ODE
NATION

Personal Computing and the
Learn to Program Movement in America

Michael J. Halvorson

v) .
L =
A - |
. \ |
" .- i
l h P o . .
L " ™ '] e
T \

-,

(acm) o~ = -
f acCing) . ad =f 5 | B =inMNLCOD Jel TITIRC B sl A !:: '}
ey ASSUCIATION EORGOMPUTING MACHINERY

T—

Code Nation

ACM Books

Editor in Chief
Sanjiva Prasad, Indian Institute of Technology (IIT) Delhi

Founding Editor
M. Tamer Ozsu, University of Waterloo

ACM Books is a series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Computing and the National Science Foundation, 1950-2016:
Building a Foundation for Modern Computing

Peter A. Freeman, Georgia Institute of Technology

W. Richards Adrion, University of Massachusetts Amherst

William Aspray, University of Colorado Boulder

2019

Providing Sound Foundations for Cryptography: On the work of Shafi Goldwasser
and Silvio Micali

Oded Goldreich, Weizmann Institute of Science

2019

Concurrency: The Works of Leslie Lamport
Dahlia Malkhi, VMware Research and Calibra

2019

The Essentials of Modern Software Engineering: Free the Practices from the
Method Prisons!

Ivar Jacobson, Ivar Jacobson International

Harold “Bud” Lawson, Lawson Konsult AB (deceased)

Pan-Wei Ng, DBS Singapore

Paul E. McMahon, PEM Systems

Michael Goedicke, Universitdt Duisburg—-Essen

2019

Data Cleaning
Thab F. Ilyas, University of Waterloo
Xu Chu, Georgia Institute of Technology

2019

Conversational UX Design: A Practitioner’s Guide to the Natural Conversation
Framework

Robert J. Moore, IBM Research-Almaden

Raphael Arar, IBM Research-Almaden

2019

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University

2019

Hardness of Approximation Between P and NP
Aviad Rubinstein, Stanford University

2019

The Handbook of Multimodal-Multisensor Interfaces, Volume 3:

Language Processing, Software, Commercialization, and Emerging Directions
Editors: Sharon Oviatt, Monash University

Bjorn Schuller, Imperial College London and University of Augsburg

Philip R. Cohen, Monash University

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Kruger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)

2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie, Massachusetts Institute of Technology

2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:

Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University

Bjorn Schuller, University of Augsburg and Imperial College London

Philip R. Cohen, Monash University

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)

Gerasimos Potamianos, University of Thessaly

Antonio Kruger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)

2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University

2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign

2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universitdt Darmstadt

2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University

2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley

2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks

Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School

Limsoon Wong, National University of Singapore

2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:

Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs

Bjorn Schuller, University of Passau and Imperial College London

Philip R. Cohen, Voicebox Technologies

Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly

Antonio Kruger, Saarland University and German Research Center for Artificial
Intelligence (DFKI)

2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota

2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining

ChengXiang Zhai, University of Illinois at Urbana-Champaign

Sean Massung, University of Illinois at Urbana-Champaign

2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University

2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France

2016

Verified Functional Programming in Agda
Aaron Stump, The University of lowa

2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions

2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology

2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology

2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive
Computing

John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business and
Government, John F. Kennedy School of Government, Harvard University

2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington

2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity

Computers
Bryan Jeffrey Parno, Microsoft Research

2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington

2014

Code Nation

Personal Computing and the Learn to Program
Movement in America

Michael J. Halvorson

Pacific Lutheran University

ACM Books #32

Copyright © 2020 by Association for Computing Machinery

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which the Association of
Computing Machinery is aware of a claim, the product names appear in initial capital or
all capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

Code Nation: Personal Computing and the Learn to Program Movement in America
Michael J. Halvorson

books.acm.org
http://books.acm.org

ISBN: 978-1-4503-7758-4 hardcover
ISBN: 978-1-4503-7757-7 paperback
ISBN:978-1-4503-7756-0 EPUB
ISBN: 978-1-4503-7755-3 eBook

Series ISSN: 2374-6769 print 2374-6777 electronic

DOls:

10.1145/3368274 Book 10.1145/3368274.3368282 Chapter 7

10.1145/3368274.3368275 Acknowledgments 10.1145/3368274.3368283 Chapter 8

10.1145/3368274.3368276 Chapter 1 10.1145/3368274.3368284 Chapter 9

10.1145/3368274.3368277 Chapter 2 10.1145/3368274.3368285 Chapter 10
10.1145/3368274.3368278 Chapter 3 10.1145/3368274.3368286 Chapter 11
10.1145/3368274.3368279 Chapter 4 10.1145/3368274.3368287 Afterword

10.1145/3368274.3368280 Chapter 5 10.1145/3368274.3368288 Index

10.1145/3368274.3368281 Chapter 6

A publication in the ACM Books series, #32
Editor in Chief: Sanjiva Prasad, IIT Delhi
Area Editor: Thomas Misa, University of Minnesota

This book was typeset in Arnhem Pro 10/14 and Flama using LuaTgX.
Cover image by vgajic/Collection E+ via Getty images

First Edition

10987654321

http://books.acm.org
http://dx.doi.org/10.1145/3368274
http://dx.doi.org/10.1145/3368274.3368282
http://dx.doi.org/10.1145/3368274.3368275
http://dx.doi.org/10.1145/3368274.3368283
http://dx.doi.org/10.1145/3368274.3368276
http://dx.doi.org/10.1145/3368274.3368284
http://dx.doi.org/10.1145/3368274.3368277
http://dx.doi.org/10.1145/3368274.3368285
http://dx.doi.org/10.1145/3368274.3368278
http://dx.doi.org/10.1145/3368274.3368286
http://dx.doi.org/10.1145/3368274.3368279
http://dx.doi.org/10.1145/3368274.3368287
http://dx.doi.org/10.1145/3368274.3368280
http://dx.doi.org/10.1145/3368274.3368288
http://dx.doi.org/10.1145/3368274.3368281

PART |

Chapter1

Chapter 2

Chapter 3

Contents

Acknowledgments xiii

LEARNING TO CODE 1

How Important is Programming? 3

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Programming Culture 5

Learning a Language 7

New Ways of Thinking 8

Equity and Access 13

Personal Connections 15

Manifestos of the Movement 17

A New History of Personal Computing 19

Four Computing Mythologies 25

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

The NATO Conference on Software Engineering 27
The Complexity of Software 32

Systems are for Customers 35

The Counterculture Movement 39

Everything is Deeply Intertwingled 45

The Birth of Computer Science 49

Computers for the People 54

Personal Computing 58

FORTRAN, Logo, and the Tower of Babel 63

3.1
3.2
3.3
3.4
3.5
3.6

Solving Problems with Computers 65
The Tower of Babel 70

High-level Languages 75

Learning FORTRAN 78

Daniel McCracken’s Primers 83
Seymour Papert and Logo 87

x Contents

3.7 Cynthia Solomon 92
3.8 Logo as aModel for Code Nation 93
3.9 How successful was Logo? 95

Chapter 4 Advocating Computer Literacy 99
4.1 Robert Albrecht and the Popularization of the Movement 100
4.2 ISpeak BASIC 103
4.3 The B.F. Skinner Approach 108
4.4 Hold Me Closer Tiny BASIC 110
4.5 Arthur Luehrmann and the Computer Literacy Debate 112
4.6 ABlowto the Movement 120
4.7 Apple Computer’s Education Agenda 121
4.8 Applications over Languages 123

Chapter 5 Four Million BASIC Programmers 127
5.1 Introducing David Ahl 128
5.2 AProliferation of BASICs 134
5.3 IBM BASICA 135
5.4 Adventure Games 137
5.5 Structured Programming 141
5.6 Microsoft Press and Learn BASIC Now 145
5.7 Microsoft Game Shop 153
5.8 Visual Basic for Windows 156
5.9 Innovative Programming Primers 159

PART Il HOBBYIST AND HACKER CULTURES 167

Chapter 6 Power Users, Tinkerers, and Gurus 169
6.1 Computing Terminology 171
6.2 Tinkering with Personal Computers 174
6.3 Van Wolverton and Batch Files 176
6.4 The DOS for Dummies Phenomenon 183
6.5 The Economic Impact of Personal Computers 187
6.6 CaryLu Introduces the Macintosh 188
6.7 The Waite Group’s Macintosh Primers 192
6.8 The Maturing Mac Platform 200

Chapter 7 Hackers and Cyberpunks 205
7.1 Bill Landreth and 1980s Hacker Culture 206

Chapter 8

PART Il

Chapter 9

Chapter 10

Chapter 11

Contents

7.2 Jude Milhon: From Civil Rights Activist to Cyberpunk 211
7.3 Mondo 2000 and The Cyberpunk Handbook 217
7.4 Cypherpunks and Cryptography 222

Computer Magazines and Historical Research 227

8.1 Magazines and a Popular Culture of Computing 230
8.2 Letters from the Programming Community 235

8.3 New PC Users 236

8.4 Power Users 241

8.5 Advanced Hobbyists 245

8.6 Professional Programmers 248

8.7 New Approaches to Historical Research 252

PROFESSIONAL PROGRAMMING CULTURES 255

Developing for MS-DOS: Authors and Entrepreneurs 257

9.1 New Platforms for Commercial Software 259
9.2 Inside the IBM PC with Peter Norton 262

9.3 Borland’s Turbo Pascal 270

9.4 RayDuncan’s Advanced MS-DOS 274

9.5 The MS-DOS Encyclopedia 281

9.6 MS-DOS Sample Code 283

9.7 Technology Diffusion 285

C Programming Nation: From Tiny C to Microsoft Windows 289

10.1 The C Language 290

10.2 Learning C on Personal Computers 293

10.3 Academic and Professional Resources 296
10.4 CProgramming for the People 299

10.5 Charles Petzold’s Programming Windows 306
10.6 On Complexity 316

“Evangelism is sales done right”: PCs and Commercial Programming
Culture 321

11.1 The Macintosh Way 325

11.2 The West Coast Computer Faire 328

11.3 COMDEX and the Trade Show Movement 332

11.4 The Trouble with Self-taught Programmers 339

11.5 Software Engineering for the People 342

xi

xii Contents

11.6 Professional and Enterprise Development Systems 346
11.7 Commercialization 350

Afterword: Programming in the Internet Age 357
Author’s Biography 375

Index 377

Acknowledgments

I would like to thank the many friends, colleagues, and supporting institutions
that have helped me bring this book to you. As all historians know, writers
and researchers have many debts, and only some of them are repaid in the
acknowledgments. As I complete this project, I am especially aware of the creative
people and research institutions that have supported the Code Nation project over
the past 5 years. I am also deeply aware of the many teachers and mentors that I
have had the privilege to work with in a long career related to computing and higher
education. This book is dedicated to you all, with my heartfelt thanks.

At ACM Books, Iwould like to thank Thomas Misa, who initiated this project and
encouraged me as I worked on the early chapters. Tamer Ozsu and Achi Dosanjh
provided helpful guidance as the project took shape and made its way into the
publishing system at the venerable Association for Computing Machinery (ACM).
Also at the ACM, I would like to thank Barbara Ryan, for her help with permissions,
and Bernadette Shade, for her support with print production and graphics. Kim
Halvorson sized and edited many of the images included before they entered pro-
duction. Finally, I am grateful to Karen Grace for her careful editorial work as this
book made its way through the publishing system.

At Pacific Lutheran University (PLU), I would like to thank the Provost and
President’s Offices for taking an interest in the Code Nation project and offering
a sabbatical to support the writing of the first chapters. I am very grateful to the
talented staff of the Mordvedt Library, who helped me locate many obscure books
and magazines through interlibrary loans. My history, computer science, and inno-
vation studies colleagues have been welcoming conversation partners throughout
the project. Damian Alessandro contributed research to Chapter 2, and we shared
many enjoyable chats about the early years of Apple Computer and counterculture
activities in the San Francisco Bay Area. Michael Schleeter in the Department of
Philosophy has been a great teaching partner, and I have benefited greatly from his
wisdom about ethics and technology. Finally, Dale and Jolita Benson have been very

xiv Acknowledgments

generous supporters of this book from its beginning, and I appreciate their many
contributions to the Business and Economic History program at PLU.

At the University of Washington, Steven Pfaff in the Department of Sociology
offered many helpful comments, especially ideas related to “technology enthusi-
asm” and using computing mythologies as a way to tease out the subtle relation-
ships between technology initiatives and popular movements in the U.S. The staff
of the Engineering Library helped me locate many obscure computer books and
magazines.

Atthe Computer History Museum in Fremont, California, Sara Lott helped me to
locate and attain permissions for many of the images included in this book. Sydney
Olson welcomed me for several on-site visits to the museum’s fantastic archive and
reading room, and she tracked down materials in the collection when I had no idea
where to look.

At Code.org, I am grateful for the help of Hadi Partovi, Alice Steinglass, and
Lian Swanson, who connected me with resources about the Hour of Code campaign
and the group’s promising strategies for expanding access to computer science
education in schools.

Searching for images and materials took me to numerous corporations, insti-
tutions, and databases in the U.S. I am deeply grateful to the following loca-
tions for sharing their resources with me: the Alabama Department of Archives
and History, Apple Computer, the ACM, Code.org, Dartmouth College, DEC, Getty
Images, Hewlett-Packard, IBM, John Wiley & Sons, Microsoft, Macworld, O’Reilly
Media, PC/Computing, PC Magazine, PC World, Pearson, Penguin Random House,
Springer Nature, University of Minnesota Libraries/Charles Babbage Institute, Uni-
versity of Washington Libraries, and Ziff Davis.

Oral history played an important role in this project, and I would like to thank
the following people who shared interviews, email correspondence, photos, and/or
printed materials with me: Renzhi Cao, Ray Duncan, Kevin Eagan, Lee Felsen-
stein, John Froschauer, Ken Goffman, Dan Gookin, Kim Halvorson, Dean Holmes,
Alison Bailey Kennedy, André LaMothe, Dail Magee, Jr., Theresa Mannix, Robert M.
McClure, Bart Nagel, Ted Nelson, Larry Osterman, Charles Petzold, Brian Randell,
Jeffrey Richter, David Rygmyr, Megan Sheppard, Amy Stevenson, Patty Stonesifer,
Mitchell Waite, Jim Warren, and Van Wolverton.

Finally, Ireserve my deepest gratitude for my family, who supported me in untold
ways as this project made its way from a collection of curious ideas to a completed
book about the history of programming and personal computing. My sons Henry
and Felix grew up hearing tales about early personal computers, and we have often
chatted about software, music, and computer gaming. Kim has taken it all in stride
because she was there for most of it, and often sees what other people miss. I am
immeasurably grateful for my life with you.

LEARNING TO CODE

How Importantis
Programming?

“To understand computers is to know about programming. The world is divided... into
people who have written a program and people who have not.”

Ted Nelson, Computer Lib/Dream Machines (1974)

How important is it for you to learn to program a computer?

Since the introduction of the first digital electronic computers in the 1940s,
people have answered this question in surprisingly different ways.

During the first wave of commercial computing—in the 1950s and 1960s, when
large and expensive mainframe computers filled entire rooms—the standard advice
was that only a limited number of specialists would be needed to program com-
puters using simple input devices like switches, punched cards, and paper tape.
Even during the so-called “golden age” of corporate computing in America—the
mid- to late 1960s—it was still unclear how many programming technicians would
be needed to support the rapid computerization of the nation’s business, military,
and commercial operations. For a while, some experts thought that well-designed
computer systems might eventually program themselves, requiring only a handful
of attentive managers to keep an eye on the machines.

By the late 1970s and early 1980s, however, the rapid emergence of personal
computers (PCs), and continuing shortages of computer professionals, shifted
popular thinking on the issue. When consumers began to adopt low-priced PCs
like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the
millions, it seemed obvious that ground-breaking changes were afoot. The “PC
Revolution” opened up new frontiers, employed tens of thousands of people, and
(according to some enthusiasts) demanded new approaches to computer literacy.
As Ted Nelson, a prolific inventor and computing advocate wrote, “You can and
must understand computers NOW!” On learning to program computers, Nelson
energetically compared programming to another American obsession—driving an

4 Chapter1 How Important is Programming?

Figure 1.1 American school children experiment with computer programming using teletype
machines (1970s). (Courtesy of the Computer History Museum)

automobile. “If you've never written a program, it’s like never having driven a car,”
Nelson instructed. “You may get the general idea, but you may have little clear
sense of the options, dangers, constraints, possibilities, difficulties, limitations,
and complications.”!

Ted Nelson was not alone. By the late 1970s, scores of programming advocates
recommended that people of all ages learn to code as a way of understanding what
the world’s most intriguing devices were capable of. Computer programming—a pro-
cess of formulating a problem for the computer to solve, writing instructions in a
given computer language, loading instructions into the computer’s memory, run-
ning the program, and correcting errors—had emerged as a major late-night pas-
time and (for some) a promising profession. In response to the mandate of Nelson
and others, a surge of interest in programming developed, and the number of peo-
ple who could write at least elementary programs grew from several thousand in

1.Ted Nelson, Computer Lib Dream Machines (Self-published, 1974; Microsoft Press revised edition,
1987), 40.

1.1

1.1 Programming Culture 5

the early 1950s into millions by the early 1980s. (See Figure 1.1.) This sea change in
computational literacy encouraged the widespread adoption of computers, boosted
the global economy, and shaped the contours of the modern information age.

Programming Culture

This book is about the rise of computer programmers and the emerging social,
technical, and commercial worldview that I call programming culture, which took
a distinctive form during the early decades of microcomputers and personal com-
puting, ¢. 1970-1995. It is a popular history of coding that explores the experiences
of novice computer users, tinkerers, hackers, and power users, as well as the ideals
and aspirations of computer scientists, educators, engineers, and entrepreneurs.
A central part of this story is the learn-to-program movement, which germinated
in government and university labs during the 1950s, gained momentum through
counterculture experiments in the 1960s and early 1970s, became a broad-based
educational agenda in the late 1970s and early 1980s, and was transformed by com-
mercialization practices in the 1990s and 2000s. The learn-to-program movement
sought to make computers more understandable, imprint useful technical skills,
establish shared values, build virtual communities, and offer economic opportuni-
ties for technology enthusiasts. The movement also supported user communities,
schools, and emerging commercial industries, many of which benefited from the
utility and connectivity provided by digital electronic computers.

The learn-to-program movement had its ups and downs, but eventually set
the stage for 215 century expressions of computational literacy, such as the Hour
of Code, YouTube and Lynda courseware, certification programs, coding boot
camps, and university degrees in disciplines such as computer science, software
engineering, information technology, artificial intelligence, and (most recently)
human-computer interaction. As the title of this book suggests, the learn-to-
program movement fostered a groundswell of popular support for computing cul-
ture in America, resulting in what I call a Code Nation—a globally-connected society
that is saturated with computer technology and enchanted by software and its
creation.

The learn-to-program movement (or more broadly, the software-maker
movement) has inspired both disciples and critics. It has evolved over time and
its advocates have traversed numerous professional boundaries and cultural insti-
tutions. The movement is historically distinct but also follows the patterns and
rhythms of earlier socio-technical transformations, including the introduction of
steam-powered technologies during the Industrial Revolution, the electrification
of American businesses and homes, and the production of automobiles and “car
culture” in the early 20" century.

6 Chapter1 HowImportantis Programming?

Borrowing terminology from information science and the history of technol-
ogy, the learn-to-program movement is identifiable as part of the “diffusion” and
“domestication” phases that take place when a successful new technology is spread
or “propagated” across society.? Scholars from the field of business and economic
history also recognize this transition as a key period in which a new discovery
or invention is widely adopted and made useful for the general public, resulting
in new consumer behaviors and potential changes in the way that a market or
the broader economy functions.? To achieve wide-spread diffusion, the movement
often benefits from sustaining ideologies that strengthen the allegiance of follow-
ers and justify the time, resources, and commitment that are necessary for the
movement’s success.

Beyond hopes for material gain, America’s expanding programming culture
can also be viewed as a manifestation of the deep and abiding cultural tendency
that many describe as “technological enthusiasm.”* Technological enthusiasm is
an upbeat, optimistic appraisal of new technical systems that not only stoke the
engines of capitalism, but provide access to the ideals embedded in what is known
as the American Project and the American Dream. The publishers of PC software
systems readily participated in this vision, as each wave of entrepreneur-engineer
strived to improve their software, best their rivals, and boost the productivity of cor-
porations and the general public. By the 1980s, software creation had taken the
form of a consensus ideology that united many Americans in a common, acces-
sible dream of a better future through computing. As I will discuss in Chapter 2,
this enthusiasm brought additional computing mythologies to the fore, and their
collective use contributed to the positive view that American’s held about PCs and
software in the years to come.

2. See Computerization Movements and Technology Diffusion: From Mainframes to Ubiquitous Com-
puting, edited by Margaret S. Elliott and Kenneth L. Kraemer (Medford, NJ: Information Today,
Inc., 2008).

3. For a discussion of the phases that take place when a new consumer technology is introduced,
see Joseph J. Corn, User Unfriendly: Consumer Struggles with Personal Technologies, from Clocks and
Sewing Machines to Cars and Computers (Baltimore, MD: Johns Hopkins University Press, 2011).
Also useful is Claude S. Fischer, America Calling: A Social History of the Telephone to 1940 (Berkeley:
University of California Press, 1994); and the essay collection Does Technology Drive History? The
Dilemma of Technological Determinism, eds. Merritt Roe Smith and Leo Marx (Cambridge, MA: The
MIT Press, 1994).

4. See Thomas P. Hughes, American Genesis: A Century of Invention and Technological Enthusiasm,
1870-1970, Second Edition (Chicago: University of Chicago Press, 2004); David A. Hounshell, From
the American System to Mass Production, 1800-1932: The Development of Manufacturing Technology
in the United States (Baltimore, MD: The Johns Hopkins University Press, 1984).

1.2

1.2 Learning a Language 7

Learning a Language

By the late 1960s, programming emerged from America’s research labs and
government institutions to have a direct influence on universities, primary and
secondary schools (K-12 in the U.S.), and the nation’s businesses. But what type of
mental activity did programming entail? How should students take their first steps
when learning to program a computer? In search of an analogy, some specialists
suggested that learning to program was a bit like learning to read or speak in a for-
eign language. Utilizing the comparison, some educators pressed for the inclusion
of computer languages in their school’s curriculum. Rather than taking ayear or two
ofaspokenlanguage, such as Spanish or German, a few innovative programs offered
courses in computer language instruction, including FORTRAN, Logo, BASIC, and
Pascal.

School administrators eager to provide practical job training (and to mollify
prospective students and their parents) broadened the definition of “foreign lan-
guage” to include instruction in computer languages, algorithms, and database
management. The popular press advocated for coding instruction in news-
papers and special reports, and computer book and magazine publishers released
hundreds of titles to help students build simple applications for time-sharing
systems and the first PCs.

No one argued that computer languages were the same as human languages,
of course. But programming advocates pointed to the many parallels that they
observed in the structure of spoken and computer grammars, and to the ways that
basic logic and reasoning were gradually introduced to students. Instruction in
programming seemed to permit access to the private world of a computer and its
“brain” or central processing unit (CPU). Programming was also portrayed as a
valuable exercise in logical thinking and problem solving. It was a mental activ-
ity that provided a conceptual introduction to how computers worked, as well as
a deep dive into logic and syntax. For all these reasons, computer literacy advo-
cates recommended that those who planned to use computers in the future should
learn to code as soon as possible. “Even if you don’t write programs yourself,”
Ted Nelson advised in 1974, “you may have to work with people who do.””

In the early years of the electronic computer revolution, it was the imposing
image of the new machines that seemed to fascinate the public. The physicality
of mainframe computers was reinforced by images of large devices whirring and
blinking in popular films such as Desk Set (1957), 2001: A Space Odyssey (1968),
Colossus: The Forbin Project (1970), Logan’s Run (1976), and War Games (1983). As
computers became more reliable and better understood, however, the focus of

5. Nelson, Computer Lib, 43.

8 Chapter1 HowImportant is Programming?

1.3

popular attention turned away from computing machinery to software, the pro-
grams that ran on computers, and the coding experts who wrote code in high-
level languages like FORTRAN, COBOL, BASIC, and C. The computer industry went
through many transitions in the 1960s and 1970s, adding minicomputers and other
special-purpose machines. Gradually, the attention of the computing community
shifted from scientific and military systems to the application software that pow-
ered new types of businesses and helped them manage information.

By the 1980s and 1990s, it became apparent that there were not enough quali-
fied programmers to design, build, and maintain the software systems needed in the
U.S. as the country expanded its computational interests into new areas. Although
the academic discipline of computer science had taken shape in America’s colleges
and universities, these programs could not graduate enough scientists and engi-
neers to satisfy the industry’s needs. The situation was much the same in the rest
of the computerized world, in schools and markets stretching from Europe to Asia.
Journalist Clive Thompson has written about it this way: “If you look at the history
of the world, there are points in time when different professions become suddenly
crucial, and their practitioners suddenly powerful. The world abruptly needs and
rewards their particular set of skills.”® Computer programmers suddenly became
this influential group.

The “big bang” of software construction that took place in the 1970s created
waves of demand for qualified programmers that continue to expand up to the
present. Even in the Internet age—when learning to manage websites, write blogs,
and use social media tools has taken on greatimportance—learning to code has not
lostits appeal. As this book goes to press, the leaders of technology companies such
as Amazon, Google, Facebook, Apple, and Microsoft regularly complain to Congress
that the U.S. does not have enough qualified software developers to meet its needs.
According to these advocates, a special exemption is needed in our national immi-
gration policies to allow more foreign high-tech workers into the U.S. to satisfy the
demand for software developers and associated fields, such as hardware engineer-
ing, artificial intelligence, data mining, computer security, user interface design,
audio engineering, cloud computing, product testing and verification, technical
writing, product support, project management, and related fields. Programmers
have become the lifeblood of our technical society.

New Ways of Thinking
Calls to learn coding techniques abound now from the leaders of our digital
economy. So, too, are warnings that if a group does not heed the call, they will miss

6. Clive Thompson, Coders: The Making of a New Tribe and the Remaking of the World (New York:
Penguin Press, 2019), 11.

1.3 New Ways of Thinking 9

out on all or part of what the global digital economy has to offer. But where did
this urgency to learn programming come from? What has motivated schools and
non-profit organizations to devote so many resources to preparing instructions for
a computer? When did programming literacy emerge as a national priority? And
what were the early experiences of programmers as they tinkered with mainframes,
minicomputers, and the first microcomputers? How is this story connected to the
development of successful platforms such as CP/M, MS-DOS, Microsoft Windows,
the Apple Macintosh, and Unix-based systems?

Whether past or present, the invitation to become a software maker is an invita-
tion to join a distinctive community within our global society and economy. This
computing subculture was founded by a small group of research scientists and
academics, but it has expanded into a diverse assortment of hobbyists, students,
gamers, artists, musicians, hackers, engineers, career professionals, and part-time
workers. Although each of these groups is distinct in socio-economic terms, there
is discernable common ground in their understanding of computers and comput-
ing technology. Computer programmers share a basic orientation to the world that
is shared, despite the differences that they experience in relation to hardware and
software systems, learning tools, and historical context.

As a thought experiment, imagine that each subgroup within the programming
collective can be conceived of as a concentric circle. In such a model of our pro-
gramming culture, the entire assortment of circles would be drawn in close prox-
imity to one another, and most of the circles would have points of intersection and
overlap. A shared exposure to computational thinking is the overlap, even if the
programming languages that people learn (and the tools they write programs with)
change over time. Some computer programmers may take up professional work,
and others will remain as hobbyists or late-night hackers. Still others may learn pro-
gramming skills as part of ajourney thatleads to other types of fruitful work. Despite
the differences, and there will be many, the entire set of circles is a model of our
nation’s programming culture.’

7. Georg Simmel first developed the idea of “cross-cutting social circles” to discuss how differ-
ent groups meet at points of common interest, dispute, or compromise. See Georg Simmel, Con-
flict and The Web of Group-Affiliations, trans. Kurt H. Wolff and Reinhard Bendix, respectively
(Glencoe, IL, 1955, original Berlin, 1908). For additional studies in the history of technology that
have influenced my approach, see Joseph J. Corn, ed., Imagining Tomorrow: History, Technology,
and the American Future (Cambridge, MA: The MIT Press, 1986); David E. Nye, Narratives and
Spaces: Technology and the Construction of American Culture (Exeter, UK: University of Exeter Press,
1997); Nina Lerman, Arwen Mohun, and Ruth Oldenziel, “The shoulders we stand on and the view
from here: Historiography and directions for research,” Technology and Culture 38 (1997): 9-30;
David E. Nye, Consuming Power: A Social History of American Energies (Cambridge, MA: The MIT
Press, 1998); Joseph J. Corn, The Winged Gospel: America’s Romance with Aviation (Baltimore, MD:
Johns Hopkins University Press, 2002); Greg Downey, “Commentary: The Place of Labor in the

10 Chapter1 HowImportantis Programming?

The call to join ranks with computer programmers is not just an invitation to
new ways of thinking (learning computational logic) and new consumer behav-
iors (buying software and a programming primer), it is also a call to new social
relationships, to new ways of seeing and knowing, and to participating in new
personal and professional networks. The programming circles that collectively
shape America’s technical identity are as much expressions of a distinct subcul-
ture as are the ideas and values of Impressionist artists and their admirers in
Fin-di-siecle Paris or jazz musicians and their fans during the Swing Era in New
York City.

As a social historian with interests in the history of technology, business, and
education, I am curious about the experiences of today’s programmers and software
creators, and where they received their training, inspiration, and cultural world-
views. (See Figure 1.2.) Although the Internet era has contributed much to the
behaviors and identity of contemporary software developers, the core skills and
thought patterns of modern programmers were influenced by even earlier com-
mitments and achievements. These included the proliferation of high-level lan-
guages in the 1950s, the introduction of software engineering techniques in the
1960s, the idealism of educators, entrepreneurs, and authors in the 1970s and
1980s, and the diffusion of commercial programming techniques in the 1990s
and 2000s.

My argument is that the learn-to-program movement gained momentum
through each of these important transitions, as programmers, authors,
and entrepreneurs created pathways through which Americans might learn
programming skills and the fine-points of creating software for specific
platforms. Computer book authors, magazine publishers, and influential
programmer/educators played important, if overlooked, roles in the diffusion
of these new skills. By establishing an ideological connection to the com-
puter literacy movement, programmer/educators established a framework that
made computer programming feel important, rewarding, and attached to the
rituals of citizenship and corporate belonging. The learn-to-program move-
ment took shape through the efforts of many unsung heroes, both women and
men, and one of my goals with this book is to reacquaint historians and pro-
grammers with a cast of interesting actors and protagonists who have been
left out of recent narratives. Part of this work involves using visual sources to

History of Information-Technology Revolutions,” in Uncovering Labour in Information Revolutions,
1750-2000 (International Review of Social History), vol. 38 Supplement 11 (2003), 225-261; Lisa
Gitelman, Always Already New: Media, History, and the Data of Culture (Cambridge, MA: The MIT
Press, 2008); and Christopher Tozzi, For Fun and Profit: A History of the Free and Open Source
Software Revolution (Cambridge, MA: The MIT Press, 2017).

1.3 New Ways of Thinking 11

Figure 1.2 A middle school student learns computational thinking in a programming camp
sponsored by the Tacoma/South Puget Sound MESA organization. (Photo: Joshua
Wiersma/Pacific Lutheran University)

unpack the social context of historic computing environments. (See Figure 1.3.)
I will profile social reformers, writers, teachers, tinkerers, entrepreneurs, and
hackers, as well as computer scientists, students, engineers, and the leaders of
America’s computing societies, including the Association for Computer Machinery
(ACM). Predictably, most of the programmers that we meet will be members of
more than one social or professional group.

To get a sense for the magnitude of the sea change that took place, consider
some basic demographics. In 1957, there were approximately 15,000 computer pro-
grammers employed in the U.S., a figure that accounts for approximately 80% of
the world’s programmers active that year. The work of the first computing pioneers
involved building and maintaining military systems, designing algorithms for sci-
entific research, tracking census data, and implementing data-processing schemes
for government bureaus and corporations.

In 2000, there were approximately 9 million professional programmers world-
wide, with millions more who had been exposed to coding concepts as part of

12 Chapter1 HowImportant is Programming?

Figure 1.3 Three men and two women gather for a meeting near an IBM 370 Model 138 Computer
System in Berkeley, California. IBM’s 1976 publicity photo emphasizes the value of
teamwork and the extensive documentation that was prepared for programmers and
administrators. (Courtesy of the Computer History Museum)

their school curriculum or other experiences.® In addition to steady growth in
military and scientific computing, the expanding digital economy has brought
new opportunities for computer programmers in the fields of consumer software,
video game programming, artificial intelligence, information publishing, digital
communications, education, art, music, entertainment, medicine, and other areas
that benefit from the use of computers.

The rising tide of opportunity for software developers has continued up to the
present. In 2014, there were approximately 18.5 million software developers in
the world, of which 11 million can be considered professional programmers and

8. Steve Lohr, Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wizards, Maverick
Scientists, and Iconoclasts—The Programmers Who Created the Software Revolution (New York: Basic
Books, 2001), 6-7.

1.4

1.4 Equityand Access 13

7.5 million can be considered as hobbyists.” Many programmers create or maintain
software as part of their regular employment, while others write code for non-profit
organizations that they support, and still others program at school, for recreation,
or as an aspect of their personal or professional development.

Equity and Access

Despite the bright economic outlook for software developers, there are still
numerous challenges in bringing programming proficiencies to the general
population. In reality, only a small subset of the people who use computers actually
go on to learn something about computational thinking or software development.
Our modern economy requires many important job skills and personal invest-
ments. Considering the costs and the effort required, does it really matter who
learns to program and who does not?

In the book Stuck in the Shallow End: Education, Race, and Computing, Jane
Margolis et al. argue the “who” that learns to use technology matters a great deal,
and that America has suffered throughout its history from inequities in access
to computing.!® Their research indicates that African-American and Latino chil-
dren are much less likely to receive technology training in American schools than
white or Asian children. When scholars analyze gender disparities and later pro-
fessional outcomes, they find that only two out of ten information technology (IT)
professionals are women in the current U.S. workforce.

Margolis and her contributors offer convincing evidence that the character-
istics of programming culture matter tremendously to those who enter the sub-
culture and to those who thrive in it (or recede from view). Understanding the
long history of the learn-to-program movement and its cultural commitments and
values reveals much about how people have interacted with computers in the
past, and how we might expand computing opportunities in the future. Yasmin
Kafai and Quinn Burke describe the challenge before us as working to better sup-
port “computational participation” in our schools and professional environments.
In their important book, Connected Code, they recommend that thought leaders

9. International Data Corporation, 2014 Worldwide Software Developer and ICT-Skilled Worker Esti-
mates (Framingham, MA: International Data Corporation, 2014).

10. Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jellison Holme, and Kimberly Nao,
Stuck in the Shallow End: Education, Race, and Computing, Updated Edition (Cambridge, MA: The
MIT Press, 2017). See also J. Margolis, J. Goode, and K. Binning, “Exploring computer science:
active learning for broadening participation in computing,” Computing Research News 27, no. 9
(October 2015).

14 Chapter1 How Importantis Programming?

Figure 1.4 ACM member Professor Renzhi Cao teaches computer science to local middle school
students in Tacoma, WA. Early engagement and outreach related to computational
thinking has become a standard practice in many high-tech communities. (Photo:
John Froschauer / Pacific Lutheran University)

shape technology-centered cultures carefully, ensuring that all participants feel
welcomed and included.!? (See Figure 1.4.)

One important outgrowth of this research has been the rise of not-for-profit
organizations that teach young people how to program, including Code.org, Black
Girls Code, Girls Who Code, Native Girls Code, and The Hidden Genius Project.
At the high school level, many organizations focus on introducing programming
concepts and preparing students to take the College Board’s AP Computer Science
Principles examination. I evaluate the work of Code.org and the Hour of Code move-
ment in the Afterword for this book. As a preview, I note here that Code.org has
completed over 720 million introductory programming sessions since the organiza-
tion beganin 2013, with 46% female and 48% underrepresented minorities currently

11. Yasmin Kafai and Quinn Burke, Connected Code: Why Children Need to Learn Programming
(Cambridge, MA: The MIT Press, 2016).

1.5

1.5 Personal Connections 15

using the group’s courseware.!? These figures are clearly impressive, and they show
one way that creative thinking and industry partnerships can support an education
system that is struggling to find resources and leadership. However, the new initia-
tives were not created from whole cloth, but are simply the latest manifestations of
a long programming literacy movement that has a fascinating history and is now
being scaled to meet global needs. Just as in the past, there is an ongoing debate
about the efficacy of wide-ranging computer literacy programs and the best way to
deliver them.!?

Importantly, this conversation about equity and access is connected to ethi-
cal considerations, and it will only move forward with input from many academic
and industry partners. Our world is increasingly dependent on computers and
technology, and it is imperative that we work together to understand the char-
acteristics of technical communities and how they shape our hearts and minds.
Computational thinking courses are among the most interesting places to attempt
this work.

Personal Connections

I have wanted to write this book for a long time because I am fascinated with
software development. PCs were an important starting place for me during my
teenage years, and I first learned to write computer code on early microcomputers
and PCs. Like many people of my age and social context, my first experiments
with home electronics took place in the family rec room during the late 1970s.
My extended family bought a Tandy TRS-80 and an Atari video computer system,
and the young people in our circles used them to play video games like Pong and
Missile Command. A bit later, I experimented with an early IBM Personal Com-
puter when it was released in August 1981, just weeks before I entered college
at Pacific Lutheran University (PLU) in Tacoma, Washington. I took an introduc-
tory computer programming course and declared as a Computer Science major at
PLU, deferring my interests in history and education for graduate school. I learned
BASIC, Pascal, C, and assembly language programming on the university’s Digi-
tal Equipment Corporation (DEC) VAX 11-780 and DEC PDP-11 minicomputers.
I also studied mathematics, data structures, algorithms, operating systems, digital
logic, computer architecture, computer graphics, and networking theory. In 1985,

12. See “Code.org 2018 Annual Report,” February 12, 2019, 3. https://code.org/files/annual-
report-2018.pdf. Accessed August 9, 2019.

13. For a summary of the current concerns and priorities in the computational literacy field, see
Emmanuel Schanzer, Shriram Krishnamurthi, and Kathi Fisler, “Education: what does it mean for
a computing curriculum to succeed?” Communications of the ACM 62, no. 5 (2019): 30-32.

https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf

16 Chapter1 How Important is Programming?

Figure 1.5 Michael Halvorson working in his office at Microsoft Corporation (1990). (Photo
courtesy of Michael Halvorson)

graduated from university and I was hired at Microsoft Corporation to work in one
of their two Bellevue (Washington) office buildings, just before the company moved
to its better-known Redmond campus. I was employee #850 in the rapidly expand-
ing organization (see Figure 1.5), arriving when the best-selling products were MS-
DOS, Microsoft Word for MS-DOS, and a few popular programming languages and
development tools.

During my job interview at Microsoft, I was shown a testing (beta) version of
Microsoft Windows 1.0. It was not very impressive at the time, but the new graphical
operating environment for IBM PCs and compatibles would eventually become an
exciting platform for many users, programmers, and commercial software publish-
ers. My first work was at Microsoft Press, the book publishing division of Microsoft,
founded by Bill Gates in 1983 to provide technical support for computer enthusiasts
who were frustrated by the poor quality of software manuals. In the early days
of personal computing, product documentation was often little more than print-
outs assembled in a three-ring binder, and there was not much in the way of
computer-based help or training for PC users. From these humble beginnings, a

1.6

1.6 Manifestos of the Movement 17

major publishing industry took shape. It came to include bestselling magazines
like PC Magazine, Macworld, and Compute!, as well as the computer book publishers
Howard W. Sams, O’Reilly, Osborne McGraw-Hill, Que, Microsoft Press, Sybex, and
IDG Books.

Our work at Microsoft Press was to help self-taught programmers and those
who used Microsoft’s business applications to get the most out of their software.
I edited books, worked with independent authors, attended industry trade shows,
and (beginning in 1986) started writing do-it-yourself (DIY) computer books about
using operating systems and programming languages. I was lucky that my univer-
sity training required a healthy dose of the liberal arts along with my computing
classes. Both fields of study prepared me to tackle substantial research and writ-
ing projects in the years to come, and they were valued in the book publishing
division.

The learn-to-program movement was something that I saw first-hand while
working with Microsoft’s customers and authors. In particular, there were fasci-
nating people to learn from at computer industry trade shows, especially COMDEX
and Macworld Expo. (See Figure 1.6.) In 1989, I co-authored the book Learn BASIC
Now with my colleague and friend, David Rygmyr, and the book was carefully
edited by Megan Sheppard and Dale Magee, Jr. (also employees of Microsoft Press).
Our programming courseware included a full-featured version of the Microsoft
QuickBASIC Interpreter for MS-DOS on three 5.25” disks, and Bill Gates wrote a
Foreword to the book recalling his personal connection to Altair BASIC and his
interest in using BASIC as a unifying language across computing platforms. (See
Chapter 5.)

Learn BASIC Now sold many copies and it was selected as a finalist for a
national book award in the computer book “How To” category. Our self-study guide
clearly intersected with the powerful demand for programming instruction, and
the low-cost QuickBASIC Interpreter made the product relatively inexpensive for
newcomers. Over the years, I wrote another 15 books about software development,
mostly for self-taught programmers and those who wanted to learn the newest
features of popular products like Microsoft Visual Basic or Microsoft Visual Studio.
Through the books, I was actively connected to publishers, software development
teams, user groups, academics, journalists, literary agents, and a wide range of
computer users—many of whom would write or email us directly for help.

Manifestos of the Movement

Despite my positive interactions with new programmers, I gradually learned that
Iwas only a small part of the third or fourth wave of technical writers who had spread
the message about computational literacy and learning to code in the years since the

18 Chapter1 How Important is Programming?

Figure 1.6 An exhibitor badge from the COMDEX/Fall '90 trade show in Las Vegas, Nevada. (Photo
courtesy of Michael Halvorson)

introduction of the first computers. Preparation of Programs for an Electronic Digital
Computer was published in 1951 by Maurice Wilkes, David Wheeler, and Stanley Gill
to instruct readers on how to formulate machine code for the revolutionary EDSAC
computer at the University of Cambridge.'* Grace Mitchell, Daniel McCracken, and
Elliott Organick also wrote creative programming primers for FORTRAN in the late
1950s and early 1960s, introducing non-specialists to programming.

In the era of time-sharing systems and early PCs, a new wave of programming
advocates supported the movement. These were pioneers like Robert Albrecht
and LeRoy Finkel, who participated in the People’s Computer Company and the
Homebrew Computer Club in Menlo Park, California. From the beginning, these
visionaries understood that not only did people need to buy computers and start
programming, but they needed to learn how to program through books, materi-
als, and social interaction. These computing innovators wrote fascinating pro-
grams and produced several best-selling computer titles, but they have largely been
neglected in the history of computing. A new book by Joy Lisi Rankin, A People’s
History of Computing in the United States, is an important exception to this lacuna,
and Rankin demonstrates how Albrecht and his contemporaries inspired thou-
sands of programmers to appreciate the benefits of BASIC.1®

14. Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs for an Electronic
Digital Computer (Reading, MA: Addison-Wesley, 1951).

15. Joy Lisi Rankin, A People’s History of Computing in the United States (Cambridge, MA: Harvard
University Press, 2018), 68-69, 94-100.

1.7

1.7 A New History of Personal Computing 19

Also important in the 1960s and 1970s were the pioneering efforts of the
educational theorists Arthur Luehrmann, Seymour Papert, Cynthia Solomon, and
Wally Feurzeig, all active in the computing hotbeds of Cambridge, Massachusetts
and Greater Boston. Luehrmann coined the term “computer literacy” and encour-
aged students to learn structured programming with BASIC and Pascal. Papert,
Solomon, and Feurzeig co-developed the Logo programming system at the Mas-
sachusetts Institute of Technology (MIT), and they wrote about its potential to teach
computational thinking to children. Also, from the era of time-sharing systems,
David Ahl, an early DEC employee, published tutorials that advocated for the use
of computer games to teach programming concepts. My favorite of Ahl’s titles is
101 BASIC Computer Games, published by DEC in 1973. This book is filled with
mimeographed program listings that Ahl received in the mail from BASIC users
across the U.S. It was one of the first bestselling computer programming titles,
selling tens of thousands of copies to novice computer users, hobbyists, academics,
and working professionals.

Many of the earliest manifestos of the learn-to-program movement were sold
out of VW vans and dusty boxes in computer clubs. However, this DIY world was
also on the fringes of the professional software development community, which
took its energy from debates within the nascent software engineering movement
and the emerging discipline of computer science. The standard-bearers in this field
created the computers, operating systems, and programming languages that would
fuel the academic and commercial worlds of software development in the years
to come. Readers learned about their important discoveries through conferences
and influential computer books such as Donald Knuth, The Art of Computer Pro-
gramming (1968 and later); Kathleen Jensen and Niklaus Wirth, The Pascal User
Manual and Report (1971); Brian Kernighan and Dennis Ritchie, The C Program-
ming Language (1978); and Rodnay Zaks, Programming the Z80 (1979). Although
these authors did not always publish programming primers, they helped experi-
enced programmers understand the cadence of computer languages, taught peo-
ple to devise data structures and algorithms, and explored the advanced features
of operating systems and computer architecture. The introduction of professional
and commercial programming practices is a crucial stage of the learn-to-program
movement.

A New History of Personal Computing

Code Nation explores the social, technical, and commercial changes that took place
in the U.S. as computer programming became a regular part of life for so many.
The trials and triumphs of PC programmers are featured on these pages, as well

20 Chapter1 How Importantis Programming?

as the negative consequences that came to people who were denied the opportu-
nity to code based on their location, gender, ethnicity, or economic circumstances.
My emphasis is not on high-tech leadership strategies or the tactics that gener-
ated corporate wealth, but on the stories of lesser-known programmers, authors,
academics, and entrepreneurs. Some were successful, and some have been mostly
forgotten. But this is itself a lesson in the history of innovation, business, and
technology.

To tell this tale, Code Nation presents a new history of personal computing in
the U.S. I present a detailed analysis of early computer platforms, a discussion of
important compilers and development tools, a “behind-the-scenes” look at appli-
cation and operating-system programming, the origins of corporate and “enter-
prise” computing strategies, the rise of user’s guides and computer books, and early
attempts to market and sell PC software. Writing a fresh history of personal com-
puting involves significant challenges, in part because the most recent storytelling
emphasizes the roles that famous “pioneers” and “founders” have played in narra-
tives about Silicon Valley, the Greater Boston area, and the Pacific Northwest. There
has been no shortage of popular books about Apple Computer, Microsoft, Amazon,
Google, and Facebook—usually emphasizing the rise of the stereotypical “computer
nerds” to positions of wealth and influence in the companies that benefited from
personal computing and Internet-based technologies.'®

It is often difficult to move beyond these perspectives because of a curious lack
of sources that document early personal computing and its broader impact on
American society. Most of the earliest PC hardware and software companies have
merged or gone out of business, leaving little in the way of historical materials to
study. IBM is a noteworthy exception to this trend, recently releasing some of its
materials to historians of computing.!” But Apple Computer’s corporate records
have been carefully edited by their legal teams and are only partially available.
Microsoft has also been reluctant to open its corporate archives to scholars and the
general public. Beyond the personal narratives of former employees and product
enthusiasts, how are historians to study the history of personal computing? What
sources can we use to understand how corporate identities were shaped, hardware

16. An example of this work is Walter Isaacson, The Innovators: How a Group of Hackers, Geniuses,
and Geeks Created the Digital Revolution (New York: Simon and Schuster, 2014). An intriguing new
approach is Margaret O’Mara’s history of Silicon Valley, which connects the technical and business
development of the region to local and national politics. See Margaret O’Mara, The Code: Silicon
Valley and the Remaking of America (New York: Penguin Press, 2019).

17. See James W. Cortada, IBM: The Rise and Fall and Reinvention of a Global Icon (Cambridge,
MA: The MIT Press, 2019), especially chapter 14. Cortada was well positioned to write this history
because he is a former IBM employee as well as a professional historian.

1.7 A New History of Personal Computing 21

and software products were created, and whether computing initiatives succeeded
or failed? Just as important, how did the users of PCs experience new products and
come to understand their features? Can we assess how regular people accepted,
accommodated, or rejected the plans and proposals of industry elites?

Code Nation proposes a publication-centered way of examining the early history
of microcomputing and personal computing, from experiments with time-sharing
systems, to the mail-order Kkits of early enthusiasts, to book and magazine pub-
lications for platforms like MS-DOS, the Apple Macintosh, Microsoft Windows,
and Unix/Xenix. I evaluate the history of personal computing using hundreds of
programming primers, textbooks, manuals, magazines, user’s guides, and trade
show catalogs from the early 1950s to the late 1990s. These neglected sources
have allowed me to explore the challenges presented by the first PC systems,
the content of computer literacy debates, the methodology of early programming
primers, the strategies of successful (and unsuccessful) entrepreneurs and corpo-
rations, and the way that computing has impacted the daily life of Americans. To
support this analysis, I include technical descriptions of hardware and software
systems, code snippets from historic programming languages, the biographies of
little-known programmers and entrepreneurs, and a product-based assessment of
early hardware and software systems. I also present over 80 historic photographs
selected from relevant archives, museums, corporations, and private collections.

I have learned that printed materials related to computers and software—once
a common feature of many offices, homes, and schools—have been discarded at
an alarming rate. When discussing the issue of “disappearing sources” with a
local college librarian, I learned that older computer books and magazines are
especially vulnerable to being categorized as ephemera, or transitory sources of
information about outdated methods or technologies. (See Figure 1.7.) With new
computer books and periodicals arriving on a monthly basis, and shrinking bud-
gets, howimportant is it to maintain an historic collection of FORTRAN, BASIC, and
C primers? Especially in locations where shelf space is at a premium? My source’s
questions are legitimate, of course. But the comment points out how vulnerable
technical sources are to abandonment. “Often, they are simply recycled,” my infor-
mant conceded.

But, if we cannot study issues like computer literacy in the past, how can we hope
to evaluate it in the present?

For the purpose of this study, I was able to find many older computer books and
periodicals in private collections, as well as the technical libraries of larger public
universities. For example, I have spent many weeks in the engineering library at
the University of Washington in Seattle, which has a good collection. I also found
many books, newsletters, and software packages in the Computer History Museum

22 Chapter1 HowImportantis Programming?

Figure 1.7 The title page of Thom Hogan’s Osbhorne CP/M User Guide. Published by
Osborne/McGraw-Hill in 1981, this book was one of the most important operating
system primers of the microcomputer era. Like many older computer publications,
however, it has been widely discarded by libraries. (Photo courtesy of Michael Halvorson)

in Fremont, California. But like the chapbooks and “street literature” of earlier eras,
historic computer books and materials can easily be lost if historians are not sensi-
tive to the many treasures that they contain. In particular, they reveal the teaching
strategies used to introduce new technical systems, and the opinions and practices
of regular people who are learning new technologies. I hope that this publication-
centered approach will be of interest to future historians of computing. There are
still many fascinating sources that slumber in our nation’s technical collections.

I begin Code Nation with a comparative analysis that examines computing in
the 1960s and 1970s, emphasizing the era’s sense of crisis about how software
was being created and its multilayered hopes for renewal. My survey presents four
overlapping computing mythologies, each representing a different aspect of the
period’s professional, cultural, and technical traditions. These narratives introduce
early advocates for software engineering practices, countercultural idealists who

1.7 A New History of Personal Computing 23

promoted widespread access to tools, creative scholars from the emerging disci-
pline of computer science, and the designers of the first personal computers. In the
1980s and 1990s, American programmers drew on many of these motifs, creating a
worldview that bundled hopes, anxieties, and dreams about the new platforms.

Four Computing
Mythologies

“Total learning expands when the range of spontaneous learning widens... and both
liberty and discipline flower.”

Ivan Illich, Tools for Conviviality (1973)

“In recent years, I have talked to a number of top industry researchers and
implementors who are reluctant to hire computer science graduates at any level.

They prefer to take engineers or mathematicians, even history majors, and teach them
programming.”

David Lorge Parnas, Computer (1990)*

When it comes to social movements, the groups that strive toward a common
goal with a shared sense of purpose are often the most successful. The learn-
to-program movement of the 1970s and 1980s fits this pattern, as do many
of the recent computer literacy initiatives, including Code.org’s Hour of Code.
According to sociologists, the ideological beliefs that ground social movements
act as a bulwark for striving organizations, strengthening the commitment of
both leaders and members.? Ideological beliefs also help adherents imag-
ine a new world order, and they justify the relatively high levels of personal
investment and resources that social movements require. Ideologies set the
expectations of a movement’s believers, so that adherents can learn what the group
is trying to accomplish and how they should propagate their beliefs. When the going
gets tough, ideological commitments keep a social movement going.

1. Cited in David Lorge Parnas, “Education for computing professionals,” Computer 23, no. 1
(Jan. 1990),17-22.

2. Margaret S. Elliott and Kenneth L. Kraemer, “Computerization movements and the diffusion of
technological innovations,” in Computerization Movements and Technology Diffusion: From Main-
frames to Ubiquitous Computing, edited by Margaret S. Elliott and Kenneth L. Kraemer (Medford,
NJ: Information Today, Inc., 2008), 6.

26 Chapter2 Four Computing Mythologies

This chapter explores four powerful ideologies that influenced America’s
burgeoning computer industry in the 1960s and 1970s, each influencing the
learn-to-program movement in its own way. Although Parts II and III of this book
narrate how Americans learned to code in the 1980s and 1990s, it was only through
an awareness of earlier successes and failures that the microcomputing and per-
sonal computing movements took shape. Like other scholars, I choose to use
the term foundation myths to describe the ideologies that influenced the com-
puter industry as it emerged from research settings to become a major contrib-
utor to the U.S. economy. Foundation myths are socially-constructed memories that
can carry important historical and cultural information. They act as social markers,
transmitting ideas, beliefs, and worldviews to community members and future
generations. Foundation myths summarize historical debates and scientific com-
mitments. They often work subtly, employing the language of metaphor or rit-
ual. In more recent times, computer-related myths are used to celebrate heroic
founders and to marginalize illicit behavior. You can often spot these myths when
subtle descriptors are used in histories and popular accounts, such as “pioneer,”
“entrepreneur,” “evangelist,” “guru,” “hacker,” and “cyberpunk.”

Among the many possibilities, I have chosen four myths about computer
technology and computer programmers to begin this book. I will draw connections
between these ideologies and the learn-to-program movement in the chapters that
follow. The first mythology is a belief in an ongoing period of crisis in the computer
industry related to the complexity of computer systems and the pitfalls of commer-
cial software development. Strongly held beliefs about this “crisis” emerged in the
1960s among software development communities, and it set the expectation that
most large software projects would arrive late, over budget, and in poor shape. The
second mythology is that the computer industry works best when it is driven by
popular, democratic impulses and shared community values. This counterculture
narrative emerged in the 1970s when a group of West Coast technology enthusi-
asts argued that using and programming computers should be an enlightening,
communal experience. These values strongly shaped some segments of the com-
puter industry, including the microcomputer community in California and authors
of programming tutorials in the 1970s and 1980s.

The third mythology relates to a belief about the commitments of professors and
administrators in the emerging discipline of computer science. In the U.S., many
computer professionals came to believe that computer scientists were occupied
primarily with theoretical problems related to computational logic, algorithms,
and engineering principles, rather than the practical skills needed to implement
projects in the computing industry. Although some academics did assume an aloof
posture in relation to business computing, this stereotype was largely inaccurate,
andithad important consequences for how professional programmers were trained

2.1

2.1 The North Atlantic Treaty Organization (NATO) 27

(ornottrained)in the coming decades. Finally, there are several mythologies related
to what is often called “the PC Revolution,” a phrase that tries to capture the excite-
ment surrounding the creation of the first stand-alone microcomputers and per-
sonal computers (PCs) in the 1970s and 1980s. This term draws attention to vital
energies in the American computer industry, but it also tends to lionize the expe-
rience of PC users and entrepreneurs over professionals working in other areas of
digital computing. After gently nudging aside this rhetoric, Code Nation proceeds
by exploring how the microcomputer movement actually did contribute in impor-
tant ways to the development of programming culture and the commercial software
industry in America. We will investigate how this upward trajectory took place in
waves or stages—from the time-sharing systems of the 1960s and 1970s, to the bare-
bones microcomputers and PCs of the late 1970s and early 1980s, to the powerful
graphical user interface (GUI) workstations of the late 1980s and early 1990s, to
the corporate and enterprise computing systems of the late 1990s and early 2000s.
These stages involved fascinating operating system platforms, including CP/M,
Apple DOS, MS-DOS, the Apple Macintosh, Microsoft Windows, Unix/Xenix, OS/2,
and Windows NT Server.

By giving powerful computing mythologies their due, we acknowledge the
importance of cultural memories in the history of business and technology, includ-
ing the problems that people encountered in the past, and the aspirations of users
and programmers in the future. The learn-to-program movement succeeded in part
because it wove together each of these mythologies, creatively transforming past
memories into a shared vision of progress and human belonging. The movement’s
visionaries, authors, tinkers, and entrepreneurs deserve recognition for their con-
tributions to the gradual computerization of society, a process with major cultural
and economic consequences that is still underway.

We’ll begin with a technical problem and a story.

The North Atlantic Treaty Organization (NATO) Conference on
Software Engineering
In October 1968, there was a sense of crisis in the air.

Although this year has been described as one of the most turbulent in the 20t
century, the turning point was not related to political or military disruptions, but
to a crisis in the nascent field of software engineering. In fact, executives in North
America and Europe had been sounding the alarm since the mid-1960s. Now that
powerful mainframe computers were transforming the world’s business and engi-
neering systems, the software that drove these machines was taking on an oversized
role in public life. Just weeks before Richard Nixon, Hubert Humphrey, and George
Wallace faced off in the 1968 American Presidential Election, the world’s engineers
were worrying about computers and software.

28 Chapter2 Four Computing Mythologies

To list a few of the problems, there was a perpetual shortage of program-
mers to create software for the new systems. These programs were often mas-
sive, stretching to tens of thousands—even millions—of lines of code in computer
languages like COBOL, FORTRAN, and ALGOL. The code configured American
military systems and corporate data processing tools—programs like the bank-
ing, billing, and reservation systems that proliferated in the late 1960s. However,
good software developers were hard to find. There was no clear procedure for
locating, hiring, and training the specialists needed to build and maintain the
required systems.

The growing complexity of software also required robust management tech-
niques to ensure that projects were completed on time and on budget, but neither
outcome was very common. To make matters worse, the growth of professional
organizations like the Association for Computing Machinery (ACM) found it diffi-
cult to improve programmer productivity or software quality. Although revenue was
pouring in to successful American hardware manufacturers like IBM, Burroughs,
and Digital Equipment Corporation (DEC), the budding software industry seemed
undisciplined in its workflows, ill-prepared to expand, and in a perpetual state of
disorder.

Much has been written about the “software crisis” of the late 1960s, and some
have argued that “software engineering” was the wrong metaphor to address the
problems.? But the dilemma was noted by many computer professionals around
the world, from North America to Asia to Europe. The 1960s was a time of expansion,
as organizations were drawn to utopian visions of mainframe and minicomputer
technologies. But reassessments soon followed, and critics pointed to bloated soft-
ware systems that were complex and error prone; programs designed for engineers
with pocket protectors but not real people. The job performance of corporate soft-
ware developers also came under fire. “When a computer programmer is good, he is
very, very good,” concluded one IBM study published in 1968. “But when he is bad,
he is horrid.”*

3. For a deeper look at the issues, see Janet Abbate, Recoding Gender: Women’s Changing
Participation in Computing (Cambridge, MA: The MIT Press, 2012), 97-111; Sandy Payette, “Hopper
and Dijkstra: Crisis, revolution, and the future of programming,” IEEE Annals of the History of
Computing 36, no. 4 (2014): 64-73; Adam Barr, The Problem with Software: Why Smart Engineers
Write Bad Code (Cambridge, MA: The MIT Press, 2018); Liesbeth De Mol and Giuseppe Primiero,
eds., Reflections on Programming Systems: Historical and Philosophical Aspects (Cham, Switzerland:
Springer, 2019).

4. Quoted in Hal Sackman, W. J. Erickson, and E. E. Grant, “Exploratory experimental studies com-
paring online and offline programming performance,” Communications ofthe ACM 11,n0. 1 (1968):
3-11.

2.1 The North Atlantic Treaty Organization (NATO) 29

Figure 2.1 IBM Executives face the camera in front of a bank of IBM 729 magnetic tape drives, 1962.
(Photo by The LIFE Picture Collection via Getty Images/Getty Images)

The gender implications embedded in this statement are subtle, but important
to catch. In 1968, approximately 88% of professional programmers in the U.S. were
men. Although women made significant contributions to computing in the 1950s,
programming work underwent a process of masculinization in Britain and America
in the 1960s and 1970s.” As part of this transition, the cultural stereotypes about
programming being a male activity increased, and the era’s sources often asso-
ciate programming with masculinity. The implications of the underrepresentation
of women in computing will be examined in Chapters 3, 7, 8, and 10, which explore
how Americans learned to code, and how new programmers negotiated for status
in the communities that either welcomed or rejected them. Keep an eye on this
complex issue; it surfaces in predictable but also unlikely settings. (See Figure 2.1.)

To address the global software crisis, the Science Committee of NATO spon-
sored a conference in October 1968, in the Garmisch-Partenkirchen district of West

5.See Abbate, Recoding Gender; Marie Hicks, Programmed Inequality: How Britain Discarded Women
Technologists and Lost Its Edge in Computing (Cambridge, MA: The MIT Press, 2017); Nathan Ens-
menger, The Computer Boys Take Over: Computers, Programmers, and the Politics and Technical
Expertise (Cambridge, MA: The MIT Press, 2010).

30 Chapter2 FourComputing Mythologies

Germany (Bavaria). The organizers planned to discuss the design and production
of computer software, the experiences of software users, and the persistent prob-
lem of meeting software schedules and budgets. The term “Software Engineering”
was chosen as a framing title for the meetings, hinting at a proposed solution to
the dilemma: The computer industry should infuse programming with theory and
practice from the disciplines of science and engineering to address their problems.
It was high time to demand structured approaches to design, coding practices, and
testing that would improve reliability. If this did not happen soon, the complexity
of software, and its concomitant unpredictability, would likely stifle the electronic
computer revolution.

The 5-day conference was attended by 50 people from 11 countries, with a large
contingent representing the U.S. All 50 registered conference participants were
men, with a few women serving in support roles. Analyzing the conference materi-
als,Janet Abbate sees the absence of the American Grace Murray Hopper as the most
striking in terms of gender exclusion. In 1968, Hopper served as the director of pro-
gramming languages and standards for the U.S. Navy, and she was an established
luminary in the computing industry.°

The proceedings show that the attendees were mostly computing professionals
who managed software teams or worked regularly with the users of software
systems. There were manufacturers’ representatives in attendance, as well as
academics speaking for interested university faculties.” As Nathan Ensmenger
wrote, the meeting marked a major shift in general perceptions about software
construction.® After Garmisch, there was pressure on software developers to eschew
craft and artisan approaches to programming and to adopt established engineer-
ing principles. The wild and woolly days of coding by trial and error were over.
(Or so the organizers hoped.) Although some came to question the value of soft-
ware engineering as a framing term, the methodology would have an important
impact on programming culture in the coming decades.’

6. Abbate, Recoding Gender, 102-103.

7. Peter Naur and Brian Randell, eds., Software Engineering: Report on a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, Oct. 7-11, 1968 (Brussels: Scientific Affairs Division,
North Atlantic Treaty Organization [NATO], 1969). I thank Brian Randell and Robert M. McClure
for sharing important information with me about the conference via email and postal correspon-
dence. See http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF. Accessed August
20,2019.

8. Ensmenger, The Computer Boys Take Over, 196-197.

9. On the legacy of the 1968 conference, see Matti Tedre, The Science of Computing: Shaping a Dis-
cipline (Boca Raton, FL: CRC Press, 2015), 111-137. Also useful is Merlin Dorfman and Richard H.
Thayer, eds., Software Engineering (Los Alamitos, CA: IEEE Computer Society Press, 1997).

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

2.1 The North Atlantic Treaty Organization (NATO) 31

Let’s take a look at the problems software developers wrestled with in the
1960s. At that time, the dominant paradigm for software development revolved
around a solitary (male) computer genius enigmatically holding court with a
small team of assistants. The consensus at Garmisch was that this scenario
needed to be replaced with a cohort of systematically-trained engineers, respon-
sible to management, who practiced structural thinking and followed orders.
(A visual model of this hierarchy and approach can be seen in Figure 2.2.) As
Nathan Ensmenger summarized, “Software engineering promised to bring con-
trol and predictability to the traditionally undisciplined practices of software
development.”t?

Historian Stuart Shapiro analyzed the legacy of this “engineering movement” as
it gained momentum in the 1970s and 1980s. According to Shapiro, the program
was less about specific technical procedures and more about finding ways to reg-
ulate and standardize growing project complexity, budgets, and the new cadre of
software engineers who had until recently attracted little notice. New approaches
to programming took center stage in the push to make software development
outcomes more reliable. These strategies included the use of structured pro-
gramming techniques, adding language features to promote reliability, measuring
software performance (metrics), and using integrated development environments
(IDEs).}! Most of these ideas would make their way into personal computing,
too, although it would take a decade or more for the engineering practices to
take hold.

Computer programming is sometimes envisioned as an individual task, but by
the late 1960s, commercial software was typically constructed in groups. For exam-
ple, in mainframe computing environments like the IBM System/360, it was nec-
essary to hire an army of analysts, technicians, and software developers to build
and maintain non-trivial systems. Productivity gains associated with the “division
of labor” principle simply did not work when dividing up the tasks of a large
software project. The new approach had to involve teaming. Grace Hopper sub-
tly introduced this concept when she created the world’s first computer language
compiler in 1952, known as the A-0 system, which translated symbolic codes into
machine language. Hopper completed the first draft of her work and then imme-
diately shared it with associates to see if they could make improvements, a strat-
egy that she also followed during the creation of FLOW-MATIC, the predecessor to
COBOL.

10. Ensmenger, The Computer Boys Take Over, 196-197.

11. Stuart Shapiro, “Splitting the difference: the historical necessity of synthesis in software engi-
neering,” IEEE Annals of the History of Computing 19, no. 1 (1997): 25-54.

32 Chapter2 Four Computing Mythologies

Figure 2.2 By the 1960s, many engineering groups were using structure and clearly defined roles

2.2

to bring predictability to their projects. The team that created the DEC PDP-6 computer
was led by C. Gordon Bell, the man wearing a suit jacket in this 1964 photo.

Standing L-R: Peter Sampson—Operating System Programmer, Leo
Gossell—Diagnostic Software Programmer, C. Gordon Bell—PDP-6 System Designer
(Creator), Alan Kotok—Operating System Lead, Russell Doane—Circuit Design
Engineer, Bill Kellicker—Programmer, Bob Reed—Hardware Technician, George
Vogelsang—Draftsman.

Sitting L-R: Lydia Lowe (McKalip)—Secretary to C. Gordon Bell, Bill Colburn—PDP-6
Project Engineer, Ken Senior—Field Service Technician, Ken Fitzgerald—Mechanical
Engineer, Norman Hurst—Programmer, Harris Hyman, Operating Systems
Programmer. (Courtesy the Computer History Museum and DEC)

The Complexity of Software

An underlying current of the 1968 NATO conference was that building software
entailed a level of complexity that few fully recognized when digital electronic com-
puters hit the scene in the 1950s.

2.2 The Complexity of Software 33

But what made computer software so complex?

Let us start with a formal definition. Computer software is one part of a com-
puter system that consists of data and computer instructions. Computer software is
distinct from computer ardware, or the physical components of a computing sys-
tem, such as the processors, circuits, boards, panels, monitors, switches, and other
electronic devices in a machine.

A basic understanding of what software consists of changes over time, so it is
useful to visualize a list of items that has taken shape in evolving contexts. Mod-
ern software includes a wealth of program ¢ypes (operating system components,
device drivers, application software, games, programming tools, malware), as well
as supporting libraries, data, images, sound recordings, videos, email messages,
Facebook posts, Tweets, and all manner of digital media. A software release typically
consists of abundled collection of itemswith a particular purpose, including a setup
program, executable files, and hundreds (or thousands) of installed components,
digital media files, documentation, and other resources.

From a business point of view, software may be considered a commercial product
with economic value and utility, such as the popular applications GarageBand
for i0S, Adobe Photoshop, or Microsoft Office. Software may also be distributed
for free, such as open-source software or freeware. In these many contexts, one
piece of software is distinct from another on a computer system, in the mar-
ketplace, or (under certain conditions) in copyright law. As recent historians
have also discovered, each piece of software has its own history and impact,
its creators and users. Software carries cultural memories and a society’s hopes
and fears.

In the 1960s, most software programs were supplied for free with the expensive
computer systems that organizations purchased or rented from hardware manu-
facturers. In the U.S., IBM was the leading computer manufacturer by a large mar-
gin, followed by successful electronics firms like Burroughs, UNIVAC, NCR, Control
Data, Honeywell, General Electric,and RCA. Corporations used mainframe comput-
ers for complex calculations, resource planning, bulk data processing, and trans-
action processing, including managing shipping, payroll, and employee records.
In these many contexts, organizations needed to adapt the free software that they
were given to match the needs of their customers. They needed to hire and train
programmers and technicians to accomplish this work.

As computers grew and took on more tasks, the ailments plaguing software
could often be traced back to one principle cause—system complexity. The complex-
ity of software was engendered by programming’s abstract nature and the scien-
tific principle that a program constitutes a digital (discrete state) system based on

34 Chapter2 Four Computing Mythologies

mathematical logic rather than an analog system based on continuous functions.!?

As software systems were being constructed with growing sophistication, project
designers needed to consider numerous interrelated factors in their solutions,
including the organization’s list of requirements for a system (clearly stated or
not), operating constraints related to hardware and software platforms, techni-
cal conditions within the computer itself (including memory resources), and the
wide range of possible inputs and outputs that a program might encounter as it
completed its work.

Real-world computer systems were designed so that they used only a prescribed
set of resources, such as memory and processor time. From the point of view of
the programmer, additional complexity arrived in the selection of programming
languages, data structures, algorithms, flow control mechanisms, error handling
structures, and the use of inherited source files and legacy code from other projects.

Individual computer programmers also brought their own tastes and psycholog-
ical experiences to a project, as well as diverse training and educational experiences.
All of these variables made the precise functionality of programs hard to predict,
in the same way that storms and atmospheric conditions are challenging to fore-
cast. The intricate balancing act was magnified in myriad ways as the responsibility
for building new systems was distributed among team members who had different
abilities and often coded in different locations and contexts.

In the late 1960s, anxious managers noted that the complexity of large systems
created engineering problems with no easy solutions or mechanisms for assess-
ment and control. As E.E. David of Bell Laboratories pointed out at the Garmisch
conference,

Production of large software has become a scare item for management. By
reputation it is often an unprofitable morass, costly and unending. This repu-
tation is perhaps deserved. No less a person than T. J. Watson [Jr., Chairman
and CEO of IBM] said that OS/360 cost IBM over 50 million dollars a year
during its preparation, and at least 5000 man-years’ investment.'3

In David’s telling example, the software development project for OS/360 (IBM’s
operating system for the 360 series of computers) was famously late and over bud-
get, problems blamed on poor management practices and unwieldy development
teams. The project became the subject of Frederick Brooks’s well-known guide-
book on managing software projects, The Mythical Man-Month (1975), which we

12. Shapiro, “Software Engineering,” 20.
13. Naur and Randell, Software Engineering Report, 13. The italic formatting is mine.

2.3 Systems are for Customers 35

Figure 2.3 A panel session from the 1968 Conference on Software Engineering in Garmisch, West

2.3

Germany. Addressing the group is M. D. (Doug) Mcllroy. (Photo by Robert M. McClure
and used with his permission)

will return to when I analyze commercial programming cultures and integrated
software suites in Chapter 11.

Systems are for Customers

Who were these early software systems designed for, and what percentage of the
population did they actually represent? Playing back conversations from the 1960s,
it is sometimes hard to tell. Here is one fascinating transcript from the 1968 con-
ference that we have been using as a touchstone. It involves six prominent leaders
from the global computer industry, including two computer manufacturers, three
academics, and one of the conference’s organizers. (See Figure 2.3.) The exchange
focused on the users of computer software and the extent to which customers

14. For the original transcript, see Naur and Randell, Software Engineering Report, 24-25. The speak-
ers were Professor J. N. P. Hume (University of Toronto), J. D. Babcock (Allen-Babcock Computing,
New York, NY), Professor J. Berghuis (Philips’ Computer Industrie [a Dutch computer manufac-
turer], Netherlands), J. W. Smith (Scientific Data Systems, El Segundo, CA), Dr. M. Paul (Leibniz-
Rechenzentrum [a computing research center], Munich), and Professor A. J. Perlis (Carnegie
Mellon, Pittsburgh, PA).

36 Chapter2 Four Computing Mythologies

should be included in the design of new software —an emphasis which appears to
be lacking in the first systems. A cautious professor J. N. P. Hume begins the dialog.
(The italic is mine.)

J. N. P. Hume [University of Toronto]: One must be careful to avoid over-
reacting to individual users. It is impossible to keep all of the users happy.
You must identify and then concentrate on the requirements common to a
majority of users, even if this means driving a few users with special requirements
away. Particularly in a university environment you take certain liberties with
people’s freedom in order to have the majority happy.

J. D. Babcock [Allen-Babcock Computing, New York, NY]: In our experience
the users are very brilliant people, especially if they are your customers and
depend on you for their livelihood. We find that every design phase we go
through we base strictly on the users’ reactions to the previous system. The
users are the people who do our design, once we get started.

J. Berghuis [Dutch professor and industry consultant]: Users are interested in
systems requirements and buy systems in that way. But that implies that they
are able to say what they want. Most of the users aren’t able to. One of the great-
est difficulties will be out of our field as soon as the users realize what kind of
problems they have.

J.W. Smith [Scientific Data Systems, El Segundo, CA]: Many of the people who
design software refer to users as ‘they’, ‘them’. They are some odd breed of cats
living there in the outer world, knowing nothing, to whom nothing is owed. Most
of the designers of manufacturers’ software are designing, I think, for their
own benefit — they are literally playing games. They have no conception of
validating their design before sending it out, or even evaluating the design
in the light of potential use. The real problem is training the people to do
the design. Most designers of software are damn well incompetent, one way or
another.

M. Paul [Leibniz-Rechenzentrum, Munich]: The customer often does not know
what he needs, and is sometimes cut off from knowing what is or what might
be available.

Alan Perlis [Conference organizer, Carnegie Mellon University, Pittsburgh,
PA]: Almost all users require much less from a large operating system than is
provided.

Imagine a heated conversation among influential professors and experts who think
that they each know best, and you’ve got the gist of this exchange. But notice how
divided the industry leaders are about computer users and the design of software

2.3 Systems are for Customers 37

in the 1960s. Each person is wondering: who are these systems really designed for?
How much functionality should be provided to users?

Professor Hume outlined a realist position: You cannot make all of the software
users happy, but if you try to satisfy a majority of them, you will probably find a good
balance. Hume believed that it was legitimate to take away the freedoms of users
on occasion to protect the system or satisfy the needs of the majority. We are still
wrestling with the implications of this statement for security and civil liberties in
electronic environments.

Bristling at the regimenting tone of this statement, James Babcock of Allen-
Babcock Computing rushed to the defense of software users, whom he styled as
“brilliant.”

Allen-Babcock Computing was founded in 1964 in Los Angeles by James
Babcock and Michael Jane Allen Babcock to profit from the rapidly expanding
market for computer time-sharing services. Between 1965 and 1966, the company
participated in the development of Conversational Programming System (CPS), a
time-sharing product that ran under IBM’s popular 0S/360. In 1969, Allen-Babcock
held a 3% share of the time-sharing services market—a lucrative position in this
developing field.'® Babcock’s direct experience with “external” computer users like
this is unusual but important to catch. He had regular contact with paying cus-
tomers in a competitive marketplace outside of academic or corporate contexts,
where “control” over the system typically trumped the preferences of users. In Bab-
cock’s opinion, if computer users do not directly enjoy the benefits of a new system,
it is of little value.

But can computer users really be trusted? Professor Berghuis replied to Bab-
cock that in his opinion customers had the right to make their selections, but most
users do not know how to do it. If they only knew what computers were capable
of, Berghuis mused, then software construction would be so much easier. Here,
Berghuis puts the burden on users to know what they need, rather than on software
designers to assess a customer’s requirements.

J. W. Smith of Scientific Data Systems (SDS), El Segunda, California, supported
James Babcock’s position and he also spoke as an advocate for users.

SDS was a computer company established in 1961 by Max Palevsky and Robert
Beck, veterans of the engineering firms Packard Bell and Bendix. This firm was
an early adopter of integrated circuit technology and also a maker of time-sharing
systems. (They sold their successful operation to Xerox in 1969.) Accordingly,

15. Harvard Business School, Lehman Brothers Collection, Allen-Babcock Computing Inc.
https://www.library.hbs.edu/hc/lehman/Data-Resources/Companies-Deals/Allen-Babcock-
Computing-Inc. Accessed August 20, 2019.

https://www.library.hbs.edu/hc/lehman/Data-Resources/Companies-Deals/Allen-Babcock-Computing-Inc
https://www.library.hbs.edu/hc/lehman/Data-Resources/Companies-Deals/Allen-Babcock-Computing-Inc

38 Chapter2 Four Computing Mythologies

Mr. Smith also knew something about customers, and he quickly pointed out that
most users were treated disdainfully by system designers, who seemingly devised
software systems for themselves. Their overdesigned programs felt to him like
“games”—i.e., eccentric, inward-facing diversions, representing the tricks of show-
offs rather than any real attempt to satisfy the needs of users.

Our final comment comes from Professor Alan Perlis (1922-1990), who offered
a new point—that software systems often contain ¢too much functionality. This was
another voice of concern about system complexity, which Perlis knew would trans-
late into rising costs and overdesigned systems. Perlis would certainly have known.
He was a savvy computer scientist and administrator who organized one of the first
academic computer science programs in the U.S. He also believed that computer
programming should be taught widely in schools, and we will see later what contri-
butions he made to the learn-to-program movement. For starters, Perlis designed
the Internal Translator (IT) programming language and co-designed Algorithmic
Language (ALGOL) with a committee of 13 computer scientists. He advocated for
the rights of both programmers and users throughout his distinguished career.

Here is the point. By the late 1960s, computers and software systems had
radically changed—and so had users and customers. During this era, software was
becoming highly complex, and it was rapidly incorporating support for advanced
features such as multitasking and time-sharing. Software was also becoming
“unbundled” from hardware sales, and as the process moved forward commer-
cial programs took on the attributes of modern consumer products. These features
included improved design concepts, compelling lists of features, market-based
pricing, product reliability, and customer support from the software makers and
third parties.

The decoupling of software services began in the mid-1960s and gained momen-
tum when IBM announced in June 1969, that it would begin pricing software sepa-
rately from hardware during the coming year.'® In less than a decade, software sales
was re-organized into discrete channels, including lines for original equipment
manufacturers (OEMs), retail stores, mail order customers, foreign translation mar-
kets, custom licensing products,and more. By the 1980s, boxed and shrink-wrapped
software packages with attractive designs became the norm for the emerging PC
industry, and these goods were manufactured in facilities that were governed by
the best practices of supply-chain management, warehousing, fulfillment services,
and accounting. In short, PC software markets were built on the firm foundation

16. Luanne Johnson, “A view from the sixties: how the software industry began,” in From 0 to 1:
An Authoritative History of Modern Computing, eds. Atsushi Akera and Frederik Nebeker (Oxford:
Oxford University Press, 2002), 101-109.

2.4

2.4 The Counterculture Movement 39

of mainframe and minicomputer sales and support. Contrary to popular opin-
ion, the corporate software products industry remained very strong in the U.S.
for decades.!”

The software crisis of the late 1960s created an important mythology about
computing in Europe and the U.S., because it called into question the reliabil-
ity of software systems and the development processes connected to them. Wor-
ries about complexity would remain in the software industry for decades, resur-
facing again in the era of GUIs and enterprise computing in the 1980s and 1990s.
To address the issue, software managers introduced engineering principles and
encouraged their employees to work in teams that were efficient, on time, and
under budget—desirables that became an obsession for later programming con-
texts. In a subtler way, the software crisis also elevated a new group in the his-
tory of computing—users, who through market influence and creative action would
change how software products were designed and used. Over time, these customers
would help to make technology companies among the most valuable corporations
on earth.

The Counterculture Movement

In the 1950s and 1960s, the centers of mainframe computing research in the U.S.
were to be found in the headquarters of IBM in upstate New York and in the
academic labs of nearby Cambridge, Massachusetts. By the late 1960s and early
1970s, however, a relatively compact region of California between San Jose and San
Francisco became a crucible not only for political protests and a thriving counter-
culture but also a new set of computing paradigms that would deeply influence the
technical world.!®

17. Not until 1998, when Microsoft overtook it, did IBM cease to be the world’s largest software
supplier. See Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of
the Software Industry (Cambridge, MA: The MIT Press, 2003), 174.

18. A number of excellent books have explored the myths and mythmaking of Silicon Valley
entrepreneurs and software developers, including (by date of publication), Steven Levy, Hackers:
Heroes of the Computer Revolution (Garden City, NY: Anchor Press/Doubleday, 1984; Revised
edition, Sebastopol, CA: O’Reilly, 2010); Theodore Roszak, From Satori to Silicon Valley: San
Francisco and the American Counterculture (San Francisco, CA: Don’t Call It Frisco Press, 1986);
John Markoff, What the Dormouse Said: How the Sixties Counter-culture Shaped the Personal Com-
puter Industry (New York: Penguin Books, 2005); Fred Turner, From Counterculture to Cyberculture:
Stewart Brand, the Whole Earth Network, and the Rise of Digital Utopianism (Chicago: University
of Chicago Press, 2006); Michael Swaine and Paul Freiberger, Fire in the Valley: The Birth and
Death of the Personal Computer, Third Edition (Dallas, TX: The Pragmatic Bookshelf, 2014); Walter
Isaacson, The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution
(New York: Simon & Schuster, 2014); Clive Thompson, Coders: The Making of a New Tribe and the

40 Chapter2 Four Computing Mythologies

A seminal text in the communication of counterculture values was Theodore
Roszak’s The Making of a Counter Culture (1969), which criticized the domi-
nant industrialized cultures of Europe and America and suggested new ideals
for disaffected citizens, students, and intellectuals.!® Roszak rejected what he
called technocracy in modern societies, the oppressive regimes of corporate and
technological expertise that seemingly dominated society and regimented social
and intellectual life. His work echoed themes from other works of the period,
including C. Wright Mills’ The Power Elite (1956), Leo Marx’s The Machine in
the Garden (1964), Jacques Ellul’s The Technological Society (1964), and Lewis
Mumford’s The Myth of the Machine (1967). Technology had its merits, these texts
argued, but in the era of cold wars, nuclear weapons, and the expanding military-
industrial complex, technology could also become a force of dehumanization.
To reject this mindset required a transformation of consciousness, a mode of
transcendence stimulated by new types of knowledge and collaborative styles of
living.

If this social and political protest seems like a rejection of the mainframe com-
puting culture that we have just surveyed, it was—at least in part. Countercultural
intellectuals came to view most of the scientists who worked on government and
military projects as Big Brother loving bureaucrats who were supporting the wrong
team. The fact that many of the employees who worked on these projects also had
concerns about the ethics of the military-industrial complex was beside the point,
at least for a while.

In his description of the counterculture movement, Fred Turner has iden-
tified two groups that envisioned the transformation of consciousness as the
essential task for healing American society in the 1960s. The first group with-
drew from society and formed egalitarian communes in places like northern
California, Colorado, and New Mexico. These communes could be in rural or urban
areas, but they were unified in their rejection of middle-class, Cold War America
and its presumed values. The second group focused on mind-expanding experi-
ences including sexuality, psychedelic drugs, music, and alternative spiritualties.
These countercultural experimenters often remained in society but developed a
similar utopian outlook to those who choose to live in the communes.?°

Remaking of the World (New York: Penguin Press, 2019); Margaret O’Mara, The Code: Silicon Valley
and the Remaking of America (New York: Penguin Press, 2019).

19. Theodore Roszak, The Making of a Counter Culture: Reflections on the Technocratic Society and Its
Youthful Opposition (Garden City, NY: Doubleday & Co., 1969).

20. Turner, From Counterculture to Cyberculture, 31-34.

2.4 The Counterculture Movement 41

Figure 2.4 Spectators at the New Games in 1973 watch as Stewart Brand, a leader of the counter-
culture movement, lays out sticks for a group activity. Brand became fascinated with the
collective use of small-scale tools. (Photo by ©Ted Streshinsky/CORBIS/Corbis via Getty
Images)

Collectively, Turner labels the two groups New Communalists, and he draws
attention to their unique interests in small-scale tools and technologies. Unlike
many in the New Left—the political activists who rejected computers along with
bombs, weapons, and other symbols of the military-industrial complex—the New
Communalists found a role for tools in their worldview, especially if the tools could
be used to disentangle corporate America from the military and their perceived
stranglehold on society.

Foremost among Bay Area New Communalists was Stewart Brand (1938-), a
charismatic writer and publisher who became an unofficial spokesman for the
counterculture movement in the 1960s and 1970s. (See Figure 2.4.) Brand’s com-
prehensive publication, The Whole Earth Catalog, proposed to offer small-scale
tools to those who would transform consciousness and society, either through self-
sustaining communes or individual expressions of love, learning, and harmony. The

42 Chapter2 Four Computing Mythologies

first Whole Earth Catalog, published in Menlo Park in 1968, outlined its mission
through a short statement on the first page:

The Whole Earth Catalog functions as an evaluation and access device. With
it, the user should know better what is worth getting and where and how to
do the getting.
Anitem is listed in the CATALOG if it is deemed:

1. Useful as atool,

2. Relevant to independent education,

3. High quality or low cost,

4. Not already common knowledge,

5. Easily available by mail.
This information is continually revised according to the experience and sug-
gestions of CATALOG users and staff.?!

This preface, explaining the importance of “tools” and how they were selected,
appears in each published edition. The compendium appeared every 3 months
or so, changing its focus with the seasons. Between 1968 and 1972, almost two
million copies of Whole Earth Catalog were sold, and each edition contained new
essays, tools, and reviews. The central organizing categories in the catalog included
“Understanding Whole Systems,” “Land Use,” “Shelter,” “Industry,” “Craft,” “Com-
munity,” “Nomadics,” “Communications,” and “Learning.” Within each category
there were listings of mail order products, book reviews, scientific texts, photo-
graphs, and short articles from contemporary figures such as Buckminster Fuller,
Wendell Berry, Marshall McLuhan, and Timothy Leary. The catalog was essentially a
utopian mail-order directory stocked with materials that would inspire hippies and
communalists to raise their consciousness, live peacefully, and make the world a
better place.

The Whole Earth Catalog became the bible of sorts for countercultural groups
like the New Communalists. While paging through several volumes of the oversized
catalog in preparation for Code Nation, Iwas struck by the optimism and excitement
of the movement, which grew to attract over 750,000 people and more than 10,000
communes across the U.S.2? In the space of an afternoon, a typical reader is able to

21.This statement appeared on the title page of each catalog, one page after the image of the planet
earth from space. (See Figure 2.5.) For an excellent introduction to the Whole Earth Catalog and
its structure, see Caroline Maniaque-Benton, ed., Whole Earth Field Guide, with Meredith Gaglio
(Cambridge, MA: The MIT Press, 2016).

22. Turner, From Counterculture to Cyberculture, 32.

2.4 The Counterculture Movement 43

Figure 2.5 Cover of the Whole Earth Catalog (Fall 1970). (Courtesy of Getty Images, Glenn Smith,
contributor)

learn something about growing crops, caring for farm animals, building basic struc-
tures, weaving cloth, generating power, preserving food, managing waste, providing
for health care (including home births), keeping bees, building furniture, throwing
pottery, establishing communal baths, meditating, and experimenting with mind-
altering drugs. Providing essential tips for DIY communal living was the catalog’s
main purpose. All the book and merchandise reviews were positive, too. Discour-
aging product reviews were not printed as they supposedly transmitted “negative
energy.”

In terms of computing technology, the Whole Earth Catalog is surprisingly
taciturn on electronics, computers, and software. Stewart Brand scholars tend to
regard The Last Whole Earth Catalog (1971) as the definitive Whole Earth text because
it offers the widest range of content, enjoyed the best sales, and was the winner
of a national book award. Despite its comprehensive coverage, however, the 1971
Last Whole Earth Catalog features no computers, terminals, calculators, or software
programs, nor do the editors write at any length about the burgeoning realms of

44 Chapter 2 Four Computing Mythologies

computer technology. Only in earlier volumes, such as the March 1969 Supplement
to the catalog, can one find an occasional reference to computer-related technol-
ogy, such as a photograph of a computer club meeting or a short advertisement for
a calculator.

This might seem surprising, considering my earlier emphasis on the “crisis”
mentality of the computer industry and the flurry of activity around the software
engineering conference at Garmisch. But the reality was that the computer world
was still in its infancy, a topic for government analysts and specialists in research
labs. Most Americans had no direct experience with computers. At best, they caught
glimpses of hulking mainframe units in films, television shows, and news broad-
casts.

As in most things, Stewart Brand was a bit ahead of the curve. In December 1968,
Brand had assisted Bay Area inventor Doug Engelbart at the so-called “Mother of
All Demos” exhibition in San Francisco, demonstrating creative uses for computer
terminals and the future of input devices and GUIs. But this moment aside, there
were limits to what regular people knew about computers. Sophisticated electron-
ics were especially rare in the rural communes or humble row houses that sheltered
Whole Earth Catalog readers in the late 1960s and early 1970s. There was also a
huge cultural gap between corporate computing and the average work experience of
Americans. All of this explains why the only mention of computers in The Last Whole
Earth Catalog is a textbook about how to create computer graphics from Prentice
Hall, and a review of Nicholas Negroponte’s new book on computer-aided design
and human-computer interaction.?3 About the Negroponte book, Brand simply
offered the quip in his publisher reviewer notes: “A book of beginning efforts to
domesticate computers. Good intro to life with dumb-fuck genius machines.”?

Brand and the editors of Whole Earth Catalog often included short notes like
this about the products that they list. Negroponte’s book was clearly innovative (he
would go on to have an important career in computing), but Brand’s note also passes
along a common stereotype about electronic devices in this era—they appeared
both stupid and smart at the same time. In other words, computers offered both
control and freedom to users. Like the human soul, they required some measure of
domestication and familiarity before transcendence might occur.

The Whole Earth Catalog was not an engineering manual. However, it spoke in
metaphorical rhythms about small-scale tools that might elevate America’s con-
sciousness. The editors offered a compelling ideology: that low-cost instruments

23. Nicholas Negroponte, The Architecture Machine (Cambridge, MA: The MIT Press, 1970).

24. Stewart Brand et al., The Last Whole Earth Catalog: Access to Tools (San Francisco, CA: Portola
Institute, 1971), 321.

2.5

2.5 Everything is Deeply Intertwingled 45

that would soon return human communities to pre-industrial simplicity. Through
the process, they would gradually raise group awareness. The counterculture move-
ment had different priorities than high technology advocates, but the movement’s
ideas about tools were provocative and they left a lasting impression.

Everything is Deeply Intertwingled
The Whole Earth Catalog’s busy, sprawling format was copied by numerous authors
and innovators in the 1970s. The publication’s homemade cut-and-paste quality,
often utilizing different typefaces and texts rotated in opposing directions, became
arecognizable standard for creativity, free thought, and challenging the status quo.

One of the most influential adapters of this style on the West Coast was Ted
Nelson (1937-), author of the iconic idea and design book Computer Lib/Dream
Machines (1974). 1t is not an overstatement to say that this book and its positive
message about computers and computer literacy changed computing history.

Ted Nelson was a prolific writer and inventor who studied philosophy and
sociology, composed a rock-and-roll musical, made films, taught in the humanities,
consulted in corporate and academic contexts, and completed distinctive work as
an artist and designer. While Stewart Brand did not make many overt connections
to computer technology in Whole Earth Catalog, Nelson oozed enthusiasm for com-
puting in his writings, using his self-published Computer Lib/Dream Machines as a
call to action for learning about computers and leveraging their power for good. As
Nelson’s ideas and enthusiasm attracted followers, he settled in the San Francisco
Bay Area, making friends with engineers and inventors at the Home Brew Com-
puter Club, Stanford Research Institute, and other high-tech hubs. Nelson would
pursue a fascinating career in computing as a visionary and futurist, coining the
term hypertext (text on a computer screen linked to webs of other texts), and envi-
sioning a graphical, compound-document system that he called Xanadu. Hypertext
and compound-documents would eventually be adopted in a variety of contexts in
the computing world, including Tim Berners-Lee’s implementation of the World
Wide Web. I am grateful for Dr. Nelson’s gift of an unpublished photograph from
his collection for this book (see Figure 2.6).

Computer Lib/Dream Machines was published just before the introduction of PCs,
but the revolutionary nature of “individualized computing” was clearly anticipated
in Nelson’s book. For this reason, it is helpful to define “personal computing”

25. For important assessments of Nelson’s work, see Peter Morville, Intertwingled: Informa-
tion Changes Everything (Ann Arbor, MI: Semantic Studios, 2014); and Douglas R. Dechow and
Daniele C. Struppa, eds., Intertwingled: The Work and Influence of Ted Nelson (Heidelberg, Germany:
Springer, 2015).

46 Chapter2 Four Computing Mythologies

Figure 2.6 Detail of Ted Nelson (reclining) with members of the Project Xanadu group, 1981. (Photo
from the collection of Ted Nelson and used with his permission)

as an interactive experience with computers that may include users on time-
sharing systems as well as individuals using microcomputers or later personal
computers.

Like Whole Earth Catalog, Computer Lib/Dream Machines is a compendium
of information, organized in eclectic fashion around loosely-connected themes.
The book’s two titles are a reference to the way that the author presented his
material—in overlapping, intertwining sections. In essence, there are two books
bound together in one volume. You read Computer Lib to the book’s mid-point
or “pivot” page, and then you flip the book and read Dream Machines until you
reach the end of Computer Lib. 1t is not necessary (or even useful) to read the
book sequentially, however; the seemingly random organization of topics serves to
emphasize the interconnected nature of information and its mystical intertwingu-
larity, a term Nelson coined to express the complexity of interrelations among all
forms of human knowledge.2® For these theoretical ideas, Nelson is also recognized
as a seminal figure in modern information theory and design.

26. On this term, Nelson wrote in Dream Machines: “EVERYTHING IS DEEPLY INTERTWINGLED.
In an important sense there are no ‘subjects’ at all; there is only all knowledge, since the
cross-connections among the myriad topics of this world simply cannot be divided up neatly.”

2.5 Everything is Deeply Intertwingled 47

As a document reflecting America’s technology culture in the mid-1970s,
Computer Lib/Dream Machines projects a positive, upbeat vision of computing soci-
ety, but it also finds space for diatribes against IBM, U.S. intelligence agencies,
the incompatibilities of computer systems, commercial television, “cybercrud”
(computer jargon that serves to confuse), and the “ticking time bomb” of global
population growth. (For more on the last issue, see Bob Albrecht’s contemporary
programming primer in Chapter 4.) Like the Whole Earth Catalog, Nelson adopts
a countercultural point of view, but he offers technology as a way to improve the
world, not abandon it. For Nelson, computers have fortuitously appeared as the
next iteration in a long line of textual devices that have the potential to inform com-
munities, expand the mind, and reunite people with their literary heritage. Inter-
estingly, there is a strong liberal arts emphasis in his writing, evidenced through his
deep appreciation for the classics of literature, art, history, sociology, psychology,
biology, and mathematics.

Nelson came of age in the 1960s, and he knew firsthand about the “crisis”
mythology surrounding corporate and government computing. He also recognized
that the world of computers and software was changing rapidly. The 1974 edition
of Computer Lib/Dream Machines envisioned a revolutionary computing context to
be a terminal connected to a time-sharing system, providing interactive access
to the mainframe’s software and data resources. In the 1987 version of the book
(see Figure 2.7), Nelson revised his presentation to introduce the wide range of com-
puting technologies, including the Altair microcomputer, the Apple II, various IBM
PCs and compatibles, the Macintosh, new minicomputer systems, and platforms
running CP/M, MS-DOS, Unix, and Macintosh Finder. Regardless of the device, how-
ever, Nelson argued that computers only become revolutionary when the user was
put in charge of the device and its resources. An important aspect of this com-
mand and control included computer programming. “The world is divided,” Nelson
intoned, “into people who have written a program and people who have not.”?”

Inspired by his influence, Stewart Brand described Ted Nelson as “the Tom
Paine of the PC Revolution.”?® Nelson spread the message that corporate comput-
ing had become paternalistic and compartmentalized to the point that users had
been removed from the decision-making process. As aresult, computing in America
had become “an atrocious tangle of excellent incompatible pieces, well-intentioned

Ted Nelson, ComputerLib/Dream Machines, Second Edition (Redmond, WA: Microsoft Press, 1987),
DM 31 [1974 Edition, DM 45].

27.Nelson, Computer Lib/Dream Machines, Second Edition, 40.

28. Stewart Brand, “Foreword,” in Computer Lib/Dream Machines, Second Edition, by Nelson, ii.

48 Chapter2 Four Computing Mythologies

Figure 2.7 Computer Lib/Dream Machines, 1987 Edition, by Ted Nelson. (Used with permission
from Microsoft)

incompatible junk, and inexcusable incompatible junk.” Like many visionaries,
Nelson pointed out both a crisis and a solution:

We have to end this chaos. We have to re-unite the things that should never
have been separate. We have to make it work for everybody. It is time indeed
for real computer liberation.?®

29. Nelson, Computer Lib/Dream Machines, Second Edition, 151.

2.6

2.6 The Birth of Computer Science 49

The Birth of Computer Science

Ted Nelson emphasized liberating computer users and fixing software problems
at an important moment in the history of computing. Although his ideas struck a
different tone than many of the dominant paradigms in corporate computing, we
should not try to separate his critiques too dramatically from earlier principles in
the history of technology. This is an important caveat as we work to untangle the
many strands of intellectual and cultural life that contributed to America’s pro-
gramming culture in the 1970s and 1980s. To understand why this is so, it is instruc-
tive to examine a few related developments that were taking place in the burgeoning
discipline of computer science.

In the 1960s, as the Beatles invaded and IBM produced computers that put
astronauts into orbit, the discipline of computer science emerged in universities
across America. Inasense, this newacademic field offered an institutional response
to the radical changes that were taking place in the research labs of Cambridge,
Massachusetts, and the San Francisco Bay Area. For those not steeped in academic
teaching and administration (I have now worked as a college professor for 20 years),
it is perhaps helpful to emphasize how daunting it can be to design and administer
anew academic program—both for those who want to develop new fields of inquiry
in a university setting, and for those outside the university who hope to benefit from
a degree program and hire its graduates.

Most of the early digital electronic computers were not built by people that we
would call “computer scientists.” If the inventors who worked on computers were
connected to universities at all, they came from the departments of Mathematics,
Physics, Electrical Engineering, or Psychology. Often the computers were created
by partnerships between academic institutions and government agencies. If finan-
cial support did come to the universities involved, they spent the money on new
computing centers, research labs, student-faculty research teams, or other admin-
istrative projects. The first American universities to benefit from this type of sup-
port included Harvard, Princeton, Massachusetts Institute of Technology (MIT),
Carnegie Mellon, the University of Pennsylvania, and Stanford. Despite the funding
for computer-related research, however, actual courses in programming and com-
putational logic were rare. When they did take place, they were distributed widely
across the university. For example, a course in FORTRAN programming might be as
likely in a physics department as in the mathematics department or the school of
engineering.

During the 1950s, some momentum was established to begin a new aca-
demic discipline called “computer science” that might take up the theoret-
ical analysis of computers and formal computing methods. In this context,

50 Chapter2 FourComputing Mythologies

the world’s first computer science degree program may have been the Cam-
bridge Diploma in Computer Science, initiated at the University of Cambridge
Mathematical Laboratory (UK) in 1953. This is the location where the pioneer-
ing EDSAC stored-program computer was first developed, and the new degree
program was devoted to understanding and expanding this important sys-
tem. (See Figure 3.5.) I will introduce the inventors of this computer and the
first programming primer written for the system in Chapter 3.

In 1959, Louis Fein published an article in the newly-minted journal Commu-
nications of the ACM suggesting that computer science should be introduced as
an academic discipline wherever universities could support it, including within
the U.S.3° According to Fein, the goals of this program should include fostering
fundamental research in computing, educating graduate students, and preparing
programmers for useful work in science, business, and industry. Universities were
encouraged to build their programs by drawing expertise from across the institu-
tion, including the departments of Mathematics, Library Science, Economics, Busi-
ness, Physics, and Engineering. Not long after this invitation, the first American
Computer Science degree program was founded at Purdue University in 1962. In
the following years, computing courses and new computer science programs were
founded in several colleges and universities across the U.S.

Characteristic of the founding years of computer science programs was the
leadership of administrators such as Professor Alan Perlis of Carnegie Institute of
Technology (later Carnegie Mellon University). Perlis managed his institute’s com-
puting center, recruited faculty and graduate students, chaired the Department
of Mathematics, and encouraged his colleagues to establish a new curriculum in
computer science.3! We first encountered Dr. Perlis in our discussion of the 1968
NATO conference, where Perlis served as a conference organizer and panelist. He is
remembered as a seminal figure in computing not only for his publications, but for
his effective leadership and skill in negotiating across academic boundaries, a task
that he approached with political savvy and a sense of humor. After about 5 years of
preparatory work, Carnegie Tech formally established a Ph.D. program in computer
science in 1965, and Perlis became its principal director.

Professional organizations were also useful in the founding of university
computer science programs, and none more so than the ACM. In 1968, the ACM

30. Louis Fein, “The role of the university in computers, data processing, and related fields,”
Communications of the ACM 2,no. 9 (1959): 7-14.

31. The founding of Carnegie Mellon’s Computer Science department is described in an impor-
tant interview with Alan Newell, a colleague of Perlis’. See Allen Newell, “An interview with Allen
Newell,” interview by Arthur L. Norberg, Charles Babbage Institute (University of Minnesota), June
10-12, 1991, 34.

2.6 The Birth of Computer Science 51

proposed a formal curriculum for computer science in a report that recommended
an appropriate selection of thematic courses. The organization advertised their
plan with a series of articles about major concepts and theoretical concepts in
the new field.? Over the next decade, the ACM and its standing committee, the
Curriculum Committee on Computer Science, hosted conferences that helped
smaller universities adapt the initial recommendations for their specific contexts.
Although smaller schools might not have graduate students or large budgets, the
interdisciplinary nature of computer science adapted well to the distributed cur-
riculum of many liberal arts colleges, especially those with strengths in writing,
mathematics, art, history, music, and philosophy. (Several of the PC industry’s early
leaders studied computing in these small college contexts, such as Ted Nelson
at Swarthmore College, Cynthia Solomon at Radcliffe College, and Steve Jobs and
Peter Norton at Reed College.)

During the 1960s and 1970s, the computer science curriculum accentuated
mathematics, including courses in calculus, Boolean algebra, numerical analy-
sis, and statistics. The courses that introduced programming taught fundamen-
tal concepts in high-level languages like FORTRAN, ALGOL, Pascal, and C. In
later courses, students received an introduction to data structures and algorithms.
(COBOL and BASIC were offered less often, and remained controversial because
of their perceived lack of structure, an issue that will be explored in Chapter 5.)
Assembly language was often introduced as an aspect of computer architecture.
In the years to come, computer science departments expanded their offerings to
include courses in operating systems, artificial intelligence, automata, and theories
of computation.3

Representative of the emerging computer science faculty is Edsger Dijkstra
(1930-2002), a Dutch scientist who started his undergraduate career as a student
of theoretical physics but switched fields and completed a doctorate in 1959 on
assembly language programming strategies for an early Dutch computer.

Dijkstra entered computer science during a time of rapid growth in computer
architecture. Riding a surge of interest in computing in the Netherlands, Dijk-
stra worked as a programmer at the Mathematisch Centrum in Amsterdam from
1952 to 1962. In 1962, Dijkstra accepted an offer to become a professor of Math-
ematics at the Eindhoven University of Technology, where he developed theoret-
ical concepts in computer science and supervised numerous graduate students.
(Many of these students became leading figures in the field in the following
years.) Soon Dijkstra weighed in on the looming “crisis” in software reliability

32. Ensmenger, The Computer Boys Take Over, 133.
33. Ensmenger, The Computer Boys Take Over, 129.

52 Chapter2 Four Computing Mythologies

and complexity, and he attended the 1968 engineering conference in Garmisch.
To address his concerns, Dijkstra introduced new engineering practices, devised
seminal algorithms, and he emphasized the importance of applied mathematics
in the new field—all contributions that influenced the subsequent development
of computer science. He also advocated for structured programming concepts and
famously attacked the BASIC programming language, publishing a negative arti-
cle about the language’s lack of structure and the dangers of its “GOTO” keyword.
(See Chapter 5.)

In 1984, Dijkstra transferred to the growing Computer Science department at
the University of Texas at Austin, where he continued to direct research until his
retirement in 1999. Through numerous graduate students and colleagues, Dijk-
stra guided seminal work in language research, compiler design, concurrent pro-
gramming, modeling, and operating systems. Throughout his career, the Dutch
scientist was a theoretical purist, believing that individual implementations of
computing technology were less important than the formal abstract knowledge
gained through research.?*

Computer science emerged as a new discipline in the natural sciences, and it
established a place in the university curriculum. However, few courses were intro-
duced at the high school level, a problem we will return to later in this book.
Still, between the early 1960s and the early 1980s, new computer science programs
appeared in American colleges and universities at a rate of about 20% annually.
At the height of the major’s popularity, more than 5% of all U.S. male college stu-
dents would graduate with a degree in Computer Science or Information Science.
Moreover, in 1984, approximately 37% of the U.S. Computer Science graduates were
women, indicating widening opportunities in the field, strong demand, and the
program’s early success in reaching at least some underrepresented groups.3® If
the goal was bolstering the pool of potential software developers for industry, the
project seemed like a success.

So how did the U.S. computer industry respond to the new field and its
curriculum? Although many employers were positive, there also those who critiqued
the way that academics continually gravitated to theoretical principles over practi-
cal applications. More a tendency than a hard and fast rule (and therefore fertile
ground for myth-making), this inclination was most apparent in corporate contexts
where large teams of IT programmers were assigned to build information process-
ing systems. At the time, many working programmers still had no formal education

34. Tedre, The Science of Computing, 6.
35. Ensmenger, The Computer Boys Take Over, 115.
36. Abbate, Recoding Gender, 3.

2.6 The Birth of Computer Science 53

in computing. They learned on the job through programming primers and other
printed resources. As a result, these developers were learning to code in relatively
narrow contexts.

In the 1960s and 1970s, the conflict between academic computer scientists and
professional programmers became severe in some circles, driving a wedge between
the two subcultures that remains discernable up to the present. As Nathan Ens-
menger has commented, “Computer scientists expressed disdain for professional
programmers, and professional programmers responded by accusing computer
science of being overly abstract or irrelevant.”3”

Partisans in the dispute found ways to deploy stereotypes to heighten the impact
of their critiques. In 1968, Hal Sackman was a research associate working for IBM,
studying the characteristics of programmers employed in the commercial com-
puting industry. In a report published that year, Sackman wrote: “They [computer
science professors] are too busy teaching simon-pure courses in their struggle
for academic recognition to pay serious time and attention to the applied work
necessary to educate programmers and systems analysts for the real world.”3® By
simon-pure, Sackman implied that academics were engaged in teaching computing
concepts with an abstract, theoretical propriety. Sackman believed this to be a pre-
tentious commitment to principle that was essentially insincere and disconnected
from everyday concerns.

Richard Hamming, a mathematician, information theorist, and Turing Award
winner at Bell Labs, also criticized the academic training delivered in his era.
In 1968, Hamming repeated a phrase that we have already encountered in the
Garmisch conference transcripts:

Atpresent there is a flavor of “game-playing” about many courses in computer
science. I hear repeatedly from friends who want to hire good software peo-
ple that they have found the specialist in computer science is someone they
do not want. Their experience is that graduates in our programs seem to be
mainlyinterested in playing games, making fancy programs that really do not
work, writing trick programs, ete.°

Recall that J. W. Smith of SDS also made the same accusation against elite program-
mers whom he saw as “playing games” in their solutions. This is an attack akin to
the mythical “ivory tower” trope of academic research, which supposedly rises in
isolation above everyday concerns.

37. Ensmenger, The Computer Boys Take Over, 129.
38. Ensmenger, The Computer Boys Take Over, 133-134.
39. Ensmenger, The Computer Boys Take Over, 134.

54 Chapter2 Four Computing Mythologies

2.7

As a partial reply, several academics offered the counter charge that computer
science was being unfairly equated with simply teaching programming skills. In
fact, they argued, writing computer programs is just one of the proficiencies that
Computer Science students need to learn. ACM Past-President Peter J. Denning
emphasized this point in his discussion of the attributes of a thorough Computer
Science education:

Every practitioner of the discipline [computer science] must be skilled in
four basic areas: algorithmic thinking, representation, programming, and
design... Even though everyone in the discipline is expected to know these
skills, it is a mistake to equate computer science with any one of them, e.g.,
programming... There are many aspects of the discipline that do not involve
programming even though they involve algorithmic thinking, representa-
tion, and design.*°

This disjuncture between the academy and industry remains an important
dynamic of modern computing culture, and it has engendered several myths, with
each side accusing the other of infringements and narrow thinking. The fissure
has also influenced the learn-to-program movement, because self-taught program-
mers only seek out some of the skills that they need, and they are often forced to
chart their own course through mounds of textbooks, software manuals, program-
ming forums, and boot camps without adequate mentoring or support. On the other
hand, many self-taught programmers have done verywell without academic support
and degree programs, and they feel that the essence of computing relates to learn-
ing by doing, forming their own communities, and participating in the dynamic
worlds of business and commerce—not learning to climb the ivory tower. Personal
computing has been highly influenced by these debates.

Computers for the People

San Francisco was a major hub of computing activity in the 1970s, both before
and after the so-called “PC Revolution.” In the years before the introduction of the
first microcomputers, the Bay Area was replete with high tech startups, engineers,
hippies, intellectuals, and students advocating for change. A fascinating represen-
tation of these overlapping mindsets can be found in the life and experiences of
Lee Felsenstein (1945-), a Bay Area antiwar protestor with a Berkeley Electrical
Engineering degree who combined political activism with a unique vision for com-
puting technology. Felsenstein was one of the original members of the Homebrew

40. Peter J. Denning, “Computer Science: The discipline,” in Encyclopedia of Computer Science,
Fourth Edition, eds. A. Ralston, E. Reilly, and D. Hemmendinger (Hoboken, NJ: Wiley, 2003).

2.7 Computers for the People 55

Computer Club, the influential group of tinkerers and entrepreneurs who began
meeting about electronics and computing in Menlo Park in 1975. The club’s first
meeting allowed participants to preview one of the early MITS Altair microcomput-
ers, the famous device based on the Intel 8080 microprocessor that was revealed to
popular acclaim in the January 1975 issue of Popular Electronics. At first there were
32 members active in the club. After about 6 months, the group had expanded to
about 100 regular attendees, with a newsletter distribution of almost 300.4!

At Homebrew, Felsenstein met several people who would make major contri-
butions to the development of PCs, including Gordon French, Fred Moore, Adam
Osborn, Steve Wozniak, and Steve Jobs. Through these contacts, Felsenstein also
came to know Stewart Brand, Ted Nelson, Bob Albrecht, and other entrepreneurs
and authors interested in print publishing.

Felsenstein took part in the Free Speech Movement in Berkeley in 1964-1965,
the first massive act of civil disobedience on an American college campus in the
1960s. The events at Berkeley were influenced by New Left politics, and they were
deeply connected to the Civil Rights Movement and Vietnam War protests. Many
students took part in all three struggles and saw them as part of the same cause.
Figure 2.8 shows one creative way that Felsenstein used his engineering skills to pre-
pare for these events. In 1969, he designed a device he called a “decentralized bull
horn” (FR-3), which allowed protesters to communicate in crowded situations typ-
ical of student movements.?? (See Figure 2.8.) The bull horn was designed to have
input and output connectors so that many individual devices could be driven by one
lead device. Using these tools, a crowd of protesters armed with the bull horns could
speak to each other when crowd noise became too loud for regular communication.
Itwas an engineering solution designed to help people participate effectively in free
speech rallies without the loudness and distortion of contemporary systems.

Felsenstein’s contributions to the movement usually brought together his love
of technology with computing solutions that would help regular people. An early
inspiration for his work was Stewart Brand’s Whole Earth Catalog, which connected
Americans through print to a positive message on a massive scale. More theo-
retically, Felsenstein was also influenced by Ivan Illich’s book Tools for Convivi-
ality (1973), which offered a conceptual rationale for using “limited” tools that
might improve the lives of average citizens. Ivan Illich (1926-2002) was a Roman

41. Elizabeth Petrick, “Imagining the personal computer: conceptualizations of the Homebrew
Computer Club 1975-1977,” IEEE Annals of the History of Computing 39, no. 4 (2017): 27-39, here
at 31.

42.1thank Lee Felsenstein for his detailed description of the decentralized bull horn system, which
he explained via email correspondence in June 2019. Felsenstein also granted me permission to
reproduce the image in Figure 2.8.

56 Chapter2 Four Computing Mythologies

Figure 2.8 Photo of Lee Felsenstein with a decentralized bullhorn that he designed in 1969.
(Courtesy of the Computer History Museum, used with permission of Lee Felsenstein)

Catholic priest and a staunch critic of mainstream, institutionalized education; he
argued that a society functioned well when it made education broadly available
and resisted the formation of elite groups that controlled and monetized the flow
of information. Ideally, Illich wrote, learning would be hands-on, low-tech, and
socially beneficial—what he defined as “convivial.”*3

Felsenstein was an electrical engineer by training and he had worked with
computing systems at UC Berkeley and the Ampex Corporation, the later a maker
of multitrack tape recording devices. Inspired by Illich and the Free Speech Move-
ment, Felsenstein recognized in transistor technology the potential to offer citizens
inexpensive access to communication tools and abundant sources of information.
Like Stewart Brand and Ted Nelson, Felsenstein believed that appropriate tools
could elevate the consciousness of average citizens and promote social change.

43. “Total learning expands when the range of spontaneous learning widens along with access to
an increasing number of taught skills and both liberty and discipline flower.” Ivan Illich, Tools for
Conviviality (New York: Perennial Library, Harper & Row, 1973), 59.

2.7 Computers for the People 57

“We were looking for nonviolent weapons,” Felsenstein wrote, “and I suddenly
realized that the greatest nonviolent weapon of all was information flow.”44

In August 1973, Felsenstein and four others created The Community Memory
project in Berkeley, California. The goal of this endeavor was to build a simple
time-sharing computer system that could function as a hub for information and
community organizing in the region. The first Community Memory system was
established in Leopold’s Records in Berkeley, a popular hangout for students,
musicians, poets, and counterculture types of all ages. (For more about this orga-
nization and its mission, see Chapter 7.)

The Community Memory information hub consisted of a teleprinter and a key-
board, surrounded by a simple cardboard case to protect the system and reduce
the shrill noise that emitted from the teleprinter. The device was connected via a
110-baud link to a reconditioned Scientific Data Systems 940 time-sharing com-
puterin San Francisco. By using the teleprinter and simple commands, novice users
could compose short messages, associate them with keywords, and post them to
the system. Users could also search for messages or general topics of interest using
keywords. There were helpful signs for users explaining how to operate the device,
and typically a Community Memory volunteer was nearby to offer help and encour-
agement. The device functioned as a community bulletin board, where locals could
get information about music, art, food, carpooling, protesting, and other activities.
Users were not required to register or share their names to use the system. For many
Berkeley residents, it was their first opportunity to see or use a computer.

As Community Memory gained momentum, Felsenstein developed a related
project that he designed in the fall of 1974, the Tom Swift Terminal. Steven Levy
introduced Felsenstein’s project to the general public in his book Hackers: Heroes
of the Computer Revolution.*> For historians interested in the plan, the best source
is Felsenstein’s short vision document, which provides a high-level explanation
of the circuitry and the components required to build the system.%® T am fasci-
nated with Felsenstein’s hand-written prototype, because I see it as a forerunner of
the learn-to-program movement, with its socially-based call to action and step-by-
step instructions that taught computational thinking. Through the specification,
Felsenstein and his colleagues argued for the democratization of computers; they
made an appeal for ordinary citizens to program and use computers. It was a fas-
cinating echo of the emphasis that John Kemeny and Thomas Kurtz had put on

44. Unpublished Felsenstein memoir, quoted in Isaacson, The Innovators, 299-300.
45. Levy, Hackers, 2015.

46. Lee Felsenstein, “The Tom Swift Terminal, or, A Convivial Cybernetic Device.” http://www.
leefelsenstein.com/. Accessed August 19, 2019.

http://www.leefelsenstein.com/
http://www.leefelsenstein.com/

58 Chapter2 Four Computing Mythologies

2.8

bringing “computing to the people” during the development of time-sharing BASIC
at Dartmouth College in 1963-1964.%7

The Tom Swift Terminal was designed to be sturdier and easier to use than the
Community Memory system, which was essentially a cardboard prototype showing
how a community-centered technology might develop. The “Tom Swift” was named
tohonor America’s “everyman” from literature who was fond of tinkering and exper-
imenting far from the centers of corporate and government power. The terminal
consisted of a box containing a bus, a power supply, and connections for printed
circuit boards. When the owner hooked up a keyboard, a modem, and a television
set, he or she had their very own functioning computer. (The schematic also allowed
for a dialup modem connection that could connect to a time-sharing system.) After
the connection was made, interactive “personal computing” could be accomplished
through the remote computer’s operating system and software. The user would
experience the terminal session as lines scrolling on their home television set.

Lee Felsenstein wrote up the following goals for the system:

(a) toprovide an inexpensive computer terminal useable in public-access infor-
mation systems which is;

1. capableof usingthe home TV setas a character display. With hard copy
as an add-on option.

2. easilyuseable byuntrained people in a non-professional environment.

3. readily expandable by field modifications to higher levels of “intelli-
gence” and off-line readability.

In an advertisement to publicize the concept, Felsenstein offered interested parties
a 25-page booklet describing the proposed device for 50 cents. The advertisement
made specific reference to Illich’s Tools for Conviviality, describing a new approach
to computing that would be non-industrial, fun, and playful. People would learn,
understand, and repair this tool with little formal training, just like the tools

humans used before the advent of industrial systems.*®

Personal Computing
In the end, the Tom Swift Terminal would not become a commercial product. A
few months after it was proposed, the Altair 8800 microcomputer kit was released

47. On this point, see Joy Lisi Rankin, A People’s History of Computing in the United States
(Cambridge, MA: Harvard University Press, 2018), 27. I introduce BASIC programming concepts
in Chapters 4 and 5.

48. Lee Felsenstein, “Tom Swift Lives,” printed by People’s Computer Company, Menlo Park,
California. http://www.leefelsenstein.com/ Accessed August 20, 2019.

http://www.leefelsenstein.com/

2.8 Personal Computing 59

by MITS in Albuquerque, New Mexico. Lee Felsenstein, Gordon French, and Fred
Moore organized the first meeting of the Homebrew Computer Club to examine the
device, and they attracted a cross-section of electronics enthusiasts from the region
to discuss the Altair and other projects.

The next part of the story is better known, and the subject of popular books,
television programs, and films. After the Altair, the microcomputing era took
shape at a fast pace. In mid-1975, Bob Marsh, Lee Felsenstein, and Gordon French
designed a new microcomputer around the Intel 8080 microprocessor called the
Sol-20. The Sol was ready for commercial sale in December 1976. Their device cre-
ated major excitement—it appeared as if the potential for low-cost computing was
finally being realized.

Steve Wozniak and Steve Jobs also demonstrated a new microcomputer at the
Homebrew Computer Club in July 1976—a homemade prototype later known as the
Apple L. (See Figure 2.9.) About a year later, the Apple II microcomputer debuted.
This machine was a more mature product with a custom plastic case, a printed cir-
cuit board, and slick modular components. Moving beyond the Silicon Valley circle
of hobbyists, the Apple II became a catalyst for personal computing hardware and
the nascent PC software industry across the country. In a cultural sense, the Apple
I also reflected the aspirations and designs of Lee Felsenstein, Stewart Brand, Ted
Nelson, and other prominentvoices from the counterculture movement. Steve Woz-
niak summed up the connection to Ivan Illich’s work in a special Byte article to
commemorate the launch, “To me, a personal computer should be small, reliable,
convenient to use and inexpensive.”®® Notice that Wozniak, too, used the emerg-
ing term, personal computer. In this early phase of personal computing, a PC was
defined as a small, multi-purpose device that was relatively inexpensive to purchase
(compared to minicomputers and workstations), and it was designed to be used by
individuals.

In rapid succession, there came a series of PCs from different manufacturers:
the Apple II (June 1977), the Tandy TRS-80 (August 1977), and the Commodore PET
2001 (October 1977). These three devices definitively launched what pundits later
called the “PC Revolution,” a new social order that fulfilled the promise of earlier
microcomputer experiments with mass market products and opportunities.

What began as a push to provide simple computing tools to ordinary people
culminated in a new sector of the computer industry. Behind the devices was a
mythological belief that the tools would enrich the experience of average Ameri-
cans, elevate their consciousness, and promote political change. This “revolution”
produced unexpected results when the world’s largest computer manufacturer

49. Steve Wozniak, “System Description: The Apple-1I,” Byte 2, no. 5 (May 1977), 34-43; here at 34.

60 Chapter2 FourComputing Mythologies

Figure 2.9 Steve Wozniak (left) and Steve Jobs with the Apple I Computer (1976). A repeating mes-
sage on the displays reads, “Computer... available at BYTE Shop.” (Photo: Joe Melena.
Image courtesy of the Computer History Museum and used with permission of Apple
Computer)

chose to enter the nascent sector as well, releasing the IBM Personal Computer in
August of 1981. This device was intentionally assembled from off-the-shelf prod-
ucts and did not have its own operating system, software, or programming tools.*°
However, IBM PCs and compatibles would soon carve out a lucrative niche in the
PC industry as well. It took years for PCs to compete with mainframe and minicom-
puters in terms of revenue, but the PC industry had launched and soon there was
aneed for PC programmers and learning tools for both developers, business users,
and hobbyists. Between 1981 and 1983, the receipts of PC software publishers grew
from $70 million to $486 million.>!

The stage was set for the rapid democratization of programming culture in the
U.S. Computer literacy programs developed in the wake of widespread exposure

50. For more on the origins of the first IBM PC, see James W. Cortado, IBM: The Rise and Fall and
Reinvention of a Global Icon (Cambridge, MA: The MIT Press, 2019), 379-418. I provide a more
detailed analysis of this platform and its early software in Chapters 5, 6, and 9.

51. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 210.

2.8 Personal Computing 61

to computers, as new users sat in front of PCs and wondered what to do with
them. Computer programming, once considered the domain of corporate special-
ists, became a popular way to learn about computers and benefit from them. In the
next chapter, we will learn more about this new skill, and how learning to program
gained momentum as a popular movement in America.

FORTRAN, Logo, and the
Tower of Babel

“The emergence of motion pictures as a new art form went hand in hand with the
emergence of a new subculture... people whose skills, sensitivities, and philosophies of
life were unlike anything that had existed before... Similarly, a new world of personal
computing is about to come into being, and its history will be inseparable from the
story of the people who will make it.”

Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas (1980)

With the rapid introduction of personal computers (PCs) in the 1980s, computer
programming grew from a relatively narrow technical and professional activity to a
topic of fascination for a broad swath of the American public. Scientists, business
people, educators, entrepreneurs, hobbyists, artists, and students—all were drawn
by the pull of computing.

As MIT professor Seymour Papert argued in his popular book Mindstorms, PCs
helped to create a new world filled with people who were being transformed by their
technical experiences. Among the most positive interactions were the acquisition of
new cognitive capacities, benefits that would come especially to those who learned
towrite their own programs. Papert claimed that the requisite stages of the program-
ming process (problem solving, designing, coding, and debugging) all influenced
the developing mind and a person’s underlying cognitive abilities. This was espe-
cially true for the young, who with proper guidance could use programming com-
puters as away of jump-starting mental development, such as nurturing spatial and
logical reasoning skills.

Papert was in a good place to develop his ideas and spread their influence; he
joined MIT in 1963 during an intensive period of government-sponsored computer
research that produced breakthroughs in time-sharing systems, operating systems,
programming languages, artificial intelligence, and cognitive psychology. He later
co-founded MIT’s artificial intelligence lab with Marvin Minsky and cultivated a
network of colleagues around the globe that spread his educational initiatives.

64 Chapter 3 FORTRAN, Logo, and the Tower of Babel

This chapter examines the origins of the learn-to-program movement in the U.S.,
an educational agenda that sought to introduce computational thinking to all peo-
ple and gradually expand access to computers and programming-related skills. It
explores the creation of the first programming languages, and early attempts to
teach assembly language, FORTRAN, COBOL, and BASIC. I'll introduce the educa-
tional reforms proposed by Seymour Papert, Cynthia Solomon, and Wally Feurzeig
at MIT, and the experience of elementary and middle school students who learned
Logo under their influence. I will also highlight some of the author-programmers
who devised the first programming primers, including Maurice Wilkes, Grace
Mitchell, Donald Knuth, Daniel McCracken, and Daniel Watt.

The mythical “PC Revolution” put millions of computers in the hands of Ameri-
cans. But for several years there was little in the way of commercial software for the
new machines. In a very real sense, the early adopters of PCs needed to learn to pro-
gram because they had little choice if they wanted to use their computers. But which
programming language should they choose? Which PC platform should they create
applications for? What steps should they follow to learn programming fundamen-
tals, and how long might it take for a novice to become reasonably proficient as a
software developer?

By the 1970s, many universities were offering Computer Science degrees that
included programming instruction as part of the curriculum. But should American
K-12 schools also introduce software development concepts? Would an aptitude
for programming enhance core instruction in reading, writing, and mathemat-
ics? Or would programming simply overcrowd the curriculum, taking away valu-
able resources from spoken languages, art, science, music, and physical education?
Finally, would learning to program really help most people later in life? Or were
programming careers just rewards for a narrow slice of the population? In social
and economic terms, could one prove that computational thinking was valuable to
study?

The learn-to-program movement posed all of these questions, bringing forth a
torrent of ideas, proposals, challenges, and products. Although the movement did
succeed in introducing a generation to programming fundamentals, it also led to
a splintering of educational resources and growing factionalism about which com-
puter languages and platforms were the best. The educational movement’s gradual
decline in the mid-1980s had real consequences. It contributed to a decade or more
ofambivalence about computer literacy, which devalued America’s technical infras-
tructure and narrowed the understanding of who should consider computer-related
occupations. As the movement continued, it traveled more corporate and commer-
cial paths, becoming a manifestation of the nation’s largest software companies.
Today, pundits in the software industry still cannot agree on the best vocational

3.1

3.1 Solving Problems with Computers 65

path for creating new programmers, a problem that has vexed organizations like
the Association for Computing Machinery (ACM) since the 1960s.

We shouldn’t be surprised with these mixed outcomes. The learn-to-program
movement fits the pattern of many social and educational movements in American
history, especially those that advocate for collective action and deep social change.
The learn-to-program movement was inspired by charismatic leaders and economic
necessity, and it gained momentum due to social, cultural, and economic factors.
The movement benefited from waves of enthusiasm connected to the distribution
of new PCs, and it also captivated talented writers and entrepreneurs who sought
to teach programming fundamentals to average Americans. For a time, the move-
ment seemed to unify the aspirations of many who sought to saturate the nation
with computers, creating a shared reading of mythologies about computing and a
vision to realize them. And then, in the mid-1980s, the educational underpinnings
of the movement began to fracture, dissipating the cause’s energy and impact, until
a new wave took shape in more recent times.

Solving Problems with Computers

Computer programming is a catch-all term for problem solving with a computer.
The core task of programming is to create a sequence of instructions in a computer
language that will automate a given task or find a solution to a problem of interest.

Although early computer programmers devised their solutions by directly
manipulating or “setting up” the wiring and circuitry of computers, by the late
1950s most programmers used computer languages to automate problem solving.
Low-level languages (such as machine language and assembly language) provide
instructions that are closely related to a computer’s underlying architecture. High-
level languages (such as FORTRAN and Java) provide instructions that are optimized
for specific problem-solving requirements. Programs written in a high-level lan-
guage usually have an additional advantage—they are more easily moved from one
computing platform to the next.

In a modern context, writing a program usually entails the use of numerous
software development tools, each with a specific purpose. The activity often takes
place in a comprehensive integrated development environment (IDE), where the
programmer can design the user interface, enter program code, adjust settings,
review documentation, testand debug the application, and interact with online sup-
port communities. Present-day examples of an IDE include Microsoft Visual Studio
for Windows, Xcode for Apple platforms, and Eclipse for Java development.

In the early years of computing, however, the programming tools for software
developers were much more limited. A typical programmer would write out his or
her instructions for the computer by hand, and then prepare them for entry into the

66 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Figure 3.1 Photograph of the punched paper tape for MITS ALTAIR BASIC 1.0, created by Bill Gates,
Paul Allen, and Monte Davidoff for the Altair 8800 microcomputer. Dated March 2, 1975.
(Courtesy of the Computer History Museum)

computer’s memory using input media such as punched cards, punched tape, mag-
netic tape, or (in later years) keyboard input. In these contexts, programming was a
deeply mental exercise that only involved a computer in the later stages. For this rea-
son, a fundamental step in the programming process was planning and research.
Engineers worked to solve a computational problem as efficiently as possible and a
major concern was always maximizing limited computer resources. Programmers
prepared a program for the computerin its near-final form, and onlylaterloaded the
routines into memory. Fixing problems that arose often involved a painful process
of trial and error.

A concrete example of this problem-solving approach comes from one of the
first commercial programming languages written for microcomputers, the original
BASIC interpreter created for the MITS Altair 8800 (See Figure 3.1). This program
was written by Bill Gates, Paul Allen, and Monte Davidoff while Gates and Davidoff
were students at Harvard.

When the Altair was announced in early 1975, there was no commercial soft-
ware available for the machine. But computing enthusiasts soon realized that if

3.1 Solving Problems with Computers 67

someone could create a BASIC interpreter for the Altair, then hobbyists could write
their own BASIC programs on the computer and get the device to perform non-trivial
work. (Chapter 4 explains why BASIC was chosen for this duty, despite its limita-
tions.) Gates and his friends researched the Altair’s specifications, and then they
bought a book about the Intel 8080 microprocessor—the electronic “brain” of the
Altair. As luckwould have it, they had been working for some time with time-sharing
systems, and they also knew how to write assembly language programs that could
make efficient use of a computer’s internal architecture.

To prepare for this project, Gates studied recent versions of the BASIC language
(originally created by John Kemeny and Thomas Kurtz) and he scrutinized how
the language operated. Then he designed an interpreter program that would pro-
vide Altair users with essential BASIC features while consuming as little computer
memory as possible. At this stage in its development, the Altair microcomputer only
had 4K of system memory to work with (a tiny amount). Gates studied the instruc-
tion set for the Intel 8080 microprocessor carefully, and he was determined to fit the
new BASIC into available memory and leave a little room for the user’s programs.

How did he go about solving this problem?

We know more about Gates’s solution than we do many of his contemporaries
because the program that he built became well known, and Gates wrote about his
method in two texts that have attracted the attention of journalists. The first com-
ments about his approach were published in September 1975, followed by a longer
interviewwith Susan Lammers about Gates’s coding procedures in 1986.1 Tam espe-
cially interested in Gates’s advice to new programmers of the Intel 8080 micropro-
cessor, because I am fascinated with stories about how novices learn to program. In
this case, we can observe a 19-year-old coding prodigy teaching others how to code.

Gates suggested that the best way to familiarize yourself with a new instruction
set was “to go out of your way to use every instruction at least once.”? As you are
learning the syntax and architecture of a new chip, Gates advised, “go through the
instruction set... and look closely at the instructions you seem to use very rarely.”
He suggested that successful programmers will continually search for better com-
mands and more efficient ways to solve their problems. But in the final routines,
when efficiency is the most pressing concern, it was important to flip the strategy
and “use the least number of instructions possible to perform each function.”

1. For the sources, see Bill Gates, “Software notes,” in Computer Notes, ed. David Bunnell
(September 1975). Also printed in “Appendix/Bill Gates,” Programmers at Work, ed. Susan Lammers
(Redmond, WA: Microsoft Press, 1986), 354. The 1986 interview with Gates appears on pp. 70-90
of Programmers at Work.

2. Gates, “Software notes,” 354.

68 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Finally (and I love this recommendation as a technical writer), Gates cautions that
one should not trust the instruction books on programming too much, because they
sometimes neglect important shortcuts.® Programmers, in other words, should
learn by doing, internalizing every aspect of the instruction set and hardware fea-
tures until they are deeply engrained in the coding psyche. This sentiment would
eventually become a mantra of the learn-to-program movement.?

As the team of students completed their work, Bill Gates wrote out the assem-
bly language routines for the interpreter on yellow legal pads, drawing explanatory
charts to document what was happening in computer memory.® Paul Allen and
Monte Davidoff also collaborated at this stage, competing with Gates to make the
code as tight as possible. At one point, Gates called owner Ed Roberts at MITS to ask
how the Altair processed characters typed on a keyboard, because they had no access
to the actual Altair device.® Finally, the group typed the program into Harvard’s
DEC PDP-10 minicomputer using a console display and a keyboard. The PDP-10
was running a software emulator program designed to mimic the Altair microcom-
puter, created by Paul Allen. When Gates, Allen, and Davidoff finished inputting
and debugging their program, they tested its operations by keying in several BASIC
programs—the types pioneered by Kemeny and Kurtz at Dartmouth College over a
decade earlier.

The programmer-entrepreneurs then used the PDP-10 to create a spool of
punched paper tape containing the completed BASIC interpreter. (See Figure 3.1.)
Allen flew to Albuquerque, New Mexico, and fed the punched tape into the
Altair test machine at MITS, establishing what would become the first commer-
cial high-level programming language for a PC.” The entire process took a little
over 8 weeks. In the coming years, the nascent Micro-Soft team (later Microsoft)
adapted their solution to work on computer systems with different hardware

3. Gates, “Software notes,” 354.

4. Gates was also, of course, a self-taught programmer, with little formal instruction in computer
science.

5. For samples of the charts and excerpts from the source code, see “Appendix/Bill Gates,” in Pro-
grammers at Work, 348-356. Also useful is the Altair BASIC Reference Manual (Albuquerque, NM:
MITS, 1975), which contains technical specifications and a command reference for the program
that Gates, Allen, and Davidoff created.

6. Michael Swaine and Paul Freiberger, Fire in the Valley: The Birth and Death of the Personal
Computer, Third Edition (Dallas, TX: The Pragmatic Bookshelf, 2014), 159.

7.This part of the story has been popularized by Walter Isaacson, The Innovators (New York: Simon
& Schuster, 2014), 332-340; and Swaine and Freiberger, Fire in the Valley, 157-161. For an ear-
lier description of Gates’s work with the Altair, see Ray Duncan, ed., The MS-DOS Encyclopedia
(Redmond, WA: Microsoft Press, 1988), 3-19.

3.1 Solving Problems with Computers 69

Figure 3.2 Bill Gates and Paul Allen pose for a portrait at Microsoft in 1984. Behind the pro-
grammers is a white board with illustrations of computer memory, including a plan
for allocating resources in an IBM PC that contains 64KB of RAM. (Photo by ©Doug
Wilson/CORBIS/Corbis via Getty Images)

characteristics, expanding the interpreter’s abilities as microcomputers and PCs
became more powerful. They applied the same basic approach as they managed
system resources for operating systems. (See Figure 3.2.)

As this example demonstrates, there is more than meets the eye to building
non-trivial computer programs, and much of the process takes place well before
the programmer loads the code into memory and actually runs the program. The
emphasis here is on teamwork, and it serves as a corrective to the misconception
that programming is usually the work of a solitary coder sitting alone in front of a
computer screen.

Conceptually, programming involves refining algorithms, the ordered collec-
tions of steps that are proposed to automate processes and solve problems elegantly
and efficiently. Some algorithms are limited in scope, like the eight or ten steps that
might be necessary to receive contact information from a user and store it in a com-
puter file. (To complete this task, an algorithm might prompt the user for a name
and address, assign the input to temporary variables, check the variables for suit-
able content, format the content, and then insert the information into a database

70 Chapter 3 FORTRAN, Logo, and the Tower of Babel

3.2

at the appropriate location.) Algorithms can also be incredibly complex, such as
the comprehensive searching and sorting schemes that Google uses to sift through
data gathered from the World Wide Web, then present this information to a user via
a commercial web browser.

Systematic attempts to teach programming must somehow train students to
become proficient in coding skills, the use of algorithms, debugging techniques,
and other important abilities. To appreciate how this relatively obscure problem-
solving process became a popular movement, we turn now to the proliferation
of programming languages in the 1950s, and the development of an extremely
successful programming language, FORTRAN.

The Tower of Babel

In 1981, computer programming pioneer Jean Sammet observed that, by her count,
there were already some thousand computer languages in the U.S.% The prolifera-
tion of languages was not new, nor was it tied to the development of PCs. In fact, 20
years earlier there were already so many languages in use on mainframe computers
that the journal Communications of the ACM published a “Tower of Babel” image on
its January 1961 cover. (See Figure 3.3.) The image depicted the mythical tower-to-
heaven structure described in the biblical book of Genesis, glossed with the names
of dozens of computer languages on the mythical tower’s rings. The artwork recalls
earlier critiques of “progress” in America’s social and political history, and it may
also poke fun at the hubris of software industry officials for propagating so many
compilers. (Human hubris is a pressing concern of the Genesis narrative.)

In fact, the task of learning to program has sometimes been explained as a
simple process of picking a computer language and learning all its features, as if
mastering a language’s grammar is the same thing as learning to think logically, or
to understand how a computer processes information. As we observed earlier, how-
ever, software development involves much more than simply learning the syntax of
instructions, as important as that may be. Jean Sammet captured the importance
of language syntax when she commented: “In the last analysis [language choice]
almost always boils down to a question of personal style or taste.”® In other words,
the syntax of languages is interesting, but much in the differences between systems
is simply a matter of fashion or technical culture.

8. Sammet cited in Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise (Cambridge, MA: The MIT Press, 2010), 102. For the con-
text of Jean Sammet’s work with languages, see Richard L. Wexelblat, ed., History of Programming
Languages (New York: Academic Press, 1981).

9. Jean E. Sammet, “Programming languages history,” Annals of the History of Computing 13,
no. 1(1991): 49.

3.2 The Tower of Babel 71

Figure 3.3 Communications of the ACM “Tower of Babel” Cover Image (January 1961), depicting
the multiplication of computer programming languages (Courtesy of the ACM)

So where did all the languages come from and why do programmers propagate
them?

As Inoted earlier, the first electronic computers did not utilize software or what
we now call “programming” atall. Theywere hardwired devices that performed indi-
vidual tasks, such as calculating the trajectory of a rocket. If you wanted to change
the problem being computed, you didn’t modify the software, you changed the
wiring to accommodate the problem. By hand.

An example of this type of device is the so-called Atanasoff-Berry Computer,
conceived in 1937 to solve linear equations, one problem at a time. The computer
was assembled over a 5-year period at Iowa State College. When it was finished,
the machine could be set up to solve two linear equations with up to 29 variables.
This was impressive work and the results were highly valued by the Iowa State
Physics Department. But in this context the device was essentially a single-purpose
computer that specialized in linear equations.

72 Chapter 3 FORTRAN, Logo, and the Tower of Babel

One of the first programmable computers was the ENIAC, designed by John
Mauchly and J. Presper Eckert at the University of Pennsylvania. Dedicated in 1946,
the ENIAC utilized sophisticated wiring, 18,000 vacuum tubes, panels of switches,
and punched-card equipment for input and output.

The physical task of programming the ENIAC was considered less important
than the abstract task of devising complex numerical calculations that the machine
could solve. Accordingly, the job of “setting up” the computer with punched cards,
cables, and switches was left to skilled female workers who had been trained in
mathematics. (Note: The ENIAC team used different terminology than later com-
puter designers, so the terms “programming” and “programs” in this section are
somewhat anachronistic.)!°

Regardless of gender considerations, it was not easy to create actual programs
for the ENIAC system. In addition to conceptual errors and coding mistakes that
arose as part of the planning process, the early log books indicate that there were
regular shut downs due to faulty tubes, short circuits, carry errors, divider faults,
water leaks, and other problems.!! In short, programming involved a host of phys-
ical issues in the early days that modern software developers have no knowledge of
or responsibility for today.

In the 1950s, most early programs were written in numerical machine code,
which consisted of 1s and 0s representing instructions for a specific computer.
Programmers needed to learn the instruction set for a given computer, and then
express the instructions in binary (base-2), octal (base-8), or hexadecimal (base-
16) number systems depending on the machine’s internal architecture. Octal was
especially common in early computer systems like the DEC PDP-8, ICL 1900, and
the IBM mainframes, which structured internal memory using 12-bit, 24-bit, and
36-bit words.

Grace Murray Hopper described the intricacies of designing programs in this
era in a keynote address at the first ACM conference on the history of program-
ming languages, held in 1980 to document the achievements of the early days.
(Hopper is shown with a Univac I computer system in Figure 3.4.) At the confer-
ence, Hopper explained that she wrote machine code programs in octal, where she
routinely added, subtracted, multiplied, and divided in base-8 arithmetic. Hopper
performed routine mathematical calculations in her head as she completed her

10. For an excellent analysis of the ENIAC computer and those who designed and operated it, see
Thomas Haigh, Mark Priestley, and Crispin Rope, ENIAC in Action: Making and Remaking the Mod-
ern Computer (Cambridge, MA: The MIT Press, 2016). Most of the calculations were numerical in
nature, such as plotting the trajectory of a rocket or ballistic calculations.

11. Haigh et al., ENIAC in Action, 79-83.

3.2 The Tower of Babel 73

Figure 3.4 The operator’s console of a Univac I computer with four computer programmers (1957).
From left to right, Donald Cropper, K. C. Krishnan, Grace Murray Hopper, and Norman
Rothberg. (Courtesy of the Computer History Museum)

work, although it was also common for engineers to use lookup tables to save time.
(Ironically, Hopper later found it difficult to balance her own checkbook using base-
10 arithmetic, as she was so steeped in using octal.)!? Later, Hopper and her peers
used assembly language when newer computers arrived as way to write computer
instructions in a more readable (textual) format.

In assembly language, program instructions are composed using short names
or abbreviations (mnemonics) for machine language instruction codes. For exam-
ple, the instruction “ADD” instructs the central processing unit to add the con-
tents of one register to another. Symbolic names are also used to reference memory
locations in assembly language program code.

Most computer science students learn assembly language as part of their intro-
duction to machine architecture, even if they don’t go on to program exclusively

12. Grace Murray Hopper, “Keynote address,” in History of Programming Languages, ed. Wexel-
blat, 7.

74 Chapter 3 FORTRAN, Logo, and the Tower of Babel

in this language. In my college years (the early 1980s), I started with the MACRO
assembly language for the popular DEC VAX line of minicomputers.!3 Later at
Microsoft, I used Microsoft Macro Assembler (MASM) for programming IBM PCs
and compatibles running MS-DOS. Coding skills of this type were standard fare
in 1980s’ programming culture as both hobbyists and professionals needed to
squeeze as much power and efficiency from the early systems as possible. (For more
about MS-DOS programming requirements and the architecture of IBM PCs and
compatibles, see Chapter 6 and Chapter 9.)

Assembly language is a nice improvement over machine language, but it is still
closely connected to the hardware architecture of a computer system. Assembler
is a low-level programming language designed for speed. This means that assem-
bly language programs written for one computer will only work on computers of the
same model or type. Translating an assembly language program from one computer
model to another invites a lot of work, and this made it difficult to devise general-
purpose programming solutions that could be deployed on multiple systems. How-
ever, as we learned with the Altair programming example, assembly language is
valuable when you want to master a chip’s instruction set and create compact and
efficient code. This is probably why computer scientist Donald Knuth (1938-)wrote
so many of his algorithms in machine (or assembly) language in his magisterial
book series, The Art of Computer Programming. As a rallying cry for efficient code,
Knuth advised:

High-level languages are inadequate for discussing important low-level
details such as coroutine linkage, random number generation, multi-
precision arithmetic, and many problems involving the efficient usage of
memory. A person who is more than casually interested in computers should
be well schooled in machine language, since it is a fundamental part of a
computer.!4

Donald Knuth wrote this in the foreword to his popular book series in 1962, and
it was reprinted in many editions. His writings and advice are highly valued by
academics and self-taught programmers alike.

13. My assembly language textbook was James Brink and Richard Spillman, Computer Architecture
and VAX Assembly Language Programming (Menlo Park, CA: The Benjamin/Cummings Publishing
Company, Inc., 1987). The authors were my instructors at Pacific Lutheran University. For a sam-
ple computer book that teaches MASM, Microsoft’s assembly language system for IBM PCs and
compatibles, see Ray Duncan, Advanced MS-DOS Programming, Second Edition (Redmond, WA:
Microsoft Press, 1988).

14. Donald E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third
Edition (Berkeley: Addison-Wesley, 1997), ix.

3.3

3.3 High-level Languages 75

But were there even earlier attempts to teach programming to new computer
users?

Arguably the world’s first computer book containing specific instructions about
how to program a computer was published in the U.K. in 1951. This impressive
volume was entitled Preparation of Programs for an Electronic Digital Computer,
and it was concerned with formulating machine code for the revolutionary elec-
tronic delay storage automatic calculator (EDSAC) computer at the University of
Cambridge.'® (See Figure 3.5.) The authors were Maurice Wilkes, David Wheeler,
and Stanley Gill, pioneering professors and technical writers connected with the
Cambridge community. Their book offered a selection of common subroutines
for handling basic operations in a computational program. The instructions were
specific to the EDSAC, one of the world’s first stored-program computers.

The authors undertook daunting challenges, because no programming book
had been written before and there was little in the way of notation or written conven-
tions to express complex step-by-step instructions in book form. In fact, the routines
are not “code” at all but instructions on how to set up the machine’s registers and
the parameters needed to solve certain types of equations. But by distributing a
selection of common “routines,” the authors explained to fellow scientists how the
EDSAC worked, and readers with access to a similar computer could use the book to
save time and expand their programming skillset. From this began a venerable tra-
dition that continues in all good programming primers up to the present—readers
learn by example.

Preparation of Programs did well enough such that a second edition was prepared
in 1957. In the revised edition, the authors provided routines that were adaptable
to a wider range of stored-program computers. In a literary sense, the “learn-to-
program” movement began with these books, although the intended audience was
a narrow band of scientists and engineers and not the general public.

High-level Languages

Beginning in the 1950s, Grace Hopper and her peers began to develop a solution
that would make software less costly to produce and programming easier to learn.'®
This solution was known to contemporaries as an “automatic programming lan-
guage” or “autocode” for short. We know it today as the first of many high-level

languages—software abstractions with a syntax closer to human language—which

15. Maurice Wilkes, David Wheeler, and Stanley Gill, Preparation of Programs for an Electronic
Digital Computer (Reading, MA: Addison-Wesley, 1951).

16. A useful starting place to survey Grace Murray Hopper’s fascinating career is Kurt W. Beyer’s
Grace Hopper and the Invention of the Information Age (Cambridge, MA: The MIT Press, 2012).

76 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Figure 3.5 Maurice Wilkes and his colleagues work on the EDSAC computer at the University of
Cambridge, U.K. Wilkes is in the middle, kneeling and wearing glasses. (Courtesy of the
Computer History Museum)

hide some of the inner-workings of a computer. Using a high-level language, a
programmer can write instructions using recognizable statements and symbols,
then use a program known as a compiler to translate the high-level statements into
the machine code required by the underlying computer. Hopper wrote her first
compiler between October of 1951 and May of 1952, and it was called the “A-0
Compiler.”!” This proved that higher level languages were possible and useful, and
scientists began designing them in earnest. In the coming years, Hopper’s work
became the foundation for the FLOW-MATIC and COBOL languages.

At first, the high-level compilers created machine code that was less effi-
cient than human-generated machine code, but as time passed the compilers
improved, and the benefits of high-level abstraction became obvious. For one thing,
higher-level languages saved programming time, as software developers could

17. Hopper, “Keynote address,” 10.

3.3 High-level Languages 77

more quickly build a solution if they didn’t have to manage operations inside the
computer at a minute level.'® Software became easier to revise and update in future
releases, and the code was easier to share among team members. In addition,
high-level language designers could customize their coding systems so that they
met the needs of a specific industry or computer application. For example, the lan-
guage’s instructions, keywords, and data structures could be readily adapted to
such tasks as numerical analysis, list processing, artificial intelligence, music, and
education.

Soon, there were dozens—even hundreds—of high-level computer languages.
A standard task in graduate Computer Science programs became developing new
compilers as an exercise to learn advanced language concepts, such as pattern
recognition, lexical analysis, code optimization, and object-oriented programming.
New computer science textbooks arrived in the 1970s and 1980s to introduce this
fundamental skill and its applications.!®

The most important early high-level languages were FORTRAN, COBOL, ALGOL,
BASIC, Pascal, and C. A great amount of documentation and books related to these
languages and their early supportersis available in print and electronic media, wait-
ing for the historians of computing to assess them. These sources include “founding
memoirs” written by language pioneers, early language specifications and manu-
als, primers, corporate marketing materials, journal articles written for computing
professionals, product reviews, and so on. Overlooked in the study of these lan-
guages is the abundant supply of primers or “how-to” computer books written for
students, self-taught programmers, and hobbyists who sought to learn program-
ming on their own terms or study together in a classroom or user group setting.
Throughout Code Nation, I argue that computer books and magazines are a vital
but neglected source of information that will help historians and computer scien-
tists understand how technical ideas and techniques were diffused from inventors
and engineers to the general public. These historical sources are just as important
as “founding memoirs” for understanding how programming culture took shape
in the U.S. Programming primers are in essence the daily newspapers and chapter

18. The magnitude of this breakthrough and its importance in the history of computing is
skillfully summarized in Paul Ceruzzi, “An unforeseen revolution: computers and expectations,
1935-1985,” in Imagining Tomorrow: History, Technology, and the American Future, ed. Joseph
J. Corn (Cambridge, MA: The MIT Press, 1986), 188-201, here at 199.

19. Computer science students in the 1980s and 1990s learned about the world of compilers and
their histories from books like Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Prin-
ciples, Techniques, and Tools (Reading, MA: Addison-Wesley, 1988). We called this the “dragon
book” because it featured a bright orange dragon on the front cover, emerging from a computer
screen.

78 Chapter 3 FORTRAN, Logo, and the Tower of Babel

3.4

books of the “PC Revolution”; they contributed significantly to the learn-to-program
movement’s propagation across American society.

To open a window on the movement’s origins in the 1950s and 1960s, let’s
examine the foundations of FORTRAN, arguably the most important platform for
programming activity in the 1960s. FORTRAN products and publications encour-
aged new users to experiment with software creation. These computer users
were often proficient in science and mathematics but not yet familiar with how
computers worked. Once FORTRAN built momentum and established an audi-
ence, the learn-to-program movement expanded into other popular languages like
COBOL, BASIC, Logo, and Pascal.

Learning FORTRAN

FORTRAN was initially designed by John Backus and a group of research scien-
tists at IBM. (See Figure 3.6.) The team designed its high-level language in 1954,
and then they took some 2.5 years to build the FORTRAN “translator,” as the
organization described their compiling system that converted FORTRAN routines
into machine code.

IBMreleased FORTRANIin April of 1957, and the language and compiler quickly
became a standard for software development in the U.S. and Europe. Important
for its adoption, IBM distributed the original FORTRAN software and materials for
free to its customers who owned IBM hardware, eventually attracting the interest
of a standards organization that built consensus around the new language and its
features.

The term “FORTRAN” looks like an acronym, but the name is actually an
abbreviation for the words “formula translation” or sometimes “formula translat-
ing system.” True to its original names, the language was created for solving scien-
tific and engineering problems, and its internal structures were designed to process
mathematical equations in a straightforward way. The language included standard
mathematical functions, conditional statements, looping structures, variable types,
arrays, and other features that would become customary in high-level languages. All
variables beginning with the letter I, J, K, L, M, or N were automatically declared as
“fixed point” (or integer) values. All other variables were typed as “floating point” (or
real) numbers. The language also allowed the programmer to insert comments into
his or her code, allowing developers to explain what their routines were doing and
where their code still needed work.

When IBM designed FORTRAN, it was deeply concerned with improving pro-
grammer productivity. Large software development projects were already devel-
oping a reputation for being over time and over budget, and this “crisis” gained
major notoriety in the 1960s. Reflecting on the economics of this issue as early

3.4 Learning FORTRAN 79

Figure 3.6 Gathering of the engineering team that contributed to IBM FORTRAN in the 1950s.
(From the ‘Pioneer Banquet’ at the National Computer Conference, Houston, Texas,
1982.) From left to right: Richard Goldberg, Robert Nelson, Lois Haibt, Roy Nutt, Irv
Ziller, Sheldon Best, Harlan Herrick, John Backus, and Peter Sheridan. (Courtesy of the
Computer History Museum)

as 1954, Backus wrote: “Programming and debugging accounted for as much as
three quarters of the cost of operating a computer; and obviously, as computers
got cheaper, this situation would get worse.”?? Early results with the new com-
piler were promising, however. When compared to low-level languages, FORTRAN
programmers often reduced the number of statements that they used to write their
code by a factor of 20.

But what did it mean to “write code” in the early days of FORTRAN?

In the first batch-processing systems, FORTRAN programmers did not use text
editors to write their programs, but they wrote out routines by hand and then
entered them on a key punch device that produced 80-column punched cards.
The contents of one FORTRAN program statement appeared on each card, though
longer statements could span multiple cards. To help with the process of preparing
the cards, IBM produced standard coding sheets for programmers to fill out that
identified the columns, statement numbers, and FORTRAN language elements. If
the programmer checked a special box at the top of the card, the card’s contents

20. Jim Backus, “The History of FORTRAN I, II, and I11,” in History of Programming Languages, ed.
Wexelblat, 26-27.

80 Chapter 3 FORTRAN, Logo, and the Tower of Babel

would be considered a “comment”, i.e., an explanatory description ignored by the
compiler but retained to document what the program did.

Any spaces existing in the final program would also be ignored by the FORTRAN
compiler. Spaces were known to cause confusion because they were hard to dis-
cern on the coding sheets—both for programmers and key punch (or card punch)
operators. Jim Backus later wrote that his team was criticized for designing the
compiler so that it ignored spaces, but an allowance of this type was typical in an
era where programmers worked in large teams that had different levels of train-
ing. Many needed to use hand-written notes (as well as cumbersome mechanical
devices) to accomplish their work, and in these contexts, errors crept in.2!

A complete FORTRAN program consisted of a deck of punched cards that a
technician could feed into a card reader, which was attached to the mainframe
computer. Once the program was loaded into memory it could be compiled, and
the technician would receive a report if there were any errors. The process of debug-
ging the program then began, which could take some time to complete and might
involve many team members. In batch-processing contexts like these (i.e., before
interactive terminals with keyboards), it might take days or weeks to fix a relatively
simple logic or runtime error in a program.

My favorite textbook describing this process for new programmers is Mar-
shal H. Wrubel’s A Primer of Programming for Digital Computers (1959).22 This
well-written book includes step-by-step instructions for filling out coding sheets,
creating punched cards, loading cards into an IBM 650 system, and then testing pro-
grams using a variety of methods. There is also a fascinating chapter comparing the
early FORTRAN, IT, and FORTRANSIT compilers—all designed to help scientists
solve math problems. Marshal Wrubel (1924-1968) was a Juilliard piano prodigy
and a University of Chicago astrophysicist who took up computing in the 1950s and
eventually ran the Research Computing Center of Indiana University. He is relatively
unknown in the history of computing because he died unexpectedly at the age of
42 on a hike in the mountains of Colorado. Sadly, he published this innovative
primer but nothing more about programming. However, he made an important
contribution to technical writing with this title.

The first official manual to document the FORTRAN compiler arrived in October
1956, when IBM released the Programmer’s Reference Manual.?® This formal guide

21. Backus, “The History of FORTRAN I, II, and II1,” in History of Programming Languages, ed.
Wexelblat, 32.

22. Marshall H. Wrubel, 4 Primer of Programming for Digital Computers (New York: McGraw-Hill,
1959).

23. IBM, Programmer’s Reference Manual: The FORTRAN Automatic Coding System for the IBM 704
EDPM (New York: IBM Corporation, 1956).

3.4 Learning FORTRAN 81

offered a short introduction to FORTRAN and gave experienced programmers
the information they needed to use the compiler on the IBM 704 system. The
book carefully documented each new language feature, highlighting the lan-
guage’s keywords and grammar, or what programmers called statement syntax.
The manual also included a short chapter on how to create solutions for two
“sample problems.”

Soon after this, a selection of user-friendly primers teaching FORTRAN began
to appear. These introduced the language to a broader audience (i.e., not just
IBM customers). These books included Grace E. Mitchell’s Programmer’s Primer
(1957), Daniel McCracken’s A Guide to FORTRAN Programming (1961), and Elliott
Organick’s A Primer for Programming with the FORTRAN Language (1961).24 These
books demonstrate that the nascent programming movement was spreading
beyond research labs and academic contexts into settings where quantitative cal-
culations were part of everyday work.

As primary sources for historians, the first FORTRAN primers provide evidence
of how coding was gradually seeping into public consciousness. Students, business
people, and engineers were now the audience for these books, rather than IBM cus-
tomers who were using just one system. The computer books also document literary
developments in technical writing, i.e., the use of a less-formal “author voice” in
scientific descriptions. Some of the books felt open-ended, engaging a wider audi-
ence. The tutorials also benefited from the gradual shift from batch-processing to
time-sharing, which allowed for greater access to computers and a more interactive
experience.

Grace E. Mitchell’s Programmer’s Primer was among the most influential books
of this era for budding technical writers. (See Figure 3.7.) Although Mitchell was
uncredited in the text and the book was published as an IBM reference manual,
it was just as pioneering as the commercial tutorials published by mainstream
publishers.

Mitchell joined IBM’s FORTRAN group in the Spring of 1957, and she made
important contributions to the FORTRAN II compiler release, as well as IBM’s
newest operating systems and programming tools. Although Mitchell possessed
formidable engineering skills, her Primer was designed for non-programmers who
were preparing to take their first steps with a new language. In reality, readers did
need some knowledge of college algebra, trigonometry, and matrix operations to

24. IBM [Grace E. Mitchell], Programmer’s Primer for FORTRAN: Automatic Coding System for the
IBM 704 Data Processing System (New York: IBM Corporation, 1957, revised ed., 1958); Daniel
McCracken, A Guide to FORTRAN Programming (New York: Wiley & Sons, 1961); Elliott Organick,
A Primer for Programming with the FORTRAN Language (Houston, TX: Computing and Data Process-
ing Center, 1961; [Addison-Wesley edition, 1963]).

82 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Figure 3.7 Programmer’s Primer for FORTRAN: Automatic Coding System for the IBM 704 (1957).
Grace E. Mitchell was the uncredited author of this early “how to” programming tutorial
from IBM. (Courtesy of the Computer History Museum)

make much use of this book. But no specific computer knowledge was required,
and Mitchell assumed that programming would be an entirely new concept.In 1957,
most of IBM’s FORTRAN users were scientists who were well-trained in engineering
but knew little about computers.

Mitchell’s primer offered a concise analysis of FORTRAN’s core features, includ-
ing some of the complexities only hinted at in the original Reference Manual. (See
Figure 3.8.) For example, Mitchell included a lengthy section on working with two-
and three-dimensional arrays in FORTRAN I. The tutorial explored how to declare
arrays, assign initial values, and step through arrays using DO loops and other
control structures.?® Mitchell also included practical information about debugging
unruly programs, a topic that was largely neglected in the Reference.

25.IBM, Programmer’s Primer for FORTRAN, 43-64.

3.5 Daniel McCracken’s Primers 83

Figure 3.8 Excerpt from Mitchell’s Programmer’s Primer (1957, page 44), showing how to write a

3.5

FORTRAN program that computes matrix multiplication. The FORTRAN code was dis-
played on a standard coding sheet, making it easier to identify the columns, statement
numbers, and language elements needed. (Courtesy of the Computer History Museum)

Daniel McCracken’s Primers

Daniel D. McCracken (1930-2011) also established his reputation as a program-
ming author, publishing some of the first general textbooks about software devel-
opment in the U.S. (See Figure 3.9.) McCracken wrote his first computer book at
the age of 24 while working for General Electric, a 256-page text entitled Digital
Computer Programming that appeared during the fall of 1957.2¢ This title was pub-
lished by John Wiley & Sons, one of the first computer book publishers. Wiley
went on to develop an international reputation for reliable computing titles in
several categories. The influential acquisitions editor at Wiley who worked with

26. Daniel D. McCracken, Digital Computer Programming (New York: John Wiley & Sons, 1957).

84 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Figure 3.9 Former ACM President and computer book author Daniel D. McCracken. (Image
courtesy of the Charles Babbage Institute, University of Minnesota Libraries)

McCracken was Walker Stone, a determined technologist who had taken a few
programming courses in the 1950s and quickly recognized the computer’s impor-
tance and value.?’” Stone oversaw technical publishing at Wiley for several years,
establishing the Information Science Series and other well-regarded imprints.
Looking back at his career, McCracken said that he wrote the Wiley book in 1957
because there was no textbook available for programmers, and he wanted to write
one that described the features of a “hypothetical machine,” which he conceived of
as a cross between an IBM 704 and an IBM 650.% Using this platform, McCracken
introduced students to basic programming concepts like looping, branching, input,
output, and floating-point arithmetic. The textbook had a relatively limited appeal
because of its narrow audience (at the time, his book competed with the second

27. Daniel McCracken, interview by Arthur L. Norberg, January 7-9, 2008, Charles Babbage Insti-
tute, University of Minnesota, 17-18.

28. McCracken, interview by Arthur L. Norberg, 15.

3.5 Daniel McCracken’s Primers 85

edition of Maurice Wilke’s book on EDSAC programming), but McCracken’s text did
find its way into some of the earliest programming courses in America. For example,
Jean Sammet is reported to have used McCracken’s book at Adelphi College on
Long Island soon after its release.?’

McCracken went on to publish 4 Guide to FORTRAN Programming with Wiley in
1961, a textbook that eventually sold 300,000 copies. This title has been described
as the first-bestselling book for programmers in the U.S., an achievement related to
McCracken’s acumen as a writer, Wiley’s skillful marketing, and the emergence of
FORTRAN as the standard high-level language. McCracken described the magical
combination several years later: “Walker Stone saw it, convinced management, and
I just turned all possible effort to getting a FORTRAN book out fast before anybody
else got the idea. I wrote that book in under six months.”3°

McCracken’s FORTRAN tutorial came in at just 88 pages, and it was published in
aflexible workbook format(8.5” 11”)to encourage student use and allow for prop-
ping the book open in front of a computer terminal. The textbook’s success con-
tributed to the rising tide of FORTRAN books, broadening its appeal. McCracken
also made programming seem interesting and approachable, distinguishing his
author voice from that of the FORTRAN manual. Ken Thompson (see Figure 10.1),
the creator of Unix, later described the importance of learning FORTRAN in this way:
“95 percent of the people who programmed in the earlyyears would never have done
it without FORTRAN. It was a massive step.”3! Over time, FORTRAN dramatically
increased the productivity of America’s engineering teams (see Figure 3.10).

But McCrackenwasn’t finished. By the end of the 1970s, McCracken had become
the author or co-author of over two dozen computer books which sold more than
1.6 million copies and were translated into 15 languages. He served as Vice Presi-
dent of the ACM from 1976 to 1978, and President of the ACM from 1978 to 1980.
Although his work had an important impact on corporate and scientific comput-
ing, his commitment to social issues was equally significant. For example, he led an
effort to develop social statements on the Vietnam War, the Equal Rights Amend-
ment, human rights, and privacy issues.??> Considering his legacy as a bestselling
author of computer titles, the New York Times simply described McCracken as the

29. McCracken, interview by Arthur L. Norberg, 15.

30. McCracken, interview by Arthur L. Norberg, 18.

31. Kenneth Thompson, “When few knew the code, they changed the language,” New York Times,
June 13, 2001.

32. McCracken was also the first chairman of the ACM’s Committee on Computers and Public Pol-
icy, established in 1973. See Janet Toland, “‘Deeply Political and Social Issues’: Debates within ACM
1965-1985,” in Communities of Computing: Computer Science and Society in the ACM, ed. Thomas J.
Misa (San Francisco, CA: Morgan & Claypool/ACM Books, 2017), 111-141.

86 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Figure 3.10 An engineering team at Digital Equipment Corporation pose in this undated photo.
FORTRAN’s success dramatically increased the productivity of development groups.
(Courtesy of the Computer History Museum and DEC)

“Steven King of how-to programming books.”3® What is less well known is that
McCracken used a portion of his royalties to fly around the country advocating for
political and social issues.?? It was a furtive period of change in which peace activists
mixed with research scientists, authors, and programmers.

How broad was the appeal of the nascent learn-to-program movement?

33. Steve Lohr, “Daniel D. McCracken, expert on computers, dies at 81,” New York Times,
August 15,2011, BS.

34.Toland, “‘Deeply Political and Social Issues,” 115.

3.6

3.6 Seymour Papertand Logo 87

The ACM was an active participant from the start. In 1961, ACM luminary Alan
Perlis offered what may have been the first universal appeal for college students to
learn how to program. Perlis suggested that all university freshmen take a program-
ming class at the Carnegie Technical Institute to learn about computers and how
they operated. His article, “The role of the digital computer in the university,” was
published in the popular technical journal, Computers and Automation.>® Although
Perlis preferred ALGOL, a concise high-level language that he co-developed, he
was less interested in syntax and more interested in the patterns of computational
thinking. Professor Perlis was highly influential in how Computer Science was
introduced in the universities, and his advice counted. He went on to join the ACM
Computing Curriculum Committee, an influential standards body that proposed
the first curriculum standards for Computer Science education in the mid-1960.
The ACM also formed the Special Interest Group on Computers and Society (1969)
in part to advocate for computer literacy.

Seymour Papert and Logo

Through FORTRAN, programming instruction became one avenue into the world
of computing in the 1960s, encouraged by the rising tide of primers and other
materials. But not everyone agreed on which learning system should be used or what
computational literacy might entail in schools. Moreover, the growing accessibility
of computers brought up intellectual and philosophical questions. Might computa-
tional thinking be valuable for its own sake, outside of professional contexts? Might
learning to code support cognitive development in children and adults? What,
ultimately, was the purpose of programming instruction?

At MIT, an innovative group of artificial intelligence (AI) researchers began to
propose intriguing answers. Their efforts would produce not only a new program-
ming language, but educational strategies that would profoundly influence how
Americans taught programming for years to come. The leader of this group was
Seymour Papert (1928-2016), a mathematician and psychologist who co-founded
MIT’s Al laboratory with Marvin Minsky (1927-2016). Papert co-developed the Logo
programming language and launched what became known as the constructionist
movement in science education.

After receiving a Ph.D. in Mathematics at the University of Cambridge (1959),
Papert studied for 5 years with psychologist Jean Piaget (1896-1980) at the Center
for Genetic Epistemology in Geneva, Switzerland. Papert came away impressed by
Piaget’s way of seeing children as active builders of their own intellectual structures.

35. Alan Perlis, “The role of the digital computer in the university,” in Computers and Automation
10,4 and 4B (1961): 10-15.

88 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Papert came to believe that children readily used the materials that they found about
them to learn, and that these tools were most efficacious when they were a regular
part of the surrounding culture.?® For Papert, such a tool could be the computer, if
it could be adapted to the educational aims of teachers and the natural experience
of students.

Papert and his colleagues began to ask important new questions about learn-
ing to use computers in public settings. How might computers affect the way that
people think and learn? Can computers be carriers of powerful ideas and the seeds
of cultural change? How can computers help people form new relationships with
knowledge that cut across the traditional lines separating science from the humani-
ties? Can people of all ages learn computing principles? If the goal of teaching about
computers is cognitive development, what is the ideal age to start young children?

Papert was particularly interested in using computer programming to enhance
cognitive development. However, the psychologist was unimpressed with the way
that people were learning programming skills in his day, and he believed that the
current crop of programming tools and primers were only suited for adults. A math-
ematician by training, Papert believed that computers could revolutionize math
instruction if coding tasks were more naturally connected to a child’s developmen-
tal impulses. His MIT group responded by creating Logo, a high-level language
and system that utilized visual output (computer graphics) and automated devices
(robotics) to teach programming. The Logo language was co-developed by Seymour
Papert, Cynthia Solomon, and Wally Feurzeig in 1966, and the system made its debut
in Cambridge, Massachusetts the following year. Within a decade, Logo became the
leading educational computer language in the U.S,, rivaled only by BASIC in high
schools and Pascal in university settings.

Logo’s most iconic learning feature was the turtle, an on-screen shape that
showed the result of the language’s movement commands. Some implementations
of Logo also featured an animated Turtle Writer robot (see Figure 3.11), which stu-
dents could program to draw shapes and move around the classroom. (The robots
were also equipped with sensors that allowed them to avoid obstacles and learn
from their environment.) When programmers typed in Logo commands at a termi-
nal console (or later, on a PC keyboard), the commands produced line drawings and
other shapes that the turtle could create—the so-called “turtle graphics.”

Because Logo is an interpreted language, each command is executed as soon
as the programmer enters it, and users are able to see the output of their
program statements immediately. Papert and his colleagues used this interactivity

36. Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas (New York: Basic Books,
Inc., 1980), 19.

3.6 Seymour Papertand Logo 89

Figure 3.11 Seymour Papert at MIT with a Turtle Writer robot and a fish shape that it produced.
(Image courtesy of the Computer History Museum)

to create a hands-on world of block-building and experimentation that (for them)
characterized early childhood development, particularly formative experiences
with spatial reasoning and mathematics. Later on, more conceptual program-
ming concepts were introduced with additional language features. In fact, the
MIT team highly valued the “pre-programming” tasks associated with computer
programming—the problem solving, algorithm building, and skill self-assessment
that they believed promoted deep learning. Papert found the process of testing
and debugging programs to be particularly instructive, because it gave students
immediate problem-solving practice when things went wrong.

Papert’s goal was to make computer programming an immersive process. In
his book Mindstorms, he described his objectives in relation to human language
learning:

Itis possible to design computers so thatlearning to communicate with them
can be a natural process, more like learning French by living in France than

90 Chapter 3 FORTRAN, Logo, and the Tower of Babel

like trying to learn it through the unnatural process of American foreign-
language instruction in classrooms...

The idea of “talking mathematics” to a computer can be generalized to a view
of learning mathematics in “Mathland”; that is to say, in a context which is to
learning mathematics what living in France is to learning French.3’

Rather than using a computer to program the child, so that the child might learn
to mimic the computer’s ways, the child should program the computer, acquiring
a feeling of mastery over the device, developing a sense of agency from intimate
contact with the technology.

Papert’s ideas had political and economic consequences, because he recognized
that American schools had limited access to computers and time-sharing systems
in the 1960s. (In fact, it would be challenging to provide children with even limited
access to computers through the 1970s and 1980s.) But Papert’s concerns about
access and the social conditions for learning echo calls for universal tools and the
“convivial technology” that we observed in the writings of Ivan Illich, Stewart Brand,
Lee Felsenstein, and Ted Nelson in Chapter 2. Indeed, although Papert’s work is
not usually framed as “countercultural,” his circles shared many sympathies with
countercultural technologists in Europe and the U.S. In the following years, edu-
cational specialists in Britain would introduce computers to children in what they
called infants school and primary schools. (See Figure 3.12.) There was also an
early relationship between the Logo team at MIT and the research group at Xerox
PARC in the San Francisco Bay Area. Daniel G. Bobrow wrote the first version of the
Logo program in Lisp while working in the AI group at MIT. In 1972, he moved to
Xerox PARC and worked there for several decades. Cynthia Solomon also worked
for Apple and Atari in the 1980s, overseeing implementations of the Logo language
for PCs.

Logo was created in the research labs of MIT and Bolt, Beranek and Newman
(BBN), but the language had its greatest impact after PCs made educational software
more accessible to students. Planning for a long future with technology was always
partof Papert’svision, and he worked to establish pathways between computers and
education all his life. “My discussion of a computer culture and its impact on think-
ing presupposes a massive penetration of powerful computers into people’s lives.
That this will happen there can be no doubt.”3?

Papert’s colleagues, Wally Feurzeig, Cynthia Solomon, and Daniel Watt, were
also instrumental in disseminating the group’s ideas into the community. Wally

37. Papert, Mindstorms, 6.
38. Papert, Mindstorms, 23-24.

3.6 Seymour Papertand Logo 91

Figure 3.12 Five-year-olds Mark Goulden and Nicola Millar work with Cecil, the first microcomputer
used in a British infants school (December 1980). During this stage of the learn-to-
program movement, policy makers debated about the best age to expose children to
programming concepts and computers. (Photo by SSPL/Getty Images)

Feurzeig (1927-2013) had a 50-year career at BBN in Cambridge, where he
specialized in AI research and the interactive use of computers in schools. In
the early 1960s, Feurzeig was interested in time-sharing systems and interpreted
computer languages, and he envisioned these technologies working together to
make learning easier for students. Feurzeig created the TELCOMP computer lan-
guage in 1964 to teach elementary mathematics through programming, followed
by the Stringcomp language that supported algebraic expressions and higher-level
concepts. After these efforts, he tested his ideas with the support of the U.S. Office
of Education, arranging for programming classes in eight elementary and middle

92 Chapter 3 FORTRAN, Logo, and the Tower of Babel

3.7

schools in the Boston area during the 1965-1966 school year.?® Feurzeig brought
language design skills and much practical experience to the Logo group, along with
a deep commitment to teaching coding and interactive learning.

Cynthia Solomon

Cynthia Solomon also worked at BBN and MIT in the 1960s, joining the AI group
in 1965. She started her career with a Bachelor’s degree in History from Radcliffe
College, and later earned Master’s and Doctoral degrees in Computer Science and
Education, respectively. In Mindstorms, Seymour Papert writes that his collabora-
tion with Solomon was so close, and over such along period of time, that he found it
impossible to enumerate all the contributions that she made to enriching education
in computational environments.*° For example, Solomon was the first to develop an
intellectually coherent methodology for training teachers to introduce children to
computers.

Solomon’s research and writing on programming and cognitive development
informed a Doctoral thesis at Harvard and the subsequent book Computer Environ-
ments for Children: A Reflection on Theories of Learning and Education (1986).*! This
scholarly study explores several models for learning to program and using com-
puters, including rote learning techniques (drill and practice), self-expression (the
Plato system), trial and error experiments (using BASIC), and the Piagetian learn-
ing system (Logo). In appreciation for this work and her pioneering efforts in the
creation of the Logo language, the National Center for Women & Information Tech-
nology awarded Solomon their Pioneer Award in 2016. She is now receiving much
deserved recognition for her formative role in teaching young people to program.

Solomon clearly favored Piagetian learning styles, i.e., programming instruction
through a student-driven, constructive process. Constructionists believe that peo-
ple possess a range of theories about how the world works. Children’s theories con-
trast sharply with adult theories. As children learn about the world, they build new
intellectual structures using readily available materials, which they find in their own
cultural setting. Children learn best when they are encouraged to draw on their own
intuition and put to use what they already know as they develop new ideas.*?

39. David Walden and Raymond Nickerson, eds., 4 Culture of Innovation: Insider Accounts of Com-
puting and Life at BBN (East Sandwich, MA: Waterside Publishing, 2011), 281-532, here at 290.

40. Papert, Mindstorms, 212.

41. Cynthia Solomon, Computer Environments for Children: A Reflection on Theories of Learning and
Education (Cambridge, MA: The MIT Press, 1986).

42. Solomon, Computer Environments, 103-104.

3.8

3.8 Logo as a Model for Code Nation 93

Papert and Solomon saw the computer as providing a useful context for new
learning to take place. But for learning to work well, the computer’s assets must
be molded to the child’s needs and meet them where they are. For this reason, the
MIT Logo team pushed for newer and better computer hardware and software, and
they wanted a programming language that would spur learning based on a child’s
personal knowledge.

The cultural environment where learning took place was also important to
Papert and Solomon. In classrooms and learning centers, everyone should take on
the dynamic roles of learner, teacher, theory builder, and theory tester. Learning
should not be a passive process, in which the teacher (human or computer) simply
pours knowledge into the student’s head. As Solomon summarized, “The learning
process becomes a shared responsibility among all participants.”*3

Papert also offered a vision for what he was looking for—a quasi-utopian
environment that felt qualitatively different than a typical classroom or corporate
training center in the 1960s:

The [ideal] environment is designed to foster richer and deeper interactions
than are commonly seen in schools today. Children create programs that
produce pleasing graphics, funny pictures, sound effects, music, and com-
puter jokes. They start interacting mathematically because the product of
their mathematical work belongs to them and belongs to real life...
Although the work at the computer is usually private it increases the chil-
dren’s desire for interaction. These children want to get together with others
engaged in similar activities because they have a lot to talk about... By build-
ing Logo in such a way that structured thinking becomes powerful thinking,
we convey a cognitive style, one aspect of which is to facilitate talking about
the process of thinking.**

Logo as a Model for Code Nation
Aswe observed with FORTRAN learning, programming primers and other resources
played an important part in the adoption and proliferation of new programming
languages. This was also true for Logo, which was usually embedded in the school
curriculum where it was implemented. A key component of this pedagogy was the
belief that every child could learn to program, so the learning materials needed to
be accessible for all learners, not just the most precocious.

The first version of Logo was introduced at the Hanscom Field School in Lincoln,
Massachusetts in 1967, with support from the U.S. Office of Naval Research. During

43. Solomon, Computer Environments, 162.
44. Papert, Mindstorms, 180.

94 Chapter 3 FORTRAN, Logo, and the Tower of Babel

the 1968-1969 academic year, the National Science Foundation followed up with
a year of teaching Logo-based math in elementary and middle school classrooms.
The class materials and instructor’s manual were designed and taught by Seymour
Papert and Cynthia Solomon. Later in 1969, Logo was introduced to elementary
school children at Emerson School in Newton, Massachusetts. These young pro-
grammers experimented with a variety of topics. They wrote Logo routines that
translated English into “Pig Latin,” devised “secret codes” (i.e., shifted the charac-
ters programmatically to make words appear garbled), and they created word games
including trivia contests, word-reversing utilities, and string-processing routines.*>
A few years later, another Logo trial took place at Lincoln School in Brookline,
Massachusetts. Again, the test subjects were 9 to 14 year olds.

The nationwide distribution of Logo teaching materials began when official text-
books were published and sold from coast to coast. One of the first was Learning
with Logo (1983), written by Daniel Watt, a teacher and writer who taught elementary
school for 7 years in Brookline and was invited to join the MIT Logo team in 1976.1°
Watt joined the group when the first microcomputers were making their appear-
ance, and he was deeply influenced by Papert’s educational philosophy. Between
1977 and 1981, Watt taught Logo in the Brookline schools, participating with a team
of enthusiastic colleagues and volunteers. During those years, Watt worked closely
with Brookline’s School Superintendent, Bob Sperber, as well as other teachers who
joined the effort to move Logo out of the “ivory tower” and into “real” classrooms.*’

Learning with Logo is a spiral-bound workbook containing 14 chapters that intro-
duce Logo concepts step by step. As Watt notes in the acknowledgments, many of
the programs and exercises in the book originally came from his MIT colleagues.
A few coding samples were also contributed by Brookline teachers and students at
Lincoln School. Watt acknowledged the college textbook Turtle Geometry (1981) in
his preface, which pioneered the teaching of college-level mathematics with Logo.*®
This tutorial was authored by MIT professors Harold (“Hal”) Abelson and Andrea
diSessa, and it offered a robust plan for teaching college-level math and geome-
try using computers. In short, Watt’s Learning with Logo was a highly collaborative
project, reflecting the Logo community’s contributions and values.

More programming primers followed. As the Logo system made its way to new
platforms, Watt’s book was adapted from one computer platform to the next.

45. Walden and Nickerson, eds., A Culture of Innovation, 291.
46. Daniel Watt, Learning with Logo (New York: McGraw-Hill, 1983).
47. Daniel Watt, Learning with Apple Logo (New York: McGraw-Hill, 1984), FM.

48. Harold Abelson and Andrea diSessa, Turtle Geometry: The Computer as a Medium for Exploring
Mathematics (Cambridge, MA: The MIT Press, 1981).

3.9

3.9 How successful was Logo? 95

New editions included Learning with Apple Logo (1984), Learning with IBM Logo
(1985), Learning with Commodore Logo (1985), and Learning with Atari Logo (1988),
all published by McGraw-Hill. In terms of software sales, Apple Logo for the Apple
II+ computer was generally recognized as the most popular implementation of PC-
based Logo in the early to mid-1980s. This outcome makes sense given Apple’s early
commitment to the educational marketplace.

How successful was Logo?

In 1986, it was estimated that 40% of American school districts had acquired Logo
and were using it to introduce programming fundamentals to students.® By that
time, Logo had become more or less the standard learning language in elementary
and middle schools, while BASIC and Pascal were widely adopted in high school and
college contexts.

Looking back from her vantage point in the mid-1980s, Cynthia Solomon could
admit that Logo as it had been taught since the late 1960s did not always achieve
its goals. For example, in standardized tests the students who had been exposed
to Logo did not always show significant differences in problem solving abilities
compared to students who had not.>°

The educational researchers Roy Pea and D. Midian Kurland also pointed out
that in comprehensive studies, the results of Logo on student cognitive develop-
ment were mostly anecdotal and inconclusive. Any positive results appeared to Pea
and Kurland as being related to programming acumen alone (an important achieve-
ment). But programming in Logo did not seem to translate into higher mental
functions.®?

There were also those who criticized the constructivist approach altogether.
Piaget, Papert, and Solomon believed that if students were given the cultural tools
to learn with, they would create their own knowledge by self-guided immersive
experiences (discovery learning), with a minimum of instruction or intervention.
But scholars like Paul Kirschner, John Sweller, and Richard Clark argued that
the constructivist approach only worked when learners had sufficiently high prior
knowledge to provide their own “internal” guidance. Skilled teachers were more
important than Papert realized, they argued. Only a proven pedagogy could truly

49. Solomon, Computer Environments, 132.
50. Solomon, Computer Environments, 128.

51. Roy D. Pea and D. Midian Kurland, “On the cognitive effects of learning computer program-
ming,” New Ideas in Psychology 2, no. 2 (1984): 137-168.

96 Chapter 3 FORTRAN, Logo, and the Tower of Babel

bolster mental processing, i.e., the cognitive architecture that accompanies and
sustains deep learning.>?

Criticism also came from unexpected quarters. Worried about the negative
influence of a rapidly expanding computer culture in America, Theodore Roszak
argued in The Cult of Information (1994) that Logo was well-intentioned but fell into
the same trap that other computer education schemes did. The author of the cele-
brated Making of a Counter Culture (1969) even singled out Daniel Watt’s Learning
with Logo as an oppressive workbook that was overly concerned with the dynamics
of power and control. (For an introduction to the argument of Making of a Counter
Culture, see Chapter 2.) Roszak wrote the following about Learning with Logo:

The phrase powerful idea—taken from Papert—appears as a little flag that
punctuates the presentation in each chapter. But as with all computer exer-
cises, the mastery comes through adapting to the machine’s way of doing
things. The same ambiguous relationship between power and dependence
remains in Logo as in other computer curricula; the same illusion of control
hovers over Papert’s microworlds.”?

Roszak was particularly unimpressed with the “art” that novice students could
create with Logo commands, and he attacked the “poetry” that Watt said a program-
mer could create if they instructed the computer to pick words from a vocabulary list
at random. Roszak believed all of these efforts lowered the bar for a child’s educa-
tion. He sensed a reductive rule at work: “if the computer cannot rise to the level
of the subject, then lower the subject to the level of the computer.”>* For technolo-
gists who had come up in the 1960s and found inspiration in Making of a Counter
Culture, Roszak’s critiques of Logo and artificial intelligence must have seemed
like a buzz kill. Unrepentant, Roszak concluded his critique: “Children are gaining
their computer literacy at the risk of becoming cultural cripples.”>®

To the first of these objections, Solomon wrote that it was hard to determine
the actual effect of Logo on children in a classroom, because Logo teachers were
instructed in different ways and the Logo computer systems were inconsistently

52. For a summary of these critiques, see Paul A. Kirschner, John Sweller, and Richard E.
Clark, “Why minimal guidance during instruction does not work: An analysis of the failure of
constructivist, discovery, problem-based, experiential, and inquiry-based teaching,” Educational
Psychologist 41, no. 2 (2006): 75-86.

53. Theodore Roszak, The Cult of Information: A Neo-Luddite Treatise on High-Tech, Artificial
Intelligence, and the True Art of Thinking, Second Edition (Berkeley: University of California Press,
1994), 76.

54. Roszak, The Cult of Information, 78.

55. Roszak, The Cult of Information, 82.

3.9 How successful was Logo? 97

deployed. Admittedly, the Logo project had lofty goals, but they were being only
partially implemented with technology that was still in-process. Moreover, the con-
structionist school believed that the context for human development was always a
culture and never an isolated technology.”® Logo programming would change hearts
and minds, they argued, when the culture was fully computerized and attentive to
new ways of learning. But it would likely take decades.

In 1997, Seymour Papert also looked back over a long career in AI research
and agreed that his vision had only been partially achieved. The Logo project cer-
tainly enjoyed its successes over the past decades, but computer literacy was still
in the early phases of a much longer cultural transformation. Papert offered the
metaphor that if learning to program was like air travel or the cinematic arts, then
the Logo project was like the early DC3 airplane or the first films that simply aimed
a stationary camera at actors on the stage. In short, the technologies associated
with computer programming were gaining momentum, but society’s understand-
ing of the medium hasn’t evolved too faryet.>” Papert also suggested that computa-
tional thinking was itself a cultural attribute. “The real problem is not whether Logo
‘succeeded,” but understanding the growth of a computer learning culture in which
Logo plays an important, but not determining, part.”>®

In 1983, computer literacy theorists Pea and Kurland wrote in a more opti-
mistic way about the four major skill areas that should be assessed when educators
needed to make a determination about how well a given course of programming
instruction is going. These four skill areas included (1) understanding the program-
ming problem; (2) designing or planning a programming solution; (3) writing the
program code that implements the solution; and (4) comprehending the written
program solution and program debugging.>® The researchers agreed that in most
contexts, Logo instruction as it existed in the 1980s attempted to cover all four skill
areas, with varying levels of success. I would suggest that skill area (4) comprehend-
ing the written program solution and program debugging, is the area where Logo
made its biggest strides, paving the way for programming to be seen as an interac-
tive, experiential task that taught students about the nature of computers and how
they can manage information.

56. Seymour Papert, “Computer criticism vs. technocentric thinking,” in Logo 85: Theoretical
Papers (Cambridge, MA: The MIT Press, 1991), 54.

57.Seymour Papert, “Educational Computing: How Are We Doing?” T.H.E. (Technological Horizons
in Education) Journal (June 1997): 78-80.
58. Papert, “Educational Computing: How Are We Doing?” 80.

59. Pea and Kurland, “On the cognitive effects of learning computer programming,” 149-150.

98 Chapter 3 FORTRAN, Logo, and the Tower of Babel

Learning to program has always been a challenging task, and the prob-
lem has been exacerbated in the modern era with new commercial program-
ming systems arriving at ever-frequent intervals. This chapter’s investigation of
assembly language, FORTRAN, and Logo programming has revealed that modern
approaches to software development are built on decades of thoughtful experi-
mentation and research. As the computer industry moved from batch-processing
computers to time-sharing systems in the 1960s, programming became a more
interactive prospect, and high-level languages further opened the door to non-
specialists. Academic journals, programming primers, and new methods of class-
room instruction provided Americans with many new opportunities to learn about
programming. From these experiences, an educational movement was born that
encouraged students and average citizens to try computer programming as a way to
enhance their cognitive development. This led to the creation of the Logo program-
ming language, which theorists like Seymour Papert and Cynthia Solomon hoped
would be ideal to teach children spatial reasoning skills, mathematics, and problem
solving. The learn-to-program movement gained momentum through these ideas,
and in the coming decades a more comprehensive agenda would be constructed
that attempted to integrate programming activities into the middle school, high
school, and college curriculums.

Admittedly, America’s computing infrastructure was not robust enough to
manage the task of putting every child in front of a computer to learn. As we shall
see in future chapters, however, the arrival of PCs made some believe that the
goal was still possible, and they advocated for a new round of convivial tools that
would bring the promise of computing to the masses. Chapters 4 and 5 explore
how the learn-to-program movement continued under the banner of the BASIC
programming language, a tool that went through rapid changes as the “Revolution”
progressed.

Advocating Computer
Literacy

“The Lord has given me the tongue of a teacher, that I may know how to sustain the
weary with a word.”

Hebrew Bible, Isaiah 50:4

“Do you occasionally make mistakes? We do, watch.”

Bob Albrecht, My Computer Likes Me When I Speak in BASIC (1972)

In October 1972, Bob Albrecht, Mary Jo Albrecht, Jerry Brown, and LeRoy Finkel
published the first issue of a new computing tabloid entitled the People’s Computer
Company Newsletter. Created in the offices of Dymax, a small publishing company
organized under the auspices of the Portola Institute in Menlo Park, California,
the newsletter would soon have a big impact on computer education. The issue’s
opening manifesto read

Computers are mostly used against people instead of for people
used to control people instead of to free them

time to change all that -

we need a...

People’s Computer Company.’

In popular histories of the “PC Revolution,” the People’s Computer Company
(PCC) is credited with intensifying popular interest in computing in the years
immediately prior to the commercial release of microcomputers. Most recently,
Joy Lisi Rankin highlighted the formative influence of the PCC in her book A Peo-
ple’s History of Computing in the United States, arguing that the organization was

1. People’s Computer Company Newsletter 1, no. 1 (October 1972), 1. Marc LeBrun, Jane Wood, and
Tom Albrecht are also credited as contributing art to the first issue.

100 Chapter4 Advocating Computer Literacy

4.1

central to the Bay Area home-computing endeavor.? The overlapping networks of
the region’s major technologists is indeed striking. Nearby the Portola Institute
housed Stewart Brand’s Whole Earth Catalog. Just down the road, Doug Engel-
bart was experimenting with computer interfaces at Stanford Research Institute.
Also in the area, hardware enthusiasts were tinkering with circuits at the Home-
brew Computer Club. The PPC somehow connected all of these groups—through
pooled spaces, inexpensive hardware, potlucks, wine, and Greek dancing. But most
significantly, they shared ideas.

For Bob Albrecht, the main idea was BASIC, a language that would become
the popular voice of the learn-to-program movement as it transitioned into the
microcomputer era. This chapter explores the promotion of computer program-
ming and computer literacy in the 1970s and 1980s, and a fascinating cast of char-
acters associated with BASIC in San Francisco, Minneapolis, Hanover, Berkeley,
and Albuquerque. Later in the book, we’ll return to the devoted users of assembly
language, Pascal, Forth, and C/C++—powerful tools that were used to create com-
mercial applications for CP/M, MS-DOS, Microsoft Windows, and the Apple Macin-
tosh. But the computer literacy movement reached critical mass by way of BASIC in
America, the dominant language of time-sharing teleprinters and the first micro-
computers and PCs. The most interesting part of this story is not BASIC itself, but
the teachers, students, and entrepreneurs who coded in it.

Robert Albrecht and the Popularization of the Movement

Robert L. Albrecht (1930~) started his computing career at Honeywell in Minne-
apolis in the 1950s, and later worked at Burroughs and Control Data Corporation
in Colorado. While in Denver, he had a life-changing experience when he had the
opportunity to teach FORTRAN to high school students. The class became popu-
lar and soon Albrecht was driving around the region teaching young people how
to program computers. He also met education specialists who were studying inno-
vative ways to teach mathematics in schools, including preparing teachers for the
impending introduction of computers.3

2. Joy Lisi Rankin, A People’s History of Computing in the United States (Cambridge, MA: Harvard
University Press, 2018), 235.

3. No comprehensive biographies exist for Robert Albrecht, but his fascinating career has been
touched on by numerous authors, including Rankin, A People’s History of Computing, chapter 3;
Michael Swaine and Paul Freiberger, Fire in the Valley: The Birth and Death of the Personal Com-
puter, Third Edition (Dallas, TX: The Pragmatic Bookshelf, 2014), 155-165; Steven Levy, Hack-
ers: Heroes of the Computer Revolution, Updated Edition (Sebastopol, CA: O’Reilly Media, 2010),
165-173, 194-199; John Markoff, What the Dormouse Said: How the Sixties Counter-culture Shaped
the Personal Computer Industry (New York: Penguin, 2005), 181-185, 262-287; Bob Johnstone,

4.1 Robert Albrecht and the Popularization of the Movement 101

In 1964, Albrecht moved back to Minneapolis and quit his job with Control Data.
He established a teaching connection with the University of Minnesota, and soon
gained access to the school’s time-sharing system, which contained a fascinating
new programming language from Dartmouth College in Hanover, New Hampshire.
The program was called BASIC, and the language was based on the work of John
Kemeny and Thomas Kurtz in 1963 and 1964. BASIC was an acronym that stood for
Beginner’s All-purpose Symbolic Instruction Code, and the language was designed
specifically for newcomers to programming.

Bob Albrecht loved coding in BASIC and he considered the language a major
upgrade over FORTRAN, especially if your goal was teaching other people how to
write instructions for computers. The Minnesota implementation of BASIC was
interactive (not slowed down by the delays of batch-processing), and it offered
English-like statements that students could master quickly. Kemeny and Kurtz
designed the language around a new time-sharing system, one of the firstin America
thatwas created in partnership with scientists from MIT.? This meant that program-
mers could use teletype machines or consoles to type their code directly into the
computer. From the user’s point of view, there was now a two-way flow of infor-
mation between the system and the user when the program ran. BASIC’s INPUT
statement is one example of how this interactivity was deployed. INPUT allowed
users to enter information into a program while the code is executing. When the
statement is processed, the terminal session pauses and waits patiently for the
user to supply the requested information. After receiving the input from the user,
the program continues its processing and (if the program is skillfully designed) it
can make use of this information through variables and other mechanisms. This
type of interactivity—now a common feature of programming systems—was excit-
ing and new for students and their instructors, offering programmers an intimate
connection with their computers.®

Bob Albrecht’s growing passion for BASIC can be gauged by his regular use
of the acronym SHAFT (Society to Help Abolish FORTRAN Teaching), a slogan he
put on buttons and business cards in the mid-1960s to influential policy makers.

Never Mind the Laptops: Kids, Computers, and the Transformation of Learning (Lincoln, NE: iUni-
verse, Inc., 2003), 65-69; and Steve Lohr, Go To: The Story of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists, and Iconoclasts—The Programmers Who Created the
Software Revolution (New York: Basic Books, 2001), 87-89.

4. For an excellent history of the creation of time-sharing BASIC at Dartmouth College, see Rankin,
A People’s History of Computing in the United States, 12-37.

5. The INPUT statement was introduced in the Third Edition of Dartmouth BASIC in 1966. See
Thomas E. Kurtz, “BASIC session,” in History of Programming Languages, ed. Richard L. Wexelblat
(New York: Academic Press, 1981), 515-549, here at 527.

102 Chapter4 Advocating Computer Literacy

Albrecht’s goal was to convince educators and politicians that BASIC was superior
to FORTRAN when the objective was teaching people the fundamentals of com-
puter programming. Gradually, this advocacy paid off. In Minnesota, a national
mathematics education council met in subcommittee and agreed that BASIC
should be selected as the primary teaching language in the districts under their
control.® Although Minnesota might seem like the periphery in a story about early
computing standards, this supposition is far from accurate. The council’s deci-
sion exercised an important influence over computer-based education movements
throughout the 1960s and 1970s.”

Following the policy shift, Addison-Wesley hired Albrecht and a few colleagues
to write a book entitled Computer Methods in Mathematics that would elevate BASIC
instruction over other languages for teaching math. The guidebook was among
the first to teach teachers how to present mathematics instruction using BASIC.3
(The book also included a short section on using FORTRAN, mostly to mollify stal-
warts.) After beginning the project, Albrecht moved to California to be closer to his
publisher—and to make a fresh start. He arrived in the bustling San Francisco Bay
Area in early 1966 and immediately established contacts in the local hotbeds of
publishing, art, education, and computing. Albrecht’s charisma led to a string of
entrepreneurial startups. In the publishing realm, Albrecht co-founded the Portola
Institute, the PPC, and Dymax publishing. The PCC name was inspired by the Janis
Joplin band Big Brother and the Holding Company. In reality, neither Big Brother
and the Holding Company nor the PCC functioned much like a traditional “com-
pany” at the time. Both groups were experimenting with music, counterculture
politics, and consciousness-raising activities.

In his spare time, Albrecht drove around with LeRoy Finkel and other new
friends in a red VW bus, trying to teach young people in San Francisco about
BASIC. They brought along computers, calculators, books, games, manuals, and
anything else that they could find to spread the word about coding. In slightly
more formal settings, they also offered courses to teachers and students on Univer-
sity of California branch campuses and in what was called the Midpeninsula Free

6. This anecdote comes from an interview with Albrecht’s colleague Dale LaFrenz. Apparently,
Albrecht personally lobbied the Computer Oriented Mathematics Committee, a subgroup of the
National Council of Teachers of Mathematics. For the context of the decision, see “Interview
with Dale LaFrenz,” conducted April 13, 1995, Charles Babbage Institute Archives, University of
Minnesota.

7.Rankin, A People’s History of Computing in the United States, 139-165.

8. See Robert L. Albrecht, Eric Lindberg, and Walter Mara, Computer Methods in Mathematics
(Menlo Park, CA: Addison-Wesley Educational Publishers, Inc., 1969).

4.2

4.2 1Speak BASIC 103

University (MFU), which operated primarily between 1966 and 1971 on the San
Francisco Midpeninsula.

The MFU teaching experience was especially congenial to its times. MFU was
one of the larger “free” universities that settled on college campuses, private homes,
and storefronts in the late 1960s in response to the Free Speech Movement at
Berkeley. MFU offered hundreds of courses each quarter for a nominal member-
ship fee of $10. The events were publicized in illustrated catalogs and widely dis-
tributed. Albrecht and Finkel taught MFU computer courses with a countercultural
sensibility, working to disassociate themselves from the negative stereotypes that
computers had for some hippies. In particular, many in the Free Speech Movement
worried that computing seemed “too corporate,” or that computers were closely
allied with the military-industrial complex, which many were actively protesting
against. Albrecht recalled his initial strategy: “We were covert. Unintentionally, we
were taking the long-term view, encouraging anyone who wanted to use computers,
writing books that people could learn to program from, setting up places where
people could play with computers and have fun.”®

As Figure 4.1 illustrates, the learn-to-program movement had picked up a new
language and progressed to a new stage.

| Speak BASIC

Over his career, Bob Albrecht would author or co-author over 30 computer books,
mostly about BASIC programming and mathematics. Through Dymax, Dilithium
Press, Addison-Wesley, John Wiley, and other publishers, Albrecht drew in thou-
sands of new computer users and taught them to love BASIC. He introduced readers
to the fundamentals of computer literacy through light-hearted prose, interesting
math problems, computer games, and conference presentations. (See Figure 4.2
for Albrecht presenting at the West Coast Computer Faire.) Most of Albrecht’s
programming primers were large-format workbooks, relatively short in length but
packed with original artwork—and on occasion, encouragement from mythologi-
cal characters. In fact, dragons and mythology were favorite subjects for Albrecht.
In later years, he occasionally wrote under the penname George Firedrake, a dragon
alter-ego that he developed after taking a free-university course on self-hypnosis at
Foothill College in Los Altos.

Albrecht’s whimsical texts were a far cry from the academic approach that most
professors were taking when they introduced programming and the fundamentals
of computer science. Although a few programming primers had appeared for the
BASIC language, they tended to resemble the engineering manuals of an earlier era.

9. Bob Albrecht, quoted in Levy, Hackers: Heroes of the Computer Revolution, 169.

104 Chapter4 Advocating Computer Literacy

Figure 4.1 Illustrations from the People’s Computer Company Newsletter were often linked to
imagery from the Free Speech Movement to popularize the invitation to learn program-
ming. This graphic, repeated in several PCC newsletters, first appeared in October 1972.
It presents a diverse group ready to code: young and old, black and white, female and
male. (Courtesy of the Computer History Museum)

These books included Kemeny and Kurtz’s BASIC Programming (1967, 1971) and
James S. Coan’s Basic BASIC (1970, 1978).1° I would also be remiss if I don’t add to
this list the first BASIC programming textbook that I used in a college course, the
time-honored BASIC: An Introduction to Computer Programming, by Robert Bent and
George Sethares (1978, 1982).11 All of these texts introduced essential language con-
cepts and syntax, but they read like language specifications with little in the way of
real-world examples. In other words, they were separated from the lived experience
of young people. Albrecht wanted to change this, so he emphasized countercul-
ture values, humorous anecdotes, and what he considered to be interesting about

10. John G. Kemeny and Thomas E. Kurtz, BASIC Programming (New York: John Wiley, 1967;
Second Edition, 1971); James S. Coan, Basic BASIC: An Introduction to Computer Programming in
BASIC Language (New York: Hayden, 1970; Second Edition, 1978).

11. Robert J. Bent and George C. Sethares, BASIC: An Introduction to Computer Programming
(Monterey, CA: Brooks/Cole Publishing, 1978 and 1982). Characteristically, my BASIC program-
ming course was a semester long elective which did not count for credit in my university’s computer
science major. I took it anyway.

4.2 1Speak BASIC 105

Figure 4.2 Bob Albrecht speaking at the March 1980 West Coast Computer Faire in the Civic Center,
San Francisco. (Photograph by Jim Warren; image courtesy of Jim Warren and the
Computer History Museum)

the world. Albrecht also had business savvy. To multiply his efforts, he formed part-
nerships with several technical writers and teachers in the Bay Area, and the group
published dozens of books together. These skilled collaborators included LeRoy
Finkel, Jerry Brown, Don Inman, Ramon Zamora, Greg Stafford, and (when Visual
Basic arrived) Bob’s own son, Karl Albrecht.

All the evidence suggests that Bob Albrecht and his team made BASIC program-
ming fun and memorable for their intended audiences. Albrecht’s first major book,
My Computer Likes Me When I Speak in BASIC (1972), set the tone for the group’s
adventures. (See Figure 4.3.) When describing the teletype equipment that he used
to enter and run BASIC programs, Albrecht explained: “Teletypewriters are the
Volkswagens of computer terminals... rugged, dependable, inexpensive, ugly and
noisy!”12 After this introduction to equipment, Albrecht proceeded to step people
through building interesting, interactive BASIC programs that were an appropri-
ate match for the era’s mainframe and minicomputer systems. Importantly, he

12. Bob Albrecht, My Computer Likes Me When I Speak in BASIC (Portland, OR: Dilithium Press,
1972), 1.

106 Chapter4 Advocating Computer Literacy

Figure 4.3 The cover of My Computer Likes Me When I Speak in BASIC (1972), by Bob Albrecht.
(Courtesy The Internet Archive, San Francisco)

recognized that people were still learning about computers and their capabilities.
This was an awareness that the best computer book authors have always seemed to
possess.

A timely issue that Albrecht investigated in his first book was global population
growth. Although the problem might seem obscure today, population growth was
an important political and environmental concern in the 1960s and 1970s. Pop-
ular publications such as Stewart Brand’s Whole Earth Catalog and Ted Nelson’s
Computer Lib/Dream Machines made numerous references to global population
growth and the ethical and political issues that it raised. Albrecht’s concern with the
topic reminds us thateven in computer books, popular culture influences pedagogy.
It is likely that Albrecht’s readers were intrigued, as well.

A recent contributor to the debate was the biologist Paul R. Ehrlich, author of
the influential book The Population Bomb (1968). Ehrlich warned readers that the
earth’s human population would soon increase to the point of food shortages, sys-
tem collapse, and mass starvation. Stewart Brand had studied biology with Ehrlich

4.2 1Speak BASIC 107

at Stanford in the late 1950s, and Brand helped introduce Erlich’s ideas to a broader
audience in the San Francisco Bay Area.'® Bob Albrecht was one of the people that
absorbed this message.

Although it may sound like a complex subject for new programmers to consider,
Albrecht recognized that human growth rates were fascinating, and they could eas-
ily be adapted to computational logic. Albrecht’s section “Too Many People” near
the beginning of My Computer Likes Me When I Speak in BASIC takes as its starting
point the world’s population of 3.6 billion people in 1970. (Those were the days,
right?) Using the standard growth rate accepted in that era (the earth’s human
population doubling every 35 years), Albrecht showed readers how to write a short
program that would compute the earth’s population in 2250 (i.e., 280 years into his
model reader’s future). With the growth rate that Albrecht proposed, the computa-
tion worked out to an astonishing 921.6 billion people by the year 2250. No wonder
they were so worried.

Naturally, there are some physical limits to population expansion that are not
considered in this example. For one thing, as the earth fills up and resources are
depleted, the growth rate will presumably slow. But Albrecht’s point was not to dive
too deeply into population growth theory—he wanted to inspire readers to write pro-
grams that might address interesting contemporary issues. Albrecht simplified this
first example by picking an end year and a growth rate that could be expressed by a
power of 2. The solution he presented can be calculated using the following formula:

Human population in the year 2250 = 3,600,000,000 28
When translated into BASIC code, Albrecht’s formula looked like this:

10 PRINT 3.6EQ#2#2%2%2%2%2%2%2
99 END
RUN

This is a complete BASIC program, which Albrecht printed carefully in his book for
readers to type invia their teletype terminals. The first two lines begin with line num-
bers (10and 99), labels that were required to distinguish each line in early versions of
BASIC. (Different line numbers could be used, but it was typical to use 10, 20, 30, and
so on to allow room for later insertions.) The third line is simply a RUN command,
which directs the interpreter to start running (or executing) the program. When the
program starts, it printed the result of the calculation on the teletype:

9.216000E+11

In plain English, this numeric expression means that in the year 2250 the earth’s
population will be (theoretically) 921,600,000,000 people, which we might simplify

13. Andrew G. Kirk, Counterculture Green: The Whole Earth Catalog and American Environmentalism
(Lawrence, KS: University Press of Kansas, 2007), 33-36.

108 Chapter4 Advocating Computer Literacy

4.3

using the number 921.6 billion.!* Albrecht then wrote about the exponential part
of the result, so that readers could understand how BASIC handled such numbers.
Later in the book, he encouraged readers to enter numbers using this format, which
the computer could understand and which (theoretically) saved the programmer
time and space.

I have taken the time to review Albrecht’s sample problem in detail because it is
useful to understanding his method when introducing computation thinking with
BASIC. A close reading of his primer reveals more than a hint of social commentary
which accompanies his exercises. It continued in at least another location, where
he wrote (in a second typeface), “Too many people!” next to the 921.6 billion fig-
ure. He also provided readers with information that they could use to learn more
about population growth, including writing to the Population Reference Bureau in
Washington, D.C.1% (The bureau’s address is printed on a sample envelope next to
the text—just what an experienced activist would do when providing instructions
to the members of a social movement.)

Albrecht’s My Computer Likes Me When I Speak in BASIC was financially success-
ful, selling over 250,000 copies. Beyond mere revenues, it indicates that thousands
of readers were learning BASIC and connecting the language to computer instruc-
tion and countercultural ideas. The text also captures a moment when most novices
were learning BASIC on time-sharing systems, before the release of the first micro-
computers. Along with Daniel McCracken and David Ahl, Bob Albrecht became one
of the learn-to-program movement’s early champions and recognizable leaders.

The B. F. Skinner Approach

As the 1970s took shape, BASIC programming remained a priority for the
Dymax/PCC team. When the first microcomputers arrived, the publishing group
revised several titles for the new devices, including a book known simply as BASIC.
Albrecht, Finkel, and Brown emphasized the new computer’s novelty in a foreword
to the 1978 edition (italics mine):

Since the appearance of BASIC... the field of computer science and the avail-
ability of computers to all people (non-professional computer users) has
grown by leaps and bounds. Especially noteworthy is the appearance of the so-
called personal or home computer. Integrated circuit technology has now pro-
vided us with computers far less expensive than ever before, yet with the same
computing abilities as systems costing many times more. This means it will

14. Albrecht, My Computer Likes Me, 12.
15. Albrecht, My Computer Likes Me, 23.

4.3 The B. F. Skinner Approach 109

be easier for you, the beginner, to get “hands-on” computer programming
practice in the BASIC language.'®

In addition to a flourish of marketing, there are echoes here of Ivan Illich, Lee
Felsenstein, and Ted Nelson—the prophets of convivial tools “for the people.” This
primer is also noteworthy for a pedagogical reason; the book is a prime example
of an approach to computers utilizing the techniques of behaviorism and operant
conditioning from the field of developmental psychology. BASIC was published by
John Wiley & Sons, a venerable technical publisher that began its relationship with
Bob Albrecht through Commissioning Editor Judie Wilson in the early 1970s.17 At
that time, Wiley’s editorial team was invested in an approach to learning popular-
ized by B. F. Skinner (1904-1990) and a team of behavioral psychologists. The sys-
tem was more recently promoted by Susan Markle (1928-2008), a psychologist and
instructional designer who published the treatise Good Frames and Bad (1969).18

Wiley & Sons believed that novice computer programmers could benefit from
operant conditioning because programming syntax was governed by well-defined
rules. Following the method, the Wiley editors organized learning exercises into
question/answer (stimulus/response) “frames,” which exposed learners to new con-
cepts through controlled steps that could be reinforced. Each frame began with a
short conceptual description and then presented a simple task to the user that was
learned through short exercises.

A single frame presented only one small part of the overall programming skill
that was to be introduced. However, when looked at collectively, the frames were
designed to generate a comprehensive proficiency in the skill being taught. The key
was providing immediate feedback that would shape and reinforce positive behav-
ior. Self-test questions were also included in the books, and the solutions were
shown directly below the questions. (Readers were encouraged to hide the solutions
with anote card until theywere ready to check their work.) Computer-based training
courses that followed this method would be able to do this part automatically.

I find this approach to teaching fascinating, because it had a long influence in
the fields of instructional design and computer book publishing, some of which
Iwitnessed firsthand at Microsoft Press. However, Wiley’s BASIC book seemed like

16. Robert L. Albrecht, LeRoy Finkel, and Jerald R. Brown, BASIC, Second Edition (New York: John
Wiley & Sons, 1978), v.

17. “Interview with Bob Albrecht,” conducted by Jon Cappetta, April 7, 2015, History of Computing
in Learning and Education.

18. Susan Meyer Markle, Good Frames and Bad: A Grammar of Frame Writing, Second Edition (New
York: John Wiley & Sons, 1969). For additional background on the method, see B.F. Skinner, The
Technology of Teaching (New York: Appleton-Century-Crofts, 1968).

110 Chapter4 Advocating Computer Literacy

4.4

a bit of a departure for Bob Albrecht and his colleagues. The group’s sense of humor
lost some of its sparkle in the new format, and the illustrations were removed,
along with some of the freshness of their approach. However, Wiley was confident
in the new method, and they filled BASIC with scores of numbered exercises that
stepped readers through fundamental programming concepts and conditioning
tasks. Some of these could be very lengthy. For example, the book’s opening sec-
tion, “Warming Up,” stretched for 42 pages, presenting task after task with little
explanatory text.

Not everyone agreed with the operant conditioning method. As I discussed in
Chapter 3, Seymour Papert and Cynthia Solomon were deeply suspicious of rote
learning, and they encouraged teachers and students to approach cognitive devel-
opment through immersive, interactive learning systems that were fun. In fact,
most of Albrecht’s computer books followed a path similar to what Papert and
Solomon had advised. Although the learn-to-program did brush up against these
behaviorist approaches to computer literacy, most of the movement’s authors and
educators employed fun, hands-on learning experiences that were meant to be
immersive when teaching programming. The arrival of personal computers (PCs)
only enhanced this mode of exploration.

Hold Me Closer Tiny BASIC

Interestingly, Bob Albrecht had another important legacy in early programming
communities—he supported the free distribution of BASIC on the first PCs, encour-
aging the language’s success in the rapidly rising platform. Although this influence
has been noted by other historians of technology, it bears repeating that BASIC
moved very seamlessly from mainframe to minicomputer to PC contexts, and Bob
Albrecht played a crucial role in this technology transference.!®

In early 1975, Bill Gates and Paul Allen licensed their version of the BASIC inter-
preter to MITS in Albuquerque for use on the Altair 8800 microcomputer. As there
was little else in the way of software for the Altair system, hobbyists were forced
to write BASIC programs with the Gates-Allen-Davidoff version (Altair BASIC)
when they wanted to make use of the new device. As newer microcomputer sys-
tems came out, the nascent “Micro-soft” team converted their BASIC interpreter
so that it would run on the new computers, licensing the software to manufactur-
ers who wanted to use it. They typically sought a royalty for each copy of BASIC that
was sold.

19. For another account of this transition, see Rankin’s, 4 People’s History of Computing in the
United States, 66-105.

4.4 Hold Me Closer Tiny BASIC 111

From a user’s point of view, the only problem with this scenario was that it
added (potentially) significant costs to the new system. For example, Altair BASIC
was originally priced at $150 for the 4K interpreter program—over a third of the cost
of the $439 Altair 8800 microcomputer Kkit.

Recognizing the cost to users and finding himself in a position of influence in
the community, Albrecht devised a creative solution. He contacted Dennis Allison,
a computer science instructor at Stanford University, and he asked Allison to write
a compact (tiny) version of BASIC that the PCC could publish in their newsletter for
free. Presumably, the free interpreter would encourage people to code in BASIC, the
language that Albrecht loved. Free code was also in the spirit of the group’s vision
for “convivial tools,” and they hoped that widespread distribution of the enabling
software would encourage hobbyists to experiment further with microcomputers.

The “free BASIC group” went to work. In 1975, the first three issues of the PCC
Newsletter included articles written by Allison calling for “tiny” (2-3 kilobyte [KB])
versions of BASIC that might fit easily into a typical microcomputer’s memory allo-
cation. Allison offered technical specifications for the interpreter, and he named
the tool Tiny BASIC. In the final article in the series, Allison asked readers to mail in
their own ideas for the BASIC interpreter.

The response to the Tiny BASIC initiative was overwhelming. Because there was
so much interest in a scaled-down programming language for the new devices,
the PCC team decided to create a separate magazine to share the source code for
BASIC and publisher reader feedback about the experience. At a loss for a name
for the publication, the PCC editors finally came upon the title Dr. Dobb’s Jour-
nal of Tiny BASIC Calisthenics & Orthodontia. Later, the PCC hired computing vet-
eran Jim Warren to run the magazine, and the publication’s name was simplified
to Dr. Dobb’s Journal. This venerable magazine would become a mainstay of the
PC programming world, reaching tens of thousands of active software developers
throughout the 1980s and 1990s.2° T have much more to say about Jim Warren,
but I'll leave it to Chapter 11, which introduces important trade shows in the PC
industry, including the West Coast Computer Faire.

By the middle of 1976, there were many low-cost or free implementations of
Tiny BASIC in the microcomputer community. The Micro-soft version was still the
most popular, but the PCC and Dr. Dobb’s Journal had helped to create a broad-
based movement around BASIC, and the “underground” nature of the tool encour-
aged hobbyists to meet and exchange software. We can track the movement’s

20. Jim Warren describes these early events in a commemorative edition of Dr. Dobb’s Journal,
where I have gathered the information. See Jim Warren, “We, The People, In the Information Age:
Early times in Silicon Valley,” Dr. Dobb’s Journal, no. 172 (January 1991): 96D-96H.

112 Chapter4 Advocating Computer Literacy

4.5

expansion via local computing circles by examining the May 1976 issue of the PCC
Newsletter, which contains a list of 104 active computer clubs in the U.S. Most of
these were early adopters of microcomputers and the BASIC programming tools
mentioned in the PCC Newsletter. In the same issue, the editors published a list
of retail stores where new computer products could be purchased. In 1976, there
were already 47 active businesses that could be identified, supporting a range of
microcomputer kits and products.?! Collectively, the clubs and stores allowed pro-
grammers, engineers, and hobbyists to meet, find hardware, learn new skills, trade
games, buy books, collaborate on projects, and develop shared values. This face-to-
face contact was crucial for the expansion of the learn-to-program movement and
its grassroots ideals.

Arthur Luehrmann and the Computer Literacy Debate

BASIC’s popularity on microcomputers and time-sharing systems insured its rel-
evance for publishers and entrepreneurs, but the language’s success also pro-
pelled the product into initiatives related to educational policy and literacy agendas
around the country. The next phase of this movement took place at Dartmouth
College in New England. Among the important supporters of BASIC at Dart-
mouth was Arthur W. Luehrmann, Jr. (1931~), a physics professor who became
a tireless advocate for the learn-to-program movement in the 1960s and 1970s.
Luehrmann was a colleague of Kemeny and Kurtz who helped to institutional-
ize BASIC’s use at the college’s Kiewit Computation Center. When the language
attracted national attention, the Dartmouth group took their show on the road
to demonstrate the value of programming in a time-sharing context. Following
their lead, the administrators of the Dartmouth system provided access to BASIC
for regional high schools and universities that otherwise had little contact with
computers.

Arthur Luehrmann had a Ph.D. in Physics from the University of Chicago and
he was an assistant editor of the American Journal of Physics, a publication of the
American Association of Physics Teachers. Despite the draw of his discipline, the
physicist also spent much of his time tinkering with computing hardware, as many
scientists did when they had their first taste of computing. In 1968, Luehrmann
devised a pioneering approach to printing graphics from a BASIC program using
an X-Y plotter, a peripheral that he connected, via another device, to the Dart-
mouth time sharing system. Luehrmann’s technique was essentially a hack (or a
workaround). He connected the plotter to a teletype printer, and then used BASIC
routines with embedded escape sequences to send output to the plotter via the

21. See “Clubs,” People’s Computer Company Newsletter 4, no. 6 (May 1976): 28-29.

4.5 Arthur Luehrmann and the Computer Literacy Debate 113

printer. Luehrmann wrote a pamphlet about the clever technique, which is still
available for review in the Dartmouth College library.?? The results encouraged
faculty and students to make further experiments with graphics at their school.
The program also drew the attention of Tektronix, Inc., which loaned Luehrmann’s
team several graphics terminals to enhance their work.?? Luehrmann collabo-
rated with Tektronix throughout the 1970s, using their influence to lobby for the
inclusion of graphics commands in the ANSI standard version of BASIC.

From this point on, Luehrmann regularly emphasized computer-based educa-
tion in his work. In 1971, the Dartmouth team started Project COMPUTe, a 3-year
program funded by the National Science Foundation to create course materials
supporting the integration of computers in college classrooms. Thomas Kurtz was
the project principal and Luehrmann was appointed the project director. In 1972,
Luehrmann wrote a seminal article that was among the first to propose a work-
ing definition for “computer literacy” or, as Luehrmann called it, computing liter-
acy. Luehrmann began his article with a parable that emphasized the importance
of reading and writing for all well-educated students. He then called for a similar
mastery over the computer’s impressive capabilities:

If the computer is so powerful a resource that it can be programmed to simu-
late the instructional process, shouldn’t we be teaching our students mastery
of this powerful intellectual tool? Is it enough that a student be the sub-
ject of computer administered instruction—the end-user of a new technol-
ogy? Or should his education also include learning to use the computer (1)
to get information in the social sciences from a large data-base inquiry sys-
tem, or (2) to simulate an ecological system, or (3) to solve problems by using
algorithms, or (4) to acquire laboratory data and analyze it, or (5) to repre-
sent textual information for editing and analysis, or (6) to represent musical
information for analysis, or (7) to create and process graphical information?

22. Arthur W. Luehrmann, Use of the Time Share Peripherals plotter in the Dartmouth GE-635 TSS
(Hanover, NH: Kiewit Computation Center, 1968). The Dartmouth copy is the only known print-
ing of this booklet that survives. For a shorter description of Luehrmann’s technique, see John G.
Kemeny and Thomas E. Kurtz, Back to BASIC: The History, Corruption, and Future of the Language
(Reading, MA: Addison-Wesley, 1985), 40-43.

23.In 1969, Tektronix gave Dartmouth a Model 4002 graphics terminal, which an advertisement
describes as “the first graphic terminal priced under $10,000.” The Tektronix ad includes a photo
of Luehrmann working with students and information about the partnership with Dartmouth.
See “Back Matter,” Scientific American 234, no. 3 (1976). http://www.jstor.org/stable/24950318.
Accessed August 20, 2019.

http://www.jstor.org/stable/24950318

114 Chapter4 Advocating Computer Literacy

These uses of computers in education cause students to become masters of
computing, not merely its subjects.?*

Notice that the ability to write computer programs is a prerequisite for several of
the items on Luehrmann’s list, including formulating database queries, simulat-
ing an ecological system, and devising algorithms. Luehrmann also emphasized
the interdisciplinary nature of computing literacy, highlighting the contributions
of the liberal arts, the social sciences, the natural sciences, and music. Elsewhere,
Luehrmann recommended that training in computer programming should begin
as early as the seventh grade to prepare students for computing literacy subjects at
the high school and college levels.

Luehrmann was most familiar with BASIC, so he recommended the language
for use in the classroom. We know from his teaching notes that he often required
first-year Physics students to write short programs to master the scientific principles
that they were studying. For example, Dartmouth students were required to write 10-
to 20-line BASIC programs that calculated and plotted orbits around planets using
Newton’s Laws of Motion.?®

Luehrmann was not zealously committed to BASIC’s original syntax. When the
language came under attack in the late 1960s and early 1970s for its lack of proce-
dural features, Luehrmann advocated for changes to BASIC and the introduction
of structured programming techniques. He also appreciated Pascal and later co-
wrote a book about its use.2® Luehrmann claimed that he was not just teaching
syntax and keywords, “but conceptual language where the student is thinking in
terms of procedures and sub-procedures and loops and branches and all of these
complex ideas that are very powerful.”?” To the best of his ability, he emphasized
inquiry, critical thinking, and experimentation in his advocacy for computing liter-
acy. At Dartmouth, he couched this using the cognitive terminology of his era: “we’re
taking students out of their passive receptor situation and putting them into the
active inquiry role of aresearcher.”?® (At the Kiewit Computation Center, the process
could be quite lively, as the 1969 photo in Figure 4.4 suggests.) It was a strategy that

24. Arthur W. Luehrmann, “Should the computer teach the student, or vice versa?” Proceedings of
the Spring Joint Computer Conference (Montvale, NJ: AFIPS Press, 1972): 407-410, here at 410.

25. Arthur W. Luehrmann, “‘Should the computer teach the student..’—30 years later,”
Contemporary Issues in Technology and Teacher Education 2, no. 3 (2002): 397-400.

26. Arthur Luehrmann and Herbert D. Peckham, Apple PASCAL: A Hands-on Approach. Programming
Languages Series (New York: McGraw-Hill, 1981).

27.Luehrmann quoted in “Back Matter,” Scientific American 234, no. 3(1976). http://www.jstor.org/
stable/24950318. Accessed August 20, 2019.

28. “Back Matter,” Scientific American 234, no. 3 (1976).

http://www.jstor.org/stable/24950318
http://www.jstor.org/stable/24950318

4.5 Arthur Luehrmann and the Computer Literacy Debate 115

Figure 4.4 Dartmouth students study a program listing outside the Kiewit Computation Center in
1969. (Photo by Adrian N. Bouchard. Courtesy of Dartmouth College Library)

computer educators across the country were using as they introduced BASIC to
students in schools and community-centered programs.

Like Seymour Papert and Cynthia Solomon, Arthur Luehrmann also
encountered critics when he shared his vision for broad-based computer literacy
programs that involved programming. In 1980, Luehrmann came under fire from
opponents who believed that his definition of computing literacy was too focused
on software development and overly dependent on BASIC. As PCs became more

116 Chapter4 Advocating Computer Literacy

affordable and found their way into schools, school administrators needed clar-
ification about which computer subjects should be taught and how they should
be introduced. Few observers disputed that computer literacy was important, but
the question hinged on the scope of coverage and the subjects that should receive
emphasis. Did computer literacy mean programming, or could the term be under-
stood more generally, incorporating social, ethical, and business topics that related
ininteresting ways to computing? As useful software applications became available,
should students spend more time learning spreadsheet and word processing skills,
and less time writing computer programs? Or was there some appropriate mixture
that wouldn’t choke the existing curriculum and squeeze out traditional subjects
like reading, mathematics, music, and art?

In the journal The Mathematics Teacher, four prominent researchers from
the field of education weighed in on the issue—against Luehrmann’s proposals.
David Johnson, Ronald Anderson, Thomas Hansen, and Daniel Klassen argued that
a much more comprehensive definition of computer literacy should be adopted
in K-12 schools than Luehrmann proposed. Using research funded by the Min-
nesota Educational Computing Consortium and the National Science Foundation,
they proposed a list of 63 comprehensive learning objectives that should be used
to define and assess computer literacy across the country.?’ The researchers listed
cognitive and affective learning objectives that might include programming skills
but also emphasized a host of social and cultural aptitudes related to computers.
These objectives included identifying the basic operation of a computer system;
comparing computers and their capabilities to the human brain; determining how
computers can assist consumers; recognizing that computers can be used to com-
mit serious crimes; recognizing that computerization both increases and decreases
employment opportunities in the economy; instilling confidence in students so
that they felt they could use and control the new machines; and much more. In
short, they recommended that computer literacy expand its scope to become com-
puter awareness. The team called for further study and assessment, leaving open the
possibility that additional items could be added to the list. They also asked local
educators to build a curriculum that would appropriately prioritize and integrate
their list of priorities.

The group’s recommendations generated a firestorm among teachers, admin-
istrators, and parents who were all seeking the best ways to integrate computers
into the K-12 curriculum. At the 1980 annual meeting of the National Council of
Teachers of Mathematics, the most popular session was the panel in which Daniel

29. David C. Johnson, Ronald E. Anderson, Thomas P. Hansen, and Daniel L. Klassen, “Computer
literacy—What is it?” The Mathematics Teacher 73, no. 2 (February 1980): 91-96, here at 96.

4.5 Arthur Luehrmann and the Computer Literacy Debate 117

Klassen presented his group’s recommendations to the organization. At the center
of the debate was a concern about the tremendous costs that computing-centered
initiatives would bring to districts.

To bring some clarification to the issues, The Mathematics Teacher invited letters
from Luehrmann and the team of Minnesota researchers to clarify their positions
and propose possible solutions. The letters were published in the December 1981
issue of the journal, and they have been reissued over the years as districts continue
to debate the importance of literacy and programming initiatives in the educational
curriculum. The debate had a significant impact on the learn-to-program move-
ment, and we can hear its echo in modern discussions about computational literacy
and science, technology, engineering and mathematics (STEM) funding for districts
and students.

Luehrmann’s letter argued that computer literacy implies gaining fluency over
the structures and processes of a computer so that the devices can be made to do
useful work. In 1981, there were few comprehensive software packages for PCs,
so accomplishing useful work for Luehrmann meant writing your own programs
in an accessible language. (Although he preferred structured BASIC, Luehrmann
didn’t insist on a particular language in his response.) The Dartmouth professor
wrote that computer literacy meant the ability to do computing as one demon-
strates other literacies by reading books, writing letters, and solving math problems.
(See Figure 4.5.) He clarified his position with a simple analogy (the italics are
Luehrmann’s):

Literacy in a language means the ability to read and write, that is, to do some-
thing with language, not merely to recognize that language is composed of
words, to identify a letter of the alphabet, or to be aware of the pervasive role
oflanguage in society. Literacy in mathematics means the ability toadd num-
bers, solve equations, and so on—to do mathematics, not merely to recog-
nize that numbers are written as sets of digits or to identify a fraction by its
appearance or to be aware of the vocational advantages of being able to do
mathematics.

By analogy, computer literacy must also mean the ability to do computing,
and not merely to recognize, identify, or be aware of alleged facts about
computing.®’

Luehrmann drew attention to the very long list of learning objectives pro-
posed by the Minnesota researchers. Reacting in dismay to the list’s length, he

30. Arthur Luehrmann, “Computer literacy - What should it be?” The Mathematics Teacher 74, no.
9 (December 1981): 682-686.

118 Chapter4 Advocating Computer Literacy

Figure 4.5 A school-aged boy examines notes for a BASIC program near a teletype machine. Next
to the code listing is a book entitled “Introduction to Programming.” (Courtesy of the
Computer History Museum)

rejected most of the social and cultural aptitudes as little more than facts about
computers—syllabi items memorized one moment and forgotten the next. What
Luehrmann yearned for were performance objectives related to conceptual thinking
and programming, and cognitive skills that students could activate and enhance by
doing. The onlylearning objectives he accepted were those related to problem solving
and coding, such as developing algorithms, designing data structures, detecting
logic errors, and modifying programs to accomplish important tasks. His over-
all assessment of the report was blunt: “I will argue that fully four fifths of these

4.5 Arthur Luehrmann and the Computer Literacy Debate 119

empirically discovered objectives should not be used in any significant definition
of computer literacy. The teacher who is teaching toward that test instrument is
teaching the wrong things.”3!

Anderson, Klassen, and Johnson offered a brusque written reply that was printed
in the same December 1981 issue, immediately after Luehrmann’s letter. The
co-authors didn’t back down, but insisted that there were two common definitions
of the word literacy in the English language. Their approach to computer literacy
embraced both meanings. Literacy can be defined as “the ability to read and write”
(i.e., to do), but the word can also mean “the state of being informed, cultured, and
well versed” (i.e., to know something).3? This is exactly why the authors proposed a
comprehensive view of computer literacy, and why many teachers in America were
already at work introducing new subjects. Many believed that it was essential for
students to learn about the computer’s role in society as well as to perform use-
ful work with the electronic devices. Making simple calculations, using popular
applications, and programming had their uses. But there was more at stake. Ander-
son, Klassen, and Johnson proposed their own analogy: Just as scientific literacy
was generally understood to mean both knowing scientific facts and understand-
ing the broader implications of science-and-society issues, so computer literacy
should include both practical skills and an appreciation for the role of computers
in society.3® The Minnesota scholars concluded with a rebuttal designed to push
BASIC programming to the margins of the K-12 curriculum:

Some of these things [about computer systems] can be learned as a byproduct
of learning to write simple BASIC programs, but most of this type of use-
ful knowledge cannot be learned that way. Indeed we would argue that most
of what every ordinary citizen needs to know about computers will not be
learned from learning how to program.34

Anderson, Klassen, and Johnson did acknowledge that the academic study of
computer science was taking place in colleges and universities, but they hoped to
keep well away from this ground in K-12 contexts. In their opinion, computer liter-
acy and computer science were two separate realms. “The most succinct distinction
is to say that computer literacy is that part of computer science that everyone should

31. Luehrmann, “Computer literacy — What should it be?” 682.

32.Ronald E. Anderson, Daniel L. Klassen, and David C. Johnson, “In defense of a comprehensive
view of computer literacy - A reply to Luehrmann,” The Mathematics Teacher 74, no. 9 (December
1981): 687-690, here at 687.

33. Anderson et al., “In defense of a comprehensive view,” 687.

34. Anderson et al., “In defense of a comprehensive view,” 688.

120 Chapter4 Advocating Computer Literacy

4.6

know or be able to do... Computer literacy should be thought of as the knowledge

and skills the average citizen needs to know (or do) about computers.”>

A Blow to the Movement
Both sides in the education debate had clearly drawn their daggers, sensing there
was a lot at stake in the controversy over computer literacy. But it appears that the
opinions of Anderson, Klassen, and Johnson had the most impact, dealing a blow
to the learn-to-program movement in America’s K-12 schools. Computer education
would have to make room for other subjects, and administrators were reluctant
to require coursework in Logo or BASIC across the board, particularly in contexts
where it did not arise naturally. After all, purchasing enough computers to have
a comprehensive impact on computer literacy would be tremendously expensive.
By the late 1980s and early 1990s, the academic study of computer science in high
schools would recede almost completely from view. In its place were basic literacy
classes, word processing, and some exposure to databases and graphics programs.

For his part, Arthur Luehrmann was unrepentant, and he continued doing what
he could do to teach programming skills to the American public. In the Decem-
ber 1981 issue of Popular Computing magazine, Luehrmann summarized what
became his final position, that computer literacy must be equated with program-
ming skills. “The goals of a computer literacy program are to teach programming
and programming skills, new ways of thinking, planning skills, and debugging
strategies.”3®

The whole debate seems to have launched Arthur Luehrmann on a new trajec-
tory. A few years earlier, Luehrmann had moved from Dartmouth College to the
Lawrence Hall of Science at the University of California, Berkeley. Now, to further
his teaching agenda, Luehrmann co-founded Computer Literacy Press in Berke-
ley with Herbert D. Peckham and Martha Luehrmann. Peckham had established
credentials as an author of BASIC programming books, and Martha Luehrmann
(Arthur’s wife) took on important administrative and leadership roles at the new
company, eventually serving as its President. The Bay Area publishing house
became a successful partnership that produced a line of useful programming
primers for schools and self-taught programmers.

Apple Computer had an early lead in the educational marketplace, so Com-
puter Literacy Press focused on the Apple II platform first, and they established
local connections in the Bay Area. The team published Apple PASCAL: A Hands-on

35. Anderson et al., “In defense of a comprehensive view,” 687-688.

36. Luehrmann quoted in Albert Benderson, “Computer Literacy,” Focus 11 (Princeton, NJ: Educa-
tional Testing Service, 1983): 6.

4.7

4.7 Apple Computer’s Education Agenda 121

Approach (1981), followed by Computer Literacy: A Hands-on Approach (1983), which
introduced computers through BASIC programming on the Apple I1.3” Apple Com-
puter also appreciated the group’s efforts, and for a time they distributed a copy of
Luehrmann’s Apple PASCAL book with every unit of the Apple Pascal software that
they sold.

Co-marketing arrangements like this would become a common feature of the
software industry before the arrival of the commercial Internet. For a new software
product to make inroads into a busy marketplace before then, it was good public-
ity (and helpful product support) for a company like Apple to sponsor books and
articles that explained how their software worked and what the hidden or chal-
lenging features might be. If the books were written and produced by third-party
authors, customers would be more likely to trust their opinions and feel that they
were not simply reading advertisements for the company’s products. Computer Lit-
eracy Press, the Waite Group, and other content providers were quick to recognize
this, and they expanded their offerings by employing authors who had experience
writing for technology companies.

Apple Computer’s Education Agenda
Did the computer literacy movement influence the sales of PCs in schools? The
short answer is “yes,” but only gradually. According to the National Center for
Education Statistics, at the beginning of the 1980-1981 academic year there were
approximately 31,000 PCs and 22,000 time-sharing terminals available to elemen-
tary and secondary students in the U.S. By the beginning of the 1982-1983 academic
year, the number had risen to 96,000 PCs and 24,000 terminals.3® These statistics
show a steady three-fold growth in units, but not the explosive growth seen in the
home computer market. In fact, throughout the 1980s and 1990s, many American
schools continued to have only a few computers per class available for student use.
Often, the devices were chained to carts or locked in rooms, and students had lim-
ited access to them. The visions of deep learning and ubiquitous computing articu-
lated by Ted Nelson, Seymour Papert, and Lee Felsenstein were still dreams for the
future.

Apple Computer recognized the gap between home use and school use, and
became one of the early PC firms to establish an educational outreach program

37. Luehrmann and Peckham, Apple PASCAL: A Hands-On Approach; Arthur Luehrmann and
Herbert D. Peckham, Computer Literacy: A Hands-On Approach (New York: McGraw-Hill, 1983).

38. Albert Benderson, “Computer Literacy,” Focus 11 (Princeton, NJ: Educational Testing Service,
1983): 3.

122 Chapter4 Advocating Computer Literacy

for their products. Through the initiative, they encouraged a broad-based com-
puter curriculum, and they worked to accelerate the pace of Apple II adoptions
in schools.?® Apple was especially eager to capitalize on the growing demand for
computers in the middle school and high school markets. Between 1980 and 1983
the Educational Marketing Director at Apple was Glenn Polin, a transplant to the
West Coast who had earned a B.S. degree in Psychology and an M.S. degree in
Computer Science from University of Illinois at Urbana-Champaign. Polin helped
to launch the “Apple Seed” computer literacy program in 1981, which distributed
kits containing software, reference materials, and workbooks with exercises for
junior high and high school students. Schools received the kit for free if they had
recently purchased a 32K Apple II computer, complete with disk drives.*’ The
campaign was moderately successful, reaching 700 school systems across the U.S.
and Canada.

Apple was also doing well in its campaign to build retail outlets for its prod-
ucts. In 1981, the company launched an “Apple Expo” initiative aimed primarily
at attracting new Apple dealers and building customer networks in major hubs
across the country. Like a modern-day circus, the Apple Expo consisted of a “big-
top tent” filled with product showcases, multimedia presentations, and a diverse
range of customer experiences. The buildings and trade show booths were trans-
ported around the country via a fleet of semi-trucks, which pulled into the key mar-
kets of Dallas, New York City, Chicago, and Los Angeles during March and April of
1981. Steve Jobs, Mike Markkula, and other Apple spokespeople gave presentations
on hardware and software products. They were assisted by peripheral manufactur-
ers and representatives from several software companies who sought to partner
with Apple.

Admission to the Apple Expo was $10 per person at the door, but Apple sup-
plied authorized dealers within a 100-mile radius of the event with free tickets for
customers who wanted to visit the exhibits. Softalk magazine described the high-
tech showcase as the modern-day equivalent of the Ringling Brothers Barnum and
Bailey Circus coming to town, “although the magic it presents is far more amazing
than circus feats.” Instead of three rings, however, the main Apple building housed
“six wedge-shaped theaters, like slices of an apple pie.” According to the report, the

39. In the mainframe and minicomputer worlds, computer manufacturers had attempted this
work for some time. For example, the Digital Equipment Corporation (DEC) launched an
EduSystem program in the early 1970s that distributed books and software to schools. Some
DEC employees even delivered the kits using a custom EduVan. See John J. Anderson, “Dave tells
Ahl: The history of creative computing,” Creative Computing 10, no. 11 (November 1984): 66-74,
here at 70.

40. “Apple launches literacy program,” InfoWorld, March 30, 1981, 11.

4.8

4.8 Applications over Languages 123

star was neither trapeze artist, wild animal trainer, nor clown: “it’s a computer,” the
group enthused.*!

Applications over Languages

In the early 1980s, Apple’s sales and marketing push was about hardware platforms
and applications, not programming languages. Like the computer literacy debates,
this trend worked against the learn-to-program movement in its educational man-
ifestation, because it took away the urgency to learn to code as a strategy to cre-
ate useful software. Glenn Polin voiced these general concerns when he argued
against the general introduction of programming skills in a national report about
the K-12 curriculum. Polin emphasized the value of applications over languages for
most students and office workers. He wrote:

Some educators place an undue emphasis upon teaching students to pro-
gram computers. We are all users of devices, such as the television and tele-
phone, and a user of a device doesn’t need to understand everything about
how the technical aspects of the device work. Do we want everyone to be
programmers? I think the answer to that in the future is going to be increas-
ingly no... Increasingly, future applications will be user-friendly and will not
require an intimate knowledge of the computer.

The software evolution of the last three or four years bears that out. We have
packages on the market today that can be used by a total novice, by a secretary
with no training, by a manager with no training, and that trend is accelerat-
ing. When you go out into the world, you’re not going to be asked to do basic
programming unless you choose that as a vocation.*?

Polin’s comments run parallel to Apple’s “big tent” approach to selling hardware
and software, and they seem to be directed against programming advocates like
Arthur Luehrmann, Bob Albrecht, and Seymour Papert, who viewed coding activities
as valuable cognitive skills, whether or not a person chooses to become a profes-
sional programmer. Polin and his team did successfully deploy the Apple II in many
schools, but the accompanying curriculum placed little emphasis on learning to
program. Glenn Polin left Apple Computer in August 1983, 4 months before the
release of the Macintosh.

Were computer scientists more sympathetic to the idea that computer literacy
should include at least some exposure to BASIC or a similar language? The short
answer is no. ACM Fellow and Turing Award Winner Butler W. Lampson of the Xerox

41. “Marketalk news,” Softalk 1 (April 1981): 59.

42. Quoted in Benderson, “Computer Literacy,” Focus 11: 6.

124 Chapter4 Advocating Computer Literacy

Palo Alto Research Center probably knew as much asanyone in his era about the task
of software construction. However, in a 1986 interview he suggested that learning
to program in BASIC was a waste of time, and that it was irrational to think the lan-
guage would survive into the 215 century. I quote here from his important conver-
sation with Susan Lammers about software development in the book Programmers
at Work:

Lampson: “I think the idea of computer literacy is such a rotten one. By com-
puter literacy I mean learning to use the current generation of BASIC and
word-processing programs. That has nothing to do with reality. It’s true that
a lot of jobs now require BASIC programming, but the notion that BASIC
is going to be fundamental to your ability to function in the information-
processing society of the twenty-first century is complete balderdash. There
probably won’t be any BASIC in the twenty-first century.”

Interviewer: “So how should we prepare ourselves for the future?”

Lampson: “To hell with computer literacy. It’s absolutely ridiculous. Study
mathematics. Learn to think. Read. Write. These things are of more enduring
value. Learn how to prove theorems: A lot of evidence has accumulated over
the centuries that suggests this skill is transferable to many other things. To
study only BASIC programming is absurd.”*?

This excerpt on literacy and programming is only part of a much larger conver-
sation about future trends in computing and the role of PCs in society. Lampson
was responding to the anxiety that many parents felt when they worried that their
children “won’t have a future if they don’t learn to program in BASIC.”** This unease
seems to be a reflection of how the computer literacy debates were percolating
across American society in the 1980s. Very correctly, parents were wondering what
the impact would be on their children if they did not acquire the necessary skills for
success in the dawning computer age. In recent times, we have also recognized the
importance of equal access to computing fundamentals, especially opportunities
for girls and underrepresented minorities, who were left behind by many coding
initiatives. From the mid-1980s onward, disparities in educational opportunities
have furthered the message that Computer Science is afield that belongs to a limited
range of students.*’

43. Susan M. Lammers, ed., Programmers at Work (Bellevue, WA: Microsoft Press, 1986), 37-38.
44. Lammers, Programmers at Work, 38.

45.Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jellison Holme, and Kimberly Nao, Stuck
in the Shallow End: Education, Race, and Computing, Updated Edition (Cambridge, MA: The MIT
Press, 2017), 51.

4.8 Applications over Languages 125

Ambivalent attitudes about teaching programming in schools is only part of
the story, however. Outside of academic circles, programming gained momentum
as a profitable and pleasurable activity, sometimes in the most unlikely places.
Chapter 5 explores several of these new directions, including how updated versions
of the BASIC language surged in popularity among computer gamers, self-taught
hobbyists, and information technology (IT) professionals. This new phase of the
learn-to-program movement gathered its energy not from schools or educational
agendas, but from the commercial activities of corporations like DEC, Microsoft,
and Borland International. Although the learn-to-program movement would lose
its intellectual footing as a campaign centered on education and cognitive develop-
ment, it would continue in popular and commercial manifestations, culminating
in a user base of millions of developers.

Four Million BASIC
Programmers

“Most of the games in this book require no special knowledge, tools or equipment to
play, except, of course, a BASIC-speaking computer.”

David Ahl, 7101 BASIC Computer Games (1973)

“Microsoft BASIC had hundreds of thousands of users around the world. How are you
going to argue with that?”

Don Estridge, team leader for the IBM Personal Computer!

The deliberations about programming and computer literacy would swirl for years,
but in some sense, they didn’t matter: the first personal computers (PCs) brought
tens of thousands of computers into homes and offices, and this critical mass
helped software achieve new levels of distinction. As new interpreters and compil-
ers arrived and were put through their paces, programmers pushed the systems to
their limits. This chapter explores how the BASIC programming language gained
new supporters from outside the academic world in the 1970s and 1980s, culminat-
ing in a community of some four million BASIC programmers. This surge also laid
the groundwork for the introduction of a new tool, Microsoft Visual Basic (1991),
which brought rapid application development (RAD) to the MS-DOS and Microsoft
Windows platforms.

This chapter shows how programming skills were diffused in the U.S. not
only by teachers and school administrators, but through the efforts of highly-
motivated authors, publishers, and entrepreneurs. These men and women intro-
duced programming skills to Americans from all walks of life, including computer
gamers, hobbyists, students, office workers, power users, and information tech-
nology (IT) professionals. After self-taught programmers learned the ropes, they

1. Don Estridge quoted in Lawrence J. Curran and Richard S. Shuford, “IBM’s Estridge,” Byte
(November 1983): 88-97, here at 88.

128 Chapter5 Four Million BASIC Programmers

9.1

invested in new systems, built application programs and utilities, and gradually
expanded the reaches of programming culture. BASIC deserves special mention
in this important manifestation of the learn-to-program movement. As PC Maga-
zine editor Bill Machrone wrote in 1983, “The real hero of the personal computer
revolution is BASIC. Microsoft’s prodigal program has coaxed out the programmer
hidden within so many of us that it is and will continue to be an integral part of the
personal computer scene for many years to come.”?

This chapter also introduces the book publisher Microsoft Press, a division
of Microsoft established in 1983 to produce high-quality computer books for the
leading PC platforms. Microsoft Press joined several other computer book pub-
lishers in producing hundreds of books each year about the principal hardware
and software systems of the PC era. I focus on primers about BASIC and Visual
Basic in this chapter, but you’ll see dozens of titles from Microsoft Press and
other publishers in the chapters that remain. My argument is that computer books
should be seen as important bellwethers of the learn-to-program movement. These
resources filled the gaps in America’s technical education system, especially for
self-taught programmers who learned the ropes on their own and gradually entered
professional computing occupations. Computer books carried with them the values
and commitments of the era’s software creators, consumers, and entrepreneurs.
They conveyed the industry’s best practices and prominent computing myths,
including the aspirations and ambiguities about programming that had existed in
the industry since the 1960s.

Introducing David Ahl

The rising tide of popular support for BASIC can be measured by the success of a
pivotal entrepreneur and book author, David H. Ahl (1939~), likely the first tech-
nical writer to sell over a million copies of a programming primer in the U.S. (See
Figure 5.1.) Ahl started publishing computer books about mainframe and time-
sharing BASIC in 1973, and he continued to write bestsellers about BASIC in the
era of personal computing. His titles were eagerly consumed by students, teach-
ers, hobbyists, and industry professionals alike. Like Daniel McCracken and Bob
Albrecht, Ahl paved the way for a new style of technical writing, the personality-
driven primer, which emphasized the author’s style and voice, and sought to create
alasting bond with the reader. Ahl’s project’s also kick-started one of the most lucra-
tive segments of the software world in the 1970s and 1980s, computer games. The suc-
cess of this genre provides evidence that Americans were building a programming

2.Bill Machrone, “Linguistics: Languages for the PC,” PC Magazine, September 1983, 115-145, here
at 141.

5.1 Introducing David Ahl 129

Figure 5.1 David Ahl in the Creative Computing booth at the West Coast Computer Faire, Civic
Center, San Francisco (1980). (Courtesy Jim Warren and the Computer History Museum)

culture around entertainment and new technologies in the 1970s and 1980s. This
enthusiasm for gaming would soon overflow into new computing platforms and
products.

David Ahl began his career at the Digital Equipment Corporation (DEC) in 1970.
The innovative computer company was housed in a former woolen mill in Maynard,
Massachusetts, and Ahl spent his early years working as an education manager,
marketing DEC computers to schools. In 1971, while working with high school and
college students around the country, Ahl developed the idea of collecting text-
based computer games from the people he met and distributing them. Ahl had
been deeply impressed with how creative young BASIC programmers were, and he
thought that sharing games would be a fun way to build the DEC platform and
establish a user community. Ahl put out a call in DEC’s Edu newsletter for students
and faculty to mail their favorite BASIC games to him, and he promised to share the
results.

Ahl was astonished with the feedback that he received from BASIC users at
home and abroad. Hundreds of letters poured in with source-code listings and
enthusiastic notes from game players of all ages. Some of the programs arrived from

130 Chapter5 Four Million BASIC Programmers

middle school and high school students, writing or adapting their first programs.
Others came from prominent educators and coding advocates like John Kemeny,
Bob Albrecht, and Arthur Luehrmann. Numerous regions in the country were
represented, not just the computing hotbeds of New England and Silicon Valley.
Contributions arrived from 17 states, including California, Connecticut, Delaware,
Georgia, Illinois, Massachusetts, Minnesota, New Jersey, New York, Oklahoma,
Ohio, Oregon, Pennsylvania, Rhode Island, Tennessee, Texas, and Virginia. Inter-
national correspondence even arrived from programmers in Canada, the U.K., and
the Netherlands.

David Ahl carefully curated the games on his own time, testing the programs,
rewriting them if necessary, and verifying that they ran on DEC time-sharing sys-
tems. For a software platform, Ahl had in mind versions of DEC BASIC that were
distributed via the EduSystem marketing program in the early 1970s. He also
shared some of the games through the Digital Equipment Computer Users’ Society
(DECUS), an organization dedicated to sharing software among DEC enthusiasts.

When everything was ready, Ahl assembled a manuscript. He selected the most
interesting games, put them in alphabetical order, and printed a volume that
he titled 101 BASIC Computer Games, which DEC distributed in 1973.% Each pro-
gram featured a description, notes about the game’s usefulness, a list of system
limitations, and the name and address of the contributor, when known. (Some
of the games had unknown origins or multiple sources.) He also acknowledged
when the games started out as FORTRAN or LISP programs, and were later con-
verted to BASIC. Several prominent computer centers appear in his notes, includ-
ing Dartmouth’s Kiewit Computation Center (Hanover, NH), the Lawrence Hall
of Science (Berkeley, CA), People’s Computer Company (Menlo Park, CA), Lexing-
ton High School (Lexington, MA), and Oregon Museum of Science and Industry
(Portland, OR).

In his Preface, Ahl claimed that 101 BASIC Computer Games presented the first
collection of games written and published entirely in BASIC. He also claimed that
the games offered substantial instructive benefits: “the educational value of games
can be enormous—not only in their playing but in their creation.” The notes indi-
cated that many of the games began as high school or college projects, and then
the instructors used them for further explorations in word puzzles, poetry, algebra,
random numbers, dice, board games, card games, the laws of motion, and graphic
design. (See Figure 5.2.)

3. David H. Ahl, ed. 101 BASIC Computer Games (Maynard, MA: Digital Equipment Corporation,
1973).

4. Ahl, 101 BASIC Computer Games, 7.

5.1 Introducing David Ahl 131

Figure 5.2 Students collaborate on a coding project using a teletype machine to enter and test a
program. (Courtesy of the Computer History Museum)

A few samples from the collection will survey the range of programs that
early BASIC programmers were creating. John Kemeny from Dartmouth sent in a
game called Battle of Numbers (a variation of the game Nim), where the user and
the computer alternately removed objects from a virtual pile. The player taking
the last object from the pile is the winner—a determination made by the program’s
calculations in modulo arithmetic. The source code was 90 lines long and used
the BASIC keywords PRINT, FOR... NEXT, INPUT, IF, GOTO, LET, GOSUB, RETURN,
and END.”

Lexington High School student Jim Storer (Lexington, MA) sent in a version
of the popular game Rocket, which allowed the programmer to simulate landing
an Apollo capsule on the moon, a celestial occurrence that greatly fascinated the
American public. The simulated astronaut started 500 feet above the lunar surface
and controlled the burn rate for his or her landing rockets as they attempted to
land. The computer rockets could fire in one-second bursts, and each unit of fuel

5. Kemeny in Ahl, 101 BASIC Computer Games, 32-33. Kemeny did not use the Mod operator,
because it not available in early versions of BASIC. Instead, he used the formula P = Q - C *INT

(Q/C).

132 Chapter5 Four Million BASIC Programmers

slowed the decent of the capsule by one foot per second. Jim Storer added drama to
his program by using PRINT statements and clever mathematical calculations that
simulated the forces of gravity. To heighten the drama, the user was told that the
on-board computer for the Apollo landing capsule had temporarily failed, so the
gamer needed to land the craft manually. During free fall, the goal was to contin-
ually adjust the burn rate so that the craft slowed gradually without running out of
fuel. If the mission failed, the message “You Blew it!” was displayed, along with data
about the impactvelocity of the capsule and the depth of the resulting moon crater.®

Computer gaming was tremendously interesting for young programmers, as it
is today, but in the early 1970s gaming was not yet a commercially viable market. In
fact, when Ahl approached DEC management with the idea of publishing his game
collection in 1973, the company resisted the project. Ahl was insistent, however, and
DEC eventually agreed to publish the first edition of the book while suggesting the
author take later editions elsewhere. The price of 101 BASIC Computer Games was
setat $7.50.

As part of his agreement with DEC, Ahl was given the right to keep royalties for
future editions, if any were published. Retaining these royalty rights was a shrewd
move for Ahl, who believed in his concept and hoped to revise and reprint the
book several times. This bolstered Ahl’s credibility as a writer and entrepreneur,
and the revenue he earned supported future publishing projects, including Creative
Computing magazine, which he founded in 1974.

In 1978, the second edition of Ahl’s book came out, entitled Basic Computer
Games: Microcomputer Edition. (See Figure 5.3.) This book included enhanced games
revised for Microsoft BASIC on several early PC platforms.” In 1979, Ahl pub-
lished a third book, More BASIC Computer Games, a new compilation containing
84 additional program listings that had been collected from contributors across
the country. Both new books benefited from the coming of PCs, which added thou-
sands of hobbyists and early adopters to the marketplace. In later interviews, Ahl
claimed that the Computer Games series sold over one million copies—an astonish-
ing number with historical significance.® The scope of this user base indicated that
programming was no longer the domain of just academics and engineers, but it

6. Storer in Ahl, 101 BASIC Computer Games, 182-187. Due to the game’s popularity, two additional
versions were included in the book—one by William Labaree of Alexandria, Virginia, and a second
by Eric Peters, a DEC employee from Maynard, MA.

7. David H. Ahl, ed., BASIC Computer Games, Microcomputer Edition (Morristown, NJ: Creative
Computing Press, 1978).

8. For information about the book’s sales and the founding of Creative Computing magazine, see
John J. Anderson, “Dave tells Ahl: The history of creative computing,” Creative Computing 10, no.
11 (November 1984): 72, 81. For an image of the magazine’s cover, see Figure 11.2.

5.1 Introducing David Ahl 133

Figure 5.3 Cover of David Ahl’s BASIC Computer Games, Microcomputer Edition (Copyright ©1978.
Used by permission of Workman Publishing Co., Inc., New York. All Rights Reserved)

had become a popular pastime in America. Despite the criticism that BASIC had
received from some authorities in the computing world, it was the language that
most users knew.

David Ahl’s books also highlight an important dynamic of information flow in
the years before the commercial Internet. To learn about their systems, program-
mers in the 1970s and 1980s bought computer books and magazines. The authors
of these publications became vital agents in the diffusion of technical information,
because they united software developers in virtual communities and provided them
with needed instruction when they had few other resources. Company manuals and
user group newsletters played important supporting roles, too, as did (on occasion)
the mainstream media of television, film, and radio. But printed books and mag-
azines should give historians special pause, because they communicated shared
ideals and presented skills that were deemed necessary for entering one or more
computing subcultures. These groups included gamers, power users, systems pro-
grammers, and professional developers who strongly identified with an operating
system like CP/M, Unix, MS-DOS, Windows, or the Macintosh.

134 Chapter5 Four Million BASIC Programmers

9.2

A Proliferation of BASICs

Let’s quickly recap the twists and turns of the BASIC language before and after the
development of PCs.

First, BASIC was created as a new high-level language by scientists at Dartmouth
College in the mid-1960s, and it became a teaching language closely associated
with math and science instruction, expanding into a niche originally occupied by
FORTRAN.

During the computer literacy movement of the 1970s, thousands of students
experimented with BASIC in high school and college classrooms to make their first
steps with computers. Computer literacy advocates like Bob Albrecht and Arthur
Luehrmann equated BASIC programming with cognitive development and learn-
ing to control and use computers. These instructors began their careers with time-
sharing BASIC hosted on mainframes and minicomputers, and gradually switched
to PCs when they became cost-effective for students and self-taught programmers.
As the first microcomputers arrived in the mid-1970s, BASIC was selected as the
common language of most platforms. This was became small BASICs could be
squeezed into the tiny memoryresources available, but also because BASIC reflected
the populist ethos of personal computing for many. In counterculture America,
there were some who argued that FORTRAN was too closely connected to corporate
and military computing contexts.

The first PC BASICs are now referred to now as “classic BASIC” by historians.
Classic BASICs are distinguished by their small size in memory, implementation
as an interpreter, rudimentary flow control mechanisms, use of line numbers in
code, and a lack of structured programming elements. The next wave of the BASIC
language is sometimes described as “structured BASIC” or “second-generation”
BASIC. These products were sold in compiler and interpreter versions, and, begin-
ning in the mid-1980s, they were available for both time-sharing systems and PCs.
Structured BASIC typically offers enhanced graphics capabilities, improved lan-
guage features, support for user-defined procedures and flow control elements,
and an integrated development environment (IDE) for program construction and
debugging.

Not all BASICs fit easy categorization, however. An interesting implementation
that deserves more attention is HP BASIC, a family of products created by Hewlett-
Packard (HP) for their computers and calculators. One of the earliest versions, HP
Time-Shared BASIC, received wide distribution in the late 1960s and 1970s, and it
did a lot to popularize BASIC programming in schools. California high school stu-
dent Mike Mayfield used this implementation to create his popular Star Trek com-
puter game in 1971, and the game received its start on an HP 2000C time-sharing

9.3

5.3 IBM BASICA 135

computer. Star Trek and Super Star Trek became two of the most popular computer
games in the 1970s, and they have enjoyed a resurgence in the “retro” game market
in recent years. David Ahl helped to popularize these HP BASIC versions in several
of his programming books.

In the early 1980s, HP BASIC was further adapted for a new line of HP engineer-
ing workstations. These computers shared some of the attributes of early IBM PCs
and compatibles, but theywere higher end and more expensive. For example, the HP
9836A computer system debuted in 1981, priced at $11,950. This system included a
flat-top monitor, two 5.25” floppy disk drives, eight I/O slots, and a Motorola MC
68000 processor. A new version of BASIC was designed for the system, and it con-
tained structured programming elements, advanced graphics capabilities, function
keys, and a menu-driven IDE.

The engineer who led the BASIC development team at HP was Kathryn Kwinn,
a Ph.D. in Computer Science from Iowa State University. Kwinn joined HP in 1978
and became the first woman from the HP desktop computing divisions to author
or co-author a technical article in Hewlett-Packard Journal. Her 1982 technical brief
describes the newest features of HP BASIC, HPL, and Pascal, and how these lan-
guages were optimized for the HP 9826A/9836A systems.® These were important
desktop computers for their era, but they suffered from a high retail price point.
Nevertheless, the HP BASIC systems were well designed and they point to the
diversity of computing contexts in the evolving hardware and software industries.

IBM BASICA

In early 1981, Microsoft BASIC was still the best-known version of the language
available for use on microcomputers. However, the situation became more compli-
cated when IBM released the IBM Personal Computer in August of 1981. Although
the early IBM PCs contained a version of Microsoft BASIC called BASICA (for
Advanced BASIC), many of the later PC “clone” manufacturers chose to develop
their own versions of the interpreter. IBM could have followed this second strat-
egy, because they had a very successful version of BASIC for mainframe computers
that they might have ported to their new device. However, the company took a cau-
tious “off the shelf” approach when sourcing most of the IBM Personal Computer’s
first components, including its software. (See Figure 5.4.) Don Estridge, team leader
for the first IBM PC, summarized the selection of Microsoft BASIC in this way:
“Microsoft BASIC had hundreds of thousands of users around the world. How are

9. See Kathryn Y. Kwinn, Robert M. Hallissy, and Roger E. Ison, “The 9826A/9836A language
systems,” Hewlett-Packard Journal 33, no. 5 (May 1982): 24-32.

136 Chapter5 Four Million BASIC Programmers

Figure 5.4 The IBM PC-DOS 2.02 product documentation (1983), complete with a BASIC user’s
guide written by Microsoft. (Photo: Herb Bethoney. Courtesy of the Computer History
Museum)

you going to argue with that?”1° So IBM engineers put BASICA in computer ROM
and reserved the BASICA acronym for later use.!

Many IBM PC-compatible manufacturers also chose to license Microsoft BASIC.
When they did so, Microsoft gave each original equipment manufacturer (OEM) a
program known as GW-BASIC for their systems. GW-BASIC debuted in 1983 and
the interpreter was distributed as part of the MS-DOS operating system. GW-BASIC
was essentially identical to IBM’s BASICA, with a few technical differences related to
how the program was installed. GW-BASIC came with a character-based IDE like the

10. For the quote and an insightful interview with Estridge, see Lawrence J. Curran and Richard S.
Shuford, “IBM’s Estridge,” Byte (November 1983): 88-97, here at 88.

11. For more about IBM’s strategy when developing the first IBM Personal Computer, see James
W. Cortada, IBM: The Rise and Fall and Reinvention of a Global Icon (Cambridge, MA: The MIT Press,
2019), especially chapter 14, “‘A Tool for Modern Times:’ IBM and the Personal Computer.”

2.4

5.4 Adventure Games 137

ones in use at HP and Dartmouth College. This environment allowed the program-
mer to use direction keys to move the cursor around the screen to edit the program
currently in memory. The IDE also supported function keys and keyboard shortcuts,
which software developers could use to edit and test their programs. It was a big
improvement over the Altair implementation of BASIC and the first time-sharing
systems.

New microcomputer BASICs soon arrived from Amiga, Apple, Atari, Casio,
Commodore, Compaq, Radio Shack, Sinclair, Texas Instruments, and other
manufacturers. Many of these products were closely related to Microsoft BASIC,
and others created their own implementations that exploited their unique hard-
ware, graphics capabilities, or operating systems. Charting all these BASICs is
beyond the scope of this book, but it stands as a desideratum for future historians
who are working to assess the diffusion of low-cost programming systems as the
software industry took shape. What do all these BASICs have in common, and what
makes each version unique? How did organizations and customers in the global
marketplace respond to them?

One emerging trend seemed obvious. By 1983, it seems that many American
consumers wanted to use BASIC to write their own text-based computer games.
In doing so, they built on a venerable tradition that began in the 1970s: adventure
games, an interactive computer quest driven by puzzle solving.

Adventure Games

“You are standing at the end of a road...”*?

Part of the excitement of visiting early computer centers in America were the small
crowds that would gather in the evenings as students or co-workers played a com-
puter game. This social activity often took place at night, when most of the admin-
istrators and buttoned-down types had gone home. Since the debut of Spacewar! in
the early 1960s, it has been common to see systems programmers, students, hack-
ers, and spectators huddled around a computer screen enjoying gaming activities.
In the mid-1970s, the computer gaming pastime expanded with the addition of
a new genre, “adventure games,” which placed a computer user in an interactive
story driven by puzzles, hand-to-hand combat, and the exploration of mysterious
spaces. The first adventure games were text-based simulations in which a user
moved through a series of complex virtual challenges, often culminating in bat-
tles with mythological creatures. Innovative computer games in the genre included

12. Quotation from the opening screen of Will Crowther and Don Woods original Colossal Cave
Adventure (1976).

138 Chapter5 Four Million BASIC Programmers

Figure 5.5 Zork II software package for the Apple II computer (1981-1983), sold by Infocom, Inc.
Zork and other “adventure” games were a big draw on the first PC platforms. (Courtesy
of the Computer History Museum)

Hunt the Wumpus, developed by Gregory Yob in 1973; Colossal Cave Adventure, cre-
ated by Will Crowther and Don Woods in 1975-1976; and Zork, created by Tim
Anderson, Marc Blank, Bruce Daniels, and Dave Lebling in 1977. (See Figure 5.5.)
When PCs arrived, adventure games were also one of the biggest draws to the new
platforms.

The original adventure games were programmed on commercial minicomput-
ers, and they were designed to be played in the time-sharing environments typi-
cal of research labs and university computing centers. Will Crowther created his
game Colossal Cave Adventure using FORTRAN on a DEC PDP-10 minicomputer.

5.4 Adventure Games 139

This virtual world was reminiscent of Dungeons & Dragons, with a physical layout
taken from a cave in Kentucky where Crowther had spent time spelunking. Typical
game play in this type of digital landscape involved issuing directional commands
on a keyboard indicating where an adventurer should go. Gamers could also type
English words to indicate what their character might pick up, where they should
move to, or how they should solve puzzles. Within the program code, the adventure
game logic involved a heavy dose of text processing, i.e., using parsers to translate
the adventurer’s textual input into action commands for the game. Adventurers
typically needed to open locked doors, find essential items, and build mental maps
of abstract spaces (like caves or castles). In the most elaborate games, the goal was
to complete a pre-defined quest, which might have distant literary connections to
medieval legends or even crusade literature. In some adventure games, like Zork,
it was also possible to score points in connection with game progress. If you were
skilled, you could attempt to set the high score on the system.

As the personal computing era took shape, many PC programmers tried their
hand at writing or editing adventure games, often using BASIC because the lan-
guage was readily available and easy to use. One of the most important promoters
of adventure gaming on the IBM PC/MS-DOS platform was PC Magazine colum-
nist and science fiction writer Dian Crayne (1942-2017), a skilled software devel-
oper who also taught hobbyists how to build their own adventure games. Crayne
published her adventure titles with various software publishers, gaining experi-
ence and credibility with each new software release. She was an expert in the
text-based, story-driven gaming genre, which was a good fit for her technical and
literary abilities.

Crayne was an early employee at Xerox and Norell Data Systems. At Norell,
Crayne worked as a programmer and game designer, contributing to The Phantom’s
Revenge, The Hermit’s Secret, Monster Rally, Valley of the Kings, and Elsinore. These
were text-based adventure games with an extensive story line but little in the way of
computer graphics. As such, they were a good fit for the bare-bones PC systems that
were popular in the late 1970s and early 1980s. Each gaming title required literary
creativity, as well as technical precision.

In 1983, Crayne published a feature article in PC Magazine explaining how she
designed and created her adventure games, inviting readers to take part in the fas-
cinatingworlds of gaming strategy, resource allocation, text parsing, and plot twists.
Crayne was an accomplished assembly language programmer, and she coded in
assembler for most of her commercial games. This allowed her to use memory
resources efficiently, and it also created a fast and responsive gaming experience
for users of the original IBM PC. But Crayne also recognized that PCs were gain-
ing power and capacity, and this could open up game development for the hobbyist

140 Chapter5 Four Million BASIC Programmers

who had a moderate level of proficiency in BASIC. The biggest issue was space for
all the data that was needed. Crayne advised:

Most of the larger text adventures are written in assembly language for
the sake of speed and space conservation. A “large” game is one that has
over 200 room locations and over 50 objects. If a game isn’t too large, and
if speed isn’t too much of a consideration, it can be written in any other
language—including BASIC.1?

Crayne then went on to describe how a programmer could organize their adventure,
introducing the significance of vocabulary words and a parser:

My own adventure games are built from two basic parts: the driver program
and the text files or “script.” The script contains all of the vocabulary words
that the driver recognizes, plus the object and place descriptions. There is
alsoabuilder program that converts the textin the script to machine-readable
tables. Because the games are script-driven, I can build 70 to 80 percent of a
new game without ever touching the actual program source code...
When you set out to write a parser, you enter the whole complex world of
artificial intelligence. Fortunately, adventure games take place in a confined
universe, such as a set of caves, where the author can control the objects and
the actions... Because of this limitation, it is possible to read each word that
the player types in, locate it in a table, and decide what to do with it.}4
Vocabulary lists indicated which words were to be accepted in the game as direc-
tives, and Crayne recommended subdividing the vocabulary list into motion verbs,
action verbs, nouns, function words, adjectives, and other semantic categories.
In BASIC, Crayne recommended that programmers configure arrays for each of
the vocabulary list categories, using the DIM statement to declare the arrays and
DATA statements to fill the arrays with information. Subroutines could then be
constructed to receive and validate the input from the user, and store game state
information in one or more variables. Crayne reassured readers that only two types
of input were really needed in an adventure game, movement requests and action
requests. Input from the user could be tested easily and only a short list of actions
would be required for the programmer to manage. Crayne concluded her article
with a suggestion for BASIC source code that might be used to manage a game object
like a cannon, which could be loaded and fired in a typical adventure program. As

13. Dian Crayne, “Do-it-yourself adventure,” PC Magazine, September 1983, 266-276, here at 268.

14. Crayne, “Do-it-yourself adventure,” 272.

9.5

5.5 Structured Programming 141

noted above, Crayne was teaching users how to code text-based games, so the pro-
gram logic was not related to computer graphics but textual output. Her routines
instructed programmers how to display messages like, “KA-WHAM!” or “CANNON
BALL hits the DOOR and smashes it to bits.”*®> Crayne ended the lengthy article
with a practical tip: it is best to start simple when writing computer games, to avoid
frustration. She also encouraged BASIC programmers to add variety and complexity
as they went—*“everything from the Bible to nuclear physics.”1®

Dian Crayne was a skilled writer and software developer who moved fluidly from
one subfield of computing to the next. After working at Xerox, Norell Data Systems,
and PC Magazine, she turned to writing computer books for the users of new sys-
tems. In this genre, her published works included The Essential User’s Guide to the
IBM PC, XT, and PCjr (1984) and Serious Assembler (1985), the later which she co-
authored with her husband, Charles A. Crayne. Dian was also associated with the
science fiction writers Larry Niven and Jerry Pournelle, who collaborated with her on
several fiction projects. (For more on Jerry Pournelle and his influences, see “Learn
BASIC Now” below and information about his magazine columns in Chapter 8.)
Crayne used several pen names to write her science fiction novels, including Dian
Girard and JD Crayne. Her best-known books include the Captain Spycer series,
published between 2005 and 2009, and Murder at the Worldcon, published in 2005.

Despite the success of computer gaming on the first PC platforms, IBM largely
overlooked the gaming market on its first systems, envisioning their computers as
business and educational tools, not sources of entertainment. Figure 5.6 provides
visual evidence of their approach with the BASICA programming language and the
IBM PCjr computer, released in 1984. In the publicity photo, a well-dressed male
teacher lectures on BASIC to a small group of students who are seated in a class-
room or computer lab. A program that simulates coin tosses is on the blackboard,
but otherwise the mode of instruction is passive and focused on the authority of the
instructor. The creativity of author-programmers like Dian Crayne is that they recog-
nized people would learn best if they could create their own games and adventures,
far from the controlling gaze of teachers and instructors. Her approach is much
closer to the soul of the DIY learn-to-program movement, as it left classrooms and
became associated with self-directed learning and hobbyist contexts.

Structured Programming
Devising complex adventure games did clarify one thing about classic BASIC—the
rudimentary coding structures of BASICA or GW-BASIC did not make it easy to write

15. Crayne, “Do-it-yourself adventure,” 276.

16. Crayne, “Do-it-yourself adventure,” 276.

142 Chapter5 Four Million BASIC Programmers

Figure 5.6 Designed for the home and educational market, the PCjr featured a “Cartridge BASIC”
version of the BASIC interpreter that could be inserted as firmware into one of the
two slots on the front of the desktop computer. This staged image from 1984 depicts
children learning BASIC at school. A short BASIC program that simulates coin tosses
appears on the chalkboard. (Courtesy of the Computer History Museum)

longer adventures. Moreover, early microcomputer BASICs lacked a full comple-
ment of the features that computer scientists knew a robust language should have,
especially when longer, team-oriented projects were undertaken. As Paul Somerson
asserted in an article about the state of BASIC programming in late 1983: “These
days, ‘It’s written in BASIC’ is a statement that is whispered, not shouted from
rooftops.”!” For BASIC to continue as a conduit of the learn-to-program movement,
it needed new features, including support for both structured design and procedu-
ral programming. These were interrelated coding paradigms that, if implemented
successfully, might bring the language and its adherents into the modern age.

17. Paul Somerson, “In defense of BASIC,” PC Magazine, September 1983, 328.

5.5 Structured Programming 143

John Kemeny and Thomas Kurtz drew pointed attention to these missing
features in their infamous book, Back to BASIC (1985), which attacked what they
saw as the “corruption” of BASIC in the early 1980s and the language’s urgent
need for reform. The professors confessed that their own early versions of BASIC
now seemed dated and rudimentary, but they claimed to have revised the language
at Dartmouth, where they were putting the final touches on ANSI BASIC and a
new commercial version entitled True BASIC. Both were “structured” forms of the
language, they claimed, and vastly superior to the “street BASICs” that were now
ubiquitous on low-cost PCs. The co-authors wrote:

We are greatly concerned that a generation of students is growing up learn-
ing Street BASIC, an illiterate dialect of a lovely language. We feel that this
is directly relevant to the problem that whereas schools now have hardware,
educational software lags far behind. There have been devastating criticisms
of BASIC in the literature. Unfortunately, as it applies to Street BASIC, we
agree with them.!®

Comparing Dartmouth College’s “lovely language” to an “illiterate dialect” from
America’s streets smacks a bit like elitism. But in fact, the scholarly critique of
unstructured languages was widely appreciated in academic circles, reaching a
high-point in 1968 with Edsger Dijkstra’s infamous letter to the Association of
Computing Machinery (ACM), “Go To statement considered harmful.”!® Dijkstra
argued that the use of unrestricted Go To statements in code complicated the task
of analyzing and verifying the correctness of programs. In the worst case, Dijkstra
argued, branching instructions like GoTo produced “spaghetti code,” a tangled,
unreadable mess that resembles the twists and turns of spaghetti noodles in a
bowl. Although BASIC did not intrinsically have this problem, observers noted, it
seemed that many students and hobbyists had rather unwittingly fallen into this
way of implementing their algorithms in BASIC. For example, David Ahl’s 101 BASIC
Computer Games made conspicuous use of GOTO statements, relishing in the sim-
plicity of transferring program execution to any location in a source file when it
was deemed necessary. Educational specialists who had studied programming and
computer literacy were also beginning to document this problem through compar-
ative studies of novice programmers.2? The issue took on special urgency as the

18. John G. Kemeny and Thomas E. Kurtz, Back to BASIC: The History, Corruption, and Future of the
Language (Reading, MA: Addison-Wesley, 1985), 56.

19. Edsger Dijkstra, “Go To statement considered harmful,” Communications of the ACM 11, no. 3
(March 1968): 147-148.

20. For interesting examples related to BASIC, see Elliot Soloway and James C. Spohrer, eds.,
Studying the Novice Programmer (Hillsdale, NJ: Lawrence Erlbaum Associates, 1989); and Aqeel M.

144 Chapter5 Four Million BASIC Programmers

learn-to-program movement gathered momentum as a grass-roots phenomenon,
with thousands of young people learning coding habits from teachers, mentors,
and authors who employed these techniques.

An example of “spaghetti code” in BASIC can be demonstrated with the following
program, which uses classic BASIC syntax to display all the prime numbers under
100 on the screen:?!

10 REM -- PRIME NUMBERS LESS THAN 100
20 N=N+1

30 IF N=100 THEN GOTO 120

40 I=1

50 I=I+1

60 J=N/I

70 IF INT(J)=J THEN GOTO 20
80 IF I>=SQR(N) THEN GOTO 100
90 GOTO 50

100 PRINT N,

110 GOTO 20

120 END

This valid “classic BASIC” program runs well and displays the prime numbers
as directed, but it is certainly confusing to follow. The example comes from
John Clark Craig’s book on Microsoft Visual Basic programming, published in
1993 and discussed later in this chapter. The author used the routine to point
out how easy it was to get lost using older ways of writing BASIC code. Fortu-
nately for users, Craig maintained, Visual Basic had now changed all of this.
“Learning how to create applications for Windows is now a breeze,” he assured
readers.??

By the mid-1980s, the major PC software companies had received the mes-
sage. Critical reviews and customer complaints forced compiler and interpreter
makers to modernize BASIC and create more powerful, structured versions of the
popular language. These revised editions included True BASIC (1985), Microsoft
QuickBASIC (1985), Borland Turbo Basic (1987), and Microsoft BASIC Professional
Development System (1989). (See Figure 5.7 for one of the most popular structured
BASIC reference manuals of the era.) The feature enhancements in these prod-
ucts included user-defined subprograms and functions, the ability to create local

Ahmed, “Students’ Thought Processes While Engaged in Computer Programming” (Ph.D. diss.,
Oregon State University, 1992).

21. John Clark Craig, Microsoft Visual Basic Workshop, Windows Edition (Redmond, WA: Microsoft
Press, 1993), 4.

22. Craig, Microsoft Visual Basic Workshop, 5.

5.6 Microsoft Press and Learn BASIC Now 145

Figure 5.7 Microsoft QuickBASIC 4.0 Language Reference (1987). (Used with permission from

2.6

Microsoft)

variables and constants in procedures, and the integration of popular control flow
structures such as Do... While and Select... Case.

In most of the new versions, line numbers and labels became optional in code,
but they were allowed for backward compatibility with earlier products. Finally,
in graphical operating systems like those supplied with the Apple Macintosh and
Commodore Amiga computers, the designers integrated event-driven program-
ming features into their language projects, including the ability to create menus,
dialog boxes, text-entry fields, buttons, and multitasking controls. These features
would later become hallmarks of Visual Basic for Windows and Visual Basic for
MS-DOS in the early 1990s.

Microsoft Press and Learn BASIC Now

To highlight one way that structured BASIC helped students and self-taught
programmers to construct their programs, we’ll examine the origins of the
Microsoft Press book Learn BASIC Now (1989), a QuickBASIC primer that I

146 Chapter5 Four Million BASIC Programmers

Figure 5.8 Learn BASIC Now, by Michael Halvorson and David Rygmyr, published in IBM PC and
Apple Macintosh editions (1989 and 1990). Both books were designed for students and
self-taught programmers, and featured bundled versions of the Microsoft QuickBASIC
Interpreter. (Used with permission from Microsoft)

co-authored with David Rygmyr while working for the book publishing division
of Microsoft Corporation. (See Figure 5.8.) This book provides a convenient van-
tage point for our analysis of BASIC programming culture in the 1980s and
1990s, because it was one of the first products to combine a course of program-
ming instruction with a structured BASIC software product, the Microsoft Quick-
BASIC Interpreter.?® Learn BASIC Now was published in 1989, near the high-point
of BASIC saturation in the PC marketplace. During that year, the installed base of
BASIC and QuickBASIC programmers hit approximately four million active users in
the U.S., an indication that BASIC programming had become a dominant force on
the IBM PC / MS-DOS platform.

In preparing Learn BASIC Now, the Microsoft Press editorial team directly
appealed to the computer literacy strategies discussed in the last two chapters.
They prioritized accessible language for instruction, offered interactive learning
modules for new users, included enticing illustrations, offered review questions

23.Michael Halvorson and David Rygymr, Learn BASIC Now (Redmond, WA: Microsoft Press, 1989).
For the Macintosh edition, see Michael Halvorson and David Rygmyr, Learn BASIC for the Apple
Macintosh Now (Redmond, WA: Microsoft Press, 1990).

5.6 Microsoft Press and Learn BASIC Now 147

and exercises for students, and sold the book as part of an integrated book-and-
software learning package. Learn BASIC Now also presented itself as amodern, state-
of-the-art introduction to structured BASIC using contemporary computer science
terminology, avoiding the perceived pitfalls of earlier dialects and approaches.

The book project was initiated in 1988 and involved two staff authors (Halvor-
son and Rygmyr), two staff editors (Megan Sheppard and Dail Magee, Jr.), and
an experienced team of in-house artists, proofreaders, compositors, and support
specialists. The book publishing division’s acquisitions editors, marketers, sales
personnel, and executives also took a sustaining interest in the project. At the
time, Microsoft Press employed approximately 65 fulltime staff members at its
Redmond, Washington campus, where they were considered regular employees of
Microsoft Corporation. By the end of 1988, there were 2,087 employees at Microsoft
throughout the organization, including the staff members of Microsoft Press.?*

As part of the team’s planning efforts, they sought and received permission to
bind a copy of the Microsoft QuickBASIC Interpreter into the book, which was stored
on three 5.25” (360KB) floppy disks. The first book was designed for IBM PCs and
compatibles running MS-DOS versions 2.1 and higher. (The current version of DOS
at the book’s release was 4.0.) In 1990, we published a Macintosh version of Learn
BASIC Now, which included the Microsoft QuickBASIC Interpreter for Macintosh
Plus, SE, and II systems on 3.5” diskettes.

The first volume included a Foreword by Bill Gates, one of the co-developers
of Altair BASIC. Gates struck a populist tone in his introduction. He argued that
continued innovation in the computer industry would require more than Com-
puter Science graduates, it would require all people. “We need a diverse community
of users creating tools and solving problems to fully achieve the potential of the
microcomputer,” Gates wrote.2®

The Macintosh version began with a Foreword by Byte columnist and science
fiction writer Jerry Pournelle. He opened as a contrarian, a tact he often took in his
Byte columns. “Some computer fanatics laugh at BASIC. Real Programmers, they
say, write in Assembler, or Forth, or C, or APL, or even Pascal. Never BASIC, though.”
After acknowledging the jibes of engineers and pundits, however, Pournelle con-
nected BASIC to the Macintosh in a creative way:

True, modern compiling BASIC, the QuickBASIC this book does such
an admirable job of teaching, is a lot different from the BASIC I first
learned—but then so are the machines we use now. There’s a strong parallel

24.Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: The MIT Press, 2003), 233.

25. Bill Gates, “Foreword,” in Halvorson and Rygmyr, Learn BASIC Now, X.

148 Chapter5 Four Million BASIC Programmers

between the development of BASIC and the development of the Macintosh
computer. Each was, when introduced, the most learnable product of its
class: With both early Microsoft BASIC and the first 128K Mac, you could sit
down and do something interesting within a few minutes.?¢

Pournelle emphasized the special relationship between BASIC and the Mac, a pair-
ing that was often neglected. A consummate futurist, Pournelle also made a pre-
diction: “I don’t know how long it will be before the ability to program—or at least
to understand what programming is about even if you don’t actively do it—will be
a requirement for a significant number of jobs. I suspect that day is coming more
quickly than most realize. Anyway, you’ve got the right tools for the first step.”?”

In a sense, both Gates and Pournelle were interpreting the learn-to-program
movement through the lens of earlier mythologies about programming and com-
puters. But they also perceived a future for the movement outside of educational
circles. BASIC programming could serve as a vehicle for self-fulfillment, connecting
with other users, and finding a job.

Rygmyr and I were mindful of the movement’s history as we constructed the
book. The title of our product was a deliberate play on Ted Nelson’s 1974 mandate,
“You can and must understand computers NOW.” We certainly believed that Nel-
son’s ideals were relevant, and his call to arms still seemed rousing for contempo-
raryreaders. In 1987, Microsoft Press had republished Nelson’s Computer Lib/Dream
Machines with information about PCs and a renewal of the call for citizens to
embrace the information age. (See Figure 2.7.) The audience for Learn BASIC Now
was thus specifically intended to be self-taught programmers and hobbyists with
little or no coding experience. It was a book for average Americans who wanted to
learn the fundamentals of programming outside of academic contexts.

The structured QuickBASIC Interpreter was the component that made Learn
BASIC Now unique, and we found room on the companion disks to include all
the sample code that we developed in our projects. The text-based IDE included
mouse support, drop-down menus, QuickBASIC documentation, and helpful edit-
ing features, making the software a major upgrade over the GW-BASIC software that
was currently shipping with MS-DOS. Using the enhanced IDE, readers could type
in, test, and debug their programs almost instantly. The interpreter was based on
QuickBASIC version 4.5 (released in 1988), a compiler that made procedural pro-
gramming and structured design easier, and we took full advantage of the upgrades.
In the entire 490-page book, we never used a GoTo statement in our code, making

26. Jerry Pournelle, “Foreword,” in Halvorson and Rygmyr, Learn BASIC for the Apple Macintosh
Now, ix.

27. Pournelle, “Foreword,” in Halvorson and Rygmyr, Learn BASIC for the Apple Macintosh Now, Xi.

5.6 Microsoft Press and Learn BASIC Now 149

the point that academic and professional best-practices could be introduced from
the beginning to our intended audiences. The major topics in the book included an
introduction to problem solving, building algorithms, using variables and opera-
tors, controlling program flow, working with loops, creating and calling subpro-
grams and functions, working with arrays, string-processing techniques, using files
and databases, integrating graphics and sound, and debugging.

A profile of the teams that worked on Learn BASIC Now will demonstrate the
collaborative nature of computer book publishing in the 1980s, a unique branch
of the publishing world that drew contributors from a variety of professional back-
grounds. Microsoft Press played a unique role in the PC industry. Since its founding
in 1983, the book publisher sought to enhance the experience of computer users by
publishing the works of independent authors about popular applications and pro-
gramming systems. Microsoft Press did not produce the technical documentation
for Microsoft’s products; this important task was embedded within the company’s
product groups. Instead, Microsoft Press distributed publications through tradi-
tional trade and education book channels, both in the North American markets and
through international publishing partners. They published a full range of products
about the evolving PC industry, including books about products from Microsoft,
Apple, Ashton-Tate, Lotus Development, Santa Cruz Operation, and other compa-
nies. Microsoft Press also produced general works about science and computing,
including CD-ROM: The New Papyrus (1986), Programmers at Work (1986), The World
of Mathematics (4-vols., 1988), and The Microsoft Press Computer Dictionary (1991).
One of their strengths was an editorial team that had depth in both technical and
trade publishing, with connections to the publishing hotbeds of New York, San
Francisco, and the Midwest. (See Figure 5.9.)

The writing and editorial group that worked on Learn Basic Now had a diverse
range of professional experiences. Co-author David Rygmyr (1958~) was especially
fascinated with electronics, puzzles, and sound effects. (See Figure 5.10.) A true tin-
kerer, Rygmyr was interested in programming and classic computer games, and he
maintained an impressive collection of PC-gaming titles, often setting them up for
the technical editors to play. Rygmyr did his first professional work with computers
in the late 1970s by preparing paper tape and punched-cards for a UNIVAC main-
frame. He joined Microsoft Press in 1984 and worked as a technical manager and
senior technical editor, supporting the editorial teams when complex challenges
arose involving new hardware, networking, DOS internals, C programming, and
more.

Megan E. Sheppard (1959~) brought her considerable editorial and manage-
ment expertise to the Learn BASIC Now project. Sheppard started work at Microsoft
in 1983 and settled into senior roles as an editor and program manager at Microsoft

150 Chapter5 Four Million BASIC Programmers

Figure 5.9 Members of the Microsoft Press editorial group on the Redmond campus in late 1986.
Shown here are a selection of the organization’s manuscript editors, technical editors,
proofreaders, word processors, and editorial managers. (Halvorson is left, seated, with
arms extended; Rygmyr is in the back row, center, with light-colored hair.) (Used with
permission from Microsoft)

Press. Sheppard is “an editor’s editor,” always determined to transmit clear, accu-
rate, and direct prose. She often took the lead role in determining how a publish-
ing project should be organized, scheduled, and produced. Sheppard worked over
the years with Peter Rinearson, Charles Petzold, and Dan Gookin—all best-selling
authors who wrote with passion for the power user and do-it-yourself segments of
the PC marketplace.

The team was also supported by Dail Magee, Jr., a skilled technical editor who
tested every program, verified the manuscript’s integrity, and served as an impor-
tant conduit between the authors and Microsoft’s product teams. Magee joined
Microsoft Press in 1988, after studying Electronics and Computer Science at Walla
Walla College. This book was one of the first that Magee worked on at Microsoft
Press, and he went on to have a long career in publishing and software develop-
ment that continues as this book goes to press. After our two Learn BASIC Now titles
were published, Magee also handled product support for the books. At that time,
product support entailed answering letters and phone calls from customers who
had purchased products and needed more information. In fact, it was not unusual
for the Microsoft Press editorial staff to call readers personally if they wrote in with

5.6 Microsoft Press and Learn BASIC Now 151

Figure 5.10 The core Learn BASIC Now product team. Left to right: Dale Magee, Jr., Megan Sheppard,
David Rygmyr, and Michael Halvorson (1990). (Photo courtesy of Megan Sheppard)

concerns. In the 1980s, virtually any letter that arrived from a reader was given
special significance. By the early 1990s, however, support for most products was
encapsulated in Microsoft Knowledgebase articles, which were posted in online
databases so that any Microsoft employee handling support inquiries could access
the information.

How did we decide the style and format used for our programming course?
In the 1980s, the method that experienced programmers used for learning a new
language still entailed working through a printed language specification such as
The Pascal User Manual and Report (1971), by Kathleen Jensen and Niklaus Wirth, or
The C Programming Language (1978), by Brian Kernighan and Dennis Ritchie. These

152 Chapter5 FourMillion BASIC Programmers

short books were de facto language standards written by the original designers of
the compilers, and they were highly esteemed. However, we were more deeply influ-
enced by the primer OA! Pascal! (1982), written by Doug Cooper and Michael Clancy.
This book for the educational marketplace took a very light-hearted approach to
building algorithms and learning the Pascal language.?® For example, there was
a picture of Leonard Nimoy (the character Spock from Star Trek) in the Boolean
expressions section of the book, and there was a genealogical chart showing the
ancestry of Greek gods as away of introducing “tree” data structures. After some dis-
cussion, we decided to create a language primer that was light-hearted, fun to use,
and culturally relevant, replete with well-organized sample code and illustrations
that would keep the attention of readers.

I remember having an extended conversation about OAh!/ Pascal! with Patty
Stonesifer (1956-), a publishing executive from Que Corporation who joined
Microsoft Press in 1988 as Director of Sales. (See Figure 5.11.) Que was an
Indianapolis-based computer book publisher known for its “Using” series. Most
Que books were published with all-black covers and white lettering, which made
the titles easy to recognize on bookstore shelves. Stonesifer had a technical writing
background herself, and she encouraged the Learn BASIC Now team to make our
primer friendly and quirky, arranging for Bill Gates to write a foreword to the book
because of his long association with BASIC. Stonesifer’s individual attention to our
project was typical of management generally at Microsoft Press—a tradition culti-
vated in the early years by Nahim Stiskin, Min Yee, Susan Lammers, Jim Brown, and
Elton Welke. Stonesifer was soon transferred to prominent positions in Microsoft
International and Microsoft Canada, with later leadership roles in Microsoft Prod-
uct Support and the Consumer Products group. She eventually became a senior
vice president of Microsoft Corporation and later the CEO of the Bill and Melinda
Gates Foundation.?’

After numerous editorial passes and months of work, Learn BASIC Now was
ready for publication. Benefiting from the rising interest in BASIC, Learn BASIC
Now sold over 75,000 copies in its first edition. In its review of the book, the New
York Times wrote, “For anyone who wants to learn something about programming,
it would be hard to find an easier or more cost-effective source than Learn BASIC
Now.”3® New programmers enjoyed the book’s approach and told us so, but the

28. Doug Cooper and Michael Clancy, Oh! Pascal! (New York: W.W. Norton & Company, 1982).

29. For a summary of Stonesifer’s career and recent projects, see June Thomas, “The retreat obser-
vation that put Patty Stonesifer on Microsoft’s leadership radar,” Slate, March 28, 2019. https://
slate.com/business/2019/03/patty-stonesifer-microsoft-marthas-table-transcript.html. Accessed
on August 5, 2019.

30. Halvorson and Rygmyr, Learn BASIC Now, back cover.

https://slate.com/business/2019/03/patty-stonesifer-microsoft-marthas-table-transcript.html
https://slate.com/business/2019/03/patty-stonesifer-microsoft-marthas-table-transcript.html

5.7 Microsoft Game Shop 153

Figure 5.11 Patty Stonesifer became Director of Sales at Microsoft Press in 1988 and soon took

2.7

leadership roles in other divisions of Microsoft. Her career was built on many years of
experience in the technical publishing industry. (Used with permission from Microsoft
and Patty Stonesifer)

product also benefited from the powerful QuickBASIC Interpreter that was dis-
tributed with the integrated book-and-software package. Microsoft sold the Quick-
BASIC version 4.5 Compiler for $99 at the time, and the QuickBASIC Interpreter
was priced at $39.95. Our learning product was also priced at $39.95, but itincluded
the interpreter software, our 490-page companion book, disks with sample code,
and a full IDE with an electronic help system and reference. The comprehensive
package was clearly a good value for self-taught programmers who wanted an inte-
grated learning product to get started.

Microsoft Game Shop

In typical fashion, Microsoft Press continued with some follow-on projects, sens-
ing the popular demand for programming language products. In 1990, a Macintosh
edition of Learn BASIC Now was published (discussed already), complete with
a Macintosh version of the QuickBASIC Interpreter. Microsoft Corporation also
became interested in the BASIC game programming market, and they released a

154 Chapter5 Four Million BASIC Programmers

special edition of our book-and-software package for the MS-DOS gaming audience.
This product was entitled Microsoft Game Shop: Games and the QBasic Learning
Environment.3! (See Figure 5.12.) The $49.95 software package debuted in 1990,
and it included the MS-DOS version of the Learn BASIC Now book, the QuickBASIC
Interpreter, the IDE and help system, and a selection of six “arcade-style” PC games
written in QBasic. The featured program in the collection was QBlocks, a Tetris-
style BASIC game that programmers could modify to learn more about coding
and gaming on IBM PCs and compatibles. An advantage of the book-and-software
package was that QBlocks was provided on disk—it did not need to be typed in
from the pages of a book or magazine as the first BASIC games from this era had
been. Despite the length of the newer QBasic programs (which were organized
into structured modules), there was still a thematic connection to earlier BASIC
programming adventures like David Ahl’s 101 BASIC Computer Games.

Compute! magazine published a thorough review of the QBASIC gaming tuto-
rial, emphasizing the continuing relevance of tinkering with games to learn coding
skills. The article emphasized the customizable features of the QSpace program (a
variation of Missile Command), which could be edited to modify the game’s sound
effects, missile speed, explosions, and colors used for graphics.?? The book-and-
software package was depicted as a timely vehicle for “creative recreation,” though
which users could learn programming skills while having fun—just like in ‘the
old days.”? The reviewer offered some perspective on the recent computer literacy
debates:

Years ago, being computer literate meant learning to program in BASIC.
Although there is less emphasis on programming today, programming
remains a challenging, creative, and even entertaining enterprise; and com-
puter users who understand programming will always be a step ahead of
those who don’t.

BASIC is an ideal first language. Its ease of use provides programmers with a
simple way to learn and experiment with programming concepts that are the
building blocks of programs written in any language.

For learning to program, Microsoft Game Shop provides an excellent intro-
duction with plenty of fun and useful tools. First time programmers have a

31. For a copy of this software and its marketing materials, see Microsoft Game Shop, Microsoft
Corporation (1990), Computer History Museum, Fremont, CA, cat. no. 102778084.

32. Tony Roberts, “Microsoft Game Shop,” Compute!, Issue 130 (June 1991), 136-139, here at 138.
33. Roberts, “Microsoft Game Shop,” 136,139. Note that at the time “the old days” would have been
just 10 years (or less) in the past.

5.7 Microsoft Game Shop 155

Figure 5.12 Microsoft Game Shop, a PC gaming package with a built-in programming tutorial for
IBM PCs and compatibles (1990). (Used with permission from Microsoft)

chance to experience the challenge and excitement of the old days of com-
puting, but with all the comforts afforded by today’s technology.?*

You might have noticed the term “QBasic” in the product labeling above as a
short-hand reference for the QuickBASIC programming language. When MS-DOS
5 was released in 1991, the company decided to make this product name official.
MS-DOS 5 included the structured QuickBASIC Interpreter as a standard feature
(replacing GW-BASIC), but the interpreter was renamed QBasic to avoid confusion
with the full-featured QuickBASIC Compiler that still sold as a retail product. Now
that Microsoft was including a structured, procedural version of BASIC with MS-
DOS, book publishers could update all of their BASICA and GW-BASIC books to
emphasize structured programming concepts. At Microsoft Press, the Learn BASIC
Now team reissued our book for the MS-DOS platform as Running MS-DOS QBasic
(1991), a product that sold for the reduced price of $22.95 because it did not require

34. Roberts, “Microsoft Game Shop,” 139.

156 Chapter5 Four Million BASIC Programmers

2.8

an expensive set of companion disks for the interpreter, which was now included in
most versions of MS-DOS.?> The book went through six printings and sold 75,000
copies in the first 2 years, indicating that the market for structured BASIC (and
QBasic) continued to be strong under MS-DOS versions 5 and 6.

Clearly the arrival of many commercial PC applications had obviated some of
the need for users to build their own programs in BASIC. However, the release of
new “structured” compilers and interpreters gave a boost to modernized BASIC in
the hobbyist and non-professional programming markets. Computer gaming also
presented some exciting opportunities for BASIC programmers. The PC industry
had cut its teeth on this “beginner’s” language in the 1970s and by the early 1990s
there was still some vitality left in the coding technology and its substantial user
base.

Visual Basic for Windows

In 1991, BASIC programmers encountered a new programming paradigm as
Microsoft released Microsoft Visual Basic for Windows 1.0, a RAD tool capable
of creating Windows applications in considerably less time than the process took
using traditional coding methods. In early 1991, the conventional process for cre-
ating a Windows application begin with implementing the core program logic
using a C compiler from either Microsoft or Borland International. The application
then needed to conform to the many requirements of the graphical, multitasking
operating system. These included preparing visual elements and using the vari-
ous application programming interfaces (APIs), libraries, and component tools in
the Microsoft Windows Software Development Kit. I describe this process in more
detail in Chapter 10, which explores the origins of the C programming language and
the compiler’s use under the Unix, MS-DOS, Macintosh, and Windows operating
systems.

Conceptually, Microsoft Visual Basic was the result of a synthesis between
Alan Cooper’s work on “Ruby,” a RAD tool for Windows, and the Microsoft
QuickBASIC product, which was revised and enhanced to support programming
under Windows.?® The exciting thing about “Ruby” for developers (code-named
“Thunder” at Microsoft) was that it allowed users to construct their program’s

35.Michael Halvorson and David Rygmyr, Running MS-DOS QBasic (Redmond, WA: Microsoft Press,
1991).

36. “Ruby” was the code name for a visual programming language (c. 1988) that ran under Win-
dows. Alan Cooper’s “Ruby” has no specific relation to the modern Ruby programming language,
developed by Yukihiro Matsumoto in Japan.

5.8 Visual Basic for Windows 157

graphical user interface (GUI) by visually arranging software components on a form
using tools from a familiar palette, called the Toolbox.

In the final version of Visual Basic 1.0, developers could create windows, dialog
boxes, menus, scroll bars, buttons, and other program elements using simple drag-
and-drop techniques. Once they had placed the visual elements of their application
on a form, they could specify properties for the components using point-and-click
settings and coded event procedures. The properties control how the components
appeared and functioned when the program ran. The coded event procedures were
created in modules that resembled structured BASIC routines. In some cases, code
snippets from earlier languages like QuickBASIC could be reused.

A fundamental change to the programming paradigm was that Visual Basic
applications were object based. Rather than executing from the top of a program
to the bottom in linear fashion, object-oriented systems like Visual Basic presented
collections of “intelligent” objects before the user in an application window, which
the user could then manipulate and use. This style of programming is also referred
to as “event-driven programming,” because the job of the programmer is to write
code that responds to the various events that happen when the user clicks or drags
on items in the GUI One of the exciting advancements in Visual Basic was that
so much happened automatically when it came to designing the user interface.
When the programmer dragged objects from the Toolbox to the application form,
the objects already “knew” how to function in a basic sense. For example, a button
object “knew” its basic shape and operating context, including what to do if it was
clicked or double clicked. Taking this functionality as a starting point, the Visual
Basic programmer could then customize a button by placing VB code in an event
procedure associated with the button’s Click event. From a programmer’s point of
view, there were two “worlds” of Visual Basic development—the world of visible
objects created on a form using the Toolbox and the Properties windows, and the
world of VB code in event procedures and modules that lay “beneath” the objects
and forms.

Microsoft Visual Basic 1.0 for Windows was released in May 1991 at the Win-
dows World trade showin Atlanta, Georgia. (For more about the commercial context
of these shows, see Chapter 11.) Mindful of the importance of the MS-DOS plat-
form, Microsoft also released a DOS-based version of Visual Basic in September
1992, named Microsoft Visual Basic for MS-DOS 1.0. Both products supported the
event-driven programming model, although they were not fully compatible. (Visual
Basic for MS-DOS is best understood as an extension of the QuickBASIC and BASIC
Professional Development System product lines.) Visual Basic’s impact was fur-
ther extended by the introduction of Visual Basic for Applications (VBA) in numer-
ous commercial Windows applications, including Microsoft Excel, Microsoft Word,

158 Chapter5 Four Million BASIC Programmers

and Microsoft Access. (The technology debuted with Microsoft Excel 5.0 in 1993.)
Describing VBA as a “unifying language,” Microsoft promoted the technology
by suggesting that it allowed users to write user-defined functions within their
applications that processed data programmatically and allowed communication
between applications.

I was acquiring new books for Microsoft Press during the release of these prod-
ucts, and I remember meeting with Nevet Basker and Adam Rauch in the Microsoft
Languages group to see a demo of “Thunder,” the initial test version of the Visual
Basic for Windows compiler. Nevet Basker was the company’s first product man-
ager for Visual Basic, and she was relatively new to Microsoft herself, arriving in the
Summer of 1989 as a student intern. She went on to have a productive career at the
company, serving as the product manager for Microsoft Access 1.0 and Microsoft
FoxPro 2.0. Adam Rauch was the program manager for Visual Basic, overseeing the
product’s engineering specification and keeping the development team on track
during the product’s unique construction process. The Visual Basic for Windows 1.0
team at Microsoft also included Nancy Barnes, Scott Ferguson, John Fine, Chris Fra-
ley, Brian Lewis, and Rick Olson. Back at Microsoft Press (in a neighboring building
on the Microsoft campus), we went to work developing titles for what looked to be
an intriguing line of products.

In the beginning, it seemed that Microsoft had relatively modest expectations
for the new Visual Basic product line. Visual Basic was released at Windows World
(a trade show combined with COMDEX/Spring '91), and the Languages marketing
group seemed as surprised as the rest of us when Visual Basic for Windows quickly
became the dominant development tool in the Windows marketplace. Although
Visual Basic did not surpass the Microsoft C Compiler as the major commercial tool
for software development on the Windows platform, Visual Basic was used by mil-
lions of aspiring software developers who hoped to learn Windows programming
quickly and turn their ideas into games, utilities, and simple business applications.
Visual Basic was advertised as a RAD tool that could help users to build graphi-
cal, drag-and-drop-style applications fast, including database front ends, graphics-
based video games, popup menus, system accessories, and so on. The academics
and professional developers who held lingering stereotypes about older versions
of BASIC were encouraged to set aside their biases and give Visual Basic a try. To
emphasize this point, Microsoft Group Product Manager Tom Button defended
the compiler in 1992 in Computerworld magazine. “The source of BASIC’s [tawdry]
reputation is [from] decades of old interpreted technology, not on compiled event-
driven Basic.”?” In the article, he pointed out that 113,000 business applications

37. Garry Ray, “Basic gains commercial respect,” Computerworld, November 16,1992, 128.

2.9

5.9 Innovative Programming Primers 159

had already been created in Visual Basic just a year after the product’s first release,

and they were thriving in corporate America.3®

Innovative Programming Primers

Microsoft Visual Basic gained in popularity and became a globally successful prod-
uct, used by millions of programmers to write their first Windows applications. But
how did students and self-taught learners adopt these new coding skills? How did
this new technology impact America’s learn-to-program movement?

By the time Visual Basic for Windows was released in 1991, the Windows plat-
form had also grown and matured, and there were numerous book publishers vying
for opportunities to document it.>® These included Microsoft Press, IDG Books,
Howard W. Sams, O’Reilly, Osborne McGraw-Hill, Que, Sybex, Ventana Press, Wiley,
Wrox, and Ziff Davis Press. Although few of these companies were ready with books
when the VB 1.0 release took place, the publishing industry gradually caught up with
demand by Microsoft Visual Basic 3.0, which was released to customers during the
summer of 1993. By that point, computer book and magazine publishers could mar-
ket their products to a Visual Basic user base that numbered in the millions and
included programmers with a variety of skill levels and interests. (For a selection of
Visual Basic programming books, see Figure 5.13.) For a time, Visual Basic became
the vehicle to introduce programming concepts to users of the Windows platform,
the largest sector of the PC marketplace.

Among the first resources for new Visual Basic programmers was Ross Nelson’s
Running Visual Basic for Windows (1992), released for Microsoft Visual Basic 2.0
and soon updated for the Visual Basic 3.0 product.?® Nelson had worked at Intel
Corporation on the Intel 80286 and 80386 microprocessors, and he was a regu-
lar columnist for Byte and Dr. Dobb’s Journal. At home as a teacher of assembly
language skills and techniques, Nelson was known primarily for his work on a
successful assembly language primer, The 80386 Book (1988), which taught soft-
ware developers how to make the most of Intel’s speedy new microprocessor.!
But Nelson also became a convert to Visual Basic programming soon after the

38. Ray, “Basic gains commercial respect,” Computerworld, 128.

39. In the 1990s, the PC/Windows platform was also referred to as the “Wintel platform” because
of its fruitful combination of Intel microprocessors and the Microsoft Windows operating sys-
tem. For a discussion of the subtle differences among PC platforms and the challenges in labeling
them, see James Sumner, “What makes a PC? Thoughts on computing platforms, standards, and
compatibility,” IEEE Annals of the History of Computing 29, no. 2 (2007): 88-89.

40. Ross Nelson, Running Visual Basic for Windows: A Hands-on Introduction to Programming for
Windows, Second Edition (Redmond, WA: Microsoft Press, 1993).

41. Ross Nelson, 80386: The 80386 Book (Redmond, WA, Microsoft Press, 1988).

160 Chapter5 Four Million BASIC Programmers

Figure 5.13 A selection of popular Microsoft Visual Basic programming books published in the
early 1990s after the first releases of Microsoft Visual Basic for Windows. The publishers
represented include Microsoft Press, Ventana Press, Waite Group Press, and Ziff-Davis
Press. At the top of the stack is the Microsoft Visual Basic 3.0 Programmer’s Guide,
included with the product. (Photo courtesy of Michael Halvorson. Microsoft products
used with permission from Microsoft)

product’s release. In Running Visual Basic, he emphasized how easy it was for new-
comers to learn the language and tools, even if they had no programming experi-
ence. However, a little mathematics background wouldn’t hurt:

5.9 Innovative Programming Primers 161

You don’t need to know a lot of computer buzzwords to use this book, nor do
you need to have programming experience... It will be helpful if you have cre-
ated macros for your spreadsheet or word processing program. And, finally,
you shouldn’t be afraid of a little algebra. This book contains no heavy math,
but remember that computer languages were originally designed for per-
forming mathematical computation; consequently, a little of that heritage
remains in every computer language today.*?

Running Visual Basic focused on the VB coding language, which was closely related
to QuickBASIC. The steps Nelson recommended for building the user interface were
covered in just two chapters. (This was a limitation, or shortcoming, of most early
Visual Basic programming books). In fact, it seemed to take years for most program-
mers (and authors) to understand how truly daunting it was to create a user interface
from scratch that could be used effectively by a range of users, even when the soft-
ware developers had impressive design tools. An obvious consequence of this prob-
lem was that the first Windows applications created in Visual Basic often presented
non-standard menus, dialog boxes, and commands to the user, who found the lack
of consistency frustrating. In many respects, the nascent field of user experience
(UX) design was still in its infancy.*3

A more intensive introduction to Visual Basic programming techniques was pro-
vided by John Clark Craig, an experienced author and engineer who relished in
the “learn by doing” approach when he constructed a comprehensive book-and-
software bundle containing hundreds of pages of source code. In Microsoft Visual
Basic Programmer’s Workshop (1991), published by Microsoft Press, Craig presented
imaginative code modules and user forms that programmers could integrate into
Windows-based applications. The first edition of the Workshop was designed for
Visual Basic 1.0, and the revised edition, published in 1993, included reworked
examples for Visual Basic versions 1.0 through 3.0.#* The Visual Basic 3.0 upgrade
was designed for the Windows 3.1 operating system, an enhancement of the Win-
dows platform that gained considerable traction in the PC marketplace. (For more
about the reception of Windows 3.0 and 3.1, see Chapters 6 and 10.) Essentially,
Visual Basic 3.0 offered support for Access databases via the new Visual Basic Data
control, object linking and embedding (OLE) integration, dynamic data exchange

42. Nelson, Running Visual Basic for Windows, xviii.

43. To address the situation, Microsoft soon published specific guidelines for the Windows 95
operating system entitled The Windows Interface Guidelines for Software Design (Redmond, WA:
Microsoft Press, 1995).

44, John Clark Craig, Microsoft Visual Basic Workshop, Windows Edition (Redmond, WA: Microsoft
Press, 1993).

162 Chapter5 Four Million BASIC Programmers

(DDE), and the capability to distribute applications via the SetupWizard. Craig’s
code samples and utilities took advantage of these new features and more, and
his technical writing had great appeal to scientists and tinkerers. Craig’s sample
programs included working screen savers, random number generators, custom
controls, file compression utilities, and a demo that used a modem and an atomic
clock in Denver, Colorado to set a PC’s system time—down to the millisecond.*®

Game programmers on the PC platform were treated to a creative primer on pro-
gramming graphics, sound, and animation with Visual Basic—Game Programming
for Windows, by Michael J. Young (1992).%¢ This computer book provided 12 ready
to run Windows games and fractals for Visual Basic 1.0 programmers to experi-
ment with and customize. The text provided a short introduction to Windows pro-
gramming in Visual Basic, and then Young launched into a clever selection of puz-
zles, strategic board games, and action-gambling games. Like Dian Crayne, Michael
Young discussed strategy and game design principles in his book, but the sections
on graphics and animation demonstrated the power of Visual Basic to create visual
effects under Windows. The games were included on a bound-in companion disk,
sothatreaders could avoid the drudgery of typing the programs in manually. I served
as the acquisitions editor for this project, which took shape after a conversation
with Michael Young about how rapidly game programming had evolved on the PC
platform. I was so impressed with Young’s work that we remained in close contact
and eventually co-authored a series of power-user books about Microsoft Office, the
Windows application suite that debuted as an integrated bundle in 1995.%”

In late 1993, I left Microsoft Corporation and began writing computer books
fulltime. I also entered a doctoral program in History at the University of Washing-
ton in Seattle, where I studied European history and the history of technology. One
of my first projects as an independent author was to work on a series of Visual Basic
programming primers entitled Microsoft Visual Basic Step by Step, first published for
the users of the Microsoft Visual Basic 4.0 Development System, which debuted in

45. The system time application used the new Communications control provided by Microsoft
Visual Basic 3.0 Professional Edition. It dialed an atomic clock at the National Institute of Stan-
dards and Technology and downloaded the current date and time. Time checks like this were
necessary before computers were connected to the Internet and generally able to adjust system
settings automatically. See Craig, Visual Basic Workshop, 428-434.

46. Michael J. Young, Visual Basic—Game Programming for Windows (Redmond, WA: Microsoft
Press, 1992).

47. Michael Halvorson and Michael Young, Running Microsoft Office for Windows 95 (Redmond,
WA: Microsoft Press, 1995). The first edition of our book came in at 1064 pages. Under intense
time and page count pressures, Young seemingly had no problem meeting this or other writing
deadlines.

5.9 Innovative Programming Primers 163

August 1995.8 These books attempted to more fully introduce Windows design
principles and graphical programming considerations into a programming course
than competing titles in the marketplace, while still giving due consideration to lan-
guage instruction, algorithms, and classic topics such as debugging computer soft-
ware. I also revised Learn BASIC Now into a book-and-software package that taught
Visual Basic programming skills in the context of the Windows platform. Learn
Visual Basic Now included a “working model” of the Visual Basic software, which
newcomers could use to build working Visual Basic applications, even without the
full retail release of Microsoft Visual Basic. (Readers could create their programs,
run them in memory, and share them with others, but they could not create exe-
cutable files or distribute applications until they purchased the full retail edition.)
Microsoft eventually established academic pricing for software like this through
a program called Microsoft DreamSpark, which offered programming software to
college students and faculty at deep discounts.

I published a Visual Basic book in the Microsoft Press Step by Step series for each
version of Visual Basic released between 1995 and 2013 (10 editions in all). The
Visual Basic software enjoyed strong commercial success during those years and so
did my Step by Step books, which were occasionally bestsellers in the Programming
Languages and Visual Basic/Visual Studio publishing categories tracked by O’Reilly
Media and Publisher’s Weekly. My Visual Basic primers eventually sold over 600,000
copies collectively, contributing to the continuation of the learn-to-program move-
ment on the Windows platform as it expanded into new commercial and graphical
programming contexts.

By the late 1990s, Visual Basic and most commercial development systems were
being revised every 18 to 24 months by software publishers, who typically aligned
their product cycles with the new operating system releases for Windows, Win-
dows NT, the Macintosh, and related systems. Computer book publishers were very
dependent on these schedules, and they timed their primers and reference guides
so that theywould be announced and sold at the same time as the commercial prod-
ucts. For those learning to program in these years, it is likely that they learned in the
context of specific software products and schedules, and aspiring developers would
have been encouraged to upgrade their compilers and development systems along
with everyone else in the PC software industry. This new direction of the learn-to-
program movement I associate with the corporate and commercial contexts of the
PC software industry as it approached maturity in the mid-1990s. I will have much
more to say about these commercial developments and their consequences in Parts
IT and III of this book.

48. Michael Halvorson, Microsoft Visual Basic 4 for Windows 95 Step by Step (Redmond, WA:
Microsoft Press, 1995).

164 Chapter5 Four Million BASIC Programmers

There were also advanced users of Visual Basic who sought to create commercial-
grade applications and utilities for the Windows marketplace, particularly after
the release of Visual Basic 4.0, which included a raft of new features to support
object-oriented programming and use of the Windows API. A new wave of expe-
rienced authors and developers wrote books for these audiences. Bruce McKin-
ney’s Hardcore Visual Basic: Secrets, Shortcuts, and Solutions for Programming Win-
dows without Using C (1995) communicated a deep appreciation for the design of
Visual Basic, but quickly went beyond the standard features to teach advanced tech-
niques that Windows developers usually implemented in the C language. In par-
ticular, McKinney taught Visual Basic programmers to use “pointers” (references
to memory locations), so that they could make effective use of the Windows API.
Dan Appleman’s massive Visual Basic 5.0 Programmer’s Guide to the Win32 API (1997)
built on this exploration of Windows internals by publishing reference materials
for the vast collection of Windows APIs that were accessible to Windows 95 and
Windows NT 4.0 applications. This allowed Visual Basic 4.0 and Visual Basic 5.0
users to implement features that were typically reserved for experts who were using
Microsoft C and the Windows Software Development Kit to create applications.

In summary, Microsoft Visual Basic became successful enough in the PC mar-
ketplace to attract users with a wide range of programming proficiencies—from
hobbyists and students to gamers and professional developers. By the mid-1990s,
computer book and magazine publishers presented a range of learning products
and commentary for these users, anticipating the “scaffolded” approach to training
that would sustain the learn-to-program movement through the era of enterprise
computing.

How did the transition from structured BASIC to Visual Basic impact the
installed base of BASIC programmers? By 1999, Microsoft announced that Visual
Basic had sold over 3.5 million copies, bringing Visual Basic to roughly the same
level of market penetration that structured BASIC and QuickBASIC had enjoyed in
the late 1980s. Computer books related to Visual Basic were among the top-selling
programming primers in the U.S., filling the shelves next to popular programming
books on Turbo Pascal, C, C++, and assembly language. For the users that remained
loyal to the MS-DOS platform (rejecting Windows and the Macintosh), QuickBASIC,
QBasic, and Borland Turbo Basic remained the leading programming tools.

The long arc that spanned from time-sharing BASIC to microcomputer BASIC
to structured BASIC to Visual Basic shows that the Beginner’s All-purpose Symbolic
Instruction Code has remained an important technology for many in personal com-
puting. Although this user base has sometimes been neglected or denigrated as
hobbyist or amateur, the technical community is an important component of the
abstraction that I describe as Code Nation in this book. BASIC programming was

5.9 Innovative Programming Primers 165

an essential haven for the learn-to-program movement as it weathered the multi-
ple crises facing the computer literacy movement in the mid-1980s. These mostly
self-taught gamers, hobbyists, students, and power users acquired their coding
acumen by sharing resources in computing centers and reading books or maga-
zines that helped them to develop new skills. They shared code with fellow program-
mers, assisted each other when possible, and persisted through incompatibilities,
upgrades, and the commercial pressures brought by rising software companies in
the U.S. As the early PC platforms evolved, so did the BASIC language, changing
to address the critiques of industry pundits and the fast-moving cycles of product
development. Although I have highlighted Microsoft Press here as a publisher of
technical information for BASIC and Visual Basic programmers, there were many
computer book and magazine publishers that were active during this era, and we
will meet several more in the coming pages. The materials and commentary from
these publishers successfully diffused programming practices throughout the PC
industry, helping it to grow and consolidate.

The next three chapters explore how power users, hackers, tinkerers, and
gurus wrote programs, batch files, and utilities on the PC platform, strengthening
America’s computing infrastructure in the process. These chapters are followed
by forays into Pascal, assembly language, and C/C++ programming (Chapters 9
and 10), which highlight the creative strategies used by aspiring commercial devel-
opers on the MS-DOS, Windows, and Macintosh platforms.

HOBBYIST AND HACKER
CULTURES

Power Users, Tinkerers,
and Gurus

“Creating games and utilities—sharing them, tearing them apart, and putting them
back together—was how many of us first learned to program... The development of this
book followed that same spirit.”

Mitch Waite et al., Macintosh Midnight Madness (1985)

“Whatis a DOS guru? A DOS guru is someone who knows how to use the MODE
command. DOS gurus are also those who really get to know their machine. They may
do it because they want to do it, or simply because they’re bored. Basically, they like to
fiddle.”

Dan Gookin, DOS Secrets: An Easy Guide to Understanding the Power of MS-DOS (1990)

As the ranks of Code Nation swelled, programmers put their new skills to work at
home, in the office, and in many facets of daily life.

The chapters in Part II explore what hobbyists, hackers, and other non-
professional programmers did with their newfound coding talents, including writ-
ing MS-DOS batch files, building simple PC applications and games, increasing
workplace productivity, and exploring virtual worlds through telephone systems
and rudimentary networks. As an extension of the learn-to-program movement,
microcomputer hobbyists and hackers needed tolearn new platform skills, and they
were ably assisted by programming primers, magazines, and user group meetings
that revealed the new technologies and promoted their use.

We examine first the “advanced users” of personal computer (PC) platforms who
explored non-professional programming contexts in the U.S. and pushed the early
systems to their conceptual limits in the 1980s and early 1990s. These imaginative
users were often the early adopters of PCs, and they served as information hubs for
newcomers who were encountering America’s digital culture for the first time. We
start by assessing power users, tinkerers, and gurus in Chapter 6, and continue with
hacking and cyberpunk communities in Chapter 7. In both contexts, I’ll examine

170 Chapter 6 Power Users, Tinkerers, and Gurus

how some of the first personal computing technologies were adopted by tinkerers
and power users, then distributed more broadly to the general public.! In Chapter 8,
I use computer magazines, journals, and newsletters to investigate the dynamics
of programming culture and the symbiotic relationship between the leaders of PC
computing companies and their customers.

I will also dive a little deeper into the attributes of the first MS-DOS, Win-
dows, and Macintosh platforms, including the programming techniques that were
used to access important features. Following James Sumner and other histori-
ans of computing, I do not define PC platforms as solely defined by computer
hardware or software. Instead, computer platforms are best understood as evolv-
ing standards that include a range of hardware systems, operating system com-
ponents, applications, textual traditions, user behaviors, product marketing, and
industry mythologies.? Throughout the 1980s, IBM and numerous “clone” manu-
facturers developed IBM PCs and compatibles in partnership with Microsoft and
other manufacturers. At first, the computers on this platform ran the CP/M and
MS-DOS operating systems, the latter of which IBM marketed as “PC-DOS” on its
machines. After about 1990, a significant number of PCs ran both MS-DOS and Win-
dows, featuring applications, peripherals, and settings that collectively supported
the “Wintel” platform. I define this term as IBM PCs and compatibles powered by
Intel microprocessors and related subsystems, including a version of the Windows
operating system.

By the mid-1980s, Apple Computer also attracted thousands of followers to the
Macintosh platform, which enjoyed regular use at home, in schools, and in pro-
fessional contexts. A wave of Mac developers created compelling software appli-
cations, peripherals, books, and commentary. Eventually, advanced Mac systems
were capable of running Unix, Windows, and other operating systems, a flexibil-
ity that complicates the tidy division between the Wintel and the Mac platforms. In
Parts I and III of this book, we will encounter the creative programmers, authors,
and entrepreneurs who made it their mission to understand these platforms

1. Kevin Gotkin takes a similar approach to studying new technology through tinkerers and lesser-
known groups, and I am influenced by his questions. “What do we gain by tracing... a small
group of amateur tinkerers? We gain an appreciation for what makes the personal computer ‘per-
sonal.’ We gain insight into the way that users take up technologies and adapt them for use. We
gain an understanding of how technologies acquire their social meanings.” Kevin Gotkin, “When
computers were amateur,” IEEE Annals of the History of Computing 36, no. 2 (2014): 4-14, here at 12.
2. Sumner defines platforms as “constellations of standards, conventions, and expectations that
influence the nature and behavior of hardware, software, producers, users, and mediators.” See
James Sumner, “What makes a PC? Thoughts on computing platforms, standards, and compati-
bility,” IEEE Annals of the History of Computing 29, no. 2 (2007): 88.

6.1

6.1 Computing Terminology 171

and promote their general use. We’ll also see how the platforms were shaped by
corporate and commercial forces, a transformation that impacted the character of
the learn-to-program movement.

Computing Terminology

The terms “power user,” “hacker,” “tinkerer,” and “guru”’ are socially-constructed
labels that computer users and journalists have used since the early days of personal
computing to ascribe special status to members of their technical communities.
These labels came into use (or were redeployed) as microcomputers gained broad
distribution and became objects of fascination for the American public. Steven Levy
pointed out some of the implications of this terminology 35 years ago in his best-
selling book Hackers: Heroes of the Computer Revolution (1984). This book and its
2010 revision depict hackers in largely positive terms. Levy describes hackers as
trailblazers—brilliant and eccentric computing “nerds” who took social and per-
sonal risks with computers, bent the rules, and pushed the computing world in
important new directions.3

I'd like to expand on Levy’s definition by adding some additional terminology,
capturing a broader range of computing experiences. These terms will be useful
as we consider the various subgroups at work (and play) in American computing
culture.

The term “power user” came into common use in the 1980s, as certain advo-
cates for computing developed special skills for working with or customizing exist-
ing hardware and software. PC power users didn’t simply know the basic features
of computers, operating systems, and applications—they typically purchased and
mastered the fastest, most powerful PCs. They knew the best ways to issue com-
mands, perform common tasks, and find advanced information—before the devel-
opment of the commercial Internet. Power users were often regular readers of Byte,
PC Magazine, Macworld, and Communications of the ACM—the leading consumer
magazines for American PC users. They also participated in user groups or online
bulletin boards, and they often argued for the superiority of one computing plat-
form over another. For example, a power user might be heard extoling the bene-
fits of Macs over PCs, Windows over the Mac, or Unix over Windows. Power users
were essentially advanced users (highly motivated experts who knew all the com-
mands and features in a program), though they typically were not as proficient as
system administrators or the professional computer engineers who designed and
maintained PC systems. Power users typically knew enough about programming

3. Steven Levy, Hackers: Heroes of the Computer Revolution (New York: Anchor Press/Doubleday,
1984; Revised edition, Sebastopol, CA: O’'Reilly Media Inc., 2010), Preface.

172 Chapter 6 Power Users, Tinkerers, and Gurus

to create and edit simple programs, write batch files, manage system memory, and
customize the settings in MS-DOS configuration files such as AUTOEXEC.BAT and
CONFIG.SYS. In the late 1980s and early 1990s, power users often had experience
with a dialect of BASIC, which sometimes served as a gateway to new proficiencies
in FORTRAN, Pascal, assembly language, or C/C++. On the Mac platform, these
coding skills might extend to innovative new products such as Apple Hyper-
Card, a hypermedia programming tool introduced with the HyperTalk language
in 1987.

“Tinkerers” were computer users who creatively adapted existing computer sys-
tems by altering, extending, or repairing them. Tinkering is often associated with
modifying technical systems and peripherals (i.e., the “hardware”), rather than
inventing and constructing new systems. An exception to this was the necessity for
early microcomputer users to assemble the first computers by using mail order kits,
a tradition that continued throughout the 1980s as the owners of “PC clones” often
found it useful to assemble IBM PC-compatible computers via mail order memory
units, parts, and peripherals. Even if the basic computer case and components of a
“clone” computer came ready-made, it might still be useful to upgrade the floppy
disk drives, install new hard disks, and add expansion boards for video support,
serial communications, and extra random access memory (RAM).* Tinkering was
often necessary just to get printers, modems, pointing devices, and other computer
peripherals to come to life or work properly. Computer users who managed this
work and found it rewarding might also claim “advanced hobbyist” or “guru” status,
but even novice computer users were forced into modifying and repairing systems
from time to time, just to make them run properly. In scholarship connected to the
history of technology, tinkering is often studied as part of the “diffusion and domes-
tication” phases of technology adoption, in which members of the public encounter
and try to master new products with technical components. Tinkering is also con-
nected to the forms of power, authority, and resistance that are associated with the
deployment of new technologies.®

Being described as a computer “guru” was the biggest complement of all in
PC culture—at least in the status-conscious circles of authors, power users, and
hackers. The term guru originates in Eastern spiritual traditions—a guru is essen-
tially an enlightened master who acts as a teacher, guide, or expert in enigmatic

4. Although Apple Macintosh computers were not “cloned” and sold through original equipment
manufacturers (OEMs), Mac users still needed to tinker with peripherals and memory boards,
especially when the Macintosh II systems came out in the early 1990s.

5. For a discussion of scholarly approaches to tinkering, see Kathleen Franz, Tinkering: Consumers
Reinvent the Early Automobile (Philadelphia: University of Pennsylvania Press, 2011).

6.1 Computing Terminology 173

domains of knowledge. Gurus (and their Western counterparts, “wizards”) are
not encountered very often, but if you can pin one down their esoteric knowl-
edge is worth contemplating. In the PC software industry, gurus were essen-
tially the hobbyist or “consumer” versions of the corporate master programmer
and accorded social status for their expertise. Gurus often worked for computer
corporations but held jobs that put them outside of regular reporting structures or
software development processes.

Here’s another thing about gurus: in the PC industry they often knew undocu-
mented features, hidden hardware and software tricks, and the location of “Easter
eggs” (hidden messages or rewards) in software. As computer book publishing and
journalism gained momentum in the PC industry, gurus were often sought out as
book authors, columnists, and entrepreneurs. Stereotypically, gurus were thought
of as male, soft-spoken, shy, and anti-social. While it was possible for them to ride
their reputations to lucrative positions, just as often they might walk away from
commercial success, distrusting the spotlight. Many gurus also lived on borrowed
time: their social standing rapidly diminished when the platforms that they cham-
pioned fell out of favor or lost market share, an occurrence that happened regularly
in the PC industry.

Only a few polymaths found it possible to switch from one popular platform to
another and retain their status as an industry expert. This was a significant issue
because programmers were not spread out evenly among the various PC systems.
A 1989 snapshot from the International Data Corporation (IDC) shows the following
breakdown for operating system platforms in the desktop computer market place:
MS-DOS 75%, Windows 14.5%, Macintosh 6.5%, Unix 2.3%, OS/2 1.7%.°

Power users, hackers, tinkerers, and gurus all had some knowledge of program-
ming, but they tended to use their expertise to customize or “supercharge” existing
systems, rather than create entirely new software. As such, advanced users traversed
the boundaries between hobbyist and professional developer. This makes them one
of the more interesting “influencer” groups to assess as we explore the expanding
networks of PC programming culture. To investigate these groups and the plat-
forms that they helped to develop, I'll discuss the writings of Van Wolverton, Dan
Gookin, Andy Rathbone, Cary Lu, Mitchell Waite, and many of the publishers that
worked with them. In Chapter 8, I'll return to an analysis of PC platforms by eval-
uating the commentary of users who wrote to popular computer magazines with
their problems, including Byte, Communications of the ACM, Dr. Dobb’s Journal, and
Macworld.

6. Cited in Gary Andrew Poole, “1991 UNIX Forecast: World issues will govern its continued
growth,” UNIX World, January 1991, 70-77, here at 74.

174 Chapter 6 Power Users, Tinkerers, and Gurus

6.2

Tinkering with Personal Computers

In June 1991, Microsoft released the MS-DOS 5.0 operating system, one of the
strongest-selling versions of its original systems software for IBM PCs and com-
patibles. The retail price for a boxed copy of MS-DOS including software, disks, a
usage license, and documentation was $99.95. (See Figure 6.1.) License packs were
available for $79.95 per machine without documentation, and deeper discounts
were available for corporate customers who bought in bulk. The operating system
also included the QBasic Interpreter, a replacement for GW-BASIC that supported
structured programming, integrated debugging, and many of the popular features
of the Microsoft QuickBASIC compiler. (See Chapter 5 for a technical description
of this product.) Jeff Prosise, a contributing editor to PC Magazine, wrote about the
newest release in the most enthusiastic terms: “Without a doubt, MS-DOS 5.0 is the
best MS-DOS ever... With its many time- and memory-saving features, DOS 5.0 is
worth whatever you pay for it.”” MS-DOS was nearing the peak of its market satura-
tion and relevance for customers in the PC industry. The mainstream computing
press continued to swoon over the product for almost a year, praising its poten-
tial to enhance productivity and transform PC-based computing for business and
home users.

MS-DOS 5.0 eventually achieved an installed base of some 50 million users,
enriching Microsoft and its global partners. A focus of branding and journalistic
prose about this platform was the power and stability that it provided. By the early
1990s, the hardware for IBM PCs and compatible machines had made major strides,
far surpassing the bare-bones systems of the late 1970s and early 1980s. A mid-range
IBM PC or compatible in late 1991 likely included an Intel 486 microprocessor,
4MB of RAM, a 200MB hard drive, one 3.5” diskette drive, and an optional CD-ROM
drive—vastly increasing the memory capacity of a typical system. (IBM’s newest
offering in this category was the IBM PS/2 Model 90, which featured microchannel
bus architecture and a 20MHz Intel 486 microprocessor.) To round out the list of
peripherals, IBM PCs and compatibles were typically supplied with a super video
graphics array (SVGA) color monitor, enhanced keyboard, and a mouse or trackball
pointing device. Most office work groups (and many home users) alsohad accesstoa
high-quality dot matrix printer or alaser printer. (In the latter case, the industry stan-
dard was the Hewlett Packard [HP] LaserJet 4, a laser printer that sold for $2,199 in
1992 and was known for its crisp images and durability.) In short, the era of powerful
mass-market PCs and peripherals had arrived, and users were buying these systems
to operate small businesses, manage their taxes, play computer games, compose

7. Jeff Prosise, “DOS 5: What’s in it for You?” PC Magazine, September 24, 1991, 223-243, here at
243. For a photo of Prosise, see Figure 10.5.

6.2 Tinkering with Personal Computers 175

Figure 6.1 The MS-DOS 5 Upgrade software package (1991). (Used with permission from Microsoft)

music, edit videos, complete school work, create desktop-publishing projects, and
much more.

Throughout 1991 and 1992, powerful, low-cost IBM PC-compatible “clone” com-
puters also flooded the market from manufacturers such as Compagq, Dell, Gate-
way, HP, Micron, Austin, ZEOS, and numerous mail order companies. As economic
historians have pointed out, the intense competition among clone manufactur-
ers lowered costs for consumers and also increased product reliability, creating a
successful new industry.? Virtually all of the IBM PCs and compatibles came with
MS-DOS 5.0 installed, and OEMs paid Microsoft directly to license and install cus-
tom versions of the operating system software. Many OEMs also included Microsoft
Windows 3.0 with their systems, the graphical operating environment released in
May 1990. Windows 3.0 ran on top of MS-DOS and provided a shell through which

8. For the economic impact of clones and the overall growth of the personal computing sector
by 1991, see Richard N. Lunglois, “External economies and economic progress: The case of the
microcomputer industry,” The Business History Review 66, no. 1 (Spring 1992): 1-50, here at 30.

176 Chapter 6 Power Users, Tinkerers, and Gurus

6.3

users could perform common tasks and run built-in utilities such as Write, Paint-
brush, Terminal, and Calendar. Windows 3.0 was the first commercially success-
ful version of Windows, enhanced to use the virtual memory provided by Intel 386
and 486 microprocessors. In 1992, Windows 3.1 was released, with the TrueType
font system, support for multimedia, and additional enhancements. Extending
the PC/MS-DOS platform to include Windows was controversial at first, but by the
mid-1990s most users had accepted the familiar graphical user interface (GUI).

MS-DOS 5.0 and Windows 3.x made PCs easier to use, but there were still prob-
lems and pitfalls. As Joseph Corn points out in User Unfriendly, even with a GUI the
users of PCs were regularly met with steep learning curves and frustration when they
experimented with new systems.® This was most obviously the case with users who
were less experienced with computing technology, and were forced to purchase,
install, and use new products on their own. Often, they had no computer experi-
ence to draw on at all, and it was bewildering for them to learn new skills or find out
how to get help. While it may have been somewhat easier for newcomers to oper-
ate Macintosh computers (and Apple widely advertised this fact), Macintosh prod-
ucts also required considerable expertise, especially when hobbyists attempted to
develop their own software for the Mac’s GUI environment. (See Section 6.7 for an
example of the challenges they encountered.)

As the MS-DOS, Windows, and Macintosh platforms matured, it was often
computer book authors and magazine columnists who users turned to when
they encountered problems. The following sections profile several of these
author/programmer/entrepreneurs and the computing skills that they taught to
both hobbyists and professional workers. Chapter 8 covers essentially the same
time period, but from a user’s perspective.

Van Wolverton and Batch Files

The author Van Wolverton (1939~) made his start with computers in the 1960s,
working at IBM and Intel as a technical writer and editor. Wolverton had both
rich and diverse experiences in the publishing industry, working over the years as
a newspaper reporter, editorial writer, political columnist, and technical writer.
(See Figure 6.2.) In the PC marketplace, Wolverton also had excellent timing. In
mid-1983, when Microsoft was in the planning stages of forming Microsoft Press
to publish books about its products, Wolverton sat down with employees Andrea
Lewis and Nahum Stiskin to outline a “behind the scenes” guide to MS-DOS, the

9. Joseph Corn, User Unfriendly: Consumer Struggles with Personal Technologies, from Clocks and
Sewing Machines to Cars and Computers (Baltimore, MD: The Johns Hopkins University Press, 2011).

6.3 Van Wolverton and Batch Files 177

Figure 6.2 Van Wolverton at Intel Corporation in Santa Clara, California, where he worked as the
manager of a technical writing group. This image was taken in 1979, about 4 years before
Wolverton started work on the first edition of Running MS-DOS. (Photo courtesy of Van
Wolverton)

company’s newest operating system.'® Once Microsoft Press had been formally
organized in November 1983, Wolverton started writing. His work eventually led to
the publication of two books for beginning and advanced users, Running MS-DOS
(1984) and Supercharging MS-DOS (1986).! Both books promoted the IBM PC and
compatibles platform at a time when it was new and confusing for early adopters.

10. Andrea Lewis met with Wolverton first, followed by a conversation with Nahum Stiskin about
the details of the Microsoft Press publication. For those familiar with the early history of Microsoft,
Lewis was the original technical writer for the company and one of the two women pictured in
the famed “Albuquerque” photograph of the original Microsoft employees. Stiskin helped to start
Microsoft Press in late 1983 and first introduced Press authors to the extended PC community at
the West Coast Computer Faire from March 22 to 25, 1984. I thank Van Wolverton for this recollec-
tion, which I received via email correspondence in July 2019. For a photo of Stiskin and early notes
about Microsoft Press, see Denise Caruso, “People,” InfoWorld, April 23,1984, 21.

11. Van Wolverton, Running MS-DOS (Bellevue, WA: Microsoft Press, 1984); Van Wolverton, Super-
charging MS-DOS (Bellevue, WA: Microsoft Press, 1986).

178 Chapter 6 Power Users, Tinkerers, and Gurus

Although computer books about DOS were generally successful, Running MS-
DOS became a true market leader, selling millions of copies and insuring that
Microsoft Press would be profitable and could expand their operation in new
directions. To maintain a leadership position in the DOS book market, Microsoft
Press carefully planned and published new editions of Running MS-DOS for every
new release of the software through version 6.22. Wolverton deserves credit
as a pioneering technical writer who revised these books and popularized the
commands and procedures used on DOS-based PCs. One area of interest was batch
file programming, or coding with a rudimentary scripting protocol that allowed users
to customize their systems by automating basic commands and procedures. To
write batch files, DOS users needed a thorough knowledge of DOS commands, as
well as some exposure to programming concepts and computational logic—roughly
the amount that they would receive if they took an introductory course (or read a
book) on FORTRAN, BASIC, Logo, or Pascal programming.

From earlier work at Microsoft, Wolverton had some inside knowledge about the
internal features of DOS and the subtleties that users might experience when using
the system.!? Moreover, Wolverton was well supported by the staff of Microsoft
Press, including JoAnne Woodcock, a master editor who worked diligently with
Wolverton during each stage of the publishing process. Running MS-DOS was
lavishly illustrated and printed in multiple colors, but the prose was especially
sparkling—a synthesis of Wolverton, Woodcock, and, according to Wolverton, his
wife Jeanne’s thoughtful contributions. I observed some of this work first hand
when I became the technical editor for the third edition of Running MS-DOS in 1988.
(See Figure 6.3 for an image of the book’s cover.) As a technical editor, it was my job
to carefully test and verify the instructions in the book, experimenting with batch
file programming on numerous systems and switching back and forth between dif-
ferent versions of DOS. We all knew that previous editions of the book had sold
millions of copies, and it was important to make every detail as technically accurate
as possible, including the command reference at the end of the book. Throughout
Microsoft, we knew that many users of MS-DOS were finding the product challeng-
ing to use, and so we created a narrative and curriculum that moved from one topic
to the next, allowing those with some knowledge of operating systems to learn more.

What topics were important for early MS-DOS users to know? Running MS-DOS
taught readers how to work with files and diskettes, create and manage directories,
create text files with Edlin, launch applications, and construct batch files. Batch file
programming was intentionally set aside as a “power user” topic. In that section,

12. Van Wolverton, Running MS-DOS, 20™ Anniversary Edition (Redmond, WA: Microsoft Press,
2003), xvii.

6.3 Van Wolverton and Batch Files 179

Figure 6.3 Running MS-DOS, Third Edition (1988), by Van Wolverton. Updated for P-DOS/MS-DOS
version 4.0, this bestselling volume helped novice and experienced users manage their
systems and issue DOS commands. (Used with permission from Microsoft)

Wolverton explained that experienced users could string together dozens of MS-
DOS commands in a way that would automate common processes. When the com-
mands were associated with a name, using the name later would essentially extend
the MS-DOS command structure. Wolverton then explained how to manage two spe-
cial settings files called AUTOEXEC.BAT and CONFIG.SYS files. These start-up files
configured MS-DOS after the system “booted,” and they established core system
settings, which could be unique on each system. While batch file programming is
technically more like “scripting” than building software with a general-purpose pro-
gramming language, the process seemed non-trivial for most MS-DOS users. As a
publishing category, batch file programming fit into what authors and publishers
were describing as the “programming skills” classification in the 1980s. This was
also the domain of the power user and advanced hobbyist. In sociological terms,
we might consider batch file programmers to be the rank and file developers of
Code Nation. Many moved back and forth between batch file programming, coding

180 Chapter 6 Power Users, Tinkerers, and Gurus

in BASIC, and writing macros for popular applications such as Microsoft Excel or
Microsoft Word. On a Unix/Xenix system, they would be among the people using
the AWK reporting tool, which is commonly used for pattern searching and text
processing.

But what was it like to enter simply MS-DOS commands? For those who haven’t
experienced the excitement of typing system directives at a text-based prompt,
imagine thatyou are typing cryptic words and symbols into a text box or instant mes-
sagewindow. Each time thatyou press the Enter key, the MS-DOS command thatyou
enter is processed by the operating system. In most cases, you'll see a visual repre-
sentation of the command that you entered and the work that takes place when you
enterit. Once you get the hang of entering individual MS-DOS commands, you might
want to try a few that support extra abbreviations and symbols to help them do their
work. These modifying characters are called “parameters” in the DOS documenta-
tion. For example, to display a list of the electronic files in a folder on a diskette that
is inserted into disk drive “A” in your computer, you would type the following “dir”
command at the MS-DOS prompt:

dir a: /p

The trailing parameter /p is an option that forces MS-DOS to pause the directory
listing after one screen of information has been displayed. This is useful if the com-
mand has produced a lot of output, because the MS-DOS output window has no visi-
ble scroll bars. Directory (“dir”) directs MS-DOS to display the names and attributes
of files so that you can review them and consider doing something with them in
a subsequent command. (If you’re wondering how to continue viewing files in an
output window that is paused, you simply press the spacebar on the keyboard.)

I offer this detailed walkthrough as a way of explaining why books like Wolver-
ton’s were so helpful, and, ultimately, successful. DOS commands are essentially
non-intuitive, and most PC users learned just enough to get by. Those who knew
all the parameters and switches were referred to as power users. They had higher
status and they were in greater demand than casual computer users. Not to teach
simple commands like Directory, but to help perform more sophisticated tasks, like
managing data on systems, backing up files, and running applications in creative
ways.

Here’s another example from the third edition of Running MS-DOS.'3 It refers
to the Mode command, a tool that most users issued infrequently. Although the
command is cryptic, it is also very powerful, packing a lot into a few short direc-
tives. This example relates to printing, and it also digresses into the murky world
of a computer’s external hardware interfaces or ports. To change the parallel printer

13. Van Wolverton, Running MS-DOS, Third Edition (Redmond, WA: Microsoft Press, 1988), 436.

6.3 Van Wolverton and Batch Files 181

attached to the first parallel printer port on an IBM PC or compatible system so that
it is configured to print 132 characters per line and 8 lines per inch, you would type
the following command at the MS-DOS prompt:

mode 1lptl: 132,8

Why would a person use such a command? For DOS users who owned a paral-
lel printer, the Mode command was used in this way to configure a printer for
printing.!* Such a step was often necessary before using a printer, because DOS-
based computers didn’t automatically “know” what types of devices were attached
to them through the built-in parallel and serial ports. (This “plug and play” func-
tionality would later be added to Microsoft Windows, but not MS-DOS.) It was easy
enough to type in this command, but how did you learn the various parameters and
numbers to use? It took research, often via a printer manual that might clarify the
available options. Wolverton’s Running MS-DOS was one of the best resources that
users could find to do this sort of work.

DOS was not the only operating system that presented a “command-line” inter-
face, of course. Many contemporary operating systems offered similar commands
and parameters. These systems included DEC OpenVMS, Apple DOS, CP/M, and
mostvariations of Unix. Despite the learning curve, once you learned the syntax, you
could do alot of work quickly and efficiently with these systems, because they didn’t
require lots of overhead to display and run a GUI. Indeed, some computer users pre-
ferred command-line systems so much that they strongly resisted the onslaught of
GUI platforms that arrived in the mid-1980s, including Mac OS, Microsoft Windows,
08S/2, and the X Window System (a popular GUI framework for Unix-like systems).

Van Wolverton gained great credibility as a “DOS guru” in the early years of MS-
DOS, and he was esteemed by novice users and software developers alike. As the
user community grew and became more experienced, publishers like Que, Sams,
Microsoft Press, and International Data Group (IDG) followed with many books for
power users and corporate information workers. Wolverton’s Supercharging MS-DOS
is one prominent example of this phenomenon.'® Supercharging MS-DOS picked
up where Running MS-DOS left off, providing more information about customizing

14. “Parallel” refers to the way the data was sent; IBM’s parallel ports and printers typically handled
8 bits of data at once.

15. Cited already, the first edition was published in 1986 and the second edition (updated for MS-
DOS 4.0) was published in 1989. In 1991, the third edition arrived, updated for MS-DOS 5.0 and
featuring the work of Dan Gookin (see Section 6.4), an experienced PC author. I draw quotations
from the co-authored book; see Van Wolverton and Dan Gookin, Supercharging MS-DOS, Third
Edition (Redmond, WA: Microsoft Press, 1991).

182 Chapter 6 Power Users, Tinkerers, and Gurus

IBM PCs and compatibles. The authors discussed using IBM’s extended charac-
ter set, experimenting with hexadecimal arithmetic, controlling the keyboard with
ANSI.SYS, optimizing printers, using advanced graphics adapters, and managing
system memory. Power users, tinkerers, hackers, and would-be gurus readily pur-
chased this book and worked to implement Wolverton and Gookin’s timely advice.
Training resources of this type were not meant to be read from cover to cover, of
course, but consulted when advanced users wanted to tinker with their systems, fix
unexpected problems, and make the computer and its software run more efficiently.
In addition, power user books helped users make their DOS-based systems appear
visually different from other users, prompting admiring glances and questions like
“How did you get your PC to display those colors?” or “Can you show me how to
configure my system like that at startup?”

A core group of power users seemed to take shape around the batch-file writing
activity, with many DOS users enjoying it so much that they eschewed taking deeper
dives into programming with languages like BASIC, Pascal, or C. Internally, a batch
file is simply an ASCII text file containing one or more DOS commands that the
user wants to execute as a set, typically to perform some unified function. According
to The MS-DOS Encyclopedia, batch files offer a handy mechanism for performing
frequently-used commands without having to type them each time that they are
needed.!® These scripts were invoked just like regular DOS commands—users typed
the name of the batch file at the DOS prompt and pressed Enter. The contents of the
batch file were then executed in sequence by a special batch-file interpreter built
into the command processor (known as COMMAND.COM).

The “programmable” aspect of DOS batch files is related to the option that users
have to include replaceable parameters inside the batch file. These parameters hold
spaces for filenames and other useful information that the user might supply on the
command line when the batch file is invoked. Special batch file commands such
as If, Goto, For, Pause, Echo, and Rem could be used to add programmable fea-
tures to the rudimentary scripting language. These commands allowed the user to
build simple decision structures, manage program flow, create textual output, and
add documentation attributes—in short, the elements of a simple programming
language that could control what happened within the MS-DOS operating system.

In Supercharging MS-DOS, Van Wolverton and Dan Gookin provided readers with
dozens of clever batch files, including the Findfile.bat utility, Findfile.bat was used
to locate an individual file or a pattern associated with files (such as all files with the
extension .EXE) somewhere on the user’s hard disk. Why would this be necessary?
Although DOS users initially stored files on floppy disks, hard disks were introduced

16. Ray Duncan, ed., The MS-DOS Encyclopedia (Redmond, WA: Microsoft Press, 1988), 752.

6.4

6.4 The DOS for Dummies Phenomenon 183

with the IBM PC XT in 1983, and this storage media became a standard feature of
personal computing in the following years. Hard disks, increasing in size each year,
became a distinguishing feature of the PC Revolution as it quickly distanced itself
from the mail-order kits and floppy-drive systems of the 1970s. Findfile.bat shows
how this transition impacted the users of computers with hard disks. Importantly,
it presented a capability that the MS-DOS operating system did not offer until later
versions. Such a tool would come to be called a “utility” program, i.e., a batch file or
application that could help users save time and increase their “productivity” (the
latter term becoming an acute obsession of the period). For more about creative
responses to this issue, see Section 9.2: “Inside the IBM PC with Peter Norton.”

The DOS for Dummies Phenomenon

DOS “guru” Dan Gookin began writing computer books in 1987 with a modest title
co-written by Andy Townsend entitled Hard Disk Management with MS-DOS and PC-
DOS.Y7 Typical of early books about personal computing, this volume focused on a
topic that had become vexing for many: file management and organizational tasks.
In the era of hard disks, a DOS-based computer inevitably had numerous applica-
tion programs and data files that needed to be systematized, backed up, and cared
for. Power users, professional programmers, office workers, and gamers all had to
think about these tasks—few were able to use computers without organizing and
safeguarding their files.

When Gookin worked on the 1991 revision to Supercharging MS-DOS (which
Wolverton was unavailable to complete), he had already written 15 books for a
selection of reputable computer book publishers. Over the next few years, Gookin
would become one of the most successful technical writers of his era. After Super-
charging, Dan wrote Managing Memory with DOS 5 and MS-DOS to the Max for
Microsoft Press, feeding the power user audience with insider information about
how the MS-DOS 5.0 and MS-DOS 6.0 operating systems worked.!® Gookin then
went to work on a phenomenally successful group of titles for IDG Books. (See
Figure 6.4 for a photo of Dan Gookin and several of these books.)

I was the Microsoft Press acquisitions editor responsible for the publication of
Gookin’s Microsoft books, including Supercharging MS-DOS, Managing Memory, and
MS-DOS to the Max. I met Dan in 1990 after reading his short book DOS Secrets,

17. Dan Gookin and Andy Townsend, Hard Disk Management with MS-DOS and PC-DOS (Blue Ridge
Summit, PA: TAB Books, 1987).

18. Dan Gookin, Managing Memory with DOS 5 (Redmond, WA: Microsoft Press, 1991); Dan Gookin,
MS-DOS to the Max: Tools and Techniques that Will Make Your Hard Disk Scream! (Redmond, WA:
Microsoft Press, 1993).

184 Chapter 6 Power Users, Tinkerers, and Gurus

Figure 6.4 Dan Gookin in his writing studio and workshop (2014). On the shelf behind Gookin are
several of his “Dummies” books. (Courtesy of Dan Gookin)

published by Computer Publishing Enterprises.!® Mr. Gookin is one of the funni-
est and hardest working authors that I have ever worked with, and I have noth-
ing but admiration for what he was able to accomplish in the wild and woolly
days of early DOS publishing. Typically, Gookin would write a 300-page book in a
matter of 8 to 10 weeks, which I witnessed and supported on several occasions.
He also had an incredible knack for developing technical content on timely top-
ics, especially when they addressed real-world problems that computer users were
struggling with.

For example, Gookin’s Managing Memory with DOS 5 book helped users to find
extra space in RAM for their DOS-based programs. The book was so successful that
an incoming MS-DOS 6.0 program manager at Microsoft vowed (in private) to mod-
ify the operating system software so that it was no longer necessary to “buy a book

19. Dan Gookin, DOS Secrets: An Easy Guide to Understanding the Power of MS-DOS (San Diego, CA:
Computer Publishing Enterprises, 1990).

6.4 The DOS for Dummies Phenomenon 185

from Gookin” every time that a user wanted to configure memory in the best way
possible. In short, Dan had figured out how do things that the current version of
MS-DOS didn’t do well, and he motivated Microsoft to improve their software and
user experience.

Gookin acquired his information through careful investigative work and occa-
sional contact with employees from the Microsoft product groups. Microsoft was
eager to support the flow of accurate information, especially if it helped people to
use the software. Book authors like Gookin basically collaborated with publishers
and software teams to distribute information that might help computer corpora-
tions increase their market share. They also hoped that the books would enhance
customer satisfaction and productivity with the products. The ongoing collabora-
tion took the form of new books, magazine articles, radio show appearances, and
participation at industry events such as COMDEX and Macworld Expo. (For more
about industry trade shows, see Chapter 11.)

Dan Gookin’s commercial success skyrocketed as the installed base of MS-DOS
users grew. After a few Microsoft Press titles, he co-developed a new concept for
IDG Books that became the popular DOS for Dummies series. Debuting in November
1991, the Dummies books were casual and humorous “how to” guides for beginning
and new-to-topic PC users. In addition to funny and quick-witted descriptions, the
first Dummies books featured clever cartoons by Rich Tennant. DOS for Dummies
soon became a commercial success, with new editions published for each pend-
ing version of MS-DOS. By 1993, IDG Books reported that the Dummies series had
over two million copies in print, a statistic they happily printed on the front cover
of their books.?® (See Figure 6.5.) Over time, the DOS for Dummies books appeared
to catch up and surpass what even Van Wolverton’s Running MS-DOS series had
sold, although an exact sales and revenue comparison is not possible. However,
IDG fully committed to the concept and hundreds of new Dummies books about
computers, software, and popular culture soon appeared. Although they were writ-
ten by other authors, most traded on the same humorous and informal style that
Gookin had pioneered. At IDG, CEO John Kilcullen masterfully expanded the line
of low-cost books into a global publishing phenomenon that caught the atten-
tion of all the trade publishers and made Dummies books into an American com-
modity.2! A movement that began by selling books to DOS power users ended up
transforming the U.S. publishing industry. An outstretched arm and placard on

20. Dan Gookin, DOS for Dummies, Second Edition (San Mateo, CA: IDG Books Worldwide, 1993).
The second printing of the second edition indicated that over 2,003,267 copies of Dummies books
were in print.

21. Rachel Donadio, “Dumbing up,” New York Times Sunday Book Review, Sept. 24, 2006.

186 Chapter 6 Power Users, Tinkerers, and Gurus

Figure 6.5 Cover of DOS for Dummies, Second Edition (1993), by Dan Gookin. An outstretched arm
holding what appears to be a protest sign emphasizes the idea that the book is con-
nected to a popular social movement. (Cover image courtesy of Wiley Publishing and
used with permission)

the cover of most books even made the titles appear to be part of a popular social
movement.

IDG’s sales figures were certainly astonishing to those of us who witnessed them
first-hand, and it must be emphasized that in the early 1990s nothing seemed
“inevitable” about the runaway success of the Dummies series. In terms of MS-DOS,
there were many good books about PC-based operating systems, and not all of
them sold well, despite skilled authors, thoughtful content, quality controls, and
well-executed marketing campaigns. The Dummies series was essentially a triumph
in timing and creative coordination; several editorial and marketing factors inter-
twined to help the Dummies books attract an audience and gradually expand their
market share. These factors included Gookin’s timely and humorous prose (often
imitated by competitors, but hard to replicate), the use of clever art and illustra-
tions, Kilcullen’s marketing innovations, the book’s vibrant yellow color and brand-
ing, and a relatively low price, which came in much lower than the competition.

6.5

6.5 The Economic Impact of Personal Computers 187

Moreover, there is the curious detail that many buyers seemingly had no problem
with being identified as a dummy, a branding attribute that attracted many buyers
but offended others.??

The most popular book in the Dummies series eventually became Andy Rath-
bone’s Windows for Dummies, which has sold a reported 15 million copies to date,
making it the bestselling computer book of all time.?® Over the years, Rathbone has
expanded his writing portfolio to include dozens of books about Microsoft’s oper-
ating systems. As of this writing, the total number of Dummies books is approach-
ing 200 million copies in approximately 2,500 unique titles. IDG Books changed its
name to Hungry Minds Inc. in 2000, and in 2001 the Dummies series was acquired
by John Wiley & Sons.

The Economic Impact of Personal Computers

What happened with PC software sales and book publishing in the early 1990s
felt a bit like a gold rush in the computing industry, although in absolute terms
the volume of software sales for PCs was still dwarfed by the biggest corporate-
software firms in America.?* Microsoft’s revenues grew in these years from $804
million (in 1989) to $4.7 billion (in 1994). The company’s fulltime employee totals
surged from 4,037 to 15,017 during the same period.?> As we have been charting
through software and books, the cultural and economic impact of PCs felt tangible
to Americans in these years, as did the influence of surging companies like IBM,
Apple, Compaq, Dell, Gateway, Lotus Development, Word Perfect, Novel, Adobe,
and Autodesk. What happened with the Dummies series in book publishing also
took place in PC hardware sales and software publishing.

22.In the early 1990s, anecdotal evidence suggested that more women than men self-identified as
“dummies” when it came to computers and books, and this association bothered many in the pub-
lishing community. However, as Joseph Corn suggested in the book User Unfriendly (2011), after a
while the entire PC industry apparently seemed comfortable with making users feel like dummies
in relation to their products. In the coming years, several publishers tried to imitate this branding,
including Alpha Books (The Complete Idiot’s Guides).

23. Andy Rathbone, Windows for Dummies (San Mateo, CA: IDG Books, 1992). The current edition
of Rathbone’s book is Windows 10 for Dummies, Third Edition (Hoboken, NJ: John Wiley & Sons,
2018).

24. See useful comparative statistics between PC software sales and the global software industry
in Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: The MIT Press, 2003), 232. For an analysis of how sales of the IBM PC
compared with products from the other business units within IBM, see James W. Cortado, IBM:
The Rise and Fall and Reinvention of a Global Icon (Cambridge, MA: The MIT Press, 2019), 379-418.

25. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 233.

188 Chapter 6 Power Users, Tinkerers, and Gurus

6.6

Because Internet-based data sharing was not widely available until the mid-
1990s, the best mechanisms for sharing technical information about PC products
continued to be books, magazines, and newsletters. These channels were supple-
mented by user group meetings and computer industry trade shows, where people
could meet face to face. How were software products supported when more imme-
diate concerns came up? In the early 1990s, most U.S. software companies provided
some level of phone and fax machine support for their products, as well as infor-
mation through emerging dial-up networks like CompuServe and America Online
(AOL). The dial-up networks provided information and many of the features that
would later become popular on the World Wide Web, such as email, file transfer
capability, news feeds, discussion forums, and shopping opportunities.

The service and information gap in the software industry provided the perfect
opportunity for authors and entrepreneurs who wanted to support new software
users through their products. In such a dynamic environment, power users and
gurus enjoyed special pride of place, especially in locations where new technologies
were being purchased and deployed.

Cary Lu Introduces the Macintosh
For the Apple Macintosh, the author equivalents of Wolverton and Gookin were
Cary Lu and Mitchell Waite. These author-entrepreneurs encouraged the rapid
development of the Mac platform in the 1980s, and they published thousands of
books for users who were curious about the Mac’s features and the impressive new
graphical operating system.

CaryLu (1945-1997)was awell-respected Apple insider and columnist who made
a name for himself in business and technical publishing with the iconic Apple
Macintosh Book, released in 1984 to coincide with the debut of the first Mac.?® Lu
was born in Quingdao, China and arrived in the U.S. at the age of 3, settling in
central California with his family.?” Cary Lu received an undergraduate degree in
Physics from the University of California at Berkeley and a Ph.D. in Biology from
the California Institute of Technology. After graduation, Lu completed research in
visual perception at Bell Telephone Laboratories, and these experiences led him to
a fascination with television and the medium’s potential to inform and shape the
public. In the coming years, Lu developed short films for Sesame Street and other
programs for children. He also helped to develop the Nova series for PBS, and he

26. Cary Lu, The Apple Macintosh Book (Bellevue, WA: Microsoft Press, 1984). A popular second
edition was published by Cary Lu and Microsoft Press in 1985. In all, four editions were published.
27. Biographical details can be found in John Markoff, “Cary Lu, 51; put love of science into TV
shows, books and films,” New York Times, Sept. 29, 1997; and Paul Andrews, “Cary Lu taught, wrote
about and promoted computer use,” Seattle Times, Sept. 25, 1997.

6.6 CaryLu Introduces the Macintosh 189

Figure 6.6 Microsoft Press authors Cary Lu (left) and Grant Fjermedal examine each other’s work
on the Microsoft campus in 1989. Lu is holding Fjermedal’s book, The Tomorrow
Makers, and Fjermedal is holding Lu’s The Apple Macintosh Book, Third Edition.
(Used with permission from Microsoft)

regularly contributed to the programming at CBS News and NBC. In short, Cary Lu
was a curious, well-travelled author who was passionate about the news, and science
and technology education. (See Figure 6.6.)

In his pioneering Apple Macintosh Book, Lu described his introduction to the Mac
as the result of intentional collaboration between Apple and Microsoft in 1983 and
1984. “This book comes out of a conversation between Bill Gates of Microsoft and
Steve Jobs of Apple,” wrote Lu in his preface to his “how to” book, dated February
1984.%8 As Lu describes it, Apple was finishing the user interface for the Macintosh
and Microsoft was working on a supporting version of the Excel spreadsheet, which
came out first on the Mac platform. Bill Gates wanted to support the Mac’s initial
release, and he suggested that the newly formed Microsoft Press division publish a
book on the system as they had done for MS-DOS.2° This publishing effort would
help support and advertise the new Mac system, which would drive the sales of
Microsoft products.

28. Lu, The Apple Macintosh Book, Second Edition (Redmond, WA: Microsoft Press, 1985), xi.
29. Lu, Apple Macintosh, Second Edition, xi.

190 Chapter 6 Power Users, Tinkerers, and Gurus

Nahim Stiskin of Microsoft Press signed up Cary Lu, and Lu then worked with
Chris Espinosa, Martin Haeberli, Mike Murray, Mike Boich, and Guy Kawasaki at
Apple to document and explore the new system. (For more about the early Macin-
tosh team and their production marketing strategies, see Chapter 11.) Jeff Harbers
at Microsoft also played an important role in the project, answering Lu’s questions
and introducing the writer to the Macintosh application team in Bellevue. The Mac-
intosh Book would join Running MS-DOS as two of the first books published and
distributed by Microsoft Press.

On the opening pages of the Macintosh Book, Cary Lu echoed the words of
Steve Jobs and earlier computing pioneers such as Seymour Papert and Arthur
Luehrmann. Rejecting the jargon of the techno-elite, Lu wrote that computers
should work the way that people do. In his mind, this was the real way to address
the computer literacy problem that had been in the news.

Computers are supposed to help us get work done quickly, easily, and effec-
tively. So why have they become cloaked in mystique? Because most com-
puters are difficult to use. So difficult, in fact, that we hear about “computer
literacy” as if everybody must learn a new language. Computer enthusiasts
haven’t helped by talking computer jargon that obscures rather than clari-
fies. And so the mystique has grown: To work with a computer, we must think
like a computer.

Nonsense. Computers should work the way we do.3°

Lu proceeded to explain what new Macintosh owners needed to know about their
software, hardware, and decision making on a computer. Carefully-illustrated dia-
grams explained how the Macintosh mouse, keyboard, disks, and printers worked.
Lu covered issuing commands in the GUI, setting up networks, running business
applications, troubleshooting, and achieving compatibility with IBM PCs and com-
patibles. Of special interest to me is the book’s lengthy chapter on programming
languages (significantly updated in the 1985 edition), in which Lu surveys the avail-
able programming tools for the young Mac platform. Lu introduced the following
products (companies in parentheses):

Microsoft BASIC for the Macintosh (Microsoft)
Macintosh Pascal (Think Technologies)

Apple Lisa Pascal for the Macintosh (Apple Computer)
UCSD Pascal (Softech Microsystems)

30. Lu, Apple Macintosh, Second Edition, xv.

6.6 CaryLu Introduces the Macintosh 191

Modula-2 for the Macintosh (Modula Corporation)

Logo for the Macintosh (Microsoft/Logo Systems of Montreal)
LISP for the Macintosh (ExperTelligence)

MacForth (Creative Solutions)

MasterForth (Micromotion)

Neon (Kriya Systems)

Mac Cobol for the Macintosh (MicroFocus)

MacFortran (Absoft)

PortaAPL for the Macintosh (Portable Software)

Macintosh Assemble/Debugger (Apple Computer)

While the compilers were designed to produce programs that would run under the
original Macintosh operating system (a system eventually named “Mac OS”), devel-
opers needed to consult detailed Apple system manuals if theywanted to take advan-
tage of the unique features of the new platform. These specifications they could
find in a three-volume series published by Apple Computer entitled Inside Macin-
tosh (1985). Also essential was a two-volume series written by Stephen Chernicoff
entitled Macintosh Revealed (1985).31

It may seem surprising that so many programming languages for the Macintosh
were available within 18-months of its initial release. However, as with the IBM PC
and compatible platforms, there was still little in the way of commercial software
available for early Mac customers, and the argument over which programming lan-
guage would be dominant was far from settled. The first software publishers for the
Mac were used to selling interpreters and compilers to early adopters. After all, most
PC users in 1985 realized to create anything really interesting on a microcomputer
you needed to create your own software. However, Lu raised some objections to the
common wisdom of his day. Instead, he asked, “Do you need to program at all?”

As noted in Chapter 4, the public position of Apple in the mid-1980s was that
most people needed to learn how to use application software but they didn’t need
to learn how to write computer programs. Cary Lu agreed. “For most people [who
wonder if they need to code], the answer is no. Increasingly sophisticated applica-
tion programs will fill all common requirements, including most tasks previously
accomplished by writing programs. So the majority of microcomputer users will

31. Apple Computer, Inc., Inside Macintosh, Volumes I, II, and III (Reading, MA; Wokingham:
Addison-Wesley, 1985); Stephen Chernicoff, Macintosh Revealed, 2 vols. (Hasbrouck Heights, NJ:
Hayden Book Co., 1985).

192 Chapter 6 Power Users, Tinkerers, and Gurus

6.7

never write programs—at least not in the traditional sense.”32 However, Lu con-
ceded, “If you need functions that packaged software cannot provide, or if you are
simply curious, by all means learn to write your own programs.”33

Probably for these reasons, Cary Lu never wrote a programming primer. How-
ever, his instruction for new users, power users, and office workers was much
admired, and he helped the Macintosh platform gain much needed momentum
in the 1980s. Erik Sandberg-Diment of the New York Times wrote about his signal
contribution: “The best book I have seen so far is The Apple Macintosh Book by Cary
Lu.” The consummate professional went on to become a founding editor of High
Technology magazine, a technology editor for Inc. magazine, and a regular contribu-
tor to Macworld. Lu’s early death at the age of 51 was deeply felt in the Macintosh
community. “Cary’s interests and talents were very broad,” wrote Bill Gates in a
statement for Lu’s obituary. “Iam proud to be a part of an industry that was enriched

by his contribution.”3*

The Waite Group’s Macintosh Primers
Although Cary Lu believed that most Mac users would eventually be free of coding
responsibilities, Mitchell Waite (1946-) wasn’t so sure. Mitchell (“Mitch”) Waite
was also an Apple insider who had seen up close what innovative programmers
could do with their systems. He was one of the original owners of the Apple I
computer, which he purchased in 1976 after seeing the system at a Homebrew
Computer Club meeting.>® The early community of Apple I users was relatively
close-knit, so Waite was able to interact directly with Steve Wozniak and Steve
Jobs about the hardware and how he was using it.3¢ These insights helped Waite
understand how important microcomputers were, and he became one of the first
author-entrepreneurs in the San Francisco Bay Area to write popular books about
electronics and microprocessor-based systems.

Mitch Waite’s formative years were all in Northern California. He studied Physi-
cal Sciences and Mathematics at the College of Marin in Kentfield, California from
1968 to 1971, followed by a curriculum in Physics at Sonoma State College from

32. Lu, Apple Macintosh, Second Edition, 123.

33. Lu, Apple Macintosh, Second Edition, 123.

34. Markoff, “Cary Lu, 51” New York Times, Sept. 29,1997.

35. Waite purchased the system at The Byte Shop in San Rafael, California, an electronics store
opened by Paul Terrell in late 1975. The Byte Shop was the first retail store to sell the Apple I
computer. Eventually, Byte Shops opened throughout the region.

36.The AppleIstoryand other biographical details can be found in “Mitch Waite,” interview by Leo
Laporte, Triangulation, Episode 252, June 6, 2016. https://twit.tv/shows/triangulation/episodes/
252. Accessed August 22, 2019.

https://twit.tv/shows/triangulation/episodes/252
https://twit.tv/shows/triangulation/episodes/252

6.7 The Waite Group’s Macintosh Primers 193

1971 to 1974. During these years, Waite was fascinated with electronics, and he
spent much of his spare time shopping for circuits and spare parts at U.S. Army
surplus stores. After experimenting with oscilloscopes and brain wave-measuring
devices, he co-authored his first book with Michael Pardee entitled Sight, Sound, and
Sensation (1974). The paperback explored DIY electronics projects including creat-
ing art with an oscilloscope, generating electronic music, monitoring muscle-wave
biofeedback, running a laser-light show, and experimenting with extra-sensory per-
ception (ESP).3” Waite then became a technical writer for a digital telephone sys-
tems company, preparing manuals for Codec-based digital PBX systems. In 1976
and 1977, he co-authored two more books with Michael Pardee about emerging
microcomputer technology, describing early kit-type systems and the microproces-
sors that animated them. (See Figure 6.7.) These experiences motivated Waite to
leave the telephone company and write computer books fulltime.38

Waite was deeply interested in microcomputer programming, and he wanted
to publish books about the subject for hobbyists and other non-academic audi-
ences. Responding to what he perceived as a lack of information about assem-
bly language, BASIC, and early operating systems, he founded the Waite Group
in 1977. The small company specialized in primers and reference works for the
microcomputer stage of the learn-to-program movement. Often the books would
have enigmatic titles, such as The Soul of CP/M (1983), an assembly language primer
written by Waite and Robert Lafore that explored the hidden worlds of CP/M appli-
cation development.3® Over the years, the Waite Group employed the services of
dozens of experienced teachers and technical writers, including Robert Lafore, Ira
Lansin, Dan Putterman, Don Urquhart, and Chuck Blanchard.*® Several members
of this cohort taught physics, astronomy, and computing courses at Marin Col-
lege, where Waite had attended school in the late 1960s. Like Robert Albrecht,
Waite surrounded himself with ambitious collaborators who could work quickly
and well to satisfy the region’s thirst for quality programming titles. By the time the

37. Mitchell Waite and Michael Pardee, Sight, Sound, and Sensation (Indianapolis, IN: Howard W.
Sams, 1974).

38. Mitchell Waite and Michael Pardee, Microcomputer Primer (Indianapolis, IN: Howard W. Sams,
1977); Mitchell Waite and Michael Pardee, Your Own Computer (Indianapolis, IN: Howard W. Sams,
1977). For context and sales figures, see Antic Podcast, “Interview with Mitch Waite,” conducted by
Kevin Savetz, June 16, 2016. https://www.youtube.com/watch?v=x1dU7b4ZkHA. Accessed August
22,2019.

39. Mitchell Waite and Robert W. Lafore, The Soul of CP/M: How to Use the Hidden Power of Your CP/M
System (Indianapolis, IN: Howard W. Sams, 1983).

40. The Waite Group, “Leaders in Best-Selling Computer Books,” [Marketing Brochure],
Greenbrae, CA, 1984.

https://www.youtube.com/watch?v=x1dU7b4ZkHA

194 Chapter 6 Power Users, Tinkerers, and Gurus

Figure 6.7 Photo of Michael Pardee (left) and Mitchell Waite viewing a computerized math program
for children and discussing their current writing projects. An accompanying article
written by Don Keown was published in the Marin Independent Journal on December 8,
1977. (Photo credit: Alfred M. Arn. Used with permission of Marin Independent Journal
Copyright ©2019. All rights reserved)

publishing company was acquired by Simon and Schuster in 1996, the Waite Group
had evolved into Waite Group Press, and they had produced over 100 books for an
expanding national audience.

Although Waite never worked at Apple as an employee, he was closely connected
to Apple staff members, and he was privy to early information about the Apple II,
Lisa, and Macintosh computers. When the first Mac came out in 1984, Waite was in
a strategic position to introduce power users and programmers to the system, and
the Waite Group published a series of innovative titles about it. The Waite Group
began with Microsoft Press primers about BASIC programming, including Microsoft
Macinations: An Introduction to Microsoft BASIC for the Apple Macintosh (1985), and
Macintosh Midnight Madness: Utilities, Games & Other Diversions in Microsoft BASIC
Jfor the Apple Macintosh (1985). (See Figure 6.8.) About the choice of language, Waite
recalled, “Personal computers were a great platform for learning to program. At that

6.7 The Waite Group’s Macintosh Primers 195

Figure 6.8 The Waite Group’s Macintosh Midnight Madness and Microsoft Macinations (both
published in 1985) helped BASIC programmers to create innovative applications for the
new Macintosh operating system. (Used with permission from Microsoft)

time, the most popular language was BASIC.”*! Their books described Macintosh
BASIC 2.0 for the Apple Mac, a powerful interpreted version of BASIC that sold for
$160 and allowed users to write and test programs using the graphical operating
environment of the Macintosh. I analyze some of their work here to show what
the development process was like for Mac enthusiasts in the mid-1980s. The Waite
Group’s tutorials present some of the earliest examples of programming on a PC
with a GUIL

What was early Mac programming like in BASIC? According to industry ana-
lysts, Microsoft BASIC 2.0 provided direct access to the system’s intriguing fea-
tures such as mouse support, pull-down menus, windows with sizing bars, dialog
boxes, buttons, and field editing.** The product also gave new programmers a
chance to experiment with event-driven programming concepts and enhancements
related to graphics, sound, animation, and other gaming features. Microsoft BASIC

41. Antic Podcast, “Interview with Mitch Waite,” conducted by Kevin Savetz, June 16, 2016.
https://www.youtube.com/watch?v=x1dU7b4ZKkHA. Accessed August 22, 2019.

42. Glenn A. Hart, “Microsoft Basic 2.0 for the Mac,” Creative Computing 11, no. 5 (1985): 46-52,
here at 51.

https://www.youtube.com/watch?v=x1dU7b4ZkHA

196 Chapter 6 Power Users, Tinkerers, and Gurus

2.0 also introduced user-defined subprograms, which allowed for local variables,
parameter passing, and re-usable libraries of common routines. These were fea-
tures associated with structured programming, an important transition that I dis-
cussed in Chapter 5. If programmers were not ready for these concepts, however,
they could continue to use the GOTO, GOSUB, and RETURN statements to control
the branching of their programs.

The Waite Group plunged readers directly into this evolving world of pro-
gramming conventions and GUI features. Like their earlier books, Microsoft
Macinations was lavishly illustrated, with numerous diagrams explaining operat-
ing system concepts and language features. The book was organized into two parts.
The first aimed at teaching the fundamentals of the BASIC language—the vari-
ables, graphics, loops, decision structures, subroutines, strings, and arrays that
hobbyists would need to know about as they created simple games and utilities.
The second part explored the new features of Microsoft BASIC 2.0, including the
menus, windows, sound, and graphics capabilities discussed above. The authors
also exposed readers to QuickDraw, the Macintosh’s built-in library of graphics
routines. In this context, they taught programmers how to control mouse clicks,
graphics animation, multi-channel sound, and disk file access. The exercises were
designed for the original “classic” Macintosh system, powered by the Motorola
68000 microprocessor with 128K and 512K memory configurations.*3

The Waite Group carefully oriented programmers to the GUI of the Macintosh.
They explored pixels, the coordinate system, the PSET (pixel set) command, and the
LINE (drawline) statement. Their prose was friendly and colloquial, inviting readers
to appreciate the riches that the lay within the new systems:

If you view the Macintosh desktop up close you will notice that certain diago-
nal lines seem to be made up of little dots. These little blips are the secret of
how the Macintosh’s designers made their fortune. Simply said, every object,
every letter, every number, everything or anything displayed on the Mac’s
screen is made up of dots. Because of the way the Mac was designed, you can’t
see these dots when they are side by side in perfect vertical or horizontal lines,
but lines on an angle show them clearly.*

After a discussion of the coordinate system, which arranged pixels into columns and
rows on the screen, the authors put these principles towork in various programming
examples.

43. The Waite Group, Mitchell Waite, Robert Lafore, and Ira Lansing, Microsoft Macinations: An
Introduction to Microsoft BASIC for the Apple Macintosh (Bellevue, WA: Microsoft Press, 1985), xii.

44, Waite Group, Microsoft Macinations, 72.

6.7 The Waite Group’s Macintosh Primers 197

The following routine from Macinations used the LINE, WHILE... WEND,
MOUSE, IF... THEN, and PSET keywords to draw pictures in the Mac’s Output win-
dow with simple mouse drag motions. The code draws a line in the window from
the pixel in column 400, row 10 to the pixel in column 400, row 280. When the user
drags the mouse to the left of this vertical line, their output appears in the form one
might see in a painting program like MacPaint. When the user clicks to the right of
the vertical line, the program terminates. Here is the program code:

LINE (400, 10) - (400, 280)
WHILE x < 400

x = MOUSE (1)
y = MOUSE(2)
IF MOUSE(0) <> O THEN PSET(x,y)

WEND

In this routine, WHILE... WEND is a looping structure, included as a way to make
the program repetitive.*> The WHILE structure directs the program to continuously
monitor mouse activity and then draw something when the user holds down the
mouse button. WHILE begins the loop and WEND ends the loop. The process con-
tinues until the user clicks to the right of the vertical line that has been drawn in
column 400 of the Output window. The MOUSE function is used with three different
arguments (i.e., the number in parentheses). If the mouse button is down, the PSET
command is used to darken a pixel at the current location of the mouse pointer. The
x,y coordinate for the pixel is stored in two integer variables named x and y, which
hold the last location the mouse was at when the MOUSE(0) function was executed.
For each example there is a program listing and one or more sample screen shots.
The second Waite Group book, Macintosh Midnight Madness, attempted to build
on the momentum created by Microsoft BASIC 2.0 in the marketplace. Although the
primer also welcomed new programmers to the development community, it was
really designed to be a “construction set,” allowing more experienced developers
to go a bit farther and take full advantage of the feature-rich, event-driven program-
minglanguage. The book’s reading line, “Utilities, Games & Other Grand Diversions
in Microsoft BASIC,” was printed below the title on a cover that showed a darkened
city scape with a sole computer user programming a Mac in what appeared to be the
wee hours of the morning. The gender of the programmer is unspecified, but within
the book most, if not all, of the gaming examples refer to male stereotypes, such as

wizard, soldier, paratrooper, or simply a “gentleman.”*®

45. Waite Group, Microsoft Macinations, 145.

46. The Waite Group, Dan Putterman, Don Urquhart, Chuck Blanchard, Macintosh Midnight
Madness: Utilities, Games & Other Grand Diversions in Microsoft BASIC for the Apple Macintosh
(Bellevue, WA: Microsoft Press, 1985), 191.

198 Chapter 6 Power Users, Tinkerers, and Gurus

In the course of 425 pages, Macintosh Midnight Madness presented 17 complete
BASIC programs and detailed descriptions. A typical program listing spanned
10 pages or more in monospace font (over 50 lines per page), and so the pro-
grams could stretch to 500 lines or more of code. Programs of this length presented
problems for hobbyist coders to type in and test, especially using the era’s mod-
est debugging tools. (There were no “autocorrect” or “Intellisense” features in the
product, and while the Waite Group explained what coding errors were, they didn’t
emphasize debugging strategies in these titles.) As a partial solution to the chal-
lenge of typing in code by hand, Microsoft Press offered a companion disk for Mid-
night Madness. However, the disk cost $19.95 plus tax and shipping, and a note on
the order card indicated that the fulfilment process could take up to 4 weeks. (The
retail cost of the book itself was cheaper than the disk at $18.95.) As I discussed in
Chapters4 and 5, programmers in the 1970s and early 1980s expected to type in code
from program listings using their own keyboards. Indeed, they found the process
much more agreeable than using punch cards, paper tape, or panel switches to enter
programs as their forbearers had done. But bound-in floppy disks and CDs would
soon change this system for the better, even before the commercial Internet made
downloading software a relatively simple task.

As an example of the Macintosh programs that readers of Midnight Madness
created, let’s examine the MacAnimate application. MacAnimate is a graphics edit-
ing utility that allows users to create individual bitmapped images with a frame
editing tool, then animate the images by displaying them in rapid succession. The
program mimics some of the picture-editing functions popularized by MacPaint, an
application developed by Bill Atkinson, a member of the original Macintosh design
team. In particular, MacAnimate imitates the “FatBits” feature of MacPaint, which
allowed users to create bitmapped images and save them in a frame gallery. FatBits
is essentially a magnification mode in MacPaint where users are able to click indi-
vidual pixels in a “zoomed-in” format. This way of working was adopted by most
graphics editors in the personal computing world. The Waite Group mimicked it via
subroutines that creatively used the PUT, PSET, LINE, PENMODE, and PAINTRECT
commands in Macintosh BASIC 2.0.

The MacAnimate code listing spans 12 book pages and some 550 lines of
BASIC program code. To introduce the program, the authors described the ani-
mation utility’s features and overall design, then stepped readers through a three-
page “program outline,” which offered a structured overview of the program’s
subroutines.?” The outline resembles pseudocode, or a high-level description of a
routine’s operating principles. This description was tailored to the Mac’s unique

47. The Waite Group, Macintosh Midnight Madness, 160-162.

6.7 The Waite Group’s Macintosh Primers 199

system requirements, resources, and memory constraints. In particular, the authors
recognized thatwhen the program is executed on an original Mac with 128K of RAM,
the graphics and animation effects would likely consume all of the system’s mem-
ory. They solved this problem by creating a system of memory “overlays,” which
could be swapped in and out of the memory as needed. This coding tactic would
minimize the danger of memory overflows, and it would allow users to enter up to
18 individual bitmapped images for their animation effect.*®

The memory problem was not unusual in the coding context of early PCs. Pro-
gramming with BASIC and other languages often involved memory management
issues. In this case, the problem was exacerbated by the sizable bitmap array needed
to store the animation images. If readers had access to a more recent “Fat Mac”
machine (a Mac equipped with 512K of RAM), then the memory issue would not
be a problem.?® Still, by respecting that some users still had 128K machines, the
authors provided useful information for developers learning how to write code in
more professional contexts. As we have noted elsewhere, self-taught programmers
rarely had any formal training in operating systems theory or memory management
techniques.

Interestingly, the authors included few truly “structured” program elements in
their code, despite the program’s length and sophistication. For example, although
Microsoft BASIC 2.0 provided support for user-defined subprograms (including the
new SUB, END SUB, and SHARED keywords), these procedural elements were not
used in MacAnimate. Instead, the GOSUB and RETURN statements defined subrou-
tines in the old way and helped to direct program flow. In addition, nolocal variables
were defined or used. Apparently, the concept of using procedures for structured
programming was so new for the Waite Group that they didn’t take the time to
rewrite their code to take advantage them. The team’s first Mac book, published in
the same year, had this to say about the “new” concept of subprograms:

There is one other class of Microsoft BASIC program statements that allow
better organization and structuring. The subprogram statements, consisting
of SUB, END SUB, EXIT SUB, and SHARED, were added to Microsoft BASIC for
the Macintosh to make our programming more powerful. We won’t go into
detail about these because they are quite advanced. They are especially useful
for creating libraries of routines that can be merged into our BASIC programs
without conflicts. For example, a good use for a subprogram would be to
create an additional class of graphics statements, perhaps turtle graphics.>®

48. The Waite Group, Macintosh Midnight Madness, 159.
49. The Waite Group, Macintosh Midnight Madness, 150, 163.
50. The Waite Group, Microsoft Macinations, 174.

200 Chapter6 Power Users, Tinkerers, and Gurus

6.8

To be truthful, the new subprogram statements (SUB, EXIT SUB) were not more
difficult to understand than the old subroutine model (GOSUB, RETURN). In fact,
subprograms are much clearer to read and easier to use. They conform to the pro-
cedural conventions introduced with Pascal and C programming, and they had
been in general use in minicomputer environments since the 1970s. This omission
provides some insight into how the practices of computer scientists and profes-
sional developers were gradually making their way into the power user and hob-
byist communities. The Waite Group would soon be highly skilled at structured
programming, writing modular, object-oriented programming books on C++ and
Javain the years to come.

In the history of BASIC, Microsoft BASIC 2.0 for the Apple Macintosh was an
innovative but ultimately transitional product, containing some of the newer ele-
ments of structured programming and access to the Mac’s intriguing new inter-
face. It was not, however, a compiler, and for this reason it was only of limited use
for professional software development. This enhancement would need to wait for
Microsoft QuickBASIC 1.0 for the Apple Macintosh, a true compiler product for the
Macintosh community that debuted for Mac System 6 in 1988.%! This is the product
that David Rygmyr and I used in our Learn BASIC for the Apple Macintosh Now book,
published in 1990. (For more information, see Chapter 5.)

The Maturing Mac Platform

By the early 1990s, hardware for the Macintosh platform changed dramatically,
improving the computing experience for Mac users in ways similar to what power
users on the “Wintel” platform gained with new machines. In mid-1991, Apple sold
a range of desktop Macs, including the Macintosh IIfx, Macintosh IIci, and Macin-
tosh SE/30. The first two systems were designed to use replaceable, “stand-alone”
monitors. These configurations replaced the built-in monitor setup that was typi-
cal of the “classic” Macs. A mid-range Macintosh IIci with 5MB of RAM, an 80MB
hard disk, a stand-alone color graphics monitor, enhanced keyboard, and mouse
was priced at $5,969.

The new Macintosh systems became popular in businesses and schools,
and many offices also purchased a mid-range Apple laser printer, such as the
LaserWriter IINT, which retailed for $3,999 in mid-1991.°2 Home Mac users
certainly coveted the high-end laser printers, but often settled for the Apple
ImageWriter II, a dot-matrix alternative with a retail price of $595. Even with the

51. For a list of features, screen shots, and coding examples, see Microsoft Corporation, Microsoft
QuickBASIC User’s Guide for Apple Macintosh Systems (Redmond, WA: Microsoft Corporation, 1988).

52. See “MacBulletin,” Macworld, June 1991, 17.

6.8 The Maturing Mac Platform 201

lower-priced peripherals, it was obvious that Macs were more expensive than sim-
ilarly equipped DOS/Windows machines. The open question was whether Macs
were more powerful than DOS-based PCs, and if they offered more bang for the
buck. Industry pundits sometimes believed so, and there were many debates about
this question in computer publications. The price wars reached their zenith in
the mid-1990s, when magazines like Macworld and PC Magazine published reg-
ular, grid-based price comparisons in their product review articles. These high-
lighted what the editors believed to be the “best values” on each platform. PC World
flagged their recommended products with “Best Buy” badges. PC Magazine dis-
played “Editor’s Choice” award markers to highlight the products recommended
by their columnists. Often the winners of “best-values” awards were also prominent
advertisers in the magazines—a situation that suspicious readers often highlighted
in “Letters to the editor.”>® For more information about these user complaints, see
Chapter 8.

In July 1991, Apple released System 7, its newest Macintosh operating sys-
tem, which offered an improved Finder, built-in file-sharing, the HyperCard 2.1
database system, and a sharing feature that allowed programs to exchange data
automatically.’® Apple hoped that this release would solidify its power user base and
make inroads against the dominant Wintel platform.>> New Mac users also received
several ease-of-use features, including a new learning feature called balloon help,
which provided contextual assistance with unfamiliar elements of the user inter-
face. This tool displayed short messages in a popup window when the user hovered
the mouse over a new or unfamiliar feature.

Like Windows-based PCs, Mac System 7 users were encouraged to multitask as
they ran applications in the system, loading one application after another and then
switching between them, sharing information via the Clipboard as needed. Some
users found the multitasking feature bewildering, as they had on Windows sys-
tems. In December 1991, Ben Smith, a technical editor and writer at Byte magazine,

53. “Your editorial staff has jumped onto the Microsoft Windows bandwagon whole-hog!
PC/Computing is beginning to look more and more like a Microsoft in-house newsletter than a
magazine for the general computing public.” Andrew Paul Tannen [Bronx, New York], “Letters,”
PC/Computing, May 1991, 25-26.

54. The System 7 upgrade cost $99 for single computers; a group upgrade kit was priced at $349.
For an introduction to the features, see Jim Heid, “Getting started with System 7: A hands-on look
at some of System 7’s most powerful new features,” Macworld, July 1991, 269-278.

55. Midway through 1991, industry analysts predicted that Macintosh sales for 1991 would come in
at slightly less than 2 million computers in the U.S., compared to 21 million IBM PCs and compat-
ibles during the same year. See Sandy Reed, “Apple scouts ahead with System 7,” PC/Computing,
August 1991, 40-42.

202 Chapter 6 Power Users, Tinkerers, and Gurus

raised a fascinating objection to early multitasking features on all PC systems, which
included those marketed by Apple, Microsoft, and Unix-based software publishers.
His comments appear to be among the first to publicly raise concerns about multi-
tasking as a socially disruptive force. Smith warned that too much multitasking
would seriously erode concentration levels and produce a breakdown in personal
communication, if not productivity. This worry has been echoed by more recent
writers in relation to smart phone use, social media, and the dangers of so-called
“ubiquitous computing.” I quote Smith’s Byte comment in full, because it gives us
some insight into the computing culture of the early 1990s:

When we are working in a multitasking windowed environment, we have con-
current paths of communications with many programs, and we begin to think
in a multitasking sort of way. Rather than focusing on a single task at hand,
we widen our focus to several tasks.

The mental difference is somewhat similar to the difference between con-
versing with one other person and carrying on conversations with a number
of people at the same time.

Some of us find it impossible to get any content from conversations with
more than just a few people. We all have some upper limit at which the rela-
tionships make it impossible to get any information from the subjects of
conversation. Likewise, with computer interfaces, there is an upper limit of
productive complexity, and that limit moves upward with experience.

The dangerous aspect of becoming accustomed to a complex multitasking
endowed computing environment is that it can become habit forming. As we
learn how to accept one level of information, our appetite increases.
Eventually, we will eliminate the richest aspect of our lives: the real world
around us.5°

For historians of personal computing, the point may be that the early 1990s brought
a new surge of products and commercial practices to the marketplace, and these
helped to spurawidening interestin computing at home and at work. Sophisticated
technologies that had been developed earlier in academic, corporate, and mili-
tary contexts were now placed in the hands of hobbyists, home users, office work-
ers, and self-taught developers who had little or no experience with computing.

56. Ben Smith, Byte, December 1991, 372. Smith was also the co-author of a popular Unix book
about Unix System V, Release 4. See Ben Smith, UNIX Step by Step (Carmel, IN: Hayden Books,
1990). For warnings about multitasking overload in the era of smart phones and the Internet, see
Nicholas Carr, The Shallows: What the Internet is Doing to Our Brains (New York: W.W. Norton, 2011);
and Ashesh Mukherjee, The Internet Trap: The Costs of Living Online (Toronto: University of Toronto
Press, 2018).

6.8 The Maturing Mac Platform 203

The interests of newcomers diverged significantly from what earlier experts had
judged important in corporate computing environments. We are still learning what
these interests were. What seems clear is that power users, tinkerers, and gurus all
helped to ease the transition to these new systems. Computer book authors like
Van Wolverton, Dan Gookin, Any Rathbone, Cary Lu, and the Waite Group played
important roles in the diffusion of new knowledge and how the complexity of new
systems might be managed. One measure of their success is the number of books
that they sold to supporters of MS-DOS, Windows, and Macintosh systems.

In the next chapter, we’ll study the creative output of hackers, cyberpunks, and
other occasional programmers who spoke from the margins of polite computing
society. Initially seen as outcasts, hackers and cyberpunks contributed to the suc-
cess of America’s digital infrastructure in important ways, transforming inherited
computing mythologies into new products and creating a new cultural synthesis.
They responded to, and protested against, the dominant social, technical, and
economic worldviews that were emerging in American society.

Hackers and Cyberpunks

“Like many computer enthusiasts and almost all hackers, I taught myself how to
program—from reading books and looking at other people’s programs, and by asking
questions of friends. For the first six months, I kept busy learning BASIC... This kind of
learning was a welcome change from schoolwork.”

Bill Landreth, Out of the Inner Circle: A Hacker’s Guide to Computer Security (1985)

“We’re dealing with the cultural manifestations of the P.C. revolution.”

Alison Bailey Kennedy [“Queen Mu”], New York Times (1990)

This chapter continues to explore the contours of America’s personal computer
(PC) programming culture with an assessment of a group that is sometimes
held at arm’s length from polite computing society—the activists and illicit users
known colloquially as hackers, phreakers, cyberpunks, and cypherpunks. Through-
out the 1980s and 1990s, many computer users and virtually all security specialists
feared hackers—often for good reason. In fact, this iconic subgroup has existed
since at least the 1960s, holding positive and negative stereotypes in the popular
imagination.

In sociological terms, hackers, phreakers, cyberpunks, and cypherpunks all speak
from relatively marginal positions in computing society. They respond to, and
protest against, the dominant social, technical, and economic structures that
emerged in the U.S. in the 1980s, 1990s, and 2000s. As others have argued, I will
suggest that marginalized voices within a subculture are important for historians
to appreciate if we want to assess the comprehensive structures in society that con-
trol and delineate power relationships.! Actors from the margins often define new
language, cultural practices, and anxieties about society and its preoccupations.
In a technically-saturated world, marginalized or illicit group members help us to

1. For a useful expression of these ideas, see Barbara A. Hanawalt and Anna Grotans, eds., Living
Dangerously on the Margins in Medieval and Early Modern Europe (Notre Dame, IN: University of
Notre Dame Press, 2007).

206 Chapter 7 Hackers and Cyberpunks

7.1

understand how computer users far from the centers of power reacted when one or
more technologies were made dominant over another.

As early as 1984, Steven Levy recognized that the term “hacker” had become
a label of derision in American society, implying unprofessional or illegal activity
(electronic intrusion) via computing systems. In Hackers, Levy hoped to restore the
label as an appellation of honor, suggesting that true hackers cultivated a philoso-
phy of sharing, openness, decentralization, and social improvement. For better or
worse, this alternate definition of “hacker” has not generally gained momentum in
the English-speaking world, and in our modern age obsessed with computer secu-
rity, identity theft, and voter fraud, “hacking” continues to have largely negative
connotations.

To explore the concepts of hacking and marginalization, I'll examine the life
and activities of a prominent hacker from the 1980s that Steven Levy didn’t
introduce—Bill Landreth (1964~), a California teenager who was able to “crack”
some of the most secure computer systems in America but ended up a convicted
felon. Landreth’s story shows how Americans gradually came to grips with the threat
of computer intrusion in the 1980s, and how compelling it could be for program-
mers who learned to explore primitive communication networks with a dial-up
service and a modem. We’ll also meet Judith Milhon or “St. Jude” (1939-2003),
a self-taught programmer, journalist, and hacker in the San Francisco Bay Area
who was also an advocate for free speech, equal rights, and women in comput-
ing. Milhon was arrested for civil rights activities (protesting) and largely marginal-
ized by the mainstream media for her controversial ideas and activities. She was a
professional programmer, but also had deep roots in counterculture movements,
shifting from work on Berkeley Software Distribution (BSD) Unix, to neighborhood
projects with Community Memory, to books and magazine articles that advocated
for sexual freedom, experimentation with drugs, and an exploration of the aesthet-
ics of hacking—all within a popular computing framework.

The histories of hackers like Landreth and Milhon are just as important to
the character and expansion of Code Nation as are the narratives of more recog-
nizable authors, inventors, and programmers, because the margins are ultimately
connected to the center, and the center is connected to the margins.

Bill Landreth and 1980s Hacker Culture

Bill Landreth was a California teenager who grew up in the 1970s and purchased
his first home computer in 1979, with financial assistance from his parents. The
computer was an early TRS-80 Model I (Level IT), which came equipped with 16K of
memory and a cassette drive for data storage. (See Figure 7.1 for a similar system.)
According to his recollections in the book Out of the Inner Circle (1985), Landreth

7.1 Bill Landreth and 1980s Hacker Culture 207

Figure 7.1 The Tandy TRS-80 microcomputer with video display, keyboard, Exatron printer, and
a disk device. This system was popular among early hackers and self-taught program-
mers, and it featured a popular adaptation of BASIC. (Courtesy of the Computer History
Museum)

spent his after-school hours learning how to operate the computer and for the first
6 months his companion was BASIC. “There was always a new command to learn
that would make programming a bit easier, and as I became more familiar with
BASIC, there were all sorts of tricks I could figure out to make my programs run
better or faster...”?

After Landreth learned BASIC, he moved on to assembly language for the Z-80
microprocessor, and he eventually learned about mainframe and minicomputer
operating systems, which he saw as the gateway to massive amounts of informa-
tion. Landreth began asking his friends about their experiences with computers,
and he eventually met people who knew about telecommunications and early bul-
letin boards. From a hobbyist magazine, Landreth found telephone numbers that
he could use to connect to mainframe computers via a modem, and his circle of

2. Bill Landreth, Out of the Inner Circle: A Hacker’s Guide to Computer Security, with Howard Rhein-
gold (Bellevue, WA: Microsoft Press, 1985), 10.

208 Chapter 7 Hackers and Cyberpunks

friends eventually gained access to local companies through the phone lines.3 Over
time, Landreth traded information with several other hackers and they located
accounts that they could enter by guessing the passwords. Once an account had
been “hacked,” it was often good for 6 or 7 months (until a user changed the
password or the account was shut down).*

Landreth chose “The Cracker” as his handle and used that pseudonym on all
bulletin boards to establish a reputation among other hackers. In early 1982, he
and other coders formed a group called “The Inner Circle” and they tried for bigger
and bigger break-ins. Not long after the group was formed, the film War Games was
released, and Landreth recalls that a flood of new, self-proclaimed hackers hit the
bulletin boards and tried to join in the fun.” Predictably, most of the mainframe and
minicomputer systems had major vulnerabilities. As a symptom of the problem, the
designers of the first IBM PCs and compatibles thought that their systems would
be safe if they were physically secure, i.e., the computers were in a locked room
with a tamper-proof case or key entry. (See Figure 7.2.) These physical safeguards
ignored the fact that computers were highly vulnerable when connected to other
devices via the phone lines.

The Inner Circle exploited many of the vulnerabilities of networked computers,
examining banking records, academic accounts, phone systems, and the reports of
credit bureaus. It was a fascinating world of electronic transactions, secrets, and
information. But on the afternoon of October 13,1983, FBI agents entered the Lan-
dreth home near San Diego and seized Bill’s computer equipment, telephone, and
written notes. On the preceding day, federal agents had also visited the homes of
nine other members of the Inner Circle in eight different states. Of particular inter-
est was the group’s use of GTE’s Telenet network service.® Telenet was inspired by
the protocols of the Arpanet, and it had hubs in 52 cities by the early 1980s. Lan-
dreth’s equipment was eventually returned, but in May 1984 he was indicted for
three counts of wire fraud by a federal grand jury in Alexandria, Virginia. He served
a few days in jail, received an $87 fine, and was ordered to serve 3 years’ probation.
Bill Landreth was 18 years old at the time of his arrest.

Landreth’s Out of the Inner Circle was published in 1985 to capture some of
the excitement surrounding hacking in the national media, and to try to redi-
rect Landreth and other hackers to more productive work that might benefit the

3. Information about connecting to computers through phone lines had been circulating in popu-
lar culture since an influential article on phone phreaking published in Esquire magazine; see Ron
Rosenbaum, “Secrets of the Little Blue Box,” Esquire, October 1,1971,117-124, 222-227.

4. Landreth, Out of the Inner Circle, 15.
5. Landreth, Out of the Inner Circle, 18, 35.
6. Landreth, Out of the Inner Circle, 208.

7.1 Bill Landreth and 1980s Hacker Culture 209

Figure 7.2 An original IBM Personal Computer (1981) with the Mead-Hatcher Inc.’s locking
“Fortress” cabinet, designed to secure a PC from unauthorized entry. In the early years
of personal computing, securing a computer physically was considered an appropriate
way to protect the device from unauthorized use. (Courtesy of the Computer History
Museum)

computer community. Just as War Games ultimately produced a happy ending (the
teenager Matthew Broderick helped the government avert nuclear war), Out of the
Inner Circle tried to show how a recalcitrant hacker might use his programming
knowledge for good—in this case, how to help modern corporations manage secu-
rity threats in the vulnerable world of electronic communications. The Microsoft
Press marketing copy for Out of the Inner Circle emphasized the second point: “Esti-
mates of losses from computer crime range from $100 million to more than $45
billion. No one knows the true extent of this epidemic—and we are all potential
victims. How can you protect yourself and your company’s data?”” (See Figure 7.3.)

The story seemed to end well, yet Bill Landreth’s personal journey did not con-
clude so agreeably.® Although Landreth served only a brief time behind bars, he was

7.Landreth, Out of the Inner Circle, back cover.

8. See Matt Novak, “The untold story of the teen hackers who transformed the early Internet,”
Gizmodo, April 14, 2016.

210 Chapter 7 Hackers and Cyberpunks

Figure 7.3 Bill Landreth’s Out of the Inner Circle (1985) was one of the first hacker biographies of
the PC era that sympathetically portrayed a teen arrested for computer-related crimes.
(Used with permission from Microsoft)

tried as an adult, and after his conviction his road to rehabilitation was challenging.
The teenager’s parents moved to Alaska, eager to avoid the spotlight and to attend
to their own troubles. But Landreth needed to stay in the area until his probation
was complete. His local ties fell apart, and Landreth soon fell into depression and
drug use.’ He attempted to move to Mexico and then Oregon to make a new start,
but he was caught violating his probation, and then forced to return to San Diego
to serve 3 months in jail. Since that time, Landreth has moved around Southern
California sporadically, but he has essentially been homeless for 30 years. His book
agent, William Gladstone, arranged for the Out of the Inner Circle book project by
pairing Landreth with an experienced co-author named Howard Rheingold. How-
ever, the money from this project was soon spent and Landreth has had difficulty
finding steady work. The former hacker’s last known contact was a 2016 interview
with the journalist Matt Novak, a writer who has become interested in what became
of Landreth and his associates. Novak found Bill Landreth living on the streets in

9. Matt Novak, “Teen hackers.”

7.2

7.2 Jude Milhon: From Civil Rights Activist to Cyberpunk 211

Santa Monica with a Samsung tablet and two large bags in his possession. Landreth
indicated that he receives regular Social Security payments and California food
stamps, but otherwise he has no regular source of income or support. Bill hasn’t
lived in a stable home since high school.

The activities of Landreth and the Inner Circle inspired a complete overhaul
in how computer crime was prosecuted in the U.S. An August 1983 hacking case
involving a different group of teenagers hacking into the Los Alamos National
Laboratory in New Mexico raised similar concerns.!® In 1984, the nation’s first
anti-hacking laws were established, in part to address concerns about protecting
companies from unauthorized access as the Inner Circle and others had done. In
the final report for his 1983 case, Landreth’s crime boiled down to the fact that he
had made three illegal long-distance phone calls without paying for them. Nothing
was stolen, but the penetration of commercial computer networks was considered a
serious crime at the time.!! As the 1980s wore on, illegal trespass continued to be the
biggest worry of government officials who monitored online activity. However, the
members of professional computer organizations like the Association of Comput-
ing Machinery (ACM)were divided over the seriousness of the issue,and whether the
blame was to be left at the feet of the teenage intruders or the information technol-
ogy (IT) administrators who allowed the systems to be so vulnerable.'? This debate
essentially summed up the controversy about hacking in the mid-1980s, as the PC
era gained momentum.

Jude Milhon: From Civil Rights Activist to Cyberpunk

All 15 members of the Inner Circle hacking community were male. The com-
position of this group (mostly teenage boys) aligns well with gender stereotypes
about computer programming in the early days of PCs, and these tropes were
applied even more strongly to hackers than to members of the general program-
ming community. But there are important exceptions to the male hacker stereo-
type of the 1980s and 1990s, and the topic deserves much more attention by
historians. One important example of a self-described female hacker and cyber-
punk was Judith Milhon (1939-2003), commonly known as St. Jude later in life.
Milhon was a self-taught programmer who became an important advocate for
civil rights, as well as a writer, editor, and advocate for women in computing.

10. A summary of this story can be found in Joseph B. Treaster, “Trial and error by intruders led to
entry into computer,” New York Times, August 23,1983, Al.

11. Matt Novak, “Teen hackers.”

12. For an insightful discussion of the latter concern, see Rebecca Slayton, “Framing computer
security and privacy, 1967-1992,” in Communities of Computing: Computer Science and Society in the
ACM, ed. Thomas J. Misa (San Francisco, CA: Morgan & Claypool/ACM Books, 2017), 287-329.

212 Chapter 7 Hackers and Cyberpunks

In technology circles, Milhon was an important member of the early computing
community in the San Francisco Bay Area, where she contributed to BSD Unix,
Community Memory projects, and Mondo 2000 magazine. Steven Levy briefly noted
Milhon’s connection to the Community Memory project in Hackers: Heroes of the
Computer Revolution, but to date there has been no comprehensive study of her
life or influences.!?

Judith Elaine Milhon was born on March 12, 1939 in Anderson, Indiana. She
attended schools in Indiana and married Robert A. Behling in 1961, taking his
last name. Attracted to the nascent countercultural movement, Judith Behling
moved near Antioch College in Yellow Springs, Ohio, and established a commu-
nal household there with her husband, young daughter, and a growing collection
of friends. Antioch College had long been associated with abolitionist movements
and social activism, and in the mid-1960s it drew activists, hippies, and intellec-
tuals from across the region.* In March 1965, Behling and her friends decided
to engage more directly with the civil rights struggle, and they participated with
Martin Luther King, Jr in the landmark voting rights march from Selma to Mont-
gomery, Alabama. The protests gained momentum, and in the following month
Behling was arrested for trespassing in Montgomery. On her intake form Judith
was listed as a “housewife” from Yellow Springs, Ohio. Judith was interesting
enough to the authorities that her mug shot and personal details were recorded in a
Montgomery Police Department book compiled for local law enforcement officials
(Individuals Active in Civil Disturbances, 1965).2> A little later, Behling was arrested
for civil disobedience in Jackson, Mississippi, and after this arrest she served jail
time.'® Behling’s activist run-ins with the authorities greatly influenced her views
and they solidified her reputation as an advocate for civil rights and free speech.
The arrests also made her wary of public photographs, and for this reason it is hard
to find additional images of her in archival materials, newspapers, or the records of
computer companies.

13. A few episodes from Milhon’s life in the 1970s can be found in Levy’s Hackers, 160-161,
222, 282, and 285. For an obituary, see Sean Dodson, “Obituary: Judith Milhon: Making
the internet a feminist issue.” The Guardian, August 8, 2003, 27. A more personal reflection
is available in Jon Lebkowsky, “Official bio of St. Jude,” The Well, August 1, 2003. https://
people.well.com/conf/inkwell.vue/topics/190/St-Jude-Memorial-and-Virtual-Wak-page01.html.
Accessed August 29, 2019.

14. Lebkowksy, “Official bio of St. Jude.”

15. State of Alabama, Department of Public Safety, Investigative and Identification Division,
“Individuals Active in Civil Disturbances,” Vol. 1 (1965). For the striking image of Behling, dated
April 21, 1965, see http://digital.archives.alabama.gov/cdm/ref/collection/photo/id/1402.

16. Dodson, “Obituary: Judith Milhon,” 27.

https://people.well.com/conf/inkwell.vue/topics/190/St-Jude-Memorial-and-Virtual-Wak-page01.html
https://people.well.com/conf/inkwell.vue/topics/190/St-Jude-Memorial-and-Virtual-Wak-page01.html
http://digital.archives.alabama.gov/cdm/ref/collection/photo/id/1402

7.2 Jude Milhon: From Civil Rights Activist to Cyberpunk 213

Judith Behling started programming in 1967 after reading a book on FORTRAN.
The book was likely one of the popular FORTRAN primers published as the
high-level language grew in popularity in the 1960s.!” After learning the basics,
Behling took a job as a programmer for the vending machine firm Horn & Hardart
in New York City. Horn & Hardart ran the popular Automat restaurants in New York
and Philadelphia, which dispensed pie, coffee, sandwiches, and hot food through
coin-operated vending machines. Horn & Hardart were computerizing their sys-
tems and Milhon would have learned about their hardware, software, and data
processing operations.'®

In 1968, Judith Behling moved to the San Francisco Bay Area with long-time
friend Efrem Lipkin, and her daughter, Tresca Behling. Judith separated from
her husband and a divorce was granted by California courts in 1970. After this,
Judith went by the name of Jude Milhon. Soon after arriving in California, Milhon
worked at Berkeley Computer Company (BCC), an outgrowth of Project Genie, and
she helped to implement the communications controller of the BCC timesharing
system.!® The components of this innovative computer can be studied through the
writings of Butler W. Lampson, one of the founders of BCC who designed the system
and later directed research at the Xerox Palo Alto Research Center.?° Milhon thrived
in the Berkeley area and soon met other people who shared her interests in comput-
ing and activism. During the Summer of 1968, Milhon met Lee Felsenstein, a local
engineer and long-time political activist, and Milhon soon introduced Felsenstein
to Efrem Lipkin, the man who traveled with her to California and became her long-
term partner. According to Steven Levy, Lipkin was also a computer wizard—one of
the most skilled programmers in that part of California.?!

In 1971, the three partnered with other local activists and technologists at
Project One, a high-tech commune of sorts in San Francisco that occupied space
in an abandoned candy warehouse. Although Project One was organized into sev-
eral fascinating subgroups (filmmakers, artisans, sculptors, and the like), Milhon,
Felsenstein, and Lipkin were attracted to Resource One, a venture designed to build

17. For example, Daniel McCracken’s A Guide to FORTRAN Programming (1961), or McCracken’s
FORTRANwith Engineering Applications (1967). For additional examples and the roots of FORTRAN,
see Chapter 3.

18. I thank Ken Goffman for the detail about Horn & Hardart, which I received during a phone
interview in July 2019.

19. Lebkowksy, “Official bio of St. Jude.”

20. See Butler W. Lampson, “A Scheduling Philosophy for Multi-processing Systems,” Communica-
tions of the ACM 11, no. 5 (May 1968): 347-359; Butler W. Lampson, “Some remarks on a large new
time-sharing system.” Internal memo, Berkeley Computer Corporation, September 1970.

21. Levy, Hackers, 160-161.

214 Chapter 7 Hackers and Cyberpunks

a people’s computing center using an old Scientific Data Systems 940 time-sharing
computer in San Francisco. Their goal was to create the region’s first public com-
puterized bulletin board system (BBS). Jude Milhon was not the only female pro-
grammer in the group; another self-described hacker and activist was Pam Hart,
a woman featured along with several Resource One volunteers in a 1972 Rolling
Stone article written by Stewart Brand.?? Hart emphasized how political protest and
programming tasks went hand-in-hand for the group during the tumultuous years
of the civil rights movement:

Then during the Cambodia Invasion demonstrations in Berkeley a group of
us got together and designed a retrieval program for coordinating all of the
actions on campus. It was a fairly dead system, but... it brought together
people who had never worked together before and started them talking and
thinking about how it was actually possible to do something positive with
technology when you define the goals.?

Predictably, Jude Milhon was nowhere to be seen in the photos for the Rolling Stone
article. It is a safe bet that she was nearby, however.

In 1973, a subset of the Resource One group broke away and partnered to launch
the Community Memory project in Berkeley, a social networking experiment first
introduced in Chapter 2. Community Memory was started by Lee Felsenstein, Efrem
Lipkin, Mark Szpakowski, Ken Colstad, and Jude Milhon. The goal was to use com-
puter time-sharing to establish electronic information hubs for the general public.
By using a teleprinter and simple commands, novice users could compose short
messages, associate them with keywords, and post them to the system for others
to see. (See Figure 7.4.) Periodically, the group also produced a monthly index that
listed the most recent entries by category. On a typical day, about 30 people made
use of each of the terminals. During the 14-month trial period in 1973-1974, about
8,000 total entries were made on two public terminals.?*

I examined the Community Memory Index for March 1974 in the Computer His-
tory Museum archive in Fremont, California, and it reveals an impressive range of
topics, from requests for housing to health care to personal ads to music. Efrem

22. Stewart Brand, “SPACE WAR: Fanatic life and symbolic death among the computer bums,”
Rolling Stone, December 7, 1972, 50-56.

23. Pam Hart in Brand, “SPACE WAR,” 56. See also Levy, Hackers, 165, for similar expressions of
this sentiment.

24. Anon., “The Community Memory Project: An Introduction,” advertising brochure
(August 1982), 11. Available in Community Memory Records, Box 12, Folder 26, Computer
History Museum Archive, Fremont, California.

7.2 Jude Milhon: From Civil Rights Activist to Cyberpunk 215

Figure 7.4 Community Memory terminal in Leopold’s Records, Berkeley, California (1974). This
was one of two early terminals used during the Community Memory trial program in
1973-1974. (Courtesy of the Computer History Museum)

Lipkin posted that he was “Interested working with people to design and imple-
ment alternative forms of communication, learning, and subsistence. Especially
interested in alternative economic forms.”?> An anonymous keyboard player sim-
ply wrote, “Keyboardist seeks any musicians who dig playing jazz, rock, or blues.
We have gigs in Berkeley. Have bass player and harp player. Lots of experience.”2®
As Bo Doub of the Computer History Museum has written, Community Mem-
ory functioned as a pre-Web social network, a proto-Craigslist of the 1970s and
1980s.2” A Community Memory pamphlet announcing the system indicates that

the goal of the project was to revitalize the community through “strong, free,

25. Resource One/Community Memory Index (March 1974), p. 45 [Feb. 17, 1974]; in Community
Memory Records, Box 13, Folder 5, Computer History Museum Archive.

26. Resource One/Community Memory Index (March 1974), p. 130 [undated]; in Community
Memory Records, Box 13, Folder 5, Computer History Museum Archive.

27. Bo Doub, “Community Memory: Precedents in Social Media and Movements, Computer
History Museum,” Feb 23, 2016. http://www.computerhistory.org/atchm/community-memory-
precedents-in-social-media-and-movements/. Accessed August 20, 2019.

http://www.computerhistory.org/atchm/community-memory-precedents-in-social-media-and-movements/
http://www.computerhistory.org/atchm/community-memory-precedents-in-social-media-and-movements/

216 Chapter 7 Hackers and Cyberpunks

non-hierarchical channels of communication—whether by computer and
modem, pen and ink, telephone, or face-to-face.”?8

Jude Milhonwas excited about the Community Memory project and its goals, but
she was suspicious of hierarchy and she particularly disliked the male stereotypes
associated with engineers and hackers in the Bay Area. Milhon once remarked after
visiting a Home Brew Computer Club meeting in 1975 that there was a conspicu-
ous lack of female hardware hackers, and that it was frustrating to see the male
hacker obsession with technological play and power. The setting was summed up
by Milhon with the epithet “[here are] the boys and their toys.”?° At Community
Memory, Milhon worked against this exclusion and put her efforts into getting new,
inexperienced users to experiment with the BBS. She did this by writing open-ended
questions in the system about available resources in the region, such as “Where can
I get a decent bagel in the Bay Area (Berkeley particularly)?”3° More often than not,
posts like this would get curious users to try out the system, and then longer con-
versations would ensue. Sharing information about what mattered to people on the
fringe is what Jude cared about.

In the coming years, Milhon worked on BSD, a Unix-based operating system
developed by the Computer Systems Research Group at UC Berkeley. There she
worked with a range of Unix features and tools. When the Computer Profession-
als for Social Responsibility (CPSR) formed in 1983, Milhon joined the group and
shared their concern about the potential use of computers in warfare. (Of major
interest to CPSR was the U.S. government’s support for the Strategic Defense
Initiative—the so-called “Star Wars” missile shield project.) Milhon also turned to
journalism as an outlet for her ideas about computing and social activism. In the
mid-1980s, she contributed to the counterculture magazine High Frontiers,founded
in 1984 by Ken Goffman, a skilled editor and writer who used the pseudonym “R.
U. Sirius” in print. The magazine was based in San Francisco and it had a strongly
counterculture vibe. For example, it creatively explored the local fringe community
on topics related to technology, drugs, sex, and social issues. In 1988, the maga-
zine changed its name to Reality Hackers, a title that more clearly emphasized the
growing synthesis among programming, hacking, and psychedelic cultures. Milhon
formally joined the magazine as Editor-in-Chief, taking the pseudonym “St. Jude”
to emulate the public posture of the leading editors and contributors. In 1989, the

28. “The Community Memory Project: An Introduction,” 1982, Community Memory records,
Computer History Museum, Box 12, Folder 20, Catalog 102734414.

29. Milhon quoted in Levy, Hackers, 222.

30. Claire L. Evans, Broad Band: The Untold Story of the Women Who Made the Internet (London:
Penguin, 2018), 102.

7.3

7.3 Mondo 2000 and The Cyberpunk Handbook 217

magazine reorganized, changed its name to Mondo 2000, and St. Jude became an as-
sociate editor and contributor of interviews and essays. She also spentalot oftime in
the emerging online world of modems, bulletin boards, and distributed computing.

Mondo 2000 and The Cyberpunk Handbook

Mondo 2000 was an astonishing publication for its era, helping to give birth to
a creative expression called cyberpunk culture, a futuristic, science fiction aes-
thetic that interposed hacking, high technology, drug use, sex, anarchy, and goth
sensibilities.>! In a 2010 retrospective on Mondo 2000, the magazine’s editors
described their content mashup as “a tale of early digital culture, drugs, sex,
surrealism, gonzo anthropology, death, digital culture, media hype, conspiracy
paranoia, celebrities, transhumanism, irresponsible journalism, appropriation,
hackers, pranks, theft, fun and desktop publishing.”3? Regular contributors to the
magazine included science fiction writers and cultural critics like William Gibson,
Timothy Leary, Maerian Morris, Rudy Rucker, Bruce Sterling, and Robert Anton
Wilson. The vivid design and literary format of Mondo 2000 contributed to the aes-
thetic that would eventually find popular expression in Wired magazine, which
debuted in 1993 and featured some of the same writers. (See Figure 7.5 for the
Summer 1990 issue of Mondo 2000.)

Ken Goffman’s early influence on the Mondo 2000 team was considerable. Goff-
man wrote hundreds of creative essays and 10 books, including two collabora-
tions with Timothy Leary. He was fascinated with the concept of cyberspace, a
term that could be abridged as an immersive artificial world of information that
could be entered, explored, and manipulated electronically.3® This is the defini-
tion that the Mondo 2000 editors provided Time magazine in early 1993, when
the trade publication ran a feature story on cyberpunks and the early commercial
Internet. In terms of wiring, Time defined the new infrastructure as “the globe cir-
cling, interconnected telephone network that is the conduit for billions of voice,

31. For an introduction to the term cyberpunk and its histories, see Steven Levy, Crypto: How the
Code Rebels Beat the Government—Saving Privacy in the Digital Age (New York: Viking, 2001); High
Noon on the Electronic Frontier: Conceptual Issues in Cyberspace, ed. Peter Ludlow (Cambridge, MA:
The MIT Press, 1996).

32. David Pescovitz, “Mondo 2000: An Open Source History,” bOING bOING, April 6, 2010.
https://boingboing.net/2010/04/06/mondo-2000-an-open-s.html. Accessed on August 20, 2019.
The world of Mondo 2000 can also be surveyed in the volume by Rudy Rucker, R. U. Sirius, and
Queen Mu, Mondo 2000: A User’s Guide To The New Edge: Cyberpunk, Virtual Reality, Wetware,
Designer Aphrodisiacs, Artificial Life, Techno-Erotic Paganism, and More (New York: Perennial, 1992).
33. This is but one of many descriptions. For an earlier use of the term, see William Gibson,
Neuromancer (New York: Ace, 1984).

https://boingboing.net/2010/04/06/mondo-2000-an-open-s.html

218 Chapter 7 Hackers and Cyberpunks

Figure 7.5 Issue #2 of Mondo 2000 (Summer 1990). Photo and cover design by Bart Nagel. (Used
with permission of Bart Nagel)

fax and computer-to-computer communications.”?* In the same article, Time esti-
mated that 17.5 million Americans were currently able to connect through modem-
equipped computers, bulletin boards, and online services such as GEnie, Prodigy,
and CompuServe.3®

The American public was relatively inexperienced with this world, but Bay Area
technologists had been experimenting with digital connectivity for decades. Goff-
man was assisted by Alison Bailey Kennedy (“Queen Mu”), a Palo Alto insider who
served as the Editor-in-Chief of Mondo 2000 after its initial startup period. Kennedy

34. Philip Elmer Dewitt, “Cyberpunk!” Time, February 8, 1993: 60.
35. Dewitt, “Cyberpunk!” Time, 60.

7.3 Mondo 2000 and The Cyberpunk Handbook 219

attended Palo Alto High School and studied anthropology in graduate school, pub-
lishing articles on Mesoamerican iconography and the hallucinatory effects of
toad and tarantula venom.3® She met Ken Kesey and the Merry Pranksters in the
early 1960s, and she later worked part time at the Portola Institute in Menlo Park.
Together with Bart Nagel, a talented graphic artist and photographer, Kennedy and
Goffman set about building an audience for their oversized, wide-ranging maga-
zine. In September 1990, Alison Bailey Kennedy was quoted in the New York Times
saying that Mondo 2000 had a subscriber list of 4,000 customers, with additional
sales of 25,000 copies per issue in newsstands.” These figures offer a preliminary
indication of the expanding influence of cyberpunk culture in American society.
Kennedy explained the growth in a more comprehensive way: “We’re dealing with
the cultural manifestations of the P.C. revolution.”38

St. Jude’s contributions to Mondo 2000 were also significant. She first contacted
people in her personal and professional networks to write articles for the magazine,
including Lee Felsenstein. His first essay described what the ultimate cyberpunk
PC might look like, an allusion to the “Tom Swift Terminal” that Felsenstein pro-
totyped in 1974.3° (For more information on this influential device, see Chapter 2.)
St.Jude was also a regular interviewer of high-tech personalities and theorists, gath-
ering opinions aboutwhat seemed new and interesting in high-tech counterculture.
Her byline acknowledged her formative influence on the hacker communities of the
1970s and 1980s. It also mentioned that she had worked as a physician’s assistant
in the Bay Area, part of her interest in health care that stretched back to the early
1970s.% In 1991, St. Jude was promoted to Managing Editor of Mondo 2000, and
she began a regular column entitled “Irresponsible Journalism,” which became her
most recognizable publishing platform. The segment presented her evolving ideas
on cyberpunk culture, sexuality, health care, and technology.

In 1995, St. Jude co-authored a book with longtime magazine collaborators Ken
Goffman and Bart Nagel entitled The Cyberpunk Handbook.*! (See Figure 7.6.) This
compendium was a kind of visual almanac for cyberpunk culture, an aesthetic

36. The information that follows comes from an interview that I conducted with Alison Bailey
Kennedy on July 11, 2019. For additional information, see Lawrence M. Fisher, “Style makers;
Ken Goffman and Alison Kennedy, magazine editors,” New York Times, September 29, 1990, Sec-
tion 1, 40.

37. Fisher, “Style makers,” New York Times, 40.

38. Fisher, “Style makers,” New York Times, 40.

39. Lee Felsenstein, “The cyberpunk computer,” Mondo 2000 2 (Summer 1990): 21.
40. See “Contributors,” Mondo 2000 1 (Fall 1989): 159.

41. St. Jude, R.U. Sirius, and Bart Nagel, The Cyberpunk Handbook: The Real Cyberpunk Fakebook
(New York: Random House, 1995).

220 Chapter 7 Hackers and Cyberpunks

Figure 7.6 The Cyberpunk Handbook (1995), by R. U. Sirius [Ken Goffman], St. Jude [Jude Milhon],
and Bart Nagel. (Used with the permission of Penguin Random House LLC)

that included science fiction, goth fashion, leftist politics, drug culture, and other
anti-establishment norms. Unlike Bill Landreth’s hacker treatise, The Cyberpunk
Handbook contained few insights about cracking corporate portals or telecom-
munication hubs. Instead, the book described the language and visual imagery
of the new subculture, including chapters about new terminology, acronyms,
cyberpunk fashion, establishing an online persona, and essential books, films, and
video games. Through photographs and illustrations, the authors presented model
forms of cyberpunk dress as a “semiosis of black leather, chrome, mirrorshades,
and modems.”*?> Ramen noodles and Jolt Cola were recommended as “the haqr

42. St. Jude et al., Cyberpunk Handbook, 188.

7.3 Mondo 2000 and The Cyberpunk Handbook 221

[sic] staffs of life.”*3 The first commercial browsers of the Internet era were also
downgraded as disappointing “four-star hotels that will likely kill true hacking.”
Instead, the authors recommend Unix (St. Jude’s preferred operating system),
where true cyberpunks were welcomed into hacker culture via “a dark endless maze
of catwalks and mantraps, an eternal hard-hat area thatkills the foolish and shelters
the brave.”#4

Gender is also a revealing category in The Cyberpunk Handbook, and the authors
portrayed a range of styles and behaviors that could differentiate male and female
cyberpunks. Occasionally these schemes worked to undermine or intermingle
established stereotypes. For example, women and girls were prominently featured
in photographs, often wearing gothic clothing with visible piercings, jewelry, lit
cigarettes, and an assortment of high-tech gear (flip phones, modems, headsets,
and iconic “laser pointers”). Although sexuality is discussed overtly, the authors
hinted that theywere self-censoring true cyberpunk culture because Random House
would not permit more revealing subjects or attire. A few aesthetic descriptions
from the book will suffice: “The standard cyberpunk costume is ideal for riding
motorcycles, and a mirror-shades helmet is a big plus for the cyber look...” “Goths,
deathcore, and vampire-wannabes... you should know about The Cure, which is a
band. To fit in, grow your hair big and dye it blue-black.”*>

Sometimes the recommended outfits were gender inclusive. For example, “all
sexes should wear a Victorian shirt-blouse—white or black only—that gapes to show
flesh. You must practice looking tormented, tall and thin.”*® Girls and women were
described with pliable language, such as alternative capitalizations and eclectic
spellings for common words. For example, the term “Riot Grrrls,” is used to describe
“fierce girls who like tech.” The authors also conceded, “This is a sexist category,
but there we are: girls only. A grrl can be called ‘d00d’ and ‘guy’ at all times, but a
non-female guy is not a grrrl. This is just the way things are.”?” In short, The Cyber-
punk Handbook attempted to push the boundaries of computing culture into new
areas. One of the goals seemed to be female empowerment. However, promiscuity
and open sexuality was also a part of the culture, a fusion between 1960s countercul-
ture values and the punk rock norms of a new generation. The mashup of attitudes
about gender is expressed in the following statement: “If you're a grrrl, you can
wear anything you want to, because you’re there to defend it... NOTHING is more

43. St. Jude et al., Cyberpunk Handbook, 66.
44, St. Jude et al., Cyberpunk Handbook, 72.
45. St. Jude et al., Cyberpunk Handbook, 30.
46. St. Jude et al., Cyberpunk Handbook, 30.
47. St. Jude et al., Cyberpunk Handbook, 31.

222 Chapter 7 Hackers and Cyberpunks

7.4

attractive than a fierce, blazing, ninja-type grrrl right now, and if she knows UNIX or

phone-freeking, the world is hers. Hrrrs.”*8

Cypherpunks and Cryptography
In 1992, St. Jude began meeting with a group of Bay Area programmers that became
particularly fascinated with cryptology and cryptography. These were hackers and
libertarians who had deep concerns about government surveillance and the security
of information transmitted in online environments. The group included Timothy
C. May, Eric Hughes, and John Gilmore. Soon it grew to include hundreds of
people—bothinside and outside of the U.S. The cohort became especially interested
in data security issues. Fundamentally, they hoped to use cryptography and privacy-
enhancing software to enact social and political change.?® In a world replete with
online transactions, they feared government monitoring and interference. As pri-
vate citizens, however, they argued that individuals had a right and responsibility to
protect their digital privacy and to ensure that personal electronic information was
kept safe.’® As a route to enable these protections, they discussed the best ways to
use secret codes and ciphers to encrypt personal data so that it could not be read
by prying eyes. Like other cryptographers, they discussed productive ways to use
ciphers to scramble files into ciphertext (a scrambled message), and then how to
decrypt (or reconstruct) encrypted information so that it could become readable
again. In some ways, the group was ahead of government regulators and politicians,
who had only recently formulated laws to govern how digital information should be
protected in online contexts. As online transactions became more prevalent in the
early 1990s, the issue became a matter of concern for government regulators as well
asbusinesses and regular citizens. Everyone worried about online privacy, the threat
of hackers and hacking, and how sensitive information might be transferred across
national borders.

In a September 1992 meeting of the cryptography group in Berkeley, Jude Mil-
hon coined the term cypherpunk to describe the collective activities of the hackers,
programmers, and mathematicians who were working to promote online privacy.’!

48. St. Jude et al., Cyberpunk Handbook, 31. “Phone-freeking” is a term that means hacking over
phone lines.

49. Nathaniel Popper, “Timothy C. May, early advocate of Internet privacy, Dies at 66,” New York
Times, December 21, 2018.

50. Timothy C. May, “The Crypto Anarchist Manifesto,” November 22,1992. https://www.activism.
net/cypherpunk/crypto-anarchy.html. Accessed on August 20, 2019.

51. Levy, Crypto, 211.

https://www.activism.net/cypherpunk/crypto-anarchy.html
https://www.activism.net/cypherpunk/crypto-anarchy.html

7.4 Cypherpunks and Cryptography 223

Milhon had been invited to the meeting by her friend Eric Hughes, and she was ener-
gized by the event. Milhon suggested that the term cypherpunk was a combination
of the words cypher (or cipher) and cyberpunk. The group responded enthusiasti-
cally to the appellation, and cypherpunk became the privacy movement’s official
name in the years to come.>2 After 1992, cypherpunks also became the name of the
privacy group’s listserv (or electronic mailing list), a grouping also organized by Eric
Hughes.>3

As the cypherpunks evolved, the hackers developed encryption algorithms and
software applications to promote online privacy. They also wrote position papers
on the importance of cryptography, and forcefully advocated for the reduction of
government restrictions on encryption. Eric Hughes 1993 treatise, The Cypherpunk
Manifesto, emphasized the skills that cypherpunks needed. “Cypherpunks write
code,” Hughes explained.

They know that someone has to write to defend privacy, and since it’s their
privacy, they’re going to write it. Cypherpunks publish their code so that their
fellow cypherpunks may practice and play with it.>

In plain terms, the cypherpunks sought to maintain their identity as computer pro-
grammers and problem solvers, and to use their coding skills to develop workable
encryption and privacy solutions. The founders of the movement also had serious
programming chops. Timothy May was a professional physicist and engineer at
Intel, and John Gilmore was an early employee at Sun Microsystems who made sub-
stantial contributions to The GNU Project. Eric Hughes was also a successful math-
ematician and software developer, at home with the intricacies of cryptography and
software creation. The three garnered national attention in May 1993, when Wired
magazine dedicated an issue to cryptography and the cypherpunks. The magazine’s
cover depicted the three men in masks, indicating their desire for privacy but also
their marginalized status as would-be hacker criminals. Steven Levy, the author of
the featured essay, continued to popularize the cause of cypherpunks with his book
Crypto: How the Code Rebels Beat the Government — Saving Privacy in the Digital Age
(2001).

52. St. Jude et al., Cyberpunk Handbook, 45.

53. Robert Manne, “The Cypherpunk Revolutionary: Julian Assange,” The Monthly, March 2011.
https://www.themonthly.com.au/issue/2011/february/1324596189/robert-manne/cypherpunk-
revolutionary. Accessed on August 19, 2019.

54. Eric Hughes, “A Cypherpunk’s Manifesto,” March 9, 1993. https://www.activism.net/
cypherpunk/manifesto.html. Accessed on August 19, 2019.

https://www.themonthly.com.au/issue/2011/february/1324596189/robert-manne/cypherpunk-revolutionary
https://www.themonthly.com.au/issue/2011/february/1324596189/robert-manne/cypherpunk-revolutionary
https://www.activism.net/cypherpunk/manifesto.html
https://www.activism.net/cypherpunk/manifesto.html

224 Chapter 7 Hackers and Cyberpunks

Despite their masked and/or marginal status, the hackers, cyberpunks, and
cypherpunks that I have been discussing in this chapter deserve recognition as
members of America’s programming community, the multifaceted entity that Thave
been describing as Code Nation in this book. Regardless of the risks that hackers,
cyberpunks, and cypherpunks may have posed to the computing infrastructure,
their actions helped mainstream users think about emerging issues related to com-
puter security, privacy, online access, and digital citizenship. These were important
subjects as computing grew from a niche engineering practice into a ubiquitous
technology that influenced many aspects of life. Hackers often mirrored the anxi-
eties of mainstream computer users, pointing out who held insider status and who
was being pushed to the margins. Hackers and cyberpunks were not just threat-
ening, however; the computing elites could also read Mondo 2000 and Wired mag-
azine, and thereby participate in a culture that they found fascinating and allur-
ing, while remaining safely embedded in more conservative institutions. Jude Mil-
hon’s liminal role as a magazine editor was especially important in this regard.
She offered glimpses of a cyberpunk culture in which sex, hacking, drugs, and cod-
ing all blended together—a notion not readily accepted by mainstream society. St.
Jude regularly traversed the boundaries of numerous personal and technical identi-
ties, including software developer, political activist, health-care worker, journalist,
hacker, mother, and cypherpunk. As in other times and places, the marginalized
were indispensable for polite society; the center and periphery existed in relation-
ship as two sides of the same coin.>”

It is challenging to recover the voices of people on the margins of society,
because they are not always recorded by traditional narratives. Restoring hackers
and cyberpunks to the history of programming and personal computing will restore
some of this balance. In the next chapter, we’ll search for additional sources of
information about the users of computers via computer trade magazines, printed
periodicals that played an important role in how America’s computing societies
interacted and took shape in the 1980s and 1990s. Computer magazines diffused
valuable information about using and programming PCs in the era of MS-DOS,
Unix, the Macintosh, and Windows. But periodicals were also two-way streets, with
protests and commentary arriving from users on a monthly basis through “letters

55. On the reciprocal relationship between dominant and marginal cultures, historian Barbara
A. Hanawalt has written, “Indeed, a symbiotic relationship often existed between marginals and
the social establishment. The dominant culture needed the services of marginals for their own
purposes. The mainstream found the margins a place for thrills and titillation—a place to live
dangerously—to have sex, to engage in petty crime, or to commit major fraud... the exemplars of
bad behavior were very useful for setting off good behavior.” Hanawalt, Living Dangerously on the
Margins, 2.

7.4 Cypherpunks and Cryptography 225

to the editor” columns, “how to” articles, essays, and product reviews. We’ll sam-
ple the richness of this data, and see how it might be used to chart the experiences
of novice computer users, power users, and professional programmers. We’ll also
consider how computer users accepted, accommodated, or rejected the dominant
viewpoints of industry elites.

Computer Magazines and
Historical Research

“Sure, modern PCs are more powerful than ever. But the PC revolution was about
freedom, not power... There is no doubt that network management is necessary. Let’s

Jjust be sure that control of the machines doesn’t mean restricting the creativity of their
users.”

Alun Whittaker, Byte (April 1991)

“As a hacker and a programmer, I am completely appalled at the lack of respect that
computer programmers, users, and hackers get. Face it, folks, hackers are actually a
good thing.”

Stephen Bobic, Macworld (June 1991)

The early 1990s brought a surge of interest in personal computing, with the MS-DOS,
Macintosh, Windows, OS/2, and Unix platforms all attracting followers in the com-
mercial marketplace. America’s media companies were quick to capitalize on the
growing interest in home and business computing, and the number of technical
books and magazine publishers skyrocketed as the new emerging platforms gained
momentum. Although the commercial Internet would eventually become the con-
duit through which marketing and technical information flowed, the early 1990s
were still bathed in the golden light of print publishing, a 500-year-old industry that
produced the lion’s share of computer training materials through the early 2000s.
(For a summary of how the Internet disrupted book and magazine publishing, see
the Afterword.) Throughout the 1980s and 1990s, the ranks of Code Nation swelled,
and when they needed technical information about how to use their computers,
they often turned to books, magazines, journals, and newsletters. On occasion,
these publications also led to face-to-face encounters with fellow users, at special
interest group meetings (SIGs), industry trade shows, computer classes, or other
gatherings.

228 Chapter 8 Computer Magazines and Historical Research

Chapters 3, 4, 5 and 6 introduced computer book publishing as a lively source
of information about America’s programmers and computer users. This chapter
explores magazine publishing as a second window into personal computer (PC)
culture, drawing attention to what historians can learn about “pre-Internet soci-
eties” if we take printed publications seriously as sources of information about the
attitudes of typical computer users. I have followed an approach similar to that of
scholars of 16™- and 17"-century Europe, using popular print materials to study
the cultural and intellectual milieus of Renaissance and Reformation Europe. In
this setting, historians have evaluated publications such as pamphlets, sermons,
broadsides, almanacs, newspapers, and chapbooks to examine the mentalities of
people as they experienced periods of change and consolidation associated with
religious reformation and revolution.! An important part of this work has been
uncovering the opinions of marginalized figures, such as day laborers, artisans,
peasants, heretics, outcasts, and orphans. These are the historical agents that are
sometimes overlooked as we train our gaze on the wealthy, well-educated, and
powerful members of society.

Somewhat more recently, the historians of America’s technical past have also
experimented with this approach, finding in the electronic age’s magazines,
newsletters, and informal writings the hidden voices of technology users that have
been glossed over by more traditional histories.? In this chapter, I plan to continue
this work by using “letters to the editor” columns, “how to” articles, and a selection
of product reviews to capture the enthusiasm and complaints of typical computer
users as PCs came into regular use in America. These materials will provide insights
into the experiences of computing novices, power users, and programmers. We’ll
also consider how computing audiences accepted, accommodated, or rejected the
marketing strategies and product preferences of industry elites. I hope that this
approach will be of methodological interest to future historians.

1. Representative works include Robert W. Scribner, For the Sake of Simple Folk: Popular Propa-
ganda for the German Reformation (Cambridge: University of Cambridge Press, 1981); Elizabeth
Eisenstein, The Printing Press as Agent of Social Change (Cambridge: University of Cambridge
Press, 1993); Mark U. Edwards, Printing, Propaganda, and Martin Luther (Minneapolis: Fortress
Press, 1994); and Andrew Pettegree, The Invention of News: How the World Came to Know About
Itself (New Haven, CT: Yale University Press, 2014).

2. For a pioneering approach, see Carolyn Marvin, When Old Technologies Were New (Oxford: Oxford
University Press, 1990). Recent studies that make creative use of newsletters and periodicals
include Kevin Gotkin, “When computers were amateur,” IEEE Annals of the History of Computing 36,
no. 2 (2014): 4-14; and William F. Vogel “‘The spitting image of a woman programmer:’ Changing
portrayals of women in the American computing industry, 1958-1985,” IEEE Annals of the History
of Computing 39, no. 2 (2017): 49-64.

Chapter 8 Computer Magazines and Historical Research 229

By the early 1990s, there were hundreds of regular computer magazines and
newsletters in print in the U.S. This chapter presents representative samples from
some of the most popular publications, including Byte, Communications of the ACM,
Dr.Dobb’s Journal, IEEE Computer, Macworld, PC/Computing, PC Magazine, and UNIX
World. 1 selected these magazines because they addressed many of the leading PC
platforms and user groups in the early 1990s, but the selection is necessarily lim-
ited. My selection of eight trade magazines is only a sample of the rich collection of
periodicals that currently slumber in America’s technical libraries, awaiting visits
from historians, computer scientists, sociologists, and other scholars of comput-
ing. By the early 1990s, the size of these publications stretched to 450 pages or more
foreachissue. Atthattime, the circulation rates for the leading high-tech magazines
approached 500,000 copies per issue, indicating widespread use and impact.

Letters to the editors are fascinating because they reveal early adopters strug-
gling with computer technologies and voicing support (or disdain) for emerging
platforms and the companies that advocated for them. In an era before Internet
information hubs—corporate websites, social media, Google Ads, and YouTube
channels—many users turned to magazines, newsletters, and journals as their
sources of support when they experimented with new technologies. Letters to the
editor are fascinating interludes in these publications, because they were usually
printed in prominent locations with replies from the editorial staff, who either
defended their opinions or made common-cause with frustrated readers. As a
result, this material allows historians to eavesdrop on conversations about new
hardware and software as they were taking place in emerging computing com-
munities. In the case of programming instruction, letters to the editor give us
insight into how hobbyist and professional communities learned to code, and how
they accepted, rejected, or altered the systems presented by software publishers.
In short, we get month-by-month updates on the highs and lows of the learn-to-
program movementas it entered its corporate and commercial manifestations. (For
more about the stages in this transition, see the chapters in Part III.)

To recover the voices of computer users, I have surveyed hundreds of letters to
the editor from the early 1990s, using bound magazine collections in engineering
libraries as source material. Although some historic collections of this type remain
in public institutions, many periodicals have been lost to time and corporate con-
solidation. The data in this chapter is thus qualitative and preliminary. However,
the coding and recording process has revealed one important dynamic: magazines
are disappearing from our libraries at an alarming rate, in the same way that pop-
ular tracts from the 17" century were discarded when elites assumed that they
contained little of value. As noted in Chapter 1, computer books and magazines
often seem transitory and ephemeral to library personal, especially once we have

230 Chapter8 Computer Magazines and Historical Research

8.1

transitioned from one technical system to the next. But these documents are pre-
cisely the sources that future generations will find fascinating, because they capture
our real-world struggles and achievements with technology, including glimpses of
America’s past before ubiquitous computing took hold.

Magazines and a Popular Culture of Computing

Computer periodicals started in the 1950s in the U.S., when research on digital
computing gained momentum and institutional support. Published in monthly or
quarterly issues, computer periodicals slowly expanded into a range of technical
publications in the 1960s, including academic journals (presenting peer-reviewed
research), industry journals (covering trends in corporate computing and infor-
mation processing), and trade magazines (offering computer-related information
to the general public).

Trade magazines have been very durable sources of information in America. As
new media has arrived over the past century (radio, film, television, computing),
magazine publishers have quickly adapted to the offerings and worked to profit
from them. For example, when television grew in popularity in the 1960s, the most
popular periodical in the U.S. was the TV Guide, which its publishers believed would
enhance the television-viewing experience by introducing new celebrities and mar-
keting upcoming shows. The same thing happened when commercial computing
arrived; the new digital media did not replace magazines, but magazine publishers
adjusted their offerings to provide more information about how computers worked,
including ads for new products. Magazines were also much faster to produce than
books, and they offered more space for columns and information than traditional
newspapers. Over time, trade magazine publishers developed a successful business
model that devoted dozens (or hundreds) of pages to product ads, and they sold
magazines directly to subscribers. In addition, they explored new ways to stock their
products in retail stores, including the first computer stores. It is no wonder that
in the history of personal computing, the first industry “experts” were actually the
publishers of computer newsletters and magazines, such as Bob Albrecht’s People’s
Computer Company (PCC) newsletter, and its successor, Dr. Dobb’s Journal of Tiny
BASIC Calisthenics & Orthodontia.

The first mass-market industry journals were Computers and Automation (1951),
IEEE Transactions on Computers (1952), Journal of the ACM (1954), and Communica-
tions of the ACM (1958). (See Figure 3.3 for an early issue of Communications of the
ACM.) These periodicals were professional sources of news and information from
the first computer societies in America, and they gradually sought to fill the gap
between trade-oriented news magazines and academic research journals, which
were oriented around peer-reviewed research articles and notices about upcoming

8.1 Magazines and a Popular Culture of Computing 231

academic conferences. One of the originators of this format was Edmond Berke-
ley (1909-1988), a co-founder of the Association for Computer Machinery (ACM),
who edited Computers and Automation, a monthly journal that discussed news, tech-
nical developments in computing hardware, and developing social issues, such as
the ethical responsibility of scientists for the innovations that they created.? As the
years passed, professional computing societies developed dozens of magazines and
journals to address the interest groups within their memberships. Gradually, trade
magazines also emerged that took advantage of new print formats, photography,
color, advertising, and the concerns of computer workers and associated fields.

In the era of microcomputers, the oldest computer magazines were Creative
Computing (1974), published by David Ahl; and Byte (1975), published by McGraw-
Hill. (For an early issue of Creative Computing, see Figure 11.2.) Also from this era
was Dr. Dobb’s Journal (1976), published originally under the title Dr. Dobb’s Journal
of Tiny BASIC Calisthenics & Orthodontia (see Chapter 3). Information about PCs and
their forbearers was also published by the industry stalwarts Hewlett-Packard Jour-
nal (1949) and Popular Electronics (1954). Popular Electronics famously jumpstarted
the PC era with its January 1975 cover story on the Altair 8800. What many mod-
ern computer users don’t know is that the magazine had been a strong seller since
the 1950s, regularly introducing new technologies to a world-wide audience. Ziff-
Davis proclaimed as much when they advertised Popular Electronics as the “World’s
Largest-Selling Electronics Magazine.” In the April 1957 issue, Ziff-Davis reported
an average net paid circulation of 240,151 copies.*

By the late 1980s, most personal computing magazines were published monthly,
with relatively low prices for annual subscriptions. (Byte was initially $10 per year.)
Like newspapers, magazine publishers wanted to attract a wide audience so that
they could sell advertising space to companies who wanted to market their prod-
ucts. For this reason, the most successful computer magazines tended to be large,
with most of their space dedicated to advertisements. Ads were formatted as half-
page, full-page, or multi-page commercials. Computer corporations advertised to
spread the word about their platforms, but so did mail-order resellers, who accumu-
lated and sold a wide range of hardware and software products. Resellers typically
advertised their current price list and included an address or phone number where
customers could specify quantities and arrange payment. These channels assisted

3. For a summary of Berkeley’s ethical concerns about computing, see Bernadette Longo, Edmund
Berkeley and the Social Responsibility of Computer Professionals (San Rafael, CA: Morgan and Clay-
pool Publishers/ACM Books, 2015).

4. “Contents,” Popular Electronics, April 1957, 4. Throughout the 1950s, the magazine often listed
its average circulation figures on the contents page.

232 Chapter 8 Computer Magazines and Historical Research

in making PC products a type of commodity that could be bought or sold without
much interaction with dealers or account representatives.

For price-sensitive items like memory chips, toner cartridges, and peripherals,
advertising pages provide insight into the dynamics of computer price wars, and
they can also be used to reconstruct the total cost of ownership for computer sys-
tems, less the expense of installing and maintaining software. When the IBM PC
“clones” arrived, computer magazines were filled with the technical details of the
new systems and where they could be located. While PC clone makers continually
lowered their prices and offered a wide range of options, Apple Computer encour-
aged retail customers to buy Macs from authorized retailers or directly from the
company. For this reason, Macworld (1984) and other Mac-oriented magazines did
not contain pricing information about the unit costs for Macintoshes, although
they did present a steady stream of software options and third-party peripherals.
(See Figure 8.1.) The end result of the pricing and merchandising wars was that
consumers paid a little more for owning a Macintosh, but many felt that it was
worth it.

Did the general public really notice when scores of new computer magazines
arrived? A 1983 article in the New York Times (“Boom in computer magazines”)
makes it clear that something exciting was happening on the publishing front, as
customers suddenly noticed the presence of many new magazines at local news-
stands. Just 2 years after the introduction of the IBM Personal Computer, there
were already 200 magazine series available.” The average monthly circulation rate
was over 250,000 copies each for the top five magazines. Computers and Electronics,
published by Ziff-Davis, enjoyed a paid circulation of 550,000, followed by Personal
Computing, with 460,000; Byte, with 420,000; Popular Computing, with 306,000; and
Compute!, with 270,000.° Of special note was the surge in computer advertising,
which noticeably fattened many magazines. According to the New York Times, two
of the top three magazines in terms of page count were computer publications, an
indication of rising advertising revenue:

Byte topped the list with an average page count of 543. Brides, published by
Conde Nast Publications Inc., was second, with 410. 80 Micro, published by
Wayne Greene, whose computer magazine publishing companywas acquired

5. “Boom in computer magazines,” New York Times, November 9, 1983.

6. “Boom in computer magazines,” New York Times, November 9, 1983. Figures supplied by
Shelia Clark from Adscope, a marketing statistics company that conducted research on computer
magazines.

8.1 Magazines and a Popular Culture of Computing 233

Figure 8.1 Macworld magazine (September/October 1984). (Used with permission of Macworld
Copyright ©2019. All rights reserved)

last summer by a unit of the International Data Group in a $60 million
agreement, was third, with 392 pages.”

One of the interesting developments in magazines and other periodicals was the
focus on niche publishing, which encouraged the development of interest groups
around specific platforms, applications, and subjects. For example, Antic magazine
started in 1982 and ran to mid-1990. Antic supported the 8-bit family of Atari com-
puters and included reviews, tutorials, and BASIC games that readers could type
in directly from the pages. Amiga World, published by International Data Group
(IDG) Publishing, was designed for the owners of Amiga PCs. It was published from
1985 to 1995, and catered especially to gamers who valued the platform’s advanced
graphics capabilities, sound, and video resources.

7. “Boom in computer magazines,” New York Times, November 9, 1983. The information was
provided by Jay Walker, publisher of Folio 400, a magazine industry publication.

234 Chapter 8 Computer Magazines and Historical Research

The niche-publishing concept also applied to a growing cohort of newsletter
publishers, who focused less on advertising and retail sales, and more on custom
content for professionals who would pay extra for insights into their industry. For
example, the Cobb Group’s Inside Microsoft BASIC was a monthly newsletter devoted
to BASIC and QuickBASIC programming techniques for hobbyists and aspiring
professionals. (I wrote several articles for this newsletter in the early 1990s, as did
other computer book authors.) P. C. Letter: TheInsider’s Guide to the PC Industry was a
well-respected newsletter edited by Stewart Alsop II, a regular speaker and prognos-
ticator in the software industry. Swiss-born journalist and businesswoman Esther
Dyson also published several influential newsletters of this type, including Release
1.0, a monthly technology report that began in 1983. O’Reilly took over publica-
tion of this newsletter in 2006, and as a boon to computer historians, they currently
provide access to all the back issues of Release 1.0 for free via the Web.8

Stretching even farther back, the original executive newsletter in commercial
computing was perhaps The Seybold Report, created by John W. Seybold and his
son, Jonathan, in 1971. The Seybold Report was essentially a high-cost news bul-
letin published twice a month, with commentary and predictions for publishing
professionals who were navigating the process of computerization in their indus-
try.” Executives highly valued the personal nature of this report, despite its cost,
and they used it to predict emerging technology trends and their consequences.
Newsletter recipients hoped to receive inside information weeks or months before
their competitors.

Finally, a word on marketing and the commercial impact of computer periodi-
cals. As computer magazines and newsletters become more established in the mid-
1980s, they became locations for hardware and software publishers to establish
brand identities.!® Magazines were places to browse advertisements, read prod-
uct reviews, seek the advice of industry experts, and consider helpful “tips, tricks,
and traps” about emerging platforms. When a major software release came out,
such as MS-DOS 5.0 (available June 1991), all the trade computer magazines ran
feature articles on the platform and tried to outdo each other with their cover-
age. (See Figure 8.2.) Magazine subscriptions and advertising revenues also surged
when new products were released. For example, in September 1991, PC Magazine
announced that it had a monthly circulation of 800,000 copies, and that 83% of

8. For more information, visit http://radar.oreilly.com/r2/release1-0. Accessed August 21, 2019.

9. John Markoff, “John W. Seybold, 88, innovator in printing,” New York Times, March 16, 2004.
10. Quint Randle, “A historical overview of the effects of new mass media introductions on
magazine publishing in the 20™ century,” First Monday, Vol. 6, no. 9, September 3, 2001.
https://firstmonday.org/article/view/885/794. Accessed August 12, 2019.

http://radar.oreilly.com/r2/release1-0
https://firstmonday.org/article/view/885/794

8.2 Letters from the Programming Community 235

Figure 8.2 PC Magazine (July 1991). (Reprinted with permission. ©2019 Ziff Davis, LLC. All Rights

8.2

Reserved)

these readers were in charge of buying computer hardware or software. Underlining
the importance of this marketing vehicle, PC Magazine also announced that its
advertisements had generated over $200 million in sales revenue for advertisers that
year.!! The conclusion they wanted readers to draw was that PC Magazine was the
premier branding platform for the PC industry, as well as an important source of
information for users and the companies they worked for.

Letters from the Programming Community

Now to the letters. As a preliminary effort to study the reactions of users to their
software and hardware platforms, I present here a representative sample of reader
comments from Byte, Computer, Communications of the ACM, Dr. Dobb’s Journal,
Macworld, PC/Computing, PC Magazine, and UNIX World. Rather than a quantitative
analysis, I offer a qualitative reflection organized around several user categories

11. Sales advertisement, PC Magazine, Sept. 24,1991, 480.

236 Chapter 8 Computer Magazines and Historical Research

8.3

and themes. The letters come from the year 1991, which I selected because it
represents an important milestone in PC platforms and the software releases for
MS-DOS, Microsoft Windows, and the Apple Macintosh. (For more about the prod-
ucts released during this year, see Chapter 6.)

Of the letters that I surveyed, approximately 95% were written by users with tradi-
tional male names, and 5% were written by users with traditional female names.!2
This disparity fits the general pattern of gender imbalance noted in several recent
studies of computer cultures in the 1980s and 1990s in America. It may also support
the observation thatwomen’s contributions to technical fields are often made invis-
ible by cultural expectations, such as who should consider publishing their opin-
ions in a mass-market technical magazine.!3 In terms of location, however, the let-
terwriters hailed from a variety of places in the U.S., and their home city is presented
when available. To tease out a range of experiences and expertise, I have organized
the letters into the following socio-technical categories, which attempt to assess
the technical proficiencies that the letter writers may have possessed. These cate-
gories appear as headings in the following sections, where I also provide contextual
information.

New PC users (those looking for advice about first steps with PCs or worrying
about complexity).

Power users (those who maintained PCs, installed new software, and com-
posed and edited batch files, but rarely wrote programs).

Advanced hobbyists (proficient power users, hackers, and gurus that also
mention programming experiences with their PCs, typically using BASIC,
Pascal, or C).

Professional programmers (advanced software developers who have profes-
sional work experiences using Pascal, C, assembly language, and other tools;
these programmers often reveal advanced expertise with specific platforms,
such as MS-DOS, Mac OS, Windows, and Unix).

New PC Users
A common concern among new PC users was determining just which systems to
buy and how to complete meaningful work with their new hardware and software

12. This assessment of gender employs the binary categories prevalent in the early 1990s in
America, which is problematic but consistent with the historical and technical sources from the
period.

13. For additional insight into this dynamic, see Joy Lisi Rankin, A People’s History of Computing in
the United States (Cambridge, MA: Harvard University Press, 2018), 50.

8.3 New PC Users 237

Figure 8.3 PC World magazine (November 1991). (Used with permission of PCWorld Copyright
©2019. All rights reserved)

platforms. But what happened when companies purchased systems from compet-
ing manufacturers? James C. Carlson of Portsmouth, Virginia, wrote to PC World
magazine in November 1991 to pose this question. (See Figure 8.3.) His team wanted
to figure out how to get his company’s Macintosh and DOS-based PCs to work
together in an office where both hardware and software systems existed side by side.
Carlson writes: “My company recently purchased several Macintoshes. All our other
computers here are PCs running DOS, and we don’t have a network. On the Macs,
we run Microsoft Word and Excel. What hardware and software do we need in order
to take files from these apps, modify them on our DOS machines, and return them
to the Macs?”14

Carlson voiced a common frustration about compatibility that was not ade-
quately addressed by Microsoft and other software publishers in the late 1980s
and early 1990s. By 1991, Microsoft Word and Microsoft Excel were the top selling
software applications for Macintosh systems, even though they were created by

14.James C. Carlson, “The Help screen,” PC World, November 1991, 39.

238 Chapter 8 Computer Magazines and Historical Research

Microsoft. These programs were also popular on DOS-based systems running
Windows 3.x, but the software was not identical. Of course it seemed like Word or
Excel users should be able to open a document on one platform, make changes, save
them, and then continue editing the file on another platform—but this was far from
a simple task in 1991. First, the document formats and available features were dif-
ferent on the Macintosh and Windows platforms. But there were also complicating
factors related to the physical formatting of disks, which differed between IBM PCs
and Macs. Although a subtle solution was available—users could format diskettes
in a special way and use a format that was compatible with both systems—James
Carlson was right to complain. “Why are the systems so hard to use?” His problem
gives us an insight into why computer magazines were so popular, and why busi-
nesses needed both a clear purchasing strategy and support from an experienced
information technology (IT) team.

Another letter in this category addresses the shortcomings of PC platforms head
on. Walter Sheehan of Portland, Texas writes to PC/Computing magazine about the
Windows platform in mid-1991: “Windows is a piece of garbage—an over touted,
memory-hungry sham!”1®> Coming to the same conclusion, John R. Egerton of Sal-
ida, Colorado writes: “To paraphrase Agent Cooper from ‘Twin Peaks,” Windows
is an alleged solution to a problem that doesn’t exist.”'® The sentiment about
Microsoft Windows 3.0 is obvious. But the second media reference may take a lit-
tle unpacking. Twin Peaks was a mystery TV drama created by Mark Frost and David
Lynch that debuted on American television in 1990. The series followed the exploits
of Special Agent Dale Cooper (played by Kyle MacLachlan) who used quirky meth-
ods to solve crimes near the fictional town of Twin Peaks (actually North Bend,
Washington). In real life, this small town is about a 45-minute drive from the Red-
mond campus of Microsoft Corporation. If Windows had a purpose, Egerton pokes,
it is hidden away in the minds of its enigmatic creators.

Sheehan and Egerton were not advocates for the Macintosh platform but MS-
DOS users who liked their text-based, command-line interface and had little use
for Windows 3.0. To many, the Windows product seemed bulky and slow, espe-
cially on older hardware. Jeannine M. E. Klein of Houston, Texas shouted from the
roof tops in a similar fashion to PC/Computing: “I HATE WINDOWS! It takes great
heaps of equipment for slow performance, it’s crotchety about running anything
not specifically (and therefore expensively) designed for it, and most important,
it wants to make everybody do everything its way!”1” Jeannine pulled no punches,

15. Walter Sheehan, “Letters,” PC/Computing, July 1991, 31.
16. John R. Egerton, “Letters,” PC/Computing, July 1991, 31.
17.Jeannine M. E. Klein, “Letters,” PC/Computing, July 1991, 31.

8.3 New PC Users 239

and very succinctly listed the major complaints that users were having with the new
graphical user interface (GUI) system.

But were there any Windows 3.0 supporters willing to defend the emerging plat-
form? There must have been some, because by the time of their writing the installed
base of Microsoft Windows 3.0 had well-surpassed the Macintosh and OS/2 plat-
forms in terms of users in the U.S. One brave reader, Frank Patton of Moorestown,
New Jersey, found that he could defend Windows in print, emphasizing the value of
standardization, which might save money for businesses over time. He also brought
up a mantra of the technological enthusiasm movement, productivity.

What is Windows doing for us? It’s providing a common interface for our
applications. Menus and resulting work flow have a continuity that has
improved our productivity. We find it easier to train new employees. We can
spend more time refining our approaches to problem solving and capitaliz-
ing on business opportunities. Windows also uses our system memory more
effectively. Our standard PC is a fast 286 with 2MB of RAM, a fast hard drive,
and a standard VGA display.'®

New users were not just interested in the platform wars, which sorted customers
initially into opposing campus. They also wrote to computer magazines to get tech-
nical support for their systems and to request certain types of information. Mark
Thompson complained to Macworld in August 1991 that the publication had raised
the level of its technical content far too high. In fact, in his opinion Macworld
was now marginalizing new Mac users (the very people it was supposed to help).
Thompson writes:

You have forgotten your roots. You, like Apple, have left the home user
behind. I find almost no articles or product reviews for the home user. Apple
is coming around; I hope you also remember those who got you started.*®

Letters were powerful, but were there other avenues of more immediate product
support in this age before the Internet?

Importantly, many new users in the early 1990s still wanted to pick up a tele-
phone and call a company’s product support team to ask questions directly about
their new hardware or software. This was a privilege that had long been enjoyed
by consumers in the U.S. microcomputer industry. Due to the rapid growth of the
hardware and software sectors, however, the support infrastructure of many orga-
nizations was being overwhelmed. New help desk worker positions were gradually

18. Frank Patton, “Letters,” PC/Computing, July 1991, 31.
19. Mark Thompson, “Letters,” Macworld, August 1991, 35.

240 Chapter8 Computer Magazines and Historical Research

created to handle the avalanche of requests, which is a development that deserves
further study by historians of labor and technology.?’ The long-term consequence
of this call volume would be to push customers to Internet-based tools to resolve
their issues, and to establish lower-cost call centers in locations like India to save
money. But in 1991, most of these support functions were still being handled by
regional sales offices and in-house engineering teams, just as they had been dur-
ing the early days of PCs. Letters to the editor allow us to eavesdrop on the impact
of these evolving support and labor issues. For example, in September 1991, David
Sprogis of Belmont, Massachusetts, wrote to Macworld about his Epson printer
purchase, complaining:

Who was the Einstein at Epson that put technical support on a 900 line? The
cost of Epson’s technical supportis $2 per minute, excluding the first minute,
whichis free. I don’t want to pay to get a few technical answers concerning the
purchase of a new item. Paying for the printer should be the bottom line.?!

So much for passing the cost of customer service back to the customer. But product
support wasn’t always this bad, as Ted Neff from Nichols, Iowa shared in a letter in
the October 1991 issue of PC World:

Iwant to express my appreciation to Borland for their service when Iupgraded
to Quattro Pro 3.0. While installing my upgrade, I discovered that the fourth
disk in the set was damaged. After I contacted Borland through their Com-
puServe forum, they shipped me a complete set of new disks at no charge via
Federal Express—without my requesting express delivery.?

As this letter reminds us, all software fixes had to be sent out through U.S. mail
orvia overnight service (Federal Express), which typically impressed customers and
demonstrated a company’s commitment to its users. Companies were also explor-
ing alternatives to support requests that arrived via phone calls and letters. As a
forerunner to commercial web browsers, CompuServe Information Service (CIS)
provided dial-up access to user-run support forums for computer users, which pro-
vided technical information as well as news about sports, politics, entertainment,
and popular hobbies. CIS customers made a connection to CompuServe’s propri-
etary servers using a modem and a telephone line, then they paid an hourly fee to

20. One of the few scholars to introduce the issue is Greg Downey, who also studied Computer Sci-
ence and worked in the computer industry in the 1980s and 1990s. See Greg Downey, “Virtual webs,
physical technologies, and hidden workers: The spaces of labor in information Internetworks,”
Technology and Culture 42, no. 2 (April 2001): 209-235, here at 230.

21. David Sprogis, “Letters,” Macworld, September 1991, 58.

22. Ted Neff, “Consumer watch”, PC World, October 1991, 58.

8.4

8.4 Power Users 241

use the service. CompuServe started offering online experiences in the 1980s, and
they rapidly expanded them in 1991, when the company claimed that it possessed
the world’s largest network of people with PCs. In a Macworld advertisement pub-
lished the same year, CompuServe boasted that “brains abound on CompuServe.”
Product support could be unpredictable elsewhere, they noted, but “we have the
world’s largest network of people with answers to your hardware and software
questions.”?3

This type of competition gradually pressured hardware and software manufac-
turers to improve their technical support, although many soon transferred this
work to overseas call centers. In the November 1991 issue of Macworld, director
Dave Christopherson of Epson America wrote to reassure his company’s frustrated
customers, “In response to the letter in your September 1991 issue about Epson’s
900 technical support line, we are pleased to say that on July 23 we reinstated our
toll-free consumer-support number: 800/922-8911.”24

In short, the customer revolt articulated on the pages of Macworld succeeded.

Power Users

Power users expressed their concerns in different ways in computer magazines.
Often, they found it important to project an aura of expertise in their letters, reject-
ing the claims of industry pundits or showing off their technical skills. For exam-
ple, in a Fall 1991 issue of PC Magazine, Michael R. Kabala of Eldridge, Iowa wrote
to quibble with John C. Dvorak, a prominent PC Magazine columnist. Dvorak had
lamented that the era of the DIY “hobbyist” was over in personal computing, a claim
that Kabala disputed. Both men made reference to the legendary Home Brew Com-
puter Club, the iconic San Francisco Bay Area organization that held mythical status
for PC power users and programmers. (For more on Home Brew, see Chapter 2.)
Kabala writes:

I must take issue with John C. Dvorak’s “Whither the Hobbyist?” column
(June 11, 1991). While not many people these days are putting together their
own PCs using a pile of chips and a soldering iron, the “home-brew” com-
puter is still very much alive, but in a slightly different form. The basic build-
ing blocks are now motherboards, power supplies, and disk drives. True, this
amounts more to assembling than building, but it still helps to have some of
those hacker skills. Don’t pronounce us dead yet—TI can still feel a pulse.?®

23. CompuServe [paid advertisement], Macworld, August 1991, 97.
24. Dave Christopherson, “Letters,” Macworld, November 1991, 42.
25. Michael R. Kabala, “Letters,” PC Magazine, September 24, 1991, 18.

242 Chapter 8 Computer Magazines and Historical Research

In the same issue of PC Magazine, an IBM PC “clone” user wrote to the “Advi-
sor” column seeking help with inserting memory into an aging computer system.
Nicholas Tea of Long Island City, New York, felt that he could install the memory
chips in his 386-based computer, but he was concerned about the price, and pre-
sumably looking for advice about a mail-order vendor that might offer a good deal.
Tea’s letter emphasizes his power user expertise, and also some of his tinkering
abilities.

I would like to increase the amount of memory in my CompuAdd 386 PC. It
came with 1MB of 256K chips and I would like to replace them with 4MB of
1MB SIMMs. I had read in a past “Pipeline” column that 1IMB SIMMS have
dropped in price. I called up CompuAdd and they charge almost $100 per
megabyte. It seems like others are charging from $50 to $60. Are they propri-
etary? Can I purchase the cheaper SIMMs from somewhere else and mount
them myself? If so, where?2¢

Colleen O’Hara, a power user from Terre Haute, Indiana, wrote in a similar way
to PC World in August 1991, hoping to get some help managing a complex system-
level task. She noted that “memory-resident” applications were causing trouble with
Windows 3.0 and also her computer aided design (CAD) program. Memory resi-
dent utilities were often called TSRs or “terminate and stay resident” applications.
Under certain circumstances, the user could close a program (removing it from the
screen) butit would remain in memory, hidden from view. This is acommon feature
of smart phones and multitasking operating systems today, but in the early 1990s
the phenomenon was relatively new and poorly understood in PC communities.
O’Hara writes:

Is there a way I can use different drivers and TSRs (memory-resident utilities)
with the DOS applications I'm running under Windows 3.0? When running
my CAD program under Windows, I'd like to be able to pop up PC Tools’
memory-resident DOS shell and calculator and also be able to use the third
mouse button (which requires a special driver), but I can’t get this setup to
work properly.?”

Computer journalists were aware that PC power users wore many hats, and
they had little time to acquire programming skills, despite their importance in the

26. Nicholas Tea, “Advisor,” PC Magazine, September 24, 1991, 459.
27. Colleen O’Hara, “The Help screen,” PC World, August 1991, 41.

8.4 Power Users 243

workplace. This tension is sometimes visible in essays and advice columns from the
era, such as this excerpt from an article on databases, written by Richard Scoville in
the July 1991 PC World.

If you must keep track of people, purchases, inventory, or other information,
you need a data manager. You probably already know that, but you’re reluc-
tant to buy one—who can spare two years in a monastery learning dBASE

programming?28

Ashton-Tate released PC versions of dBASE for CP/M, the Apple II, and IBM PCs
and compatibles in the 1980s. In 1991, Borland International acquired Ashton-Tate
and its product line, hoping to benefit from the estimated three million dBASE
users in the marketplace.?? dBASE programming involved writing procedural com-
mands to open and move through database records in one or more files. Numer-
ous books were written for dBASE programmers to teach them the fundamentals
of programming, but it was considered a complex subject by most in the business
community.

Power users were DOS batch file programmers, however. In the August 1991 edi-
tion of PC/Computing, columnist Jean Atelsek wrote a spirited call-to-action for DOS
batch file enthusiasts, arguing for the importance of batch programming as a time-
saving activity. (See Figure 8.4.) Her article began with a tongue-in-cheek statement
about people’s addiction to PCs:

PCs are dumb! Chances are you couldn’t do your job without one. But since
the day you first put your fingers on the keyboard, you've been telling that
stupid machine what to do. Gives you a sense of power, doesn’t it?

But issuing DOS commands isn’t enough: You have to write batch files and
DEBUG scripts to make your PC do your bidding instantly. Sure, spread-
sheets and word processors are handy, but why bother with those keystrokes
if there’s a faster, smarter way?3°

In the presentation that followed, Atelsek presented 25 pages of DOS batch files
sent in from PC/Computing readers. Each project was accompanied by a ratio-
nale for use, a code listing, and operating instructions. I reproduce the listing

28. Richard Scoville, “Data Management: Up close and personal,” PC World, July 1991, 142.

29. Carla Lazzareschi, “Borland to acquire Ashton-Tate in a $439-million deal,” Los Angeles Times,
July 11,1991.

30. Jean Atelsek, “Working smarter,” PC/Computing, August 1991, 96-121, here at 96.

244 Chapter8 Computer Magazines and Historical Research

Figure 8.4 PC/Computing (August 1991). (Reprinted with permission. ©2019 Ziff Davis, LLC. All
Rights Reserved)

for Move.bat below, along with operating instructions, as a sample of the rou-
tines that were sent in.*! Move.bat is sometimes referred to as “the command that
DOS forgot,” because the utility quickly moves a file from one folder to another.
Power users were so enamored with this batch file that the MS-DOS development
team eventually added a Move command with similar functionality to MS-DOS
version 6.0.

QECHO OFF

IF %2. == . GOTO INCOMPLETE

XCOPY %1 %2

IF ERRORLEVEL 1 GOTO ERROR

DEL %1

GOTO END

: INCOMPLETE

ECHO You must specify the destination path.
:ERROR

31. Jean Atelsek, “Working smarter,” PC/Computing, August 1991, 96-97.

8.5

8.5 Advanced Hobbyists 245

ECHO Something’s wrong. Aborting move.
:END

Be sure to put MOVE.BAT in the same directory as XCOPY.EXE
(probably the DOS directory), and make sure that directory is
in your path. To use MOVE.BAT, simply type MOVE followed by the
name and the path of the file you want to move, a space, and
the destination directory.

The parameters %1 and %2 represent the file to be moved and the location folder,
respectively. If the second parameter (%2) is not specified on the command line,
a GOTO statement branches to the “INCOMPLETE” label, and the batch file
prints the message “You must specify the destination path.” If another error takes
place (if the filename has been misspelled or the wrong number of parameters
is specified), a GOTO statement branches to the “ERROR” label, and the mes-
sage “Something’s wrong. Aborting move.” is printed. However, if the filename
and location are recognized, the DOS XCOPY command copies the file to a new
location, and the DEL command deletes the original file.

Advanced Hobbyists

In the early 1990s, the identity of advanced hobbyists was shifting from power user
to programmer as new opportunities presented themselves to upwardly mobile
computer users. Advanced hobbyists often had deeper proficiencies with hardware
and software platforms, and in many cases they had used earlier systems, such
as IBM mainframes or the DEC PDP-11. Gurdon Abell of Woodstock, Connecti-
cut wrote to Dr. Dobb’s Journal in January 1991 about his past experiences, fram-
ing himself as a computer polymath with an awareness of programming that took
him up to the boundaries of professional software development. He calls himself
an “electronischer,” and his letter is a fascinating artifact from the age of digital
self-fashioning, ¢. 1991.

An Accidental Tourist...

Dear DD]J,

Iam not a programmer, amateur or professional, but a semi-retired physicist,
electronischer[sic], inventor, and patent buff who is much more at ease bash-
ingtin orslinging solder than writing the strictly ordered poetry of a computer
program. Oh, all right, I do cook up some Basic, with a few lines of machine
code thrown in, to do donkey-work (modeling the on-axis performance of any
horizontal-axis windmill using a Sinclair ZX-81 and only 16K; or home-brew
memory-mapped I/O, using another Sinclair to control and log a long-term

246 Chapter 8 Computer Magazines and Historical Research

life test) which I would otherwise have to do manually. To me, a computer is
just another power tool, like a sabre saw.

So why on earth am I a subscriber to DDJ? It was an accident... It proved to be
highly technical, but in a field which was (and is) very strange and wonderful.
Your accidental subscriber has found Dr. Dobb’s.

Butwhy have I continued to subscribe? ... Even though Iam nearlyilliterate in
the languages of programming, I can enjoy exploration of neural nets, fulmi-
nations about Ada, and always the trenchant comments in “Swain’s Flames.”
My interest seems more aesthetic than technical, but that may be a common
human trait: I thoroughly enjoy opera, even though I know little German and
French, and even less Italian.3?

Among the various references to 1980s and 1990s computing culture in this letter
are programming a Sinclair laptop using BASIC and reading the columns of Michael
Swaine, the co-author of the popular computing history Fire in the Valley. Gurdon
Abell is showing off some but also identifying a location for himself in the milieu of
hobbyist computing and PC culture.

This technical world was rapidly changing, as software consultant Jim Westrick
from Washington, DC, noted in his April 1991 letter to UNIX World. This magazine
enjoyed support from a wide cross-section of Unix users, including those on micro-
computer platforms. Westrick instructed others how to write hobbyist-style pro-
grams, and he had recently switched from C to AWK, a system-level utility designed
for data extraction. His letter encourages other Unix advocates to try the same
approach.

Dear Editor:

As UNIX moves into the commercial marketplace, we are seeing new types of
users and programmers. They are not as astute as the first UNIX users, per-
haps not even capable of writing the C “Hello World” program. In fact, if it
were not for Foxbase, Informix, or other database systems, they would not be
using the UNIX multiuser platform at all.

They may have their databases, but most often the program [that] they use
to convert their old files, manage odd jobs, and use as their general utility
program is awk... This simple eloquent programming language is the per-
fect utility for modern databases on most commercial applications.... As a
consultant, I do not try to teach new customers C. I give programmers a basic
course in awk...”

32. Gurdon Abell, “Letters,” Dr. Dobb’s Journal, January 1991, 14.

8.5 Advanced Hobbyists 247

Jim Westrick
Senior Consultant
KPMG Peat Marwick??

But were advanced hobbyists really interested in the Unix operating system?
Good PC-based versions of Unix were certainly available in the early 1990s, includ-
ing Unix System V from Santa Cruz Operation (SCO). Microsoft sold versions of
Xenix and Unix in the mid- to late 1980s, but gradually neglected Unix in favor of
its own versions of MS-DOS, Windows, and OS/2. An exchange between Byte colum-
nist Jerry Pournelle and an advocate for Unix reveals some of these tensions—a
second front that was somewhat less visible during the “platform wars” of
the era.

Pournelle began the debate with a 1991 Byte column describing how he had
installed Unix on his 80386-based PC and experimented with it. After a few weeks,
he uninstalled the system in disgust because it was too cumbersome to operate.
William B. Fankboner of La Quinta, California took umbrage with Pournelle, writ-
ing aletter that described Pournelle as impatient and “prematurely geriatric.” Tools
like Unixand C took a lifetime to master, Fankboner acknowledged, but the rewards
were worth it. Fankboner concluded:

Jerry Pournelle seems to be encouraging a certain impatience with recalci-
trant software. His attitude seems to be that if a program doesn’t do his
instant bidding, he’ll stuff it into the nearest waste can... Life is too short to
spend alotof time thrashing around helplesslywith some perverse command
structure.

On the other hand, approaching software with a chip on your shoulder can
be distinctly counterproductive... Jerry’s battles with Unix and C are pre-
mier examples. He dutifully installed Unix on one of his 386s, and when he
couldn’t get it to run satisfactorily in two weeks, he consigned it to limbo
because it was “unfriendly.”

Neither Unix nor Cis for the faint of heart or the prematurely geriatric. This is
software that requires a lifetime commitment. Expect to work hard for several
months before you gain even minimal control over a system and a language
as powerful as Unix. Once you have made this initial investment of energy, the
rewards are big-time.3*

Pournelle was recalcitrant, however, and used to regular criticism as a columnist.

33.Jim Westrick, “Mail,” UNIX World, April 1991, 26.
34.William B. Fankboner, “Letters,” Byte, August 1991, 20.

248 Chapter 8 Computer Magazines and Historical Research

8.6

Professional Programmers

Professional programmers were also active participants on the PC platform. They
rarely postured or complained about buggy software, but wrote instead to offer solu-
tions to challenging problems or to express ideas that they were passionate about.
A typical example is this regard is an August 1991 letter from Rodney Hills of Gre-
sham, Oregon, published in Byte magazine. Hills wrote to describe his interest in a
recent article that he had read in Byte about sorting algorithms. Hills explains that
he implemented an algorithm in a FORTRAN program, then found a way to improve
it, and share it with readers.

The April article “A Fast, Easy Sort” intrigued me so much that I had to
try it out. I coded it in FORTRAN 77, ran it, and was well pleased with the
performance. There was one line of code in the program that I took excep-
tion to:

gap=(int) (float)gap/1.3);

This equation requires that the integer gap be converted to floating point
and divided by 1.3 in floating point, and the result converted back to inte-
ger. In removing the floating-point operations, I was able to see a 15 percent
improvement in CPU performance.®®

This type of community-based interaction was important for the members of Code
Nation, and it took place regularly in computer magazines and academic journals.
Hills was either a professional developer or a self-taught coder who was working to
develop commercial or scientific skills.

Harry Smith, another experienced developer from Mountain View, California,
wrote to Dr. Dobb’s Journal in June 1991 about a problem that he was having with
math coprocessors. He expressed frustration with an incompatibility that he had
noted between systems, an incompatibility that Smith discovered between the Intel
80287 chip and various IBM PC AT “clone” computers using 80386/80387 chips.
Smith discovered the problem when he tested code from a popular book on graph-
ics programming entitled Fractal Programming in C, by Roger T. Stevens. Smith then
outlined how fixed the problem for the benefit of readers.3®

Dear DD],

I have a problem: A certain floating point multiply instruction does not work
correctly on my 80386/80387-based AT clone machine. This has been tested
on 387s in machines of four different manufacturers and they have all failed.

35. Rodney Hills, “Letters,” Byte, August 1991, 18.
36. Roger T. Stevens, Fractal Programming in C (Redwood City, CA: M&T Books, 1989).

8.6 Professional Programmers 249

It has also been tested on several 287s and 8087s and they have all worked
correctly.

The problem instruction was first found after compiling the program CNEW-
TON3.C from the book Fractal Programming in C, by Roger T. Stevens, using
Borland’s Turbo C 2.0. The program’s screen output in certain regions was a
solid brown color when it should have been varying shades of blue. By using
the debugging aids of Turbo C, the problem was traced to a double-precision

floating point multiply instruction compiled from lines of C code...
HarryJ. Smith

Mountain View, California®’

What role did the ACM’s flagship magazine, Communications of the ACM, have
for professional programmers on the PC platform? In January 1991, the readers and

editors of Communications of the ACM were engaged in a lively discussion about how

the publication might strike a balance between academic articles and content for

working programmers in industry. As Communications of the ACM was a magazine

for the entire membership, it seemed important to adjust its format periodically,

which several letter writers noted and appreciated. However, the mythology that

computer scientists were occupied primarily with theoretical problems remained a

stumbling block for some. ACM Member John Buffum from Leavenworth, Kansas,

shared his thoughts on the issue in “ACM Forum”:

I have been working on computers now since 1983. I hold a Master’s Degree
with thesis. I am no stranger to computers and research. I am no dummy.

I am, however, having a rough time with your magazine. As I have a 100-year
old house, am a student at a local college, and have a full-time job and a fam-
ily, time is precious. Currently, I subscribe to Dr. Dobb’s Journal and Computer
Language. Though they do not “push the envelope” the way your magazine
does, they are very easy to read and contain excellent and useful information.
A DDJ or CL article can be read in 15 minutes with good digestion. A Commu-
nications article, with precious few exceptions, requires one to two hours and
sometimes outside help...

What I ask is re-examination of the line you draw between scholarly and
unnecessarily convoluted... Some of the terms you use and some of the infor-
mation you assume we know, we do not...38

37.Harry]. Smith, “Letters,” Dr. Dobb’s Journal, June 1991, 14.
38. John Buffum, “ACM forum,” Communications of the ACM 34, no. 1 (January 1991): 16-17.

250 Chapter8 Computer Magazines and Historical Research

IEEE’s Computer magazine was a venerable engineering periodical that could
also feel out of step with the PC software industry. In September 1991, the 40-year-
old publication (at that time) celebrated its past and looked to the future, publishing
a feature article on emerging GUIs. Authors Aaron Marcus and Andries van Dam
entitled their essay, “User-Interface Developments for the Nineties.”3° However, in
the entire article on GUIs there was no mention of Microsoft Windows, OS/2, or Mac
System 7. In the PC marketplace, there was only a passing mention of Xerox and
Apple as “popularizers” of the GUI in the past. The authors did show a screen shot of
Open Software Foundation’s Motif user interface, but the article limited its discus-
sion of Motif to rudimentary elements such as the Menu bar, Title bar, Scrollbar, and
a few buttons. Compared to PC industry publications like Byte, Dr. Dobb’s Journal,
PC Magazine, and Macworld, the article seemed out of touch with contemporary
experience, where programmers were at work learning complex GUI tools, skills,
and software development kits (SDKs). Understandably, the disconnect may have
been because the article’s peer review process for Computer took longer than trade
publications. But no additional articles on GUIs would appear in Computer for the
remainder of the year. The division between the academy and working profession-
als was at best a persistent mythology, but it lingered on due to omissions like
this.

We conclude our review of user responses to computing culture with a submis-
sion from Stephen Bobic, a self-professed hacker and programmer from Oak Ridge,
Tennessee. Bobic wrote a letter published in the June 1991 Macworld magazine ask-
ing for a little more respect for the hacker tribe, who Bobic argued could improve
the robustness of computer systems and help system administrators locate security
breaches. Bobic seems to be reflecting the positive view of hacking that emerged
after Steven Levy’s Hackers: Heroes of the Computer Revolution (1984). Levy described
hackers as brilliant trailblazers who took social and personal risks with comput-
ers but ultimately moved programming and computing forward. Stephen Bobic
writes:

Asahackerand a programmer, I am completely appalled at the lack of respect
that computer programmers, users, and hackers get. Face it, folks, hackers
are actually a good thing. We make your system administrators aware of secu-
rity holes and make them do their jobs. We hackers are an inconvenience; we
arenota true threat. For our government to allow this kind of fifties-mentality
ransacking of a business is unconscionable.*°

39. Aaron Marcus and Andries van Dam, “User-interface developments for the nineties,” Computer,
September 1991, 49-57.

40. Stephen Bobic, “Letters,” Macworld, June 1991, 36.

8.6 Professional Programmers 251

The final sentence makes reference to a recent arrest of prominent hackers, which
had been circulated in the news media and prompted soul searching among
computer professionals. Bobic’s reference to a “fifties-mentality” and government
agents involved with the “ransacking of a business” evokes images of the Cold
War and McCarthyism, periods of surveillance that most baby boomers wanted to
forget.

As a barometer of the debate, the ACM performed its usual role of exploring
the issue from multiple perspectives and explaining how hacking and security vio-
lations impacted the computer industry from the editors’ point of view. In the
March 1991 issue of Communications of the ACM, the editors published a multi-part
article on several cases involving electronic publishing, constitutional rights, and
computer programmers who were accused of hacking.*! The coverage explored in
detail the 1990 U.S. District Court case involving Craig Neidorf, a U.S. college stu-
dentaccused by the U.S. government of fraud and interstate transportation of stolen
property. Neidorf was prosecuted because of a document that he published in the
electronic newsletter, Phrack. Coverage of the case in Communications of the ACM
was balanced, but there was clearly a rising level of concern about what hackers
had done and what they might do in the future. Considering all the issues, what
should the government do about online trespassers who illegally entered systems
and redistributed sensitive information?

Gordon Meyer’s comment in the essay’s commentary section seemed to sum
up the debate and take critiques of hacking in a new direction. Meyer recognized
the antisocial nature of contemporary hacker-intruders, but he also argued that the
threat was minimal, or at least not as sinister as many believed:

The computer underground is a marginally deviant subculture. It’s not as
sophisticated, not as conspiratorial as once thought; and it’s not full of anti-
social sociopaths as once described.*?

In historical perspective, Meyer was probably right to point out that the goal of
hackers was not to encourage crime or antisocial behavior through programming.
Rather, the activities of hackers—as well as power users, gurus, tinkers, and other
coders working on the margins of society—was oriented around making existing
systems work better, not worse. Although these groups sometimes had objec-
tives and worldviews far removed from the aims of polite computing society, both
groups were essentially part of the same project.

41. Dorothy E. Denning, “The United States vs. Craig Neidorf: A debate on electronic publishing,
constitutional rights and hacking.” Communications of the ACM 34, no. 3 (March 1991): 24-43.

42. Gordon Meyer [co-editor of Computer Underground Digest], quoted in “Colleagues debate Den-
ning’s comments,” Communications of the ACM, Vol. 34, no. 3 (March 1991): 37.

252 Chapter 8 Computer Magazines and Historical Research

8.7

New Approaches to Historical Research

As a general conclusion to this presentation of reader responses from the pages
of Byte, Communications of the ACM, Dr. Dobb’s Journal, IEEE Computer, Macworld,
PC/Computing, PC Magazine, and UNIX World, it is obvious that PC users were
highly aware of efforts by computer companies to establish brands and aggres-
sively market their products. Apple, Borland, Epson, Microsoft, Unix systems, and
various “clone” computer manufacturers are all featured on these pages. More-
over, there was significant resistance to the idea that one platform (in this case,
Microsoft Windows) should be a comprehensive computing standard that every
user should accept. A significant amount of “flame mail” confirms this issue, which
conspicuously divided PC users into different factions or “camps.” But beyond the
well-publicized operating system wars, the letters reveal American consumers who
are frustrated with poor quality products, incompatibility issues, support policies,
and the costs necessary to buy and maintain PCs. Users are also highly aware of the
influential roles that industry pundits and columnists play in presenting informa-
tion about PCs and computing. Columnists and magazine publishers had a major
influence on how new systems were introduced and used by the general public. All
of these perspectives are important to consider as we assess how regular people
accepted, accommodated, and rejected the machinations of industry elites during
the formative years of personal computing.

In terms of programming culture, it is also clear that hobbyists, self-taught
programmers, professional developers, and hackers on the margins were read-
ing the same books and periodicals. They participated collectively in a program-
ming culture that was taking distinctive shape around personal computing in the
1970s, 1980s, and 1990s. This observation supports an important argument of
Code Nation—that in social, economic, and intellectual terms, there is discern-
able common ground among programmers and the intensive users of comput-
ers. This includes shared mental abstractions related to computer literacy, prob-
lem solving, consumer culture, print networks, operating system platforms, and
other historical contexts. Computer books and magazines are important medi-
ators among these realms, and they are also vital locations for new historical
research.

In the next section of this book, Part III: Professional Programming Cultures,
I will shift the focus of Code Nation from educational movements and non-
professional programming environments to more commercial contexts of the
learn-to-program movement. I will discuss commercial application development
for the MS-DOS, Apple Macintosh, and Microsoft Windows platforms, and the
business practices that led to influential product evangelism initiatives and lively

8.7 New Approaches to Historical Research 253

commercial computer trade shows. Chapter 9 begins this presentation with an
influential group of entrepreneurs, authors, and programmers who created inno-
vative resources for MS-DOS application development, including Peter Norton,
Philippe Kahn, Anders Hejlsberg, Ray Duncan, and JoAnne Woodcock.

PROFESSIONAL
PROGRAMMING
CULTURES

Developing for MS-DOS:
Authors and
Entrepreneurs

“Obviously, you aren’t going to be able to do any assembly language coding for the
IBM/PC if you can’t handle assembly language. However, there seem to be quite a few
people who have done assembly language programming for other computers...”

Peter Norton, Inside the IBM PC (1983)!

“Given adequate information about the hardware, any competent assembly-language
programmer can expect to successfully interface even the most bizarre device to
MS-DOS without altering the operating system in the slightest...”

Ray Duncan, Advanced MS-DOS (1986)?

In Part III, Professional Programming Cultures, 1 shift the focus of Code Nation
from hobbyist, hacker, and non-professional coding environments to program-
ming communities that hoped to develop commercial applications and operating
system utilities for the MS-DOS, 0S/2, Apple Macintosh, and Microsoft Windows
platforms. This development represents a new phase of the learn-to-program move-
ment, because the goal of aspiring commercial developers was not just to learn
a programming language, tinker with communication systems, or improve one’s
office productivity by writing batch files. Rather, personal computing represented a
new commercial platform for aspiring coders, including the prospect of selling mail
order games or utilities that might benefit from the surging interest about comput-
ers in America. To promote this opportunity, software publishers, computer book
authors, and magazine publishers created new learning materials that encouraged

1. Peter Norton, Inside the IBM PC: Access to Advanced Features and Programming (Bowie, MD: Robert
J. Brady Co., 1983), 238.

2. Ray Duncan, Advanced MS-DOS: The Microsoft Guide for Assembly Language and C Programmers
(Redmond, WA: Microsoft Press, 1986), 222.

258 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

relatively inexperienced programmers to learn software development techniques,
including the hidden features of personal computer (PC) architecture, MS-DOS ser-
vices, device drivers, graphical user interface (GUI) applications, and much more.
This marked a new, commercial phase of the learn-to-program movement in per-
sonal computing that involved tens of thousands of software developers and set the
stage for business and corporate computing culture in the 1990s and beyond.

Rather than a technical manual full of information about commercial program-
ming tools and system services, this chapter explores the technical history of this era
through the primers, guidebooks, and reference manuals that aspiring program-
mers used to create software for the MS-DOS platform. I'll introduce the authors
and entrepreneurs Peter Norton, Larry Joel Goldstein, Philippe Kahn, Anders Hejls-
berg, and Ray Duncan, each of whom transferred effective software development
skills from the mainframe or minicomputer worlds to the software and hardware
platforms driven by IBM PCs and compatibles. We’ll also examine the technical
writing of JoAnne Woodcock, a prolific author and editor who chronicled the early
history of MS-DOS and taught advanced users to operate and exploit the features of
the MS-DOS operating system.

How important was this relatively hidden world of self-taught MS-DOS program-
mers and aspiring professional developers? Although commercial MS-DOS develop-
ment began as aremote backwater in the wider world of professional programming,
itgrew into a highly popular endeavor by the mid-1980s. By this time, reliable assem-
bly language, Pascal, and C compilers hit the market that could exploit operating
system services and create fast, optimized applications. A measure of the cultural
impact of this new industry is the commercial success of Peter Norton’s Program-
mer’s Guide to the IBM PC, a bestselling reference book for software developers that
sold over 500,000 copies in its first two editions (1985 and 1988).% Ray Duncan’s
“Power Programming” column in PC Magazine also became a leading source of
information in the PC programming world by the mid-1980s. His well-written tech-
nical articles created a sense of possibility among new-to-topic programmers who
were looking to strike it rich in the emerging world of commercial DOS develop-
ment. The success of this work led to the publication of Advanced MS-DOS (1986)
and The MS-DOS Encyclopedia (1988), two of the era’s definitive DOS programming
references for commercial developers.*

3. Peter Norton, The Peter Norton Programmer’s Guide to the IBM PC (Bellevue, WA: Microsoft Press,
1985); Peter Norton and Richard Wilton, The New Peter Norton Programmer’s Guide to the IBM PC
and PS/2, Second Edition (Redmond, WA: Microsoft Press, 1988).

4. Duncan, Advanced MS-DOS: The Microsoft Guide for Assembly Language and C Programmers; Ray
Duncan, ed., The MS-DOS Encyclopedia: Versions 1.0 to 3.2 (Redmond, WA: Microsoft Press, 1988).

9.1

9.1 New Platforms for Commercial Software 259

Why were seemingly obscure programming texts like this in such high demand?
First, because the installed base of IBM PCs and compatibles rapidly expanded
in the mid-1980s, encouraging lucrative financial dreams for the entrepreneurs
who could create and market applications for the emerging platform. Although the
underlying hardware and software systems for DOS-based PCs were relatively lim-
ited, the promise of coding “secrets” from programming authors could transform
obscure memory allocation routines, function calls, and interrupt handlers into
software gold. In fact, the IBM PC/MS-DOS platform would only survive and flour-
ish if third-party advocates dispersed programming techniques to the legions of
self-taught programmers who were struggling with systems that were buggy, poorly
documented, and evolving quickly. A truism in the commercial electronics indus-
try was that well-designed platforms drove innovation and technology diffusion.®
Beyond price structure, the major reason for a new platform’s success is that the
adherents of an emerging standard taught others how to use and profit from the new
system, persuading them that it would be beneficial to convert and make further
investments in time and money.

This chapter and Chapter 10 will survey many of the popular programming tools
and resources that helped PC programmers create applications for the MS-DOS,
0S/2,and Windows platforms from 1982 to 1993. My goal is to explore how advanced
programming techniques were diffused by computer books, magazines, and soft-
ware systems, with an emphasis on the authors of operating system references. Col-
lectively, these tools helped move the learn-to-program movement into the realms
of commercial programming and professional networks. Chapter 11 will build on
these ideas by examining the rise of enterprise-computing platforms, and the sys-
tems that professional developers used to support corporate and client-server com-
puting. I'll examine the commercial marketplace of programming tools, industry
trade shows, certification programs, and product evangelism—all “professional-
izing” aspects of the PC industry, with important consequences for the learn-to-
program movement.

New Platforms for Commercial Software

Aspersonal computing gained momentum in the late 1970s, numerous PC software
firms were established that collectively sold thousands of applications for the new
platforms. This process began with the release of pioneering programs and games
forthe Apple I, Tandy TRS-80, and Commodore PET microcomputers, and it gained
momentum through the introduction of IBM PCs and compatibles in the early

5. David S. Evans, Andrei Hagiu, and Richard Schmalensee, Invisible Engines: How Software Plat-
forms Drive Innovation and Transform Industries (Cambridge, MA: The MIT Press, 2006), 109.

260 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

1980s. By the end of 1983, there were some 3,000 venders producing an estimated
35,000 PC software products in the commercial marketplace, an increase of 50%
from the previous year.® The earliest products included operating systems and
programming languages from companies such as Digital Research and Microsoft.
These tools allowed users to experiment with PCs and write their own programs
in BASIC and other languages, although the capabilities were limited. Soon the
rudimentary tools were supplemented by new versions that were built for com-
puters with more capabilities. These programs included electronic spreadsheets,
word processors, databases, graphics programs, communications tools, productiv-
ity utilities, educational software, payroll and accounting packages, and a selection
of specialized applications for home and business use. Figure 9.1 shows how one
corporation, IBM, tried to market their suite of applications in retail contexts.
Video games for IBM PCs and compatibles became one of the most important
categories of commercial software. PC games grew from a modest collection of
“adventure” or “breakout” style programs into a robust genre that would come to
dominate other forms of electronic media. The first IBM PC games included best-
sellers such as King’s Quest (Sierra On-Line), Zork (Infocom), and Microsoft Flight
Simulator (Microsoft). Although the 1983 video game “crash” demonstrated how
tenuous this new market could be, entertainment software continued to be a major
area of interest for consumers. Video gamers who owned a PC and a BASIC inter-
preter could also experiment with writing or editing their own games via widely-
circulating source code listings. (See Chapters 5 and 10 for more information about
video game programming resources.) Many computers, such as the IBM PC XT,
included a version of classic BASIC in read-only memory (ROM), making it easier
to load and run games written in the language. There were also numerous com-
puter magazines that specialized in video games, and most of these published
program listings to feed users’ interests in game development. These magazines
included ANALOG Computing, Computer and Video Games (UK), Computer Gaming
World, Computer Fun, Electronic Games, and Videogaming Illustrated. New media
scholars and historians are now at work documenting this fascinating world.”
What difficulties did early PC software makers encounter? The real challenge
for commercial developers was that the emerging platforms were new and there

6. Martin Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog: A History of the Software
Industry (Cambridge, MA: The MIT Press, 2003), 208.

7. See Henry Lowood and Raiford Guins, eds., Debugging Game History: A Critical Lexicon
(Cambridge, MA: The MIT Press, 2016); Jimmy Maher, The Future Was Here: The Commodore Amiga
(Cambridge, The MIT Press, 2012); Nick Montfort and Ian Bogost, eds., Racing the Beam: The Atari
Video Computer System (Cambridge, MA: The MIT Press, 2009); and Campbell-Kelly, From Airline
Reservations to Sonic the Hedgehog, chapter 9: “Home and recreational software.”

9.1 New Platforms for Commercial Software 261

Figure 9.1 Kiosk for purchasing IBM PC software applications and programming tools, c. 1984. The
software boxes visible include IBM Logo, IBM Writing Assistant, and IBM DisplayWrite
2.1BM put considerable effort into developing its own line of PC software products after
the release of the IBM PC XT. (Courtesy of the Computer History Museum)

were few established tools and compilers to build applications. Although some of
the first PC programmers did have industry experience with mainframe and mini-
computer systems, the languages and compilers were different on PCs, and so were
the learning systems and management structures within corporations. For exam-
ple, many PC software companies were little more than basement start-ups run by
energetic entrepreneurs who were learning how to manage people and create com-
mercial software at the same time. To exacerbate these problems, the resources
on PCs were severely limited, with system memory, disk space, input/output, and
software services all constraining factors. The software developers who figured out
the tricks to make PC hardware and software systems perform well could con-
tribute greatly to a new company’s bottom line. These entrepreneurs could also
supplement their income by teaching others how to write programs, distributing
their ideas via computer books, magazines, and newsletters devoted to the new
platforms. Newcomers to programming could then follow in their footsteps.

262 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

9.2

Inside the IBM PC with Peter Norton

One such programmer/entrepreneur was Peter Norton (1943-), who grew up in the
Seattle area and attended Reed College near Portland, Oregon. Norton attended
Reed a decade before Steve Jobs did, graduating in 1965 with a Bachelor’s degree in
Mathematics and Philosophy. Both men were powerfully influenced by their expe-
riences at the small liberal arts college. Norton developed a life-long appreciation
for art, philosophy, and the importance of a liberal arts curriculum. Years later,
when Reed formally established Computer Science as a concentration within their
Mathematics program, Reed officials asked for Norton’s advice. The writer and
software entrepreneur stressed the importance of style and aesthetics as a foun-
dation for technical training. “Elegant coding is faster and more reliable,” Norton
wrote. “We know that aesthetics matter in interface design. So let’s stir art, art his-
tory, and graphic design into our computer science major.”8 In appreciation for his
ongoing influence and support, Reed College made Peter Norton a trustee.

After graduation, Norton traveled some and then spent several years in a Bud-
dhist monastery in the San Francisco Bay Area.’ He was also employed by The Boe-
ing Company and the Jet Propulsion Laboratory (JPL), two successful aerospace
companies that were benefiting at that time from generous government contracts.
Throughout the 1970s, Norton had regular exposure to mainframe and minicom-
puters, learning the ropes of software development and gaining experience with
system utilities that made regular use of system memory and other hardware
components. When the cyclical downturns of the aerospace industry left Norton
without a job, he looked for something different and turned his attention to the
new IBM Personal Computer, which had just been released in August of 1981. Nor-
ton purchased one of the first IBM units and began experimenting with it, learn-
ing MS-DOS and writing simple programs in BASIC and assembly language. In just
a few months, Norton had more experience than most PC tinkerers and users on
the new platform, and he was able to adapt his formative coding experiences with
earlier systems to the smaller world of the IBM PC. He became fascinated with
the internals of the PC—the computer’s ROM-BIOS services, command processor
(COMMAND.COM), and the layout of early floppy disks. (At the time, this removable
storage media was 5.25” wide and could store 160KB of information on its single-
sided format.) The first IBM PC did not come with a hard disk drive, but it shipped

8. Peter Norton quoted in, “Digital pioneers help Reed design CS program,” Reed Magazine 94,
no. 3 (September 2015). https://www.reed.edu/reed_magazine/september2015/articles/eliot_cir-
cular/cs_program.html. Accessed August 20, 2019.

9. Patrick E. Cole, “Lost a computer file? Call on Dr. Norton,” Bloomberg Businessweek, May 23,
1988, 116.

https://www.reed.edu/reed_magazine/september2015/articles/eliot_circular/cs_program.html
https://www.reed.edu/reed_magazine/september2015/articles/eliot_circular/cs_program.html

9.2 Inside the IBM PC with Peter Norton 263

with either one or two floppy disk drives, depending on the configuration that the
customer purchased. The operating system was loaded via a floppy disk—either
MS-DOS or CP/M—and then the user could switch disks to run an application pro-
gram or access the data that they had stored during a previous computing session.

To supplement his explorations of this world, Peter Norton used IBM’s Technical
Reference Manual (1981) to learn what he could about the new IBM system, and he
made notes when the manual was unclear or incorrect. His earlier work with com-
puter architecture, hexadecimal notation, and assembly language gave him impor-
tant insights into the design of the system, which was delivered to customers with
little explanation other than a short reference guide.

As Norton later described it, one day in early 1982 he was working with his IBM
PC and he accidentally deleted a file from a floppy disk that he was using.!® Acci-
dentally deleting a file was not that unusual. Like most early PC users, Norton was
simply faced with the mundane task of entering the file again, a chore that most DOS
users knew well. However, during his exploration of system internals he had learned
about how data was stored on the sectors of a floppy disk, and Norton decided to
retrieve the lost information by attempting to “undelete” the file. In other words, he
tried to restore the original document by locating the information before MS-DOS
had completed the task of erasing it. This was possible because the first versions
of MS-DOS did not actually erase (or destroy) information on disk when the user
issued a Delete (DEL) command. Instead, the internal process for deleting a file was
gradual; itinvolved the marking the file’s space on disk as available for reallocation,
removing the file’s location from the file allocation table, and marking the direc-
tory entry for the deleted file so that it no longer appeared when the Directory (DIR)
commands was issued. The actual contents of the deleted file remained unchanged
on disk until they were overwritten, a process that could take hours, days, or weeks,
depending on how often the disk was used.

Why did the creators of early versions of MS-DOS choose to leave the deleted
information on disk for such a long time? Because early PCs were relatively simple
devices, in the tradition of hobbyist machines and mail order kits, and the mak-
ers of the operating system were relatively unconcerned with data security. They
assumed that if computers were locked and in a safe location, they would be safe
from data tampering and unauthorized use. (See Figure 7.2 for an early IBM Per-
sonal Computer and a locking security device.) By design, the users of a PC should
have access to all the features of the computer, including the data on disks that were
inserted. There was no concern about the existence of leftover file fragments, as

10. Peter Norton, “Introduction,” in Rob Krumm, Inside the Norton Utilities, Revised and Expanded
(New York: Brady Books, 1990).

264 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

long as the operating system had the ability to reuse that space when it was needed
for later files. In the era before local area networks and the Internet, few PCs had
security measures, passwords, or account log-in requirements of any kind. The first
computer viruses had not even arrived on PCs.

Using his knowledge about disk sectors and MS-DOS internals, Peter Norton
created a new application program called Unerase that could be used to restore
deleted files on a disk that the user had accidentally deleted. The only requirements
were that the user had to supply the missing first letter of the file name, and that
the user would need to issue the UNERASE command soon after they had deleted
the original file. (The longer that users waited, the more likely it would be that MS-
DOS would use the unallocated storage area for new information.) Norton recog-
nized how useful the program might be, because people were accident prone when
it came to computers, and a tool that could restore files might save many hours of
work. Moreover, such a program might have commercial value. Norton later com-
mented on the customer need that the Unerase program was designed to address.
“Why did The Norton Utilities become such popular software? Well, industry wis-
dom has it that software becomes standard either by providing superior capabilities
or by solving problems that were previously unsolvable. In 1982, when I sat down at
my PC to write Unerase, I was solving a common problem to which there was no
readily available solution.”!?

Norton wasn’t finished. He continued to develop compact system applications
or utility programs, which were designed to assist the user with a range of com-
mon tasks on IBM PCs. At first, he distributed them among friends and user
groups in Southern California, finding other PC users who were intrigued with
the new machine but aware of its limitations. In the beginning, he hand-delivered
pamphlets about his programs to computer stores and user groups, relying on
word-of-mouth advertising. In 1982, he formally established Peter Norton Comput-
ing, a small software company dedicated to selling his DOS utility programs. The
company began with an investment of $30,000 and was essentially run out of an
apartment in Venice, California.'? His first bundle of the programs was called The
Norton Utilities version 1.0, and it was designed to support the original MS-DOS 1.x
operating system. The Norton Utilities sold for $80 in its first iteration—not a small
sum. The suite of utilities included the Unerase program, Filefix, Filehide, a print-
ing utility, and 10 other programs. In a review of computer publications, the first
advertisement that I could find for The Norton Utilities was in InfoWorld magazine
(October 4,1982). In the ad, the company’s postal address was identified as Wilshire

11. Norton, “Introduction,” Inside the Norton Utilities, xiv.
12. Cole, “Lost a computer file? Call on Dr. Norton,” 116.

9.2 Inside the IBM PC with Peter Norton 265

Figure 9.2 The IBM PC XT motherboard (1983). (Photo: Herb Bethoney; courtesy of the Computer
History Museum)

Boulevard in Santa Monica. As with many early PC software companies, the main
sales channel for the product was mail order, a process that typically took a few
weeks.

During the next year (1983), a new model of the IBM PC was released. This prod-
uct, the IBM PC XT, Model 5160, offered users a 10-megabyte (MB) hard drive to store
their data, as well as a 5.25” disk drive for installing software and backing up infor-
mation. (See Figure 9.2.) Microsoft released MS-DOS 2.0 to support the new system
and its fixed disk, and they introduced a Unix-like hierarchical file system with sub-
directories to help users organize their data. Recognizing the capabilities of the new
system, Norton modified his utilities and released The Norton Utilities version 2.0,
which included a Findfile utility that could help users locate missing files on what
seemed like an expansive storage system.

Peter Norton had learned how to create commercial applications for the new
IBM PC. But how would other would-be developers learn to create applications for
the new system? Could enthusiasm for the IBM PC be turned into a new chapter in
the learn-to-program movement?

266 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

A little before the IBM PC XT was released, Peter Norton was contacted by
Dr. Larry Joel Goldstein (1944-) of Brady Books to write a computer book that would
instruct software developers how to programmatically access the advanced features
of the new IBM Personal Computer. Goldstein hoped that the primer would be
both a “how-to” programming book about writing software and also a comprehen-
sive guidebook to the IBM PC hardware architecture and the internals of MS-DOS.
Goldstein had impressive credentials in both technology and publishing. He was a
long-time member of the Association for Computing Machinery (ACM), and he had
served as a consulting editor for the Robert J. Brady Company since 1980, acquiring
programming books about the new microcomputers as they arrived on the scene.
Goldstein earned a Ph.D. in Mathematics from Princeton (1967), and he later wrote
books about mathematics, programming languages, and data science. Dr. Gold-
stein also had experience with entrepreneurship, founding two software companies
in the 1980s. In other words, connecting with Norton was serendipitous for both
men. The resulting computer book, Inside the IBM PC (1983), became an early clas-
sic in the PC programming field, and it was lauded by programmers and reviewers
alike as “an indispensable manual.”'3 In fact, the book was much better than a man-
ual, offering personal insights and detailed technical information gained through
trial and error. Norton taught new IBM PC programmers the ins and outs of the Intel
8080 processor, how ports and registers worked, how to call the ROM and BIOS ser-
vices, and how to use functions related to early graphics monitors. The book ran to
some 300-pages, and it included valuable behind-the-scenes information—exactly
the type that Norton had used to create his utilities. Fortunately for IBM PC
developers, Norton was now willing to share many of these techniques with new-
to-topic programmers, many of whom were new to computer architecture and
software engineering. Norton included sample code in BASIC, Pascal, and assem-
bly language—the three most popular languages on the IBM PC at that time. His
demonstration programs were clearly printed in the book, and he also provided
a separate 5.25” disk so that users could load and experiment with the programs.

In his acknowledgments for the guide, Norton thanked several people for their
technical assistance with the project. He recognized Joseph Capps, Jr., of IBM, as
well as Mike Todd, the President of the Capital Personal Computer User Group
(CPCUG) in Washington, DC.}* The user group was one of the first in the PC
community, founded in 1982.1% Norton also thanked two influential employees at

13. For praise in the popular press for the book, see Dan Robinson, “Peter Norton tells all!” PC
Magazine, September 1983, 557-558.
14. Norton, Inside the IBM PC, x.

15. For a useful finding list of contemporary IBM PC user groups, see Susan Hurley, ed. “Club
news,” PC Magazine, February 7, 1984, 351-363.

9.2 Inside the IBM PC with Peter Norton 267

Microsoft, Alan Boyd and Chris Larson. Alan Boyd started at Microsoft in 1980 and
he worked as a product development manager. Boyd had a gift for making industry
contacts and deals for the company, and he was involved with several new ventures
and acquisitions, both inside and outside of Microsoft.

Chris Larson was the MS-DOS 2.0 product manager, who started working at
Microsoft in 1975 at the age of 16, in part because of his connections to Bill Gates
from Lakeside School in Seattle. Larson attended college at Princeton University
from 1977 to 1981, and then he returned to Microsoft, receiving a small equity share
in the company that grew to be extremely valuable over time. Larson was a highly
influential contact for Norton, providing assistance at just the time that Norton
was searching for inside information about MS-DOS. (The MS-DOS 2.0 product was
finalized on August 3, 1983.) Peter Norton’s work with Microsoft was also mutu-
ally beneficial: Microsoft received an in-depth technical treatment suitable for its
new product, which would encourage application development for the new operat-
ing system. Norton learned valuable information that would allow him to update
his utilities and write a series of authoritative books that would supplement the
official documentation. Martin Campbell-Kelley has framed this synergy as “com-
plementary” product development, which benefited both Microsoft and the firms
that added value to Microsoft’s products.!®

Peter Norton gradually achieved notoriety in an industry that was beginning
to capture the American public’s imagination. He began a regular advice column
about system utilities for PC Magazine in September 1983. Norton Computing also
continued to grow, recording $1 million in revenue in 1984, $5 million in 1986, and
$25 million in 1989.17 Although Norton did most of the technical work himself in
the early years, he gradually hired business employees, software developers, and
writers to assist with product development, including Brad Kingsbury, John Socha,
and Stanley Reifel.

John Socha is most remembered for designing and building Norton Comman-
der (1986), one of the first text, menu-based file managers that ran on the MS-DOS
operating system. The program was especially helpful to new IBM PC users who
could use the tool to move, rename, and delete their files using visual cues and
procedures, rather than the cryptic DOS commands that users would type at the
system prompt. Socha was also a committed academic with fascinating research
interests. While working on Norton Commander, Socha was also finishing a Ph.D.
in Applied Physics at Cornell University. These interests led him to regular work
with the ACM and IEEE societies, where he held long-term memberships. Socha’s

16. Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 260.

17. William Aspray and James W. Cortada, “Before it was a giant: The early history of Symantec,
1982-1999,” IEEE Annals of the History of Computing 38, no. 4 (2016): 26-41, here at 34.

268 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

interests in communicating with developers also led him to write a regular column
for Softalk magazine in the early 1980s, as well as writing projects with Microsoft
Press, McGraw-Hill, and other publishers.

Assisted by Socha and others, Peter Norton continued to write books and arti-
cles, carefully building his brand identity as “the man with the crossed arms and
the pink shirt.”!® In 1985, Norton authored The Peter Norton Programmer’s Guide
to the IBM PC, published by Microsoft Press (Figure 9.3), which emphasized this
iconic image on the front cover. (The pose was eventually trademarked by Syman-
tec Corporation.) By this time, Peter Norton was actively involved in numerous
book projects, each designed to teach aspiring programmers how to create appli-
cations that functioned well on IBM PCs and compatibles. The Programmer’s Guide
to the IBM PC was especially authoritative. It contained 20 chapters of advanced
information about the IBM PC’s system architecture, ROM-BIOS services, MS-DOS
internals, and much more. The book achieved a higher profile than Norton’s early
programming books because it was published by Microsoft Press and it rode the
rising fortunes of the new IBM PC platform after the release of enhanced hardware
configurations, including the IBM PC XT, IBM PCjr, IBM Portable PC, and IBM PC
AT. The second edition of the Programmer’s Guide was published in 1988, followed
by a third edition in 1993. Each pictured the author’s iconic “crossed-arms pose” on
the front cover. Popular Computing magazine wrote about the series, “Whether for
advanced programmers involved in developing professional software or for those
simply curious about how the PC really works, [this book] is mandatory reading.”*®

The first two editions of the Microsoft Press book sold 500,000 copies, and
the third edition also achieved best-seller status, helping to establish the category
of “advanced” programming books written by third-party (independent) authors.
These substantial sales figures indicate that more than just a few assembly language
programmers were peering into the internals of MS-DOS and IBM PCs. Thousands
ofaspiring developers who had learned the basics of programming using other tools
and texts were now turning to professional grade topics. Programming advocates
like Peter Norton had “scaffolded” the learn-to-program movement so that it moved
from beginning to intermediate to advanced topics, gradually introducing readers

18. Norton cultivated this image as early as 1982, apparently in association with the first edition of
The Norton Utilities. His 1983 author biography from Inside the IBM PC concludes with the sen-
tence, “Mr. Norton lives on the beach in Venice, California, and always wears his shirt sleeves
rolled-up.” See Norton, Inside the IBM PC, xi.

19. Peter Norton, Peter Aitken, and Richard Wilton, The Peter Norton PC Programmer’s Bible: The
Ultimate Reference to the IBM PC and Compatible Hardware and Systems Software (Redmond, WA:
Microsoft Press, 1993). Quote listed is on the inside front cover. The book was retitled to emphasize
its status as the definitive Peter Norton programming guide (of which there were many).

9.2 Inside the IBM PC with Peter Norton 269

Figure 9.3 A well-used library copy of The Peter Norton Programmer’s Guide to the IBM PC, pub-
lished by Microsoft Press (1985). Norton’s pose and pink shirt became an important
part of his brand identity in the 1980s. (Used with permission from Microsoft)

to the commercial opportunities available to them via the expanding family of IBM
PCs and compatibles. As anecdotal evidence of this surge in interest, I located the
worn copy of The Peter Norton Programmer’s Guide shown in Figure 9.3 at a public
library in Seattle. Its circulation information indicated that it had been checked out
hundreds of times over the past three decades.

Peter Norton used assembly language for several of his earliest utilities, but
by late 1983 he wrote that he had come to prefer the Pascal programming
language for its “lean, crisp nature” as well as its support for structured program-
ming.2? Gradually, the teams at Norton Computing came to utilize the C language
for their work, admiring its speed and close connection to the underlying
hardware of PCs.2! Earlier stalwarts such as FORTRAN, COBOL, and BASIC had

20. Peter Norton, “PC languages: The living and the dead,” PC Magazine, September 1983, 99-101,
here at 99.

21. Norton, “PC languages,” 101.

270 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

9.3

now given way to more efficient high-level languages, at least for professional
programmers writing commercial code.

Over the next several years, Norton Computing added several applications to
their product line, including Norton Integrator, Norton Disk Doctor, Speed Disk,
and Norton Backup. To extend their reach, the company also developed Apple Mac-
intosh, Microsoft Windows, and Unix versions of their software suites, expanding
on the original MS-DOS products. Collectively, these companion products should
be seen as enhancing the experience of PC users, who bought base systems that were
still relatively modest in terms of functionality. Many users realized that they needed
to purchase additional software to protect their work and investments in the new
platform.

Reflecting the overall success of these products, Peter Norton sold his company
to Symantec Corporation in 1990 for $70 million, just 8 years after it was founded
in Santa Monica. The acquired company became a division of Symantec, renamed
the Peter Norton Computing Group. The merger allowed the employees of Norton
Computing to receive equity in a public company without going through an ini-
tial public offering (IPO) on their own, and Symantec was able to approximately
triple the revenues of Norton Computing’s products within a year of the merger.??
In this way, the Norton brand lived on, offering an expanding suite of software
tools to analyze, configure, and maintain PCs. Throughout the 1990s, most Nor-
ton products continued to feature an image of their famous founder, his sleeves
rolled up and ready to help with whatever problems new users confronted. What is
less well-known is the vital role that Peter Norton played in the education of new
IBM PC programmers, who needed reliable, well-written resources to help them
build commercial software and extend the MS-DOS platform. This support was
especially significant between 1982 and 1986, the first years of commercial MS-DOS
programming.

Borland’s Turbo Pascal

Another early entrepreneur associated with PC programming tools and utility pro-
grams was Philippe Kahn (1952~), a French mathematician who started the soft-
ware company Borland International with a group of Danish investors in 1983.
The new firm considered various products to create and market, but they set-
tled on an intriguing new Pascal compiler that had recently been created by the
Danish software developer Anders Hejlsberg (1960-). Hejlsberg was a student at the

22. For this claim, see “Oral history of Gary Hendrix,” interviewed by Dag Spicer, November 19,
2014, Computer History Museum, 37.

9.3 Borland’s Turbo Pascal 271

Technical University of Denmark in Copenhagen, where he studied Electrical Engi-
neering and gained experience with programming, kit-based computers, and early
microprocessors. As a first-year student, he met a group of students who had formed
a company named PolyData to sell computer products in Copenhagen.?? As part of
his work with them, Hejlsberg created a “Tiny-Pascal” compiler that could fit into
12KB of memory, and PolyData sold it locally under the name Blue Label Software
Pascal (later Compas Pascal). When the Danish investment group behind Borland
heard about the new product, they licensed the technology from PolyData, thinking
that it might be a good fit for the emerging PC marketplace in the U.S.

After the licensing deal, one of the important enhancements that the Borland
team made was to create an integrated development environment (IDE) for the Pas-
cal compiler, which simplified the editing and debugging process for programmers
and made the overall development process faster. Borland named the new product
Turbo Pascal, and the first version of the Pascal compiler was released in 1983 for
the CP/M and MS-DOS platforms. Philippe Kahn insisted on selling the product for
$49.95 through mail order channels, even though the price was hundreds of dol-
lars less than the marketleaders, including IBM Pascal, Microsoft Pascal, and UCSD
Pascal. However, the low-cost integrated product was attractive to both novice and
experienced programmers alike, and it arrived at exactly the time when the market
for IBM PCs and compatibles was expanding. By the end of 1985, a reported 400,000
copies of Turbo Pascal had been sold by Borland.?* Most of them were purchased by
hobbyist and self-taught programmers who were writing simple programs, games,
and utilities for the MS-DOS platform. Anders Hejlsberg continued to work on the
compiler remotely from Denmark while Philippe Kahn developed a marketing and
support footprint for the company in Scotts Valley, California.2®

The Turbo Pascal language can be considered an early “structured” language,
based on a dialect of Pascal popularized by Niklaus Wirth in the book Algo-
rithms + Data Structures = Programs (1976).2¢ As 1 noted in Chapter 5, the mid-
1980s was an era in PC programming history in which software publishers were
under intense pressure to release better, more “structured” languages and tools

23. Details about the creation of Turbo Pascal can be found in “Life and times of Anders Hejls-
berg,” interview by Barbara Fox, Behind the Code, February 1, 2006. https://channel9.msdn.com/
Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg. Accessed July 19, 2019.

24. Rodnay Zaks, Introduction to Pascal, Including Turbo Pascal, Second Edition (Alameda, CA:
Sybex, 1988), 5.

25. For a summary of Kahn'’s activities and business strategy, see Jonathan Weber, “Kahn the
Barbarian,” Los Angeles Times, February 23, 1992.

26. Niklaus Wirth, Algorithms + Data Structures = Programs (Englewood Cliffs, NJ: Prentice Hall,
1976).

https://channel9.msdn.com/Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg
https://channel9.msdn.com/Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg

272 Chapter 9 Developing for MS-DOS: Authors and Entrepreneurs

for software development. Turbo Pascal addressed these needs and surpassed the
contemporary versions of BASIC and Pascal published by other companies. In
addition, Pascal had become one of the leading “learning languages” for Computer
Science programs in colleges and universities. Turbo Pascal seemed made-to-order
for this market, especially when institutions of higher education began purchas-
ing IBM PCs and compatibles for their computer labs. By 1985, it is estimated that
over 400 colleges and universities were using Turbo Pascal for their introductory
programming courses.?” Moreover, the Turbo Pascal IDE was widely appreciated
for increasing programmer productivity.?® Programmers were able to open, edit,
run, and debug their programs with intuitive, text-based menus and commands.
The text editor also supported innovative WordStar-type keyboard shortcuts that
could be used for program editing tasks. Later editions of Turbo Pascal were further
enhanced with contextual help features, sample code libraries, and other forms of
digital documentation.

Sensing a business opportunity in Turbo Pascal, numerous trade and textbook
publishers responded to the interest in Borland’s compiler by issuing primers for
students and self-taught programmers. These books began arriving in 1985 and
continued to be popular through the early 1990s. Strong sellers included Turbo Pas-
cal:A Problem Solving Approach, by Elliot B. Koffman (Addison-Wesley); Introduction
to Pascal, by Rodnay Zaks (Sybex); Turbo Pascal, by Walter J. Savitch (Benjamin Cum-
mings); Getting the Most from Turbo Pascal, by James T. Smith (Blaise Computing);
Complete Macintosh Turbo Pascal, by Joseph Kelly (Scott, Foresman); PC Magazine
Turbo Pascal 6.0 Techniques and Utilities, by Neil J. Rubenking (Ziff Davis Press); and
A Second Course in Computer Science with Pascal, by Daniel D. McCracken (Wiley).
The best of the primers focused on the unique features of the Turbo Pascal IDE as
well as the programming language. However, some publishers simply updated ear-
lier textbooks covering Standard Pascal or UCSD Pascal, presenting little that was
new about the Turbo Pascal platform. They did this because they had notyet adapted
to the rapid revision schedule of PC software programs. Borland and Microsoft rou-
tinely upgraded their software every year to 18 months, but academic publishing
schedules moved slower, until they realized the importance of regular updates.

Daniel McCracken’s textbook book is an excellent example of a Turbo Pas-
cal primer that was designed specifically for the academic marketplace. 4 Second
Course in Computer Science with Pascal focused on using Turbo Pascal to gain

27.Zaks, Introduction to Pascal, 5.

28. For a review of Turbo Pascal 3.0 making this claim, along with editorial commentary, see Mark
Bridger, “Software review: Turbo Pascal 3.0: An update on Borland’s compiler,” Byte 11, no. 12
(February 1986): 281-286.

9.3 Borland’s Turbo Pascal 273

experience with fundamental computing concepts including arrays, sets, stacks,
recursion, linked lists, sorts, searches, and graphs. These were topics that an
undergraduate Computer Science major would typically encounter in a “data struc-
tures and algorithms” course, and the book provides some evidence that new PC pro-
gramming tools were making an inroad into the academic curriculum. McCracken
was President of the ACM from 1978 to 1980. (See Figure 3.9.) He was first intro-
duced in Code Nation as the best-selling author of FORTRAN tutorials, which
popularized the learn-to-program movement in mainframe and minicomputer
contexts (see Chapter 3). In his later years, McCracken taught Computer Science
atThe City College New Yorkand published programming primersand computer sci-
ence textbooks. In a fascinating open letter to the ACM membership in January 1987
(a month before his Turbo Pascal book was published), McCracken described how
fundamental topics in computer science needed constant experimentation and
revision in the classroom. He also emphasized the value of introducing “advanced”
topicsin programming courses such as advanced data types, recursion, and software
engineering principles.?? Fundamentally, McCracken wanted to encourage “hands
on” computing courses. “Programming has to be learned through the fingertips...
without it, we are teaching piano in a lecture course.”® From the perspective of
the learn-to-program movement, Turbo Pascal books like McCracken’s provided
an important extension to the movement’s goals, and they helped industry experts
teach a wide range of skills to new audiences.

Although Turbo Pascal was a low-priced, “entry level” product in terms of mar-
ket segmentation (it was sold primarily to hobbyists and students, not commer-
cial software developers), the compiler was admired throughout the industry for
its speed and innovative design. Much of this was due to the continuing influ-
ence of Anders Hejlsberg, who became principal engineer at Borland, moved to
California, and contributed many new features to the product and its successors.
These included the introduction of object-oriented programming functionality in
Turbo Pascal 5.5 (1989) and the release of Delphi (1995), a powerful rapid applica-
tion development tool for Windows. In 1996, Hejlsberg left Borland for Microsoft,
where he became architect for the Visual J++ development system, a contributor
to the .NET Framework, and chief designer of the C# programming language.’!

29. Daniel D. McCracken, “Viewpoint: Ruminations on Computer Science curricula,” Communica-
tions of the ACM 30, no. 1 (January 1987), 3-5.

30. McCracken, “Viewpoint,” 3.

31. For more about these systems, see the Microsoft Developer Network website https://chan-
nel9.msdn.com/Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg. For the C# lan-
guage specification and commentary, see Anders Hejlsberg, Scott Wilamuth, and Peter Golde, The
C# Programming Language (Upper Saddle River, NJ: Addison-Wesley, 2003).

https://channel9.msdn.com/Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg
https://channel9.msdn.com/Shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg

274 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

9.4

Hejlsberg is considered to be one of the most influential language designers in the
computer industry.

Ray Duncan’s Advanced MS-DOS

If Turbo Pascal encouraged aspiring PC programmers to create some of their first
applications and utilities for the MS-DOS platform, Ray Duncan’s Advanced MS-DOS
(1986) gave experienced assembly language and C developers the encouragement
that they needed to go deeper into the architecture of MS-DOS and build commer-
cial applications that were elegant, efficient, and robust. As the MS-DOS platform
reached maturity (MS-DOS versions 3.0 to 6.0), Duncan became the programmers’
programmer, a reputation he gained through innovative work as a software pub-
lisher, book author, and columnist. Like other well-known programmer-authors,
Duncan’s compelling prose wove advanced technical content with clear and prac-
tical instruction, encouraging new-to-topic developers to try their hand at building
real-world PC applications. Through his influence, the learn-to-program movement
expanded into the realm of operating systems and system services, at a time when
quality reference materials and tutorials were in relatively short supply.

Raymond G. Duncan was born in 1952 and was raised in Southern California.
He received a B.A. in Chemistry in 1973 from the University of California, Riverside,
and an M.D. from UCLA in 1977.3% After graduating from medical school, Duncan
began a career in health care, specializing in pediatrics and neonatology (the medi-
cal care of newborn infants). (See Figure 9.4.) He developed a long-standing relation-
ship with Cedars-Sinai Medical Center in Los Angeles, where he served as a fellow
in neonatology and a member of the teaching faculty. Later in his career, he took
on additional administrative duties, serving as the Chief Technology Officer of the
Cedars-Sinai Health System.

Duncan had been fascinated with electronics and computers from an early age,
receiving hands-on experience from an uncle whowas an electronics technician and
radio operator for the U.S. Forest Service. To earn extra money in college, Duncan
worked as a part-time software developer in medical labs in the LA area, learning
about systems programming from experiments with a 16-bit Raytheon 703 com-
puter system that had been customized for pathology work in local medical labs.
Duncan’s experiments with instruction sets, assemblers, disk storage, and tele-
type terminals were almost entirely self-directed, with occasional support from a

32.A comprehensive biography of Ray Duncan has not been written. The sketch that follows comes
from published information in Duncan’s books, as well as email correspondence between Duncan
and the author in June and July, 2019.

9.4 Ray Duncan’s Advanced MS-DOS 275

Figure 9.4 Dr. Ray Duncan worked as a physician and specialist in neonatology, while also develop-
ing advanced expertise in microcomputer operating systems, programming languages,
and compilers. (Photo courtesy of Ray Duncan, c¢. 1990)

Raytheon instruction manual and a few early computer books, including Donald
Knuth’s Art of Computer Programming series.>?

When early microcomputers hit the scene, Duncan experimented with an MITS
Altair 8800 powered by an Intel 8080 CPU.3* He later purchased an IMSAI 8080
microcomputer and began writing low-level programs for it, gaining experience
with the new CP/M operating system. CP/M, a product of Digital Research, Inc.,
had been initiated by Gary Kildall in 1974 as a compact control system for micros
based on the Intel 8080 and 8085 processors. Although CP/M was modified and
improved over the years by Digital Research, the product did not maintain its early
lead in the microcomputer market and essentially disappeared from view by the
mid-1980s. However, Duncan understood the bourgeoning system well, and the

33. Unpublished email correspondence between Ray Duncan and the author, June 2019.
34. Ray Duncan, Advanced MS-DOS, 469.

276 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

experience was helpful to him as he worked with later systems’ software, including
Unix, MS-DOS, and OS/2.

Duncan preferred to stay “close to the metal” in his coding work, and he quickly
adapted the systems he experimented with for use in healthcare. For example, he
wrote programs for the neonatal unit at Cedars-Sinai that computed growth charts,
calculated intravenous (IV) drips, and allowed the medical staff to view and print
reports on time-sharing terminals. Duncan also became interested in the Forth
programming language, because it seemed well-suited for device control and data
acquisition tasks in low-memory environments. Forth was designed by Charles
“Chuck” H. Moore in 1970 and popularized by Moore, Elizabeth Rather, and Donald
Colburn in the following years.3® (Leo Brodie also wrote a popular book about Forth
in 1981 that piqued the interest of many programmers.3®) Duncan experimented
with a public domain version of Forth on CP/M, and he enhanced it for several micro-
computer platforms. In 1977, Duncan formed Laboratory Microsystems, Inc. to
design and sell Forth-related products, advertising his software in magazines such
as Computer Shopper. When the original IBM Personal Computer came out, Dun-
can was the first Forth compiler publisher to release a product for the new system
(1982).3” By 1983, he had designed Forth products and cross-compilers for the Zilog
Z-80, Intel 8088, Intel 8086, and Motorola 68000 microprocessors.3® As part of this
work, Duncan studied computer architecture closely, learning about how to inte-
grate his compilers with CP/M, MS-DOS, Apple DOS, and other operating systems.

While continuing his duties as a pediatric resident at Cedars-Sinai Medical Cen-
ter, Duncan experimented with writing technical articles about PCs, compilers, and
assemblers. Between 1982 and 1983, he submitted essays to Dr. Dobb’s Journal,
Softalk/PC, and PC Tech Journal—three respected trade magazines with interesting
content for the professional programming community. He also published a book
through Laboratory Microsystems entitled “MS-DOS Internals,” which explained
how to use the ROM BIOS and operating system functions of MS-DOS. Duncan
developed a reputation for exploring the inner worlds of storage devices, system
services, memory management, and device drivers—topics that went well beyond

35. For a history, see Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore, “The evolu-
tion of Forth,” in History of Programming Languages-II, ed. Thomas J. Bergin and Richard G. Gibson
(New York: ACM Press, 1996), 625-670, here at 645.

36. Leo Brodie, Starting FORTH: Introduction to the FORTH Language and Operating System for Begin-
ners and Professionals (Englewood Cliffs, NJ: Prentice Hall, 1981). By 1995, the primer had sold a
reported 110,000 copies, suggesting the language enjoyed a popular following.

37.Rather, Colburn, and Moore, “The evolution of Forth,” 642.

38. Advertisement, Laboratory Microsystems, Inc., in FORTH Dimensions (published by FORTH
User’s Group), vol. 5, no. 2 (July-August, 1983), 34.

9.4 RayDuncan’s Advanced MS-DOS 277

Figure 9.5 RayDuncan’s Advanced MS-DOS (1986). (Used with permission from Microsoft)

language fundamentals or the application of simple algorithms. His writing had
the gravitas of peer-reviewed journal articles from the Computer Science or Soft-
ware Engineering fields, but it also welcomed self-taught programmers who were
just getting their feet wet with systems programming. In the coming years, Duncan
became a regular columnist for PC Magazine (“Power Programming”), Embedded
Systems Programming (“When in ROM”), and Microsoft Systems Journal.

In late 1985, Duncan received a call from Claudette Moore, an acquisitions edi-
tor at Microsoft Press who had seen and appreciated Duncan’s self-published book,
“MS-DOS Internals.”? The conversation resulted in the publication of a new book
for Microsoft Press, Advanced MS-DOS, a 468-page introduction to DOS systems pro-
gramming. (See Figure 9.5.) Duncan’s reference began with a genealogy describ-
ing the history of MS-DOS and its relationships to other operating systems. The
progression culminated with MS-DOS version 3.2, released in mid-1986. Duncan’s
approach to writing revealed interests in business, history, and engineering. He

39. Unpublished email correspondence between Ray Duncan and the author, June 2019.

278 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

avoided evangelizing for Microsoft or taking sides in the era’s vigorous “platform
wars.” Instead, he emphasized the rich connections among the era’s microcom-
puter and minicomputer operating systems:

From the programmer’s point of view, the current versions of MS-DOS (ver-
sions 2 and 3) are robust, rich, and powerful development environments.
A broad selection of high-quality programming tools is available from both
Microsoft and other software houses. Porting existing applications into the
MS-DOS environment is relatively simple, since the programmer can choose
to view MS-DOS as either a superset of CP/M or a subset of UNIX.40

The book encouraged assembly language and C programmers to use the inter-
nal features of MS-DOS to create applications, filters, and installable device drivers.
There were sections on the internal structure of DOS; how the programming envi-
ronment functioned from the point of view of a developer; how to call MS-DOS
interrupt handlers; and reference materials documenting the MS-DOS and IBM PC
BIOS functions. The book emphasized assembly language, and the reference sec-
tions allowed readers to see at a glance what the contents of the microprocessor’s
registerslooked like before and after major function calls. Most of the programs and
code fragments were written using the Microsoft Macro Assembler (MASM) version
4.00 compiler. This product was initially released with the first version of MS-DOS
in 1981, and it was updated for each new version of MS-DOS and OS/2 to integrate
new operating system features. (IBM also distributed MASM under the name IBM
Macro Assembler for the early versions of PC-DOS.) The C language source listings
were developed using the Microsoft C Compiler version 3.00.

Advanced MS-DOS did not teach assembly language or C programming concepts,
but it relied on an earlier exposure to these languages. This represented a poten-
tial problem for some readers, who could quickly get in over their heads with the
complexity of the source listings and the steps required to build commercial appli-
cations. Indeed, there was more space devoted to MASM than to C in the book,
because assembly language made the process of calling MS-DOS functions eas-
ier and more efficient. Duncan did recommend some resources for learning to
program, however, such as Robert Lafore’s Assembly Language Primer for the IBM
PC & XT (1984).*! In 1991, Duncan also published his own guide to assembly

40. Duncan, Advanced MS-DOS, 4.

41. Robert Lafore, Assembly Language Primer for the IBM PC & XT (New York: New American Library,
1984).

9.4 RayDuncan’s Advanced MS-DOS 279

language for intermediate to advanced programmers, with advice about writing
modular, maintainable, and well-documented programs.*?

In MS-DOS programming, most of the system services were invoked by an enig-
matic microprocessor software interrupt known as “21H.” This family of function
calls allowed a programmer to inspect disk directories, create or delete files, read or
write records within files, set the system date and time, allocate memory, and per-
form other tasks.*? Learning how to use these interrupts was a major challenge of
operating systems programming, and Duncan devoted several chapters and refer-
ence sections to them. Another demanding task was learning how to create device
drivers, which are the modules of an operating system that control the computer’s
hardware. Microsoft introduced installable device drivers in MS-DOS version 2.0,
and they allowed the user to customize and configure an IBM PC for a wide range
of peripheral devices, such as new hard disks or modems.** MS-DOS device drivers
are interfaced to the hardware-independent DOS kernel through a clearly defined
scheme of function codes and data structures. Like the other components of MS-
DOS, Duncan described the required elements using conceptual drawings, concise
technical prose, and working assembly language routines that programmers could
adapt to their own needs. If you worked at a company making peripherals or device
drivers in the early years of the PC industry, it is likely that your team had a copy
of Duncan’s Advanced MS-DOS on their bookshelves. This primer and reference
provided essential information that was hard to come by via other routes.

Advanced MS-DOS was well reviewed and the book seemed to edify new-to-topic
programmers and experienced developers alike. Byte magazine emphasized the
literary qualities of the book. “Advanced MS-DOS Programming exemplifies how a
highly technical book can be both informative and readable.”®> In 1988, the book
was updated with a second edition, covering newer compilers and the Intel 80386
microprocessor.*® The sample programs were written for MS-DOS through version
4 using Microsoft Macro Assembler version 5.1 and the Microsoft C Compiler ver-
sion 5.1. (Figure 9.6 shows the MASM Programmer’s Guide that a typical user would

42. See Ray Duncan, Power Programming with Microsoft Macro Assembler (Redmond, WA: Microsoft
Press, 1991).

43. Duncan, Advanced MS-DOS, 274.

44. Duncan, Advanced MS-DOS, 222.

45. John D. Unger, “Advanced MS-DOS review,” Byte Extra Edition, vol. 11, no. 11 (1986), 23.

46. Ray Duncan, Advanced MS-DOS: The Microsoft Guide for Assembly Language and C Programmers,
Second Edition (Redmond, WA: Microsoft Press, 1988). At Microsoft Press, I was the technical edi-
tor for the second edition of the book and I also prepared the companion disk with source code
listings. Mark Zbikowski continued to provide advanced technical support from the MS-DOS group
inside Microsoft.

280 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

Figure 9.6 Cover of the Microsoft Macro Assembler 5.1 Programmer’s Guide, for IBM PCs and
compatibles running the MS-DOS operating system (c. 1987). (Used with permission
from Microsoft)

have had access to. The text would supplement the material presented in Duncan’s
Advanced MS-DOS.)

At the time of the second edition, Microsoft was engaged in a power struggle
with IBM, as the two companies sought to jointly develop the new multitasking,
graphical operating system called OS/2. Ignoring the politics of the issue, Dun-
can became intrigued with the underlying technologies of the system, and he soon
released another full-length title devoted to the OS/2 system kernel. Advanced OS/2
Programming (1989) focused on the substructures of OS/2 and the multitasking
capabilities of the operating system.?” Duncan did not cover Presentation Man-
ager in his book, the new graphical windowing environment that displayed and
managed information for users. (He left this task to Charles Petzold, the author of

47. Ray Duncan, Advanced OS/2 Programming: The Microsoft Guide to the OS/2 Kernel for Assembly
Language and C Programmers (Redmond, WA: Microsoft Press, 1989). Eric Stroo was the book’s
project editor and I continued as the book’s technical editor. Claudette Moore, Duncan’s first
acquisitions editor at Microsoft Press, continued on in a new role as Duncan’s literary agent.

9.5

9.5 The MS-DOS Encyclopedia 281

Programming the OS/2 Presentation Manager.) However, IBM and Microsoft gradu-
ally dissolved their joint partnership in OS/2, and by the early 1990s Microsoft put
the majority of its resources behind the Microsoft Windows platform. This included
the development of Windows NT, a scalable, multiprocessing operating system
that would soon become the basis for the company’s enterprise and client/server
initiatives. (For more about Windows and Windows NT, see Chapters 10 and 11.)

The MS-DOS Encyclopedia

In computer book publishing, the era of MS-DOS development probably has
no more comprehensive account than the massive MS-DOS Encyclopedia (1988),
published by Microsoft Press and shepherded by general editor Ray Duncan. A mon-
umental project, the final hardback edition of the Encyclopedia came in at 1570
pages and took several years to produce. In a 1988 Foreword to the tome, Bill Gates,
the Chairman of Microsoft Corporation, wrote that MS-DOS was the most popu-
lar piece of software in the world, running on more than 10 million IBM PCs and
compatibles, and serving as the platform for at least 20,000 applications.*® The
company’s goal with The MS-DOS Encyclopedia was, as Gates put it, to “provide
the most thorough and accessible resource available anywhere for MS-DOS pro-
grammers.”*° The effort to produce the book was indeed substantial. It involved
sizeable teams of managers, editors, proofreaders, editorial assistants, production
personnel, software experts, and technical writers. The cohort of outside techni-
cal experts (called “contributors” in the book’s front matter) included Ray Duncan,
Steve Bostwick, Keith Burgoyne, Robert A. Byers, Thom Hogan, Jim Kyle, Gordon
Letwin, Charles Petzold, Chip Rabinowitz, Jim Tomlin, Richard Wilton, Van Wolver-
ton, William Wong, and JoAnne Woodcock. Sixty-four “technical advisors” were
also listed, including the Microsoft luminaries Paul Allen, Steve Ballmer, Bill Gates,
Chris Larson, Marc McDonald, Tim Paterson, Bob O’Rear, and Mark Zbikowski.”°
The only woman in the group of featured “contributors” was JoAnne Woodcock
(1944-2014), a senior editor at Microsoft Press who I first introduced in Chapter 6.
Woodcock was responsible for the essay about the historical development of MS-
DOS, an assignment that grew out of her deep experience editing user’s guides for
PC operating systems, as well as earlier work at the Encyclopedia Britannica. In the
late 1980s, Woodcock was also the co-author of two computer books about the Xenix
and Unix operating systems, which encouraged new users to become productive

48. Bill Gates, “Foreword,” in The MS-DOS Encyclopedia, ed. Ray Duncan (Redmond: Microsoft
Press, 1988), xiii.

49. Gates, “Foreword,” The MS-DOS Encyclopedia, Xiv.

50. Duncan, The MS-DOS Encyclopedia, vii-viii.

282 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

with the operating system software in business and corporate contexts.’! Woodcock
also co-authored a pioneering book on word processing (with Peter Rinearson) enti-
tled Word Processing Power with Microsoft Word.>? This guide explained how to use
mail merge, style sheets, macros, and other advanced features of Microsoft Word
for MS-DOS version 5 (the character-based version of Microsoft’s word processor).
Woodcock’s last job title at Microsoft Press was Master Writer/Editor, a position
created to honor her many contributions to technical publishing and editing.
In 1994, she published The Ultimate MS-DOS Book, a comprehensive user guide cov-
ering the MS-DOS system that she had poked, prodded, and explained for so many
years.’3 This book distinguished itself from the competition by focusing on the
problems and opportunities thatupgraders to MS-DOS 6.0 and 6.2 might encounter.
Like the other titles in the Microsoft Press Ultimate series, this guidebook was thor-
oughly illustrated. Woodcock used the book to emphasize the points of friction or
“sticky wickets” that users might encounter when they upgraded existing systems
or explored new features.

JoAnne Woodcock was widely recognized as an authority on operating systems,
but was she the only woman credited in The MS-DOS Encyclopedia Looked at com-
prehensively, the front matter for the book lists 79 technical experts that were con-
sulted for the project (both “contributors” and “technical advisors”).>* Examining
the list of names for traditional gender attributions, it is evident that approximately
94% of the credited technical experts were male (74 of 79 participants). In terms of
employment, most of the consultants were senior engineers, system architects, and
software developers at Microsoft in the MS-DOS group, with additional authors and
authorities from the software industry. This gender imbalance is typical of the U.S.
software industry in the late 1980s, with men outnumbering women on engineer-
ing and software development teams at rates of 3-to-1 or higher.>> The extraordinary
imbalance on this reference work may be a result of the involvement of numerous

51. See JoAnne Woodcock and Michael Halvorson, eds., Xenix at Work (Bellevue, WA: Microsoft
Press, 1986); JoAnne Woodcock, Michael Halvorson, and Robert Ackerman, Running UNIX: AnIntro-
duction to SCO UNIX System V/386 and XENIX Operating Systems (Redmond, WA: Microsoft Press,
1990).

52. Peter Rinearson and JoAnne Woodcock, Word Processing Power with Microsoft Word, Third
Edition (Redmond, WA: Microsoft Press, 1989).

53.JoAnne Woodcock, The Ultimate MS-DOS Book (Redmond, WA: Microsoft Press, 1994).

54. Duncan, The MS-DOS Encyclopedia, vii-viii.

55.In her study of women’s participation in computing, Janet Abbate puts the rate of participation
of women in programming jobs at 33% in 1988 using data from the U.S. Department of Labor. See
Janet Abbate, Recoding Gender: Women’s Changing Participation in Computing (Cambridge, MA: The
MIT Press, 2012), 3.

9.6

9.6 MS-DOS Sample Code 283

high-ranking technical managers and executives who had been at the company for
some time and hoped to participate in the project. Despite the scarcity of female
contributors, however, there were several women listed as technical advisors for the
book, including Rachel Duncan, Estelle Mathers, Betty Stillmaker, JoAnne Wood-
cock, and Natalie Yount.

The masthead of The MS-DOS Encyclopedia also lists 54 employees who par-
ticipated on the project from the Microsoft Press division. (See Figure 9.7 for a
group photo including many of them.) Interestingly, approximately half of these
employees (48%) were women, including many in senior leadership roles. These
managers included Dorothy L. Shattuck (Senior Editor), Patricia Pratt (Editorial
Director), Sally Brunsman (Special Projects Editor), Brianna Morgan (Copy Chief),
and Susan Lammers (Editor-in-Chief). Rounding out the list of senior managers
were David Rygmyr (Senior Technical Editor), James Brown (Marketing and Sales
Director), Christopher Banks (Director of Production), and Min S. Yee (Publisher).
The relatively equal gender distribution of managers and employees on the pub-
lishing side of the business was typical at Microsoft Press and in many American
publishing houses in the 1980s. This points out an interesting caveat about the
gender imbalance that scholars typically find in high-tech work groups. While men
continued to be overrepresented in the engineering and management positions at
software companies in the 1980s and 1990s, women were sometimes well repre-
sented in affiliated areas, including product support, customer service, publishing
operations, corporate communications, and computer training/education. While
many of these areas did not pay as well as the engineering groups in terms of base
salary, they could offer tangible benefits to employees, including stock options and
more flexible schedules than the coding-intensive positions allowed. Future histo-
rians of computing should try to make these affiliated areas and their employment
dynamics more visible. Software companies could assist in the process by pro-
viding limited access to corporate records and archival materials, with sensitive
information redacted as appropriate.

MS-DOS Sample Code

Like Advanced MS-DOS, The MS-DOS Encyclopedia contained significant amounts
of sample code so that curious programmers could learn advanced features and
integrate them into projects. Most routines came in the form of skeleton code, the
fragmentary code blocks that could easily be expanded into substantial routines
and modules. For example, the following code block was written in Microsoft Macro
Assembler version 4.00 to demonstrate how to create a new file named MEMO.TXT
in the nLETTERS directory on a disk labeled “C”. The routine was designed to
demonstrate how the file and record management function 3CH operated under

284 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

Figure 9.7 Microsoft Press personnel at a company retreat, mid-1987. At the time this photo was
taken, many of the organization’s staff members were working on The MS-DOS Encyclo-
pedia, atask that occupied the entire publishing house. Publisher Min S. Yee is standing
on the left of the image. Editor-in-Chief Susan Lammers holds the division’s sign near
the center. (Photo courtesy of Michael Halvorson)

MS-DOS version 3.2. If a file with the same name already existed in the directory, it
would be “truncated” to zero length and opened for input. Explanatory comments
appear after the semicolon (;) character in the column on the right side of the code

block.
fname db "C:\LETTERS\MEMO.TXT',0
fhandle dw ?

mov dx,seg fname ; DS:DX = address of

mov ds,dx ; pathname for file

mov dx,offset fname

Xor cX,CX ; CX = normal attribute
mov ah,3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS

jc error ; jump if create failed
mov fhandle, ax ; else save file handle®®

56. Duncan, The MS-DOS Encyclopedia, 252.

9.7

9.7 Technology Diffusion 285

Most of the programming sections ended with two or three examples in this
style to demonstrate how the internal features of the operating system worked.

The MS-DOS Encyclopedia was originally planned to be just the first of several
comprehensive reference projects that documented how the major software plat-
forms operated in the PC industry. However, the scope of the project proved daunt-
ing for Microsoft and it incurred significant costs. In addition, there was one false
start in which early volumes needed to be recalled due to concerns about the
accuracy of some technical material and worries that portions of the original MS-
DOS source code were being released inadvertently to the public. To address the
issue, Microsoft freed up several members of the MS-DOS development teams to
carefully review flagged sections, removing information that was either inaccu-
rate or proprietary.®” Ray Duncan’s oversight and influence eventually resolved any
outstanding issues.

The 1988 edition of The MS-DOS Encyclopedia emerged as a definitive and beau-
tifully produced volume, but it would be the last encyclopedia project of this
scope in the computer book industry. For one thing, the hardcover’s $134.95 price
tag ($69.95 softcover) put the volume beyond the reach of most casual users or
programmers. Industry experts and journalists certainly found the book to be
invaluable, but the project required a huge investment of internal resources that
could not be recouped. To this day, however, The MS-DOS Encyclopedia remains
the definitive resource for programmers and computer scientists who want to
understand how the early versions of MS-DOS came to be, functioned internally,
and relate to each other in minute detail.>® It was perhaps Ray Duncan’s most
significant contribution to the PC programming world.

Technology Diffusion

Although MS-DOS programming began as an obscure commercial activity in
1981-1982, it gained momentum as more powerful hardware arrived and the IBM
PC platform widened its reach to include new customers. Entrepreneurs like Peter
Norton developed utilities for MS-DOS that helped users safeguard their data and
become more productive in business environments. A brief history of The Norton

57.Aninteresting blog about the review process was written by one of the Microsoft software devel-
opers who was involved with the work. See Larry Osterman, “Does anyone remember the original
MS-DOS Encyclopedia? Microsoft Developer Network, June 14, 2004. https://blogs.msdn.microsoft.
com/larryosterman/2004/06/14/does-anyone-remember-the-original-ms-dos-encyclopedia/.
Accessed August 26, 2019.

58. Harvey Deitel of Boston College adapted sections of the Encyclopedia for his popular textbook
about operating systems, a move followed by other academics and journalists. See H. M. Deitel,
Operating Systems, Second Edition (Reading, MA: Addison Wesley, 1990), 629-668.

https://blogs.msdn.microsoft.com/larryosterman/2004/06/14/does-anyone-remember-the-original-ms-dos-encyclopedia/
https://blogs.msdn.microsoft.com/larryosterman/2004/06/14/does-anyone-remember-the-original-ms-dos-encyclopedia/

286 Chapter9 Developing for MS-DOS: Authors and Entrepreneurs

Utilities has demonstrated how dramatically a company’s fortunes might have risen
when they found the right audience for their applications. However, an overlooked
part of this story is the role that book programmer-authors played in the popular-
ization of the MS-DOS platform. The fact that Peter Norton’s Programmers Guide
to the IBM PC sold over 500,000 copies in its first two editions (1985 and 1988) is
a testament to the impact that skilled authors and entrepreneurs could made on
the early system, when users were scrambling to learn techniques related to the
new hardware and software. Ray Duncan’s Advanced MS-DOS, Advanced 0S/2, and
MS-DOS Encyclopedia also provided helpful reference materials for aspiring DOS
developers who were trying to master the inner workings of the operating system for
hobbyist or commercial use. At first, PC programmers attempted these tasks using
assembly language (Microsoft Macro Assembler) but as time passed they experi-
mented with high-level tools, including QuickBASIC, Turbo Pascal, Forth, and C.
When the Microsoft Windows platform gained momentum in the early 1990s, devel-
opers gradually shifted away from MS-DOS programming to object-oriented tools
that worked well in graphical systems.

Using terminology from the history of technology, we might describe this
expanding list of products and transitions as the process of “diffusion” that
takes place when a new technology is propagated across society. As other schol-
ars have noted, this diffusion process usually takes place in stages, and it some-
times involves an accompanying discourse that is visible in mass media, trade
publications, scholarly journals, trade shows, and other public activities.>® Dur-
ing the learn-to-program movement, the primary media about the MS-DOS plat-
form were computer books, technical magazines, and corporate communications
from technology firms. These taught new-to-topic developers how to build commer-
cial applications, an activity that richly rewarded some of the era’s entrepreneurs.
Many of the authors of computer books and technical articles were men and
women who had earlier experiences in mainframe computing, science, medicine,
or journalism. Despite the overrepresentation of men in these fields, there were
also some women who wrote about programming and microcomputer and mini-
computer operating systems, including JoAnne Woodcock. A particularly con-
ducive environment for women seems to have been technical publishing houses
like Microsoft Press, where approximately half of the employees were women.
These exceptions to the traditional pattern of male dominance in engineering and
technology fields deserves more study.

59.See Margaret S. Elliott and Kenneth L. Kraemer, Computerization Movements and Technology Dif-
fusion: From Mainframes to Ubiquitous Computing (Medford, NJ: American Society for Information
Science and Technology, 2008), 5.

9.7 Technology Diffusion 287

In the next chapter, I will continue my analysis of PC programming communi-
ties in the 1980s and 1990s, focusing on the C and C++ programming languages,
and the tools and techniques that enabled PC programmers to master complex
graphical operating systems, such as Microsoft Windows and the Apple Macintosh.
I'll also analyze the writings of several fascinating programmer-authors who wrote
successful tutorials, including Brian W. Kernighan, Dennis Ritchie, Al Kelley, Ira
Pohl, Mitchell Waite, Dan Gookin, and Charles Petzold. I'll discuss the beginnings
of the C language on the PC platform, and the eventual complexities of C/C++ pro-
gramming under Windows that grew so severe they evoked comparisons to a much
earlier period of uncertainty—the software “crisis” of the 1960s that threatened to
stifle the electronic computer revolution.

C Programming Nation:
From Tiny C to Microsoft
Windows

“C is arelatively ‘low level’ language. This characterization is not pejorative; it simply
means that C deals with the same sort of objects that most computer do, namely
characters, numbers, and addresses.”

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (1978)*

If at first you find Windows programming to be difficult, awkward, bizarrely convoluted,
and filled with alien concepts, rest assured that this is a normal reaction. You are not
alone.

Charles Petzold, Programming Windows 3.1 (1992)?

When The MS-DOS Encyclopedia was published by Microsoft Press in 1988, the
editors of the reference printed sample code for MS-DOS applications in assembly
language, Microsoft C,and Microsoft QuickBASIC.3 The encyclopedia also included
detailed information about batch file programming, which it described as a useful
method for performing sequences of frequently used commands without having
to retype them. These four “languages” were the most popular tools for creating
applications and utilities in the late 1980s, the heyday of DOS programming on
IBM personal computers (PCs) and compatibles. Over the coming decade, how-
ever, graphical operating systems such as Microsoft Windows and OS/2 would push
the C language to center stage as the most important tool for application develop-
ment on PCs. For programmers with commercial aspirations, learning C became

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall, 1978), 1.

2. Charles Petzold, Programing Windows 3.1: The Microsoft Guide to Writing Applications for Windows
3.1, Third Edition (Redmond, WA: Microsoft Press, 1992), 10.
3.Ray Duncan, ed., The MS-DOS Encyclopedia (Redmond, WA: Microsoft Press, 1988), xviii.

290 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

10.1

a priority. But how should this be attempted in the context of new PC platforms?
What software and learning resources were available, and how would novice pro-
grammers prepare themselves for the rigors of object-based programming in the
Windows or Macintosh environments?

This chapter surveys the development of the C programming language on PCs,
and the wide range of learning resources that new-to-topic developers had access to
as they built their C programming skills. I emphasize the role that primers, refer-
ence guides, and technical articles played in the diffusion of C programming com-
petences, because these media followed the same path that BASIC and MS-DOS
resources traveled—they exploited a world of print to communicate with students,
especially before the commercial Internet changed dissemination patterns in the
mid-1990s. In terms of authors and entrepreneurs that taught C programming
skills (listed alphabetically), I'll examine the work of Dan Gookin, Augie Hansen,
Samuel P. Harbison, Thom Hogan, Allen I. Holub, Al Kelley, Brian W. Kernighan,
André LaMothe, Donald Martin, Kurt Matthies, Ira Pohl, Stephen Prata, Jeff Prosise,
Jeffrey Richter, Dennis Ritchie, Guy L. Steele, Jr., and Mitchell Waite. These software
developers all prepared learning resources for C and C++ developers in the 1980s
and 1990s. I'll also discuss the contributions of Charles Petzold, an award-winning
programmer and author who was among the most successful at teaching complex
Windows and OS/2 programming techniques. Collectively, this group taught mil-
lions of programmers the fundamentals of C, Windows, OS/2, and Macintosh pro-
gramming, contributing to the success of the learn-to-program movement in its
commercial and corporate manifestations.

The C Language

The early history of the C programming language is relatively well known. The
language itself came into being during the years 1969-1973, in parallel with the
early development of the Unix operating system.? Ken Thompson of Bell Labora-
tories created a language called “B” (derived from Martin Richards’s basic com-
bined programming language [BCPL]), which Thompson planned to use to write
system utilities for early versions of Unix. (See Figure 10.1.) As a high-level lan-
guage, B was presumably easier to use than assembly language to write system
tools, and it was hoped that the new language would help the Bell Labs teams save
time. The next contributor to the language was Dennis Ritchie, also an employee
at Bell Labs, who turned B into the C language between 1971 and 1973. Ritchie

4. Dennis M. Ritchie, “The development of the C programming language,” in History of Program-
ming Languages—II, ed. Thomas J. Bergin and Richard G. Gibson (New York: ACM Press, 1996),
671-698, here at 672.

10.1 The C Language 291

Figure 10.1 Ken Thompson (standing) and Dennis Ritchie, the inventors of Unix and C at Bell
Laboratories, in front of a Digital Equipment corporation (DEC) PDP-11 minicomputer
(early 1970s). The Association for Computing Machinery (ACM) awarded Thompson and
Ritchie the Turing Award in 1983 for their work on operating systems theory. (Courtesy
of the Computer History Museum)

made several improvements to the design of the system, and he is responsible for
building the first C compiler. The new tool was designed to be small and compactly
described, butalso highly efficient on emerging hardware systems such as the 16-bit
DEC PDP-11 minicomputer. Between 1977 and 1979, the C language expanded fur-
ther as its designers focused on implementation concerns, such as type safety and
portability.® As the C language gained momentum, it was distributed widely with
the Unix operating system, both inside and outside of Bell Labs. Every few years

5. Ritchie, “The development of the C programming language,” 680.

292 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

a new release came along to support the growing platform. Of particular impor-
tance were the System III and System V releases from Bell Labs, and the Berkeley
Software Distribution (BSD) releases created by a team working at the University
of California, Berkeley. As Christopher Tozzi has explained in a recent book, BSD
was especially important because it was a Unix clone that was eventually free of
Bell Labs (later AT&T) source code—a stepping stone on the way to open-source
system software.®

In 1978, Brian Kernighan and Dennis Ritchie published The C Programming
Language with Prentice Hall, a primer that became the common reference point for
C until an official American National Standards Institute (ANSI) standard was pub-
lished in 1989.” The C Programming Language is an unusually important computer
manual because it spread not only knowledge about the new language’s syntax and
design, but the text emerged as the teaching standard for how the language should
be learned. Brian Kernighan’s clear and concise prose was certainly an important
reason for this. He devised effectual teaching conventions, style guidelines, and
sample programs that many programming primer authors would adapt for their
books. In addition, the guide book was co-authored by Dennis Ritchie, the creator
of the C language, so the text had an aura of authenticity about it that few could
match. Although Kernighan prepared the majority of the text, Ritchie collaborated
on several sections, including the extensive reference that appeared in the last sec-
tion of the book. The reference was essentially a blueprint for how the C program-
ming language operated. Like many C programmers, I remember carrying around
a dog-eared copy of my “K&R book” in the mid-1980s, and it has never left my book-
shelf. Reading and referring to the primer was a common experience for many
Computer Science students, self-taught programmers, and commercial developers
of all types, from mainframe and minicomputer users, to solitary hackers, tinkers,
and hobbyists. In January 2012, Prentice Hall announced that the second edition
alone had gone through 49 printings. The C Programming Language became the
perennial bestseller among computer programming primers.

As a sample of the teaching in The C Programming Language, consider the fol-
lowing C program designed by Kernighan and Ritchie to count the number of lines
received as input in a terminal session. The complete program is just 10 lines long,

6. See Christopher Tozzi, For Fun and Profit: A History of the Free and Open Source Software Revolution
(Cambridge, MA: The MIT Press, 2017), 20.

7.Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1978). The ANSI standard version was described in the updated edition, Brian
W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition (Upper Saddle
River, NJ: Prentice-Hall, Inc., 1988).

10.2

10.2 Learning C on Personal Computers 293

including one blank line added for spacing and readability.® Note that the input
lines are assumed to be terminated when a newline character (nn) is entered, which
is typically appended to each line during the process of typing.

main () /* count lines in input */

{

while ((c = getchar()) != EOF)
if (c == '\n\)

++nl;
printf ("\%d\n", nl);
}

The program uses a while loop and an if statement to continuously evaluate the
input received by the program. In 1978, the authors assumed that this input would
come from a terminal attached to a DEC PDP-11 minicomputer (or equivalent), but
there were other input options discussed later in the book. The getchar() function
is used to examine each character in the input received. Nothing is done with the
input other than testing whether the character is an end-of-file (EOF) marker or a
newline character. (The first test is made in the while loop’s conditional expression,
and the second in the if statement that follows.)

When the EOF marker is encountered, the looping terminates, a sign that input
from the terminal is complete and it is time to display the total number of lines
received. Until this moment, however, the integer variable n/ is incremented once
for each newline character that the program encounters. The information is stored
as a rolling total of the number of lines entered. The final printf statement in the
program displays the value contained in the nl variable, so that the user can see
the results of the program’s work. It is a very simple demonstration program that
appears earlyin the book, but typical of the Kernighan and Ritchie teaching method.
The compact nature of the C language also lends itself to this exercise. Future
technical writers were inspired by this step-by-step approach.

Learning C on Personal Computers

Enthusiasm for the C programming language grew rapidly. Although the first
C programmers were minicomputers users, the language was designed for porta-
bility and soon implementations appeared on different machine architectures
and operating systems. One of the earliest versions of C on a microcomputer
was reported by a reader of Dr. Dobb’s Journal in February 1979, soon after the

8. Kernighan and Ritchie, The C Programming Language, 17.

294 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

publication of Kernighan and Ritchie’s The C Programming Language. Ted Shapin
of Orange, California wrote in a “Letters” column that a “Tiny-C” product was
available for $40 from a company in Holmdel, New Jersey, which could run as an
interpreter in a computer fitted with an Intel 8080 microprocessor.® Dr. Dobb’s
Journal readers could purchase the printed assembly language instructions for
the C-language “subset” via mail order. When the assembly language listing
arrived, readers could type it into their microcomputer (provided there was a
keyboard) and start writing C programs. Although limited in scope, this innova-
tive Tiny-C interpreter could operate in just over 4KB of memory, making it suit-
able for the low-resource conditions of early PCs. A comprehensive manual was
also included.

By 1980, several other “Small C” compilers had appeared in the marketplace
from programmer-entrepreneurs Ron Cain, James Hendrix, and others. These
rudimentary C products were all designed for resource-limited microcomputers
and embedded systems, and they tried to approximate the C language specifications
published in Kernighan and Ritchie’s The C Programming Language. In some cases,
the source code was simply released into the public domain for no fee. This free
software approach followed the distribution paradigm advocated by several “Tiny
BASIC” advocates in the mid-1970s. (For a history of Tiny BASIC, see Chapter 4.)

In October 1983, a regular C programming column appeared in Dr. Dobb’s Jour-
nal entitled “C/Unix Programmer’s Notebook.” This feature was written by Anthony
Skjellum, a talented software engineer involved with several innovative projects in
the nascent PC software industry. Skjellum earned B.S., M.S., and Ph.D. degrees
from the California Institute of Technology, and he has been a long-time member
of the ACM. In 1984, Skjellum took up other work, and Dr. Dobb’s Journal replaced
his column with a recurring feature entitled “C Chest.” This tips, techniques, and
news column was written by Allen I. Holub, a talented technical writer who had
studied Computer Science and Medieval European History at the University of Cal-
ifornia, Berkeley. Holub’s popular “C Chest” column ran for 5 years in Dr. Dobb’s
Journal, contributing significantly to the diffusion of the C programming language
in magazines. In the late 1980s and 1990s, Holub also wrote several reference
books and primers on C/C++ programming, published by McGraw-Hill and other
companies.

The movement behind C was quickly supported by magazine editors who
sought to provide comparative content and product reviews for those considering C
for professional use. In February 1985, Computer Languages magazine presented a
“benchmarks” performance article that surveyed the industry’s leading C compilers

9. Ted Shapin, “Review of Tiny-C owner’s manual,” Dr. Dobb’s Journal of Computer Calisthenics &
Orthodontia 32 (February 1979): 41.

10.2 Learning C on Personal Computers 295

and judged how they competed on features, speed, and price.!’ The authors
assessed the leading products on the MS-DOS, CP/M, CP/M 86, 0S-9, and TRS-80
platforms.

Later that year, Dr. Dobb’s Journal ran a similar benchmarks article comparing
13 C compilers designed solely for MS-DOS.!! The list included Aztec C, Control C,
C Systems C, Computer Innovations C86, Datalight C, DeSmet C, Digital Research
C, EcoSoft C, Lattice C, Mark Williams C, Microsoft C, Software Toolworks C, and
Wizard C. The presence of so many robust products indicated the vitality of the PC
platform and the rapid emergence of C as a viable product for professional devel-
opers. In 1988 (the year the new ANSI standard was announced), a follow up essay
in Dr. Dobb’s Journal discussed how the various C products had changed over time
and were being updated to promote the new standard. In this article, the Microsoft
C Compiler was identified as the market leader, primarily because of Microsoft’s
unique position as a programming tool vendor and an arbiter of operating system
standards.

Microsoft Cversion 5.1 was released in March 1988, and it offered integrated sup-
port for the Intel 80386 microprocessor, as well as the MS-DOS, Microsoft Windows,
and OS/2 operating systems. (See Figure 10.2.) The product had a retail price of
$450. Interestingly, Microsoft C 5.1 was only partially compliant with the emerg-
ing ANSI C standard. Partial compliance was typical of many of the commercial
C compiler products released in 1988 and 1989 as the new language specifica-
tion made its way into industry and gradually became the benchmark. Microsoft
C version 5.1 was also a superset of Microsoft QuickC, a relatively recent “scaled
down” version of the compiler that Microsoft had released for the novice and hob-
byist markets. Released originally in November 1987, QuickC was priced at $99
to compete with Borland’s Turbo C, which some industry analysts believed to be
a superior product for non-professional audiences.!? Both QuickC and Turbo C
offered character-based integrated development environments (IDEs) and menu-
driven help systems that were similar to the tools in Microsoft QuickBASIC ver-
sion 4.5. QuickC version 2.0, released in January 1989, was fully compatible with
Microsoft C 5.1.

The segmentation of the C programming marketplace into hobbyist and
professional product categories indicates that the C language had successfully

10. Steve Leibson, Fred Pfahler, Jim Reed, and Jim Kyle, “Software reviews: Expert team analyzes
21 C compilers,” Computer Languages, February 1985, 73-96.

11. “C Compilers for MS-DOS,” Dr. Dobb’s Journal, August 1985, 30-54. The review was conducted
by the C Special Interest Group (C-SIG) of PicoNet and the Silicon Valley Computer Society under
the direction of Richard Relph.

12. Richard Relph, David Chalmers, and Alex Khaloghli, “Product comparison: Six C compilers,”
InfoWorld, May 22, 1989, 47-60, here at 56.

296 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.2 Microsoft C Compiler version 5.1 software disks (1988). (Photo by Michael Halvorson;

10.3

used with permission from Microsoft)

established itself on the IBM PC/MS-DOS platform. In less than a decade, C was
thriving as a commercial product, and experienced software developers widely
regarded the language for its structured programming elements, speed, and
portability. Sensing an eager market for professional and new-to-topic learners,
computer book publishers quickly responded with dozens of programming primers
and reference books for the many users of C who needed help exploring the
language and its application in real-world contexts. The following sections present
the wide range of learning resources that were available.

Academic and Professional Resources
Although Kernighan and Ritchie’s The C Programming Language served as the clas-
sic introduction to C programming, several attractive alternatives soon became

10.3 Academic and Professional Resources 297

available. These new books were especially helpful for ¢true novices, i.e., those with
no previous exposure to programming concepts in any language. There were also
C programming guides that emphasized a particular compiler or operating sys-
tem, or which featured custom learning software to accompany the tutorial and
its pedagogy. For example, Kernighan and Ritchie’s text assumed a Unix system
interface, but later books taught C in the context of popular PC platforms, including
MS-DOS, Windows, and the Mac. The following sections introduce popular books
in all of these categories.

We’ll start with professional reference works. For C programmers who had
already learned the basics, there were programmer’s reference manuals and guide
books that provided quick access to the reserved words and features of the language.
One such text was C, A Reference Manual, by Samuel P. Harbison and Guy L. Steele,
Jr.13 This reference work was published by Prentice Hall, and it became popular in
professional and academic settings. Harbison and Steele offered a complete defini-
tion of the C language, covering the major run-time libraries and an overview of the
different versions of C. The second feature became useful as the language prolifer-
ated and went through revision by the International Standards Organization (ISO).
This bestselling reference went through five editions, the last published in 2002.

Two well-known Math and Computer Science professors at the University of
California, Santa Cruz also authored a popular C programming primer, published
initially in 1984. Al Kelley and Ira Pohl’s A Book on C was written in a lively style
that had a structure similar to the classic Kernighan and Ritchie text.* The book
introduced fundamental data types, flow control mechanisms, functions, branch-
ing statements, pointers, recursion, structures, list processing, and managing input
and output in the Unix environment. The book was not organized as a concise
manual to teach systems programmers (the approach implied by the K&R books).
Rather, A Book on C introduced C as a general-purpose programming language
that might have a variety of uses. Pedagogically, the Kelley and Pohl text was
designed to be used in conjunction with a college Computer Science course, or per-
haps as a stand-alone primer for experienced programmers. I personally encoun-
tered the book in a Microsoft-sponsored training course that taught Microsoft C
in the context of IBM PCs and compatibles. Of particular value were the careful
introductions to more complex topics like enumeration, unions, arrays, and self-
referential structures—material thata studentwould appreciate when working with

13. Samuel P. Harbison and Guy L. Steele, Jr., C, A Reference Manual (Englewood Cliffs, NJ: Prentice
Hall, 1984).

14. Al Kelley and Ira Pohl, 4 Book on C: An Introduction to Programming in C (Menlo Park, CA: The
Benjamin/Cummings Publishing Company, 1984).

298 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

data structures and algorithms. The authors also valued simplicity. The book’s first
section began with two short sentences that encapsulate the convictions of many
C programmers: “C is a small language. And small is beautiful in programming.”*>

Al Kelley and Ira Pohl were two well-connected academics with deep roots in
1960s computing. Al Kelley held a Ph.D. in Mathematics and joined the UC Santa
Cruz Mathematics Department in 1966.1® He became interested in computational
mathematics at the university, and gradually helped to transform the department
into one of the leading institutions for computational mathematics in the nation.
ACM Fellow Ira Pohl received a Ph.D. in Computer Science from Stanford University
in 1969, and he joined the Department of Computer Science and Engineering
at UC Santa Cruz soon after. A Book on C was Kelley and Pohl’s first publishing
project together. The 1984 edition of the primer was designed for programmers
using UC Berkeley 4.2 Unix and its popular C compiler.!” An attribute of this
system was their use of the venerable text editor vi to enter and edit programs.
However, the 1990 edition of A Book on C expanded its treatment of the language
by 100 pages and acknowledged other computing contexts. The book also included
an appendix that documented the differences between traditional C and the new
ANSI C standard.8

In later years, the third and fourth editions of A Book on C appeared, the last
arriving in 2005 from the book publisher Pearson. Collectively, the series sold well,
joining Kernighan and Ritchie as the most successful C programming primers in
the academic/professional marketplace. Books in this category were sold primar-
ily through university bookstores and professional organizations. As such, they
had a longer shelf life than trade computer books, which were typically sold at
retail outlets such as Barnes & Noble, B. Dalton, and Amazon.com. Soon Kelley
and Pohl expanded on the initial success of their method, which they came to
refer to as teaching “by dissection.” This was a reference to their way of explain-
ing programs via a structured walk through of the code, either section by section
or line by line.'® Eventually, Ira Pohl continued on his own, expanding his list of
languages to include C++, Java, and C#. These primers included C++ for C Program-
mers (1989), Object-Oriented Programming Using C++ (1993), Java by Dissection: The

15. Kelley and Pohl, A Book on C, 1.

16. Ralph Abraham, “UCSC Math: The Early Years,” unpublished paper, August 16, 2017, 3.
http://www.ralph-abraham.org/articles/MS%23153.UCSC/ms153.pdf. Accessed August 21, 2019.

17. Kelley and Pohl, A Book on C, 5.

18. Al Kelley and Ira Pohl, 4 Book on C: An Introduction to Programming in C, Second Edition
(Redwood City, CA: Benjamin/Cummings Publishing Co., 1990).

19. For an example, see Al Kelley and Ira Pohl, C by Dissection: The Essentials of C Programming
(Menlo Park, CA: Benjamin/Cummings Publishing Co., 1987).

http://www.ralph-abraham.org/articles/MS%23153.UCSC/ms153.pdf

10.4

10.4 C Programming for the People 299

Essentials of Java Programming (1999, with Charlie McDowell), and C# by Dissection:
The Essentials of C# Programming (2002). For his commitment to computer science
and programming instruction, Pohl was inducted as a Fellow of the ACM. His 2001
citation read, “For outstanding contributions to computer science research and
education in the areas of heuristic search, analysis of algorithms, and program-
ming language methodology.” It was especially appropriate that his contributions
to teaching programming languages was recognized, an undertaking he excelled at
in print and in the classroom.

C Programming for the People

Cwasborninanengineering research lab and the language quickly gained admirers
in academic and professional settings. However, there were also innovations in the
trade press that allowed people with very different backgrounds to gain proficiency
with the new programming tool. These books and learning systems were designed
for self-taught programmerswho had, at best, alimited exposure to coding practices
through BASIC or a scripting protocol like DOS batch files. The following section
reviews some of these creative products, which collectively helped to broaden the
audience of programmers in America in the 1980s and 1990s. I'll note at the end
of this section why I think C programming primers for popular audiences deserve
more attention and represent a fascinating continuation of the learn-to-program
movement in new contexts.

In 1984, The Waite Group created an important primer for self-taught program-
mers entitled C Primer Plus.?° (See Figure 10.3.) This trade book was published
by Howard W. Sams, a division of Macmillan that Mitchell Waite had partnered
with on several occasions. (See Chapter 6 for a history of Waite’s early program-
ming books.) From the beginning, The Waite Group had demonstrated a skill
for creating programming primers that would appeal to students, hobbyists, and
self-taught programmers. This tutorial continued that trend. C Primer Plus was
carefully designed and written by Waite, Stephen Prata, and Donald Martin—all
coding experts with significant writing and teaching experience. Prata had earned
a Ph.D. from the University of California, Berkeley and regularly taught Unix fun-
damentals and the C programming language. He worked at the College of Marin
in Kentfield, California, where he had originally met Waite when he was a student.
Donald Martin received an M.A. from San Jose State University and served in the
mid-1980s as the Chair of Physics, Astronomy, and Energy Science at the College of
Marin. Martin also taught Unix and C programming fundamentals to his students,

20. Mitchell Waite, Stephen Prata, and Donald Martin, C Primer Plus (Indianapolis, IN: Howard W.
Sams & Co., 1984).

300 Chapter10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.3 The Waite Group’s C Primer Plus, First Edition (1984), published by Sams Publishing.
In its almost 30-year history, the six editions of C Primer Plus have sold over 550,000
copies, offering readers a hugely popular introduction to the C language. (Courtesy of
Mitchell Waite)

aswell as Logo programming, the era’s most deliberate attempt to create a language
based on cognitive science. (For more on the origins of Logo, see Chapter 3.)

C Primer Plus found an eager readership and it became a strong seller, trans-
forming the profile of The Waite Group and encouraging the small company to pro-
duce more programming titles for the expanding computer book market. The trade
book market tended to move faster than the traditional academic or professional
presses. For example, trade computer titles were typically designed, written, and
published based on 18- to 24-month cycles that aligned with each new revision of
a commercial software product. The majority of the sales for a new trade computer
book would take place within the first 6 to 9 months after a book’s release, which
ideally coincided with the aggressive marketing campaigns initiated by the software
publishers. Many of these releases were timed for early fall in the U.S. (September or
October), so that both software and books could be fully in the retail sales channels
before Thanksgiving and Christmas. However, academic presses were typically 2

10.4 CProgramming for the People 301

to 3 times slower than this, managing their product development cycles around
the rhythms of academic life, the peer review process, and corporate computing
schedules. Rather than meteoric bestsellers, what the academic presses hoped for
were “classic” programming titles that could remain in print and on the back list
for years, such as Kernighan and Ritchie’s The C Programming Language or Donald
Knuth’s The Art of Computer Programming.

In the 1980s and early 1990s, the major trade computer books publishers
included Howard W. Sams, Microsoft Press, O’'Reilly, Osborne McGraw-Hill, Que,
Sybex, Wiley, Wrox, and Ziff Davis Press. The Waite Group established relationships
with several of these firms, often arranging for “package deals” that allowed them
to sign with one publisher for a number of computer books in advance. A signifi-
cant advance on royalties would cover their start-up costs for each project, and, if
successful, the books would pay The Waite Group additional royalties in the com-
ing years. For example, in 1984 a New York publisher known as the New American
Library wanted to get more deeply into computer book publishing, and they signed
a 15-book deal with The Waite Group, accompanied by a $1 million advance on
royalties.?! In the 1990s, The Waite Group also experimented with authoring and
publishing their own books, using Publisher’s Group West (PGW) for distribution
and sales. PGW, located in Berkeley, California, was one of the largest distributors
of independent presses in the U.S.22

What made the Waite Group’s C Primer Plus unique? Like the earlier
C programming books that we have surveyed in this chapter, C Primer Plus included
the essential material about working with data, using operators, managing pro-
gram flow, creating functions, working with pointers, and gaining familiarity with
the C run-time library. An important differentiator in the Waite Group’s primer
was the book’s light tone and conversational feel. C Primer Plus featured humor-
ous asides, entertaining illustrations, and practical advice. The text was supported
by question-and-answer sections, programming exercises, reference materials,
and contextual information about designing C programs for different platforms,
such as MS-DOS and Unix. For example, the authors described how to program
the ports of the 8088/8086 microprocessor and how to build functions that would
play music on IBM PCs and compatibles.?3

21.This book deal was arranged by an influential New York literary agent. I thank Mitchell Waite for
providing the details of this and other business transactions in a series of interviews in June 2019.
Most of the industry’s multi-book deals were not so large, and there were considerable risks for
both sides in such an arrangement.

22.1In 2007, Publisher’s Group West was acquired by Perseus Books Group.

23. See “IBM PC Music,” Waite et al., C Primer Plus, 509-514.

302 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

The Waite Group soon followed up on their success, releasing new editions
of C Primer Plus, as well as primers and references for other languages. One of
the more pioneering projects they experimented with was Master C (1990), an
innovative book-and-software package based on material from earlier titles and a
creative software tutorial that they acquired from an interested reader.? The course-
ware allowed new C programmers to check their progress through software lessons
on fundamental concepts. If they made mistakes, the Master C software showed
them what their mistakes were and what they needed to fix. Although the software
interface was rather primitive, Master C was one of several innovative book-and-
software packages that attempted to teach new users programming concepts on the
computer if they were unable or unwilling to attend local computer classes.?® These
products made their debut in the trade book markets years before the commercial
Internet made online-learning a standard activity on platforms such as YouTube
and Lynda.com.

At Microsoft Press, Augie Hansen’s Learn C Now (1988) was the company’s first
book-and-software package that sought to teach new-to-topic programmers how to
program in C using a combination of printed tutorials, software resources on disk,
and a special edition of the Microsoft QuickC compiler.?® This product sold for
$39.95. It was a relatively good value because the book included a scaled-down ver-
sion of the Microsoft QuickC compiler. (The scaled-down version was an otherwise
fully-functioning product, but it could not create executable files and was essentially
limited to running programs in memory.) The software came with a menu-driven,
character-based IDE that was a significant improvement over using vi (the Unix text
editor) to write programs. Augie Hansen was also a lively author who introduced
C programming with thoughtful, informative prose, self-testing materials, and
many sample programs that demonstrated the fundamentals of C programming.
His Proficient C: The Microsoft Guide to Intermediate and Advanced Programming
(1987) had established him as a leading author for experienced C programmers
on the MS-DOS platform. Learn C Now focused his attention on the introductory
market pursued by The Waite Group and others.

On the Macintosh platform, C programming advocates were also exploring the
possibilities that C provided for working with the system’s rich assortment of graph-
ical user interface (GUI) features and resources. In 1991, Kurt Matthies and Thom

24. Mitchell Waite, Stephen Prata, Rex Woollard, The Waite Group’s Master C: PC-based Teaching
System that Simulates a Real Instructor to Teach C Programming (Mill Valley, CA: Waite Group Press,
1990).

25. For a review of The Waite Group’s Master C, see Rick Ayre and Sue Ayre, “‘Master C’ tutorial
offers solid fundamentals for C programming,” PC Magazine, June 11,1991, 67.

26. Augie Hansen, Learn C Now (Redmond, WA: Microsoft Press, 1988).

10.4 CProgramming for the People 303

Hogan published Macintosh C Programming by Example, which used the Think C
compiler to create interesting Mac applications.?” Think C was an extension of
ANSI C for the original “Classic” Mac operating system. The product was devel-
oped by THINK Technologies and appeared under the name Lightspeed C in its
original 1986 release. Because Think C was essentially a subset of C++, the product
also supported object-oriented programming, and it was conceptually similar to the
architecture of Mac OS.

Matthies and Hogan welcomed traditional C programmers to the Macin-
tosh platform, and they taught readers how to use important Mac components,
such as MultiFinder, Dialog Manager, and QuickDraw. Although Think C gained
many supporters in the early 1990s, the compiler could not successfully dislodge
Objective-C, the programming language used in the NeXTSTEP operating system
(NeXT computers) and later Macintosh systems.

As the C programming market became more sophisticated, there was a new
danger—leaving the hobbyist or novice user far behind, with few pathways into
the tantalizing world of commercial development. In the mid-1990s, Dan Gookin
turned his attention to this important group of programmers, paving the way for
popular coding initiatives in the years to come. I introduced Gookin in Chapter 6
as the author of DOS for Dummies, one of the bestselling computer books of all
time for novice and experienced PC users. (See Figure 6.4.) With C for Dummies
(1994), shown in Figure 10.4, Gookin used a similar approach to attract new-
to-topic and hobbyist coders who felt intimidated or ignored by academic and
professionally-oriented tutorials.

There were important reasons for people with non-technical backgrounds to be
interested in the C language. First, C was gaining in importance in the U.S. soft-
ware development community. By the late 1980s, an estimated 70% of commercial
applications for the MS-DOS platform were written in the C language. Yet the tool
continued to have a reputation for complexity and convolution, with a syntax that
many found tortuous rather than elegant. A self-taught programmer himself, Dan
Gookin reveled in this dynamic, and he approached the task of teaching C to new-
comers with humor and a disarming attitude. This strategy began on the back cover
of the book, which promoted the book and its target audience with humor:

C For Dummies...is foryou ifyou've tried to figure out C programming but have
met with keyboard-pounding frustration. This book assumes you don’t have
a Ph.D. or work at MIT or Bell Labs. You’re a bright person, but you require
a bit more handholding than you have found in any other C book. You have

27. Kurt Matthies and Thom Hogan, Macintosh C Programming by Example (Redmond, WA:
Microsoft Press, 1991).

304 Chapter10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.4 C For Dummies (1994), by Dan Gookin, expanded the learn-to-program movement by
welcoming hobbyists and self-taught programmers who felt marginalized by profes-
sional or academic approaches. Gookin’s obvious love for programming made many
converts. (Cover image courtesy of Wiley Publishing and used with permission)

your complier. You have the will. Fear not! This handy guide will get you up
and running with the C language in an informative and entertaining way not
yet conceived by any other programming book.28

The first pages of C for Dummies also welcomed users with conversational prose
designed to close the gulf between the luminaries who created the language and the
humble hobbyists who were experimenting with its syntax. Gookin begins:

The guy who created the C programming language at Bell Labs is Dennis
Ritchie. I mention this in case you’re ever walking on the street and you
happen to bump into Mr. Ritchie. In that case, you can say, “Hey, aren’t you
Dennis Ritchie, the guywho invented C?” And he’ll say, “Why—why, yesTam.”
And you can say, “Cool.”?°

28. Dan Gookin, C for Dummies, Volume I (New York: Wiley Publishing, Inc., 1994), back cover.

29. Gookin, C for Dummies, Volume I, 8.

10.4 CProgramming for the People 305

The book’s chapters followed a similar approach, turning “serious” topics into fun
diversions that intersected with popular culture. I list here part of the Table of
Contents in C for Dummies:

Chapter 1: The (Sometimes Painless) Beginner Stuff

Chapter 2: Building (and Stumbling) Blocks of Basic C Programs
Chapter 3: Weeping Bitterly Over Variables and (Gulp!) Math
Chapter 4: Decision Making (or “I'll Have What She’s Having”)
Chapter 5: Your Very Own Functions

Chapter 6: Honing Your C Skills

Chapter 7: Going Completely Loopy*’

By not taking himself (or C) too seriously, Gookin ramped down the pressure on
learning how to write code by giving readers a place to start. As Chris Bartocci
of Rochester, New York, wrote: “I tried 3 other books on C and could not make
anything out. C for Dummies has taken me a long way and now I understand a lot
more.”3!

Why was this important? A more gradual approach was necessary as the
learn-to-program movement threatened to run-aground on the rising complex-
ity of building commercial applications for PCs. Software publishers like Borland
and Microsoft were engaged in an arms race to equip commercial developers with
better compilers and software development kits (SDKs). But not everyone was pre-
pared to make the leap to commercial grade primers yet, or needed to. As this
chapter has demonstrated, the PC platform had moved very quickly from Tiny-C
interpreters to full-blown professional C compilers and SDKs—all in a matter of
years.

Trade books like C for Dummies and Master C served as important entry points
for students, power users, and tinkerers who aspired to be C programmers but
were stumbling over the complexity of the existing materials. It is not hard to feel
the spirit of computer literacy advocates like Bob Albrecht, Arthur Luehrmann,
and David Ahl in Gookin’s writing style and target audience. It was no longer
necessary to make a specific case for why programming might be a worthwhile
endeavor—there were those who doubted the value of learning to program in the
early 1980s, but the commercial value of Pascal and C programming skills was obvi-
ous a decade later. Instead of appeals to the value of computational literacy, it was

30. Gookin, C for Dummies, Volume I, front matter.

31.Back cover quote, Dan Gookin, C for Dummies, Volume I and Volume II bundle (New York: Wiley
Publishing, Inc., 1997).

306 Chapter10 C Programming Nation: From Tiny C to Microsoft Windows

10.5

important to provide a scaffolded approach to the coding skills that users wanted,
because the process entailed rising levels of complexity and a number of different
tools and skills.

The front cover of C for Dummies offers a subtle but important connection to
the ideas and ethos of the learn-to-program movement. In the illustration, an out-
stretched arm holds up what appears to be a protest sign and shakes the sign in
the air. Inside the sign are the words “C for Dummies.” Next to the protest sign
is a reading line for the book series: “A Reference for the Rest of Us!” The upper
right corner of the cover also features a dial that indicates the number of Dummies
books in print. In the edition pictured above (see Figure 10.4), the number exceeds 9
million copies. The overall effect is reminiscent of the illustration that the People’s
Computer Company Newsletter staff used when they depicted learning to program
as a social movement. Beginning in 1972, they wrote, “BASIC is the people’s lan-
guage!” (See Figure 4.1.) Although Gookin’s book and the Dummies series is more
commercially oriented, the spirit of the learn-to-program movement continued in
books like this, offering a distinct alternative to the academic and professional titles
that commercial developers used, and which have received more attention. Even
in commercial contexts, the grass-roots vision of the learn-to-program movement
continued.

Charles Petzold’s Programming Windows

The remainder of this chapter investigates another influential computer book from
the trade press, Charles Petzold’s Programming Windows, arguably the most pop-
ular training resource for C programmers learning to write commercial applica-
tions for the Microsoft Windows platform.?? Like Peter Norton and Ray Duncan,
Charles Petzold wrote numerous books for self-taught programmers who aspired
to build professional-grade applications. The Programming Windows series became
the best known of Petzold’s efforts, but the reasons for this success were not sim-
ply the results of good writing and impressive market timing. The “Petzold books”
also addressed an audience that was struggling more than most when it came to
constructing non-trivial applications for PC-based platforms. Although Windows
arguably made an IBM PC or compatible device easier to use, Windows applications
were much harder for software developers to build.

32.The first edition is Charles Petzold, Programming Windows: The Microsoft Guide To Programming

for the MS-DOS Presentation Manager, Windows 2.0 and Windows/386 (Redmond, WA: Microsoft
Press, 1988). The edition used for the examples in this chapter is Charles Petzold, Programing Win-
dows 3.1: The Microsoft Guide to Writing Applications for Windows 3.1, Third Edition (Redmond, WA:
Microsoft Press, 1992).

10.5 Charles Petzold’s Programming Windows 307

In terms of commercial opportunities, the market for Windows applications
expanded dramatically after the release of Windows 3.0 in May, 1990. As I discussed
in Chapter 6, this software release truly made Windows viable as a business
and power user platform. However, there were numerous problems confronting
developers who wanted to create commercial grade applications for Windows 3.0
and later. First, the existing SDK documentation was not adequate for software
developers to make rapid headway into the product. Even if programmers had
learned the basics of coding in C, they still needed to adapt their skills to the Win-
dows operating environment, which required much more from developers than
Unix or MS-DOS.3? Moreover, there were not yet comprehensive development sys-
tems for IBM PCs and compatibles (such as Microsoft Visual Studio, which debuted
in 1997). Early Windows programmers needed to use a wide range of tools and util-
ities to support the application development life cycle under the two most popular
compilers, Microsoft C and Borland C.

Despite the formidable challenges, learning to write applications for Windows
took on a kind of frenzied urgency for many programmer-entrepreneurs in the
1990s. Charles Petzold and his collaborators succeeded in meeting this need, and
they were able to patiently explain a process that seemed daunting to so many.
(See Figure 10.5 for three prominent Windows programming authors.) As the first
editions of Petzold’s Programming Windows were published, numerous industry
observers lauded its value for teaching skills that were not easily transferrable. Peter
Lewis of The New York Times endorsed the book by using the tantalizing imagery
of a gold rush: “As one might expect, Windows programmers are in great demand
these days, and this is the best book for programmers who want to cash in on the
craze.”3* A reviewer in Computer Language magazine simply wrote, “Just take it as a
given, if you’re going to program for Windows, buy this book. It will pay for itselfin a
matter of hours.”?> Authorized and supported by Microsoft, Programming Windows
became a fundamental resource for experienced C programmers who were ready to
create commercial-grade GUI applications with either Microsoft C or Borland C. It
was now possible to catch the wave.

Charles Petzold was born in New Brunswick, New Jersey, in 1953. He has lived
most of his life on the East coast, residing primarily in New York City. In 1975,
Petzold graduated with an M.S. degree in Mathematics from Stevens Institute

33. As of December 1991, there were approximately 80,000 C programmers using the Microsoft
Windows SDK in the U.S.

34. Quoted in Peter H. Lewis, “The executive computer; who has really tried Windows?” The New
York Times, December 2, 1990.

35. This Computer Language review is cited in the front matter of the Third Edition of Programming
Windows; see Petzold, Programing Windows 3.1, FM.

308 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.5 Charles Petzold (right) shown with fellow Windows programming authors Jeff Prosise
(left) and Jeffrey Richter (middle), 2013. These authors wrote for PC Magazine, Microsoft
Press, and other publishers, specializing in systems programming. (Photo by Jeffrey
Richter and used with his permission)

of Technology, a private research university in Hoboken, New Jersey. Although
Petzold had some exposure to computers and programming through early work
at the New York Life Insurance Company, he credits his interest in electronics
to experiments that he made building musical instruments as a hobby, includ-
ing a computer-controlled digital synthesizer.3® These experiments contributed to
his ability to write assembly language programs for early IBM Personal Comput-
ers, and he worked sporadically with PCs over the next few years. Gradually, Pet-
zold’s interests expanded to include operating systems and user-oriented topics.
In January 1984, Petzold sent PC Magazine an unsolicited article about using the
ANSI.SYS console device driver to modify the MS-DOS system prompt, one of the
rudimentary attributes of PC systems that could be dramatically improved with
tinkering and experimentation. PC Magazine sent him back a check for $800.%”
It was the first time that Petzold had been paid for his writing, and it eventually
led to a career in essay writing and book publishing—first at PC Magazine, and

36. Charles Petzold, “Adventures in electronic music,” Charlespetzold.com, September 2011.
http://www.charlespetzold.com/etc/AdventuresInElectronicMusic/index.html. Accessed August
18, 2019.

37. Charles Petzold, “The Long (Essay) Version,” Charlespetzold.com, July 4, 2008. http://www.
charlespetzold.com/blog/2008/07/Software-Development-Meme.html. Accessed August 18, 2019.

http://www.charlespetzold.com/etc/AdventuresInElectronicMusic/index.html
http://www.charlespetzold.com/blog/2008/07/Software-Development-Meme.html
http://www.charlespetzold.com/blog/2008/07/Software-Development-Meme.html

10.5 Charles Petzold’s Programming Windows 309

later with Microsoft Systems Journal, MSDN Magazine, and Microsoft Press. Although
Petzold wrote about MS-DOS, 0S/2, Visual Basic, and C# programming, he became
best known for his guides to Windows programming for C and C++ developers.
His authoritative book, Programming Windows sold millions of copies and intro-
duced experienced C programmers to best practices for creating applications for
the emerging GUI standard on PCs.

Where did Microsoft Windows come from? Microsoft initially released Win-
dows 1.0 on November 20, 1985. The graphical operating environment presented
numerous opportunities—and some problems—for new users and software devel-
opers. First, the early versions of Windows were not technically operating systems at
all, but graphical shells that ran on top of MS-DOS, requiring continuing familiarity
with MS-DOS commands and procedures. From a user’s point of view, Windows 1.0
was slow and cumbersome. It was challenging to switch among the “tiled” applica-
tions in a natural way, and unless you had a fast computer, such as an IBM PC AT or
compatible. Unlike the Macintosh, a mouse or alternative pointing device was use-
ful but not absolutely required for early Windows systems. This meant that some
users continued to use “keyboard shortcuts” to perform common tasks such as
opening menus, selecting commands, switching among applications, and drawing
in a graphics program. Despite these quirks, the Windows software offered some
advantages and improvements for traditional DOS users, such as built-in acces-
sories, a clipboard for transferring information, and the ability to perform more
than one task at a time (multitasking).

Windows was not the first GUI to run on a computer, of course. Earlier work on
computer interfaces by luminaries such as Douglas Engelbart and the employees
at Xerox PARC paved the way for numerous GUI experiments on microcomputers.
Apple Computer introduced the Apple Lisa with its own version of a GUI in 1983
(see Figure 10.6), following by the Apple Macintosh, which used a similar layout,
the following year.

Numerous systems debuted in the 1980s that employed a GUI framework for
users to issue commands and run programs. The following list offers a selection of
the systems that offered a GUI, along with the program’s name and the date of the
system’s first use.?®

Unix and OpenVMS systems (X Window System, 1984)

Sun Microsystems workstations (Network extensible Window System, mid-
1980s)

Commodore Amiga computers (Intuition/Workbench, 1985)

38.Ihave taken this summary of available GUIs from Petzold, Programing Windows 3.1, 5.

310 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.6 The GUI of the Apple Lisa 2, shown with multiple applications loaded and visible on the
screen. Depicted here (clockwise, left to right) are the programs LisaWrite, LisaGraph,
and LisaCalc. (Courtesy of the Computer History Museum. Used with permission of
Apple Inc)

Atari computers (Graphics Environment Manager, 1985)

NeXT workstations (NeXTSTEP, 1989)

Although GUIs were easier to use in some respects than issuing text-based
commands, users still needed training and orientation to the products. The first
computer book for Microsoft Windows 1.0 users, Windows: The Official Guide, was
published in May 1986 by Microsoft Press. This “how to” guide was authored by
Seattle-area writer and entrepreneur Nancy Andrews, who owned and operated
a business that provided technical documentation for companies in the Pacific
Northwest. Andrews’ text served as a practical, friendly introduction to the oper-
ating environment for new computer users and also experienced PC owners who
had some prior experience with MS-DOS.*? Andrews introduced common tasks,

39. Nancy Andrews, Windows: The Official Guide to Microsoft’s Operating Environment (Bellevue, WA:
Microsoft Press, 1986). Supporting Andrews’ work as a technical reviewer was my first editorial job

10.5 Charles Petzold’s Programming Windows 311

discussed integrated report writing, and provided tutorials for the Windows Write
and Windows Paint applications.

Microsoft Windows improved over the years, but the improvements added com-
plexity to the operating system with the paradoxical result that as it became easier
to use Windows it was harder to design and build applications for it. Charles Pet-
zold captured this reality in his Programming Windows books with a statement that
probably rang true for many who attempted to code for the graphical environment:

Windows has the reputation of being easy for users but difficult for program-
mers. If you have no prior experience with programming for a graphical user
interface, you should be warned right now that you will encounter some very
strange concepts... If at first you find Windows programming to be difficult,
awkward, bizarrely convoluted, and filled with alien concepts, rest assured
that this is a normal reaction. You are not alone.*°

The sentiment was so common that it became an inducement for lampooning
Microsoft. It also caused some developers to return to the DOS, Unix, or Mac plat-
forms.

So why was programming Windows so difficult?

Fundamentally, Windows was challenging because so many new expectations
were being brought to PCs and PC software. Petzold summarized many of these
issues in the introduction to the third edition of his book covering Windows 3.1,
which I discuss below. (See Figure 10.7 for the book’s front cover.).

The relationship between Windows and MS-DOS. Windows did not fully
replace MS-DOS, but ran on top of it until the release of Microsoft Windows
Millennium Edition (ME) in 2000. Accordingly, new Windows programmers
needed to know both the architecture of MS-DOS and the relevant structures
and resources in several versions of Windows.*!

Windows function calls. Windows 3.1 supported over 1000 function calls to
perform meaningful work, and the Windows programmer needed to learn a
wide range of these. (The functions were collectively referred to as the Win-
dows APIL.) In some ways, calling Windows functions and using related data
structures was like using traditional C library functions, but there were many
caveats and exceptions to learn.

at Microsoft Press. I started work on the project in late November 1985, learning the ropes from
Andrews and colleagues Ron Lamb and Chris Kinata (née Matthews).

40. Petzold, Programing Windows 3.1, 10.

41. My overview of these features comes from Programing Windows 3.1,11-15.1have contextualized
them in a few places, such as the reference to Windows ME.

312 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

Figure 10.7 Programming Windows 3.1, Third Edition, by Charles Petzold (1992). Widely praised
in the popular press, Programming Windows was one of the most successful GUI
programming primers on the PC platform. (Used with permission from Microsoft)

Dynamic linking. Windows executable files had the extension .EXE, like exe-
cutable files under MS-DOS. However, the structure of a Windows application
was different in several ways. One variation was that Windows executables
required dynamic link libraries to work, which provided routines for loading
programs, windowing commands, memory management, advanced graph-
ics, and more. Rather than a simple C/C++ compiler, Windows developers
needed a companion SDK to provide dynamic link libraries and the other
support files that collectively comprised a Windows application.

Object-based programming. An important skill for Windows programmers
was learning how to work with objects of many types. Although Microsoft C
was not initially an object-oriented language, the entire concept of Windows
programming revolved around manipulating objects that had anthropomor-
phic characteristics and which could be replicated, modified, and shared.
For example, a window in the user interface is a rectangular entity based on

10.5 Charles Petzold’s Programming Windows 313

the “windows class,” which maintains visual attributes such as a title bar,
menus, scroll bars, and other features. The attributes of a window could
also be replicated, creating “child windows,” which might have the same—or
different—characteristics. Over time, both Microsoft and Borland added C++
support to their products, making object-oriented programming easier.

Message-driven architecture. In the object-based programming environ-
ment of Windows, an “object” is a combination of code and data. For exam-
ple, a window is an object, and there is code associated with the object
stored in a special function known as the “window procedure.” This proce-
dure can send and receive messages from the operating system. Managing
these messages, and the related “message queue,” is an important task for
the Windows developer.

Object-based programming required the Windows programmer to develop new
conceptual models for thinking about constructing software. Rather than build-
ing an application that was largely in control of the computer and its resources,
Windows programmers needed to develop programs that operated as “good citi-
zens” in an ever-changing operating environment that supported many processes
running at the same time. New issues such as exchanging information among pro-
grams, application security, controlling a range of devices and processors, and
managing memory suddenly came to the forefront. The concept of multitasking, or
allowing for the concurrent execution of multiple processes, also became impor-
tant for Windows programmers to consider. In a multitasking system, the user
(or the operating system itself) can interrupt a running program, save its state,
load another task, and transfer control to it. Although Windows is able to manage
some aspects of this behavior automatically, the programmer still must be aware
of multitasking and plan for the possibility that their program will be interrupted
many times before it runs to completion. In fact, a non-trivial Windows application
might be made up of numerous sub-processes or threads, which run more or less
independently and collectively carry out the work of the program.

A few more examples demonstrate Petzold’s “divide and conquer” teaching
method, which moved from the known world of C/C++ programming to the terra
incognita of Windows development.

To get things rolling, Petzold respected tradition and listed a “Hello, Windows”
program in the first chapter to show readers how the most basic Windows applica-
tion might be created. This was analogous to the “Hello, world” program shown at
the beginning of most programming primers, including Kernighan and Ritchie’s
The C Programming Language. The original K&R book begins with this routine:

314 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

main ()

{

printf ("hello, world\n");
}42

The authors carefully explained that the printf function sends the text “hello, world”
to the screen (or attached teleprinter) when the program is compiled and run. The
nn character indicates the end of a line of text and the beginning of a new line.

Charles Petzold’s “Hello, Windows” program was different in many respects.
While it did place the text “Hello, Windows!” in a window in the center of the
user interface, it took over 80 lines of code to accomplish this work, as well as a
build sequence that involved the Windows 3.1 SDK and either the Microsoft C/C++
Compiler version 7.0 or the Borland C++ Compiler version 3.1. To document what
his 80-line program did in clear English, he spent over 30 pages of text explaining
why such a long program was necessary and how it worked to display a basic greet-
ing on the screen. He summarized the purpose of the added length with a single
word, “overhead.”®® But he also described what readers would get for the effort:
a complete Windows 3.1 application running in a rectangular window in the cen-
ter of a sophisticated user interface. The new application would possess its own
title bar, system menus, and resizing handles, the later visible so that the appli-
cation’s main window could be dynamically reshaped. The program could also be
moved around the screen via mouse clicks and dragging motions, and it could
be minimized, maximized, and closed (or terminated)—with familiar buttons and
procedures, just like a commercial Windows application.

Petzold’s proposition was that Windows programming wasn’t so bad, once
you understood what you were getting into. Each application contained the fea-
tures that would allow it to function as part of a dynamic, multitasking operating
environment. Naturally, there would be more to designing a Windows application
than a simple “Hello, world” program in a text-based command shell. Configur-
ing these features would become a source of intrigue and spirited conversation for
developers that hoped to profit from the new system.

The heart of Petzold’s sample program was a routine that created the “Hello,
Windows!” greeting in the center of a new window. This routine is configured as
a message named WM_PAINT in the system, which is sent to the application win-
dow each time that the window is opened, resized, restored, or uncovered. The
process of displaying text on the screen is conceived of as “painting,” but this is
only one of many output options that can take place within an application window.

42. Kernighan and Ritchie, The C Programming Language, 6.
43. Petzold, Programing Windows 3.1, 15.

10.5 Charles Petzold’s Programming Windows 315

The steps involved in the painting process are more involved that simply sending
output to a conventional character device. Instead, it is necessary to specify the win-
dow size, place the text in the vertical and horizontal center of the window, and then
return control to the system. A fragment of the message logic Petzold devised looks
like this:

switch (message)

{
case WM_PAINT
hdc = BeginPaint (hwnd, &ps) ;

GetClientRect (hwnd, &rect) ;

DrawText (hdc, "Hello, Windows!", -1, &rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

EndPaint (hwnd, &ps) ;

return O ;44

Experienced C programmers will recognize the keywords switch, case, and return
here, which establish a decision structure that tests an expression. Also familiar
are the semicolon characters that end complete program statements. In addition
to these familiar signposts, the parameter ~wnd is a handle (or reference number)
that refers to the new application’s display window, and the parameter &ps is a
pointer (an object containing the address of a memory location) to a structure that
holds information that a window uses for painting.

An entity called a window class defines the general characteristics of a window,
allowing the same window class to be used for creating a variety of different enti-
ties in the environment. Programmers create a window programmatically by calling
the CreateWindow function, which identifies the window and specifies initial set-
tings such as style, position, and size by way of parameters. A call to CreateWindow
also return a handle to the created window which is saved in the variable ~Awnd. To
manipulate the window again later, the programmer refers to this handle by name.

Here’swhat the call to CreateWindow looks like in Petzold’s program code, which
I provide here to show what readers encountered, and soon mastered, under his
care:

hwnd = CreateWindow (szAppName, // window class name
"The Hello Program", // window caption
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position

44. Petzold, Programing Windows 3.1, 18.

316 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

10.6

CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, // initial x size
CW_USEDEFAULT, // initial y size

NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handles
NULL) ; // creation parameters

The 11 parameters listed here—the first 10 of which are followed by commas—are
the essential attributes used to configure most application windows in a Windows
3.1 program. The Microsoft and Borland C compilers both recognized the // sym-
bol as a marker for single-line comments, i.e., explanatory remarks recognized by
the compilers but not translated into executable code. szAppName is the name of
the window class for the program, an identifier that Petzold registered earlier in the
“Hello, Windows” program. The sz prefix here is evidence of Hungarian notation, a
variable-naming convention created in honor of the Xerox PARC and Microsoft soft-
ware architect Charles Simonyi (1948~). To promote readability and self-identifying
variables and objects, each name following this convention begins with a lowercase
letter or letters that denotes the data type associated with the entity. In this case,
the data type prefixin the class name azAppName is “sz”, meaning “zero-terminated
string.” Hungarian notation was a cultural attribute of early Windows program-
ming designed to support object-based development and reduce errors related to
mismatched data types. However, the system has been employed less frequently in
modern systems that display variable types via other methods.

The remaining parameters in the function call define the visible characteristics
of a new window that is created. The default values for new windows are distin-
guished by using uppercase identifiers (WS_OVERLAPPEDWINDOW), and these
represent numeric constants. In most cases, it would be too tedious for program-
mers toremember the actual numbers associated with all of these constants, so they
are mapped to descriptive names in uppercase letters, many with two or three-letter
prefixes to indicate how they are used. (For example, WS means “Window style.”)
These uppercase identifiers are defined in a file named WINDOWS.H, and they are
documented in a manual called the Windows Programmer’s Reference published by
Microsoft. The identifiers are integrated with the HELLOWIN.C source code file
during the compilation process via a #include statement at the top of the program
listing.

On Complexity

This brief excursion into the content of Charles Petzold’s “Hello, Windows” pro-
gram has been included here to highlight the intricacies involved in creating
applications for the Microsoft Windows version 3.1 operating system. By the early

10.6 On Complexity 317

1990s, GUI platforms like Windows were becoming much more sophisticated on
PCs, reflecting the increased capabilities of hardware and software systems. It is
interesting to contrast the hardware complexity of the first PCs with the software
complexity of later PC platforms. In the early days of the Apple II and the first IBM
PCs, the systems were so limited that programmers had to perform major pro-
gramming feats in assembly language just to manage memory and allocate other
system resources. It was the hardware that was a limiting factor, not the software.
In later PC systems, however, the operating systems became so complex that the
problem was not learning assembly language or high-level languages, it was manag-
ing the complexity of API-rich, object-based architectures that required a thorough
knowledge of software development tools, graphical subsystems, multitasking, and
message-driven architectures.

As an example of the mounting challenge, Microsoft Windows grew from a rel-
atively modest operating environment in 1985 to a vast system comprised of tens
of millions of lines of code by the mid-1990s.%> Soon, it became virtually impos-
sible for a single engineer to build a commercial Windows application on their
own. It was necessary to work in teams, and to purchase a new raft of materi-
als each time that the system was updated. In the realm of Windows program-
ming, these titles included Jeffrey Richter’s Advanced Windows: The Developer’s
Guide to the WIN32 API for Windows NT 3.5 and Windows 95 (1995) and Jeff Prosise’s
Programming Windows 95 with MFC: Create Programs for Windows Quickly with the
Microsoft Foundation Class Library (1996).%® (For a photograph of the authors, see
Figure 10.5.) Both books were designed to ease programmers through the difficult
transition from 16-bit Windows programming to 32-bit Windows programming,
which arrived in the era of Windows NT and Windows 95. The programming books
were written by experienced author-entrepreneurs who, like Charles Petzold, had
written for PC Magazine, Microsoft Press, and other technical publishers. Their ref-
erences were long and complex, because 32-bit programming techniques made it
possible to add mainframe-like features to systems that ran on ordinary Intel hard-
ware. The complexity was daunting, and even Microsoft ran into trouble trying to
manage the intricacies of these systems.*”

45. Evans, Hagiu, and Schmalensee, Invisible Engines: How Software Platforms Drive Innovation and
Transform Industries, 109.

46. Jeffrey Richter, Advanced Windows: The Developer’s Guide to the WIN32 API for Windows NT 3.5
and Windows 95 (Redmond, WA: Microsoft Press, 1995); Jeff Prosise, Programming Windows 95 with
MFC: Create Programs for Windows Quickly with the Microsoft Foundation Class Library (Redmond,
WA: Microsoft Press, 1996).

47. For an historical assessment of a few difficulties, see Stephanie Dick and Daniel Volmar, “DLL
hell: Software dependencies, failure, and the maintenance of Microsoft Windows,” IEEE Annals of
the History of Computing 40, no. 4 (2018): 28-51, here at 32.

318 Chapter 10 C Programming Nation: From Tiny C to Microsoft Windows

Video game programming under Windows presents a further case study in
program complexity and the numerous challenges facing commercial application
developers in the 1990s. For-profit video game development received a major boost
in the mid-1990s with the introduction of several powerful home gaming sys-
tems, including the Sony PlayStation (1994) and Nintendo 64 (1996). Hoping to
attract video game programmers to the Windows 95 platform, Microsoft introduced
“DirectX” and the Windows Game SDK in 1995. DirectX allowed game programmers
to access the rich multimedia features of Windows-based PCs and interact with
protected memory. But this style of development could be frightfully complex, and
new-to-topic developers often found the process bewildering, even if they already
knew how to code in C or C++.

A pioneering author-programmer that rose to the challenge was André LaMothe,
a Mathematics, Computer Science, and Electrical Engineering graduate of San
Jose State University. LaMothe was a tinkerer at heart and largely self-taught in
the genre of game programming. As a young man, he was an avid Dungeons
and Dragons (D&D) player, and he was also inspired by Tron (1982), the ground-
breaking science fiction film that combined live action scenes with computer
animation.*® LaMothe learned assembly language for the Zilog Z80 microproces-
sor, and experimented with graphics programming on the Atari 800, Amiga 500,
and IBM PC AT. After several years of contract work as a software developer spe-
cializing in graphics, virtual reality, and artificial intelligence, LaMothe turned
his attention to writing video game tutorials. His first books included Tricks of
the Game-Programming Gurus (1994), Teach Yourself Game Programming in 21 Days
(1994), The Game Programming Starter Kit (1995), Black Art of 3D Game Program-
ming (1995), Windows Game Programming for Dummies (1998), and Tricks of the Win-
dows Game Programming Gurus (1999). As evidence of the complexity of his subject,
LaMothe’s primers routinely included advanced mathematics, physics modeling,
multithreaded programming, sound and multimedia tricks, and demonstration
programs that approached commercial standards. Just to survey the required top-
ics, many of LaMothe’s books exceeded 1000 pages in length. Fearing that his tuto-
rials would be too daunting and expensive for typical readers, more than one pub-
lisher asked LaMothe to reduce his page counts, for fear of losing sales.® But André
was prescient, and by the late 1990s game programming had become a major topic
of interest on the Windows platform. Without the video game development primers

48.Ireceived this and other biographical information from Mr. LaMothe via email correspondence
in June 2019.

49. Email correspondence, June 2019. Mitchell Waite, one of LaMothe’s early collaborators, also
supplied me with valuable information about early game programming on PCs.

10.6 On Complexity 319

that LaMothe and other programmer-authors prepared, the task would have been
exceedingly difficult.

Admittedly, the complexities of GUI development often required additional
training for aspiring developers. But the challenges should not take away from the
accomplishments of the teachers who popularized this platform. As a measure
of Charles Petzold’s impact, consider that Programming Windows was published
in six editions between 1988 and 2012. During this time span, the series devel-
oped into one of the best known book franchises of the PC era, selling millions
of copies. As Microsoft Windows approached its 10 year anniversary, the software
community acknowledged Petzold’s contribution in guiding the learn-to-program
movement through its GUI phase, a process that involved both commercial and
pedagogical transformations. At COMDEX/Spring ’94, Petzold was named one of
seven “Windows Pioneers” responsible for the rapid expansion of the Windows plat-
form. The luminaries selected were all identified as programming advocates who
either led a major Windows project or supported the dissemination of information
about the new platform.*® The list of Windows pioneers included:

Alan Cooper, the originator of Visual Basic, a rapid application development
tool

Lyle Griffin, the originator of Micrografx Designer, the first major graphics
application for Windows

Joe Guthridge, lead developer of the first Windows word processor, later sold
as Lotus Word Pro

Ted Johnson, lead developer for PageMaker, an early desktop publishing
program
Ian Koenig, lead developer of the Reuters Terminal financial program

Ray Ozzie, the originator of Lotus Notes and chief technical officer at
Microsoft

Charles Petzold, the author of Programming Windows and other bestselling
books

Like Peter Norton and Ray Duncan, Charles Petzold taught millions of programmers
around the world the fundamentals of professional application development on
PC-based systems. This intensive focus on programming operating systems would
be just as important as the emphasis I placed on languages in earlier sections

50. For an interview with one of the recipients, conducted by ACM Fellow Wendy Kellogg, see
“A conversation with Ray Ozzie: Cooperate, communicate, collaborate,” in ACM Queue 3, no. 9
(December 16, 2005).

320 Chapter10 C Programming Nation: From Tiny C to Microsoft Windows

of this book. Both stages of the learn-to-program movement were important as
technical knowledge about microcomputers and PCs was diffused throughout the
U.S. From Tiny-C to Microsoft Windows, a collection of talented programmer-
authors taught software development skills to hobbyists and aspiring professional
developers. Those who learned to program in C joined ranks with the millions of
developers who wrote code in assembly language, BASIC, Pascal, Forth, COBOL,
FORTRAN, Logo, and other languages.

In the next chapter, I will examine the shift from individual programming
tasks to team-based, commercial software agendas. I’ll look at so-called “enter-
prise” development systems, product evangelism, industry trade shows, certifica-
tion exams, and professional resources for self-taught coders—all technological
“frames” that influenced how software development practices were gradually inte-
grated into businesses and organizations in the U.S. We’ll also learn how com-
mercial development practices influenced the learn-to-program movement in the
1990s, changing its emphasis from computer literacy initiatives to the agendas of
information technology (IT) professionals and the product cycles of the packaged
software industry.

“Evangelism is sales
done right”: PCs and
Commercial
Programming Culture

“This prestigious trade show - the largest of its kind in the United States — provides

an ideal opportunity for consumers to examine the newest developments in computer
systems, accessories, and services... Our success, as individuals and as nations, depends
most on our ability to exchange ideas and to make the most of our knowledge and
resources. That is why events such as the COMDEX trade show are so important.”
President George H. W. Bush, an open letter to COMDEX/Fall '91 attendees, August 30, 1991*

This chapter presents an assessment of how commercial programming culture
impacted the communities of Code Nation in the 1980s and 1990s. By “commercial
programming culture,” I mean the business practices associated with designing,
constructing, and marketing computer software, and the creation of commercial
programming products for developers who advocated for the MS-DOS, Microsoft
Windows, and Apple Macintosh platforms. As an episode in software history, this
chapter is concerned with the transition from single-platform development tools
for individual users (the mid-1980s), to the use of comprehensive “enterprise”
development suites by the employees of Fortune 1000 corporations (the late 1990s).
Professional and enterprise software suites offered sophisticated integrated devel-
opment environments (IDEs), an impressive array of programming languages and
compilers, platform-related libraries, project management systems, deployment
tools, and extensive documentation. These all-inclusive products were advertised
in lavish media announcements, computer magazines, and trade books, as well as

1. Excerpt from President Bush’s letter printed in COMDEX/Fall *91 Program & Exhibits Guide
(Las Vegas, NV: The Interface Group, 1991), 10.

322 Chapter11

“Evangelism is sales done right”

fashionable events such as COMDEX, Macworld, Microsoft Developer Days, and
TechEd.

I'll begin by examining Apple Computer’s marketing strategies in the 1980s,
most notably the ideas of Guy Kawasaki, an original member of the Macintosh
marketing team. Kawasaki popularized the term evangelism to promote “vision-
oriented” sales and marketing to consumers, and this strategy soon influenced
the way that software products were designed, advertised, and sold throughout
the personal computer (PC) industry. I'll also explore how PC products were mar-
keted and presented at two important computer trade shows in the U.S. The first
is the West Coast Computer Faire, a creation of Jim Warren and Bob Reiling in
the 1970s. The Faire introduced microcomputers and related products to curious
audiences in the San Francisco Bay Area, and it was emblematic of the less-formal,
entrepreneurial conventions that here held in the early days of personal comput-
ing. At one of these trade shows, attendees might actually meet the developer of
a new application or computer product, probably in a humble trade show booth
decorated with pipe-and-drape walls and hand-made signs. (See Figure 11.1.)

COMDEX, a hybrid trade show for the national and international market-
place, launched what I call the commercial computing trade show movement in the
1980s, a progression of high-profile corporate trade shows that mixed members of
the business community (company representatives and resellers) with technology
journalists, industry luminaries, and members of the general public. At COMDEX,
the corporate trade show booths evolved into large, multifunction workspaces
where visitors could see new products demonstrated in theatrical environments
supported by high-end multimedia systems. The methods and vitalities of American
consumerism were increasingly on display at these spectacles, which could attract
up to 200,000 attendees over the course of a week.

Finally, I'll discuss how computer programmers gained professional and
enterprise-related development skills using new software, certification programs,
and computer books in the 1990s. As a case study in the history of software com-
mercialization, I'll focus on the ideas and technologies embedded in the Microsoft
Visual Studio development system, first introduced in 1997.

When considered as a part of this book’s argument about how and why people
learned to write programs for PCs, this chapter investigates the impact of commer-
cialization practices on early programming communities and the shifting objec-
tives of the learn-to-program movement. By the early 1990s, programming had
become a routinized professional business activity for thousands of software devel-
opers who earned a living by designing, implementing, testing, and maintaining
software applications in the American PC industry. However, reports regularly
surfaced that new projects were late, over budget, and filled with errors. These

Chapter 11 “Evangelism is sales done right” 323

Figure 11.1 Lennie Libes (left) and Sol Libes in front of the S-100 Microsystems booth at the 1980
West Coast Computer Faire, held in San Francisco, California. Sol Libes was the founder
of the Amateur Computer Group of New Jersey and creator of the Trenton Computerfest,
one of the first microcomputer trade shows. (Courtesy Jim Warren and the Computer
History Museum)

problems must have felt like déja vu for more experienced software engineers,
especially those who cut their teeth during the mythological period of “crisis” in
the mainframe computer industry. (For more on the crisis and the response of cor-
porations and managers, see Chapter 2.) In the new era of corporate computing in
America, the period of crisis was problematic, because the industry was governed
by unpredictable consumer forces and changing corporate structures. The video
game market collapse of 1983 was just one preview of the fickle nature of consumer
demand, as was the infamous “dot-com crash” of 2000, when various online shop-
ping companies went out of business. Poorly timed or buggy software could bring
financial ruin to any software company, especially if they were clinging to an aging
platform, inaccurate forecasts, or partnerships that were no longer strategic.

By the early 1990s, it was also clear that major new software releases would be
planned and created by large teams. Gone were the days when a solitary programmer
could build a breakthrough product on their own after holing up in a hotel room
for a week with a clever idea. Commercial development projects were growing

324 Chapter11

“Evangelism is sales done right”

exponentially in scope, and so were the challenges of testing and maintaining new
software products. In 1992, for example, Microsoft Windows version 3.1 contained
some 2.5 million lines of program code. The operating system was essentially a
vast computing system created by numerous teams that worked in close coopera-
tion for years. By 2001, the Microsoft Office application suite had expanded to some
25 million lines of code. Office was a comprehensive computing system distributed
across a suite of programs, including Microsoft Word, Microsoft Excel, Microsoft
PowerPoint, Microsoft Outlook, and Microsoft Access. In this new era, all the major
commercial applications were designed, built, and tested by complex organiza-
tions that needed to carefully maintain their code bases, track feature requests
and errors, plan for enhancements, and localize features for different language
groups and cultures. As a result, companies like Apple Computer and Microsoft
shifted their focus from the solitary hobbyists and developers that they had initially
catered to, to the tools that would allow Fortune 1000 companies to manage their
diverse enterprise and information technology (IT) needs.

How many people worked on the teams that created commercial computing
systems? At Microsoft, the team that created the Windows NT operating system
in the late 1980s started with 10 people. This core group created the underly-
ing system (the Windows NT “executive”) and the operating system’s first sub-
systems. As the project grew, the Windows NT team expanded to 40-50 software
designers and implementers, who added the next round of features and capabil-
ities. Finally, the Windows NT team expanded to over 200 people to implement
the final set of enhancements to the operating system. During this phase, team
members built device drivers and tools, tested the system, and completed man-
agement, marketing, and support tasks.? The director who managed the devel-
opment effort for the Windows NT 1.0 operating system at Microsoft was Dave
Cutler, an experienced systems architect who had deep experience with managing
development teams and adding to them over time. Cutler developed this exper-
tise by designing several successful operating systems in the computer industry,
including Digital Equipment Corporation (DEC)’s RSX-11M, VAXELN, and VMS
(referred to now as OpenVMS). At Microsoft, he was known for bringing soft-
ware engineering discipline to projects that were highly visible and influenced by
internal pressures and marketing priorities.>

2. Helen Custer, Inside Windows NT (Redmond, WA: Microsoft Press, 1993), 13.

3.For Cutler’s methods and a comparison of software development cultures at DEC and Microsoft,
see “Oral history of Dave Cutler,” interview by Grant Saviers, February 25, 2016, Computer History
Museum, Fremont, California, 1-40, here at 21. https://archive.computerhistory.org/resources/
access/text/2018/10/102717163-05-01-acc.pdf. Accessed July 12, 2019.

https://archive.computerhistory.org/resources/access/text/2018/10/102717163-05-01-acc.pdf
https://archive.computerhistory.org/resources/access/text/2018/10/102717163-05-01-acc.pdf

11.1

11.1 The Macintosh Way 325

Of course, not all computer programmers were commercial or enterprise engi-
neers in this important time of transition. The heyday of power users, hobbyists,
gamers, and hackers continued in America’s schools and rec rooms, and an assort-
ment of part-time coders followed their individualistic ideas and agendas. But the
impact of commercial software development practices would soon be felt broadly
in the American economy, with social and financial consequences magnified well
beyond the confines of Silicon Valley, Greater Boston, and the Pacific Northwest.
Commercial software developers addressed the complexities of the software life-
cycle with great enthusiasm and creativity, and many recognized the benefits that
they could bring to American corporations. Their insistence on new methods and
products increased the visibility of software engineers in America, and it also shifted
the purpose of the learn-to-program movement from self-exploration, cognitive
development, and solo entrepreneurship to building team-oriented development
skills that would be of use to corporate America. The articulation of these ideas
and enthusiasms began not in research labs or Computer Science departments but
in the marketing divisions of Apple Computer and other consumer-oriented tech-
nology companies. These groups gradually developed new rationales for marketing
and advertising the world’s leading computer products.

The Macintosh Way

Guy Takeo Kawasaki was born in 1954 in Honolulu, Hawaii, and attended col-
lege at Stanford University, receiving a Bachelor’s degree in Psychology in 1976.
In 1977, Kawasaki enrolled at the Anderson School of Management at UCLA, where
he earned an MBA degree. In 1983, Kawasaki was offered a position at Apple
Computer, Inc., where he joined the teams that would market and sell the new
Macintosh computer to customers. The original Mac was handsomely designed
and meticulously produced, but it was also a new computing platform that had few
available applications. If software was not created soon for the Mac, the intriguing
product would fail, as had so many PC platforms before it. So, one of the first
tasks of the Macintosh marketing team was to encourage software developers
to build new applications for the computer and operating system. To be com-
petitive, Apple needed business applications (word processors, spreadsheets, and
databases), as well as games, productivity tools, communication programs, pro-
gramming systems, and other core products. To communicate this message, they
needed to describe the technical aspects of the system in compelling language,
and they needed to inspire the belief that the Mac would be the graphical user
interface (GUI) platform of the future.

While at Apple, Guy Kawasaki met a number of talented employees who were
committed to the Macintosh project. For example, Kawasaki’s former roommate at

326 Chapter11

“Evangelism is sales done right”

Stanford, Mike Boich, was active in the Mac group, and he took the role of demon-
strating the new system to any software developer that he could find. Kawasaki also
worked with Mike Murray, a skilled marketing director at Apple. Murray had an
MBA from Stanford, and he had worked on Apple teams since 1982. In the Mac-
intosh group, he oversaw all advertising and public relations activities related to
the new computer, including the famous “1984” TV commercial that ran during
the Super Bowl on January 22, 1984. Murray also developed the concept of soft-
ware evangelism that the company adopted, and he assigned various team mem-
bers to act as software evangelists in the company—a new marketing role designed
to inspire an almost-religious level of zeal and intensity for a product and its ulti-
mate mission.* This term has a rather obvious connection to Protestant strains
of Christianity in the Western tradition, as well as groups that have historically
been associated with religious evangelism (i.e., spreading the good news). In more
secular terms, the concept is sometimes described as “vision-oriented” sales and
marketing.

The effort to market the new Macintosh to commercial software developers was
one of the unheralded achievements of the mid-1980s, a time when commercial
development tools were in a rudimentary state on most PCs. Moreover, many peo-
ple associated Microsoft or IBM with marketing software development systems for
PCs, not Apple. As Guy Kawasaki recalls, there was essentially no installed base for
the new Macintosh computer. The device was limited to 128K of RAM, and the sys-
tem had no hard disk. There was little in the way of product documentation, and
a technical support system had not been established yet. Moreover, any develop-
ment teams who joined Apple would be going up against IBM, a company that was
ready to snuff them out.’> Such a mission, according to Kawasaki, required sus-
tained software evangelism. Beyond technical curiosity or even the motivation of
making a profit, Mac application developers needed to be motivated to Do Things
Right. These ideas were among the essential features of “The Macintosh Way,”
or what insiders called a marketing and customer relationship campaign that the
company developed before and after the first release of the Macintosh in 1984.

In a later book, The Macintosh Way (1990), Kawasaki encapsulated the princi-
ples with a set of values about how software companies should care for customers.
They included the following:

Evangelism is sales done right. It is the sharing of your dream with the mar-
ketplace and the making of history with your customer. Evangelism is the
purest form of sales. A Macintosh Way company doesn’t sell; it evangelizes.

4. Kawasaki, Macintosh Way, 2.
5. Kawasaki, Macintosh Way, 2.

11.1 The Macintosh Way 327

Giving information and support to user groups is word-of mouth advertising
done right. User groups are a medium like print or television, but you can’t
buy them. You have to earn them.

Demos are sales presentations done right. Demos show customers why they
should buy a product because they show how the product can increase their
creativity and productivity.®

Given the later success of the Macintosh, Apple’s core values quickly spread to other
high-tech companies, especially to the thought leaders of PC software companies.
When Mike Murray joined Microsoft in 1989 as Vice President of Human Resources
and Administration, “The Macintosh Way” strongly influenced how Microsoft’s
product marketing groups moved forward. Before long, Microsoft had numerous
software evangelists. These positions were often modified by adjectives that empha-
sized the product domain of the marketing promotion, such as “Visual Basic evan-
gelist,” “Windows evangelist,” and so on. During my time at Microsoft, I routinely
worked with product evangelists and often planned new books or software prod-
ucts with them. They were highly enthusiastic and often had very good ideas about
marketing software.

In the context of this book, I highlight “The Macintosh Way” campaign as
an important contributor to what I call the commercialization of the PC book and
software industry, because product evangelism highlighted the economic and social
benefits of a particular platform for developers and consumers. As other schol-
ars have noted, it was primarily through consistent platforms that computer com-
panies were able to build critical mass for a new technology and establish it
as a technical standard in the marketplace.” Evangelization impacted program-
ming culture because it infused software development norms with marketing
strategies and the language of religious and moral conversion.® This mentality
gradually became part of PC software culture in the 1990s, connecting software
development practices with the psychological need for commercial success and
personal fulfillment.

6. Kawasaki, Macintosh Way, 12.

7. On the importance of platform marketing, see David S. Evans, Andrei Hagiu, and Richard
Schmalensee, Invisible Engines: How Software Platforms Drive Innovation and Transform Industries
(Cambridge, MA: MIT Press, 2006), 97-101.

8. Modern scholarship on this issue begins with Max Weber, The Protestant Ethic and the Spirit
of Capitalism (German: 1905/English: 1930). For a recent study that examines the connection
between spiritual transformation and social movements (including the career of Steve Jobs), see
Marion Goldman and Steven Pfaff, The Spiritual Virtuoso: Personal Faith and Social Transformation
(London: Bloomsbury Press, 2017).

328 Chapter11

11.2

“Evangelism is sales done right”

Enthusiastic marketing messages might also help to establish a company’s
brand identity, which connected a company’s products to the needs, hopes, fears,
and desires of American citizens. To get the word out, it was necessary to adver-
tise in computer magazines, sponsor book projects, and develop partnerships with
hardware and software resellers. Much of this work could be done at consumer
trade shows, which allowed companies to exhibit their products, make deals with
resellers, and find other potential partners. The next two sections discuss the West
Coast Computer Faire and COMDEX, two innovative consumer trade shows that
helped software publishers establish their brands and do the work of technol-
ogy evangelization in the 1980s and 1990s. These events started out as regional
conventions, but they soon attracted participants from around the globe. Each
participant hungered to receive their own slice of the personal computing pie, and
they found innovative ways to take it.

The West Coast Computer Faire

The West Coast Computer Faire was the brainchild of computing pioneers
Jim Warren and Bob Reiling in the late 1970s. In the book Hackers, journalist
Steven Levy describes how the two men decided to create, in good hacker spirit,
an eclectic gathering that would gather together people who wanted to exchange
information, equipment, technical knowledge, and “good vibrations.”® Over time,
the West Coast Computer Faire grew into this event. The Faire was styled after a
regional “Renaissance Faire” in Marin County, California, which took place annu-
ally. As a technology showcase, however, the newly conceived “Computer Faire”
would be open to the public and centered on the emerging world of personal
computing.

We first met Jim Warren in Chapter 4. Warren was an early associate of Bob
Albrecht who joined the staff of the People’s Computer Company (PCC) to run
Dr. Dobb’s Journal of Computer Calisthenics & Orthodontia, the first computer mag-
azine to focus on PC software. Warren took that leadership position in 1975, but he
also continued work part-time as an industry consultant. With Bob Reiling’s help,
Warren believed that he had enough time and contacts to launch a consumer trade
show in the San Francisco Bay Area. The men’s initial vision soon took the form of
a convention and trade show, and they booked the San Francisco Civic Auditorium
to accommodate as many attendees as possible.

On April 16" and 17", 1977, more than 12,000 people visited the Civic Audi-
torium for the Faire. Creative Computing magazine reported that long lines were

9. Steven Levy, Hackers: Heroes of the Computer Revolution, Revised edition (Sebastopol, CA:
O’Reilly, 2010), 222.

11.2 The West Coast Computer Faire 329

Figure 11.2 The cover of Creative Computing magazine (July-August, 1977), announcing the results
of the first West Coast Computer Faire. (Reprinted with permission. © 2019 Ziff Davis,
LLC. All Rights Reserved)

needed to accommodate the crowds. The most important reason for the crush was
timing. (See Figure 11.2 for the cover of the Creating Computing issue that reported
on the Faire.) In 1977, the country’s first microcomputers were being announced,
and representatives of many of the newest companies were present. For example,
Steve Jobs and Steve Wozniak were both in attendance to discuss the features of
the new Apple II computer. In all, there were over 180 exhibitors at the Faire, com-
peting for customers and space to demonstrate their wares. The editor of Creative
Computing, David H. Ahl, was on hand during the last afternoon to interview Jim
Warren and review to what extent the event had been successful. (Ahl advocated for
BASIC at the show, and he was regularly in the Creative Computing booth; as shown
in Figure 5.1.) Warren’s responses clarified what he understood as the real signifi-
cance of the Faire: the trade show was essentially a continuation of the Free Speech
Movement. It was a grass-roots campaign to bring computers to the people. “The
point of doing this wasn’t really making money,” Warren said. “I mean, back in the
60’s we had happenings in San Francisco, and San Francisco was meant for that,

330 Chapter11

“Evangelism is sales done right”

and this is just another variation on it, except that it’s a decade later. Back then, it
was power to the people and now its computing power to the people.”!° The coun-
tercultural movement was gradually being transformed into one of the era’s central
computing mythologies.

Although the Faire began as a crusade for liberation, the trade show soon became
amarketing and publicity opportunity that aggressive technology companies could
not pass up. The region’s major hardware manufacturers, software publishers,
entrepreneurs, educators, and media representatives made a point of attending
the trade show each year. This included authors and community members who
wanted to teach classes, and publishers that wanted to sell programming primers,
technical references, how-to books, and magazines. The annual event ran from
1979 to 1991, with crowds growing rapidly in the mid-1980s. Although most of the
Faires took place in San Francisco, neighboring cities such as San Jose or Los Ange-
les were selected on occasion. To accommodate the many activities, Jim Warren’s
staff at the Faire grew to over a dozen people (see Figure 11.3), and they worked
to arrange exhibiting space for corporations, teaching events with local experts,
product demonstrations, lectures, and a festive banquet that allowed guests to net-
work and strike deals. The list of attendees grew rapidly, and soon vendors arrived
from out of state to participate. The Faire became the West coast’s largest PC trade
show, and it was typically held each spring. Figure 11.4 shows the crowds that
flocked to the 1983 event. What is striking is the mix of businessmen wearing suits
and ties, and the regular consumers dressed in casual clothing and swarming the
trade show booths.

Did the West Coast Computer Faire encourage attendees to experiment with
computer programming? The answer is “Yes” — especially during the early years of
the PC Revolution, when commercial applications were hard to come by. The pro-
gram guide for the 1981 West Coast Computer Faire held in San Francisco indicates
that there were numerous programming classes on the topics of assembly language,
BASIC, Forth, Pascal, and LISP programming. LeRoy Finkel and Jerald Brown (two
associates of Warren and Albrecht at PCC), were listed as instructors offering tuto-
rials on BASIC programming.!! From the beginning, instruction in programming
was a significant part of the Faire. In addition, there were always compiler and
interpreter manufacturers present to represent their products. This group included
well-established firms like Microsoft and smaller one- or two-person operations

10. David H. Ahl, “The First West Coast Computer Faire,” Creative Computing 3, no. 4 (July-August,
1977): 99.

11. See 6™ West Coast Computer Faire Program (April 1981), accessed on March 28, 2019.
https://archive.computerhistory.org/resources/access/text/2018/12/102725949-05-06-acc.pdf.

https://archive.computerhistory.org/resources/access/text/2018/12/102725949-05-06-acc.pdf

11.2 The West Coast Computer Faire 331

Figure 11.3 The staff of the West Coast Computer Faire on a snowy day in April 1982. Jim Warren
is wearing a brown coat and a wide-brimmed hat in the front of the group. (Courtesy
Jim Warren and the Computer History Museum)

thatadvertised in simple pipe-and-drape booths. In both cases, however, customers
could often meet the actual developers of their products, who were eager to hear
abouthow developers used their software and programming tools. Customers could
ask for more information, register complaints, share sample programs, and request
new features—all on the spot. The face-to-face experience represents a fascinat-
ing period of transition for personal computing and the learn-to-program move-
ment. Gradually, microcomputer programming was transformed from a kit-based,
swap-meet activity into a vibrant commercial industry, where product marketing
and merchandizing activities were handled by trained professionals with corpo-
rate experience.

In 1983, Jim Warren sold the rights to the West Coast Computer Faire to book
publisher Prentice Hall for $3 million. Later, Prentice Hall sold the trade show to
American businessman Sheldon Adelson, who added the Faire to a portfolio of
trade shows that he managed through the Interface Group Show Division. (The
organization also included COMDEX, the annual trade show that took place each
fall in Las Vegas.) Although the Faire’s attendance gradually declined in the late
1980s, the event should be remembered as one of the pioneering consumer shows

332 Chapter11

“Evangelism is sales done right”

Figure 11.4 Crowds at the 8" West Coast Computer Faire, March 18-20, 1983. (Courtesy Jim Warren

11.3

and the Computer History Museum)

of the early microcomputer era. At the meeting, hardware manufacturers and soft-
ware publishers met American technology consumers in person and sold their
wares. In this context, companies were required to move beyond the traditional
sales venues of mail-order catalogs and retail computer shops. They needed to cre-
ate a compelling vision for customers and resellers that connected to the era’s
computing mythologies. The implied question was, “In what ways does your prod-
uct bring computing power to the people?”

COMDEX and the Trade Show Movement

Consumer-oriented shows like the West Coast Computer Faire represented the
communal, activist roots of the “PC Revolution.” As the industry matured, these
ideas were subsumed by what I call the commercial computing trade show move-
ment, a steady progression of consumer-oriented trade shows that mixed members
of the trade (computer company representatives and resellers) with consumers
who wanted to learn more about new PC technologies for their schools, homes,
and small businesses. This movement began in the mid-1980s, flourished in
the 1990s, and gradually declined in the 2000s, when Internet-based commerce
and other business transitions brought an end to oversized hybrid trade shows.

11.3 COMDEX and the Trade Show Movement 333

At commercial computing trade shows, new hardware and software products were
announced, computer businesses established their brands, and consumers and
resellers mixed to demo the newest products. Up to 200,000 or more gathered for
these expositions in the U.S., and the event marked a high-point of the computer
technology selling season. As many of the new products were designed for soft-
ware developers (either emerging hardware/software platforms or new program-
ming tools), commercial trade shows were also a key venue for the learn-to-program
movement, as aspiring coders gathered to receive training, network, and experi-
ment with the newest technologies.

Foremost among the commercial computing trade shows in the U.S. was
COMDEYX, a multi-day exposition that started in 1979 and held its last conven-
tion in 2003. The biggest COMDEX event was COMDEX/Fall, which took place
each October or November in Las Vegas, Nevada. (Las Vegas was considered to
be only venue large enough in the U.S. to hold the fall trade show and com-
fortably house and entertain all the attendees.) The COMDEX/Spring exposition
typically rotated around the country, often in East Coast or mid-West locations. (For
example, the first COMDEX/Spring venue was New York City in 1981.) Although
I focus on the Fall COMDEX shows here, there were other computing trade shows
that contributed to the transformation of the learn-to-program movement, includ-
ing Macworld Expo, Windows World, and the Consumer Electronics Show. Outside
the U.S., the most important expositions were CeBIT (Germany) and COMPUTEX
Taipei (Taiwan). All of these venues represent important research opportunities
for the historians of computing, business, and technology.

The Computer History Museum Archive in Fremont, California contains several
useful folders of material related to the COMDEX shows, including a good selec-
tion of program and exhibits guides. These volumes often stretch to 600 pages or
more, documenting the tremendous human effort and financial costs that it took
to plan and produce these shows. (See Figure 11.5.) First and foremost, there were
hundreds of trade show booths at the events, each staffed by employees or vendors
who could explain the products or services offered by a company, present demon-
strations, and clarify how products were distributed to value added resellers (VARs)
or sold directly to customers. Some trade show booths were small, with humble
pipe-and-drape fabric barriers that separated one company from the next, provid-
ing little more than a 6-foot table for products, a fabric back drop, and a power
strip. (This was the spartan format of the West Coast Computer Faire.) But more
common were the large “booth complexes” at COMDEX, essentially custom-made
theaters and meeting spaces which provided a comprehensive experience for cus-
tomers and visiting executives. These elaborate booths contained signage, office
equipment, demonstration areas, and quiet spaces where executives could meet

334 Chapter11l

“Evangelism is sales done right”

Figure 11.5 The COMDEX/Fall '90 Program and Exhibits Guide. This 600-page book filled with

exhibits, events, and advertisements was given to each paying COMDEX attendee at
the Las Vegas trade show. (From the Michael Slater Collection on Microprocessors,
COMDEX Program and Exhibits Guides; courtesy of the Computer History Museum)

peers. There was a large stage where up to 100 people might view a public demon-
stration. There were also smaller, more intimate demo booths where the individual
details of product lines could be experimented with. Software companies paid great
attention to the product demos, carefully rehearsing how the products in devel-
opment might appear to the general public. On occasion, both employees and
customers were forced to encounter software bugs, system crashes, and the “pub-
lic rebooting” of fragile systems. (For IBM PCs and compatibles, this was accom-
plished via the infamous key combination Ctrl+Alt+Del.) For these reasons, prod-
uct demos were usually handled by senior engineers, trained product managers,
and (in some cases) well-groomed professional actors wearing headsets and bright
shirts.

Company employees at the trade show booths dressed “casual corporate” in
the late 1980s and early 1990s, the men with khaki pants and corporate-logo polo
shirts, and women with more formal attire, typically blazers, white shirts, A-line

11.3 COMDEX and the Trade Show Movement 335

skirts, nylon stockings, and pumps. “Women dressed more formally than the men
in the trade show booths,” remembers Kim Halvorson, a Microsoft employee in
U.S. Sales and Marketing in the late 1980s and early 1990s. “Wearing nylon stock-
ings was warm and they always ran; we needed many pairs in our arsenals. It was
also the era of shoulder pads and power jewelry, which women often wore in pro-
fessional settings to project an aura of strength.”!? In other booths, there was an
effort to wear matching shirts, company buttons, scarves, and other accessories
that gave employees a uniform look. This emphasis on clothing made COMDEX
feel a bit more formal than the casual “street attire” of the West Coast Computer
Faire, but the commercial computing trade show was still less formal than the
starched suit-and-tie guises of IBM sales and marketing personnel in the 1960s
and 1970s. The overall focus was to impress commercial customers and resellers,
not executives.

The COMDEX/Fall ’88 Program and Exhibits Guide indicated that there were
over 1,700 exhibitors displaying their wares in trade show booths spread out
among several Las Vegas hotels and convention centers.!® The guide contained
a schedule of events and several maps to help visitors locate the product booths
and teaching/information sessions. The show took place over 5 days between

4™ and November 18, 1988. As tens of thousands of attendees moved

November 1
from one booth to the next, they carried plastic bags to hold the buttons, flyers,
and “swag” (free promotional items) distributed by company representatives. To
attract the attention of customers, many of the buttons displayed humorous slo-
gans or phrases, such as the button in Figure 11.6, which contains a pun related
to programming and music from the Beatles. (“We all live in a yellow subroutine.”)

In the era before the commercial Internet, free software and demonstration pro-
grams were sometimes distributed at trade shows via floppy disks or CD-ROMs. By
the mid-1980s, software vendors realized that it was too much work to type in source
code manually, which had been a mainstay of early microcomputing. But it was hard
to locate complementary copies of commercial-grade software, such as Aldus Page-
Maker, Lotus 1-2-3, or Microsoft Word. Loading free trade show software on your
home or work computer was also a security risk by the late 1980s—it could be the
source of malware, or a destructive computer virus. To combat any such risks, high-
profile corporate customers were sometimes given clean, shrink-wrapped copies of
commercial software at COMDEX, which they added to their bags of tee-shirts and
corporate swag.

12.Kim Halvorson, unpublished interview with the author, March 31, 2019. The clothing reference
is to COMDEX/Fall '90, which Kim attended with the Microsoft group.

13. COMDEX/Fall ’88 Program & Exhibits Guide (Las Vegas, NV: The Interface Group, 1988).

336 Chapter11

“Evangelism is sales done right”

Figure 11.6 Computerworld magazine button distributed in the 1980s. “We all live in a yellow

subroutine” was a reference to the feel-good nature of Beatles music and the
collaborative spirt of the learn-to-program movement. (Photo by Michael Halvorson.
Courtesy of the Computer History Museum)

The COMDEX/Fall '90 Program and Exhibits Guide indicates that the
November 12t to 16 trade show had expanded to include exhibits and activities
in the Sands Expo and Convention Center, the Las Vegas Convention Center and
West Hall, Bally’s Casino Resort, Caesars Palace, the Las Vegas Hilton, and the
Riviera Hotel.!* The COMDEX/Fall '90 show cost attendees $295 for the full 5-day
experience, or about $150 per day. For those consumers who simply wanted to visit
the exhibitor’s areas, where all the products were visible, they could pay $75 for all
5 days. The guide encouraged attendees “towear their badge at all times,” a directive
that brought humorous consequences in the evenings, when many attendees
continued to wear their lanyards around Las Vegas—in the bars, in the all-you-can-
eat buffets, and even while placing bets at some of the gambling tables. I witnessed
this first hand while attending COMDEX/Fall '90 as an Acquisitions Editor for

14. COMDEX/Fall ’90 Program & Exhibits Guide (Las Vegas, NV: The Interface Group, 1990).

11.3 COMDEX and the Trade Show Movement 337

Microsoft Press, exploring the product booths, identifying trends for potential
projects, and working to meet new computer book authors. I wore a Microsoft
Press logoed polo shirt for many of my shifts at the Microsoft Press exhibitor’s
booth. In the evenings, it was customary for me to wear suits at the formal din-
ners with clients and at the cocktail parties with colorful industry personalities.
This is where, at least once a year, I would shake hands with Dan Gookin, Kris
Jamsa, Steve Nelson, Charles Petzold, Neil Salkind, Craig Stinson, Mitch Waite,
and other authors in the Microsoft Press stable who regularly attended the show.
Dean Holmes, Senior Acquisitions Editor at Microsoft Press, described these meet-
ings as useful cultivation sessions that were hard to replicate in other ways. “At
COMDEX, we could connect with current authors and future prospects, trade sto-
ries, and gather information about upcoming products and their ever-changing
release schedules. It was an opportunity to thank our authors, have a beer, and put
out fires when problems occurred.”*®

Although business networking was an important aspect of COMDEX, it was
also useful to hear the technology predictions from industry experts, and to attend
breakout sessions where specific platforms or products were discussed. Each
COMDEX show had a high profile keynote address, where thousands of attendees
gathered to hear from an industry luminary. These events were held in the biggest
ballrooms, where there was a formal stage, theatrical lighting, and an impres-
sive A/V system. At COMDEX/Fall ’90, Bill Gates was the keynote speaker, and the
exciting news was Windows 3.0, which had been enhanced with virtual memory,
loadable device drivers, and a new look. Over the coming days, there were con-
ference panels and roundtable sessions with many of the industry’s best-known
figures, including Stewart Alsop II (PC Letter), David Archambault (Commodore),
Steve Ballmer (Microsoft), Dan Bricklin (Slate), Esther Dyson (Release 1.0), Gordon
Eubanks (Symantec), Bill Machrone (PC Magazine), Tom F. Wheeler (IBM/General
Electric), Amy D. Wohl (Wohl Associates), and Will Zachmann (PC Magazine).

As the list indicates, most of the featured speakers were either industry exec-
utives, publishers, or technology journalists. For a time, magazine editors and
computer book publishers were among the most influential groups at COMDEX,
because they promoted the industry’s hardware and software products to millions
of customers each year via newsletters, books, and periodicals. As evidence of
this trend, the COMDEX/Fall '90 guide announced that 27 computer book pub-
lishers were present at the show and exhibiting, each with a significant staff of
marketing and sales personnel, as well as acquisitions editors to sign up new
projects. All the major PC hardware and software companies were also visible,

15. Dean S. Holmes, email correspondence with the author, September 21, 2019.

338 Chapter11

“Evangelism is sales done right”

including Apple Computer, Autodesk, Borland, Digital Equipment Corporation,
Hewlett Packard, IBM, Intel, Microsoft, and Sun Microsystems—just to name a
few. Most of these companies were aggressively pursuing new deals, partnerships,
and co-marketing arrangements. For example, the “Intel Inside” co-marketing cam-
paign was launched about this time to raise the profile of the Intel microprocessors
that were inside many of the industry’s PCs. The only groups that were not present
at COMDEX were the traditional mainframe, supercomputer, and minicomputer
vendors that did not sell products directly to retail customers.

How many exhibitors, consumers, and resellers attended these shows? The
COMDEX/Fall '91 Program and Exhibits Guide included a statement from Interface
Group President Jason E. Chudnofsky answering this question. Since its founding
12 years earlier, Chudnofsky claimed that some 750,000 paid computer industry
attendees had attended COMDEX.1® Seeking to benefit from the recent upswing,
The Interface Group had raised the price of admission to $450 for the 5 day trade
show and exposition. This was a 90% increase from the previous year. There was
also no option for an “exhibition only” ticket. The comprehensive fee was now the
standard price for anyone who wanted to attend the multi-day event. But the indus-
try heavyweights kept coming. In 1991, the keynote speaker was Andrew S. Grove,
Ph.D., of Intel Corporation. There was also a well-publicized CEO roundtable event
featuring Bill Gates (Chairman and CEO, Microsoft), Philipp Kahn (Chairman, CEO,
and President, Borland International), and Jack D. Kuehler (President and board
member, IBM Corporation).

By the early 1990s, over 140,000 people were attending COMDEX/Fall each year,
and the numbers would increase steadily until 1996, when attendance peaked at
225,000.17 By this time, the growth of the industry sector was undeniable—personal
computing had become a major contributor to the American economy, and com-
mercial computing trade shows served as conspicuous showcases of American
capitalism and technology. Hardware and software manufacturers were spend-
ing millions of dollars marketing their products and cultivating brand loyalty.
As personal computing gained momentum, software developers became a valued
part of this world.

One of the important artifacts of this era is a fascinating open letter written by
President George H. W. Bush to COMDEX/Fall '91 attendees, placed prominently
on the first page of the Program and Exhibits Guide. In the letter, President Bush
welcomes visitors from around the world to Las Vegas, and he encourages them

16. COMDEX/Fall ’91 Program & Exhibits Guide, 622.

17. Ted Smalley Bowen and Carolyn A. April, “Comdex starts to lose some luster,” Info World,
November 25, 1996, 3.

11.4

11.4 The Trouble with Self-taught Programmers 339

to participate fully in the glittering world of consumer technology that America
has showcased. To an historian with training in the pageantry and pomp of ear-
lier eras and leaders, the act seem reminiscent of the greeting that Queen Vic-
toria offered to international visitors at the beginning of the Great Exhibition in
London (1851), an important showcase of the late industrial revolution. President
Bush greets COMDEX attendees in this way:

I am delighted to extend warm greetings to everyone who is attending the
COMDEX/Fall'91 Conference and Exposition. My special greetings to our vis-
itors from abroad.

This prestigious trade show - the largest of its kind in the United States —
provides an ideal opportunity for consumers to examine the newest develop-
ments in computer systems, accessories, and services. In this rapidly chang-
ing, increasingly technological world, it is vital that computer users stay
abreast of the many different products and programs that are available to
them. Our success, as individuals and as nations, depends on our ability to
exchange ideas and to make the most of our knowledge and resources.

That is why events such as the COMDEX trade show are so important.
Barbara joins me in sending best wishes for a productive event and for every
future success.

George Bush!®

Let me add a bit of context to this. In the 1980s and 1990s, it was common for Ameri-
can presidents to welcome businessmen and international visitors from abroad. In
fact, the organizers of the COMDEX trade show had arranged for several presidential
letters in exposition programs, including similar greetings from President Ronald
Reagan. However, Bush’s letter was the first to be accompanied by a photograph
depicting a sitting president using a PC in the Oval Office. In the image, President
Bush sits typing with two hands on the keyboard of what appears to be a high-
powered IBM PC or compatible computer, with avideo graphics array (VGA) monitor
and a personal laser printer nearby. The link between the American economy, global
commerce, and personal computing never seemed so striking.

The Trouble with Self-taught Programmers

COMDEX finally closed its operations in 2003, after a period of consolidation
and decline in the business of commercial trade shows. By that time, the “dot-
com” bubble had burst and the early enthusiasm for Internet-related businesses
resulted in retrenchment for the computer industry. Apple Computer, IBM, and

18. COMDEX/Fall 91 Program & Exhibits Guide, 10.

340 Chapter11

“Evangelism is sales done right”

other technology companies abandoned COMDEX for smaller corporate events
and product showcases. Consumers continued to shop for and buy new computers
and software products, but they learned about them in new ways.

What did this mean for the learn-to-program movement in the U.S.? Without
major trade shows, how did programmers learn about new software development
products? Was the number of active coders rising or falling in the U.S.?

In the 2000 U.S. Census, there were 521,105 full-time year-round workers who
identified as “Computer Programmer” in their job title. An additional 595,965
people selected “Computer Software Engineer” as their occupation. Adding these
numbers together, we get 1,117,070 people who self-identified as residents work-
ing in programming-related jobs. In addition, there were 554,720 who selected
either “Computer Scientist” or “System Analyst” in the 2000 U.S. Census. This brings
the total number employed with professional programming skills in the U.S. to
1,671,790 in the year 2000.° Compared to earlier statistics, this indicates a steady
rise in the number of professional programmers in the country.

As I have emphasized in earlier chapters, many of these professional program-
mers were self-taught, and they used books, magazines, and self-paced training
courses to cultivate their skills. In addition, there were millions of non-professional
U.S. residents who had learned to write code in some form but did not account
this skill as their primary occupation. These were likely scientists, information
workers, hackers, and “power users” who could use programming tools at work.
These were likely scripting systems, HyperCard stacks, AWK programs, and lan-
guage compilers associated with FORTRAN, Forth, QuickBASIC, Turbo Pascal,
C/C++, Java, and other products.

Curiously, the non-professional group gained some notoriety in the 1990s.
By this time, it was commonly understood that millions of Americans knew
something about computer programming and that they could use this skill for
good or ill. Within the corporate IT community, there were some who believed
that amateur programmers might somehow threaten the computing infrastruc-
ture if they were allowed to write programs that were widely distributed. It was
an anxiety related to the fears about hacking in the 1970s and 1980s, which
threatened to disrupt telecommunications systems across the country. IT exec-
utives mused: how safe are our organizations now that so many people can
build applications with little or no supervision? Are the new rapid application
development tools making software development too easy? Could the grassroots
learn-to-program movement actually lead to problems with American’s high-tech
infrastructure?

19.2000 U.S. Census data summarized in Evans, Hagiu, and Schmalensee, Invisible Engines, 84.

11.4 The Trouble with Self-taught Programmers 341

As odd as this line of inquiry sounds, the COMDEX/Fall 90 trade show had at
least one panel exploring the dangers of amateur coders. The session was entitled
“The Challenge of Personal Programming,” and it featured a panel of IT experts
who readily expressed concerns about how easy it had become to write programs
in America.?® Might this newfound freedom encourage “unqualified end users”
to write code that was dangerous or of poor quality? Should the IT community
band together to stop “personal programming” before it created too much trouble?
Would the publishers of programming tools and compilers be liable or complicit if
their technologies were used for ill and not good?

The chair of the COMDEX panel was Michael Edelhart, Editor-in-Chief of
PC/Computing, a Ziff Davis publication. Contributors included Bruce Barrington
(Clarion Software), Fred Gray (Microsoft), Frank King (Lotus Development Corpora-
tion), and Eugene Wang (Borland International). Of special concern to the panelists
were the industry’s new menu-driven IDEs that made it so easy for “non-technical
users” to write programs.?! While the Microsoft and Borland panelists defended
their company’s programming systems, all present admitted that better training
resources were necessary to ensure the safety and reliability of new systems, which
could quicklyintegrate themselves into the business activities of America’s corpora-
tions. In particular, a few IT and management information system (MIS) managers
believed it was high time to exert system-level control over uncooperative users and
their code. In short, some sensed danger in the learn-to-program movement, and
they worried that America’s computing infrastructure might soon be threatened by
amateur coders with dubious training.

Was the concern that self-taught hobbyists were somehow embryonic hack-
ers who were eager to disrupt America’s technical systems? Or was the concern
that self-taught programmers were likely to end up in professional jobs, lowering
institutional standards in some way?

In the June 1991 issue of Dr. Dobb’s Journal, Andy Bender from Maryland sup-
ported the second concern. Echoing a familiar complaint from the 1960s, Bender
worried that there were few engineering practices discernible in the PC industry.
He laid some of the blame on “learned-it-on-the-job programmers” (the italic
emphasis is mine):

Dear DD],

I'm getting really frustrated with many aspects of the software development busi-
ness, especially in the world of business applications: incompetent managers

20. “Conference Session,” COMDEX/Fall 90 Program & Exhibits Guide, unnumbered page.
21. “Conference Session,” COMDEX/Fall 90 Program & Exhibits Guide, unnumbered page.

342 Chapter11

11.5

“Evangelism is sales done right”

placed in charge by senior executives who know little (or less) about the soft-
ware development life cycle (Senior Exec: “I'll put Paul in charge; he’s an
accountant, but he did something on the installation of our general ledger
package, so he must know all about computers...”); incompetent, learned-
it-on-the-job programmers (“structured what? I've been in this business for
twenty years. Nobody can teach me anything about programming...”); absurd
project schedules (“Complete specifications before you start coding? No way,
there isn’t time. Start coding now or you won’t make your deadline...”); etc.
What will it take before software engineering is considered a real profession,
requiring completion of a standard university curriculum and subsequent licen-
sure, before putting code in a buffer for money? ...

DD]J is a respected magazine, a voice that is heeded by programmers. I hope
to hear it much louder in favor of professional software engineering standards
whenever and wherever discussions of this onerous problem occur.

Andy P. Bender

Riverdale, Maryland?2

Bender’s complaint was that software developers were being controlled by execu-
tives who knew little about software engineering principles and the dynamics of the
product development life cycle. Moreover, as earlier generations had done, the let-
ter writer laments the lack of professional standards, including the completion of
degree programs and/or training courses where best practices are introduced.

The concerns about casual programmers attacking America’s infrastructure
were clearly overblown. But as the PC software industry reached new levels of
sophistication, were there new conduits through which professional development
practices might flow? Was there a way that academic research might influence the
learn-to-program movement as it entered more commercial contexts?

Software Engineering for the People

In Code Complete: A Practical Handbook of Software Construction (1993), professional
software developer Steve McConnell considered the same problem.?® His best-
selling “crossover” book was one serious attempt at addressing an issue that had
become a stumbling block for the commercial software industry—how could pro-
fessional engineering practices be dispersed more effectively to self-taught pro-
grammers who were taking development jobs at leading software companies?
How could academic research in computer science support the new commercial

22. Andy P. Bender, “Letters,” Dr. Dobb’s Journal, June, 1991, 12.

23. Steve McConnell, Code Complete: A Practical Handbook of Software Construction (Redmond, WA:
Microsoft Press, 1993).

11.5 Software Engineering for the People 343

programmers who were designing, constructing, and maintaining the country’s
widely used systems?

McConnell had professional experience writing more than 50,000 lines of pro-
duction code over a 5-year period for software companies in Washington State,
including Microsoft Corporation. He received a B.A. in Philosophy from Whitman
College and an M.S.E. in Software Engineering from Seattle University (1991). These
experiences provided him with a grounding in the liberal arts and an important con-
nection to the contemporary discipline of Computer Science, which had developed
a significant research base by the late 1980s. McConnell was particularly interested
in what he described as the “gap between the knowledge of industry gurus and pro-
fessors, on the one hand, and common commercial practice on the other.”?* He
argued that approximately 100,000 new computer programmers entered the pro-
fession each year, but only about 40,000 Computer Science degrees were awarded,
creating an obvious gap in the formal instruction that commercial programmers
received. He summarized the situation using an allusion from the discipline of
anthropology: “the lore of good coding is often passed down slowly in the ritualistic
tribal dances of systems architects, analysts, project leads, and more-experienced
programmers.”?> McConnell wanted to help with this technology transfer.

Code Complete focused on the topic of implementation or construction (coding
and debugging activities), which were among the more neglected topics in com-
puter science in the 1980s. A lot more time was being spent, he argued, on conversa-
tions about system specifications, architectural design, testing procedures, and the
various tools or platforms that were in use. Construction implied a focus on design-
ing and writing code modules, organizing control structures, finding and fixing
errors, reviewing the code of others, formatting and commenting existing code, and
tuning code to make it faster and smaller. Appealing to contemporary research,
McConnell argued that focusing on construction-specific tasks could improve an
individual programmer’s productivity by a factor of 10 or 20.2° This advice was
largely independent of computer languages. Instead of languages or platforms, he
focused on the characteristics of high-quality routines, code layout and style consid-
erations, the importance of self-documenting code, quality assurance reviews, unit
testing procedures, debugging strategies, and improving the performance of code.

McConnell also drew from a range of classic texts from the domains of Com-
puter Science and Engineering. He suspected that commercial programmers may
have read a language primer like Kernighan & Ritchie, or a systems primer like

24. McConnell, Code Complete, xi.
25. McConnell, Code Complete, xii.
26. McConnell, Code Complete, 5.

344 Chapter11 “Evangelismis sales done right”

Petzold’s Programming Windows, but few supporting works from the professional
programmer’s back list. These titles included:

Gerald Weinberg’s The Psychology of Computer Programming (1971)

Donald Knuth’s multivolume The Art of Computer Programming (1968 and
later)

Ed Yourdon and Larry Constantine’s Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design (1979)

Glenford Myer’s The Art of Software Testing (1979)

Tom DeMarco’s Structured Analysis and Systems Specification: Tools and
Techniques (1979)

Barry Boehm’s Software Engineering Economics (1981)

Jon Bentley’s Programming Pearls (1986)

Tom Gilb’s Principles of Software Engineering Management (1988)
Robert Sedgewick’s Algorithms (1988)

DeGrace and Stahl’'s Wicked Problems, Righteous Solutions (1990) on the
software-development cycle

McConnell described these books and many others in his introductory sections,
and then applied the material in 33 well-organized chapters.

In an effort to discuss the challenges of team development projects, McConnell
made references to Fred Brooks’ The Mythical Man-Month, which originally raised
the alarm about the inefficiencies that often accompanied large software develop-
ment projects. Brooks encountered a raft of these as he managed the design and
implementation of the IBM OS/360 system in the 1960s. Fred Brooks’ popular book
was first published in 1975, with revised editions in 1982 and 1995. Brooks dis-
covered that, paradoxically, the more programmers that were assigned to a project
when it was falling behind schedule, the longer the project took to complete. This
was because the new people added to the team, no matter how skilled, needed time
to familiarize themselves with the project before they could become productive,
and this learning curve required the assistance of developers who needed to stop
their work to instruct the new recruits.?’ In addition, adding new team members
added complexity to the project, because more people needed to communicate with
each other, and each developer had their unique work habits and beliefs about pro-
gramming. Managing software development teams was not, therefore, a process
that worked according to the established rules of multiplying labor, a principle that

27.McConnell, Code Complete, 542-543.

11.5 Software Engineering for the People 345

was carefully worked out during the divide-and-conquer contexts of the industrial
revolution. Rather, the software development process needed to be broken into dis-
tinct phases (the software development life cycle). No work on constructing the sys-
tem should be attempted until all of the system architecture work was complete.
McConnell went on to clarify his ideas about improving team work and product
development schedules in his book Rapid Development (1996).28

Was there a way to use new or improved software tools to improve programmer
productivity? According to academic research, this could be one way to improve
or speed up software engineering outcomes. In Code Complete, McConnell inves-
tigated a few computer-aided software engineering (CASE) tools, which could help
during the design phase of a project by graphically modeling the functionality of
software. At the source-code level, IDEs were also bringing menu-driven, visual tools
to software developers that integrated help systems, debugging, program editing,
and multi-language features. A raft of commercial software tools allowed develop-
ers to browse source code quickly, search-and-replace across multiple files, assess
the overall quality of code modules, track software versions, and manage deploy-
ment. However, as McConnell pointed out in 1993 and 1996, there were few com-
prehensive software development systems that provided all of these tools to the
professional developer, and there were no “silver bullets” which might compre-
hensively speed up software development projects.?’ Adopting new tools might
also bring productivity losses, because developers needed to learn the new systems
and then work out any kinks.?® Undeterred, software publishers like Microsoft,
Borland, and Apple continued to build comprehensive development systems that
attempted to bring the advantages of IDEs and other emerging tools to software
teams. These products proliferated dramatically in the late 1990s.

Steve McConnell’s Code Complete represented a valuable resource for self-taught
programmers. Soon there were other books with similar themes that hoped to
transmit successful engineering practices to wider audiences.3! On the product
development side, these efforts should be thought of as further attempts to com-
mercialize and professionalize the learn-to-program movement.

28. Steve McConnell, Rapid Development: Taming Wild Software Schedules (Redmond, WA:
Microsoft Press, 1996).

29. McConnell, Code Complete, 507.

30. McConnell, Rapid Development, 352, 365.

31. See Steve Maguire, Writing Solid Code: Microsoft’s Techniques for Developing Bug-Free C Programs
(Redmond, WA: Microsoft Press, 1993); and Steve Maguire, Debugging the Development Process:
Practical Strategies for Staying Focused, Hitting Ship Dates, and Building Solid Teams (Redmond, WA:
Microsoft Press, 1994).

346 Chapter11

11.6

“Evangelism is sales done right”

Professional and Enterprise Development Systems
As the Windows and Windows NT operating systems gained momentum, tool
makers began bundling and integrating their development systems for the PC
platform, connecting disparate products to provide comprehensive solutions for
their customers. An advertisement from Microsoft in Dr. Dobb’s Journal (April 1991)
provides evidence of the new trend. Readers were presented with a close-up photo-
graph of the Microsoft C Professional Development System software box with the
Microsoft Windows Software Development Kit (SDK) nearby. The caption reads,
“Normally one plus one equals two. But when you add Microsoft C and the Win-
dows Software Development kit version 3.0, things start to multiply.”*? On a facing
page, the advertisement presents several colorful software boxes from the makers of
Corel Draw, Aldus PageMaker, and Microsoft PowerPoint. The thrust of the ad is that
the leading commercial programs written for the MS-DOS/Windows platform have
been created with this pairing. The advertisement further celebrates the bundle
with a claim about Microsoft’s inside status: “There’s a good reason for this success.
Because as the creators of the Windows environment, Microsoft understands the
system and its potential for personal computing.”?3 Confronted with the challeng-
ing task of building commercial applications, the reader is encouraged to ask: “Why
wouldn’t a software developer want to use the Microsoft tools for their products?”
The answer is that the Windows software development process wasn’t all that
seamless in 1991, and there were many situations when Microsoft’s development
tools didn’t work well together. Moreover, although some individual components
worked fine on their own, there were entire stages of the software development
life cycle that were left out or ignored by PC software companies. In reality,
most commercial developers were mixing and matching software tools from dif-
ferent publishers to do their work, sometimes writing their own tools to address
the shortcomings of individual products. The problem was exacerbated when
multiplatform development became an aspiration for many PC software firms.
As we have already discussed, businesses routinely supported multiple operating
systems in their organizations, but the interoperability challenge grew complex
when Microsoft Windows, OS/2 Presentation Manager, Windows NT, Unix, and
Mac OS all co-existed in the marketplace. The move to Internet-based platforms
exacerbated this problem in the mid-1990s, and by the 2000s, smart phones and
tablets also arrived on the scene, requiring custom versions of the major operating
systems for these products.

32. Microsoft advertisement (2-page spread) in Dr. Dobb’s Journal 16, no. 4 (April 1991), 1.

33. Microsoft advertisement, Dr. Dobb’s Journal, 1.

11.6 Professional and Enterprise Development Systems 347

One solution to the challenge was the development of comprehensive program-
ming suites, which offered numerous languages, tools, and libraries integrated into
one common IDE. With these complex systems, professional software developers
could potentially manage many of the tasks associated with the software devel-
opment life cycle for different platforms, and they could share information and
source code among team members. These systems were carefully designed and
implemented as integrated software products, often in close association with the
release of new operating systems.

The first Microsoft versions of commercial, integrated development suites came
in 1997, with the release of Microsoft Visual Studio 97 Professional Edition and
Microsoft Visual Studio 97 Enterprise Edition. These products sold for $999 and
$1,499, respectively. If customers owned earlier versions of Microsoft’s develop-
ment tools, they could purchase upgrades at a substantial discount. Microsoft
announced the products via dozens of “Developer Days” events, beginning in
March 1997. The company made an effort to make the announcements appear
global in scope, and they followed a “global ready” development strategy to release
localized versions of Visual Studio 97 soon after the English-language release.
Impressively, Visual Studio events were held in 45 countries, including Argentina,
Australia, Canada, Egypt, France, Germany, India, Israel, Thailand, and the U.S. This
international emphasis was a stark contrast to earlier U.S.-focused releases of the
company’s compilers and development tools.

Some 45,000 software developers received hands-on exposure to Visual Studio
at the 1997 Developer Days events. As Chapters 9 and 10 have emphasized,
Microsoft’s programming technologies were not always easy to learn, and the events
allowed aspiring developers an opportunity to network and compare notes about
the new systems. The training events were more in-depth than COMDEX, the West
Coast Computer Faire, or similar trade shows. But the company realized that every
developer brought to Windows application development would help to solidify the
platform against the inroads of competing rivals. Eventually, the company broad-
ened Developer Days into a series of software development conferences, which
Microsoft used to advertise and support its products for each release. These events
included the Professional Developers Conference (PDC), TechEd, MIX, and Build.
Through these commercial venues, the learn-to-program movement continued in
its corporate manifestation.

What was the platform strategy behind Microsoft’s Visual Studio release? Inte-
grating components into a flagship corporate product was one important goal,
and the company followed a “suite” strategy that it had recently implemented with
Microsoft Office, the integrated application suite for Windows and the Macintosh.
In 1995, Bill Gates also circulated the infamous “Internet Tidal Wave” memo at

348 Chapter11

“Evangelism is sales done right”

Microsoft, directing the company to pivot rapidly to Internet-based technologies
and products. Visual Studio 97 offered the first fruits of this web-based approach to
software development on the PC platform. The suite included support for deploying
client/server applications on the Web, as well as the traditional desktop platforms of
MS-DOS and Windows. Gates articulated support for a multiplatform approachina
press release at the time of the Visual Studio 97 announcement:

We have always been committed to providing developers with the best tools
and training to take advantage of the rapidly changing computing infrastruc-
ture. Ourvision for applications development is to make it easy for developers
to integrate client/server and the Internet, as well as make it easy to build
robust, multitier enterprise solutions that can take advantage of existing sys-
tems. Developers are the heart of the industry and very important customers
for us.3
Clearly, adapting to a multitier, multi-platform world was important for Microsoft,
but the complexity brought many challenges for software developers. The tech-
niques used to develop applications for MS-DOS, Windows, and Internet-based web
browsers were very different. However, the company would stick with this strategy
for the next decade, and in some ways it characterizes Microsoft’s decision making
into the 2010s.

What components were in the Microsoft development suite? The base product,
Visual Studio 97 Professional Edition, included the following programs:

Version 5.0 of the Microsoft Visual Basic programming system

Version 5.0 of Microsoft Visual C++, the development system used to build
commercial Windows applications in C and C++

Version 1.0 of Microsoft Visual InterDev, a development system for building
and managing data-driven web applications

Version 1.1 of the Microsoft Visual J++ programming system, for creat-
ing cross-platform Java Applets and applications and integrating Java with
ActiveX technologies

Version 5.0 of Microsoft Visual FoxPro, a relational database management
system with an object-oriented programming language

Microsoft Developer Network Library (MSDN), an online source of official
product documentation and developer training

34. Bill Gates quoted in “More than 45,000 developers see public unveiling of new Microsoft Visual
Studio 97 at Developer Days events worldwide,” Microsoft Corporation, March 18, 1997.

11.6 Professional and Enterprise Development Systems 349

A selection of language compilers was included because Microsoft believed that
many programmers were using more than one language to create their application
solutions. Users could switch from one programming language to the next within
the same Visual Studio IDE.

Customerswho purchased Visual Studio 97 Enterprise Edition received the Stan-
dard Edition products plus tools thatwould help them with team-based projects and
enterprise-wide computing. These programs included:

Microsoft Transaction Server 1.0, which supported larger distributed
applications

Microsoft SQL Server 6.5, a relational database management system
Visual SourceSafe 5.0, a version control system for commercial contexts

Microsoft Visual Modeler, a modeling tool for representing large-scale
component-based applications

Enterprise-wide projects are software applications that are widely deployed and
used throughout an organization. Microsoft intended these applications to be run
on the Windows NT Server operating system, but they needed to function within
the existing computing infrastructure. In short, enterprise applications needed to
be highly “scalable,” or easily expanded and/or upgraded based on the demands
of the company’s changing needs and their global network. In this way, the com-
mercial contexts of IT programming in the late 1990s outstripped the demands
of the rudimentary compilers and SDKs sold by Microsoft and other publishers a
decade earlier. No one person on an enterprise development team would use all
of the products in the Visual Studio development suite, but the business proposi-
tion was that the entire company should adopt these tools, so that incompatibilities
and training problems would not ripple through the organization. Over time,
Visual Studio Enterprise Edition also attempted to address the needs of those
who were engaged with infrastructure planning, data access, application design,
project management, implementation, solution testing, deployment, security, and
much more.3®

How did Visual Studio fair in the commercial marketplace? Within a year,
Microsoft announced that Visual Studio Enterprise Edition had been adopted
by over 90% of Fortune 1000 companies in America as the leading development

35. For more on contemporary best practices for designing and implementing enterprise soft-
ware systems, see Enterprise Systems Integration, ed. John Wyzalek (Boca Raton, FL: Auerbach,
2000). This developing world was the market that Microsoft was trying to target with its enterprise
development products.

350 Chapter11l

11.7

“Evangelism is sales done right”

suite for business applications and multi-tiered “real-world scenarios.”3® Microsoft
claimed that their enterprise-wide approach was supporting companies that were
building solutions across a wide range of operating systems, including Windows
3.1, Windows 95, Windows NT, Apple Macintosh, and Unix. They also pledged to
help corporate developers solve enterprise and corporate computing issues in the
future, including “analysis, design and modeling, testing and quality assurance,
configuration and process management, and legacy system connectivity.”” Within
about 18 months, they released Microsoft Visual Studio 6.0 Enterprise Edition
(August 1998), a comprehensive development suite that integrated even more
features for corporate developers. Gradually, it helped Microsoft gain additional
ground in the compiler and operating system wars.

Commercialization

As Internet-based client/server computing arrived, larger software publishers like
Microsoft shifted their marketing emphasis from individual programmers, hobby-
ists, and students to America’s Fortune 1000 corporations, which employed legions
of software developers to handle their corporate IT needs. Microsoft continued to
sell software to individual programmers and consumers, but they also recognized
that a major transition that was taking place in the global software business. Power-
ful new hardware and massively scalable operating systems like Windows NT Server
allowed corporations to replace their mainframe and minicomputer systems with
banks of network servers running Windows NT, Unix, and other PC-based operat-
ing systems. This cost-shifting measure further fueled the commercialization of
PC programming in the late 1990s. In many ways, the PC software industry now
faced the daunting distributed computing scenarios that that had challenged and
inspired computer architects in the 1960s and 1970s. Companies like Microsoft,
IBM, Sun, and Oracle chose to emphasize the needs of their corporate customers
over those who were learning to code on new systems.

How did the forces of commercialization impact the learn-to-program move-
ment? In the 1970s, the “PC Revolution” brought new computing platforms to mil-
lions of Americans. Out of necessity, many wrote computer programs on the new
devices because there was a dearth of application software available. Thanks to the
work of programming evangelists like Bob Albrecht, Mitchell Waite, Dian Crayne,
and Ray Duncan, thousands of students and hobbyists learned to code and build
interesting applications for the CP/M, MS-DOS, and Macintosh platforms. Although

36. Microsoft Corporation, “Corporations Embrace Visual Studio 97 Enterprise Edition for
Mission-Critical Application Development Projects,” February 3, 1998.

37. Microsoft, “Corporations Embrace Visual Studio 97.”

11.7 Commercialization 351

the advocates for K-12 education in the U.S. lost faith in the transformative power of
programming in schools, a new raft of programming tools restored confidence in
the movement to the masses. New machines based on the 80386 and 80486 micro-
processors made it clear that individuals who wrote their own programs could tap
into powerful engines that offered the prospect of future employment or software
entrepreneurship.

The transformative power of personal computing influenced America’s corpo-
rate computing cultures ata slower pace, however. It was not until the late 1990s that
the PC software industry became a substantial commercial force in the American
economy, finally surpassing the corporate/mainframe software services industry.
The impact of commercialization was obvious when the rising hardware and soft-
ware platforms became stable enough to support major corporate investments in
business applications, development tools, and IT/MIS infrastructures. Only at this
point could the largest business organizations justify the costs (and attendant risks)
of fully investing in PC-based systems. One of the crucial products that facilitated
this transition was Microsoft Windows NT Server, a scalable client/server operat-
ing system that made it possible to replace existing mainframe and minicomputer
infrastructures with distributed systems in America’s leading corporations.3®

By 2003, the shrink-wrapped or “packaged” software industry in the U.S. pro-
duced revenues of $178 billion. At that time, there were more than 10,000 busi-
nesses in America building specialized commercial applications.>® To complete
this work, there were approximately 1.6 million professional programmers, com-
puter scientists, and systems analysists laboring in the U.S. workforce. A majority
were self-taught programmers, who learned their computing skills outside of the
traditional, 4-year college system. But the drum beat of economic opportunity con-
tinued. A new wave of software “evangelists” advertised the merits of the emerg-
ing hardware/software platforms with the fervor of missionaries, spreading the
“good news” and attracting converts and disciples for the new systems. Commercial
trade shows like COMDEX and Macworld Expo offered tantalizing glimpses of the
newest technologies, and the industry luminaries who sold the products used their
charisma and influence to build their platforms. Those who chose tolearn program-
ming often did so in the context of professional development tools and corporate
“messaging” events like Microsoft Developer Days, Teched, and Build. These trade
shows indoctrinated new developers into the commercial worlds of programming,
accompanied by logoed tee-shirts, water bottles, and platform messaging.

38. For more on the transition to this infrastructure, see Helen Custer, Inside Windows NT (Red-
mond, WA: Microsoft Press, 1992), 3.

39. Evans, Hagiu, and Schmalensee, Invisible Engines, 84.

352 Chapter11

“Evangelism is sales done right”

Code Nation has often stressed the importance of programming primers and
“how-to” books for the transmission of software development practices. But were
these books impacted by commercialization as much as the software develop-
ment tools? The short answer is “yes,” with the most obvious impact being the
proliferation of topics and the close alignment of programming skills to specific
products and the demanding product schedules of the software industry. In an
earlier era, bestselling primers like Kernighan and Ritchie’s The C Programming
Language taught the fundamentals of C programming by focusing on a relatively
small number of features and concepts. In just 228 pages, the authors taught core
principles that they reinforced through examples that were independent of the
underlying hardware.

In the new realms of enterprise computing, however, aspiring software develop-
ers learned the ropes by dividing and conquering. First, a programmer would learn
the fundamentals of a given computer language such as Java, C++, or Visual Basic.
This would almost always be done in the context of a specific compiler or develop-
ment system. Next, students would learn platform-related skills, such as how to cre-
ate an appropriate user interface for the Apple Macintosh, or how to use the Win32
API. In a RAD system like Visual Basic, aspiring developers had to master both visual
design concepts and the underlying features of the Visual Basic programming lan-
guage. Visual and syntactical elements were also a requirement for C/C++ program-
mers who were working with the Windows SDK. For example, developers needed
to populate and control application windows, menus, dialog boxes, and other user
interface elements. Then they needed to manage memory, inter-process communi-
cation, multitasking, peripherals, and the attributes of an advanced operating sys-
tem. On top of this, corporate and enterprise developers required additional skills
and tools. They needed to learn about team-based work flows, how to maintain a
code base, how to plan for localization, testing best practices, how to document the
software, and the steps necessary for distribution and deployment.

Computer book authors, trainers, and publishers attempted to equip develop-
ers for all of these tasks by preparing a range of vertical market titles for most of the
major software platforms. One creative publisher, Wrox Press (founded in 1992),
created an effective line of books to address the commercial manifestations of the
learn-to-program movement. Their “Programmer to Programmer” series featured
carefully scaffolded or “tiered” titles with content that began with introductory top-
ics and then moved deeper into the product as developers gained more experience.
(See Figure 11.7.) Rather than teaching computer science fundamentals, as ear-
lier books did, Wrox titles emphasized the commercial features of a new operat-
ing system, product, or language. The publisher also offered “Public Beta” books
that provided short “walkthroughs” of products still in development, publishing

11.7 Commercialization 353

Figure 11.7 Examples of the “Programmer to Programmer” book series published by Wrox Press in
the late 1990s. Wrox programming primers followed a “scaffolded” approach, which
gradually introduced the components of a commercial technology such as Visual
Basic 6, released in 1998. (Photo by Michael Halvorson. Images courtesy of Springer
Nature AG)

technical descriptions of compilers that had not yet been released, so that con-
sumers could get a jump on their rivals (and help software publishers debug their
software). Each of the books was written by a professional software developer with
industry experience, and they emphasized skill-building for IT careers as well as tra-
ditional software development jobs. Importantly, the titles also flagged the market
segment that theywere designed for. Marketing copy on the back of Beginning Visual
Basic 6 Database Programming (1998), by John Connell, explains the tiered learning
approach in this way:

Wrox Beginning Guides are expertly crafted to make learning fundamental
programming techniques easier than you think. Whether you're taking your
first steps in programming or broadening your skills with new techniques,
Wrox books guarantee a carefully structured tutorial format that will guide
you through all the techniques involved... These projects take you right up

354 Chapter11

“Evangelism is sales done right”

to the point where you can develop professional applications to be proud of.
Our aim is to make you successful by sharing the knowledge of experienced

programmers with you at every stage in your career.*’

Microsoft Corporation scaffolded its popular training and certification pro-
grams in the same way in the 1990s, hoping to provide a clear path through what
otherwise looked like a complex world of unfamiliar proprietary technologies. The
company introduced professional certification in 1992, with the modest goal of
assisting computer professionals to demonstrate their new IT skills to potential
employers. The first certification exams were published for Microsoft Windows 3.1,
Microsoft LAN Manager, and SQL Server. Although industry certification was not
designed to replace academic credentials or the infamous “white board interviews”
that confronted developers in job interviews, it became a popular mechanism for
gaining credentials.

The first certification levels included Microsoft Certified Professional (MCP),
Microsoft Certified Systems Engineer (MCSE), and Microsoft Certified Solutions
Developer (MCSD). The candidates for these achievements prepared by purchasing
Microsoft software and training manuals, and then they took exams prepared by
industry experts. Like the “Programmer to Programmer” series published by Wrox,
Microsoft’s certification materials emphasized how an IT professional might inte-
grate commercial products to build enterprise-wide solutions, rather than encour-
aging problem-solving or computational logic skills. The system of scaffolded
certification courses and training materials became very popular, and it continued
into the Internet age through an assortment of on-line and instructor led courses.

The commercialization of the learn-to-program movement was perhaps an
inevitable outcome of the rapid expansion and economic flourishing of the PC
industry. Commercialization gradually shifted the emphasis of software compa-
nies from the hobbyists and solo entrepreneurs who tinkered with early PC systems
to the corporate developers who managed enterprise-wide systems. This transi-
tion took place most dramatically in the 1990s, as the PC industry expanded and
became an undeniable force in the U.S. economy. In this context, the leaders of the
learn-to-program movement devoted their energies to teaching the corporate man-
ifestations of popular programming products, including Borland Turbo Pascal, the
Windows Software Development Kit, and Microsoft Visual Studio. Each productwas
carefully positioned in the marketplace and offered as a “solution” that would help
aspiring commercial developers to build successful applications.

40. John Connell, Beginning Visual Basic 6 Database Programming (Birmingham, UK: Wrox Press,
1998), back cover copy.

11.7 Commercialization 355

During this transition, the rudimentary interpreters and compilers of the
1970s and 1980s (“Tiny BASIC” and “Tiny C”) were replaced by development
suites with enticing features, menu-driven IDEs, tools for the major plat-
forms, and reusable code for enterprise developers. To respond to this com-
plexity, authors and publishers developed a scaffolded approach to intro-
ducing programming skills, publishing numerous books and articles to help
aspiring programmers learn the skills they needed for commercial devel-
opment. The era’s engineers and decision makers also had access to com-
mercial computing trade shows, which mixed members of the business and
technical communities with journalists, industry luminaries, and members
of the general public. Learning to program went hand in hand with the
vitalities and agendas of American consumerism.

In the Afterword, I'll conclude Code Nation with a look at how the Internet has
impacted computer programming and technical publishing in the U.S. I'll summa-
rize how new computer programmers learned to program on the World Wide Web,
and contrast web-based learning strategies with print-based methods. The After-
word also serves as a summary and conclusion for Code Nation. I'll review the tra-
jectory of the learn-to-program movement and its significance in American culture,
past and present, including a look at modern expressions of the movement’s ideals.

Afterword: Programming in the
Internet Age

“Computers can be the technical foundation of a new and dramatically enhanced
literacy, which will act in many ways like current literacy and which will have
penetration and depth of influence comparable to what we have already experienced
in coming to achieve a mass, text-based society.”

Andrea A. diSessa, Changing Minds: Computers, Learning, and Literacy (2001)

“It doesn’t matter to what degree an individual learns to code, that knowledge does
not need to lead to professional programming. The goal is for the general population to
pierce the computing veil to demystify algorithms; to know that code has biases, that
programs are written by human beings and can be changed by human beings...”

Ellen Ullman, Life in Code (2017)

Code Nation has examined the rise of computer programming and the social, tech-
nical, and commercial worldviews that coalesced to form a new type of computing
culture in America. A central part of this story is the learn-to-program movement,
which germinated in government and university labs during the 1950s, gained
momentum through counterculture experiments in the early 1970s, became a
broad-based literacy movementin the late 1970s and 1980s, and was transformed by
commercialization in the 1990s and 2000s. The learn-to-program movement sought
to make computers more understandable, imprint useful technical skills, estab-
lish shared values, and offer economic opportunities for computing enthusiasts.
The movement also supported user communities, schools, and emerging indus-
tries, many of which benefited greatly from the utility provided by digital electronic
computers.

The scope of the learn-to-program movement can be measured in a variety of
ways. One outcome was a dramatic increase in the number of professional coders
who could design, create, and maintain software. In 1957, there were approximately

358 Afterword: Programming in the Internet Age

15,000 programmers employed in the U.S., a figure that accounts for approximately
80% of the world’s developers. By 2003, there were approximately 1.6 million
professional programmers, computer scientists, and systems analysists registered
in the U.S. workforce. Since that time, software creation has become a global phe-
nomenon, with millions of people learning to write computer programs in a variety
of contexts. For example, in 2014, there were approximately 18.5 million software
developers in the world, of which 11 million can be classified as professional pro-
grammers and 7.5 million as hobbyists. Thanks to schools, coding boot camps, and
robust non-profit organizations, these numbers increase daily. So, too, are warn-
ings that if a person does not heed the call to “learn coding now,” they will miss
something of what the global digital economy has to offer.

Despite a shared exposure to computational thinking, programming has also
changed as an intellectual activity. In the 1950s and 1960s, the first program-
mers were involved with building and maintaining military systems, designing
algorithms for scientific research, tracking census data, and implementing data-
processing schemes for agencies and corporations. Today’s software developers
are involved with an even wider range of activities, including consumer soft-
ware, scientific research, video game programming, artificial intelligence, infor-
mation publishing, digital communication, data mining, education, art, music,
streaming services, gambling, medicine, sports, and myriad undertakings that
require the intensive use of computers. Many programmers create or maintain
software as part of their regular employment, while others write code for vol-
unteer organizations, recreation, school work, or as an aspect of their personal
development.

Programming personal computers (PCs) was not a radically new activity. As
many scholars have noted, before microcomputers and PCs there were power-
ful mainframe and minicomputer systems that offered software developers a rich
digital experience coding in assembly language, FORTRAN, BASIC, C, and other
languages. However, the development of PCs did allow for the rapid deployment
of new commercial platforms, which quickly grew in power and sophistication
in the 1980s and 1990s. The commercial “PC Revolution” began with the Tandy
TRS-80 (1977), the Apple II (1977), the IBM PC (1981), and the IBM PC XT (1983).
Soon more advanced systems appeared in the marketplace such as the IBM PC
AT (1984), the Apple Macintosh (1984), and powerful “clone” systems that fea-
tured Intel 80386 and Intel 80486 microprocessors. These devices contributed to
the proliferation of PC-based communities that shared source code, bought soft-
ware and peripherals, read computer books, and met together in user groups
and at trade shows. The result was a collection of commercially viable platforms
built around hardware brands, software, operating systems, product marketing,

Computing Mythologies 359

and dedicated user communities. Among the platforms that emerged, this book
focuses on the MS-DOS, Microsoft Windows, and Macintosh platforms. I have also
indicated points of intersection with other important user groups and technolo-
gies, including CP/M, OS/2, Unix/Xenix, and early time-sharing systems.

Computing Mythologies

Code Nation draws attention to four foundation mythologies that took shape in the
early computer industry and subsequently influenced the learn-to-program move-
ment. Computing mythologies are socially-constructed memories that can carry
important historical and cultural information. They also act as social markers,
transmitting ideas, beliefs, and worldviews to the members of a movement and
future generations. First, the myth of ongoing “crisis” in the computer industry
related to the complexity of software systems has led to regular calls for the intro-
duction of software engineering techniques and tighter control over programming
practices. This crisis-mentality first appeared in the 1960s, and it was revisited
during the shift to graphical user interface (GUI) programming and enterprise com-
puting in the second and third phases of PC development. A second myth is a
popular narrative about rejecting corporate and military tendencies in computing
and embracing a democratizing, countercultural ethos regarding convivial tools
and technology. This myth took shape alongside anti-war protests in the 1960s,
and it continued with calls to put computers in the hands of regular people. Stew-
art Brand, Ted Nelson, Robert Albrecht, Judith Milhon, Dan Gookin, and my own
work sits in this tradition, and it is most prominently visible today in Code.org’s
Hour of Code movement.

A third computing mythology relates to the scholarly objectives of the disci-
pline of computer science, which took shape in the 1950s and 1960s in America.
Over the next decade or two, many computer professionals came to believe that
academic computer scientists were occupied primarily with theoretical problems
related to computational logic, algorithms, and engineering principles, rather than
the practical skills needed in the computer industry. For this and other reasons,
many computer professionals took jobs in software development without studying
computer science or computer engineering in college, and often missed the gains
of scholarly research produced by academics. Likewise, the programmers who have
benefited from college degree programs and theoretical research sometimes dis-
parage those who were not so fortunate, deepening fissures that separate academia,
industry, and various self-taught communities. Grace Murray Hopper spoke about
this in 1978 when she said, “By and large, the people concerned with the large
computers have totally ignored the so-called hobbyist community, though I would

360 Afterword: Programming in the Internet Age

point out they are not a hobbyist community: they are small businessmen, doctors,
lawyers, small towns, counties! They are a very worthwhile audience.”?

Fourth, there are several mythologies related to what is often called “the PC Rev-
olution,” a phrase that captures much of the excitement surrounding the creation
of the first microcomputers and PCs in the 1970s and 1980s. This term draws atten-
tion to vital energies in American capitalism and the computer industry, but it also
lionizes the experience of PC users and entrepreneurs over professionals working
in other areas of digital computing. I have tried to minimize this rhetoric and the
role of “founding biographies” in this book, while also appreciating the impor-
tant ways that personal computing has contributed to the formation of American
programming culture and the software industry.

To these sustaining computer myths, which shaped and influenced the learn-to-
program movement, I would like to add a fifth that came into view by the 1990s—a
belief that personal computing has become one of the premier engines of capital-
ism in the U.S. economy, a vital source of innovation and creativity that is linked to
what some call the “American Project” and popular understandings of the American
Dream. The economic piece of this myth can be appreciated through a few financial
milestones. By the late-1990s, the PC software industry finally surpassed the cor-
porate/mainframe software services industry in the U.S. in terms of revenue. This
achievement provided important evidence that PC software was lucrative and soon
to become a global phenomenon. By 2003, the shrink-wrapped software industry
produced revenues of $178 billion, and there were more than 10,000 businesses in
America creating specialized software applications. Commercial trade shows like
COMDEX and Macworld Expo offered tantalizing glimpses of these new products,
and software evangelists advertised the emerging platforms with the fervor of mis-
sionaries, spreading the “good news” and attracting new “converts.” Americans
poured their hopes and dreams into software and its promise of a better world
through productivity and connectivity.

Each of these computing mythologies is a partial truth, of course, a form of
national dreaming about technology and capitalism that glorifies the software
creation process and which has been used to push forward the nation’s shared
technical identity. Structurally, computerization movements require ideologies of
this type to sustain the movement when the road ahead becomes difficult or
unclear. Computer pioneers like Grace Hopper, Ted Nelson, Alan Perlis, Seymour
Papert, and Bill Gates regularly provided glimpses of these mythologies to keep the

1. Grace Murray Hopper, “Keynote Address,” ACM History of Programming Languages Conference,
June 1, 1978, in History of Programming Languages, ed. Richard L. Wexelblat (New York: Academic
Press, 1981), 22.

The Commercial Internet 361

learn-to-program movement on track.? Through writing and creative activity, they
sketched a new world order that might come into view when the rhythms of com-
putational thought were more deeply infused in American life. Motivated by these
ideas, scores of talented programmers, teachers, authors, and entrepreneurs intro-
duced programming concepts to the masses, sharing with them the utopian ideal
about personal computing.

The Commercial Internet

Of course, sometimes computer visionaries made mistakes. Somewhat famously,
Bill Gates and the majority of his peers in the PC industry underestimated the sig-
nificance of the commercial Internet when it arrived in the early 1990s. How did
this happen? The following section summarizes the technical underpinnings of the
commercial Internet and its impact on programming practices and the learn-to-
program movement.

Connecting PCs in a significant way over phone lines began with bulletin board
systems (BBSs) in the early 1980s, which utilized dial-up message boards, server
software, and commercially available modems. These interesting systems attracted
advanced users and sometimes hackers (see Chapter 7), but BBS culture was
not seen as an extraordinary phenomenon in the wider world of computers. The
Advanced Research Projects Agency Network (ARPANET) had also been available in
limited ways for research and government use since the 1960s, and many corpora-
tions were experimenting with distributed computer networks as a way to exchange
information through shared digital pathways.3 By the late 1980s, most U.S. software
companies were content to network their computers internally (within an organi-
zation), while providing limited access to shared (public) networking sites in the
outside world. One exception was that consumer software companies routinely
provided phone and fax machine support for their products, as well as informa-
tion through emerging dial-up networks such as CompuServe and America Online
(AOL). These network providers offered paying customers many of the features that
would later become popular on the World Wide Web, including email, file transfer
capability, news feeds, shopping opportunities, and discussion forums. Technology

2. Bill Gates’ book, The Road Ahead, draws specifically on utopian ideals in its call to prepare for an
exciting future enhanced by computer programs and Internet-related technologies. See Bill Gates,
The Road Ahead (New York: Viking/Penguin, 1995; rev. ed., 1996). A similar book, highlighting the
importance of e-commerce and corporate decision making, is Bill Gates, Business @ the Speed of
Thought: Using a Digital Nervous System (New York: Viking/Penguin, 1999).

3. Foran excellent summary of early distributed networking technologies and their use, see Andrew
S. Tanenbaum, Computer Networks (Englewood Cliffs, NJ: Prentice-Hall, 1981).

362 Afterword: Programming in the Internet Age

Figure A-1 Ed Krol’s The Whole Internet User’s Guide and Catalog (1992) was one of the first trade
books to sample the networking tools and utilities available on the Internet. It was pub-
lished just before the commercial “Internet Revolution” took place. (Image courtesy of
O’Reilly Media, Inc)

companies also hoped to use these services as a way to offload some of the prod-
uct support calls that they were receiving as customer bases grew in the late 1980s
and early 1990s. However, the services were not available in all locations and they
typically involved long distance calls and monthly fees.

Fascinatingly, the emerging Internet was not seen as a revolutionary technology
for the masses, even months before its commercial introduction in the U.S. A pio-
neering computer book that explored this nascent online world was Ed Krol’s The
Whole Internet User’s Guide and Catalog (1992).% (See Figure A-1.) Krol’s reference
was situated in the tradition of The Whole Earth Catalog, but the computer book
did not adopt the oversized layout of Stewart Brand’s counterculture compendium
(see Figure 2.5). In fact, this technical book was mostly pitched for power users
and advanced hobbyists, who O’Reilly believed might appreciate a survey of dial-up
tools including Telnet, Ftp, Gopher, and USENET. An important observation that

4.EdKrol, The Whole Internet User’s Guide and Catalog (Sebastopol, CA: O'Reilly & Associates, 1992).

The Commercial Internet 363

the book made was that there was not one networking system to learn on the Inter-
net, but several. Most of these programs were command-line oriented and cryptic in
their presentation. A telling section title in the book, “What if I don’t know UNIX?”
seemed to address common fears about getting started with this online world and
its illusive protocols.®

As many know, the consumer “Internet Revolution” gradually arrived over the
nextyear or two. The Mosaic web browser was released in 1993, followed by Netscape
Navigatorin 1994. These software applications put a GUI on the cryptic format of the
Internet and popularized its use via the World Wide Web. These programs allowed
customers to move through an exciting world of images and digital texts using a
mouse-based, point-and-clickinterface. Although Netscape Navigator did not gain a
significant market share until 1996, Bill Gates and his Microsoft colleagues had seen
enough. In May 1995, Gates circulated the famous “Internet Tidal Wave” memo at
Microsoft, directing the company to pivot rapidly to Internet-based technologies
and products. Microsoft released Internet Explorer and Microsoft Network later
that year, and by the mid-1990s there were numerous Internet-based browsers and
networking systems in the PC marketplace. From an economic point of view, the
mid-1990s initiated a new phase in the computer industry in which Internet-based
products and services struggled for dominance with traditional goods and services,
often disrupting traditional industries.

For computer programmers, the commercial Internet brought many changes
because application development for web browsers was significantly different than
creating programs for MS-DOS, Windows, or Mac OS. To make an application mini-
mally web-aware, a first step might be to give users the ability to download files from
aweb server to a client computer. A server is a computer running on the Internet that
maintains or hosts aweb page and other Internet services. A client isa computer with
access to the Internet that requests information from a server using various proto-
cols. Client requests for information might originate from a web browser program
or service, or from an application written in C, Visual Basic, Java, or another lan-
guage. A Visual Basic programming book that tried to present this evolving world
to intermediate-level programmers was Carl Franklin’s Visual Basic 4.0 Internet Pro-
gramming, published by John Wiley & Sons in 1996.° This type of Web programming
bookwas very hard to write and revise because the underlying technologies changed
so dramatically from one version the next. (For example, an author needed to track
changes to the web browser software, the Visual Basic compiler and IDE, and the
host operating system.)

5.Krol, The Whole Internet User’s Guide, 5.
6. Carl Franklin, Visual Basic 4.0 Internet Programming (New York: John Wiley & Sons, 1996).

364 Afterword: Programming in the Internet Age

A more sophisticated Internet application could be written using hypertext
markup language (HTML), a system of formatting codes for presenting informa-
tion that virtually all web browsers could process and display. Internet applications
resided in a variety of locations. For example, an application might reside on a
web server and be launched from a web browser. Or, an application might run in
alocal web browser, using resources entirely from a user’s computer, but occasion-
ally gathering information from the Internet as it completed its work. Either way,
Internet-aware applications needed to be adept at communicating back and forth
with Internet-based computers; they needed to be proficient at managing data (so
that information was not lost during transactions); and they needed to functionon a
variety of web browsers. The makers of PC programming systems needed to update
their development tools accordingly, providing these features to commercial and
hobbyist developers who wanted to expand their work to Internet-based contexts.

Sun Microsystems addressed the challenge of client/server development by
releasing the Java programming language in 1995, which addressed some of the
opportunities of the new Internet platform. Like C++ and Smalltalk, Java was class-
based and object oriented, and it could be used as a general-purpose program-
ming language to create software for a variety of tasks. However, the language was
also designed to minimize implementation dependencies, so that developers could
“write once, run anywhere.” If Java programs were constructed carefully, software
developers could move their modules from one platform to the next without rewrit-
ing or recompiling the code. Although Java had many possible applications, the
language became especially popular for designing server-side (back end) Internet
applications.

On the client side (or front end), the JavaScript language from Netscape
Communications became a popular programming tool for creating interactive
web pages. JavaScript was also released in 1995, and it had some similarities to Java,
including its support for the event-driven, object-oriented programming paradigm.
However, JavaScript programs were designed to be run inside a web browser that
supported JavaScript features. Looked at comprehensively, client-side develop-
ment required three essential web technologies: HTML, to specify the content of
web pages; cascading style sheets (CSS), to define how the web pages are presented;
and JavaScript, to define the behavior of web pages. If the web developer so desired,
they could use a competing scripting language in place of JavaScript.

Microsoft responded to the challenge of developing Internet-based applications
by releasing Microsoft Visual Studio 97, which represented the company’s first
effort to provide comprehensive tools for the PC platform that included web tech-
nologies. This suite provided integrated support for deploying client/server applica-
tions on the web, as well as the “traditional” PC platforms of MS-DOS, Windows, and

Disruption 365

Windows NT. When the company released Visual Basic 6.0 in 1998, the product also
included support for dynamic hypertext markup language (DHTML), an Internet
technology based on the Microsoft component object model (COM) specification
and guidance from the World Wide Web Consortium. This allowed Visual Basic
applications to run on the Internet and run inside web browsers, although only
a subset of Visual Basic features was allowed for Internet applications. To create
the web applications inside Visual Studio, programmers needed to use the DHTML
Page Designer and a new set of Toolbox controls.”

In summary, it became obvious that a new set of complexities awaited PC pro-
grammers who hoped to create Internet-based applications in the late 1990s. The
reality was that many organizations chose to support multiple platforms in their
future development work, supporting web-based and PC-based applications at the
same time. The programming tools did not always make it easy to port an applica-
tion from one platform to the next. However, computer book authors and magazine
columnists responded again to the challenge, and they produced dozens of inter-
esting programming titles on HTML, XML, Java, JavaScript, C#, and Visual Basic.
Listing them here goes beyond the scope of this book.

It seemed like the complexities of the Internet might be managed through the
current teaching and learning infrastructure in the computer publishing industry.
By the early 2000s, though, something had changed in the publishing business.

Disruption
The early 21 century was not kind to computer book and magazine publishers.
Between 2000 and 2010, the book and magazine industries declined drastically in
terms of units and revenue, and many publishers simply went out of business. The
problem was not a shortage of new programmers to instruct—the software indus-
try continued to expand and flourish, and the momentum was extended by new
user products including tablets, MP3 players, and smart phones. Rather, the issue
was that computer book and magazine publishing went through the same grind-
ing transformation that most traditional media did when the commercial Internet
arrived. Telephone, television, radio, film, and print media—all were impacted in
similar ways when the Internet widened information flows, fractured traditional
monopolies, changed cost structures, and brought forward new products.
Computer book publishing dropped dramatically in 2001, when the overall rev-
enue for technical books published in the U.S. declined by almost 20% in a year and

7. For a walk-through of the steps involved, see Michael Halvorson, Microsoft Visual Basic 6.0 Step
by Step Professional (Redmond, WA: Microsoft Press, 1998), 507-28.

366 Afterword: Programming in the Internet Age

continued to fall. Reflecting on the turbulence, Mike Hendrickson, Associate Pub-
lisher of O’Reilly Media, wrote: “The computer book market cratered in 2001 [in
the U.S.], shrinking twenty percent a year for three years until it stabilized in 2004
at about half the size that it was in 2000.”8 The market recovered a little in 2005
and 2006, only to begin another decline, so that by 2008, the market was about 25%
smaller than it had been in 2004.

The long-term trend was clear—computer book and magazine publishing was
no longer the growth engine that it had been in the U.S. economy; rather, the mar-
kets were shrinking fast. Although there were still thousands of computer books in
print, the overall market for technical books would soon be just 10%-20% of what it
hadbeenin the late 1990s. Numerous computer magazines also ceased publication,
or shifted to online editions that had much smaller user bases. The crisis brought
mergers, downsizing, the departure of big-name authors, and the collapse of several
bookstore chains. An earlyvictim of the restructuring was Borders Group Inc.,which
went out of business in 2012. Borders had been a successful book retailer in the U.S.
with bookstores in shopping malls throughout the country. But the company could
not compete with Amazon.com and other Internet retailers, which offered lower
prices and a huge selection of online products.

How did successful book publishers adapt? The companies that did not close
experimented with mergers and strategic partnerships to keep revenues up and they
tried to increase their market share. (Although the publishing pie was shrinking,
publishers hoped to gain bigger slices of the remaining pie by merging, prepar-
ing for the day when sales volumes might return.) For example, Pearson acquired
Peachpit Press and Sams, and Wiley acquired Sybex, Wrox Press, and the For Dum-
mies series. Microsoft Press entered into a multiyear publishing arrangement with
O’Reilly Media.’

Book publishers also experimented with new methods, including e-book pub-
lishing and launching comprehensive websites. Although digital books had many
advantages (you could download them immediately and use search tools in them),
the first digital titles were relatively easy to steal or “pirate” on the Internet, and
off-shore distributors also sold many titles illegally and at rock-bottom prices. Spe-
cialty formats were soon developed that were harder to copy or download illegally,
including EPUB, Mobipocket, and iBooks. By 2010, the e-book revenues for some

8. Mike Hendrickson, State of the Computer Book Market 2008 (Sebastopol, CA: O’'Reilly Media,
2009). Available as an e-book sold through retail channels or the O’Reilly Media website, http:
//radar.oreilly.com/2009/02/state-of-the-computer-book-mar-17.html.

9. A summary of the mergers is provided by Hendrickson in State of the Computer Book Market 2011,
Part 3: The Publishers.

http://radar.oreilly.com/2009/02/state-of-the-computer-book-mar-17.html
http://radar.oreilly.com/2009/02/state-of-the-computer-book-mar-17.html

Disruption 367

of the more proactive publishers (including O’Reilly Media) were actually exceed-
ing what printed books were bringing in. Using data from Bowker research (a Pro-
Quest affiliate), Mike Hendrickson concluded that by 2011, some 20% of U.S. adults
had downloaded at least one digital book and paid for it. As the transformation
continued, customers shifted away from traditional publishers to a bevy of creative
learning resources. These included blogs, wikis, videos, online databases, subscrip-
tion sites, and custom software applications. New resources soon became avail-
able on the World Wide Web, including YouTube videos, Lynda.com tutorials, the
Khan Academy, and numerous coding boot camps. By the early 2000s, hundreds
of programmer/entrepreneurs published their own websites, blogs, and newsfeeds
about software development and how a person might learn to code. For those
who wanted programming instruction, a wealth of new resources was suddenly
available, even as the older systems sunsetted.!?

Successful corporations like Apple Computer, Microsoft, Oracle, Google, and
Amazon also joined the party. They took the lead in building corporate websites
that helped their customers learn how to develop software products. Through the
Microsoft Developer Network (MSDN), for example, Microsoft provided training
and support for new and experienced programmers through web pages, forums,
and information hubs for individual products. Microsoft customers were able to
download software, get product support, and complete a selection of online tuto-
rials related to programming. Within the forums, it was also possible to receive
“recognition points” or “achievement medals” for posting advice and offering sup-
port to fellow users. In the 2000s, several companies developed these point systems
to motivate programmers to answer questions and provide a peer perspective on
how to solve problems.

The employees of software companies also took a more visible role in product
forums, providing developer-to-developer support that complemented or took the
place of traditional primers and reference manuals. By supporting software devel-
opment tools in 24/7 online environments, the most successful software publishers
gradually adapted to the new world of global Internet connectivity. Baldur Bjarna-
son summarized the transition to Internet-based learning systems in this way:

Programmers haven’t stopped programming just because the sales of pro-
gramming books collapsed and stayed collapsed after the dot-com crash.
They haven’t just given up on their field and spent the last fifteen years play-
ing on the Xbox. The role that books played in the software industry has been

10. Baldur Bjarnason, “Bridging the Gap: Why Publishing’s Future is at Risk,” Publish-
ing Perspectives, May 8, 2014. https://publishingperspectives.com/2014/05/bridging-the-gap-why-
publishings-future-is-at-risk/. Accessed August 9, 2019.

https://publishingperspectives.com/2014/05/bridging-the-gap-why-publishings-future-is-at-risk/
https://publishingperspectives.com/2014/05/bridging-the-gap-why-publishings-future-is-at-risk/

368 Afterword: Programming in the Internet Age

supplanted by online communities and their byproducts. Sometimes those
11

byproducts are e-books. Most of the time they aren
Although a complete investigation of Internet learning systems must await further
research on the learn-to-program movement, it is clear that online learning systems
are successfully teaching many users how to design and develop their own soft-
ware. These systems fill an important need in the American economy because there
are many who cannot attend traditional college or university courses who hope to
benefit from the commercial promise of software development.

Butare there also some Internet-based programming tools designed for younger
students in schools? To answer this question, let us evaluate the Hour of Code,
a contemporary programming movement sponsored by Code.org, a not-for-profit
corporation.

Hour of Code

In December 2019, Code.org ran its annual Hour of Code programming event for
students around the world. The sessions took place during Computer Science Edu-
cation Week, held annually to celebrate the birthday of computing pioneer Admiral
Grace Murray Hopper (born December 9, 1906). As its name suggests, the Hour of
Codeis anintroductory (1 to4 hours) coding experience designed to teach the basics
of computational logic to those who have never written a computer program. The
digital courseware, typically delivered via the World Wide Web, is free to students.
The experience is designed to be hosted where teachers and mentors are present
and are able to offer additional instruction and support. The Hour of Code is also
enhanced with social media and project-sharing technology, to provide students
with encouragement, online support, and resources for future learning.

Students and teachers register for the Hour of Code in advance, and then com-
municate with participants around the globe as the lessons begin and the students
start creating projects. The first coding exercises were based on the popular Swedish
video game Minecraft (now developed by Microsoft Studios). In recent years, coding
challenges based on a range of contemporary themes have been added to the list,
including characters from the movie franchises Star Wars and Frozen. The goal of
each tutorial is to expose students to logical thinking and basic computer science
principles. Learners explore virtual spaces, gather resources, create block struc-
tures, and engage in animated activities. The connection to the Minecraft platform is
particularly effective—not only is the tutorial entertaining, but there is a significant

11. Bjarnason, “Bridging the Gap: Why Publishing’s Future is at Risk.” Blog at Publishing Perspec-
tives. May 8, 2014.

Hour of Code 369

installed base of Minecraft users in the age range targeted by Hour of Code advo-
cates. As of May 2019, over 176 million copies of Minecraft have been sold across the
world on all platforms, making it one of the best-selling video games in history.!?
When people learn to program through Minecraft situations, they already have a
head start.

Approximately 98,000 Hour of Code events were scheduled around the globe as
Computer Science week began in 2019. Code.org co-founder Hadi Partovi appeared
several times in the national media, and Apple Computer announced that its cus-
tomers could register for Hour of Code sessions for free in all Apple stores. Katy
Perry, Madonna, Keith Urban, Ciara, and other recording artists hosted “Code Your
Own Dance Party” sessions that encouraged teen and tween learners to experi-
ment with coding skills. Beyond the basics, students with more coding experience
were encouraged to design new algorithms, build graphics routines, and try their
hand atencryption. A graphics-based “Al for Oceans” module taught about machine
learning and promoted the ethical use of artificial intelligence.

How effective is the Code.org teaching initiative? In early 2019, the non-profit
announced that its network has completed over 720 million introductory program-
ming sessions in its first 5 years of operation, with 46% female and 48% underrepre-
sented minorities using the organization’s courseware.!3 At recent Code.org events,
50 U.S. states and most of the largest U.S. cities announced efforts to expand access
to computer science education.

The organization publishes a scaffolded curriculum, trains thousands of teach-
ers at workshops, and is now preparing approximately 38% of all U.S. high school
students that take the AP Computer Science Principles Exam, with a pass rate of
70%.1* The non-profit’s vision is that every student in every school should have the
opportunity to learn computer science, just like the subjects of biology, chemistry,
or algebra. The initiative is supported by leading technology companies, industry
luminaries, government officials, teachers, and millions of students. What is strik-
ing about Code.orgis its passion to teach computer programming as part of its com-
puter literacy campaign. This emphasis, using modern, globally-scaled distribution
methods, is similar in many ways to much earlier computer literacy movements.

12. Sax Persson, “Celebrating Ten Years of Minecraft,” Microsoft Corporation, May 17, 2019.
https://news.xbox.com/en-us/2019/05/17/minecraft-ten-years/. Accessed November 10, 2019.

13. Code.org defines underrepresented minorities as “students who are black / African American,
Hispanic/Latino/Latina/Latinx, Native American/Alaskan, and Native Hawaiian/Pacific Islanders.”
See “Code.org 2018 Annual Report,” February 12, 2019, 3. https://code.org/files/annual-report-
2018.pdf. Accessed August 9, 2019.

14. “Code.org 2018 Annual Report,” February 12, 2019, 9. https://code.org/files/annual-
report-2018.pdf. Accessed August 9, 2019.

https://news.xbox.com/en-us/2019/05/17/minecraft-ten-years/
https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf
https://code.org/files/annual-report-2018.pdf

370 Afterword: Programming in the Internet Age

However, the programming technology has been adapted to younger audiences, the
organization is more focused on equity and access than earlier movements, and the
learning systems have much in common with popular entertainment platforms.
In these ways, the learn-to-program movement for children reflects the ethical,
cultural, and political concerns that are ascendant in American society.

Campaigns for Computer Literacy

One of my goals in writing this book has been to elevate the importance of com-
puter literacy campaigns and to study how technical movements have sometimes
used them to promote the use of software and programming tools to the general
public. As a social historian with interests in the history of technology, business,
and education, I am curious about how America’s computer users learned to write
programs in the era of PCs, and what they did with their training and experiences.
In the 1970s, 1980s, and 1990s, the diffusion process was supported by the work
of skilled author/entrepreneurs who wrote books and magazine articles, and inter-
acted with others at trade shows and user group meetings. The leading computer
literacy advocates established technological frames (or discourses) that made com-
puter programming seem important, rewarding, and connected to the emerging
practices of digital citizenship and consumer culture in America.

As discussed in Chapter 4, the learn-to-program movement foundered in Amer-
ican schools the mid-1980s, when several influential theorists argued that learning
to code was probably less important to students than a comprehensive introduction
to computers and society. The topics they preferred included business computing,
word processing, database management, and using computers for artistic expres-
sion and research. This broad approach to computer literacy allowed districts to
pick their own areas of interest, and it prevented computer science from joining
the curriculum as an equal to biology, chemistry, physics, or algebra. In addition,
a piecemeal approach to computing probably slowed down the rate of computer
acquisition in schools. By 1995 there were approximately three computers for every
30 children in American schools, or a 10-to-1 ratio of students to computers.!>

In 2001, Berkeley education professor Andrea diSessa reviewed the state of K-12
education and argued that real progress on computational literacy could only be
made if schools lowered the student-to-computer ratio to 3-to-1.1® diSessa argued
that students needed more immersive computing experiences, and he hoped to bol-
ster the learn-to-program movement by convincing thought leaders that creating

15. AndreaA. diSessa, Changing Minds: Computers, Learning, and Literacy (Cambridge, MA: The MIT
Press, 2001), 3.

16. diSessa, Changing Minds, 4.

Campaigns for Computer Literacy 371

software was a new form of social and cultural literacy. In his influential book Chang-
ing Minds: Computers, Learning, and Literacy, diSessa suggested that programming
had the potential to boost not only a student’s intelligence but also their ability to
learn and solve problems in the future. He co-developed a programming system
called Boxer to implement this vision, which provided students with an intuitive
way to code using boxes and other visual representations.!” Boxer was built on the
Logo programming language, and it anticipated the visual programming style of
commercial products such as Borland’s Delphi and Microsoft’s Visual Basic (two
products introduced in the early 1990s). diSessa’s work was well received, and it pro-
moted a new interest in seeing programming as a way of transforming how human
beings thought and learned. The Boxer project also provides a link between Logo
and more recent visual tools designed for new programmers, such as Blocky, the
interface building component used in Hour of Code sessions.

Computer literacy movements provide an intellectual backdrop for the coding
experiences that programmers have when they are alone with a computer screen,
a keyboard, a compiler, and assorted learning materials. This is a hidden world of
coaching and experimentation, where programming authors interact with readers,
teachers work with students, and software developers exchange source code and
inspiration. One aspect of this exchange is language instruction, style, and syntax,
a few of the hallmarks of traditional programming instruction. To investigate this
world I have presented several historic computer languages and programming sys-
tems. These have included assembly language, COBOL, FORTRAN, ALGOL, Lisp,
Logo, classic BASIC, Turbo Pascal, structured BASIC, C, Forth, C++, Visual Basic, and
Java. Beyond language and compiler fundamentals, we have also investigated how
programmers think and solve problems, how they develop algorithms, how they
study and use operating systems, what they learn about computer hardware, how
they design a user interface, and how they test and distribute their solutions. There
is much more to the world of software development that has not been addressed in
this book, but which historians can access through contemporary textbooks, man-
uals, product documentation, computer periodicals, essays, and the curriculum of
schools.

While personal computing has undergone numerous transformations—from
early time-sharing systems to mail order microcomputer kits to sophisticated work-
stations and web servers—the process of learning to code has usually involved an
intimate connection between humans and their devices. This connection has been

17. The early Boxer programming environment is described in Andrea A. diSessa and Harold Abel-
son, “Boxer: A Reconstructible Computational Medium,” Communications of the ACM 29, no. 9
(1986): 859-868.

372 Afterword: Programming in the Internet Age

one of the key features of creating new software for PCs. Lee Felsenstein designed
the “Tom Swift Terminal” in 1974 to be a convivial device with replaceable compo-
nents that the home developer could build, tinker with, and modify. Dian Crayne
wrote computer games for IBM PCs in the early 1980s that carefully managed mem-
ory and hard disk resources, so that her adventure stories would not outpace the
capacities of a typical IBM PC XT. Peter Norton wrote DOS utilities that were inti-
mately connected to, and in control of, the sectors and tracks of single-sided 5.25”
floppy disks. Ray Duncan wrote MS-DOS device drivers that enabled new peripherals
towork seamlessly with IBM PCs and compatibles. Kathryn Kwinn wrote BASIC and
HPL programs that were optimized for the Hewlett-Packard 9826A/9836A systems
and its Motorola MC 68000 microprocessor. The Waite Group carefully managed
available memory and system resources in the BASIC programs they designed for
the new Apple Macintosh. The achievements of these programmers and many more
were made possible by an intimate knowledge of PC hardware and software, which
they gained through books, magazines, user group meetings, and much experimen-
tation. Having a detailed knowledge of the new platforms was a key attribute of
programming PCs, ¢. 1970-1995.

Programming in the Internet age has been characterized by new levels of
abstraction from underlying hardware and software systems. To web programmers,
it is not terribly important what the underlying computer architecture is, what the
operating system is, or how memory and system resources are assigned. To learn
the fundamentals of Internet programming in recent contexts, software develop-
ers have mastered the technologies of HTML, CSS, XML, web browser extensions,
cloud-computing services, and security best practices. The traditional program-
ming languages have also been updated so that they are object oriented, platform
independent, and implemented through a collaborative, public process. Moreover,
the software that Internet programmers create is often stored online “in the cloud”
from the beginning of a project to its completion. It only rarely makes an appear-
ance on local media such as CD-ROMs, flash drives, or hard disks. Smart phone
app development has further extended this model. Mobile computing programs
are often created and hosted in the cloud, downloaded to mobile devices via “App
stores,” and updated automatically through mobile operating systems.

Despite the differences between traditional programming and Internet pro-
gramming, however, software development can still be described fundamentally
as a process of problem solving with a computer. Programmers define a problem
for the computer to solve, write instructions in a given computer language, load
the program and its components into computer memory, run the program, correct
errors, and distribute the application or tool for others to use and learn from. The
historic context of these actions is ever changing, and so are the men and women

Campaigns for Computer Literacy 373

who choose to design and construct computer software. As we continue to expand
this digital world, and unpack its consequences, it is helpful to consider the many
approaches to creating software that have taken place in the past and continue to
evolve in the present. The learn-to-program movement and its intersection with
personal computing is a vital part of this story.

Author’s Biography

Michael J. Halvorson

Michael J. Halvorson, Ph.D., is Benson Chair of
Business and Economic History at Pacific Lutheran
University, where he teaches courses on the history of
business, computing, and technology. He has written
widely on European history, application software,
and programming personal computers, including
the popular series Microsoft Visual Basic Step by Step,
Pearson (2013). To learn more about the Code Nation
project, visit www.thiscodenation.com.

http://www.thiscodenation.com/

Index

A-0 compiler, 31, 76
Academic journals, 98, 230, 248
ACM. See Association for Computing
Machinery (ACM)
Advanced hobbyists, 236, 245-247
Advanced Mac systems, 170,200-201
Advanced MS-DOS, 258, 274-281.
See also MS-DOS—Encyclopedia,
280

Advanced 0S/2 Programming, 280, 286

Adventure games, 137-141
Ahl, David H., 19, 108, 127-135, 143,
154,231, 329-330
Al See Artificial intelligence (AI)
Albrecht, Robert, 18, 55,99-111, 193,
230, 328, 358
Algorithmic Language (ALGOL), 28,
38,51,77, 87
Algorithms, 11, 15,19, 34, 69, 70
devised seminal, 52
encryption, 223
Allen-Babcock Computing, 36, 37
Allen, Paul, 66-69, 110, 281
Altair 8800 microcomputer, 66, 67,
110,231, 275
kit, 58-59, 111
Altair BASIC, 17, 66, 110-111, 147
America Online (AOL), 188
American Dream, 6, 360

American National Standards Insti-
tute (ANSI), 292
ANSI BASIC, 113,143
ANSI C standard, 295, 298, 303
ANSL.SYS, 182, 308
American Project, 6, 360
Amiga World magazine, 233
ANSI. See American National Stan-
dards Institute (ANSI)
Antic magazine, 233
AOL. See America Online (AOL)
APIs. See Application programming
interfaces (APIs)
Apple Computer, 120,170
Apple I computer, 59, 192
Apple I computer, 59
Education Agenda, 121-123
Apple DOS, 181,276
“Apple Expo” initiative, 122
Apple ImageWriter II, 200
Apple Lisa, 309, 310
Apple Macintosh (Mac 0OS), 9, 21,
181, 188-192, 201, 227, 236,
303, 309, 346, 350. See also
MS-DOS; Windows
components, 303
operating system, 191
platform, 170,176
system, 189

Waite Group’s Macintosh Primers,
192-200
Way, 325-328
“Apple Seed” computer literacy pro-
gram, 122
Application programming interfaces
(APIs), 156
Arrays, 78, 82,140, 149, 196,273,297
Artificial intelligence (Al), 5, 87, 96,
140, 318
Assembly language, 15, 51, 64-65, 67,
73-74,98, 263,274,278, 317
primer, 159,193
routines, 68, 279
Association for Computing Machinery
(ACM), 11,28, 50-51, 65, 71,
143,231, 266
Atanasoff-Berry Computer, 71
Atarivideo computer system, 15
AUTOEXEC.BAT files, 172,179
AWK reporting tool, 180, 246

B. F. Skinner approach, 108-110
Backus, John, 78-79
Balloon help, 201
Basic combined programming lan-
guage (BCPL), 290
BASIC programmers, 127
adventure games, 137-141
David Ahl, 128-133
IBM BASICA, 135-137
innovative programming primers,
159-165
Microsoft Game Shop, 153-156
Microsoft Press and Learn BASIC
Now, 145-153
proliferation of BASICs, 134-135
structured programming, 141-145

Visual Basic for Windows,
156-159
BASIC, 52, 67, 77, 100-101, 103-108,
207, 306
ANSI BASIC, 113,143
Altair BASIC, 17, 66, 68, 110-111,
147
Basic Professional Development
System, 144,157
Classic BASIC, 134, 141-144
GW-BASIC, 136, 148
HP BASIC, 134-135
QBasic, 155-156
QuickBASIC, 144-148
QuickBASIC for the Apple Macin-
tosh, 146-148, 200
Tiny BASIC, 110-111
Turbo Basic, 144
True BASIC, 144
Structured BASIC, 134, 144-147,
164
Visual Basic for Applications,
157-158
Visual Basic for MS-DOS, 157
Visual Basic for Windows,
156-164, 348, 352-354, 363,
365
Batch files, 165
MS-DOS, 169, 182, 243
programming, 178-179, 289
Van Wolverton and, 176-183
Battle of Numbers, 131
BBN. See Bolt, Beranek and Newman
(BBN)
BBS. See Bulletin board system (BBS)
BCC. See Berkeley Computer Com-
pany (BCC)
BCPL. See Basic combined program-
ming language (BCPL)

Berkeley Computer Company (BCC),
213

Berkeley Software Distribution (BSD),
206, 216, 292

“Big bang” of software construction, 8

Black Girls Code, 14

Bolt, Beranek and Newman (BBN), 90

Borland C, 307

Boxer, 371

Borland International, 243, 270-274,
305, 314, 338, 341

Brand, Stewart, 41-47, 55-56, 90, 100,
106-107, 214, 359, 362

Brooks, Fred, 34-35, 344

BSD. See Berkeley Software Distribu-
tion (BSD)

Bulletin board system (BBS), 214

Bush, George H. W., 321, 338-339

Byte magazine, 59, 159, 201, 231, 232,
247,248,279

academic and professional
resources, 296-299

ANSI C standard, 295, 298, 303

Charles Petzold’s Programming
Windows, 306-316

for people, 299

learning C on personal comput-
ers, 293-296

Microsoft C Compiler version 5.1
software disks, 296

Microsoft C Professional Devel-
opment System, 346

Microsoft C version 5.1, 295-296

on complexity, 316-320

PC-based compilers compared,
293-296

primers, 298-299

Index 379

programming language, 51, 77,
290-293, 307, 352
Think C, 303
C compilers (Microsoft), 156, 158, 258,
278,279, 295
C for Dummies, 303-306
C Primer Plus, 299-301
C++, 165, 200, 287, 290, 294, 298, 309,
312-314, 352
CAD program. See Computer aided
design program (CAD pro-
gram)
Cannon (game object), 140
Capital Personal Computer User
Group (CPCUG), 266
CASE. See Computer-aided software
engineering (CASE)
Central processing unit (CPU), 7
Certification programs, 5, 354
CIS. See CompuServe Information Ser-
vice (CIS)
Classic BASICs, 134
COBOL, 8, 28, 51, 64, 76-78, 269-270,
320
Code Complete, 343, 345
Code.org, 14, 368-370
Codec-based digital PBX systems, 193
Coding boot camps, 5, 367
Cognitive skills, 118
COMDEX, 17, 185, 322, 328, 332-339,
351
COMDEX/Fall ’90 Program and
Exhibits Guide, 334-336, 338
“Command-line” interface, 181
COMMAND.COM, 182
Commercialization, 350-355
commercial computing trade
show movement, 322

commercial programming cul-
ture, 321
commercial-grade software, 335
Commodore PET 2001, 59
Communications of the ACM (maga-
zine), 249
Community Memory project, 57-58,
215-216
Compiler, 76
A-0 compiler, 76
C compilers (Microsoft), 156, 158,
258, 278-279, 295
high-level compilers, 76
QuickBASIC Compiler, 155
“Small C” compilers, 294
Complexity of software, 32-35
CompusServe, 188, 361
CompuServe Information Service
(CIS), 240, 361
Computational participation, 13
COMPUTe project, 113
Compute! (magazine), 154,232
Computer aided design program (CAD
program), 242
Computer games/gaming, 128, 130,
132,162, 318
Computer language, 7, 70, 352 .
See also Programming languages
Computer literacy, 19, 64,119, 190
Apple Computer’s Education
Agenda, 121-123
applications over languages,
123-125
Arthur Luehrmann and computer
literacy debate, 112-120
B. F. Skinner approach, 108-110
BASIC, 103-108
blow to movement, 120-121
in language, 117

Robert Albrecht and populariza-
tion of movement, 100-103
Tiny BASIC, 110-112
Computer magazines, 224, 250
advanced hobbyists, 245-248
collections, 229-230
letters from programming com-
munity, 235-236
magazines and popular culture of
computing, 230-235
new approaches to historical
research, 252-253
new PC users, 236-241
power users, 241-245
professional programmers,
248-251
technical information, 227
voices of technology users, 228
Computer Professionals for Social
Responsibility (CPSR), 216
Computer science, 5,49-53
Computer-aided software engineering
(CASE), 345
Computers and Electronics (magazine),
232
Computing culture, 230-234
Computing mythologies, 25
birth of computer science, 49-53
complexity of software, 32-34
computers for people, 54-57
counterculture movement, 39-44
engine of capitalism, 360
intertwingularity, 45-47
NATO Conference on Software
Engineering, 27-31
personal computing, 58-60
systems for customers, 35-38
Computing terminology, 171-172
CONFIG.SYS files, 172,179

Constructionist movement in science
education, 87
Conversational Programming System
(CPS), 37
Convivial technology, 90
Coordinate system, 196
Counterculture movement, 39-44
CP/M, 9, 22,170,193, 263, 275-276,
278,295
CPCUG. See Capital Personal Com-
puter User Group (CPCUG)
CPS. See Conversational Program-
ming System (CPS)
CPSR. See Computer Professionals for
Social Responsibility (CPSR)
CPU. See Central processing unit
(CrPU)
Crayne, Dian, 139-141, 162, 372
Creative Computing (magazine), 231,
328
cover of, 329
Creative recreation, 154
Cross-cutting social circles, 9
Cryptography, 222-224
Cultural attribute, 97
Cutler, Dave, 324
Cyberpunk Handbook, 217-221
Cyberpunks, 203, 205
culture, 217
from civil rights activist to,
211-216
Mondo 2000 and Cyberpunk
Handbook, 217-222
Cyberspace, 217
Cypherpunks, 205, 222-224

D&D player. See Dungeons and Drag-
ons player (D&D player)
Davidoff, Monte, 66-68,110

Index 381

dBASE, 143

DDE. See Dynamic data exchange
(DDE)

Debugging, 80, 89

DEC PDP-11 minicomputers, 15, 291,
293

DEC. See Digital Equipment Corpora-
tion (DEC)

Decentralized bull horn (FR-3), 55

Decision structures, 196

DECUS. See Digital Equipment Com-
puter Users’ Society (DECUS)

Delphi, 273

Denning, Peter]J., 54

Dial-up networks, 188

“Diffusion and domestication” phases
of technology adoption, 172

“Diffusion” process, 286

Digital electronic computers, 3

Digital Equipment Computer Users’
Society (DECUS), 130

Digital Equipment Corporation
(DEC), 15, 28,122,129, 291
324

Dijkstra, Edsger, 51-52, 143

diSessa, Andrea, 94, 357,370-371

“Division of labor” principle, 31

Do-it-yourself (DIY), 17

DOS for Dummies phenomenon,
183-187

DOS guru, 181, 183

“Dot-com” bubble, 339-340

“Dot-com crash” (2000), 323

Duncan, Ray, 257-258, 274-285, 372

Advanced MS-DOS, 274-281

Dungeons and Dragons player (D&D
player), 318

Dymax, 99, 102-103, 108

382

Index

Dynamic data exchange (DDE),
161-162

Echo command, 182
EDSAC. See Electronic delay stor-
age automatic calculator
(EDSAC)
Electronic delay storage automatic
calculator (EDSAC), 75
stored-program computer, 50
End-of-file marker (EOF marker), 293
Engineering movement, 19, 31, 342
ENIAC computer, 72
Enterprise computing, 20, 39, 164,
259, 352
Enterprise Development Systems, 320,
346-350
Enumeration, 297
EOF marker. See End-of-file marker
(EOF marker)
Ephemera, 21
Equity and access, 13-15, 370
ESP. See Extra-sensory perception
(ESP)
Estridge, Don, 127,135-136
Evangelism, 322
COMDEX and trade show move-
ment, 332-339
commercial development projects,
323-324
commercialization, 350-355
integrated development environ-
ments, 321-322
learn-to-program movement, 322,
325
Macintosh Way, 325-328
Professional and Enterprise
Development Systems,
346-350

software engineering for people,
342-345
trouble with self-taught program-
mers, 339-342
West Coast Computer Faire,
328-332
Event-driven programming, 157
Extra-sensory perception (ESP), 193

“Fat Mac” machine, 199

Felsenstein, Lee, 54-59, 90, 109, 121,
213-214, 219, 372

Feurzeig, Wally, 19, 64, 88-92

Findfile.bat, 182

Finkel, LeRoy, 18, 99, 102103, 105,
108-109, 330

FLOW-MATIC, 31, 76

For command, 182

Foreign language, 7

Formula translating system. See For-
mula translation (FORTRAN)

Formula translation (FORTRAN), 6-8,
18,21, 28, 49, 51, 63-64,
70, 77-82, 85-86, 93, 98
100-102, 130, 134, 138,172,
178,213, 320, 340

Forth, 191, 276, 330

FORTRAN. See Formula translation
(FORTRAN)

Foundation myths, 26

Founding memoirs, 77

Free Speech Movement, 55, 103

Gates, Bill, 16-17, 66-69, 110, 147148,
152,189, 192, 267, 281,
337-338,347-348, 360-363

getchar() function, 293

Girls Who Code, 14

“Global ready” development strategy,
347

Goffman, Ken, 213, 216-220

“Golden age” of corporate computing,
3

Gookin, Dan, 150, 169, 181-186,
303-306, 337,359

GoTo statements, 143, 182

Graphical operating systems, 287, 289

Graphical user interface (GUI), 27,
157,176, 258, 302, 317, 325

Graphics, 196

GUL. See Graphical user interface
(GUI)

Hackers, 171, 203, 205-206. See also
Cryptography
Bill Landreth and 1980s Hacker
Culture, 206-211
Hacking, 206
Halvorson, Kim, 335
Hejlsberg, Anders, 270-274
Hewlett-Packard (HP), 134, 174
HP BASIC, 135
Hewlett-Packard Journal, 231
Hidden Genius Project, The, 14
High Frontiers magazine, 216
High-level compilers, 76
High-level languages, 65, 74-78
Holmes, Dean, 337
Home Mac users, 200
Hopper, Grace Murray, 30-31, 72-73,
75-76, 359-360, 368
Hour of Code, 5, 368-370
HP. See Hewlett-Packard (HP)
Human-computer interaction, 5
HyperCard, 201, 340
Hypertext, 45
Hypothetical machine, 84

IBM, 141,170

Index 383

BASICA, 135-137
Personal Computer, 209
System/360, 31
IBM PCs, 259
AT, 268, 309
PS/2 Model 90, 174
with Peter Norton, 262-270
XT, 261, 266
XT Model 5160, 265
XT motherboard, 265
IDC. See International Data Corpora-
tion (IDC)
Ideological beliefs, 25
IDEs. See Integrated development
environments (IDEs)
IDG. See International Data Group
(IDG)
If statement, 182,293
IF...THEN statement, 197
Individualized computing, 45
Industry journals, 230
Infants school, 90
Information technology, 5, 13,125,
127,211, 238, 320, 324
Initial public offering (IPO), 270
Innovative programming primers,
159-165
Integrated circuit technology, 37, 108
Integrated development environ-
ments (IDEs), 31, 65, 134,
137,271,295, 321
Integrated development suites, 347
Intel 8080 microprocessor, 67
Internal Translator (IT), 38
International Data Corporation (IDC),
173
International Data Group (IDG), 181
International Standards Organization
(ISO), 297

384

Index

Internet information hubs, 229

Internet-based data sharing, 188

Intertwingularity, 45-48

Intravenous drips (IV drips), 276

IPO. See Initial public offering (IPO)

ISO. See International Standards Orga-
nization (ISO)

IT. See Internal Translator (IT)

IV drips. See Intravenous drips (IV
drips)

Java, 65, 200, 298-299, 340, 348,
364-365

JavaScript, 364-365

Jet Propulsion Laboratory (JPL), 262

Jobs, Steve, 51, 55, 59-60, 122, 189-190,
192,262, 327fn, 329

K-12 curriculum, 119

Kahn, Philippe, 270-271, 338

Kawasaki, Guy, 322, 325-327

Kelley, Al, 297-298

Kennedy, Alison Bailey, 205, 218-219

Kemeny, John, 57, 67-68,101, 104,
112-113,131, 143

Kernighan, Brian W., 19, 151, 289,
292-293, 294, 296-298, 301,
313-314, 352

Kildall, Gary, 275

Knuth, Donald, 19, 74, 275, 301, 344

Kurtz, Thomas, 57, 67-68, 101, 104,
112-113, 143

Kwinn, Kathryn, 135, 372

Lafore, Robert, 193, 196, 278
LaMothe, André , 318-319
Lampson, Butler W., 123-124, 213
Landreth, Bill, 205-211
and 1980s Hacker Culture,
206-211

Language syntax, 70
LaserWriter IINT, 200
Learn BASIC Now, 145-153
“Learn by doing” approach, 161
Learn C Now (Hansen), 302
Learn-to-program movement, 5-6, 10,
13,17, 25, 64-65, 75,98, 103
125, 325, 333
Learning process, 93
Libes, Lennie, 323
Libes, Sol, 323
LINE (draw line) statement, 196-197
Lisp, 90, 130, 191, 330
Logo, 95-98
design by Cynthia Solomon,
92-93
design by Seymour Papert, 87-92
as Model for Code Nation, 93-95
programming system, 19, 97
teaching materials, 94
Loops, 196
Low-level languages, 65
Lu, Cary, 188-192
Luehrmann, Arthur, 19, 112-121, 130,
134, 190, 305
Lynda courseware, 5

MacAnimate, 198

Machine language, 31, 65, 73-74

Macinations, 197

Macworld (magazine), 232, 239-241,
250

Macworld Expo, 17,185, 351

Magee Jr., Dail, 17, 147, 150-151

Management information system
(MIS), 341

Marginalization, 206

Masculinization, 29

MASM. See Microsoft Macro Assem-
bler (MASM)

Massachusetts Institute of Technol-
ogy (MIT), 19, 49

Master C software, 302

Maturing Mac Platform, 200-203

McConnell, Steve, 342-345

McCracken, Daniel, 83-86, 213,
272-273

MCP. See Microsoft Certified Profes-
sional (MCP)

MCSD. See Microsoft Certified Solu-
tions Developer (MCSD)

MCSE. See Microsoft Certified Sys-
tems Engineer (MCSE)

Message-driven architecture, 313

MFU. See Midpeninsula Free Univer-
sity (MFU)

Microsoft BASIC, 135-136

Microsoft BASIC 2.0, 195-196

Microsoft Certified Professional
(MCP), 354

Microsoft Certified Solutions Devel-
oper (MCSD), 354

Microsoft Certified Systems Engineer
(MCSE), 354

Microsoft Corporation, 16

Microsoft Developer Network Library
(MSDN), 348

Microsoft DreamSpark, 163

Microsoft Excel, 237

Microsoft Game Shop, 153-156

Microsoft Knowledgebase articles,
151

Microsoft Macro Assembler (MASM),
74,278

MASM 5.1 Programmer’s Guide,

280

Microsoft Office, 324

Index 385

Microsoft Press, 17,128, 145-153
Microsoft QuickBASIC Interpreter,
146-147
Microsoft SQL Server 6.5, 349
Microsoft Transaction Server 1.0, 349
Microsoft Visual Basic, 17,156
Microsoft Visual Basic 1.0, 157
Microsoft Visual Basic 3.0, 159
Microsoft Visual Modeler, 349
Microsoft Visual Studio, 17, 307, 354
Microsoft Visual Studio 6.0 Enter-
prise Edition, 350
Microsoft Visual Studio 97 Enter-
prise Edition, 347, 349
Microsoft Visual Studio 97 Profes-
sional Edition, 347-348
Microsoft Windows, 9, 21
NT Server, 317, 324, 349-351
version 1.0, 16, 309-311
version 2.0, 306
version 3.0, 175-176, 238-239,
242,307, 337
version 3.1, 161,176, 311-317,
324, 354
Windows 95, 161, 164, 350
Windows Millennium Edition,
311
Microsoft Word, 16,157, 180, 237,
282, 324, 335
Midpeninsula Free University (MFU),
102-103
Milhon, Judith [“St. Jude”], 211-217
219-221,222-224
Minsky, Marvin, 87
MIS. See Management information
system (MIS)
MIT. See Massachusetts Institute of
Technology (MIT)
Mitchell, Grace E., 81-83

386

Index

MITS Altair 8800. See Altair 8800
microcomputer
Modula-2, 191
Mondo 2000 magazine, 212,217-222
“Mother of All Demos” exhibition, 44
MOUSE function, 197
MS-DOS, 9, 21, 155, 170, 172-187,
227,234, 257-259, 263-268,
274-286, 301, 309, 311. See
also Windows
Borland’s Turbo Pascal, 270-274
commands, 180
commercial applications and
operating system, 257
Encyclopedia, 281-283
Inside the IBM PC with Peter
Norton, 262-270
MS-DOS 2.0, 265
MS-DOS 5.0, 174-175, 234
new platforms for commercial
software, 259-261
Ray Duncan’s Advanced MS-DOS,
274-281
sample code, 283-285
technology diffusion, 285-287
MSDN. See Microsoft Developer Net-
work Library (MSDN)
Multitasking, 38, 201

Nagel, Bart, 218-220

Native Girls Code, 14

Nelson, Ted, 3-4, 7, 45-51, 55-56, 106,
148

New Communalists, 41-42

Nintendo 64 (1996), 318

North Atlantic Treaty Organization
(NATO), 27-32

Norton Commander (Socha), 267

Norton, Peter, 51, 157-158, 262-270,
285-286, 372
IBM PC with, 262-270
Not-for-profit organizations, 14
Novice computer programmers, 109

Object linking and embedding inte-
gration (OLE integration),
161

Object-based programming, 312-313

OEMs. See Original equipment manu-
facturers (OEMs)

“Off the shelf” approach, 135

OLE integration. See Object linking
and embedding integration
(OLE integration)

OpenVMS, 181, 309, 324

Operating systems, 324, 350

Original equipment manufacturers
(OEMs), 38, 136

0S/2,280-281

0S-9, 295

08/360, 34,37, 344

Osterman, Larry, 285

Pacific Lutheran University (PLU), 15
Papert, Seymour, 19, 63, 87-98, 190
Parameters in DOS documentation,
180
Parsers, 139
Pascal, 7, 15,19, 51, 77-78, 88, 100,
135,147,152, 165,172,182,
200, 236, 266, 269
Apple Pascal, 120-121
Turbo Pascal, 270-274
UCSD Pascal, 190, 271
Pause command, 182
PC Magazine, 235
PC Revolution, 27, 54, 59, 350

PC/Computing magazine, 235, 238
PC-DOS, 136, 170, 278
PCC. See People’s Computer Company
(PCQ)
PCC Newsletter,111-112
PCs. See Personal computers
PDC. See Professional Developers
Conference (PDC)
PDP-10, 68
PDP-11, 15,245,291, 293
People’s Computer Company (PCC),
99-100, 230, 328
Performance objectives, 118
Perlis, Alan, 36, 38, 50, 87, 360
Personal computers (PCs), 3,27, 59,
63,110,127, 194-195, 205,
228, 258, 289, 322
clones, 172
economic impact, 187-188
learning C on, 293-296
platforms, 169-170
tinkering with, 174-176
Personal computing, 19-23, 45, 58-61
Personal Computing (magazine), 232
Personal connections, 15-17
Personality-driven primer, 128
Petzold, Charles, 150, 280-281, 289,
306-319, 337
Programming Windows, 306-316
PGW. See Publisher’s Group West
(PGW)
Phreakers, 205
Piagetian learning styles, 92
Pixel set command (PSET command),
196-197
Pixels, 196
PLU. See Pacific Lutheran University
(PLU)
Pohl, Ira, 297-299

Index 387

Pong and Missile Command, 15
Popular Computing (magazine), 232
Popular Electronics, 231
Popularization of movement, Robert
Albrecht and, 100-103
Pournelle, Jerry, 141,147-148,247
Power users, 171, 180, 241-245
“Pre-programming” tasks, 89
Primary schools, 90
Problem solving and coding, 118-119
Professional
and commercial programming
practices, 19
organizations, 50
programmers, 248-251
Professional Developers Conference
(PDC), 347
Professional Development Systems,
346-350
Program instructions, 73
Programmer/educators, 10
Programming, 3, 69. See also C; C++
American school children exper-
iment with computer pro-
gramming, 4
culture, 5-6
equity and access, 13-15
learning language, 7-8
manifestos of movement, 17-19
middle school student learns
computational thinking, 11
new history of personal comput-
ing, 19-23
new ways of thinking, 8-13
personal connections, 15-17
skills, 127,179
Programming primers, 53, 64, 93,94,
98,103,273, 296, 352
C, 298,299

388

Index

for FORTRAN, 18

innovative, 159, 165

Wrox, 353
Programming Windows, 306-316
Prosise, Jeff, 174,308, 317
PSET command. See Pixel set com-

mand (PSET command)

Pseudocode, 198
Publisher’s Group West (PGW), 301

QBasic Interpreter, 174
QBlocks, 154

QSpace program, 154

Quest, 139

QuickBASIC Compiler, 155
QuickBASIC Interpreter, 153
QuickBASIC version 4.5, 148

RAD. See Rapid application develop-
ment (RAD)

Random access memory (RAM), 172

Rapid application development
(RAD), 127

Read-only memory (ROM), 260

Real-world computer systems, 34

Reality Hackers magazine, 216

Rem command, 182

Richter, Jeffrey, 308,317

Ritchie, Dennis, 19,151, 289-298, 301,
304, 313-314, 352

Rocket, 131

ROM. See Read-only memory (ROM)

Roszak, Theodore, 39-40, 96

Rygmyr, David, 17, 146-151, 156, 200,
283

Sammet, Jean, 70, 85

Santa Cruz Operation (SCO), 247
School’s time-sharing system, 101
Science Committee of NATO, 29

Science, technology, engineering and
mathematics (STEM), 117
Scientific Data Systems (SDS), 37-38
Scientific literacy, 119
SCO. See Santa Cruz Operation (SCO)
Scripting protocol, 299
SDKs. See Software development kits
(SDKs)
SDS. See Scientific Data Systems (SDS)
“Second-generation” BASIC, 134
Self-referential structures, 297
Self-test questions, 109
Seybold Report, The, 234
SHAFT. See Society to Help Abolish
FORTRAN Teaching (SHAFT)
Sheppard, Megan, 17,147, 149-151
SIGs. See Special interest group meet-
ings (SIGs)
“Small C” compilers, 294
Socha, John, 267-268
Society to Help Abolish FORTRAN
Teaching (SHAFT), 101
Softalk magazine, 122
Software
crisis, 28
developers, 12-13
development process, 345
evangelism, 326
release, 33
Software development kits (SDKs),
250, 305, 346
Software engineering, 5, 28, 30-31
for people, 342-345
Sol-20, 59
Solomon, Cynthia, 92-93
Sony PlayStation (1994), 318
Spaghetti code, 143-144
Special interest group meetings
(SIGs), 227

Statement syntax, 81
Steam-powered technologies, 5
STEM. See Science, technology, engi-
neering and mathematics
(STEM)
Stonesifer, Patty, 152-153
Strategic Defense Initiative, 216
Street BASIC, 143
Strings, 196
Structured BASIC, 134
Structured programming, 31, 141-145
Subprograms, 199
Subroutines, 196
Super video graphics array (SVGA), 174
Supercharging MS-DOS, 181-183
SVGA. See Super video graphics array
(SVGA)
System
complexity, 33
for customers, 35-39
system-level control, 341

“Talking mathematics”, 90

Tandy TRS-80 microcomputer, 15, 59,
207,259

TRS-80 Model I, 206-207

Teamwork, 69

Technical community, 164

Technocracy, 40

Technological enthusiasm, 6

Technology diffusion, 285-287

Tektronix, Inc., 113

TELCOMP computer language, 91

Teletypewriters, 105

Terminate and stay resident (TSRs),
242

Testing, 89

The Norton Utilities version 1.0, 264

The Norton Utilities version 2.0, 265

Index 389

Thompson, Ken, 85, 290-291
Time, 217
Time-Shared BASIC, 134
time-sharing, 37
Tinkerer, 171-172
Tinkering, 172
with personal computers, 174-176
Tiny BASIC, 110-112, 294
Tom Swift Terminal, 58
Toolbox, 157
Tower of Babel, 70-75
Trade magazines, 230
Trailing parameter, 180
TSRs. See Terminate and stay resident
(TSRs)
Turbo Pascal language, 270-274, 286,
340, 354
Turtle graphics, 88

U.S. Computer literacy programs,
60-61

Ubiquitous computing, 202

Unerase program, 264

Unions, 297

University degrees in disciplines, 5

Unix, 85, 170, 202, 206, 216, 221-222,
227,246-247,278,290-292,
297,299, 301, 350, 363

Unix-based systems, 9

Unix/Xenix, 21

Unrestricted Go To statements, 143

User-defined subprograms, 196

User experience (UX), 161

Utility programs, 183, 264

Value added resellers (VARSs), 333
Variables, 196

VARSs. See Value added resellers (VARS)
VAX 11-780 minicomputers, 15

390

Index

VBA. See Visual Basic for Applications
(VBA)
VGA. See Video graphics array (VGA)
Video game
for IBM PCs, 260
programming, 318
Video graphics array (VGA), 339
Visual Basic, 144, 352
Visual Basic 4.0, 164
Visual Basic for Windows,
157-158
Visual Basic for Applications (VBA),
157
Visual J++ development system, 273
Visual SourceSafe 5.0, 349

Waite Group’s Macintosh Primers,
192-200
Waite, Mitchell, 169, 192-195, 299,
301, 318, 337, 350
See also The Waite Group
Warren, Jim, 105, 111, 129, 322-323,
328-332
Watt, Daniel, 94-96
WEND keyword, 197
West Coast Computer Faire, 322,
328-332
while loop, 197,293
Whole Earth Catalog, 41-44, 55
Wilkes, Maurice, 18, 75-76
Win32 API, 352
Windows. See also Apple Macintosh
(Mac 0S); MS-DOS
class, 315

0S/2,227
platform, 238
procedure, 313
Windows 3.1, 350
Windows 95, 350
Windows NT operating system,
324, 350
Windows API, 164, 311
Windows SDK, 352
Windows software development, 346
kit, 354
Windows. See also Macintosh (Mac);
MS-DOS
platform, 238
“Wintel” platform, 200
Wired magazine, 223-224
Wirth, Niklaus, 19, 151,271
Wolverton, Van, 176-183, 281
Woodcock, JoAnne, 178, 281-283
Wozniak, Steve, 59-60, 192, 329
Wrox Press, 352
Wrox programming primers, 353

Xanadu, 45
Xenix, 247, 281-282

YouTube, 5, 229, 302
Zaks, Rodnay, 19, 271-272

Zbikowski, Mark, 279, 281
Zilog Z80 microprocessor, 318

Code Nation
Personal Computing and the
Learn to Program Movement in America

Michael J. Halvorson

Code Nation explores the rise of software development as a social, cultural,
and technical phenomenon in American history. The movement germinated in
government and university labs during the 1950s, gained momentum through
corporate and counterculture experiments in the 1960s and 1970s, and became
a broad-based computer literacy movement in the 1980s. As personal computing
came to the fore, learning to program was transformed by a groundswell

of popular enthusiasm, exciting new platforms, and an array of commercial
practices that have been further amplified by distributed computing and the
Internet. The resulting society can be depicted as a “Code Nation"—a globally-
connected world that is saturated with computer technology and enchanted by
software and its creation.

Code Nation is a new history of personal computing that emphasizes the
technical and business challenges that software developers faced when building
applications for CP/M, MS-DOS, UNIX, Microsoft Windows, the Apple Macintosh,
and other emerging platforms. It is a popular history of computing that explores
the experiences of novice computer users, tinkerers, hackers, and power users,
as well as the ideals and aspirations of leading computer scientists, engineers,
educators, and entrepreneurs. Computer book and magazine publishers also
played important, if overlooked, roles in the diffusion of new technical skills, and
this book highlights their creative work and influence.

Code Nation offers a “behind-the-scenes” look at application and
operating-system programming practices, the diversity of historic computer
languages, the rise of user communities, early attempts to market PC software,
and the origins of “enterprise” computing systems. Code samples and over 80
historic photographs support the text. The book concludes with an assessment of
contemporary efforts to teach computational thinking to young people.

ABOUT ACM BOOKS

PAY@H\Y/ I = ToTo] ST - B =Y (=SS o | o TT={ B0 [VE:| [N AVAM ool <l TSBN S978-L-4503-7757-7

published by ACM for the computer science 90000

community. ACM Books publications are widely I
577

distributed in print and digital formats by major
booksellers and are available to libraries and
library consortia. Individual ACM members may access ACM
Books publications via separate annual subscription.

BOOKS.ACM.ORG + WWW.MORGANCLAYPOOLPUBLISHERS.COM

9 "781450"377

	I LEARNING TO CODE
	1 How Important is Programming?
	1.1 Programming Culture
	1.2 Learning a Language
	1.3 New Ways of Thinking
	1.4 Equity and Access
	1.5 Personal Connections
	1.6 Manifestos of the Movement
	1.7 A New History of Personal Computing

	2 Four Computing Mythologies
	2.1 The NATO Conference on Software Engineering
	2.2 The Complexity of Software
	2.3 Systems are for Customers
	2.4 The Counterculture Movement
	2.5 Everything is Deeply Intertwingled
	2.6 The Birth of Computer Science
	2.7 Computers for the People
	2.8 Personal Computing

	3 FORTRAN, Logo, and the Tower of Babel
	3.1 Solving Problems with Computers
	3.2 The Tower of Babel
	3.3 High-level Languages
	3.4 Learning FORTRAN
	3.5 Daniel McCracken's Primers
	3.6 Seymour Papert and Logo
	3.7 Cynthia Solomon
	3.8 Logo as a Model for Code Nation
	3.9 How successful was Logo?

	4 Advocating Computer Literacy
	4.1 Robert Albrecht and the Popularization of the Movement
	4.2 I Speak BASIC
	4.3 The B. F. Skinner Approach
	4.4 Hold Me Closer Tiny BASIC
	4.5 Arthur Luehrmann and the Computer Literacy Debate
	4.6 A Blow to the Movement
	4.7 Apple Computer's Education Agenda
	4.8 Applications over Languages

	5 Four Million BASIC Programmers
	5.1 Introducing David Ahl
	5.2 A Proliferation of BASICs
	5.3 IBM BASICA
	5.4 Adventure Games
	5.5 Structured Programming
	5.6 Microsoft Press and Learn BASIC Now
	5.7 Microsoft Game Shop
	5.8 Visual Basic for Windows
	5.9 Innovative Programming Primers

	II HOBBYIST AND HACKER CULTURES
	6 Power Users, Tinkerers, and Gurus
	6.1 Computing Terminology
	6.2 Tinkering with Personal Computers
	6.3 Van Wolverton and Batch Files
	6.4 The DOS for Dummies Phenomenon
	6.5 The Economic Impact of Personal Computers
	6.6 Cary Lu Introduces the Macintosh
	6.7 The Waite Group's Macintosh Primers
	6.8 The Maturing Mac Platform

	7 Hackers and Cyberpunks
	7.1 Bill Landreth and 1980s Hacker Culture
	7.2 Jude Milhon: From Civil Rights Activist to Cyberpunk
	7.3 Mondo 2000 and The Cyberpunk Handbook
	7.4 Cypherpunks and Cryptography

	8 Computer Magazines and Historical Research
	8.1 Magazines and a Popular Culture of Computing
	8.2 Letters from the Programming Community
	8.3 New PC Users
	8.4 Power Users
	8.5 Advanced Hobbyists
	8.6 Professional Programmers
	8.7 New Approaches to Historical Research

	III PROFESSIONAL PROGRAMMING CULTURES
	9 Developing for MS-DOS: Authors and Entrepreneurs
	9.1 New Platforms for Commercial Software
	9.2 Inside the IBM PC with Peter Norton
	9.3 Borland's Turbo Pascal
	9.4 Ray Duncan's Advanced MS-DOS
	9.5 The MS-DOS Encyclopedia
	9.6 MS-DOS Sample Code
	9.7 Technology Diffusion

	10 C Programming Nation: From Tiny C to Microsoft Windows
	10.1 The C Language
	10.2 Learning C on Personal Computers
	10.3 Academic and Professional Resources
	10.4 C Programming for the People
	10.5 Charles Petzold's Programming Windows
	10.6 On Complexity

	11 “Evangelism is sales done right”: PCs and Commercial Programming Culture
	11.1 The Macintosh Way
	11.2 The West Coast Computer Faire
	11.3 COMDEX and the Trade Show Movement
	11.4 The Trouble with Self-taught Programmers
	11.5 Software Engineering for the People
	11.6 Professional and Enterprise Development Systems
	11.7 Commercialization

