially long
messages but only constant number of rounds.

(b) The Boolean Majority function has a polynomial size O (log n) depth circuit,
and thus for 1 = O(n'™¢), this function can be computed ¢-privately using
only polynomially long messages in constant number of rounds.
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Theorem 2

Proof

For completeness we state the following simple result
There are functions for which there are no n/2-private protocols.

It is easy to see that two players, each holding one input bit, cannot compute the
OR function of their bits, without one of them leaking some information. This
immediately generalizes to prove the theorem. ]

Sharing a Secret with Cheaters
Letn =3t +1and let Py, ..., P,_; be a set of n players among which we want to
share a secret such that

(A) Any set of at most ¢ players does not have any information about the secret
and

(B) It is easy to compute the secret from all its shares even if up to ¢ pieces are
wrong or missing.

The following scheme achieves both requirements:

Let E be a (finite) field with a primitive n-th root of unity, w € E, »" = 1 and for
all 1 < j < n, @ # 1. Without loss of generality we can assume that our secret s is
inE.

Pick a random polynomial f(x) € E[x], of degree ¢ such that f(0) =s. That is,
set ay = s and pick randomq; € E fori =1...t and set

fx) =ag+apx + -+ -+ a,x>

Define the share of P;,i =0...n — 1,to be s; = f('). As in [Sh], the s;-s are t-wise
independent random variables that are uniformly distributed over E, and thus our
first requirement (A) is met.

Note that setting a; = 0 for i >t makes our secret shares the Discrete Fourier
Transform of the sequence (ay, ..., a,_41). Let fx)= 5o+ 81x 4+ -+ -+ 5, x" L By
the well known formula for the inverse transform

a; = 1fA(a)_i)
n

andin particular f (') = 0fori =7 +1, ..., n — 1. Explicitly the s; satisfy the linear
equations

n—1

Za)r" -5;=0 for r=1,...,2t.

i=0
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Claim

Proof

Thus the polynomial g(x) = H?:_[il(x — w~') divides the polynomial f(x), which in
the language of Error Correcting Codes says that the vector s = (sg, ..., s,_1) isa
codeword in the Cyclic Code of length n generated by g(x). By our choice of g(x),
this cyclic code is the well known Generalized Reed-Miller code. Such codes have a
simple error correction procedure to correct 1 deg g(x) =t errors. See for example
[PW, page 283).

Verifying a Secret

Assume that player P has distributed a secret in the manner described above.
Before entering this shared secret into a computation we wish to verify that the
secret shares we are holding are shares of a real secret and not some n random
numbers. We want to do so without revealing any information about the secret
or any of its shares. This is easily done using the following Zero Knowledge proof
technique. We will later show how to verify a secret using a different technique that
has absolutely no probability of error. We present this Zero Knowledge technique
because it is simpler, and uses fewer rounds of communication.

Simple Verification of a Secret

Let f, be the original polynomial. Let fi, ..., f,,, m = 3n be random polynomials
of degree r generated by P, and have P send to P, the values f; (@) forj=1,...,m.
Each P; selectes a random « # 0 from E and sends it to all the other players. After
reaching agreement on the set of a-s, the dealer broadcasts the set of polynomials
fi=>0, o f, to all players. Each player P; checks that at the point o', the shares
he received satisfy the required equations, for all the a-s. If some P; finds an error
he broadcasts his complaint. If  + 1 or more player file a complaint, we decide that
the dealer is faulty and take some default value, say 0, to be the dealers secret, (and
pick 0 for all the needed shares).

Let T be a set of good players that did not complain. Let fiT be the the interpola-
tion polynomial through the points in 7' of the original polynomial f;. Then with
probability at least

1—m2"/|E|
all the polynomials f;" are of degree ¢.
Omitted. ]

Keeping in mind the (polynomial) complexity of the players computation, we
can certainly allow | E| > 22", This makes the error probability exponentially small.
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Claim

Proof

(The case of small |E| is similar: Using a somewhat larger m, each player, using a
different set of random polynomials, asks the dealer to reveal either f; or f, + f;.)

Note that if n > 5¢ 4+ 1, then our secret sharing scheme can correct 2¢ errors.
If a secret is accepted then at most  good players may have wrong values. This
together with at most r more wrong values that may come from the bad players,
gives altogether at most 2¢ errors. Thus in this case the secret is uniquely defined
and there is a simple procedure to recover its value using the error correcting
procedure.

To handle the case of n = 3t + 1 we must make sure that all the pieces in the
hands of the good players lie on a polynomial of degree ¢. To achieve this we ask
the dealer of the secret to make public all the values that were sent to each player
who filed a complaint. We now repeat the test, using new random «-s. Each player
now checks at his point and at all thc points that were made public, and if there is
an error he files a complaint. If by now more than r + 1 players have complained we
all decide that the secret is bad and take the default zero polynomial. Otherwise,

With very high probability, all good players are on a polynomial of degree ¢.
Omitted. ]

Note that if the dealer is correct then no good player’s value will become public
during the verification process. This together with the fact that all the polynomials
that the dealer reveals during this verification procedure are completely indepen-
dent from the secret polynomial f;, ensures that the bad players will not gain any
information about the dealer’s secret. (Detailed proof omitted).

Absolute Verification of a Secret
The verification procedure described above leaves an exponentially small probabil-
ity of error. In this section we describe a secret verification procedure that leaves
no probability of errors?.

Instead of just sending the shares {s;}, the dealer of the secret selects n random
polynomials fy(x), ..., f,_1(x), with

1) s;=f;i(0) for i=0,...,n—1, and

n—1

2) Zd"'ﬁ@):o for r=1,...,2t

i=0

1. Our original protocol was simpliied by Paul Feldman who independently observed that the
verification procedure can be accomplished in a constant number of communication rounds.



364 Chapter 15 Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation

Lemma

Proof

In other words, the dealer selects a random polynomial f(x, y), of degree ¢ in both
variables x and y, with the only restriction that f(0, 0) = s (his secret). Then he
sends the polynomials f;(x) = f(x, »') and g;(y) = f(&', y) to player P;, for i =
0,...,n — 1. The real share is just s; = f;(0), but for the purpose of its verification,
the dealer also sends the polynomials f;(x) and g;(y). At this point each player P;
sends the polynomials s; ; = f; (/) = f(/, ') = g;(@') to each player P;.

Note that if the dealer is correct, then when a good player P; is looking at
the sequence SS; = (sg, j, 51,;, - - - S4—1, ), then all these points should be on his
polynomial g;(y). Therefore P; can compare the incoming values with his own
computation and find out which values are wrong. Furthermore it is clear that in
this case no good player will have to correct any value coming from other good
players.

On the other hand we have

If no correct player has to correct a value given by a correct player, then there is a
polynomial of degree  that passes through the interpolation points of all the correct
players.

Simple algebra. Omitted. ]

To make sure that the condition of this lemma is satisfied, each player P;
broadcasts a request to make the coordinates (i, j) he had to correct public. If P;
detects more than r wrong incoming values, or had to correct his own value, the
dealer is clearly faulty. In such a case P; broadcasts a request to make both f;(x)
and g;(y) public. At this point the dealer broadcasts the (supposedly true) values
s;, j at all these points, and the polynomials that were to be made public. Note that
making f; and g; public makes all the 5; ; and s; ; public for 0 <k < n, for that
particular ;.

Now if some player P; observes that some new public s; ; contradicts the poly-
nomials he is holding, or finds out the the public information already contradicts
itself, he broadcasts a request to make all his information public. Here once more,
the dealer makes public all the requested information, Finally, each P; checks all
the public and private information he received from the dealer. If P; finds any in-
consistencies he broadcasts a complaint by asking all his private information to be
made public.

Ifat this point¢ 4+ 1 or more players have asked to make their information public,
the dealer is clearly faulty and all the players pick the default zero polynomial as
the dealer’s polynomial. Likewise, if the dealer did not answer all the broadcasted
requests he is declared faulty. On the other hand, if  or less players have complaint,
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then there are at least r + 1 good players who are satisfied. These uniquely define
the polynomial f(x, y) and they conform with all the information that was made
public. In this case the complaining players take the public information as their
share.

Note that if the dealer has distributed a correct secret then no piece of infor-
mation of any good player was revealed during the verification process. If however
the dealer was bad, we do not have to protect the privacy of his information, and
the verification procedure ensures us that all the good players values lie on some
polynomial of degree ¢.

Some More Tools

Before going into the computation stage, we need two more tools

(1) Generating (and verifying) a random polynomial of degree 2¢, with a zero free
coefficient.

(I1) Allowing a dealer to distribute three secrets, a, b, and ¢, and verifying that
c=a-b.

Both of these are not needed when n > 4r 4+ 1, but are required to handle the
n =3t + 1 case.

(I) Generating Polynomials of Degree 21
Let each player P; distribute t random (including the free coefficient) polynomials
g kk=1,...,1,0f degree r. Define f;(x) by

t
fi =) "x gy
k=1

and let the players evaluate from their points on the g; ;-s their corresponding point
on f;(x).

After we have verified that indeed deg g; ; <1, itis clear that deg f;(x) < 2t, and
£;(0) = 0. (It is also clear that the vector of coefficients of the monomials of x’,

i=1,...,t, in f;(x) are uniformly distributed and are completely independent
from the information held by any set of at most ¢ players that does not include
P.)

Finally, as our random polynomial we take
fx)= sum;zol 3 ().

(I1) Verifying thatc = a - b
Let the player P distribute g and b using the polynomials A(x) and B(x) respectively.
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We want P to also distribute a random polynomial encoding ¢ = a - b, in such a way
that the players can all verify that indeed c =a - b. Let

D(x)=A(X)-B(x)=c+cx +...+cyx?
and let
Di(x) =ro+rx+...+ rm_lxt_1 + cpx’

t—1 t
Dy y(x)=r_q1o+...+tr_q 01X +...+[eyq—ralx

_ t—1 t
Dl(.x) —rlyo+...+r1,lilx +...+[Ct_rryl_rtil’z_..._r2,171]x

where the r; ; are random elements from E. P selects the D;(x) and distributes
their shares to all the players. After verifying that A(x), B(x) and all the D;(x) are
of degree ¢, define

t
C(x) = D(x) Z x' - D;(x).
i-1
and verify that C(x) is also of degree 7. From the construction of C(x) it is clear that
C(x) is a random polynomial of degree ¢ with the only restriction that C(0) =a - b.

Proof of Theorem 3

We separate again the computation to its Input, Computation and Final stages. At
the input stage, we let each player enter his inputs to the computation using our
secret sharing scheme, while verifying that each secret shared is indeed some poly-
nomial of degree . The secret verification assures that the inputs of any Byzantine
player is well defined, but does not ensure that it is in the domain of our function.
For example, in a 0-1 vote, we must verify that the input is 0 or 1. We defer this type
of verification to the computation stage.

The final stage is exactly the same as in the proof of Theorem 1. When we have
simulated the circuit, and the players are holding the pieces of a properly shared
secret, encoding the final output, they send all the pieces to one or all the players.
As at most ¢ pieces are wrong, each player can use the error correcting procedure
and recover the result.

The Computation Stage — Byzantine Case

Let a and b be properly encoded by f(x) and g(x) respectively, where by “properly
encoded” we mean that all the pieces of the good players are on some polynomial
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of degree t. Since f(x) and g(x) are properly encoded the polynomials f(x) + g(x),
and c - f(x), properly encode a + b, and ¢ - a, for any constant c € E. The same
argument of Theorem 1 implies that we can do the computation of any linear
operation with no communication at all.

Here again, the multiplication step is more involved. To repeat the procedure of
theorem I, using the degree reduction step, via the Matrix Multiplication Lemma,
we must make sure the all the players use, as input to this procedure, their correct
point on the product polynomial 2(x) = f(x)g(x). To guarantee that this indeed
happens, we use the Error Correcting Codes again.

Let a; = f(0'), b; = g(0') and ¢; = h(w') = q; - b; be the points of P; on these
polynomials. We ask each P; to pick a random polynomial of degree ¢, A;(x), such
that a; = A;(0), and use this polynomial to distribute a; as a secret to all the players.
Similarly, P; distributes b; using B;(x). We also ask P; to distribute ¢; using the
polynomial C;(x), while verifying that A;(x), B;(x), C;(X) are all of degree ¢, and
that C;(0) = A;(0) B;(0).

We want to verify that the free coefficients of the polynomials C; (x) are all points
on the product polynomial /(x). It is enough to verify that all the free coefficient of
the A;(x) and B;(x) are on f(x) and g(x) respectively. We do this as follows.

The free coefficient of the A;(x)-s are a code word with at most ¢ errors. By
our assumption, all the A;(x) are properly distributed. We can therefore use them
to compute any linear functional. In particular, using the same A;(x)-s we can
compute the polynomials

n—1

S,(0) =" o A (x)

i=0

forr =1,..., 2t. At this point all the players reveal their points on the polynomials
S, (x), enabling all the players to recover the value of s, = S,(0), forr =1, ..., 2¢.
Note that if all the A;(0) are correct (i.e. on a polynomial of degree ) then
s, = 0 for all r. Thus the computed value of the s,, are just a function of the errors
introduced by the Byzantine players. In particular, this implies that the value of the
s, does not reveal any information that is held in the hands of the good players!
Since at most ¢ of the A;(0) can be wrong, the value of the s, — s, the so called
Syndrome Vector, is the only information needed by the error correction procedure
to detect which coordinates A;(x) encode a wrong A;(0) and give the correct value.
Therefore, if some s, # 0, all the players compute the wrong coordinates, the correct
value of f(w'), and use the constant polynomial with this value, instead of A; (x).
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Theorem 3

Theorem 4

Proof

Remark

In asimilarwaywe can check and correct the B;(x). We can, therefore, also check
(and correct) the C;(x), so we are sure that all the inputs to the linear computation
we have to do in the degree reduction procedure are correct.

Note that much of this is not needed when n > 4t + 1, because then we can still
correct up to ¢ errors on polynomials of degree 2¢. In this case we can do the error
correction on the points of & (x) directly.

As in the proof of Theorem 1, we have,

For every probabilistic function and every r < n/3 there exists a protocol that is both
t-resilient and ¢-private.

For completeness we state,
There are functions for which there is no n/3-resilient protocol.

Follows immediately from the lower bound for Byzantine Agreement in this model.
We note that even if we allow broadcast as a primitive operation, theorem 4 remains
true. This is because we can exhibit functions for three players that cannot be
computed resiliently, when one player is bad. This generalizes immediately to n/3.

]

All the remarks following the statement of theorem 1 apply also to theorem 3.
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Appendix

Formal Notation
Let F be a field. Let U = F" denote the standard n-dimensional vector space over
F and M, (F) the ring of n x n matrices over F.

Let R be a random variable with distribution D over F. Then R¥ (R*) denotes k
(finitely many) independent draws from D.
Comment: Unless otherwise specified, F will be finite, and D the uniform distri-
bution over F.

The Basic Model
Fix n > 0 and a field F. Intuitively, an (n, F) - network is a complete synchronous
network of n probabilistic machines (players) Py, Py, . .. P,_1. At every round, each

player can send one message (element of F) to each other player, receive a message
from each other player, and perform arbitrary computation.

If we assume for convenience that players send messages to themselves too, a
round of communication is neatly described by a matrix M € M, (F), where each P;
sent the ;™M row of M, and receives the i column of M. (This formalizes the security
of private channels).

Formally, a T round (n, F) - network is a set of players {P,, Py, ..., P,_1}. Each
P; is a tuple

0
P =< Qi:q,'( )’Ri78i>’

where Q; is a set of states, qi(o) the initial state, R; is a random variable over F
(distributed like R) and

8 :[T1x Q; x F" x Rf — Q; x F"

is a transition function that given a round number, state, previous round input and
private coin tosses computes the next state and this round’s output.

A protocol is simply § =< §, 84, ..., 5,_1 >, the transition functions prescribing
to each player what to do in each round.
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Arun M of a protocol § is a sequence (M;, My, ..., M), M; € M, (F) of matrices

describing the communication inrounds j =1, 2, ..., T. Note that M is arandom
(0)}
b

variable, depending on {g; "}, the initial states, and {R}, (= R*), the random draws
from D.

A (probabilistic) function is a function f,
f:F"x R" — F".

Intuitively, a protocol computes a function f if for all v e F", if P; is given v; € F
before round 1, then after round T it knows u;, such thatu =< ug, uq, ..., u,_1 >is
distributed exactly like f (v x R™). For convenience we denote avector < ag, dq, - - - ,
a+n—1>by<a; >.Also,let ql.(j) denote the state of P; after round ;.

To formally define what it means for a protocol to compute a function, we
assume fixed input and output functions, I;, O, : Q; — F for each player P;. Now §
computes f, if for every choice of < qi(o)) >, we have < O; (ql.(T)) >= f(I; (ql.(o)) x R™)
(as random variables).

Some Intuition

The bad players in our model can completely coordinate their actions. Hence, for
a bad set (coalition) C C [n]={0, 1, 2, ...,n — 1}, the transition functions §;,i € C
are replaced by arbitrary functions 8 that compute the next state and messages of
P; from the joint information of the current states, previously received messages
and random choices of all {P;}, i € C. We denote any protocol in which a set C is
bad (in this sense) by 4.

We distinguish two types of bad behavior. The benign (gossip) kind, in which
bad players send messages according to the original protocol §, but try to learn as
much as they can from it by joining their forces. The malign (Byzantine) kind puts
no restrictions on the bad players, i.e. the §; can really be arbitrary.

To formalize the benign kind of bad behavior we need the following definition:
Two protocols § and 8’ look alike if their runs have the same distribution, i.e. M = M’
as random variables, for every fixed initial state < qi(o) > of all players.

A bad coalition C is called gossip if the protocol §. looks like §, otherwise it is
called Byzantine.

In the case of gossip, we don’t have to worry about the correctness of computing
f - this follows from the definition “look alike”. Here all we shall have to prevent
is leakage of information. In case of Byzantine faults, we will have to guarantee
also the correctness of the computation. We proceed now to define the important
notions of Privacy and Correctness.
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Privacy (Preliminary)

Intuitively, a coalition C did not learn anything from a protocol for computing f, if
whatever it can compute after the protocol (from its final states), it could compute
only from its inputs (initial states) and its components of the function values.

Let Qc =[];cc Q; and A be an arbitrary set. Also, if u =< ug, uq, ..., u, 1>,
uc denotes the sub-vector of u that contains u;, i € C. Formally, a set C is ignorant
in a protocol § (for computing f), if for every set of initial states < ql.(o) ) >, every
protocol §. that looks like § and every function g’ : Q + ¢ — A there exists a funclion
d: Q¢ x FI€l - A satisfying

@ =@, (<@ >0 ®

Aprotocol § (for computing f)is t-private if every coalition C with |C| < ris ignorant.

Correctness

This issue is problematic, since some of the bad players can obliterate their initial
inputs, and the function value is not well defined (a simple example is Byzantine
agreement). To ignore bad inputs for every set B C [n], we need a (sub)function of
f that depends on the input coordinates of only [n] \ B. (a special case is assigning
default values to input coordinates in B).

So now by f we mean a family of functions {f5: F"\f x RM — F"}, B C [n],
with f, being the original function f. Typically, (as in Byzantine agreement) this
exponential size family is very succinctly described.

So now, a computation is correct, if all good players compute a function fp,
where B is a subset of the bad players.

More formally, a coalition C is harmless if for every set of initial states < ql.(o) >
and every protocol §.,

T
{<0:@”) >Ypne = f5l< L@®) >} pmne

for some B C C.
A protocol is r-resilient if every coalition C with |C| <t is harmless.

Privacy Revisited
For the case of Byzantine faults, the assumption that § looks like § is invalid. For
any harmless coalition C we can remove this assumption from the definition of
ignorance, and replace f in (*) above, by fj, the function that will actually be
computed by the good players.

Now the notion of a protocol that is both 7-resilient and z-private is well defined.






Multi-Prover Interactive
Proofs: How to Remove
Intractability
Assumptions

This chapter reproduces the contents of the paper “Multi-Prover Interactive Proofs:
How to Remove Intractability Assumptions,” which appeared in the proceedings of
the 20th Annual ACM Symposium on Theory of Computing, pp. 113-131, 1988.

This influential work of Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi
Wigderson introduced a model, denoted MIP, that turned out to be closely related
to the PCP model, which was introduced later and had a vast impact on complex-
ity theory. Interestingly, the original motivation was constructing zero-knowledge
proof systems without relying on intractability assumptions, a goal that was indeed
achieved in this work.
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The generalized interactive-proof model consists of two computationally un-
bounded and untrusted provers , rather than one, who jointly agree on a strategy to
convince the verifier of the truth of an assertion and then engage in a polynomial
number of message exchanges with the verifier in their attempt to do so. To be-
lieve the validity of the assertion, the verifier must make sure that the two provers
can not communicate with each other during the course of the proof process. Thus,
the complexity assumptions made in previous work, have been traded for a physical
separation between the two provers.

We call this new model the multi-prover interactive-proof model, and examine
its properties and applicability to cryptography.

1 Introduction

The notion of randomized and interactive proof system, extending NP, was intro-
duced in [GMR] and in [B]. An interactive proof-system consists of an all powerful
prover who attempts to convince a probabilistic polynomial-time bounded verifier
of the truth of a proposition. The prover and verifier receive a common input and
can exchange upto a polynomial number of messages, at the end of which the veri-
fier either accepts or rejects the input. Several examples of interactive proof-system
for languages not known to be in NP (e.g graph non-isomorphism) are known.

In [GMWI] Goldreich, Micali and Wigderson show the fundamental result that
that if “nonuniform” one-way functions exist (i.e no small circuits exist for the
function inverse computation), then every NP language has a computationally zero-
knowledge interactive proof system. This has far reaching implications concerning
the secure design of cryptographic protocols. It also seems to be the strongest result
possible. Results in [F] and [BHZ] imply that if perfect zero-knowledge interactive
proof-systems for NP exist, (i.e which do not rely on the fact that the verifier is
polynomial time bounded) then the polynomial time hierarchy would collapse to
its second level. This provides strong evidence that it will be impossible (and at
least very hard) to unconditionally show that NP has zero-knowledge interactive
proofs.

In light of the above negative results, it is interesting to examine whether the
definition of interactive proofs can be modified so as to still capture the notion of
efficient provability and yet allow perfect zero-knowledge proofs for NP, making no
intractability assumptions.

This is particularily important from a cryptographic view point, as the possible
one-way functions currently considered are very few and almost exclusive to num-
ber theory (e.g. integer factorization, discrete logarithm computation and elliptic
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1.1

logarithm computation.) If these were found to be efficiently solvable, the crypto-
graphic consequences of the [GMW] result would be unusable.

New Model

We extend the definition of an interactive proof for language L as follows: instead
of one prover attempting to convince a verifier that x, the input string, is in L, our
prover consists of two separate agents (or rather two provers) who jointly attempt to
convince a verifier that x is in L. The two provers can cooperate and communicate
between them to decide on a common optimal strategy before the interaction with
the verifier starts. But, once they start to interact with the verifier, they can no longer
send each other messages or see the messages exchanged between the verifier and
the “other prover”. Asin [GMR] the verifier is probabilistic polynomial time, and can
exchange upto a polynomial number of messages with either one of the two provers
(with no restriction on interleaving the exchanged messages) before deciding to
accept or reject string x.!

We restrict the verifier to send messages to the prover in a predetrmined order.
It can be shown that this is equivalent with respect to language recognition, to a
model in which the verifier is free to talk to the provers in any order he wishes.
Moreover, the verifier can be forced to send messages to the provers in a predeter-
mined order by using a simple password scheme. Thus, we can work in the easier
to deal with synchronous model completely without loss of generality.

The main novelty of our model is that the verifier can “check” its interactions
with the provers “against each other”. One may think of this as the process of
checking the alibi of two suspects of a crime (who have worked long and hard
to prepare a joint alibi), where the suspects are the provers and the verifier is
the interrogator. The interrogators conviction that the alibi is valid, stems from
his conviction that once the interrogation starts the suspects can not talk to each
other as they are kept in separate rooms, and since they can not anticipate the
randomized questions he may ask them, he can trust his findings (i.e receiving a
correct proof of the proposition at hand).

Applying this model in a cryptographic scenario, one may think of a bank
customer holding two bank-cards rather than one, attempting to prove its identity
to the bank machine. The machine makes sure that once the two cards are inserted

1. A proof-system for a language in this model is defined in a similar manner to [GMR]. Namely, L
has a multi-prover interactive proof-system if there exist a verifier V and provers P1, P2 such Lllat
when x € L the probability that V accepts is greater than 2/3, and when x is not in L then for all
P1, P2 the probability that V accepts is less than 1/3.
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1.2
1.2.1

13

they can no longer communicate with each other. In this scenario, the provers
correspond to the two cards, and the verifier to the bank machine.

Results

Perfect Zero Knowledge Multi-Prover Interactive Proofs
We show, that in our extended model all NP languages have a perfect zero-
knowledge interactive proof-system, making no intractability assumptions.

The protocol for NP languages proposed, requires the two provers to share either
a polynomially long random pad or a function which they can compute but the
polynomially bounded verifier can not. It is well known that such functions exist
by counting arguments. Most of the burden of the prooflies on one predetermined
prover. In fact, the “other” prover sole function is to periodically output segments
of the random pad he shares with the “primary prover”. The protocol is constant
(two) round.

Differently then in the case of the graph non-isomorphism and quadratic non-
residousity proof-systems in [GMR], [GMW], parallel executions of the protocol
remain perfect zero-knowledge.

More generally, we show that any lauguage which can be recognized in our ex-
tended model, can be recognized in perfect zero-knowledge making no intractabil-
ity assumptions.

Our construction does not assume that the verifier is polynomial time bounded.
The assumption that there is no communication between the two provers while
interacting with the verifier, must be made in order for the verifier to believe the
validity of the proofs. It need not be made to show that the interaction is perfect
zero-knowledge.

Language Recognition Power of New Model

It is interesting to consider what is the power of this new model solely with respect
to language recognition. Clearly, NP C I P which in turn is a subset of languages
accepts by our extended model. We show that adding more provers than two, adds
no more power to the model.

We also show for every language possessing a two prover interactive proof there
exists another two prover interactive proof which achieves completeness, i.e. the
verifier will always accept strings which are in the language.

Fortnow, Rompel and Sipser [FRS] have shown that two provers can accept any
language in IP (one-prover model with polynomial number of rounds) using only
a constant number of rounds. They also show that three provers can accept in a
constant number of rounds all languages recognized by a multi prover model.
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1.4

2

Definition 1

Remark 1

Definition 2

Feige, Shamir and Tennenholtz [FST]look at a model they call the k-noisy oracle
model, in which the verifier is interacting with & oracles all of which but one may
be dishonest. Based on the assumption that one of the oracles is trusted, they show
that P-space langauages can be recognized in a 2-noisy oracle model.

Open Problem

Whether the two-prover proof-system is actually more powerful with respect to
language recognition than the original one-prover interactive proof-system of
[GMR],[B], remains an open problem.

Even the simplest case of two-round two-prover proof-system in which the veri-
fier sends the result of his coin tosses first (some to prover 1 and some to prover 2),
receives responses (from both provers) on the subsequent round, and then evalu-
ates a polynomial time predicate to decide whether to accept or reject, is not known
to lie in PSPACE. Hastad and Mansour [HM] show that resolving this question in
the positive will imply that NP # poly(log) - SPACE.

Definitions

Let Py, Py, ..., P, be Turing machines which are computationally unbounded
and V be a probabilistic polynomial time Turing machine. All machines have a
read-only input tape, a work tape and a random tape. In addition, Py, P, ..., P;
share an infinite read-only random tape of 0’s and 1’s. Every P; has one write-only
communication tape on which it writes messages for V. V has k write-only com-
munication tapes. On communication tape i, V writes messages to P;. We call
(Py, Py, ..., P, V)ak-prover interactive protocol.

Fortnow, Rompel and Sipser [FRS] remark that the above can be modeled as a
probabilistic polynomial time Turing machine V and an oracle p such that queries
to p are prefixed always by 1 <i < k, corresponding to whether the query is directed
to prover i. Each query contains the history of the communication thus far.

We note that although this memoryless formulation is equivalent to the i-prover
formulation with respect to language recognition, it is not equivalent when zero-
knowledge is considered. In this latter case the provers must be able to check that
the history isindeed what is claimed by the verifier, before answering the next query.
Since the verifier is not untrusted, the provers can not be memoryless.

Let L C {0, 1}*, We say that L has a k-prover interactive proof-system(IPS) if there
exists an interactive BPP machine V such that:
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Remark 2

Remark 3

Remark 4

Definition 3

Definition 4

3

Theorem1

Proposition 1

Theorem 2

Theorem 3

1. 3P P,, ..., P suchthat (P, P,, ..., P, V) is a k-prover interactive protocol
and Vx € L, prob( V accepts input x) > 2.

2. VP, Py, ..., P, such that (P, P, ..., P, V) is a k-prover interactive proto-
col, prob( V accepts input x) < 1.

if L has an k-prover interative proof-system and condition (1) holds for a particular

f’lﬁz, e, ISk, then we say that (f’l, 132, Isk, V) is a k-prover interactive proof-system
for L.

if L has an two-prover interative proof-system, then L has a two-prover interactive
proof-systems (P;, P,, V) such thatforx € L, prob(V acceptsx) = 1. See Theorem 5.

For convenience, without loss of generality, we assume that every verifier V outputs
his coin tosses at the end of his interaction with the P;’s.

Let I P, = {L which have k-prover interactive proof-system }.

The following definition of perfect zero-kowledge is identical to the Goldwasser-
Micali-Rackoff [GMR] definition of perfect zero-knowledge in the 1-prover model.

Let (Py, Pp,..., P, V) be a k-prover interactive proof-system for L. Let
Viewp, p, ... p,v(x) denote the verifier's view during the protocol (namely the
sequence of messages exchanged between the verifier and the two provers in-
cluding the last message of the verifier which contains his coin tosses - see re-
mark 4 above). This is a probability space taken over the coin tosses of V and
the joint random tape of Py, P,, ..., P,. We say that k-prover interactive protocol
(Pyy Py ..., P, V) is perfect zero-knowledge for V if there existe a BPP machine
M such that M (x) = Viewp, p, .. p v(x). We say that L has a k-prover perfect zero-
knowledge proof-system if there exists provers Py, P,, ..., P, such that for all BPP
verifiers V, there exists a probabilistic Turing machine M such that for all x in L,
M (x) = View PPy, ..., Pk";(x) and M (x) terminates in expected polynomial time.

Statement of Our Results
Every L € NP has a two-prover perfect zero-knowledge interactive proof-system.

parallel executions of the perfect zero-knowledge interactive proof-system for NP
remain perfect zero-knowledge.

Every L € IP, has a perfect zero-knowledge interactive proof-system.

Any two party oblivious function computation can be done in this model.
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Theorem 4

Theorem 5

3

VA

Theorem 1

For all k > 2, if Le IP;, then L € IP,.

If L € IP, then 3Py, P,, V such that (P;, P,, V) is a two-prover interactive proof-
system for L and for all x € L, Prob( V accepts x) = 1.

Key Ideas

A general primitive used in complexity based cryptography (and in particular in the
proof that NP is in zero-knowledge under the assumption that one-way functions
exist)is the ability to encrypt a bit so that the decryption is unique. In our model,
encryption is replaced by a commitment protocol to a bit such that the bit is equally
likely to be 0 or 1 (information theoretically), and yet the probability that a different
bit can be decommited (i.e revealed) is less than 1 (this fraction can then be made
arbitrarily small using standard techniques). The idea is that one prover is used to
commit the bit, and the other to reveal it.

Another important primitive is that of oblivious circuit evaluation. This primi-
tive allows two parties, A and B, possessing secrets i and j respectively, to compute
some agred upon function f(i, j) in such a way that A learns nothing, and B learns
only f(i, j). The original implementation of this protocol, due to Yao [Yao86a], re-
quires the existence of trapdoor functions. In fact, oblivious circuit evaluation can
not be implemented without cryptographic assumptions in the standard two party
scenario. However, we show that oblivious circuit evaluation between verifier and 1
prover can be done without assumptions in the two-prover model. The proof relies
on a result of [K] reducing oblivious circuit evaluation to a simpler protocol, known
as 1-out-of-2 oblivious transfer, which was reduced by [C] to a still simpler protocol,
known as oblivious transfer. This last protocol is implemented in the two-prover
model.

Proof of Theorem 1: How to Commit Bits
We first show that every language in NP has a perfect zero-knowledge two-prover
interactive proof-system.

Every L in NP has a two-prover perfect zero-knowledge interactive proof-system.

Idea of Proof

Let (Py, P,, V) denote a multi-prover protocol which receives as input the graph
G =(V,&).Let P;and P, share an infinite random pad R suchthat R =ryry...7¢ . ..
where r; €{0,1,2}.2 Letn = V.

2. Alternatively, R can be replaced by the outcome of f(x) where x is the input and f : {0, 1}*— >
{0, 1}* is a function such that for all x € {0, 1}*, for all i < |f(x)|, the i-th bit of f(x) is equally
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Let us quickly review® one of the, by now standard proofs ((GMW1], [BI]) that
NP is in zero-knowledge under the assumption that one-way functions exist.

Review: The prover is attempting to convince the verifier that G is Hamilton-
ian. The prover publicizes an probabilistic encryption algorithm E (as in [GM],
[Yao82a])? The prover and verifier repeat the following protocol n times:

STEP 1. prover randomly permutes the vertices of graph G (using permutation
) to obtain graph G and sends to verifier

® ann x n matrix @ = {o;;} where o;; in E(b;;) and b;; = 1 if edge ij is
present in the G and 0 otherwise.

» B e E(m),i.ean encryption of .
STEP 2. verifier chooses at random coirn € {0, 1}, and sends coin to the prover.

STEP 3. If coin = 1, prover decrypts 8 and ;; for all i, j <n and sends decryp-
tions to verifier. If coin = 0, prover decrypts those o;; such that edge ij is in
the Hamiltonian path in G.

STEP 4. If prover is unable to preform step 3 correctly, verifier rejects. Other-
wise, after n iterations of steps 1 through 4, verifier accept.

End of Review
Returning to the two prover model, prover P; replaces the prover in step 1 of above
protocol and prover P, replaces the prover in step 2 of above protocol. Algorithm E
is no longer a probabilistic encryption algorithm based on the existence of one-way
functions as in [GM] or [Yao86a], but rather a commitment algorithm computed
as follows.

Let 0y, 04:{0, 1, 2}— > {0, 1, 2} be such that

1. foralli, oy(i) =1,

2. 0,(0) =0,04(1) =2 and 04(2) = 1.

Let m;, be the k-th bit to be committed to in the protocol.

likely to be 0 or 1 with respect to any probabilistic polynomial time machine. Such functions can
be shown to exist by standard diagonalization techniques over all probabilistic polynomial time
machines.

3. the proof reviewed is from [BI]

4. The encryption algorithm E is public. We denote y € E(m) to mean that there exists string r
such that algorithm E using r for his coin tosses, on input m, produces y. Given y there exists
unique m, r such that E, on coin tosses r and input m outputs y. To decrypt y both m, r are
revealed.
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Claim1.1

Claim 1.2

To commit my :

e V chooses at random ¢, € {O, 1} and sends ¢; to P;.
* Py sets E(c, my) = o, (rp) + m mod 3, where r; € {0, 1, 2} is read off the

random tape P; shares with P,, and sends E(c;, my) to V.

Toreveal the k-th bit committed in the protocol, V and P, engage in the following
protocol.

To reveal the k-th bit:

e Vsendskto P,.

e P, sends V the string ry.

* V computes o, (r;) and sets my to (E(cy, my) — o, (r;)) mod 3.

Note: P, does not know ¢, and has never seen E (¢, my).

We prove two properties of the above pair of commit-reveal protocols. First,
since P, sees neither E(c, my) nor c;, but knows exactly what P;’s program is,

the probability that P, successfully reveals a bit value different than the one P;
committed to is less than 1.

vre{0,1,2},me{0, 1},

prob(#is s.t. E(c,r,m) = E(c,7,m)) < §

Comment: To decrease the probability of successfuly cheating from } to %, Py
preform n commits to m; and P, preforms n reveals correspondingly.

Knowing k, E(cy, m;) and ¢, gives the verifier no advantage in guessing m,.
ve € {0, 1},
1
prob(m =0|E(c, r,m)) =prob(m =1|E(c,r,m)) = 2

Proving now that the altered mutli-prover Hamiltonian cycle protocol consti-
tutes a two-prover interactive proof for the Hamiltonian cycle problem follows
directly from [BI]’s proof and claim 1.

Proving that the protocol is perfect-zero-knowledge is more subtle.

To this end, we exhibit a probabilistic Turing machine M such that

e for Hamiltonian graphs G, M (G) terminates in expected polynomial time.
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e for all V such that (Py, Py, ‘7) is a two-prover protocol, and for all Hamil-
tonian graphs G, M(G) = View PPy (where P,, P, are honest provers as
specified above.)

WLOG let the number of coin tosses of verifier and prover on input G = (V, £) where
|V| = n be be bounded by polynomial Q(n).

Simulator M program: (tailored after steps 1-4 above in [B1]’s proof)

STEP 1. M chooses p € {0, 1}2™ at random for the coin tosses to be used by
V.and sets R=ryry...rq...,|R| €{0,1}2" where r, € {0, 1, 2} are cho-
sen at random. (V(,o, G) will denote the program V on input G and coin
tosses p.) M picks a random permutation r of the vertices of graph G to ob-
tainthe permuted graph G and an n x n random binary matrix MAT. Next,
M simulates a commitment protocol to w and MAT as follows. To simulate
a commitment protocol to the k-th bit m: M runs V(p, G) to obtain ¢, com-
putes E(c, m) = o, (r;) +m mod 3 forr; € R, and writes E(c, m) on \7(/), G)’s
tape.

STEP 2. M continues running V(p, G) to obtain coin.

STEP 3. if coin =1, M reveals & (as P, would do in real protocol) by writing the
appropriate r € R on Vip,G)'s tape. Revealing MAT to V is more involved, as
follows. Let MAT = {m;;|1 <i, j <n}jrand a = E(c, m;;) = 0.(r) + m;; mod 3
wherer € Risther usedinstep 1tocommitm;;. Let7 be suchthata = o,.(7) +
m;; mod 3. Note that such 7 always exists and since M knows c (differently
from P, in the real protocol) M can compute it. Set

r ifm;; =1and ij is an edge of G,

orm;; = 0and ij is not an edge of G

~N¢
Il
~>

ifm;; = 0and ij is an edge of G,

orm;; =1andij is not an edge of G

Then M reveals 7 to ‘7(,0, G).
If coin =0, M selects n ij entries at random in MAT such that no two
entries are in the same column or in the same row. Set

. r lfml-j=1

r =

A

r ifml]:()

Where again r € R from step 1 such that o = E(c, m;;) = 0.(r) + m;; mod 3,
and 7 is such that o;; = 0.(7) + m;; mod 3. Next, M reveals 7 to Vip, G).
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Finally, M sets R to be R with the values of  substituted for r used to commit
the matrix MAT.

STEP4. M runs V to either accept or reject. It then outputs the transcript of its
exchanges with V followed by R. DONE

It is clear that, M on G operates in polynomial time in the running time of V.
Since V is assumed to be probabilistic polynomial time, so is M.
To show that the probability space generated by M is identical to that in

View we notice that for fixed p ( coin tosses of the verifier) and fixed R

Py, Py, V)
(join(t ;ériélo)m tape of P; and P,) the output of M(G) is identical to View( Py, Py, D)
This is so as M actually runs V to obtain his moves and therefore V’s moves are
guaranteed to be perfectly simulated, while M itself follows the moves P;, P, would
have made on joint random tape R. Since p was picked by M at random at step 1,
it remains to argue that the probability that R was chosen by P; and P, is the same
as the probability that R was output by M. This is trivially true by claim 1.2. ]

We claim, without proof here, that independent executions of the above protocol
for any language L € NP can be performed in parallel and the resulting protocol will
still be a 2-prover perfect zero-knowledge proof-system for L.

In the 1-prover model the question of whether it is possible in general to preform
parallel executions of perfect zero-knowledge protocols maintaining perfect zero-
knowledge is unresolved. In particular, it is not known how to parallelize the proof-
systems for quadratic residuosity and graph isomorphism.

5 Proof of Theorem 4: P, =P, forall k > 2

We now show that any k-prover (P4, ..., P, V) interactive proof-system for lan-
guage L can be converted into a 2-prover (P;, P,, V) interactive proof-system. The
idea is as follows.

Verifier V tosses all his coins and sends them to prover P;. In return, P, sends
V the entire history of communication that would have occured for theses coin
tosses between the real verifier V and the k real provers P;’s. If this is an accepting
conversation for V, V now uses P, to check the validity of the conversation. This
is done by V selecting at random an original prover P;, and simulating with P, the
conversation between V and P; on these coin tosses. If the conversation does not
match the conversation sent by P, thenV rejects, otherwise the protocol is repeated
k times (in series) and finally 1% accepts.

Note that the number of rounds in the simulating protocol is k¢, where  is the
number of rounds in the k-prover interactive proof-system. Fortnow, Rompel and
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Theorem 4

Proof

Claim 5.1

Proof

Claim 5.2

Proof

Sipser in [FRS] show that for each L € I P,, there exists a 3-prover IPS for L with
only a constant number of rounds.

Letk>2.If Le IP,then L € IP,.

Let L have a k-prover interactive proof-system (Py, ..., P, V). Let [, ={1, 2, ...,
k, 8} and r denote the coin tosses made by the verifier. For a w € L, the opti-
mal provers Py, ..., P, and the verifier V can be thought of as deterministic
functions P; : X* - X*and V : X* x [} x X* — X* U {(accept, reject} such that
y;. =P (hi._l#x;.) denotes the j-th message of the i-th prover to the verifier, xj. =
Vr,i, h}_l, cee,
and h’] = #X\H#YIH .. #x}#y;. denotes the history of communication as prover i

h’;_l) denotes the j-th message of the verifier to the i-th prover,

sees it at round j. Let ¢ the total number of rounds, then V(r, $, htl, ... ,hf) €
{accept, reject}. Let Q be a polynomial such that |r|, |x;|, |y;| < O(lw)). n

We now define provers P, and P, and verifier V in the simulating two-prover
protocool 131, 132, V).

On input w,

STEP 1. V chooses r € {0, 1}2(*D at random, sends r to P,.

STEP 2. P, sends hl ..., hf to V where the h?’s are computed according to
functions 131, e, 13k and V.If V(r, $, htl, - ,h’;) = reject then 1% rejects and
halts. Otherwise V picks 1 <i < k at random, sets j = 1 and continues.

STEP 3. V sends u"]. =Vr,i, fzi]._l) to P,, where hj = #ul#vi# ... #ui].#v’;. for
j<t.if j=rand flﬁ = hi then V accepts and halts , otherwise 1% rejects and
halts.

STEP 4. P,sendsu’ = P;(h';_ #u’)to V. Set j = j +1and GOTO STEP 3.
YwelL,
prob( V accepts w) = prob( V accepts w)

If P; follow the protocol as described above and compute the hi according to the
functions of the corresponding P;’s, then for every sequence of coin tosses r on
which V would accept so would V. ]

if w e L, prob( V accepts w) < (prob( V accepts w) + e *.

Assume w ¢ L. Then, the prob( 1% accepts w) < prob( 1% accepts w|Vi <kVj <t,
Y= ﬁi(hj._l)) + prob( V accepts w|3l, j s.t. yi. # ﬁ,(hlj_l)) < prob( V accepts w)
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6

Theorem 5

Proof

+ prob( V(r, $, htl, e ,hf) =accept,and 31 <k, s.t. hi, * fzi, but i of step 4 is s.t.
hi= fzﬁ) < prob( V accepts w) + (1 — 1).

If the above protcol is repeated k? independent times, the probability of success
is reduced to prob( V accepts w) + (1 — %)kz < prob( V accepts w) + e k.

This completes the proof, and L is indeed in I P,. ]

Proof of Theorem 5: Completeness

Goldreich, Mansour and Sisper (GMS] showed that any L € I P has an interactive
proof-system for which strings in L are always accepted. We show the correspond-
ing property forany L € I P,.

If L € I P,, then there exists a 2-prover interactive proof-system (P, P,, V) for L
such that for all x € L, prob( V accepts ) = 1.

Suppose (P, Py, V) is a 2-prover interactive proof-system for L such that € =
prob( V accepts |w not in L) and the number of coin tosses on input w which V
makes is a polynomial Q(Jw|). We show a simulating 2-prover interactive proof-
system (131, f’z, V) for L which also achieves completenes. The simulation is done
in two stages. In stage 1, we use the idea of the completeness proof for the I-prover
interactive proof-system model by Goldreich, Mansour and Sisper in [MGS] (based
on Lautman’s Lemma) where P, plays the part of both P, and P,.In stage 2, as in
the proof of the theorem of section 6, V uses P, to check the validity of stage 1.

Let ¢t denote the number of rounds in (P;, P2, V). Again, consider Py, P, and V
as deterministic functions as in the proof of theorem of section 6.

Let r denote the coin tosses of the verifier. For i =1, 2, let hi(r) = #xi#yi#
... #x!#y! where x;i =V(r,i, h;_l, (r)), and y}l = P,-(h;_l(r)#x;'.).

Define W = {r|V(r, S, htl, htz) = accept}. Note that for w e L, % >(1—¢)

and for w not in L% < €. Lautman[L] shows that Vw € L3sq, ..., sg(u), I5i] =
O(lw|), s.t.¥r, |r| = Q(lw]), A s.t. r & s; € W. We use this in a manner similar to
[GMS]. [ |
On input w,
STEP1. P sendsV sy,... , 5(@lw|) such thats; € {0, 1}(*D

STEP 2. V sends r to P, where r is randomly selected in {0, 1}(@/»D

STEP 3. 131 sends to ‘7, hﬁ(sj @r)fori=1,2and 1< j < Q(Jw|). (These are
the histories of conversations which would have been exchanged in original
protocol (Py, P,, V) on coin tosses r &5, 1< j < O(lw]).)
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Claim1

Proof

Claim 2

Proof

STEP 4. if V(r @s;,h}(r ®s;), h}(r ®s;)) =reject for all 1 < j <k, then V re-
jects. If A1s.t. V(r & s;, hi(r @ s)), h(ds))) = accept, then goto STEP 5.

STEP 5. V choosesi € {1, 2} at randorn. It then interacts with prover 132 in the
same way that V and P; would have on coin tosses r @ s;. If this interaction
produces exactly the same history string ! (r & 1) sent by P, in STEP 3 then
1% accepts, otherwise it rejects.

The above protocol is repeated (Q|w|)s times, and the verifier accepts if and only
if he accepeted in any of these iterations.

prob( V accepts |w| e L) =1

if 131, and f’l follow the program outlined above, follows directly from [L] and [GMS].
[ ]

prob( V accepts |w|notin L) <1

We now can not assume that P;, P, follow the protocol. Let hij,fori=1,2,1<j <
Q(Jw|) denote the strings sent by 131 in STEP 3. [

prob( V accepts in one iteration |w ¢ L) <Y, prob( 3, V(r & 57, hyj, hyy) =
accept| 151, ﬁz honest) +prob( ﬁl, ﬁz not caught in step 5 but 3j, i, hi(r & s; # Jij)
<(Qlw])-e+(1— W) =1- m + (Q|w|) - € Now, prob( V accepts in Q(Jw|)*

1 (Qlwl))?
otan *€)
small. ]

iterations |w € L) = (1 —

which is less than a 1/3 for € sufficiently

Proof of Theorem 2: Outline

Overview

The proof of Theorem 2 is very long and complicated. The main idea of the proof
is the implementation of a technique we call encrypted conversalions. This is a gen-
eral technique for transforming proof systems into zero-knowledge proof systems.
A protocol that has been transformed using this technique closely mirrors the orig-
inal protocol. Indeed, all the questions and answers of the transformed protocol
can be mapped to questions and answers in the original protocol. However, these
questions and answers are all strongly encrypted, in an information theoretic sense,
using keys that are known by the provers, but not by the verifier. Because the con-
versation is so strongly encrypted, the verifier gets no information, so the protocol
is zero-knowledge.
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Two concerns such a transformation must deal with are

e Howcan theverifier, who in a strong sense knows little of what has happened
in an encrypted conversation, be convinced that the conversation indeed
mirrors a valid conversation from the original protocol? Also, how can the
verifier be convinced that the unencrypted conversation would indeed have
caused the original verifier to accept?

e How can one insure that a malicious verifier cannot subvert the encrypted
protocol in order to acquire information in some way?

We deal with the first concern by showing how the provers and verifier can take
an encrypted transcript of the first i rounds of a conversation, and compute an
encrypted transcript of the firsti 4+ 1 rounds of a conversation. This is done in such
a way that the verifier can verify with high probability that this is the case. We deal
with the second concern by insuring that the encrypted conversation, if generated
at all, will mirror a conversation between the prover and an honest verifier. Thus, if
the verifier follows the simulation, he will only find out whether the original verifier,
on a random set of coin tosses, accepted. Since the original verifier accepts with
probability 1, this is no information. Furthermore, we guarentee that if the verifier
does not go along with the simulation, he will not get any information.

In order to accomplish these goals, we use a very useful tool called oblivious
circuit computation. This tool, first developed by Yao [Yao86a], is a protocol by
which two parties, A and B, possess secrets i and j respectively, and have agreed
upon some circuit f. At the end of the protocol, A learns nothing about j, and
B learns f(i, j), but nothing more about i than can be inferred from knowing j
and f(i, j). The provers and verifier can compute the next step of an encrypted
conversation by obliviously evaluating a circuit. We sketch the reduction from
encrypted conversations to oblivious circuit evaluation in appendix A.3.

Alarge portion of our construction is devoted to implementing oblivious circuit
evaluation. Yao’s implementation of this protocol relies on complexity theoretic as-
sumptions, and is therefore unsuitable for our purposes. More recently, however,
this protocol was implemented using a subprotocol known as oblivious transfer
in lieu of any cryptographic assumptions[K]. In the standard, two-party scenario,
oblivious transfer cannot be implemented without complexity theoretic assump-
tions. However, we show that oblivious transfer can be implemented in the two-
prover scenario without recourse to these assumptions. Our implementation uses
a result of Barringtion [Ba] that NC! languages can be accepted by bounded width
branching programs. We sketch our implementation in appendix A.2.
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