
ABOUT ACM BOOKS
ACM Books is a new series of high quality books for

the computer science community, published by ACM

in collaboration with Morgan & Claypool Publishers.

ACM Books publications are widely distributed in

both print and digital formats through booksellers

and to libraries (and library consortia) and individual ACM members via the ACM

Digital Library platform.

B O O K S . A C M . O R G • W W W . M O R G A N C L A Y P O O L . C O M

A
C

M
 | M

O
R

G
A

N
 &

 C
L

A
Y

P
O

O
L

MC&

MC&
Text D

ata M
an

ag
em

en
t an

d
 A

n
alysis

Z
H

A
I • M

A
S

S
U

N
G

ChengXiang Zhai
Sean Massung

Text Data
Management
and Analysis
A Practical Introduction
to Information Retrieval

and Text Mining

ISBN: 978-1-97000-116-7

9 781970 001 167

90000

Recent years have seen a dramatic growth of natural language text data, including web pages,
news articles, scientific literature, emails, enterprise documents, and social media such as
blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand
for powerful software tools to help people manage and analyze vast amounts of text data ef-
fectively and efficiently. Unlike data generated by a computer system or sensors, text data are
usually generated directly by humans, and capture semantically rich content. As such, text
data are especially valuable for discovering knowledge about human opinions and preferenc-
es, in addition to many other kinds of knowledge that we encode in text. In contrast to struc-
tured data, which conform to well-defined schemas (thus are relatively easy for computers to
handle), text has less explicit structure, requiring computer processing toward understanding
of the content encoded in text. The current technology of natural language processing has
not yet reached a point to enable a computer to precisely understand natural language text,
but a wide range of statistical and heuristic approaches to management and analysis of text
data have been developed over the past few decades. They are usually very robust and can be
applied to analyze and manage text data in any natural language, and about any topic.

 This book provides a systematic introduction to many of these approaches, with an em-
phasis on covering the most useful knowledge and skills required to build a variety of prac-
tically useful text information systems. Because humans can understand natural languages
far better than computers can, effective involvement of humans in a text information system
is generally needed and text information systems often serve as intelligent assistants for hu-
mans. Depending on how a text information system collaborates with humans, we distinguish
two kinds of text information systems. The first is information retrieval systems which include
search engines and recommender systems; they assist users in finding from a large collection
of text data the most relevant text data that are actually needed for solving a specific applica-
tion problem, thus effectively turning big raw text data into much smaller relevant text data
that can be more easily processed by humans. The second is text mining application systems;
they can assist users in analyzing patterns in text data to extract and discover useful action-
able knowledge directly useful for task completion or decision making, thus providing more
direct task support for users.

Text Data Management and Analysis
A Practical Introduction to Information Retrieval and Text Mining

ChengXiang Zhai and Sean Massung

Text Data Management
and Analysis

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a new series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Massachusetts Institute of Technology
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Text Data Management
and Analysis
A Practical Introduction to Information
Retrieval and Text Mining

ChengXiang Zhai
University of Illinois at Urbana–Champaign

Sean Massung
University of Illinois at Urbana–Champaign

ACM Books #12

Copyright © 2016 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

Text Data Management and Analysis

ChengXiang Zhai and Sean Massung

books.acm.org
www.morganclaypoolpublishers.com

ISBN: 978-1-97000-119-8 hardcover
ISBN: 978-1-97000-116-7 paperback
ISBN: 978-1-97000-117-4 ebook
ISBN: 978-1-97000-118-1 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/2915031 Book 10.1145/2915031.2915044 Chapter 12
10.1145/2915031.2915032 Preface 10.1145/2915031.2915045 Chapter 13
10.1145/2915031.2915033 Chapter 1 10.1145/2915031.2915046 Chapter 14
10.1145/2915031.2915034 Chapter 2 10.1145/2915031.2915047 Chapter 15
10.1145/2915031.2915035 Chapter 3 10.1145/2915031.2915048 Chapter 16
10.1145/2915031.2915036 Chapter 4 10.1145/2915031.2915049 Chapter 17
10.1145/2915031.2915037 Chapter 5 10.1145/2915031.2915050 Chapter 18
10.1145/2915031.2915038 Chapter 6 10.1145/2915031.2915051 Chapter 19
10.1145/2915031.2915039 Chapter 7 10.1145/2915031.2915052 Chapter 20
10.1145/2915031.2915040 Chapter 8 10.1145/2915031.2915053 Appendices
10.1145/2915031.2915041 Chapter 9 10.1145/2915031.2915054 References
10.1145/2915031.2915042 Chapter 10 10.1145/2915031.2915055 Index
10.1145/2915031.2915043 Chapter 11

A publication in the ACM Books series, #12
Editor in Chief: M. Tamer Özsu, University of Waterloo
Area Editor: Edward A. Fox, Virginia Tech

First Edition

10 9 8 7 6 5 4 3 2 1

http://dx.doi.org/10.1145/2915031
http://dx.doi.org/10.1145/2915031.2915044
http://dx.doi.org/10.1145/2915031.2915032
http://dx.doi.org/10.1145/2915031.2915045
http://dx.doi.org/10.1145/2915031.2915033
http://dx.doi.org/10.1145/2915031.2915046
http://dx.doi.org/10.1145/2915031.2915034
http://dx.doi.org/10.1145/2915031.2915047
http://dx.doi.org/10.1145/2915031.2915035
http://dx.doi.org/10.1145/2915031.2915048
http://dx.doi.org/10.1145/2915031.2915036
http://dx.doi.org/10.1145/2915031.2915049
http://dx.doi.org/10.1145/2915031.2915037
http://dx.doi.org/10.1145/2915031.2915050
http://dx.doi.org/10.1145/2915031.2915038
http://dx.doi.org/10.1145/2915031.2915051
http://dx.doi.org/10.1145/2915031.2915039
http://dx.doi.org/10.1145/2915031.2915052
http://dx.doi.org/10.1145/2915031.2915040
http://dx.doi.org/10.1145/2915031.2915053
http://dx.doi.org/10.1145/2915031.2915041
http://dx.doi.org/10.1145/2915031.2915054
http://dx.doi.org/10.1145/2915031.2915042
http://dx.doi.org/10.1145/2915031.2915055
http://dx.doi.org/10.1145/2915031.2915043

To Mei and Alex

To Kai

Contents

Preface xv

Acknowledgments xviii

PART I OVERVIEW AND BACKGROUND 1

Chapter 1 Introduction 3

1.1 Functions of Text Information Systems 7
1.2 Conceptual Framework for Text Information Systems 10
1.3 Organization of the Book 13
1.4 How to Use this Book 15

Bibliographic Notes and Further Reading 18

Chapter 2 Background 21

2.1 Basics of Probability and Statistics 21
2.2 Information Theory 31
2.3 Machine Learning 34

Bibliographic Notes and Further Reading 36
Exercises 37

Chapter 3 Text Data Understanding 39

3.1 History and State of the Art in NLP 42
3.2 NLP and Text Information Systems 43
3.3 Text Representation 46
3.4 Statistical Language Models 50

Bibliographic Notes and Further Reading 54
Exercises 55

x Contents

Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis 57

4.1 Design Philosophy 58
4.2 Setting up META 59
4.3 Architecture 60
4.4 Tokenization with META 61
4.5 Related Toolkits 64

Exercises 65

PART II TEXT DATA ACCESS 71

Chapter 5 Overview of Text Data Access 73

5.1 Access Mode: Pull vs. Push 73
5.2 Multimode Interactive Access 76
5.3 Text Retrieval 78
5.4 Text Retrieval vs. Database Retrieval 80
5.5 Document Selection vs. Document Ranking 82

Bibliographic Notes and Further Reading 84
Exercises 85

Chapter 6 Retrieval Models 87

6.1 Overview 87
6.2 Common Form of a Retrieval Function 88
6.3 Vector Space Retrieval Models 90
6.4 Probabilistic Retrieval Models 110

Bibliographic Notes and Further Reading 128
Exercises 129

Chapter 7 Feedback 133

7.1 Feedback in the Vector Space Model 135
7.2 Feedback in Language Models 138

Bibliographic Notes and Further Reading 144
Exercises 144

Chapter 8 Search Engine Implementation 147

8.1 Tokenizer 148
8.2 Indexer 150
8.3 Scorer 153

Contents xi

8.4 Feedback Implementation 157
8.5 Compression 158
8.6 Caching 162

Bibliographic Notes and Further Reading 165
Exercises 165

Chapter 9 Search Engine Evaluation 167

9.1 Introduction 167
9.2 Evaluation of Set Retrieval 170
9.3 Evaluation of a Ranked List 174
9.4 Evaluation with Multi-level Judgements 180
9.5 Practical Issues in Evaluation 183

Bibliographic Notes and Further Reading 187
Exercises 188

Chapter 10 Web Search 191

10.1 Web Crawling 192
10.2 Web Indexing 194
10.3 Link Analysis 200
10.4 Learning to Rank 208
10.5 The Future of Web Search 212

Bibliographic Notes and Further Reading 216
Exercises 216

Chapter 11 Recommender Systems 221

11.1 Content-based Recommendation 222
11.2 Collaborative Filtering 229
11.3 Evaluation of Recommender Systems 233

Bibliographic Notes and Further Reading 235
Exercises 235

PART III TEXT DATA ANALYSIS 239

Chapter 12 Overview of Text Data Analysis 241

12.1 Motivation: Applications of Text Data Analysis 242
12.2 Text vs. Non-text Data: Humans as Subjective Sensors 244
12.3 Landscape of text mining tasks 246

xii Contents

Chapter 13 Word Association Mining 251

13.1 General idea of word association mining 252
13.2 Discovery of paradigmatic relations 255
13.3 Discovery of Syntagmatic Relations 260
13.4 Evaluation of Word Association Mining 271

Bibliographic Notes and Further Reading 273
Exercises 273

Chapter 14 Text Clustering 275

14.1 Overview of Clustering Techniques 277
14.2 Document Clustering 279
14.3 Term Clustering 284
14.4 Evaluation of Text Clustering 294

Bibliographic Notes and Further Reading 296
Exercises 296

Chapter 15 Text Categorization 299

15.1 Introduction 299
15.2 Overview of Text Categorization Methods 300
15.3 Text Categorization Problem 302
15.4 Features for Text Categorization 304
15.5 Classification Algorithms 307
15.6 Evaluation of Text Categorization 313

Bibliographic Notes and Further Reading 315
Exercises 315

Chapter 16 Text Summarization 317

16.1 Overview of Text Summarization Techniques 318
16.2 Extractive Text Summarization 319
16.3 Abstractive Text Summarization 321
16.4 Evaluation of Text Summarization 324
16.5 Applications of Text Summarization 325

Bibliographic Notes and Further Reading 327
Exercises 327

Chapter 17 Topic Analysis 329

17.1 Topics as Terms 332
17.2 Topics as Word Distributions 335

Contents xiii

17.3 Mining One Topic from Text 340
17.4 Probabilistic Latent Semantic Analysis 368
17.5 Extension of PLSA and Latent Dirichlet Allocation 377
17.6 Evaluating Topic Analysis 383
17.7 Summary of Topic Models 384

Bibliographic Notes and Further Reading 385
Exercises 386

Chapter 18 Opinion Mining and Sentiment Analysis 389

18.1 Sentiment Classification 393
18.2 Ordinal Regression 396
18.3 Latent Aspect Rating Analysis 400
18.4 Evaluation of Opinion Mining and Sentiment Analysis 409

Bibliographic Notes and Further Reading 410
Exercises 410

Chapter 19 Joint Analysis of Text and Structured Data 413

19.1 Introduction 413
19.2 Contextual Text Mining 417
19.3 Contextual Probabilistic Latent Semantic Analysis 419
19.4 Topic Analysis with Social Networks as Context 428
19.5 Topic Analysis with Time Series Context 433
19.6 Summary 439

Bibliographic Notes and Further Reading 440
Exercises 440

PART IV UNIFIED TEXT DATA MANAGEMENT ANALYSIS SYSTEM 443

Chapter 20 Toward A Unified System for Text Management and Analysis 445

20.1 Text Analysis Operators 448
20.2 System Architecture 452
20.3 META as a Unified System 453

Appendix A Bayesian Statistics 457

A.1 Binomial Estimation and the Beta Distribution 457
A.2 Pseudo Counts, Smoothing, and Setting Hyperparameters 459
A.3 Generalizing to a Multinomial Distribution 460

xiv Contents

A.4 The Dirichlet Distribution 461
A.5 Bayesian Estimate of Multinomial Parameters 463
A.6 Conclusion 464

Appendix B Expectation- Maximization 465

B.1 A Simple Mixture Unigram Language Model 466
B.2 Maximum Likelihood Estimation 466
B.3 Incomplete vs. Complete Data 467
B.4 A Lower Bound of Likelihood 468
B.5 The General Procedure of EM 469

Appendix C KL-divergence and Dirichlet Prior Smoothing 473

C.1 Using KL-divergence for Retrieval 473
C.2 Using Dirichlet Prior Smoothing 475
C.3 Computing the Query Model p(w | θ̂Q) 475

References 477

Index 489

Authors’ Biographies 509

Preface

The growth of “big data” created unprecedented opportunities to leverage compu-
tational and statistical approaches to turn raw data into actionable knowledge that
can support various application tasks. This is especially true for the optimization of
decision making in virtually all application domains such as health and medicine,
security and safety, learning and education, scientific discovery, and business in-
telligence. Just as a microscope enables us to see things in the “micro world” and a
telescope allows us to see things far away, one can imagine a “big data scope” would
enable us to extend our perception ability to “see” useful hidden information and
knowledge buried in the data, which can help make predictions and improve the op-
timality of a chosen decision. This book covers general computational techniques
for managing and analyzing large amounts of text data that can help users manage
and make use of text data in all kinds of applications.

Text data include all data in the form of natural language text (e.g., English text
or Chinese text): all the web pages, social media data such as tweets, news, scien-
tific literature, emails, government documents, and many other kinds of enterprise
data. Text data play an essential role in our lives. Since we communicate using nat-
ural languages, we produce and consume a large amount of text data every day on
all kinds of topics. The explosive growth of text data makes it impossible, or at least
very difficult, for people to consume all the relevant text data in a timely manner.
Thus, there is an urgent need for developing intelligent information retrieval sys-
tems to help people manage the text data and get access to the needed relevant
information quickly and accurately at any time. This need is a major reason be-
hind the recent growth of the web search engine industry. Due to the fact that text
data are produced by humans for communication purposes, they are generally rich
in semantic content and often contain valuable knowledge, information, opinions,
and preferences of people. Thus, as a special kind of “big data,” text data offer a
great opportunity to discover various kinds of knowledge useful for many applica-
tions, especially knowledge about human opinions and preferences, which is often

xvi Preface

directly expressed in text data. For example, it is now the norm for people to tap into
opinionated text data such as product reviews, forum discussions, and social media
text to obtain opinions. Once again, due to the overwhelming amount of informa-
tion, people need intelligent software tools to help discover relevant knowledge for
optimizing decisions or helping them complete their tasks more efficiently. While
the technology for supporting text mining is not yet as mature as search engines
for supporting text access, significant progress has been made in this area in re-
cent years, and specialized text mining tools have now been widely used in many
application domains. The subtitle of this book suggests that we cover two major
topics, information retrieval and text mining. These two topics roughly correspond
to the techniques needed to build the two types of application systems discussed
above (i.e., search engines and text analytics systems), although the separation of
the two is mostly artificial and only meant to help provide a high-level structure for
the book, and a sophisticated application system likely would use many techniques
from both topic areas.

In contrast to structured data, which conform to well-defined schemas and are
thus relatively easy for computers to handle, text has less explicit structure so
the development of intelligent software tools discussed above requires computer
processing to understand the content encoded in text. The current technology of
natural language processing has not yet reached a point to enable a computer to pre-
cisely understand natural language text (a main reason why humans often should
be involved in the loop), but a wide range of statistical and heuristic approaches
to management and analysis of text data have been developed over the past few
decades. They are usually very robust and can be applied to analyze and manage
text data in any natural language, and about any topic. This book intends to provide
a systematic introduction to many of these approaches, with an emphasis on cov-
ering the most useful knowledge and skills required to build a variety of practically
useful text information systems.

This book is primarily based on the materials that the authors have used for
teaching a course on the topic of text data management and analysis (i.e., CS410
Text Information Systems) at the University of Illinois at Urbana–Champaign, as
well as the two Massive Open Online Courses (MOOCs) on “Text Retrieval and
Search Engines” and “Text Mining and Analytics” taught by the first author on
Coursera in 2015. Most of the materials in the book directly match those of these
two MOOCs with also similar structures of topics. As such, the book can be used as
a main reference book for any of these two MOOCs.

Information Retrieval (IR) is a relatively mature field and there are no short-
age of good textbooks on IR; for example, the most recent ones include Modern
Information Retrieval: The Concepts and Technology behind Search by Baeza-Yates

Preface xvii

and Ribeiro-Neto [2011], Information Retrieval: Implementing and Evaluating Search
Engines by Büttcher et al. [2010], Search Engines: Information Retrieval in Practice
by Croft et al. [2009], and Introduction to Information Retrieval by Manning et al.
[2008]. Compared with these existing books on information retrieval, our book has
a broader coverage of topics as it attempts to cover topics in both information re-
trieval and text mining, and attempts to paint a general roadmap for building a text
information system that can support both text information access and text analy-
sis. For example, it includes a detailed introduction to word association mining,
probabilistic topic modeling, and joint analysis of text and non-text data, which
are not available in any existing information retrieval books. In contrast with IR,
Text Mining (TM) is far from mature and is actually still in its infancy. Indeed, how
to define TM precisely remains an open question. As such, it appears that there is
not yet a textbook on TM. As a textbook on TM, our book provides a basic introduc-
tion to the major representative techniques for TM. By introducing TM and IR in a
unified framework, we want to emphasize the importance of integration of IR and
TM in any practical text information system since IR plays two important roles in
any TM application. The first is to enable fast reduction of the data size by filtering
out a large amount of non-relevant text data to obtain a small set of most relevant
data to a particular application problem. The second is to support an analyst to
verify and interpret any patterns discovered from text data where an analyst would
need to use search and browsing functions to reach and examine the most relevant
support data to the pattern.

Another feature that sets this book apart is the availability of a companion
toolkit for information retrieval and text mining, i.e., the META toolkit (available at
https://meta-toolkit.org/), which contains implementations of many techniques
discussed in the book. Many exercises in the book are also designed based on this
toolkit to help readers acquire practical skills of experimenting with the learned
techniques from the book and applying them to solve real-world application prob-
lems.

This book consists of four parts. Part I provides an overview of the content
covered in the book and some background knowledge needed to understand the
chapters later. Parts II and III contain the major content of the book and cover a
wide range of techniques in IR (called Text Data Access techniques) and techniques
in TM (called Text Data Analysis techniques), respectively. Part IV summarizes the
book with a unified framework for text management and analysis where many
techniques of IR and TM can be combined to provide more advanced support for
text data access and analysis with humans in the loop to control the workflow.

The required background knowledge to understand the content in this book is
minimal since the book is intended to be mostly self-contained. However, readers

xviii Preface

are expected to have basic knowledge about computer science, particularly data
structures and programming languages and be comfortable with some basic con-
cepts in probability and statistics such as conditional probability and parameter
estimation. Readers who do not have this background may still be able to follow
the basic ideas of most of the algorithms discussed in the book; they can also ac-
quire the needed background by carefully studying Chapter 2 of the book and, if
necessary, reading some of the references mentioned in the Bibliographical Notes
section of that chapter to have a solid understanding of all the major concepts men-
tioned therein. META can be used by anyone to easily experiment with algorithms
and build applications, but modifying it or extending it would require at least some
basic knowledge of C++ programming.

The book can be used as a textbook for an upper-level undergraduate course on
information retrieval and text mining or a reference book for a graduate course to
cover practical aspects of information retrieval and text mining. It should also be
useful to practitioners in industry to help them acquire a wide range of practical
techniques for managing and analyzing text data that they can use immediately to
build various interesting real-world applications.

Acknowledgments
This book is the result of many people’s help. First and foremost, we want to express
our sincere thanks to Edward A. Fox for his invitation to write this book for the
ACM Book Series in the area of Information Retrieval and Digital Libraries, of
which he is the Area Editor. We are also grateful to Tamer Ozsu, Editor-in-Chief of
ACM Books, for his support and useful comments on the book proposal. Without
their encouragement and support this book would have not been possible. Next,
we are deeply indebted to Edward A. Fox, Donna Harman, Bing Liu, and Jimmy
Lin for thoroughly reviewing the initial draft of the book and providing very useful
feedback and constructive suggestions. While we were not able to fully implement
all their suggestions, all their reviews were extremely helpful and led to significant
improvement of the quality of the book in many ways; naturally, any remaining
errors in the book are solely the responsibility of the authors.

Throughout the process of writing the book, we received strong support and
great help from Diane Cerra, Executive Editor at Morgan & Claypool Publishers,
whose regular reminders and always timely support are key factors that prevented
us from having the risk of taking “forever” to finish the book; for this, we are truly
grateful to her. In addition, we would like to thank Sara Kreisman for copyediting
and Paul C. Anagnostopoulos and his production team at Windfall Software (Ted

Acknowledgments xix

Laux, Laurel Muller, MaryEllen Oliver, and Jacqui Scarlott) for their great help with
indexing, illustrations, art proofreading, and composition, which ensured a fast
and smooth production of the book.

The content of the book and our understanding of the topics covered in the book
have benefited from many discussions and interactions with a large number of
people in both the research community and industry. Due to space limitations,
we can only mention some of them here (and have to apologize to many whose
names are not mentioned): James Allan, Charu Aggarwal, Ricardo Baeza-Yates,
Nicholas J. Belkin, Andrei Broder, Jamie Callan, Jaime Carbonell, Kevin C. Chang,
Yi Chang, Charlie Clarke, Fabio Crestani, W. Bruce Croft, Maarten de Rijke, Arjen
de Vries, Daniel Diermeier, AnHai Doan, Susan Dumais, David A. Evans, Edward A.
Fox, Ophir Frieder, Norbert Fuhr, Evgeniy Gabrilovich, C. Lee Giles, David Gross-
man, Jiawei Han, Donna Harman, Marti Hearst, Jimmy Huang, Rong Jin, Thorsten
Joachims, Paul Kantor, David Karger, Diane Kelly, Ravi Kumar, Oren Kurland, John
Lafferty, Victor Lavrenko, Lillian Lee, David Lewis, Jimmy Lin, Bing Liu, Wei-Ying
Ma, Christopher Manning, Gary Marchionini, Andrew McCallum, Alistair Moffat,
Jian-Yun Nie, Douglas Oard, Dragomir R. Radev, Prabhakar Raghavan, Stephen
Robertson, Roni Rosenfeld, Dan Roth, Mark Sanderson, Bruce Schatz, Fabrizio Se-
bastiani, Amit Singhal, Keith van Rijsbergen, Luo Si, Noah Smith, Padhraic Smyth,
Andrew Tomkins, Ellen Voorhees, and Yiming Yang, Yi Zhang, Justin Zobel. We
want to thank all of them for their indirect contributions to this book. Some ma-
terials in the book, especially those in Chapter 19, are based on the research work
done by many Ph.D. graduates of the Text Information Management and Analysis
(TIMAN) group at the University of Illinois at Urbana–Champaign, under the super-
vision by the first author. We are grateful to all of them, including Tao Tao, Hui Fang,
Xuehua Shen, Azadeh Shakery, Jing Jiang, Qiaozhu Mei, Xuanhui Wang, Bin Tan,
Xu Ling, Younhee Ko, Alexander Kotov, Yue Lu, Maryam Karimzadehgan, Yuanhua
Lv, Duo Zhang, V.G.Vinod Vydiswaran, Hyun Duk Kim, Kavita Ganesan, Parikshit
Sondhi, Huizhong Duan, Yanen Li, Hongning Wang, Mingjie Qian, and Dae Hoon
Park. The authors’ own work included in the book has been supported by multiple
funding sources, including NSF, NIH, NASA, IARPA, Air Force, ONR, DHS, Alfred P.
Sloan Foundation, and many companies including Microsoft, Google, IBM, Yahoo!,
LinkedIn, Intel, HP, and TCL. We are thankful to all of them.

The two Massive Open Online Courses (MOOCs) offered by the first author for
the University of Illinois at Urbana–Champaign (UIUC) in 2015 on Coursera (i.e.,
Text Retrieval and Search Engines and Text Mining and Analytics) provided a direct
basis for this book in the sense that many parts of the book are based primarily
on the transcribed notes of the lectures in these two MOOCs. We thus would like

xx Preface

to thank all the people who have helped with these two MOOCs, especially TAs
Hussein Hazimeh and Alex Morales, and UIUC instruction support staff Jason
Mock, Shannon Bicknell, Katie Woodruff, and Edward Noel Dignan, and the Head
of Computer Science Department, Rob Rutenbar, whose encouragement, support,
and help are all essential for these two MOOCs to happen. The first author also
wants to thank UIUC for allowing him to use the sabbatical leave in Fall 2015 to
work on this book. Special thanks are due to Chase Geigle, co-founder of META. In
addition to all the above, the second author would like to thank Chase Geigle, Jason
Cho, and Urvashi Khandelwal (among many others) for insightful discussion and
encouragement.

Finally, we would like to thank all our family members, particularly our wives,
Mei and Kai, for their love and support. The first author wants to further thank
his brother Chengxing for the constant intellectual stimulation in their regular
research discussions and his parents for cultivating his passion for learning and
sharing knowledge with others.

ChengXiang Zhai
Sean Massung
June 2016

IP A R T

OVERVIEW AND
BACKGROUND

1Introduction

In the last two decades, we have experienced an explosive growth of online infor-
mation. According to a study done at University of California Berkeley back in 2003:
“. . . the world produces between 1 and 2 exabytes (1018 petabytes) of unique infor-
mation per year, which is roughly 250 megabytes for every man, woman, and child
on earth. Printed documents of all kinds comprise only .03% of the total.” [Lyman
et al. 2003]

A large amount of online information is textual information (i.e., in natural lan-
guage text). For example, according to the Berkeley study cited above: “Newspapers
represent 25 terabytes annually, magazines represent 10 terabytes . . . office docu-
ments represent 195 terabytes. It is estimated that 610 billion emails are sent each
year representing 11,000 terabytes.” Of course, there are also blog articles, forum
posts, tweets, scientific literature, government documents, etc. Roe [2012] updates
the email count from 610 billion emails in 2003 to 107 trillion emails sent in 2010.
According to a recent IDC report report [Gantz & Reinsel 2012], from 2005 to 2020,
the digital universe will grow by a factor of 300, from 130 exabytes to 40,000 ex-
abytes, or 40 trillion gigabytes.

While, in general, all kinds of online information are useful, textual information
plays an especially important role and is arguably the most useful kind of informa-
tion for the following reasons.

Text (natural language) is the most natural way of encoding human knowledge.
As a result, most human knowledge is encoded in the form of text data. For
example, scientific knowledge almost exclusively exists in scientific literature,
while technical manuals contain detailed explanations of how to operate
devices.

Text is by far the most common type of information encountered by people.
Indeed, most of the information a person produces and consumes daily is in
text form.

4 Chapter 1 Introduction

Text is the most expressive form of information in the sense that it can be
used to describe other media such as video or images. Indeed, image search
engines such as those supported by Google and Bing often rely on matching
companion text of images to retrieve “matching” images to a user’s keyword
query.

The explosive growth of online text information has created a strong demand
for intelligent software tools to provide the following two related services to help
people manage and exploit big text data.

Text Retrieval. The growth of text data makes it impossible for people to con-
sume the data in a timely manner. Since text data encode much of our accu-
mulated knowledge, they generally cannot be discarded, leading to, e.g., the
accumulation of a large amount of literature data which is now beyond any
individual’s capacity to even skim over. The rapid growth of online text infor-
mation also means that no one can possibly digest all the new information
created on a daily basis. Thus, there is an urgent need for developing intel-
ligent text retrieval systems to help people get access to the needed relevant
information quickly and accurately, leading to the recent growth of the web
search industry. Indeed, web search engines like Google and Bing are now an
essential part of our daily life, serving millions of queries daily. In general,
search engines are useful anywhere there is a relatively large amount of text
data (e.g., desktop search, enterprise search or literature search in a specific
domain such as PubMed).

Text Mining. Due to the fact that text data are produced by humans for commu-
nication purposes, they are generally rich in semantic content and often con-
tain valuable knowledge, information, opinions, and preferences of people.
As such, they offer great opportunity for discovering various kinds of knowl-
edge useful for many applications, especially knowledge about human opin-
ions and preferences, which is often directly expressed in text data. For exam-
ple, it is now the norm for people to tap into opinionated text data such as
product reviews, forum discussions, and social media text to obtain opinions
about topics interesting to them and optimize various decision-making tasks
such as purchasing a product or choosing a service. Once again, due to the
overwhelming amount of information, people need intelligent software tools
to help discover relevant knowledge to optimize decisions or help them com-
plete their tasks more efficiently. While the technology for supporting text
mining is not yet as mature as search engines for supporting text access, sig-

Chapter 1 Introduction 5

nificant progress has been made in this area in recent years, and specialized
text mining tools have now been widely used in many application domains.

In contrast to structured data, which conform to well-defined schemas and are
thus relatively easy for computers to handle, text has less explicit structure, so
the development of intelligent software tools discussed above requires computer
processing to understand the content encoded in text. The current technology of
natural language processing has not yet reached a point to enable a computer to pre-
cisely understand natural language text (a main reason why humans often should
be involved in the loop), but a wide range of statistical and heuristic approaches
to management and analysis of text data have been developed over the past few
decades. They are usually very robust and can be applied to analyze and manage
text data in any natural language, and about any topic. This book intends to provide
a systematic introduction to many of these approaches, with an emphasis on cov-
ering the most useful knowledge and skills required to build a variety of practically
useful text information systems.

The two services discussed above (i.e., text retrieval and text mining) concep-
tually correspond to the two natural steps in the process of analyzing any “big
text data” as shown in Figure 1.1. While the raw text data may be large, a specific
application often requires only a small amount of most relevant text data, thus
conceptually, the very first step in any application should be to identify the relevant
text data to a particular application or decision-making problem and avoid the un-
necessary processing of large amounts of non-relevant text data. This first step of
converting the raw big text data into much smaller, but highly relevant text data is
often accomplished by techniques of text retrieval with help from users (e.g., users
may use multiple queries to collect all the relevant text data for a decision problem).
In this first step, the main goal is to connect users (or applications) with the most
relevant text data.

Text retrieval Text mining

Knowledge Many applications!
Big
text data

Small
relevant data

Figure 1.1 Text retrieval and text mining are two main techniques for analyzing big text data.

6 Chapter 1 Introduction

Once we obtain a small set of most relevant text data, we would need to further
analyze the text data to help users digest the content and knowledge in the text
data. This is the text mining step where the goal is to further discover knowledge
and patterns from text data so as to support a user’s task. Furthermore, due to the
need for assessing trustworthiness of any discovered knowledge, users generally
have a need to go back to the original raw text data to obtain appropriate context
for interpreting the discovered knowledge and verify the trustworthiness of the
knowledge, hence a search engine system, which is primarily useful for text access,
also has to be available in any text-based decision-support system for supporting
knowledge provenance. The two steps are thus conceptually interleaved, and a
full-fledged intelligent text information system must integrate both in a unified
framework.

It is worth pointing out that put in the context of “big data,” text data is very dif-
ferent from other kinds of data because it is generally produced directly by humans
and often also meant to be consumed by humans as well. In contrast, other data
tend to be machine-generated data (e.g., data collected by using all kinds of physi-
cal sensors). Since humans can understand text data far better than computers can,
involvement of humans in the process of mining and analyzing text data is abso-
lutely crucial (much more necessary than in other big data applications), and how
to optimally divide the work between humans and machines so as to optimize the
collaboration between humans and machines and maximize their “combined in-
telligence” with minimum human effort is a general challenge in all applications of
text data management and analysis. The two steps discussed above can be regarded
as two different ways for a text information system to assist humans: information
retrieval systems assist users in finding from a large collection of text data the most
relevant text data that are actually needed for solving a specific application prob-
lem, thus effectively turning big raw text data into much smaller relevant text data
that can be more easily processed by humans, while text mining application sys-
tems can assist users in analyzing patterns in text data to extract and discover useful
actionable knowledge directly useful for task completion or decision making, thus
providing more direct task support for users.

With this view, we partition the techniques covered in the book into two parts to
match the two steps shown in Figure 1.1, which are then followed by one chapter to
discuss how all the techniques may be integrated in a unified text information sys-
tem. The book attempts to provide a complete coverage of all the major concepts,
techniques, and ideas in information retrieval and text data mining from a prac-
tical viewpoint. It includes many hands-on exercises designed with a companion
software toolkit META to help readers learn how to apply techniques of information

1.1 Functions of Text Information Systems 7

retrieval and text mining to real-world text data and learn how to experiment with
and improve some of the algorithms for interesting application tasks. This book
can be used as a textbook for computer science undergraduates and graduates, li-
brary and information scientists, or as a reference book for practitioners working
on relevant application problems in analyzing and managing text data.

1.1 Functions of Text Information Systems
From a user’s perspective, a text information system (TIS) can offer three distinct,
but related capabilities, as illustrated in Figure 1.2.

Information Access. This capability gives a user access to the useful informa-
tion when the user needs it. With this capability, a TIS can connect the right
information with the right user at the right time. For example, a search en-
gine enables a user to access text information through querying, whereas a
recommender system can push relevant information to a user as new informa-
tion items become available. Since the main purpose of Information Access
is to connect a user with relevant information, a TIS offering this capability

Access Mining

Select
information

Create
knowledge

Add
structure/annotations

Organization

Figure 1.2 Information access, knowledge acquisition, and text organization are three major
capabilities of a text information system with text organization playing a supporting
role for information access and knowledge acquisition. Knowledge acquisition is also
often referred to as text mining.

8 Chapter 1 Introduction

generally only does minimum analysis of text data sufficient for matching
relevant information with a user’s information need, and the original infor-
mation items (e.g., web pages) are often delivered to the user in their original
form, though summaries of the delivered items are often provided. From the
perspective of text analysis, a user would generally need to read the informa-
tion items to further digest and exploit the delivered information.

Knowledge Acquisition (Text Analysis). This capability enables a user to acquire
useful knowledge encoded in the text data that is not easy for a user to obtain
without synthesizing and analyzing a relatively large portion of the data. In
this case, a TIS can analyze a large amount of text data to discover interesting
patterns buried in text. A TIS with the capability of knowledge acquisition
can be referred to as an analysis engine. For example, while a search engine
can return relevant reviews of a product to a user, an analysis engine would
enable a user to obtain directly the major positive or negative opinions about
the product and to compare opinions about multiple similar products. A
TIS offering the capability of knowledge acquisition generally would have to
analyze text data in more detail and synthesize information from multiple
text documents, discover interesting patterns, and create new information or
knowledge.

Text Organization. This capability enables a TIS to annotate a collection of text
documents with meaningful (topical) structures so that scattered informa-
tion can be connected and a user can navigate in the information space by
following the structures. While such structures may be regarded as “knowl-
edge” acquired from the text data, and thus can be directly useful to users,
in general, they are often only useful for facilitating either information ac-
cess or knowledge acquisition, or both. In this sense, the capability of text
organization plays a supporting role in a TIS to make information access and
knowledge acquisition more effective. For example, the added structures can
allow a user to search with constraints on structures or browse by following
structures. The structures can also be leveraged to perform detailed analysis
with consideration of constraints on structures.

Information access can be further classified into two modes: pull and push. In
the pull mode, the user takes initiative to “pull” the useful information out from
the system; in this case, the system plays a passive role and waits for a user to
make a request, to which the system would then respond with relevant information.
This mode of information access is often very useful when a user has an ad hoc

1.1 Functions of Text Information Systems 9

information need, i.e., a temporary information need (e.g., an immediate need for
opinions about a product). For example, a search engine like Google generally
serves a user in pull mode. In the push mode, the system takes initiative to “push”
(recommend) to the user an information item that the system believes is useful to
the user. The push mode often works well when the user has a relatively stable
information need (e.g., hobby of a person); in such a case, a system can know
“in advance” a user’s preferences and interests, making it feasible to recommend
information to a user without having the user to take the initiative. We cover both
modes of information access in this book.

The pull mode further consists of two complementary ways for a user to obtain
relevant information: querying and browsing. In the case of querying, the user
specifies the information need with a (keyword) query, and the system would take
the query as input and return documents that are estimated to be relevant to the
query. In the case of browsing, the user simply navigates along structures that
link information items together and progressively reaches relevant information.
Since querying can also be regarded as a way to navigate, in one step, into a set
of relevant documents, it’s clear that browsing and querying can be interleaved
naturally. Indeed, a user of a web search engine often interleaves querying and
browsing.

Knowledge acquisition from text data is often achieved through the process of
text mining, which can be defined as mining text data to discover useful knowl-
edge. Both the data mining community and the natural language processing
(NLP) community have developed methods for text mining, although the two
communities tend to adopt slightly different perspective on the problem. From
a data mining perspective, we may view text mining as mining a special kind
of data, i.e., text. Following the general goals of data mining, the goal of text
mining would naturally be regarded as to discover and extract interesting pat-
terns in text data, which can include latent topics, topical trends, or outliers.
From an NLP perspective, text mining can be regarded as to partially under-
stand natural language text, convert text into some form of knowledge represen-
tation and make limited inferences based on the extracted knowledge. Thus a
key task is to perform information extraction, which often aims to identify and ex-
tract mentions of various entities (e.g., people, organization, and location) and
their relations (e.g., who met with whom). In practice, of course, any text min-
ing applications would likely involve both pattern discovery (i.e., data mining
view) and information extraction (i.e., NLP view), with information extraction
serving as enriching the semantic representation of text, which enables pattern

10 Chapter 1 Introduction

finding algorithms to generate semantically more meaningful patterns than di-
rectly working on word or string-level representations of text. Due to our em-
phasis on covering general and robust techniques that can work for all kinds
of text data without much manual effort, we mostly adopt the data mining view
in this book since information extraction techniques tend to be more language-
specific and generally require much manual effort. However, it is important to
stress that information extraction is an essential component in any text infor-
mation system that attempts to support deeper knowledge discovery or semantic
analysis.

Applications of text mining can be classified as either direct applications, where
the discovered knowledge would be directly consumed by users, or indirect appli-
cations, where the discovered knowledge isn’t necessarily directly useful to a user,
but can indirectly help a user through better support of information access. Knowl-
edge acquisition can also be further classified based on what knowledge is to be
discovered. However, due to the wide range of variations of the “knowledge,” it is
impossible to use a small number of categories to cover all the variations. Neverthe-
less, we can still identify a few common categories which we cover in this book. For
example, one type of knowledge that a TIS can discover is a set of topics or subtopics
buried in text data, which can serve as a concise summary of the major content in
the text data. Another type of knowledge that can be acquired from opinionated
text is the overall sentiment polarity of opinions about a topic.

1.2 Conceptual Framework for Text Information Systems
Conceptually, a text information system may consist of several modules, as illus-
trated in Figure 1.3.

First, there is a need for a module of content analysis based on natural language
processing techniques. This module allows a TIS to transform raw text data into
more meaningful representations that can be more effectively matched with a
user’s query in the case of a search engine, and more effectively processed in general
in text analysis. Current NLP techniques mostly rely on statistical machine learning
enhanced with limited linguistic knowledge with variable depth of understanding
of text data; shallow techniques are robust, but deeper semantic analysis is only
feasible for very limited domains. Some TIS capabilities (e.g., summarization) tend
to require deeper NLP than others (e.g., search). Most text information systems use
very shallow NLP, where text would simply be represented as a “bag of words,” where
words are basic units for representation and the order of words is ignored (although
the counts of words are retained). However, a more sophisticated representation is

1.2 Conceptual Framework for Text Information Systems 11

Summarization Visualization
Mining

applications
Retrieval

applications

Information
organization

Clustering

Extraction

Topic analysis

Filtering

Search

Categorization

Text

Natural language content analysis

Knowledge
acquisition

Information
access

Figure 1.3 Conceptual framework of text information systems.

also possible, which may be based on recognized entities and relations or other
techniques for more in-depth understanding of text.

With content analysis as the basis, there are multiple components in a TIS that
are useful for users in different ways. The following are some commonly seen
functions for managing and analyzing text information.

Search. Take a user’s query and return relevant documents. The search com-
ponent in a TIS is generally called a search engine. Web search engines are
among the most useful search engines that enable users to effectively and
efficiently deal with a huge amount of text data.

Filtering/Recommendation. Monitor an incoming stream, decide which items
are relevant (or non-relevant) to a user’s interest, and then recommend rele-
vant items to the user (or filter out non-relevant items). Depending on whether
the system focuses on recognizing relevant items or non-relevant items, this
component in a TIS may be called a recommender system (whose goal is to
recommend relevant items to users) or a filtering system (whose goal is to filter
out non-relevant items to allow a user to keep only the relevant items). Liter-
ature recommender and spam email filter are examples of a recommender
system and a filtering system, respectively.

12 Chapter 1 Introduction

Categorization. Classify a text object into one or several of the predefined cat-
egories where the categories can vary depending on applications. The cat-
egorization component in a TIS can annotate text objects with all kinds of
meaningful categories, thus enriching the representation text data, which
further enables more effective and deeper text analysis. The categories can
also be used for organizing text data and facilitating text access. Subject cate-
gorizers that classify a text article into one or multiple subject categories and
sentiment taggers that classify a sentence into positive, negative, or neutral in
sentiment polarity are both specific examples of a text categorization system.

Summarization. Take one or multiple text documents, and generate a concise
summary of the essential content. A summary reduces human effort in digest-
ing text information and may also improve the efficiency in text mining. The
summarization component of a TIS is called a summarizer. News summarizer
and opinion summarizer are both examples of a summarizer.

Topic Analysis. Take a set of documents and extract and analyze topics in them.
Topics directly facilitate digestion of text data by users and support browsing
of text data. When combined with the companion non-textual data such as
time, location, authors, and other meta data, topic analysis can generate
many interesting patterns such as temporal trends of topics, spatiotemporal
distributions of topics, and topic profiles of authors.

Information Extraction. Extract entities, relations of entities or other “knowl-
edge nuggets” from text. The information extraction component of a TIS en-
ables construction of entity-relation graphs. Such a knowledge graph is useful
in multiple ways, including support of navigation (along edges and paths of
the graph) and further application of graph mining algorithms to discover
interesting entity-relation patterns.

Clustering. Discover groups of similar text objects (e.g., terms, sentences, doc-
uments, . . .). The clustering component of a TIS plays an important role in
helping users explore an information space. It uses empirical data to create
meaningful structures that can be useful for browsing text objects and ob-
taining a quick understanding of a large text data set. It is also useful for
discovering outliers by identifying the items that do not form natural clusters
with other items.

Visualization. Visually display patterns in text data. The visualization compo-
nent is important for engaging humans in the process of discovering inter-
esting patterns. Since humans are very good at recognizing visual patterns,

1.3 Organization of the Book 13

visualization of the results generated from various text mining algorithms is
generally desirable.

This list also serves as an outline of the major topics to be covered later in
this book. Specifically, search and filtering are covered first in Part II about text
data access, whereas categorization, clustering, topic analysis, and summarization
are covered later in Part III about text data analysis. Information extraction is not
covered in this book since we want to focus on general approaches that can be
readily applied to text data in any natural language, but information extraction
often requires language-specific techniques. Visualization is also not covered due
to the intended focus on algorithms in this book. However, it must be stressed that
both information extraction and visualization are very important topics relevant
to text data analysis and management. Readers interested in these techniques can
find some useful references in the Bibliographic Notes at the end of this chapter.

1.3 Organization of the Book
The book is organized into four parts, as shown in Figure 1.4.

Part I. Overview and Background. This part consists of the first four chapters
and provides an overview of the book and background knowledge, including
basic concepts needed for understanding the content of the book that some
readers may not be familiar with, and an introduction to the META toolkit
used for exercises in the book. This part also gives a brief overview of natu-
ral language processing techniques needed for understanding text data and
obtaining informative representation of text needed in all text data analysis
applications.

Part II. Text Data Access. This part consists of Chapters 5–11, covering the ma-
jor techniques for supporting text data access. This part provides a systematic
discussion of the basic information retrieval techniques, including the for-
mulation of retrieval tasks as a problem of ranking documents for a query
(Chapter 5), retrieval models that form the foundation of the design of rank-
ing functions in a search engine (Chapter 6), feedback techniques (Chapter 7),
implementation of retrieval systems (Chapter 8), and evaluation of retrieval
systems (Chapter 9). It then covers web search engines, the most important
application of information retrieval so far (Chapter 10), where techniques for
analyzing links in text data for improving ranking of text objects are intro-
duced and application of supervised machine learning to combine multiple

14 Chapter 1 Introduction

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 13

Chapter 5

Chapter 6

Chapter 12

Chapter 8 Chapter 7Chapter 9

Chapter 11

Chapter 20

Chapter 10

Chapter 17

Chapter 19

Chapter 18

Chapter 14

Chapter 15

Chapter 16

Figure 1.4 Dependency relations among the chapters.

features for ranking is briefly discussed. The last chapter in this part (Chap-
ter 11) covers recommender systems which provide a “push” mode of informa-
tion access, as opposed to the “pull” mode of information access supported
by a typical search engine (i.e., querying by users).

Part III. Text Data Analysis. This part consists of Chapters 12–19, covering a
variety of techniques for analyzing text data to facilitate user digestion of text
data and discover useful topical or other semantic patterns in text data. Chap-
ter 12 gives an overview of text analysis from the perspective of data mining,
where we may view text data as data generated by humans as “subjective sen-
sors” of the world; this view allows us to look at the text analysis problem in the
more general context of data analysis and mining in general, and facilitates
the discussion of joint analysis of text and non-text data. This is followed by
multiple chapters covering a number of the most useful general techniques
for analyzing text data without or with only minimum human effort. Specif-
ically, Chapter 13 discusses techniques for discovering two fundamental se-

1.4 How to Use this Book 15

mantic relations between lexical units in text data, i.e., paradigmatic relations
and syntagmatic relations, which can be regarded as an example of discov-
ering knowledge about the natural language used to generate the text data
(i.e., linguistic knowledge). Chapter 14 and Chapter 15 cover, respectively, two
closely related techniques to generate and associate meaningful structures
or annotations with otherwise unorganized text data, i.e., text clustering and
text categorization. Chapter 16 discusses text summarization useful for facil-
itating human digestion of text information. Chapter 17 provides a detailed
discussion of an important family of probabilistic approaches to discovery
and analysis of topical patterns in text data (i.e., topic models). Chapter 18
discusses techniques for analyzing sentiment and opinions expressed in text
data, which are key to discovery of knowledge about preferences, opinions,
and behavior of people based on analyzing the text data produced by them.
Finally, Chapter 19 discusses joint analysis of text and non-text data, which is
often needed in many applications since it is in general beneficial to use as
much data as possible for gaining knowledge and intelligence through (big)
data analysis.

Part IV. Unified Text Management and Analysis System. This last part consists
of Chapter 20 where we attempt to discuss how all the techniques discussed
in this book can be conceptually integrated in an operator-based unified
framework, and thus potentially implemented in a general unified system
for text management and analysis that can be useful for supporting a wide
range of different applications. This part also serves as a roadmap for further
extension of META to provide effective and general high-level support for
various applications and provides guidance on how META may be integrated
with many other related existing toolkits, including particularly search engine
systems, database systems, natural language processing toolkits, machine
learning toolkits, and data mining toolkits.

Due to our attempt to treat all the topics from a practical perspective, most
of the discussions of the concepts and techniques in the book are informal and
intuitive. To satisfy the needs of some readers that might be interested in deeper
understanding of some topics, the book also includes an appendix with notes to
provide a more detailed and rigorous explanation of a few important topics.

1.4 How to Use this Book
Due to the extremely broad scope of the topics that we would like to cover, we have
to make many tradeoffs between breadth and depth in coverage. When making

16 Chapter 1 Introduction

such a tradeoff, we have chosen to emphasize the coverage of the basic concepts
and practical techniques of text data mining at the cost of not being able to cover
many advanced techniques in detail, and provide some references at the end of
many chapters to help readers learn more about those advanced techniques if
they wish to. Our hope is that with the foundation received from reading this
book, you will be able to learn about more advanced techniques by yourself or via
another resource. We have also chosen to cover more general techniques for text
management and analysis and favor techniques that can be applicable to any text in
any natural language. Most techniques we discuss can be implemented without any
human effort or only requiring minimal human effort; this is in contrast to some
more detailed analysis of text data, particularly using natural language processing
techniques. Such “deep analysis” techniques are obviously very important and are
indeed necessary for some applications where we would like to go in-depth to
understand text in detail. However, at this point, these techniques are often not
scalable and they tend to require a large amount of human effort. In practice, it
would be beneficial to combine both kinds of techniques.

We envision three main (and potentially overlapping) categories of readers.

Students. This book is specifically designed to give you hands-on experience
in working with real text mining tools and applications. If used individually,
we suggest first reading through Chapters 1–4 in order to get a good under-
standing of the prerequisite knowledge in this book. Chapters 1, 2, and 3 will
familiarize you with the concepts and vocabulary necessary to understand the
future chapters. Chapter 4 introduces you to the companion toolkit META,
which is used in exercises in each chapter. We hope the exercises and chapter
descriptions provide inspiration to work on your own text mining project. The
provided code in META should give a large head start and allow you to focus
more on your contribution.

If used in class, there are several logical flows that an instructor may choose
to take. As prerequisite knowledge, we assume some basic knowledge in
probability and statistics as well as programming in a language such as C++
or Java. META is written in modern C++, although some exercises may be
accomplished only by modifying config files.

Instructors. We have gathered a logical and cohesive collection of topics that
may be combined together for various course curricula. For example, Part 1
and Part 2 of the book may be used as an undergraduate introduction to Infor-
mation Retrieval with a focus on how search engines work. Exercises assume
basic programming experience and a little mathematical background in prob-
ability and statistics. A different undergraduate course may choose to survey

1.4 How to Use this Book 17

the entire book as an Introduction to Text Data Mining, while skipping some
chapters in Part 2 that are more specific to search engine implementation and
applications specific to the Web. Another choice would be using all parts as a
supplemental graduate textbook, where there is still some emphasis on prac-
tical programming knowledge that can be combined with reading referenced
papers in each chapter. Exercises for graduate students could be implement-
ing some methods they read in the references into META.

The exercises at the end of each chapter give students experience working
with a powerful—yet easily understandable—text retrieval and mining toolkit
in addition to written questions. In a programming-focused class, using the
META exercises is strongly encouraged. Programming assignments can be cre-
ated from selecting a subset of exercises in each chapter. Due to the modular
nature of the toolkit, additional programming experiments may be created by
extending the existing system or implementing other well-known algorithms
that do not come with META by default. Finally, students may use compo-
nents of META they learned through the exercises to complete a larger final
programming project. Using different corpora with the toolkit can yield dif-
ferent project challenges, e.g., review summary vs. sentiment analysis.

Practitioners. Most readers in industry would most likely use this book as a
reference, although we also hope that it may serve as some inspiration in
your own work. As with the student user suggestion, we think you would get
the most of this book by first reading the initial three chapters. Then, you may
choose a chapter relevant to your current interests and delve deeper or refresh
your knowledge.

Since many applications in META can be used simply via config files, we
anticipate it as a quick way to get a handle on your dataset and provide some
baseline results without any programming required.

The exercises at the end of each chapter can be thought of as default
implementations for a particular task at hand. You may choose to include
META in your work since it uses a permissive free software license. In fact, it is
dual-licensed under MIT and University of Illinois/NCSA licenses. Of course,
we still encourage and invite you to share any modifications, extensions, and
improvements with META that are not proprietary for the benefit of all the
readers.

No matter what your goal, we hope that you find this book useful and educa-
tional. We also appreciate your comments and suggestions for improvement of the
book. Thanks for reading!

18 Chapter 1 Introduction

Bibliographic Notes and Further Reading
There are already multiple excellent text books in information retrieval (IR). Due
to the long history of research in information retrieval and the fact that much
foudational work has been done in 1960s, even some very old books such as van
Rijsbergen [1979] and Salton and McGill [1983] and Salton [1989] remain very
useful today. Another useful early book is Frakes and Baeza-Yates [1992]. More
recent ones include Grossman and Frieder [2004], Witten et al. [1999], and Belew
[2008]. The most recent ones are Manning et al. [2008], Croft et al. [2009], Büttcher
et al. [2010], and Baeza-Yates and Ribeiro-Neto [2011]. Compared with these books,
this book has a broader view of the topic of information retrieval and attempts to
cover both text retrieval and text mining. While some existing books on IR have
also touched some topics such as text categorization and text clustering, which we
classify as text mining topics, no previous book has included an in-depth discussion
of topic mining and analysis, an important family of techniques very useful for
text mining. Recommender systems also seem to be missing in the existing books
on IR, which we include as an alternative way to support users for text access
complementary with search engines. More importantly, this book treats all these
topics in a more systematic way than existing books by framing them in a unified
coherent conceptual framework for managing and analyzing big text data; the book
also attempts to minimize the gap between abstract explanation of algorithms
and practical applications by providing a companion toolkit for many exercises.
Readers who want to know more about the history of IR research and the major
early milestones should take a look at the collection of readings in Sparck Jones
and Willett [1997].

The topic of text mining has also been covered in multiple books (e.g., Feldman
and Sanger [2007]). A major difference between this book and those is our empha-
sis on the integration of text mining and information retrieval with a belief that
any text data application system must involve humans in the loop and search en-
gines are essential components of any text mining systems to support two essential
functions: (1) help convert a large raw text data set into a much smaller, but more
relevant text data set which can be efficiently anlayzed by using a text mining al-
gorithm (i.e., data reduction) and (2) help users verify the source text articles from
which knowledge is discovered by a text mining algorithm (i.e., knowledge prove-
nance). As a result, this book provides a more complete coverage of techniques
required for developing big text data applications.

The focus of this book is on covering algorithms that are general and robust,
which can be readily applied to any text data in any natural language, often with
no or minimum human effort. An evitable cost of this focus is its lack of coverage

Bibliographic Notes and Further Reading 19

of some key techniques important for text mining, notably the information extrac-
tion (IE) techniques which are essential for text mining. We decided not to cover IE
because the IE techniques tend to be language-specific and require non-trivial man-
ual work by humans. Another reason is that many IE techniques rely on supervised
machine learning approaches, which are well covered in many existing machine
learning books (see, e.g., Bishop 2006, Mitchell 1997). Readers who are interested
in knowing more about IE can start with the survey book [Sarawagi 2008] and review
articles [Jiang 2012].

From an application perspective, another important topic missing in this book
is information visualization, which is due to our focus on the coverage of models
and algorithms. However, since every application system must have a user-friendly
interface to allow users to optimally interact with a system, those readers who are
interested in developing text data application systems will surely find it useful to
learn more about user interface design. An excellent reference to start with is Hearst
[2009], which also has a detailed coverage of information visualization.

Finally, due to our emphasis on breadth, the book does not cover any compo-
nent algorithm in depth. To know more about some of the topics, readers can
further read books in natural language processing (e.g., Jurafsky and Martin 2009,
Manning and Schütze 1999), advanced books on IR (e.g., Baeza-Yates and Ribeiro-
Neto [2011]), and books on machine learning (e.g., Bishop [2006]). You may find
more specific recommendations of readings relevant to a particular topic in the
Bibliographic Notes at the end of each chapter that covers the corresponding topic.

2Background

This chapter contains background information that is necessary to know in order
to get the most out of the rest of this book; readers who are already familiar with
these basic concepts may safely skip the entire chapter or some of the sections.
We first focus on some basic probability and statistics concepts required for most
algorithms and models in this book. Next, we continue our mathematical back-
ground with an overview of some concepts in information theory that are often
used in many text mining applications. The last section introduces the basic idea
and problem setup of machine learning, particularly supervised machine learning,
which is useful for classification, categorization, or text-based prediction in the text
domain. In general, machine learning is very useful for many information retrieval
and data mining tasks.

2.1 Basics of Probability and Statistics
As we will see later in this chapter and in many other chapters, probabilistic or
statistical models play a very important role in text mining algorithms. This section
gives every reader a sufficient background and vocabulary to understand these
probabilistic and statistical approaches covered in the later chapters of the book.

A probability distribution is a way to assign likelihood to an event in some
probability space �. As an example, let our probability space be a six-sided die.
Each side has a different color. Thus, � = {red, orange, yellow, green, blue, purple}
and an event is the act of rolling the die and observing a color.

We can quantify the uncertainty of rolling the die by declaring a probability
distribution over all possible events. Assuming we have a fair die, the probability
of rolling any specific color is 1

6 , or about 16%. We can represent our probability
distribution as a collection of probabilities such as

θ =
{

1
6

,
1
6

,
1
6

,
1
6

,
1
6

,
1
6

}
,

22 Chapter 2 Background

where the first index corresponds to p(red) = 1
6 , the second index corresponds to

p(orange) = 1
6 , and so on. But what if we had an unfair die? We could use a different

probability distribution θ ′ to model events concerning it:

θ ′ =
{

1
3

,
1
3

,
1

12
,

1
12

,
1

12
,

1
12

}
.

In this case, red and orange are assumed to be rolled more often than the
other colors. Be careful to note the difference between the sample space � and
the defined probability model θ used to quantify its uncertainty. In our text mining
tasks, we usually try to estimate θ given some knowledge about �. The different
methods to estimate θ will determine how accurate or useful the probabilistic
model is.

Consider the following notation:

x ∼ θ .

We read this as x is drawn from theta, or the random variable x is drawn from the
probability distribution θ . The random variable x takes on each value from � with
a certain probability defined by θ . For example, if we had x ∼ θ ′, then there is a 2

3
chance that x is either red or orange.

In our text application tasks, we usually have � as V , the vocabulary of some text
corpus. For example, the vocabulary could be

V = {a, and, apple, . . . , zap, zirconium, zoo}

and we could model the text data with a probability distribution θ . Thus, if we have
some word w we can write p(w | θ) (read as the probability of w given θ). If w is the
word data, we might have p(w = data | θ) = 0.003 or equivalently pθ(w = data) =
0.003.

In our examples, we have only considered discrete probability distributions.
That is, our models only assign probabilities for a finite (discrete) set of outcomes.
In reality, there are also continuous probability distributions, where there are an
infinite number of “events” that are not countable. For example, the normal (or
Gaussian) distribution is a continuous probability distribution that assigns real-
valued probabilities according to some parameters. We will discuss continuous
distributions as necessary in later chapters. For now, though, it’s sufficient to un-
derstand that we can use a discrete probability distribution to model the probability
of observing a single word in a vocabulary V .

2.1 Basics of Probability and Statistics 23

The Kolmogorov axioms describe facts about probability distributions in general
(both discrete and continuous). We discuss them now, since they are a good sanity
check when designing your own models. A valid probability distribution θ with
probability space � must satisfy the following three axioms.

. Each event has a probability between zero and one:

0 ≤ pθ(ω ∈ �) ≤ 1. (2.1)

. An event not in � has probability zero, and the probability of any event
occurring from � is one:

pθ(ω
′) = 0, ω′ �∈ � and pθ(�) = 1. (2.2)

. The probability of all (disjoint) events sums to one:∑
ω∈�

pθ(ω) = 1. (2.3)

Note that, strictly speaking, an event is defined as a subset of the probability
space �, and we say that an event happens if and only if the outcome from a random
experiment (i.e., randomly drawing an outcome from �) is in the corresponding
subset of outcomes defined by the event. Thus, it is easy to understand that the
special event corresponding to the empty subset is an impossible event with a
probability of zero, whereas the special event corresponding to the complete set
� itself always happens and so has a probability of 1.0. As a special case, we can
consider an event space with only those events that each have precisely one element
of outcome, which is exactly what we assumed when talking about a distribution
over all the words. Here each word corresponds to the event defined by the subset
with the word as the only element; clearly, such an event happens if and only if the
outcome is the corresponding word.

2.1.1 Joint and Conditional Probabilities
For this section, let’s modify our original die rolling example. We will keep the
original distribution as θC, indicating the color probabilities:

θC =
{

1
6

,
1
6

,
1
6

,
1
6

,
1
6

,
1
6

}
.

Let’s also assume that each color is represented by a particular shape. This makes
our die look like

24 Chapter 2 Background

{ }, , , , ,

where the colors of the shapes are, red, orange, yellow, blue, green, and purple,
respectively.

We can now create another distribution for the shape θS. Let each index in θS

represent p(square), p(circle), p(triangle), respectively. That gives

θS =
{

1
3

,
1
2

,
1
6

}
.

Then we can let xC ∼ θC represent the color random variable and let xS ∼ θS repre-
sent the shape random variable. We now have two variables to work with.

A joint probability measures the likelihood that two events occur simultane-
ously. For example, what is the probability that xC = red and xS = circle? Since there
are no red circles, this has probability zero. How about p(xC = green, xS = circle)?
This notation signifies the joint probability of the two random variables. In this
case, the joint probability is 1

6 because there is only one green circle.
Consider a modified die:

{ }, , , , ,

where we changed the color of the blue circle (the fourth element in the set) to
green. Thus, we now have two green circles instead of one green and one blue.
What would p(xC = green, xS = circle) be? Since two out of the six elements satisfy
both these criteria, the answer is 2

6 = 1
3 . As another example, if we had a 12-sided

fair die with 5 green circles and 7 other combinations of shape and color, then
p(xC = green, xS = circle) = 5

12 .
A conditional probability measures the likelihood that one event occurs given

that another event has already occurred. Let’s use the original die with six unique
colors. Say we know that a square was rolled. With that information, what is the
probability that the color is red? How about purple? We can write this as p(xC =
red | xS = square). Since we know there are two squares, of which one is red, p(red |
square) = 1

2 .
We can write the conditional probabilities for two random variables X and Y

based on their joint probability with the following equation:

p(X = x | Y = y) = p(X = x , Y = y)

p(Y = y)
. (2.4)

2.1 Basics of Probability and Statistics 25

The numerator p(X = x , Y = y) is the probability of exactly the configuration
we’re looking for (i.e., both x and y have been observed), which is normalized by
p(Y = y), the probability that the condition is true (i.e., y has been observed). Using
this knowledge, we can calculate p(xC = green | xS = circle):

p(xC = green | xS = circle) = p(xC = green, xS = circle)

p(xS = circle)
= 1/6

1/2
= 1

3
.

One other important concept to mention is independence. In the previous ex-
amples, the two random variables were dependent, meaning the value of one
will influence the value of the other. Consider another situation where we have
c1, c2 ∼ θC. That is, we draw two colors from the color distribution. Does the knowl-
edge of c1 inform the probability of c2? No, since each draw is done “independently”
of the other. In the case where two random variables X and Y are independent,
p(X, Y) = p(X)p(Y). Can you see why this is the case?

Both conditional and joint probabilities can be used to answer interesting ques-
tions about text. For example, given a document, what is the probability of observ-
ing the word information and retrieval in the same sentence? What is the probability
of observing retrieval if we know information has occurred?

2.1.2 Bayes’ Rule
Bayes’ rule may be derived using the definition of conditional probability:

p(X | Y) = p(X, Y)

p(Y)
and p(Y | X) = p(Y , X)

p(X)
.

Therefore, setting the two joint probabilities equal,

p(X | Y)p(Y) = p(X, Y) = p(Y | X)p(X).

We can simplify them as

p(X | Y) = p(Y | X)p(X)

p(Y)
. (2.5)

The above formula is known as Bayes’ rule, named after the Reverend Thomas Bayes
(1701–1761). This rule has widespread applications. In this book, you will see heavy
use of this formula in the text categorization chapter as well as the topic analysis
chapter, among others. We will leave it up to the individual chapters to explain their
use of this rule in their implementation. Essentially, though, Bayes’ rule can be used
to make inference about a hypothesis based on the observed evidence related to the
hypothesis.

26 Chapter 2 Background

Specifically, we may view random variable X as denoting our hypothesis, and Y

as denoting the observed evidence. p(X) can thus be interpreted as our prior belief
about which hypothesis is true; it is “prior” because it is our belief before we have
any knowledge about evidence Y . In contrast, p(X | Y) encodes our posterior belief
about the hypothesis since it is our belief after knowing evidence Y . Bayes’ rule is
seen to connect the prior belief and posterior belief, and provide a way to update
the prior belief p(X) based on the likelihood of the observed evidence Y and obtain
the posterior belief p(X | Y). It is clear that if X and Y are independent, then no
updating will happen as in this case, p(X | Y) = p(X).

2.1.3 Coin Flips and the Binomial Distribution
In most discussions on probability, a good example to investigate is flipping a
coin. For example, we may be interested in modeling the presence or absence of a
particular word in a text document, which can be easily mapped to a coin flipping
problem. There are two possible outcomes in coin flipping: heads or tails. The
probability of heads is denoted as θ , which means the probability of tails is 1 − θ .

To model the probability of success (in our case, “heads”), we can use the
Bernoulli distribution. The Bernoulli distribution gives the probability of success
for a single event—flipping the coin once. If we want to model n throws and find the
probability of k successes, we instead use the binomial distribution. The binomial
distribution is a discrete distribution since k is an integer. We can write it as

p(k heads) =
(

n

k

)
θk(1 − θ)n−k. (2.6)

We can also write it as follows:

p(k heads) = n!
k!(n − k)!

θk(1 − θ)n−k. (2.7)

But why is it this formula? Well, let’s break it apart. If we have n total binary
trials, and want to see k heads, that means we must have flipped k heads and n − k

tails. The probability of observing each of the k heads is θ , while the probability
of observing each of the remaining n − k tails is 1 − θ . Since we assume all these
flips are independent, we simply multiply all the outcomes together. Since we don’t
care about the order of the outcomes, we additionally multiply by the number of
possible ways to choose k items from a set of n items.

What if we do care about the order of the outcomes? For example, what is the
probability of observing the particular sequence of outcomes (h, t , h, h, t) where h

and t denote heads and tails, respectively? Well, it is easy to see that the probability

2.1 Basics of Probability and Statistics 27

of observing this sequence is simply the product of observing each event, i.e.,
θ × (1 − θ) × θ × θ × (1 − θ) = θ3(1 − θ)2 with no adjustment for different orders
of observing three heads and two tails.

The more commonly used multinomial distribution in text analysis, which mod-
els the probability of seeing a word in a particular scenario (e.g., in a document), is
very similar to this Bernoulli distribution, just with more than two outcomes.

2.1.4 Maximum Likelihood Parameter Estimation
Now that we have a model for our coin flipping, how can we estimate its parameters
given some observed data? For example, maybe we observe the data D that we
discussed above where n = 5:

D = {h, t , h, h, t}.

Now we would like to figure out what θ is based on the observed data. Using
maximum likelihood estimation (MLE), we choose the θ that has the highest like-
lihood given our data, i.e., choose the θ such that the probability of observed data
is maximized.

To compute the MLE, we would first write down the likelihood function, i.e.,
p(D | θ), which is θ3(1 − θ)2 as we explained earlier. The problem is thus reduced
to find the θ that maximizes the function f (θ) = θ3(1 − θ)2. Equivalently, we can
attempt to maximize the log-likelihood: log f (θ) = 3 log θ + 2 log(1 − θ), since log-
arithm transformation preserves the order of values. Using knowledge of calculus,
we know that a necessary condition for a function to achieve a maximum value at a
θ value is that the derivative at the same θ value is zero. Thus, we just need to solve
the following equation:

d log f (θ)

dθ
= 3

θ
− 2

1 − θ
= 0,

and we easily find that the solution is θ = 3/5.
More generally, let H be the number of heads and T be the number of tails. The

MLE of the probability of heads is given by:

θMLE = arg max
θ

p(D | θ)

= arg max
θ

θH(1 − θ)T

= H

H + T
.

28 Chapter 2 Background

The notation arg max represents the argument (i.e., θ in this case) that makes
the likelihood function (i.e., p(D | θ)) reach its maximum. Thus, the value of an
arg max expression stays the same if we perform any monotonic transformation of
the function inside arg max. This is why we could use the logarithm transformation
in the example above, which made it easier to compute the derivative.

The solution to MLE shown above should be intuitive: the θ that maximizes our
data likelihood is just the ratio of heads. It is a general characteristic of the MLE
that the estimated probability is the normalized counts of the corresponding events
denoted by the probability. As an example, the MLE of a multinomial distribution
(which will be further discussed in detail later in the book) gives each possible
outcome a probability proportional to the observed counts of the outcome. Note
that a consequence of this is that all unobserved outcomes would have a zero
probability according to MLE. This is often not reasonable especially when the data
sample is small, a problem that motivates Bayesian parameter estimation which we
discuss below.

2.1.5 Bayesian Parameter Estimation
One potential problem of MLE is that it is often inaccurate when the size of the
data sample is small since it always attempts to fit the data as well as possible.
Consider an extreme example of observing just two data points of flipping a coin
which happen to be all heads. The MLE would say that the probability of heads is
1.0 while the probability of tails is 0. Such an estimate is intuitively inaccurate even
though it maximizes the probability of the observed two data points.

This problem of “overfitting” can be addressed and alleviated by considering the
uncertainty on the parameter and using Bayesian parameter estimation instead of
MLE. In Bayesian parameter estimation, we consider a distribution over all the
possible values for the parameter; that is, we treat the parameter itself as a random
variable.

Specifically, we may use p(θ) to represent a distribution over all possible values
for θ , which encodes our prior belief about what value is the true value of θ , while
the data D provide evidence for or against that belief. The prior belief p(θ) can
then be updated based on the observed evidence. We’ll use Bayes’ rule to rewrite
p(θ | D), or our belief of the parameters given data, as

p(θ | D) = p(D | θ)p(θ)

p(D)
, (2.8)

where p(D) can be calculated by summing over all configurations of θ . For a
continuous distribution, that would be

2.1 Basics of Probability and Statistics 29

p(D) =
∫

θ ′
p(θ ′)p(D | θ ′)dθ ′ (2.9)

which means the probability for a particular θ is

p(θ | D) = p(D | θ)p(θ)∫
θ ′ p(θ ′)p(D | θ ′)dθ ′ . (2.10)

We have special names for these quantities:

. p(θ | D): the posterior probability of θ

. p(θ): the prior probability of θ

. p(D | θ): the likelihood of D

.

∫
θ ′ p(θ ′)p(D | θ ′)dθ ′: the marginal likelihood of D

The last one is called the marginal likelihood because the integration “marginal-
izes out” (removes) the parameter θ from the equation. Since the likelihood of the
data remains constant, observing the constraint that p(θ | D) must sum to one over
all possible values of θ , we usually just say

p(θ | D) ∝ p(θ)p(D | θ).

That is, the posterior is proportional to the prior times the likelihood.
The posterior distribution of the parameter θ fully characterizes the uncertainty

of the parameter value and can be used to infer any quantity that depends on the
parameter value, including computing a point estimate of the parameter (i.e., a
single value of the parameter). There are multiple ways to compute a point estimate
based on a posterior distribution. One possibility is to compute the mean of the
posterior distribution, which is given by the weighted sum of probabilities and the
parameter values. For a discrete distribution,

E[X] =
∑
x

xp(x) (2.11)

while in a continuous distribution,

E[X] =
∫

x

xf (x)dx (2.12)

Sometimes, we are interested in using the mode of the posterior distribution
as our estimate of the parameter, which is called Maximum a Posteriori (MAP)
estimate, given by:

θMAP = arg max
θ

p(θ | D) = arg max
θ

p(D | θ)p(θ). (2.13)

30 Chapter 2 Background

Here it is easy to see that the MAP estimate would deviate from the MLE with
consideration of maximizing the probability of the parameter according to our
prior belief encoded as p(θ). It is through the use of appropriate prior that we
can address the overfitting problem of MLE since our prior can strongly prefer an
estimate where neither heads, nor tails should have a zero probability.

For a continuation and more in-depth discussion of this material, consult Ap-
pendix A.

2.1.6 Probabilistic Models and Their Applications
With the statistical foundation from the previous sections, we can now start to see
how we might apply a probabilistic model to text analysis.

In general, in text processing, we would be interested in a probabilistic model
for text data, which defines distributions over sequences of words. Such a model is
often called statistical language model, or a generative model for text data (i.e., a
probabilistic model that can be used for sampling sequences of words).

As we started to explain previously, we usually treat the sample space � as V , the
set of all observed words in our corpus. That is, we define probability distributions
over words from our dataset, which are essentially multinomial distributions if
we do not consider the order of words. While there are many more sophisticated
models for text data (see, e.g., Jelinek [1997]), this simplest model (often called
unigram language model) is already very useful for a number of tasks in text data
management and analysis due to the fact that the words in our vocabulary are very
well designed meaningful basic units for human communications.

For now, we can discuss the general framework in which statistical models
are “learned.” Learning a model means estimating its parameters. In the case
of a distribution over words, we have one parameter for each element in V . The
workflow looks like the following.

1. Define the model.

2. Learn its parameters.

3. Apply the model.

The first step has already been addressed. In our example, we wish to capture the
probabilities of individual words occurring in our corpus. In the second step, we
need to figure out actually how to set the probabilities for each word. One obvious
way would be to calculate the probability of each individual word in the corpus
itself. That is, the count of a unique word wi divided by the total number of words

2.2 Information Theory 31

in the corpus could be the value of p(wi | θ). This can be shown to be the solution of
the MLE of the model. More sophisticated models and their parameter estimation
will be discussed later in the book. Finally, once we have θ defined, what can we
actually do with it? One use case would be analyzing the probability of a specific
subset of words in the corpus, and another could be observing unseen data and
calculating the probability of seeing the words in the new text. It is often possible
to design the model such that the model parameters would encode the knowledge
we hope to discover from text data. In such a case, the estimated model parameters
can be directly used as the output (result) of text mining.

Please keep in mind that probabilistic models are a general tool and don’t only
have to be used for text analysis—that’s just our main application!

2.2 Information Theory
Information theory deals with uncertainty and the transfer or storage of quantified
information in the form of bits. It is applied in many fields, such as electrical engi-
neering, computer science, mathematics, physics, and linguistics. A few concepts
from information theory are very useful in text data management and analysis,
which we introduce here briefly. The most important concept of information theory
is entropy, which is a building block for many other measures.

The problem can be formally defined as the quantified uncertainty in predicting
the value of a random variable. In the common example of a coin, the two values
would be 1 or 0 (depicting heads or tails) and the random variable representing
these outcomes is X. In other words,

X =
{

1 if heads

0 if tails.

The more random this random variable is, the more difficult the prediction of heads
or tails will be. How does one quantitatively measure the randomness of a random
variable like X? This is precisely what entropy does.

Roughly, the entropy of a random variable X, H(X), is a measure of expected
number of bits needed to represent the outcome of an event x ∼ X. If the outcome
is known (completely certain), we don’t need to represent any information and
H(X) = 0. If the outcome is unknown, we would like to represent the outcome in
bits as efficiently as possible. That means using fewer bits for common occurrences
and more bits when the event is less likely. Entropy gives us the expected number

32 Chapter 2 Background

of bits for any x ∼ X using the formula

H(X) = −
∑
x∈X

p(x) log2 p(x). (2.14)

In the cases where we have log2 0, we generally just define this to be 0 since log2 0
is undefined. We will get different H(X) for different random variables X.

The exact theory and reasoning behind this formula are beyond the scope of this
book, but it suffices to say that H(X) = 0 means there is no randomness, H(X) = 1
means there is complete randomness in that all events are equally likely. Thus, the
amount of randomness varies from 0 to 1. For our coin example where the sample
space is two events (heads or tails), the entropy function looks like

H(X) = −p(X = 0) log2 p(X = 0) − p(X = 1) log2 p(X = 1).

For a fair coin, we would have p(X = 1) = p(X = 0) = 1
2 . To calculate H(X), we’d

have the calculation

H(X) = − 1
2

log2
1
2

− 1
2

log2
1
2

= 1,

whereas for a completely biased coin with p(X = 1) = 1, p(X = 0) = 0 we would have

H(X) = −0 log2 0 − 1 log2 1 = 0.

For this example, we had only two possible outcomes (i.e., a binary random
variable). As we can see from the formula, this idea of entropy easily generalizes
to random variables with more than two outcomes; in those cases, the sum is over
more than two elements.

If we plot H(X) for our coin example against the probability of heads p(X = 1),
we receive a plot like the one shown in Figure 2.1. At the two ends of the x-axis,
the probability of X = 1 is either very small or very large. In both these cases, the
entropy function has a low value because the outcome is not very random. The most
random is when p(X = 1) = 1

2 . In that case, H(X) = 1, the maximum value. Since
the two probabilities are symmetric, we get a symmetric inverted U -shape as the
plot of H(X) as p(X = 1) varies.

It’s a good exercise to consider when a particular random variable (not just the
coin example) has a maximum or minimal value. In particular, let’s think about
some special cases. For example, we might have a random variable Y that always
takes a value of 1. Or, there’s a random variable Z that is equally likely to take a
value of 1, 2, or 3. In these cases, H(Y) < H(Z) since the outcome of Y is much

2.2 Information Theory 33

1.0

0.8

0.6

0.4

0.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

H
(X

)

P(X = 1)

Figure 2.1 Entropy as a measure of randomness of a random variable.

easier to predict than the outcome of Z. This is precisely what entropy captures.
You can calculate H(Y) and H(Z) to confirm this answer.

For our applications, it may be useful to consider the entropy of a word w in
some context. Here, high-entropy words would be harder to predict. Let W be the
random variable that denotes whether a word occurs in a document in our corpus.
Say W = 1 if the word occurs and W = 0 otherwise. How do you think H(Wthe)

compares to H(Wcomputer)? The entropy of the word the is close to zero since it
occurs everywhere. It’s not surprising to see this word in a document, thus it is easy
to predict that Wthe = 1. This case is just like the biased coin that always lands one
way. The word computer, on the other hand, is a less common word and is harder
to predict whether it occurs or not, so the entropy will be higher.

When we attempt to quantify uncertainties of conditional probabilities, we can
also define conditional entropy H(X | Y), which indicates the expected uncertainty
of X given that we observe Y , where the expectation is taken under the distribution
of all possible values of Y . Intuitively, if X is completely determined by Y , then
H(X | Y) = 0 since once we know Y , there would be no uncertainty in X, whereas if
X and Y are independent, then H(X | Y) would be the same as the original entropy
of X, i.e., H(X | Y) = H(X) since knowing Y does not help at all in resolving the
uncertainty of X.

34 Chapter 2 Background

Another useful concept is mutual information defined on two random variables,
I (X; Y), which is defined as the reduction of entropy of X due to knowledge about
another random variable Y , i.e.,

I (X; Y) = H(X) − H(X | Y). (2.15)

It can be shown that mutual information can be equivalently written as

I (X; Y) = H(Y) − H(Y | X). (2.16)

It is easy to see that I (X; Y) tends to be large if X and Y are correlated, whereas
I (X; Y) would be small if X and Y are not so related; indeed, in the extreme case
when X and Y are completely independent, there would be no reduction of entropy,
and thus H(X) = H(X | Y), and I (X; Y) = 0. However, if X is completely determined
by Y , then H(X | Y) = 0, thus I (X; Y) = H(X). Intuitively, mutual information can
measure the correlation of two random variables. Clearly as a correlation measure
on X and Y , mutual information is symmetric.

Applications of these basic concepts, including entropy, conditional entropy,
and mutual information will be further discussed later in this book.

2.3 Machine Learning
Machine learning is a very important technique for solving many problems, and has
very broad applications. In text data management and analysis, it has also many
uses. Any in-depth treatment of this topic would clearly be beyond the scope of
this book, but here we introduce some basic concepts in machine learning that are
needed to better understand the content later in the book.

Machine learning techniques can often be classified into two types: supervised
learning and unsupervised learning. In supervised learning, a computer would
learn how to compute a function ŷ = f (x) based on a set of examples of the input
value x (called training data) and the corresponding expected output value y. It is
called “supervised” because typically the y values must be provided by humans for
each x, and thus the computer receives a form of supervision from the humans.
Once the function is learned, the computer would be able to take unseen values of
x and compute the function f (x).

When y takes a value from a finite set of values, which can be called labels, a
function f (.) can serve as a classifier in that it can be used to map an instance x

to the “right” label (or multiple correct labels when appropriate). Thus, the prob-
lem can be called a classification problem. The simplest case of the classification
problem is when we have just two labels (known as binary classification). When y

2.3 Machine Learning 35

takes a real value, the problem is often called a regression problem. Both forms
of the problem can also be called prediction when our goal is mainly to infer the
unknown y for a given x; the term “prediction” is especially meaningful when y is
some property of a future event.

In text-based applications, both forms may occur, although the classification
problem is far more common, in which case the problem is also called text catego-
rization or text classification. We dedicate a chapter to this topic later in the book
(Chapter 15). The regression problem may occur when we use text data to predict
another non-text variable such as sentiment rating or stock prices; both cases are
also discussed later.

In classification as well as regression, the (input) data instance x is often repre-
sented as a feature vector where each feature provides a potential clue about which
y value is most likely the value of f (x). What the computer learns from the training
data is an optimal way to combine these features with weights on them to indi-
cate their importance and their influence on the final function value y. “Optimal”
here simply means that the prediction error on the training data is minimum, i.e.,
the predicted ŷ values are maximally consistent with the true y values in the train-
ing data.

More formally, let our collection of objects be X such that xi ∈ X is a feature
vector that represents object i. A feature is an attribute of an object that describes
it in some way. For example, if the objects are news articles, one feature could be
whether the word good occurred in the article. All these different features are part
of a document’s feature vector, which is used to represent the document. In our
cases, the feature vector will usually have to do with the words that appear in the
document.

We also have Y, which is the set of possible labels for each object. Thus, yi may
be sports in our news article classification setup and yj could be politics.

A classifier is a function f (.) that takes a feature vector as input and outputs a
predicted label ŷ ∈ Y. Thus, we could have f (xi) = sports, meaning ŷ = sports. If the
true y is also sports, the classifier was correct in its prediction.

Notice how we can only evaluate a classification algorithm if we know the true
labels of the data. In fact, we will have to use the true labels in order to learn a good
function f (.) to take unseen feature vectors and classify them. For this reason, when
studying machine learning algorithms, we often split our corpus X into two parts:
training data and testing data. The training portion is used to build the classifier,
and the testing portion is used to evaluate the performance (e.g., determine how
many correct labels were predicted). In applications, the training data are generally

36 Chapter 2 Background

all the labelled examples that we can generate, and the test cases are the data points,
to which we would like to apply our machine learning program.

But what does the function f (.) actually do? Consider a very simple example
that determines whether a news article has positive or negative sentiment, i.e.,
Y = {positive, negative}:

f (x) =
{

positive if x’s count for the term good is greater than 1

negative otherwise.

Of course, this example is overly simplified, but it does demonstrate the basic
idea of a classifier: it takes a feature vector as input and outputs a class label. Based
on the training data, the classifier may have determined that positive sentiment ar-
ticles contain the term good more than once; therefore, this knowledge is encoded
in the function. In Chapter 15, we will investigate some specific algorithms for cre-
ating the function f (.) based on the training data. Other topics such as feedback
for information retrieval (Chapter 7) and sentiment analysis (Chapter 18) make use
of classifiers, or resemble them. For this reason, it’s good to know what machine
learning is and what kinds of problems it can solve.

In contrast to supervised learning, in unsupervised learning we only have the
data instances X without knowing Y. In such a case, obviously we cannot really know
how to compute y based on an x. However, we may still learn latent properties or
structures of X. Since there is no human effort involved, such an approach is called
unsupervised. For example, the computer can learn that some data instances are
very similar, and the whole dataset can be represented by three major clusters of
data instances such that in each cluster, the data instances are all very similar.
This is essentially the clustering technique that we will discuss in Chapter 14.
Another form of unsupervised learning is to design probabilistic models to model
the data (called “generative models”) where we can embed interesting parameters
that denote knowledge that we would like to discover from the data. By fitting the
model to our data, we can estimate the parameter values that can best explain the
data, and treat the obtained parameter values as the knowledge discovered from
the data. Applications of such an approach in analyzing latent topics in text are
discussed in detail in Chapter 17.

Bibliographic Notes and Further Reading
Detailed discussion of the basic concepts in probability and statistics can be found
in many textbooks such as Hodges and Lehmann [1970]. An excellent introduction
to the maximum likelihood estimation can be found in Myung [2003]. An accessi-

Exercises 37

ble comprehensive introduction to Bayesian statistics is given in the book Bayesian
Data Analysis [Gelman et al. 1995]. Cover and Thomas [1991] provide a comprehen-
sive introduction to information theory. There are many books on machine learning
where a more rigorous introduction to the basic concepts in machine learning as
well as many specific machine learning approaches can be found (e.g., Bishop 2006,
Mitchell 1997).

Exercises
2.1. What can you say about p(X | Y) if we know X and Y are independent random
variables? Prove it.

2.2. In an Information Retrieval course, there are 78 computer science majors,
21 electrical and computer engineering majors, and 10 library and information
science majors. Two students are randomly selected from the course. What is the
probability that they are from the same department? What is the probability that
they are from different departments?

2.3. Use Bayes’ rule to solve the following problem. One third of the time, Milo
takes the bus to work and the other times he takes the train. The bus is less reliable,
so he gets to work on time only 50% of the time. If taking the train, he is on time 90%
of the time. Given that he was on time on a particular day, what is the probability
that Milo took the bus?

2.4. In a game based on a deck of 52 cards, a single card is drawn. Depending on
the type of card, a certain value is either won or lost. If the card is one of the four
aces, $10 is won. If the card is one of the four kings, $5 is won. If the card is one of
the eleven diamonds that is not a king or ace, $2 is won. Otherwise, $1 is lost. What
are the expected winnings or losings after drawing a single card? (Would you play?)

2.5. Consider the game outlined in the previous question. Imagine that two
aces were drawn, leaving 50 cards remaining. What is the expected value of the
next draw?

2.6. In the information theory section, we defined three random variables X, Y ,
and Z when discussing entropy. We compared H(Y) with H(Z). How does H(X)

compare to the other two entropies?

2.7. In the information theory section, we compared the entropy of the word the
to that of the word unicorn. In general, what types of words have a high entropy and
what types of words have a low entropy? As an example, consider a corpus of ten

38 Chapter 2 Background

documents where the occurs in all documents, unicorn appears in five documents,
and Mercury appears in one document. What would be the entropy value of each?

2.8. Brainstorm some different features that may be good for the sentiment clas-
sification task outlined in this chapter. What are the strengths and weaknesses of
such features?

2.9. Consider the following scenario. You are writing facial recognition software
that determines whether there is a face in a given image. You have a collection of
100, 000 images with the correct answer and need to determine if there are faces
in new, unseen images.

Answer the following questions.

(a) Is this supervised learning or unsupervised learning?

(b) What are the labels or values we are predicting?

(c) Is this binary classification or multiclass classification? (Or neither?)

(d) Is this a regression problem?

(e) What are the features that could be used?

2.10. Consider the following scenario. You are writing essay grading software that
takes in a student essay and produces a score from 0–100%. To design this system,
you are given essays from the past year which have been graded by humans. Your
task is to use the system with the current year’s essays as input.

Answer the same questions as in Exercise 2.9.

2.11. Consider the following scenario. You are writing a tool that determines
whether a given web page is one of

personal home page,

links to a personal home page, or

neither of the above.

To help you in your task, you are given 5, 000, 000 pages that are already labeled.
Answer the same questions as in Exercise 2.9.

3Text Data Understanding

In this chapter, we introduce basic concepts in text data understanding through
natural language processing (NLP). NLP is concerned with developing computa-
tional techniques to enable a computer to understand the meaning of natural
language text. NLP is a foundation of text information systems because how ef-
fective a TIS is in helping users access and analyze text data is largely determined
by how well the system can understand the content of text data. Content analysis
is thus logically the first step in text data analysis and management.

While a human can instantly understand a sentence in their native language,
it is quite challenging for a computer to make sense of one. In general, this may
involve the following tasks.

Lexical analysis. The purpose of lexical analysis is to figure out what the basic
meaningful units in a language are (e.g., words in English) and determine
the meaning of each word. In English, it is rather easy to determine the
boundaries of words since they are separated by spaces, but it is non-trivial to
find word boundaries in some other languages such as Chinese where there
is no clear delimiter to separate words.

Syntactic analysis. The purpose of syntactic analysis is to determine how words
are related with each other in a sentence, thus revealing the syntactic structure
of a sentence.

Semantic analysis. The purpose of semantic analysis is to determine the mean-
ing of a sentence. This typically involves the computation of meaning of a
whole sentence or a larger unit based on the meanings of words and their
syntactic structure.

Pragmatic analysis. The purpose of pragmatic analysis is to determine meaning
in context, e.g., to infer the speech acts of language. Natural language is
used by humans to communicate with each other. A deeper understanding

40 Chapter 3 Text Data Understanding

of natural language than semantic analysis is thus to further understand the
purpose in communication.

Discourse analysis. Discourse analysis is needed when a large chunk of text
with multiple sentences is to be analyzed; in such a case, the connections
between these sentences must be considered and the analysis of an individual
sentence must be placed in the appropriate context involving other sentences.

In Figure 3.1, we show what is involved in understanding a very simple English
sentence “A dog is chasing a boy on the playground.” The lexical analysis in this case
involves determining the syntactic categories (parts of speech) of all the words (for
example, dog is a noun and chasing is a verb). Syntactic analysis is to determine that
a and boy form a noun phrase. So do the and playground, and on the playground is a
prepositional phrase. Semantic analysis is to map noun phrases to entities and verb
phrases to relations so as to obtain a formal representation of the meaning of the
sentence. For example, the noun phrase a boy can be mapped to a semantic entity
denoting a boy (i.e., b1), and a dog to an entity denoting a dog (i.e., d1). The verb
phrase can be mapped to a relation predicate chasing(d1,b1,p1) as shown in
the figure. Note that with this level of understanding, one may also infer additional
information based on any relevant common sense knowledge. For example, if we
assume that if someone is being chased, he or she may be scared, we could infer
that the boy being chased (b1) may be scared. Finally, pragmatic analysis might
further reveal that the person who said this sentence might intend to request an
action, such as reminding the owner of the dog to take the dog back.

While it is possible to derive a clear semantic representation for a simple sen-
tence like the one shown in Figure 3.1, it is in general very challenging to do this
kind of analysis for unrestricted natural language text. The main reason for this
difficulty is because natural language is designed to make human communication
efficient; this is in contrast with a programming language which is designed to
facilitate computer understanding. Specifically, there are two reasons why NLP is
very difficult. (1) We omit a lot of “common sense” knowledge in natural language
communication because we assume the hearer or reader possesses such knowledge
(thus there’s no need to explicitly communicate it). (2) We keep a lot of ambiguities,
which we assume the hearer/reader knows how to resolve (thus there’s no need to
waste words to clarify them). As a result, natural language text is full of ambiguity,
and resolving ambiguity would generally involve reasoning with a large amount of
common-sense knowledge, which is a general difficult challenge in artificial intel-

Chapter 3 Text Data Understanding 41

A dog is chasing a on the playground Lexical
analysis

(part-of-speech
tagging)

Syntactic analysis
(parsing)

Semantic analysis

Pragmatic analysis
(speech act)

A person saying this may be
reminding another person

to get the dog back.

Dog (d1).
Boy (b1).
Playground (p1).
Chasing (d1, b1, p1).

+

Scared(x) if Chasing(_,x,_).

Scared(b1)

Inference

boy
Det Noun

Noun phrase Noun phrase Noun phrase

Prep phraseVerb phrase

Complex verb

Aux Verb Det Prep Det NounNoun

Verb phrase

Sentence

Figure 3.1 An example of tasks in natural language understanding.

ligence. In this sense, NLP is “AI complete”, i.e., as difficult as any other difficult
problems in artificial intelligence.

The following are a few examples of specific challenges in natural language
understanding.

Word-level ambiguity. A word may have multiple syntactic categories and mul-
tiple senses. For example, design can be a noun or a verb (ambiguous POS);
root has multiple meanings even as a noun (ambiguous sense).

Syntactic ambiguity. A phrase or a sentence may have multiple syntactic struc-
tures. For example, natural language processing can have two different inter-
pretations: “processing of natural language” vs. “natural processing of lan-
guage” (ambiguous modification). Another example: A man saw a boy with
a telescope has two distinct syntactic structures, leading to a different result
regarding who had the telescope (ambiguous prepositional phrase (PP) at-
tachment).

Anaphora resolution. What exactly a pronoun refers to may be unclear. For
example, in John persuaded Bill to buy a TV for himself , does himself refer to
John or Bill?

42 Chapter 3 Text Data Understanding

Presupposition. He has quit smoking implies that he smoked before; making
such inferences in a general way is difficult.

3.1 History and State of the Art in NLP
Research in NLP dated back to at least the 1950s when researchers were very
optimistic about having computers that understood human language, particularly
for the purpose of machine translation. Soon however, it was clear, as stated in
Bar-Hillel’s report in 1960, that fully-automatic high-quality translation could not
be accomplished without knowledge. That is, a dictionary is insufficient; instead,
we would need an encyclopedia.

Realizing that machine translation may be too ambitious, researchers tackled
less ambitious applications of NLP in the late 1960s and 1970s with some success,
though the techniques developed failed to scale up, thus only having limited ap-
plication impact. For example, people looked at speech recognition applications
where the goal is to transcribe a speech. Such a task requires only limited under-
standing of natural language, thus more realistic; for example, figuring out the
exact syntactic structure is probably not very crucial for speech recognition. Two
interesting projects that demonstrated clear ability of computer understanding of
natural language are worth mentioning. One is the Eliza project where shallow
rules are used to enable a computer to play the role of a therapist to engage a nat-
ural language dialogue with a human. The other is the block world project which
demonstrated feasibility of deep semantic understanding of natural language when
the language is limited to a toy domain with only blocks as objects.

In the 1970s–1980s, attention was paid to process real-world natural-language
text data, particularly story understanding. Many formalisms for knowledge rep-
resentation and heuristic inference rules were developed. However, the general
conclusion was that even simple stories are quite challenging to understand by
a computer, confirming the need for large-scale knowledge representation and in-
ferences under uncertainty.

After the 1980s, researchers started moving away from the traditional symbolic
(logic-based) approaches to natural language processing, which mostly had proven
to be not robust for real applications, and paying more attention to statistical
approaches, which enjoyed more success, initially in speech recognition, but later
also in virtually all other NLP tasks. In contrast to symbolic approaches, statistical
approaches tend to be more robust because they have less reliance on human-
generated rules; instead, they often take advantage of regularities and patterns in

3.2 NLP and Text Information Systems 43

empirical uses of language, and rely solely on labeled training data by humans and
application of machine learning techniques.

While linguistic knowledge is always useful, today, the most advanced natural
language processing techniques tend to rely on heavy use of statistical machine
learning techniques with linguistic knowledge only playing a somewhat secondary
role. These statistical NLP techniques are successful for some of the NLP tasks. Part
of speech tagging is a relatively easy task, and state-of-the-art POS taggers may have
a very high accuracy (above 97% on news data). Parsing is more difficult, though
partial parsing can probably be done with reasonably high accuracy (e.g., above
90% for recognizing noun phrases)1.

However, full structure parsing remains very difficult, mainly because of ambi-
guities. Semantic analysis is even more difficult, only successful for some aspects
of analysis, notably information extraction (recognizing named entities such as
names of people and organization, and relations between entities such as who
works in which organization), word sense disambiguation (distinguishing different
senses of a word in different contexts of usage), and sentiment analysis (recogniz-
ing positive opinions about a product in a product review). Inferences and speech
act analysis are generally only feasible in very limited domains.

In summary, only “shallow” analysis of natural language processing can be done
for arbitrary text and in a robust manner; “deep” analysis tends not to scale up well
or be robust enough for analyzing unrestricted text. In many cases, a significant
amount of training data (created by human labeling) must be available in order to
achieve reasonable accuracy.

3.2 NLP and Text Information Systems
Because of the required robustness and efficiency in TIS applications, in general,
robust shallow NLP techniques tend to be more useful than fragile deep analysis
techniques, which may hurt application performance due to inevitable analysis
errors caused by the general difficulty of NLP. The limited value of deep NLP for
some TIS tasks is further due to various ways to bypass the more difficult task of
precisely understanding the meaning of natural language text and directly optimize
the task performance. Thus, while improved NLP techniques should in general
enable improved TIS task performance, lack of NLP capability isn’t necessarily a
major barrier for some application tasks, notably text retrieval, which is a relatively

1. These performance numbers were based on a specific data set, so they may not generalize well
even within the same domain.

44 Chapter 3 Text Data Understanding

Tasks Dependency on NLP
“Easier” and

more “workarounds”

Classification/
retrieval

Summarization/
extraction/

topic mining

Translation/
dialogue

Question
answering

Figure 3.2 “Easy” vs. “difficult” NLP applications.

easy task as compared with a more difficult task such as machine translation where
deep understanding of natural language is clearly required.

Figure 3.2 shows a number of TIS tasks that require somewhat different levels
of NLP. At one end of the spectrum, tasks such as retrieval and classification are
relatively easy, and in most of the cases, they don’t require deep NLP; indeed,
looking at the keywords mentioned in text is often sufficient to determine whether a
document is relevant to a query or about a certain topic. At the other end, however,
tasks such as machine translation and question answering would require much
more precise understanding; for example, a wrong parse of a sentence generally
would lead to a wrong translation unless the target language has a similar ambiguity
structure, and similarly, a wrong understanding of the question would lead to
wrong answers.

When it comes to a specific application task, it is often possible to bypass the
difficulty in accurately understanding natural language and go directly to solve the
application problem. A well-known example is the Eliza system,2 which is supposed
to play the role of a therapist and make a dialogue with a human user [Weizenbaum
1966]. The following is a sample dialogue.

Person: Men are all alike.

2. http://www.cs.nott.ac.uk/~pszgxk/courses/g5aiai/002history/eliza.htm

http://www.cs.nott.ac.uk/~pszgxk/courses/g5aiai/002history/eliza.htm

3.2 NLP and Text Information Systems 45

ELIZA : In what way?

Person: They’re always bugging us about something or other.

ELIZA: Can you think of a specific example?

Person: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here?

Person: He says I’m depressed much of the time.

ELIZA: I am sorry to hear that you are depressed.

Person: It’s true. I am unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

Person: I need some help, that much seems certain.

ELIZA: What would it mean to you if you got some help?

Person: Perhaps I could learn to get along with my mother.

ELIZA: Tell me more about your family

On the surface, the dialogue appears to be quite natural, and indeed, such a
dialogue might be useful to engage a depressed patient in a conversation. However,
the system does not really understand the language, and solely relies on heuristic
rules like the following to keep the dialogue going:

I remember X → Do you often think of X?

always → Can you think of a specific example?

Such rules enable the system to directly perform the task, i.e., making a conver-
sation, without necessarily trying to understand the real meaning of words and
determining the meaning of the entire sentence.

Such a pattern-based way of solving a problem has turned out to be quite pow-
erful. Indeed, modern machine learning approaches to natural language under-
standing are essentially based on this and in many ways are similar to the Eliza
system, but with two important differences. The first is that the rules in a machine
learning system would not be exact or strict; instead, they tend to be stochastic, and
the probabilities of choosing which rule would be empirically set based on a train-
ing data set where the expected behavior of a function to be computed is known.
Second, instead of having human to supply rules, the “soft” rules may be learned

46 Chapter 3 Text Data Understanding

automatically from the training data with only minimum help from users who can,
e.g., specify the elements in a rule.

Even difficult tasks like machine translation can be done by such statistical
approaches. The most useful NLP techniques for building a TIS are statistical ap-
proaches which tend to be much more robust than symbolic approaches. Statistical
language models are especially useful because they can quantify the uncertainties
associated with the use of natural language in a principled way.

3.3 Text Representation
Techniques from NLP allow us to design many different types of informative fea-
tures for text objects. Let’s take a look at the example sentence A dog is chasing a boy
on the playground in Figure 3.3. We can represent this sentence in many different
ways. First, we can always represent such a sentence as a string of characters. This
is true for every language. This is perhaps the most general way of representing text
since we can always use this approach to represent any text data. Unfortunately,
the downside to this representation is that it can’t allow us to perform semantic
analysis, which is often needed for many applications of text mining. We’re not
even recognizing words, which are the basic units of meaning for any language. (Of
course, there are some situations where characters are useful, but that is not the
general case.)

The next version of text representation is performing word segmentation to
obtain a sequence of words. In the example sentence, we get features like dog and
chasing. With this level of representation, we suddenly have much more freedom.
By identifying words, we can (for example), easily discover the most frequent words
in this document or the whole collection. These words can then be used to form
topics. Therefore, representing text data as a sequence of words opens up a lot of
interesting analysis possibilities.

However, this level of representation is slightly less general than a string of char-
acters. In some languages, such as Chinese, it’s actually not that easy to identify all
the word boundaries since in such a language text is a sequence of characters with
no spaces in between words. To solve this problem, we have to rely on some special
techniques to identify words and perform more advanced segmentation that isn’t
only based on whitespace (which isn’t always 100% accurate). So, the sequence of
words representation is not as robust as the string of characters representation. In
English, it’s very easy to obtain this level of representation so we can use this all
the time.

If we go further in natural language processing, we can add part-of-speech (POS)
tags to the words. This allows us to count, for example, the most frequent nouns; or,

3.3 Text Representation 47

we could determine what kind of nouns are associated with what kind of verbs. This
opens up more interesting opportunities for further analysis. Note in Figure 3.3
that we use a plus sign on the additional features because by representing text as
a sequence of part of speech tags, we don’t necessarily replace the original word
sequence. Instead, we add this as an additional way of representing text data.

Representing text as both words and POS tags enriches the representation of
text data, enabling a deeper, more principled analysis. If we go further, then we’ll
be parsing the sentence to obtain a syntactic structure. Again, this further opens up
more interesting analysis of, for example, the writing styles or grammatical error
correction.

If we go further still into semantic analysis, then we might be able to recognize
dog as an animal. We also can recognize boy as a person, and playground as a
location and analyze their relations. One deduction could be that the dog was
chasing the boy, and the boy is on the playground. This will add more entities and
relations, through entity-relation recognition. Now, we can count the most frequent
person that appears in this whole collection of news articles. Or, whenever you see
a mention of this person you also tend to see mentions of another person or object.
These types of repeated pattens can potentially make very good features.

A dog is chasing a on the playground

String of characters

Sequence of words
+ POS tags

+ Syntactic structures

+ Entities and relations

+ Logic predicates

+ Speech acts

A dog

boy

A dog is chasing a on the playgroundboy

Det Noun

Noun phrase Noun phrase Noun phrase

Prep phraseVerb phrase

Complex verb

Aux Verb Det Prep Det NounNoun

Verb phrase

Sentence

Animal Person
CHASE ON

Location

a boy the playground

Dog(d1). Boy(b1). Playground(p1). Chasing(d1,b1,p1)

Speech act = REQUEST

Deeper NLP: requires more human effort; less accurate
Closer to knowledge

representation

Figure 3.3 Illustration of different levels of text representation.

48 Chapter 3 Text Data Understanding

Such a high-level representation is even less robust than the sequence of words
or POS tags. It’s not always easy to identify all the entities with the right types and
we might make mistakes. Relations are even harder to find; again, we might make
mistakes. The level of representation is less robust, yet it’s very useful. If we move
further to a logic representation, then we have predicates and inference rules. With
inference rules we can infer interesting derived facts from the text. As one would
imagine, we can’t do that all the time for all kinds of sentences since it may take
significant computation time or a large amount of training data.

Finally, speech acts would add yet another level of representation of the intent
of this sentence. In this example, it might be a request. Knowing that would allow
us to analyze even more interesting things about the observer or the author of this
sentence. What’s the intention of saying that? What scenarios or what kinds of
actions will occur?

Figure 3.3 shows that if we move downwards, we generally see more sophisti-
cated NLP techniques. Unfortunately, such techniques would require more human
effort as well, and they are generally less robust since they attempt to solve a much
more difficult problem. If we analyze our text at levels that represent deeper analy-
sis of language, then we have to tolerate potential errors. That also means it’s still
necessary to combine such deep analysis with shallow analysis based on (for exam-
ple) sequences of words. On the right side, there is an arrow that points down to
indicate that as we go down, our representation of text is closer to the knowledge
representation in our mind. That’s the purpose of text mining!

Clearly, there is a tradeoff here between doing deeper analysis that might have
errors but would give us direct knowledge that can be extracted from text and doing
shadow analysis that is more robust but wouldn’t give us the necessary deeper
representation of knowledge.

Text data are generated by humans and are meant to be consumed by humans.
As a result, in text data analysis and text mining, humans play a very important role.
They are always in the loop, meaning that we should optimize for a collaboration
between humans and computers. In that sense, it’s okay that computers may not
be able to have a completely accurate representation of text data. Patterns that
are extracted from text data can be interpreted by humans, and then humans can
guide the computers to do more accurate analysis by annotating more data, guiding
machine learning programs to make them work more effectively.

Different text representation tends to enable different analyses, as shown in
Figure 3.4. In particular, we can gradually add more and more deeper analysis
results to represent text data that would open up more interesting representation
opportunities and analysis capabilities. The table summarizes what we have just

3.3 Text Representation 49

Text Rep Generality Enabled Analysis Examples of Application

String String processing Compression

Words Word relation analysis;
topic analysis; sentiment
analysis

Thesaurus discovery; topic-
and opinion-related
applications

+ Syntactic
structures

Syntactic graph analysis Stylistic analysis; structure-
based feature extraction

+ Entities &
relations

Knowledge graph analysis;
information network
analysis

Discovery of knowledge and
opinions about specific
entities

+ Logic
predicates

Integrative analysis of
scattered knowledge;
logic inference

Knowledge assistant for
biologists

Figure 3.4 Text representation and enabled analysis.

seen; the first column shows the type of text representation while the second
visualizes the generality of such a representation. By generality, we mean whether
we can do this kind of representation accurately for all the text data (very general) or
only some of them (not very general). The third column shows the enabled analysis
techniques and the final column shows some examples of applications that can be
achieved with a particular level of representation.

As a sequence of characters, text can only be processed by string processing
algorithms. They are very robust and general. In a compression application, we
don’t need to know word boundaries (although knowing word boundaries might
actually help). Sequences of words (as opposed to characters) offer a very important
level of representation; it’s quite general and relatively robust, indicating that it
supports many analysis techniques such as word relation analysis, topic analysis,
and sentiment analysis. As you may expect, many applications can be enabled by
these kinds of analysis. For example, thesaurus discovery has to do with discovering
related words, and topic- and opinion-related applications can also be based on
word-level representation. People might be interested in knowing major topics
covered in the collection of text, where a topic is represented as a distribution over
words.

Moving down, we’ll see we can gradually add additional representations. By
adding syntactic structures, we can enable syntactic graph analysis; we can use
graph mining algorithms to analyze these syntactic graphs. For example, stylistic

50 Chapter 3 Text Data Understanding

analysis generally requires syntactical structure representation. We can also gener-
ate structure-based features that might help us classify the text objects into differ-
ent categories by looking at their different syntactic structures. If you want to clas-
sify articles into different categories corresponding to different authors, then you
generally need to look at syntactic structures. When we add entities and relations,
then we can enable other techniques such as knowledge graphs or information net-
works. Using these more advanced feature representations allows applications that
deal with entities.

Finally, when we add logical predicates, we can integrate analysis of scattered
knowledge. For example, we can add an ontology on top of extracted information
from text to make inferences. A good example of an application enabled by this
level of representation is a knowledge assistant for biologists. This system is able
to manage all the relevant knowledge from literature about a research problem such
as understanding gene functions. The computer can make inferences about some
of the hypotheses that a biologist might be interested in. For example, it could
determine whether a gene has a certain function by reading literature to extract
relevant facts. It could use a logic system to track answers to researchers’ questions
about what genes are related to what functions. In order to support this level of
application, we need to go as far as logical representation.

This book covers techniques mainly focused on word-based representation.
These techniques are general and robust and widely used in various applications.
In fact, in virtually all text mining applications, you need this level of represen-
tation. Still, other levels can be combined in order to support more linguistically
sophisticated applications as needed.

3.4 Statistical Language Models
A statistical language model (or just language model for short) is a probability
distribution over word sequences. It thus gives any sequence of words a potentially
different probability. For example, a language model may give the following three-
word sequences different probabilities:

p(Today is Wednesday) = 0.001

p(Today Wednesday is) = 0.000000001

p(The equation has a solution) = 0.000001

Clearly, a language model can be context-dependent. In the language model
shown above, the sequence The equation has a solution has a smaller probability
than Today is Wednesday. This may be a reasonable language model for describ-

3.4 Statistical Language Models 51

ing general conversations, but it may be inaccurate for describing conversations
happening at a mathematics conference, where the sequence The equation has a
solution may occur more frequently than Today is Wednesday.

Given a language model, we can sample word sequences according to the distri-
bution to obtain a text sample. In this sense, we may use such a model to “generate”
text. Thus, a language model is also often called a generative model for text.

Why is a language model useful? A general answer is that it provides a principled
way to quantify the uncertainties associated with the use of natural language.
More specifically, it allows us to answer many interesting questions related to text
analysis and information retrieval. The following are some examples of questions
that a language model can help answer.

. Given that we see John and feels, how likely will we see happy as opposed to
habit as the next word? Answering this question can help speech recognition
as happy and habit have very similar acoustic signals, but a language model
can easily suggest that John feels happy is far more likely than John feels habit.

. Given that we observe baseball three times and game once in a news article,
how likely is it about the topic “sports”? This will obviously directly help text
categorization and information retrieval tasks.

. Given that a user is interested in sports news, how likely would it be for the
user to use baseball in a query? This is directly related to information retrieval.

If we enumerate all the possible sequences of words and give a probability to
each sequence, the model would be too complex to estimate because the number
of parameters is potentially infinite since we have a potentially infinite number
of word sequences. That is, we would never have enough data to estimate these
parameters. Thus, we have to make assumptions to simplify the model.

The simplest language model is the unigram language model in which we
assume that a word sequence results from generating each word independently.
Thus, the probability of a sequence of words would be equal to the product of the
probability of each word. Formally, let V be the set of words in the vocabulary, and
w1, . . . , wn a word sequence, where wi ∈ V is a word. We have

p(w1, . . . , wn) =
n∏

i=1

p(wi). (3.1)

Given a unigram language model θ , we have as many parameters as the words
in the vocabulary, and they satisfy the constraint

∑
w∈V p(w) = 1. Such a model

essentially specifies a multinomial distribution over all the words.

52 Chapter 3 Text Data Understanding

. . .
text 0.2
mining 0.1
association 0.01
clustering 0.02
. . .

food 0.00001
. . .

. . .
food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
. . .

text 0.00001
. . .

p(w|θ1) p(w|θ2)

Figure 3.5 Two examples of unigram language models, representing two different topics.

Given a language model θ , in general, the probabilities of generating two dif-
ferent documents D1 and D2 would be different, i.e., p(D1 | θ) �= p(D2 | θ). What
kind of documents would have higher probabilities? Intuitively it would be those
documents that contain many occurrences of the high probability words accord-
ing to p(w | θ). In this sense, the high probability words of θ can indicate the topic
captured by θ .

For example, the two unigram language models illustrated in Figure 3.5 suggest
a topic about “text mining” and a topic about “health”, respectively. Intuitively, if
D is a text mining paper, we would expect p(D | θ1) > p(D | θ2), while if D′ is a blog
article discussing diet control, we would expect the opposite: p(D′ | θ1) < p(D′ | θ2).
We can also expect p(D | θ1) > p(D′ | θ1) and p(D | θ2) < p(D′ | θ2).

Now suppose we have observed a document D (e.g., a short abstract of a text
mining paper) which is assumed to be generated using a unigram language model
θ , and we would like to infer the underlying model θ (i.e., estimate the probabilities
of each word w, p(w | θ)) based on the observed D. This is a standard problem
in statistics called parameter estimation and can be solved using many different
methods.

One popular method is the maximum likelihood (ML) estimator, which seeks a
model θ̂ that would give the observed data the highest likelihood (i.e., best explain
the data):

θ̂ = arg maxθ p(D | θ). (3.2)

It is easy to show that the ML estimate of a unigram language model gives each
word a probability equal to its relative frequency in D. That is,

p(w | θ̂) = c(w, D)

|D| , (3.3)

3.4 Statistical Language Models 53

where c(w, D) is the count of word w in D and |D| is the length of D, or total number
of words in D.

Such an estimate is optimal in the sense that it would maximize the probability
of the observed data, but whether it is really optimal for an application is still
questionable. For example, if our goal is to estimate the language model in the mind
of an author of a research article, and we use the maximum likelihood estimator
to estimate the model based only on the abstract of a paper, then it is clearly non-
optimal since the estimated model would assign zero probability to any unseen
words in the abstract, which would make the whole article have a zero probability
unless it only uses words in the abstract. Note that, in general, the maximum
likelihood estimate would assign zero probability to any unseen token or event in
the observed data; this is so because assigning a non-zero probability to such a
token or event would take away probability mass that could have been assigned
to an observed word (since all probabilities must sum to 1), thus reducing the
likelihood of the observed data. We will discuss various techniques for improving
the maximum likelihood estimator later by using techniques called smoothing.

Although extremely simple, a unigram language model is already very useful
for text analysis. For example, Figure 3.6 shows three different unigram language
models estimated on three different text data samples, i.e., a general English text
database, a computer science research article database, and a text mining research
paper. In general, the words with the highest probabilities in all the three models
are those functional words in English because such words are frequently used
in any text. After going further down on the list of words, one would see more
content-carrying and topical words. Such content words would differ dramatically
depending on the data to be used for the estimation, and thus can be used to
discriminate the topics in different text samples.

Unigram language models can also be used to perform semantic analysis of word
relations. For example, we can use them to find what words are semantically asso-
ciated with a word like computer. The main idea for doing this is to see what other
words tend to co-occur with the word computer. Specifically, we can first obtain a
sample of documents (or sentences) where computer is mentioned. We can then
estimate a language model based on this sample to obtain p(w | computer). This
model tells us which words occur frequently in the context of “computer.” However,
the most frequent words according to this model would likely be functional words
in English or words that are simply common in the data, but have no strong asso-
ciation with computer. To filter out such common words, we need a model for such
words which can then tell us what words should be filtered. It is easy to see that the
general English language model (i.e., a background language model) would serve

54 Chapter 3 Text Data Understanding

the 0.03
a 0.02
is 0.015
we 0.01
. . .

food 0.003
computer 0.00001
. . .

text 0.000006
. . .

the 0.032
a 0.019
is 0.014
we 0.011
. . .

computer 0.004
software 0.0001
. . .

text 0.00006
. . .

the 0.031
. . .

text 0.04
mining 0.035
association 0.03
clustering 0.005
computer 0.0009
. . .

food 0.000001
. . .

Background LM: p(w|B)

General
background
English text

B

Document LM: p(w|D)Collection LM: p(w|C)

Computer
science
papers

Text mining
paper

C D

Figure 3.6 Three different language models representing three different topics.

the purpose well. So we can use the background language model to normalize the
model p(w | computer) and obtain a probability ratio for each word. Words with
high ratio values can then be assumed to be semantically associated with computer
since they tend to occur frequently in its context, but not frequently in general. This
is illustrated in Figure 3.7.

More applications of language models in text information systems will be fur-
ther discussed as their specific applications appear in later chapters. For example,
we can represent both documents and queries as being generated from some lan-
guage model. Given this background however, the reader should have sufficient
information to understand the future chapters dealing with this powerful statisti-
cal tool.

Bibliographic Notes and Further Reading
There are many textbooks on NLP, including, Speech and Language Processing
[Jurafsky and Martin 2009], Foundations of Statistical NLP [Manning and Schütze
1999], and Natural Language Understanding [Allen 1995]. An in-depth coverage of
statistical language models can be found in the book Statistical Methods for Speech
Recognition [Jelinek 1997]. Rosenfeld [2000] provides a concise yet comprehensive

Exercises 55

the 0.03
a 0.02
is 0.015
we 0.01
. . .

computer 0.00001
. . .

the 0.032
a 0.019
is 0.014
we 0.008
computer 0.004
software 0.0001
. . .

text 0.00006

computer 400
software 150
program 104
. . .

text 3.0
. . .

the 1.1
a 0.99
is 0.9
we 0.8

Background LM: p(w|B)

General
background
English text

B

Topic LM: p(w|“computer”) Normalized topic LM:
p(w|“computer”)/p(w|B)

All documents
containing word

“computer”

Figure 3.7 Using topic language models and a background language model to find semantically
related words.

review of statistical language models. Zhai [2008] contains a detailed discussion
of the use of statistical language models for information retrieval, some of which
will be covered in later chapters of this book. An important topic in NLP that we
have not covered much in this chapter is information extraction. A comprehensive
introduction to this topic can be found in Sarawagi [2008], and a useful survey can
be found in Jiang [2012]. For a discussion of this topic in the context of information
retrieval, see the book Moens [2006].

Exercises
3.1. In what way is NLP related to text mining?

3.2. Does poor NLP performance mean poor retrieval performance? Explain.

3.3. Given a collection of documents for a specific topic, how can we use maximum
likelihood estimation to create a topic unigram language model?

3.4. How might the size of a document collection affect the quality of a language
model?

3.5. Why might maximum likelihood estimation not be the best guess of parame-
ters for a topic language model?

56 Chapter 3 Text Data Understanding

3.6. Suppose we appended a duplicate copy of the topic collection to itself and
re-estimated a maximum likelihood language model. Would θ change?

3.7. A unigram language model as defined in this chapter can take a sequence of
words as input and output its probability. Explain how this calculation has strong
independence assumptions.

3.8. Given a unigram language model θ estimated from this book, and two doc-
uments d1 = information retrieval and d2 = retrieval information, then is
p(d1 | θ) > p(d2 | θ)? Explain.

3.9. An n-gram language model records sequences of n words. How does the num-
ber of possible parameters change if we decided to use a 2-gram (bigram) language
model instead of a unigram language model? How about a 3-gram (trigram) model?
Give your answer in terms of V , the unigram vocabulary size.

3.10. Using your favorite programming language, estimate a unigram language
model using maximum likelihood. Do this by reading a single text file and delim-
iting words by whitespace.

3.11. Sort the words by their probabilities from the previous exercise. If you used
a different text file, how would your sorted list be different? How would it be the
same?

4META: A Unified Toolkit
for Text Data
Management and
Analysis
This chapter introduces the accompanying software META, a free and open-source
toolkit that can be used to analyze text data. Throughout this book, we give hands-
on exercises with META to practice concepts and explore different text mining
algorithms.

Most of the algorithms and methods discussed in this book can be found in
some form in the META toolkit. If META doesn’t include a technique discussed in
this book, it’s likely that a chapter exercise is to implement this feature yourself! De-
spite being a powerful toolkit, META’s simplicity makes feature additions relatively
straightforward, usually through extending a short class hierarchy.

Configuration files are an integral part of META’s forward-facing infrastructure.
They are designed such that exploratory analysis usually requires no programming
effort from the user. By default, META is packaged with various executables that can
be used to solve a particular task. For example, for a classification experiment the
user would run the following command in their terminal1:

./classify config.toml

This is standard procedure for using the default executables; they take only one
configuration file parameter. The configuration file format is explained in detail
later in this chapter, but essentially it allows the user to select a dataset, a way

1. Running the default classification experiment requires a dataset to operate on. The 20news-
groups dataset is specified in the default META config file and can be downloaded here: https://
meta-toolkit.org/data/20newsgroups.tar.gz. Place it in the meta/data/ directory.

58 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

to tokenize the dataset, and a particular classification algorithm to run (for this
example).

If more advanced functionality is desired, programming in C++ is required to
make calls to META’s API (applications programming interface). Both configuration
file and API usage are documented on META’s website, https://meta-toolkit.org as
well as in this chapter. Additionally, a forum for META exists (https://forum.meta-
toolkit.org), containing discussion surrounding the toolkit. It includes user support
topics, community-written documentation, and developer discussions.

The sections that follow delve into a little more detail about particular aspects
of META so the reader will be comfortable working with it in future chapters.

4.1 Design Philosophy
META’s goal is to improve upon and complement the current body of open source

machine learning and information retrieval software. The existing environment of
this open source software tends to be quite fragmented.

There is rarely a single location for a wide variety of algorithms; a good example
of this is the LIBLINEAR [Fan et al. 2008] software package for SVMs. While this
is the most cited of the open source implementations of linear SVMs, it focuses
solely on kernel-less methods. If presented with a nonlinear classification problem,
one would be forced to find a different software package that supports kernels
(such as the same authors’ LIBSVM package [Chang and Lin 2011]). This places an
undue burden on the researchers and students—not only are they required to have
a detailed understanding of the research problem at hand, but they are now forced
to understand this fragmented nature of the open-source software community,
find the appropriate tools in this mishmash of implementations, and compile and
configure the appropriate tool.

Even when this is all done, there is the problem of data formatting—it is unlikely
that the tools have standardized upon a single input format, so a certain amount of
data preprocessing is now required. This all detracts from the actual task at hand,
which has a marked impact on the speed of discovery and education.

META addresses these issues. In particular, it provides a unifying framework
for text indexing and analysis methods, allowing users to quickly run controlled
experiments. It modularizes the feature generation, instance representation, data
storage formats, and algorithm implementations; this allows for researchers and
students to make seamless transitions along any of these dimensions with minimal
effort.

4.2 Setting up META 59

META’s modularity supports exploration, encourages contributions, and in-
creases visibility to its inner workings. These facts make it a perfect companion
toolkit for this book. As mentioned at the beginning of the chapter, readers will
follow exercises that add real functionality to the toolkit. After reading this book
and learning about text data management and analysis, it is envisioned readers
continue to modify META to suit their text information needs, building upon their
newfound knowledge.

Finally, since META will always be free and open-source, readers as a community
can jointly contribute to its functionality, benefiting all those involved.

4.2 Setting up META
All future sections in this book will assume the reader has META downloaded and
installed. Here, we’ll show how to set up META.

META has both a website with tutorials and an online repository on GitHub.
To actually download the toolkit, users will check it out with the version control
software git in their command line terminal after installing any necessary prereq-
uisites.

The META website contains instructions for downloading and setting up the
software for a particular system configuration. At the time of writing this book, both
Linux and Mac OS are supported. Visit https://meta-toolkit.org/setup-guide.html
and follow the instructions for the desired platform. We will assume the reader has
performed the steps listed in the setup guide and has a working version of META for
all exercises and demonstrations in this book.

There are two steps that are not mentioned in the setup guide. The first is to
make sure the reader has the version of META that was current when this book was
published. To ensure that the commands and examples sync up with the software
the reader has downloaded, we will ensure that META is checked out with version
2.2.0. Run the following command inside the meta/ directory:

git reset --hard v2.2.0

The second step is to make sure that any necessary model files are also down-
loaded. These are available on the META releases page: https://github.com/meta-
toolkit/meta/releases/tag/v2.2.0. By default, the model files should be placed in the
meta/build/ directory, but you can place them anywhere as long as the paths in
the config file are updated.

60 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

Once these steps are complete, the reader should be able to complete any exer-
cise or run any demo. If any additional files or information are needed, it will be
provided in the accompanying section.

4.3 Architecture
All processed data in META is stored in an index. There are two index types:
forward_index and inverted_index. The former is keyed by document IDs, and
the latter is keyed by term IDs.

forward_index is used for applications such as topic modeling and most clas-
sification tasks.

inverted_index is used to create search engines, or do classification with k-
nearest-neighbor or similar algorithms.

Since each META application takes an index as input, all processed data is
interchangeable between all the components. This also gives a great advantage to
classification: META supports out-of-core classification by default! If a dataset is
small enough (like most other toolkits assume), a cache can be used such as no_
evict_cache to keep it all in memory without sacrificing any speed. (Index usage
is explained in much more detail in the search engine exercises.)

There are four corpus input formats.

line_corpus. each dataset consists of one to three files:

corpusname.dat. each document appears on one line

corpusname.dat.labels. optional file that includes the class or label of
the document on each line, again corresponding to the order in cor-

pusname.dat. These are the labels that are used for the classification
tasks.

file_corpus. each document is its own file, and the name of the file becomes
the name of the document. There is also a corpusname-full-corpus.txt

which contains (on each line) a required class label for each document fol-
lowed by the path to the file on disk. If there are no class labels, a placeholder
label should be required, e.g., “[none]”.

gz_corpus. similar to line_corpus, but each of its files and metadata files are
compressed using gzip compression:

corpusname.dat.gz. compressed version of corpusname.dat

corpusname.dat.labels.gz. compressed version of corpusname.

dat.labels

4.4 Tokenization with META 61

libsvm_corpus. If only being used for classification, META can also take
LIBSVM-formatted input to create a forward_index. There are many ma-
chine learning datasets available in this format on the LIBSVM site.2

For more information on corpus storage and configuration settings, we suggest
the reader consult https://meta-toolkit.org/overview-tutorial.html.

4.4 Tokenization with META
The first step in creating an index over any sort of text data is the “tokenization”
process. At a high level, this simply means converting individual text documents
into sparse vectors of counts of terms—these sparse vectors are then typically
consumed by an indexer to output an inverted_index over your corpus.

META structures this text analysis process into several layers in order to give the
user as much power and control over the way the text is analyzed as possible.

An analyzer, in most cases, will take a “filter chain” that is used to generate the
final tokens for its tokenization process: the filter chains are always defined as a
specific tokenizer class followed by a sequence of zero or more filter classes, each
of which reads from the previous class’s output. For example, here is a simple filter
chain that lowercases all tokens and only keeps tokens with a certain length range:

icu_tokenizer → lowercase_filter → length_filter

Tokenizers always come first. They define how to split a document’s string
content into tokens. Some examples are as follows.

icu_tokenizer. converts documents into streams of tokens by following the
Unicode standards for sentence and word segmentation.

character_tokenizer. converts documents into streams of single characters.

Filters come next, and can be chained together. They define ways that text can
be modified or transformed. Here are some examples of filters.

length_filter. this filter accepts tokens that are within a certain length and
rejects those that are not.

icu_filter. applies an ICU (International Components for Unicode)3 translit-
eration to each token in the sequence. For example, an accented character like
ı̈ is instead written as i.

2. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

3. http://site.icu-project.org/; note that different versions of ICU will tokenize text in slightly
different ways!

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://site.icu-project.org/

62 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

list_filter. this filter either accepts or rejects tokens based on a list. For
example, one could use a stop word list and reject stop words.

porter2_stemmer. this filter transforms each token according to the Porter2
English Stemmer rules.4

Analyzers operate on the output from the filter chain and produce token counts
from documents. Here are some examples of analyzers.

ngram_word_analyzer. Collects and counts sequences of n words (tokens)
that have been filtered by the filter chain.

ngram_pos_analyzer. Same as ngram_word_analyzer, but operates on part-
of-speech tags from META’s CRF implementation.

tree_analyzer. Collects and counts occurrences of parse tree features.

libsvm_analyzer. Converts a LIBSVM line_corpus into META format.

META defines a sane default filter chain that users are encouraged to use for
general text analysis in the absence of any specific requirements. To use it, one
should specify the following in the configuration file:

[[analyzers]]

method = "ngram-word"

ngram = 1

filter = "default-chain"

This configures the text analysis process to consider unigrams of words gener-
ated by running each document through the default filter chain. This filter chain
should work well for most languages, as all of its operations (including but not lim-
ited to tokenization and sentence boundary detection) are defined in terms of the
Unicode standard wherever possible.

To consider both unigrams and bigrams, the configuration file should look like
the following:

[[analyzers]]

method = "ngram-word"

ngram = 1

filter = "default-chain"

[[analyzers]]

4. http://snowball.tartarus.org/algorithms/english/stemmer.html

http://snowball.tartarus.org/algorithms/english/stemmer.html

4.4 Tokenization with META 63

method = "ngram-word"

ngram = 2

filter = "default-chain"

Each [[analyzers]] block defines a single analyzer and its corresponding fil-
ter chain: as many can be used as desired—the tokens generated by each analyzer
specified will be counted and placed in a single sparse vector of counts. This is
useful for combining multiple different kinds of features together into your doc-
ument representation. For example, the following configuration would combine
unigram words, bigram part-of-speech tags, tree skeleton features, and subtree
features.

[[analyzers]]

method = "ngram-word"

ngram = 1

filter = "default-chain"

[[analyzers]]

method = "ngram-pos"

ngram = 2

filter = [{type = "icu-tokenizer"}, {type = "ptb-normalizer"}]

crf-prefix = "path/to/crf/model"

[[analyzers]]

method = "tree"

filter = [{type = "icu-tokenizer"}, {type = "ptb-normalizer"}]

features = ["skel", "subtree"]

tagger = "path/to/greedy-tagger/model"

parser = "path/to/sr-parser/model"

If an application requires specific text analysis operations, one can specify di-
rectly what the filter chain should look like by modifying the configuration file.
Instead of filter being a string parameter as above, we will change filter to look very
much like the [[analyzers]] blocks: each analyzer will have a series of [[ana-
lyzers.filter]] blocks, each of which defines a step in the filter chain. All filter
chains must start with a tokenizer. Here is an example filter chain for unigram
words like the one at the beginning of this section:

[[analyzers]]

method = "ngram-word"

ngram = 1

[[analyzers.filter]]

type = "icu-tokenizer"

64 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

[[analyzers.filter]]

type = "lowercase"

[[analyzers.filter]]

type = "length"

min = 2

max = 35

META provides many different classes to support building filter chains. Please
look at the API documentation5 for more information. In particular, the analyz-

ers::tokenizers namespace and the analyzers::filters namespace should
give a good idea of the capabilities. The static public attribute id for a given class
is the string needed for the “type” in the configuration file.

4.5 Related Toolkits
Existing toolkits supporting text management and analysis tend to fall into two
categories. The first is search engine toolkits, which are especially suitable for
building a search engine application, but tend to have limited support for text
analysis/mining functions. Examples include the following.

Lucene. https://lucene.apache.org/

Terrier. http://terrier.org/

Indri/Lemur. http://www.lemurproject.org/

The second is text mining or general data mining and machine learning toolkits,
which tend to selectively support some text analysis functions, but generally do not
support search capability. Examples include the following.

Weka. http://www.cs.waikato.ac.nz/ml/weka/

LIBSVM. https://www.csie.ntu.edu.tw/c̃jlin/libsvm/

Stanford NLP. http://nlp.stanford.edu/software/corenlp.shtml

Illinois NLP Curator. http://cogcomp.cs.illinois.edu/page/software_view/
Curator

Scikit Learn. http://scikit-learn.org/stable/

NLTK. http://www.nltk.org/

5. Visit https://meta-toolkit.org/doxygen/namespaces.html

http://terrier.org/
http://www.lemurproject.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://nlp.stanford.edu/software/corenlp.shtml
http://cogcomp.cs.illinois.edu/page/software_view/
l Curator
http://scikit-learn.org/stable/
http://www.nltk.org/

Exercises 65

However, there is a lack of seamless integration of search engine capabilities
with various text analysis functions, which is necessary for building a unified system
for supporting text management and analysis. A main design philosophy of META,
which also differentiates META from the existing toolkits, is its emphasis on the
tight integration of search capabilities (indeed, text access capabilities in general)
with text analysis functions, enabling it to provide full support for building a power-
ful text analysis application. To facilitate education and research, META is designed
with an emphasis on modularity and extensibility achieved through object-oriented
design. META can be used together with existing toolkits in multiple ways. For ex-
ample, for very large-scale text applications, an existing search engine toolkit can
be used to support search, while META can be used to further support analysis of
the found search results or any subset of text data that are obtained from the orig-
inal large data set. NLP toolkits can be used to preprocess text data and generate
annotated text data for modules in META to use as input. META can also be used
to generate a text representation that would be fed into a different data mining or
machine learning toolkit.

Exercises
In its simplest form, text data could be a single document in .txt format. This
exercise will get you familiar with various techniques that are used to analyze
text. We’ll use the novel A Tale of Two Cities by Charles Dickens as example text.
The book is called two-cities.txt, and is located at http://sifaka.cs.uiuc.edu/ir/
textdatabook/two-cities.txt. You can also use any of your own plaintext files that
have multiple English sentences.

Like all future exercises, we will assume that the reader followed the META setup
guide and successfully compiled the executables. In this exercise, we’ll only be
using the profile program. Running ./profile from inside the build/ directory
will print out the following usage information:

Usage: ./profile config.toml file.txt [OPTION]

where [OPTION] is one or more of:

--stem perform stemming on each word

--stop remove stop words

--pos annotate words with POS tags

--pos-replace replace words with their POS tags

--parse create grammatical parse trees from file content

--freq-unigram sort and count unigram words

--freq-bigram sort and count bigram words

--freq-trigram sort and count trigram words

--all run all options

http://sifaka.cs.uiuc.edu/ir/textdatabook/two-cities.txt

66 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

If running ./profile prints out this information, then everything has been
set up correctly. We’ll look into what each of these options mean in the following
exercises.

4.1. Stop Word Removal. Consider the following words: I, the, of, my, it, to, from.
If it was known that a document contained these words, would there be any idea
what the document was about? Probably not. These types of words are called stop
words. Specifically, they are very high frequency words that do not contain content
information. They are used because they’re grammatically required, such as when
connecting sentences.

Since these words do not contain any topical information, they are often removed
as a preprocessing step in text analysis. Not only are these (usually) useless words
ignored, but having less data can mean that algorithms run faster!

./profile config.toml two-cities.txt --stop

Now, use the profile program to remove stop words from the document two-
cities.txt. Can you still get an idea of what the book is about without these words
present?

4.2. Stemming. Stemming is the process of reducing a word to a base form.
This is especially useful for search engines. If a user wants to find books about
running, documents containing the word run or runs would not match. If we apply
a stemming algorithm to a word, it is more likely that other forms of the word will
match it in an information retrieval task.

The most popular stemming algorithm is the Porter2 English Stemmer, devel-
oped by Martin Porter. It is a slightly improved version from the original Porter
Stemmer from 1980. Some examples are:

{run, runs, running} → run

{argue, argued, argues, arguing} → argu

{lies, lying , lie} → lie

META uses the Porter2 stemmer by default. You can read more about the Porter2
stemmer here: http://snowball.tartarus.org/algorithms/english/stemmer.html. An
online demo of the stemmer is also available if you’d like to play around with it:
http://web.engr.illinois.edu/~massung1/p2s_demo.html.

Now that you have an idea of what stemming is, run the stemmer on A Tale of
Two Cities.

./profile config.toml two-cities.txt --stem

http://snowball.tartarus.org/algorithms/english/stemmer.html
http://web.engr.illinois.edu/~massung1/p2s_demo.html

Exercises 67

Like stop word removal, stemming tries to keep the basic meaning behind the
original text. Can you still make sense of it after it’s stemmed?

4.3. Part-of-Speech Tagging. When learning English, students often encounter
different grammatical labels for words, such as noun, adjective, verb, etc. In linguis-
tics and computer science, there is a much larger dichotomy of these labels called
part of speech (POS) tags. Each word can be assigned a tag based on surrounding
words. Consider the following sentence: All hotel rooms are pretty much the same,
although the room number might change. Here’s a part-of-speech tagged version:

AllDT hotelNN roomsNNS areV BP prettyRB muchRB theDT sameJJ ,,

althoughIN theDT roomNN numberNN mightMD changeV B ..

Above, V BP and V B are different types of verbs, NN and NNS are singular
and plural nouns, and DT means determiner. This is just a subset of about 80
commonly used tags. Not every word has a unique part of speech tag. For instance,
flies and like can have multiple tags depending on the context:

TimeNN fliesV BZ likeIN anDT arrowNN ..

FruitNN fliesNNS likeV BP aDT bananaNN ..

Such situations can make POS-tagging challenging. Nevertheless, human agree-
ment on POS tag labeling is about 97%, which is the ceiling for automatic taggers.

POS tags can be used in text analysis as an alternate (or additional) represen-
tation to words. Using these tags captures a slightly more grammatical sense of a
document or corpus. The profile program has two options for POS tagging. The
first annotates each word like the examples above, and the second replaces each
word with its POS tag.

./profile config.toml two-cities.txt --pos

./profile config.toml two-cities.txt --pos-replace

Note that POS tagging the book may take up to one minute to complete. Does
it look like META’s POS tagger is accurate? Can you find any mistakes? When
replacing the words with their tags, is it possible to determine what the original
sentence was? Experiment with the book or any other text file.

4.4. Parsing. Grammatical parse trees represent deeper syntactic knowledge
from text sentences. They represent sentence phrase hierarchy as a tree structure.
Consider the example in Figure 4.1.

The parse tree is rooted with S, denoting Sentence; the sentence is composed
of a noun phrase (NP) followed by a verb phrase (VP) and period. The leaves of the

68 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

many theoretical ideas

JJ JJ NNShave

VBP

They

PRP NP

NP VP

S

Figure 4.1 An example of a parse tree.

tree are the words in the sentence, and the preterminals (the direct parents of the
leaves) are part-of-speech tags.

Some common features from a parse tree are production rules such as S →
NP V P , tree depth, and structural tree features. Syntactic categories (node labels)
alone can also be used.

The following command runs the parser on each sentence in the input file:

./profile config.toml two-cities.txt --parse

Like POS-tagging, the parsing may also take a minute or two to complete.

4.5. Frequency Analysis. Perhaps the most common text-processing technique is
frequency counting. This simply counts how many times each unique word appears
in a document (or corpus). Viewing a descending list of words sorted by frequency
can give you an idea of what the document is about. Intuitively, similar documents
should have some of the same high-frequency words . . . not including stop words.

Instead of single words, we can also look at strings of n words, called n-grams.
Consider this sentence: I took a vacation to go to a beach.

1-grams (unigrams):

{I : 1, took : 1, a : 2, vacation : 1, to : 2, go : 1, beach : 1}

2-grams (bigrams):

{I took : 1, took a : 1, a vacation : 1, vacation to : 1,

to go : 1, go to : 1, to a : 1, a beach : 1}

Exercises 69

3-grams (trigrams):

{I took a : 1, took a vacation : 1, a vacation to : 1, . . .}

As we will see in this text, the unigram words document representation is of
utmost importance for text representation. This vector of counts representation
does have a downside though: we lost the order of the words. This representation
is also known as “bag-of-words,” since we only know the counts of each word, and
no longer know the context or position. This unigram counting scheme can be used
with POS tags or any other type of token derived from a document.

Use the following three commands to do an n-gram frequency analysis on a
document, for n ∈ [1, 3].

./profile config.toml two-cities.txt --freq-unigram

./profile config.toml two-cities.txt --freq-bigram

./profile config.toml two-cities.txt --freq-trigram

This will give the output file two-cities.freq.1.txt for the option --freq-

unigram and so on.
What makes the output reasonably clear? Think back to stop words and stem-

ming. Removing stop words gets rid of the noisy high-frequency words that don’t
give any information about the content of the document. Stemming will aggre-
gate inflected words into a single count. This means the partial vector {run : 4,
running : 2, runs : 3} would instead be represented as {run : 9}. Not only does this
make it easier for humans to interpret the frequency analysis, but it can improve
text mining algorithms, too!

4.6. Zipf’s Law. In English, the top four most frequent words are about 10–15%
of all word occurrences. The top 50 words are 35–40% of word occurrences. In fact,
there is a similar trend in any human language. Think back to the stop words. These
are the most frequent words, and make up a majority of text. At the same time, many
words may only appear once in a given document.

We can plot the rank of a word on the x axis, and the frequency count on the y

axis. Such a graph can give us an idea of the word distribution in a given document
or collection. In Figure 4.2, we counted unigram words from another Dickens book,
Oliver Twist. The plot on the left is a normal x ∼ y plot and the one on the right is
a log x ∼ log y plot.

70 Chapter 4 META: A Unified Toolkit for Text Data Management and Analysis

10

8

6

4

2

0

0 2 4 6 8 10

W
or

d
 fr

eq
u

en
cy

 (t
h

ou
sa

n
d

s)

Word frequency rank (thousands)

Word ranks in Oliver Twist Word ranks in Oliver Twist

10,000

1,000

100

10

1

1 10 100 1,000 10,000

W
or

d
 fr

eq
u

en
cy

Word frequency rank

Figure 4.2 Illustration of Zipf’s law.

Zipf’s law describes the shape of these plots. What do you think Zipf’s law states?
The shape of these plots allows us to apply certain techniques to take advantage of
the word distribution in natural language.

IIP A R T

TEXT DATA ACCESS

5Overview of Text
Data Access

Text data access is the foundation for text analysis. Text access technology plays two
important roles in text management and analysis applications. First, it enables re-
trieval of the most relevant text data to a particular analysis problem, thus avoiding
unnecessary overhead from processing a large amount of non-relevant data. Sec-
ond, it enables interpretation of any analysis results or discovered knowledge in
appropriate context and provides data provenance (origin).

The general goal of text data access is to connect users with the right information
at the right time. This connection can be done in two ways: pull, where the users
take the initiative to fetch relevant information out from the system, and push,
where the system takes the initiative to offer relevant information to users. In this
chapter, we will give a high-level overview of these two modes of text data access.
Then, we will formalize and motivate the problem of text retrieval. In the following
chapters, we will cover specific techniques for supporting text access in both push
and pull modes.

5.1 Access Mode: Pull vs. Push
Because text data are created for consumption by humans, humans play an impor-
tant role in text data analysis and management applications. Specifically, humans
can help select the most relevant data to a particular application problem, which
is beneficial since it enables us to avoid processing the huge amount of raw text
data (which would be inefficient) and focus on analyzing the most relevant part.
Selecting relevant text data from a large collection is the basic task of text access.
This selection is generally based on a specification of the information need of an
analyst (a user), and can be done in two modes: pull and push. Figure 5.1 describes
how these modes fit together along with querying and browsing.

74 Chapter 5 Overview of Text Data Access

Push mode
(long-term)

Pull mode
(short-term)

TIS access
modes

BrowsingQuerying

Figure 5.1 The dichotomy of text information access modes.

In pull mode, the user initiates the access process to find the relevant text data,
typically by using a search engine. This mode of text access is essential when a user
has an ad hoc information need, i.e., a temporary information need that might
disappear once the need is satisfied. In such a case, the user can use a query to
find relevant information with a search engine. For example, a user may have a
need to buy a product and thus be interested in retrieving all the relevant opinions
about candidate products; after the user has purchased the product, the user would
generally no longer need such information. Another example is that during the
process of analyzing social media data to understand opinions about an emerging
event, the analyst may also decide to explore information about a particular entity
related to the event (e.g., a person), which can also trigger a search activity.

While querying is the most common way of accessing text data in the pull mode,
browsing is another complementary way of accessing text data in the pull mode, and
can be very useful when a user does not know how to formulate an effective query,
or finds it inconvenient to enter a keyword query (e.g., through a smartphone), or
simply wants to explore a topic with no fixed goal. Indeed, when searching the Web,
users tend to mix querying and browsing (e.g., while traversing through hyperlinks).

In general, we may regard querying and browsing as two complementary ways
of finding relevant information in the information space. Their relation can be
understood by making an analogy between information seeking and sightseeing
in a physical world. When a tourist knows the exact address of an attraction, the
tourist can simply take a taxi directly to the attraction; this is similar to when a
user knows exactly what he or she is looking for and can formulate a query with the

5.1 Access Mode: Pull vs. Push 75

“right keywords,” which would bring to the user relevant pages directly. However,
if a tourist doesn’t know the exact address of an attraction, the tourist may want to
take a taxi to an approximate location and then walk around to find the attraction.
Similarly, if a user does not have a good knowledge about the target pages, he or
she can also use an approximate query to reach some related pages and then browse
into truly relevant information. Thus, when querying does not work well, browsing
can be very useful.

In the push mode, the system initiates the process to recommend a set of
relevant information items to the user. This mode of information access is generally
more useful to satisfy a long-standing information need of a user or analyst. For
example, a researcher’s research interests can be regarded as relatively stable over
time. In comparison, the information stream (i.e., published research articles)
is dynamic. In such a scenario, although a user can regularly search for relevant
literature information with queries, it is more desirable for a recommender (also
called filtering) system to monitor the dynamic information stream and “push” any
relevant articles to the user based on the matching of the articles with the user’s
interests (e.g., in the form of an email). In some long-term analytics applications,
it would also be desirable to use the push mode to monitor any relevant text data
(such as relevant social media) about a topic related to the application.

Another scenario of push mode is producer-initiated recommendation, which
can be more appropriately called selective dissemination of information (SDI). In
such a scenario, the producer of information has an interest in disseminating
the information among relevant users, and would push an information item to
such users. Advertising of product information on search result pages is such an
example. The recommendation can be delivered through email notifications or
recommended through a search engine result page.

There are broadly two kinds of information needs: short-term need and long-
term need. Short-term needs are most often associated with pull mode, and long-
term needs are most often associated with push mode. A short-term information
need is temporary and usually satisfied through search or navigation in the informa-
tion space, whereas a long-term information need can be better satisfied through
filtering or recommendation where the system would take the initiative to push
the relevant information to a user. Ad hoc retrieval is extremely important because
ad hoc information needs show up far more frequently than long-term informa-
tion needs. The techniques effective for ad hoc retrieval can usually be re-used for
filtering and recommendation as well. Also, in the case of long-term information
needs, it is possible to collect user feedback, which can be exploited. In this sense,

76 Chapter 5 Overview of Text Data Access

ad hoc retrieval is much harder, as we do not have much feedback information
from a user (i.e., little training data for a particular query). Due to the availability of
training data, the problem of filtering or recommendation can usually be solved by
using supervised machine learning techniques, which are covered well in many ex-
isting books. Thus, we will cover ad hoc retrieval in much more detail than filtering
and recommendation.

5.2 Multimode Interactive Access
Ideally, the system should provide support for users to have multimode interactive
access to relevant text data so that the push and pull modes are integrated in
the same information access environment, and querying and browsing are also
seamlessly integrated to provide maximum flexibility to users and allow them to
query and browse at will.

In Figure 5.2, we show a snapshot of a prototype system (http://timan.cs.uiuc
.edu/proj/sosurf/) where a topic map automatically constructed based on a set of
queries collected in a commercial search engine has been added to a regular search

Click-Through

Search Result for "dining table"

Figure 5.2 Sample interface of browsing with a topic map where browsing and querying are
naturally integrated.

http://timan.cs.uiuc.edu/proj/sosurf/

5.2 Multimode Interactive Access 77

engine interface to enable a user to browse the information space flexibly. With this
interface, a user can do any of the following at any moment.

Querying (long-range jump). When a user submits a new query through the
search box the search results from a search engine will be shown in the right
pane. At the same time, the relevant part of a topic map is also shown on the
left pane to facilitate browsing should the user want to.

Navigating on the map (short-range walk). The left pane in our interface is to
let a user navigate on the map. When a user clicks on a map node, this pane
will be refreshed and a local view with the clicked node as the current focus
will be displayed. In the local view, we show the parents, the children, and
the horizontal neighbors of the current node in focus (labelled as “center” in
the interface). A user can thus zoom into a child node, zoom out to a parent
node, or navigate into a horizontal neighbor node. The number attached to
a node is a score for the node that we use for ranking the nodes. Such a map
enables the user to “walk” in the information space to browse into relevant
documents without needing to reformulate queries.

Viewing a topic region. The user may double-click on a topic node on the map
to view the documents covered in the topic region. The search result pane
would be updated with new results corresponding to the documents in the
selected topic region. From a user’s perspective, the result pane always shows
the documents in the current region that the user is focused on (either search
results of the query or the documents corresponding to a current node on the
map when browsing).

Viewing a document. Within the result pane, a user can select any document
to view as in a standard search interface.

In Figure 5.3, we further show an example trace of browsing in which the user
started with a query dining table, zoomed into asian dining table, zoomed out back to
dining table, browsed horizontally first to dining chair and then to dining furniture,
and finally zoomed out to the general topic furniture where the user would have
many options to explore different kinds of furniture. If this user feels that a “long-
jump” is needed, he or she can use a new query to achieve it. Since the map can be
hidden and only brought to display when the user needs it, such an interface is a very
natural extension of the current search interface from a user’s perspective. Thus,
we can see how one text access system can combine multiple modes of information
access to suit a user’s current needs.

78 Chapter 5 Overview of Text Data Access

1. Zoom in on
“asian dining table”

3. Horizontal navigation
to “dining chairs”

4. Further navigation
to “dining furniture”

5. Zoom out to
explore “furniture”2. Zoom back out

to “dining table”

Figure 5.3 A sample trace of browsing showing how a user can navigate in the information space
without querying.

5.3 Text Retrieval
The most important tool for supporting text data access is a search engine, which
is why web search engines are used by many people on a daily basis. Search engines
directly provide support for querying and can be easily extended to provide recom-
mendation or browsing. Moreover, the techniques used to implement an effective
search engine are often also useful for implementation of a recommender system
as well as many text analysis functions. We thus devote a large portion of this book
to discussing search engine techniques.

In this section, we discuss the problem of text retrieval (TR), which is solved
by developing a search engine system. We specify the differences between un-
structured TR and structured database retrieval. We then make an argument for
document ranking as opposed to document selection. This provides a basis for us
to discuss in the next chapter how to rank documents for a query.

From a user’s perspective, the problem of TR is to use a query to find relevant
documents in a collection of text documents. This is a frequently needed task
because users often have temporary ad hoc information needs for various tasks,

5.3 Text Retrieval 79

and would like to find the relevant information immediately. The system to support
TR is a text retrieval system, or a search engine.

Although TR is sometimes used interchangeably with the more general term “in-
formation retrieval” (IR), the latter also includes retrieval of other types of informa-
tion such as images or videos. It is worth noting, though, that retrieval techniques
for other non-textual data are less mature and, as a result, retrieval of other types
of information tends to rely on using text retrieval techniques to match a keyword
query with companion text data with a non-textual data element. For example, the
current image search engines on the Web are essentially a TR system where each
image is represented by a text document consisting of any associated text data with
the image (e.g., title, caption, or simply textual context of the image such as the
news article content where an image is included).

In industry, the problem of TR is generally referred to as the search problem,
and the techniques for text retrieval are often called search technology or search
engine technology.

The task of TR can be easy or hard, depending on specific queries and specific
collections. For example, during a web search, finding homepages is generally easy,
but finding out people’s opinions about some topic (e.g., U.S. foreign policy) would
be much harder. There are several reasons why TR is difficult:

. a query is usually quite short and incomplete (no formal language like SQL);

. the information need may be difficult to describe precisely, especially when
the user isn’t familiar with the topic, and

. precise understanding of the document content is difficult. In general, since
what counts as the correct answer is subjective, even when human experts
judge the relevance of documents, they may disagree with each other.

Due to the lack of clear semantic structures and difficulty in natural language
understanding, it is often challenging to accurately retrieve relevant information to
a user’s query. Indeed, even though the current web search engines may appear to
be sufficient sometimes, it may still be difficult for a user to quickly locate and har-
vest all the relevant information for a task. In general, the current search engines
work very well for navigational queries and simple, popular informational queries,
but in the case where a user has a complex information need such as analyzing
opinions about products to buy, or researching medical information about some
symptoms, they often work poorly. Moreover, the current search engines generally
provide little or no support to help users digest and exploit the retrieved informa-
tion. As a result, even if a search engine can retrieve the most relevant information,

80 Chapter 5 Overview of Text Data Access

a user would still have to sift through a long list of documents and read them in
detail to fully digest the knowledge buried in text data in order to perform their task
at hand. The techniques discussed later in this book can be exploited to help users
digest the found information quickly or directly analyze a large amount of text data
to reveal useful and actionable knowledge that can be used to optimize decision
making or help a user finish a task.

5.4 Text Retrieval vs. Database Retrieval
It is useful to make a comparison of the problem of TR and the similar problem of
database retrieval. Both retrieval tasks are to help users find relevant information,
but due to the difference in the data managed by these two tasks, there are many
important differences.

First, the data managed by a search engine and a database system are different.
In databases, the data are structured where each field has a clearly defined meaning
according to a schema. Thus, the data can be viewed as a table with well-specified
columns. For example, in a bank database system, one field may be customer
names, another may be the address, and yet another may be the balance of each
type of account. In contrast, the data managed by a search engine are unstructured
text which can be difficult for computers to understand.1 Thus, even if a sentence
says a person lives in a particular address, it remains difficult for the computer to
answer a query about the address of a person in response to a keyword query since
there is no simple defined structure to free text. Therefore structured data are often
easier to manage and analyze since they conform to a clearly defined schema where
the meaning of each field is well defined.

Second, a consequence of the difference in the data is that the queries that
can be supported by the two are also different. A database query clearly specifies
the constraints on the fields of the data table, and thus the expected retrieval
results (answers to the query) are very well specified with no ambiguity. In a search
engine, however, the queries are generally keyword queries, which are only a vague
specification of what documents should be returned. Even if the computer can fully
understand the semantics of natural language text, it is still often the case that the
user’s information need is vague due to the lack of complete knowledge about the
information to be found (which is often the reason why the user wants to find the
information in the first place!). For example, in the case of searching for relevant

1. Although common parlance refers to text as unstructured with a meaningful contrast with
relational database structuring, it employs a narrow sense of “structure.” For example, from a
linguistics perspective, grammar provides well-defined structure. To study this matter further,
see the 5S (societies, scenarios, spaces, structures, and streams) works by Fox et al. [2012]

5.4 Text Retrieval vs. Database Retrieval 81

literature to a research problem, the user is unlikely able to clearly and completely
specify which documents should be returned.

Finally, the expected results in the two applications are also different. In data-
base search, we can retrieve very specific data elements (e.g., specific columns); in
TR, we are generally only able to retrieve a set of relevant documents. With passages
or fields identified in a text document, a search engine can also retrieve passages,
but it is generally difficult to retrieve specific entities or attribute values as we can in
a database. This difference is not as essential as the difference in the vague specifi-
cation of what exactly is the “correct” answer to a query, but is a direct consequence
of the vague information need in TR.

Due to these differences, the challenges in building a useful database and a
useful search engine are also somewhat different. In databases, since what items
should be returned is clearly specified, there is no challenge in determining which
data elements satisfy the user’s query and thus should be returned; a major re-
maining challenge is how to find the answers as quickly as possible especially
when there are many queries being issued at the same time. While the efficiency
challenge also exists in a search engine, a more important challenge there is to
first figure out which documents should be returned for a query before worrying
about how to return the answers quickly. In database applications—at least tradi-
tional database applications—it is also very important to maintain the integrity
of the data; that is, to ensure no inconsistency occurs due to power failure. In
TR, modeling a user’s information need and search tasks is important, again due
to the difficulty for a user to clearly specify information needs and the difficulty
in NLP.

Since what counts as the best answer to a query depends on the user, in TR,
the user is actually part of our input (together with the query, and document
set). Thus, there is no mathematical way to prove that one answer is better than
another or prove one method is better than another. Instead, we always have to
rely on empirical evaluation using some test collections and users. In contrast, in
database research, since the main issue is efficiency, one can prove one algorithm
is better than another by analyzing the computational complexity or do some
simulation study. Note that, however, when doing simulation study (to determine
which algorithm is faster), we also face the same problem as in text retrieval—the
simulation may not accurately reflect the real applications. Thus, an algorithm
shown to be faster with simulation may not be actually faster for a particular
application. Similarly, a retrieval algorithm shown to be more effective with a test
collection may turn out to be less effective for a particular application or even
another test collection. How to reliably evaluate retrieval algorithms is itself a
challenging research topic.

82 Chapter 5 Overview of Text Data Access

Because of the difference, the two fields have been traditionally studied in differ-
ent communities with a different application basis. Databases have had widespread
applications in virtually every domain with a well-established strong industry. The
IR community that studies text retrieval has been an interdisciplinary community
involving library and information science and computer science, but had not had
a strong industry base until the Web was born in the early 1990s. Since then, the
search engine industry has dominated, and as more and more online information
is available, the search engine technologies (which include TR and other technical
components such as machine learning and natural language processing) will con-
tinue to grow. Soon we will find search technologies to have widespread use just
like databases. Furthermore, because of the inherent similarity between database
search and TR, because both efficiency and effectiveness (accuracy) are important,
and because most online data has text fields as well as some kind of structures, the
two fields are now moving closer and closer to each other, leading to some common
fundamental questions such as: “What should be the right query language?”; “How
can we rank items accurately?”; “How do we find answers quickly?”; and “How do
we support interactive search?”

Perhaps the most important conclusion from this comparison is that the prob-
lem of text retrieval is an empirically defined problem. This means that which method
works better cannot be answered by pure analytical reasoning or mathematical
proofs. Instead, it has to be empirically evaluated by users, making it a significant
challenge in evaluating the effectiveness of a search engine. This is also the reason
why a significant amount of effort has been spent in research of TR evaluation since
it was initially studied in the 1960s. The evaluation methodology of TR remains an
important open research topic today; we discuss it in detail in Chapter 9.

5.5 Document Selection vs. Document Ranking
Given a document collection (a set of unordered text documents), the task of text
retrieval can be defined as using a user query (i.e., a description of the user’s
information need) to identify a subset of documents that can satisfy the user’s
information need. In order to computationally solve the problem of TR, we must
first formally define it. Thus, in this section, we will provide a formal definition of
TR and discuss high-level strategies for solving this problem.

Let V = {w1, . . . , wN} be a vocabulary set of all the words in a particular natural
language where wi is a word. A user’s query q = q1, q2, . . . , qm is a sequence of words,
where qi ∈ V . Similarly, a document di = di1, . . . , dim is also a sequence of words
where dij ∈ V . In general, a query is much shorter than a document since the query

5.5 Document Selection vs. Document Ranking 83

is often typed in by a user using a search engine system, and users generally do not
want to make much effort to type in many words. However, this is not always the
case. For example, in a Twitter search, each document is a tweet which is very short,
and a user may also cut and paste a text segment from an existing document as a
query, which can be very long. Our text collection C = {d1, . . . , dM} is a set of text
documents. In general, we may assume that there exists a subset of documents in
the collection, i.e., R(q) ⊂ C, which are relevant to the user’s query q; that is, they
are relevant documents or documents useful to the user who typed in the query.
Naturally, this relevant set depends on the query q. However, which documents are
relevant is generally unknown; the user’s query is only a “hint” at which documents
should be in the set R(q). Furthermore, different users may use the same query
to intend to retrieve somewhat different sets of relevant documents (e.g., in an
extreme case, a query word may be ambiguous). This means that it is unrealistic
to expect a computer to return exactly the set R(q), unlike the case in database
search where this is feasible. Thus, the best a computer can do is to return an
approximation of R(q), which we will denote by R′(q).

Now, how can a computer compute R′(q)? At a high level, there are two alterna-
tive strategies: document selection vs. document ranking. In document selection,
we will implement a binary classifier to classify a document as either relevant or
non-relevant with respect to a particular query. That is, we will design a binary clas-
sification function, or an indicator function, f (q , d) ∈ {0, 1}. If f (q , d) = 1, d would
be assumed to be relevant, whereas if f (q , d) = 0, it would be non-relevant. Thus,
R′(q) = {d|f (q , d) = 1, d ∈ C}. Using such a strategy, the system must estimate the
absolute relevance, i.e., whether a document is relevant or not.

An alternative strategy is to rank documents and let the user decide a cutoff. That
is, we will implement a ranking function f (q , d) ∈ R and rank all the documents in
descending values of this ranking function. A user would then browse the ranked
list and stop whenever they consider it appropriate. In this case, the set R′(q) is
actually defined partly by the system and partly by the user, since the user would
implicitly choose a score threshold θ based on the rank position where he or she
stopped. In this case, R′(q) = {d|f (q , d) ≥ θ}. Using this strategy, the system only
needs to estimate the relative relevance of documents: which documents are more
likely relevant.

Since estimation of relative relevance is intuitively easier than that of absolute
relevance, we can expect it to be easier to implement the ranking strategy. Indeed,
ranking is generally preferred to document selection for multiple reasons.

First, due to the difficulty for a user to prescribe the exact criteria for selecting
relevant documents, the binary classifier is unlikely accurate. Often the query is

84 Chapter 5 Overview of Text Data Access

either over-constrained or under-constrained. In the case of an over-constrained
query, there may be no relevant documents matching all the query words, so forcing
a binary decision may result in no delivery of any search result. If the query is
under-constrained (too general), there may be too many documents matching the
query, resulting in over-delivery. Unfortunately, it is often very difficult for a user
to know the “right” level of specificity in advance before exploring the document
collection due to the knowledge gap in the user’s mind (which can be the reason
why the user wants to find information about the topic). Even if the classifier can
be accurate, a user would still benefit from prioritization of the matched relevant
documents for examination since a user can only examine one document at a time
and some relevant documents may be more useful than others (relevance is a matter
of degree). For all these reasons, ranking documents appropriately becomes a main
technical challenge in designing an effective text retrieval system.

The strategy of ranking is further shown to be optimal theoretically under two
assumptions based on the probability ranking principle [Robertson 1997], which
states that returning a ranked list of documents in descending order of predicted
relevance is the optimal strategy under the following two assumptions.

1. The utility of a document to a user is independent of the utility of any other
document.

2. A user will browse the results sequentially.

So the problem is the following. We have a query that has a sequence of words,
and a document that’s also a sequence of words, and we hope to define the func-
tion f (., .) that can compute a score based on the query and document. The main
challenge is designing a good ranking function that can rank all the relevant docu-
ments on top of all the non-relevant ones. Now clearly this means our function must
be able to measure the likelihood that a document d is relevant to a query q. That
also means we have to have some way to define relevance. In particular, in order to
implement the program to do that, we have to have a computational definition of
relevance, and we achieve this goal by designing a retrieval model which gives us a
formalization of relevance. We introduce retrieval models in the Chapter 6.

Bibliographic Notes and Further Reading
A broader discussion of supporting information access via a digital library is avail-
able in Gonçalves et al. [2004]. The relation between retrieval (“pull”) and filtering
(“push”) has been discussed in the article Belkin and Croft [1992]. The contrast
between information retrieval and database search was discussed in the classic in-

Exercises 85

formation retrieval book by van Rijsbergen [1979]. [Hearst 2009] has a systematic
discussion of user interfaces of a search system, which is relevant to the design of
interfaces for any information system in general; in particular, many visualization
techniques that can facilitate browsing and querying are discussed in the book. Ex-
ploratory search is a particular type of search tasks that often requires multimodal
information access including both querying and browsing. It was covered in a spe-
cial issue of Communications of ACM [White et al. 2006], and White and Roth [2009].
The probability ranking principle [Robertson 1997] is generally regarded as the the-
oretical foundation for framing the retrieval problem as a ranking problem. More
historical work related to this, as well as a set of important research papers in IR up
to 1997, can be found in Readings in Information Retrieval [Sparck Jones and Willett
1997]. A brief survey of IR history can be found in Sanderson and Croft [2012].

Exercises
5.1. When might browsing be preferable to querying?

5.2. Given search engine user logs, how could you distinguish between browsing
behavior and querying behavior?

5.3. Often, push and pull modes are combined in a single system. Give an example
of such an application.

5.4. Imagine you have search engine session logs from users that you know are
browsing for information. How can you use these logs to enhance search results of
future users with ad hoc information needs?

5.5. In a Chapter 11, we will discuss recommender systems. These are systems in
push mode that deliver information to users. What are some specific applications
of recommender systems? Can you name some services available to you that fit into
this access mode?

5.6. How could a recommender system (push mode) be coupled with a search
engine (pull mode)? Can these two services mutually enhance one another?

5.7. Design a text information system used to explore musical artists. For example,
you can search for an artist’s name directly. The results are displayed as a graph,
with edges to similar artists (as measured by some similarity algorithm). Use TIS
access mode vocabulary to describe this system and any enhancements you could
make to satisfy different information needs.

5.8. In the same way as the previous question, categorize “Google knowledge
graph” (http://www.google.com/insidesearch/features/search/knowledge.html).

http://www.google.com/insidesearch/features/search/knowledge.html

86 Chapter 5 Overview of Text Data Access

5.9. In the same way as the previous two questions, categorize “citation alerts.”
These are alerts that are based on previous search history in an academic search
engine. When new papers are found that are potentially interesting to the user
based on their browsing history, an alert is created.

5.10. One assumption of the probability ranking principle is that each document’s
usefulness to the user is independent of the usefulness of other documents in the
index. What is a scenario where this assumption does not hold?

6Retrieval Models
In this chapter, we introduce the two main information retrieval models: vector
space and query likelihood, which are among the most effective and practically
useful retrieval models. We begin with a brief overview of retrieval models in general
and then discuss the two basic models, i.e., the vector space model and the query
likelihood model afterward.

6.1 Overview
Over many decades, researchers have designed various different kinds of retrieval
models which fall into different categories (see Zhai [2008] for a detailed review).
First, one family of the models are based on the similarity idea. Basically, we assume
that if a document is more similar to the query than another document is, we would
say the first document is more relevant than the second one. So in this case, the
ranking function is defined as the similarity between the query and the document.
One well-known example of this case is the vector space model [Salton et al. 1975],
which we will cover more in detail later in this chapter.

The second set of models are called probabilistic retrieval models [Lafferty and
Zhai 2003]. In this family of models, we follow a very different strategy. We assume
that queries and documents are all observations from random variables, and we
assume there is a binary random variable called R (with a value of either 1 or 0) to
indicate whether a document is relevant to a query. We then define the score of a
document with respect to a query as the probability that this random variable R is
equal to 1 given a particular document and query. There are different cases of such a
general idea. One is the classic probabilistic model, which dates back to work done
in the 1960s and 1970s [Maron and Kuhns 1960, Robertson and Sparck Jones 1976],
another is the language modeling approach [Ponte and Croft 1998], and yet another
is the divergence-from-randomness model [Amati and Van Rijsbergen 2002]. We
will cover a particular language modeling approach called query likelihood retrieval
model in detail later in this chapter. One of the most effective retrieval models

88 Chapter 6 Retrieval Models

derived from the classific probabilistic retrieval framework is BM25 [Robertson and
Zaragoza 2009], but since the retrieval function of BM25 is so similar to a vector
space retrieval model, we have chosen to cover it as a variant of the vector space
model.

The third kind of model is probabilistic inference [Turtle and Croft 1990]. Here
the idea is to associate uncertainty to inference rules. We can then quantify the
probability that we can show that the query follows from the document. This family
of models is theoretically appealing, but in practice, they are often reduced to
models essentially similar to vector-space model or a regular probabilistic retrieval
model.

Finally, there is also a family of models that use axiomatic thinking [Fang et al.
2011]. The idea is to define a set of constraints that we hope a good retrieval function
satisfies. In this case the problem is to find a good ranking function that can satisfy
all the desired constraints. Interestingly, although all these models are based on
different thinking, in the end the retrieval functions tend to be very similar and
involve similar variables. The axiomatic retrieval framework has proven effective
for diagnosing deficiencies of a retrieval model and developing improved retrieval
models accordingly (e.g., BM25+ [Lv and Zhai 2011]).

Although many models have been proposed, very few have survived extensive ex-
perimentation to prove effective and robustness. In this book, we have chosen to
cover four specific models (i.e., BM25, pivoted length normalization, query likeli-
hood with JM smoothing, and query likelihood with Dirichlet prior smoothing) that
are among the very few most effective and robust models.1

6.2 Common Form of a Retrieval Function
Before we introduce specific models, we first take a look at the common form of
a state-of-the-art retrieval model and examine some of the common ideas used
in all these models. This is illustrated in Figure 6.1. First, these models are all
based on the assumption of using a bag-of-words representation of text. This was
explained in detail in the natural language processing chapter. A bag-of-words
representation remains the main representation used in all the search engines.
With this assumption, the score of a query like presidential campaign news, with
respect to a document d, would be based on scores computed on each individual
query word. That means the score would depend on the score of each word, such
as presidential, campaign, and news.

1. PL2 is another very effective model that the readers should also know of [Amati and Van Rijs-
bergen 2002].

6.2 Common Form of a Retrieval Function 89

f (q = “presidential campaign news”, d)

g (“campaign”, d) g (“news”, d)g(“presidential”, d)

“Bag of Words”

How many times does “presidential” occur in d?
 Term frequency (TF): c (“presidential”, d)

How long is d? Document length: |d|

How often do we see “presidential” in the entire collection?
 Document frequency: DF(“presidential”)
 P(“presidential”|collection)

Figure 6.1 Illustration of common ideas for scoring with a bag-of-words representation.

We can see there are three different components, each corresponding to how
well the document matches each of the query words. Inside of these functions, we
see a number of heuristics. For example, one factor that affects the function g is how
many times the word presidential occurs in each document. This is called a term
frequency (TF). We might also denote this as c(presidential , d). In general, if the
word occurs more frequently in the document, the value of this function would be
larger. Another factor is the document length. In general, if a term occurs in a long
document many times, it is not as significant as if it occurred the same number of
times in a short document (since any term is expected to occur more frequently
in a long document). Finally, there is a factor called document frequency. This
looks at how often presidential occurs at least once in any document in the entire
collection. We call this the document frequency, or DF, of presidential. DF attempts
to characterize the popularity of the term in the collection. In general, matching a
rare term in the collection is contributing more to the overall score than matching a
common term. TF, DF, and document length capture some of the main ideas used
in pretty much all state-of-the-art retrieval models. In some other models we might
also use a probability to characterize this information.

A natural question is: Which model works the best? It turns out that many
models work equally well, so here we list the four major models that are generally
regarded as state-of-the-art:

. pivoted length normalization [Singhal et al. 1996];

. Okapi BM25 [Robertson and Zaragoza 2009];

90 Chapter 6 Retrieval Models

. query likelihood [Ponte and Croft 1998]; and

. PL2 [Amati and Van Rijsbergen 2002].

When optimized, these models tend to perform similarly as discussed in detail
in Fang et al. [2011]. Among all these, BM25 is probably the most popular. It’s most
likely that this has been used in virtually all search engine implementations, and it
is quite common to see this method discussed in research papers. We’ll talk more
about this method in a later section.

In summary, the main points are as follows. First, the design of a good ranking
function requires a computational definition of relevance, and we achieve this goal
by designing a proper retrieval model. Second, many models are equally effective
but we don’t have a single winner. Researchers are still actively working on this
problem, trying to find a truly optimal retrieval model. Finally, the state-of-the-art
ranking functions tend to rely on the following ideas: (1) bag of words representa-
tion; and (2) TF and the document frequency of words. Such information is used by
a ranking function to determine the overall contribution of matching a word, with
an adjustment for document length. These are often combined in interesting ways.
We’ll discuss how exactly they are combined to rank documents later in this book.

6.3 Vector Space Retrieval Models
The vector space (VS) retrieval model is a simple, yet effective method of designing
ranking functions for information retrieval. It is a special case of similarity-based
models that we discussed previously, where we assume relevance is roughly corre-
lated to similarity between a document and a query. Whether this assumption is
the best way to capture the notion of relevance formally remains an open question,
but in order to solve our search problem we have to convert the vague notion of
relevance into a more precise definition that can be implemented with a program-
ming language in one way or another. In this process we inevitably have to make
a number of assumptions. Here we assume that if a document is more similar to
a query than another document, then the first document would be assumed to be
more relevant than the second one. This is the basis for ranking documents in the
vector space model. This is not the only way to formalize relevance; we will see later
there are other ways to model relevance.

The basic idea of VS retrieval models is actually very easy to understand. Imagine
a high dimensional space, where each dimension corresponds to a term; we can
plot our documents in this space since they are represented as vectors of term
magnitudes.

6.3 Vector Space Retrieval Models 91

Programming

Query q

Presidential

d3 ?

d2 ?

d1 ?

dM

d4

d5

Library

Figure 6.2 Illustration of documents plotted in vector space. (Courtesy of Marti Hearst)

In Figure 6.2, we show a three-dimensional space with three words: program-
ming, library, and presidential. Each term defines one dimension. We can consider
vectors in this three dimensional space, and we will assume all our documents and
the query will all be placed in this vector space. For example, the vector d1 repre-
sents a document that probably covers the terms library and presidential without
really talking about programming. What does this mean in terms of representation
of the document? It means that we will rely solely on this vector to represent the
original document, and thus ignore everything else, including, e.g., the order of
the words (which may sometimes be important to keep!). It is thus not an optimal
representation, but it is often sufficient for many retrieval problems.

Intuitively, in this representation, d1 seems to suggest a topic in either presi-
dential or library. Now this is different from another document which might be
represented as a different vector d2. In this case, the document covers programming
and library, but it doesn’t talk about presidential. As you can probably guess, the
topic is likely about programming language and the library is actually a software
library. By using this vector space representation, we can intuitively capture the dif-
ferences between topics of documents. Next, d3 is pointing in a direction that might
be about presidential and programming. We place all documents in our collection in
this vector space and they will be pointing to all kinds of directions given by these
three dimensions.

Similarly, we can place our query in this space as another vector. We can then
measure the similarity between the query vector and every document vector. In this
case, for example, we can easily see d2 seems to be the closest to the query vector

92 Chapter 6 Retrieval Models

and therefore d2 will be ranked above the others. This is the main idea of the vector
space model.

To be more precise, the VS model is a framework. In this framework, we make
some assumptions. One assumption is that we represent each document and query
by a term vector. Here, a term can be any basic concept such as a word or a
phrase, or even n-grams of characters or any other feature representation. Each
term is assumed to define one dimension. Therefore, since we have |V | terms in
our vocabulary, we define a |V |-dimensional space. A query vector would consist
of a number of elements corresponding to the weights of different terms. Each
document vector is also similar; it has a number of elements and each value of
each element is indicating the weight of the corresponding term. The relevance in
this case is measured based on the similarity between the two vectors. Therefore,
our retrieval function is also defined as the similarity between the query vector and
document vector.

Now, if you were asked to write a program to implement this approach for a
search engine, you would realize that this explanation was far from complete. We
haven’t seen many things in detail, therefore it’s impossible to actually write the
program to implement this. That’s why this is called the vector space retrieval
framework. It has to be refined in order to actually suggest a particular function
that can be implemented on a computer. First, it did not say how to define or select
the basic concepts (terms). We clearly assume the concepts are orthogonal, otherwise
there will be redundancy. For example, if two synonyms are somehow distinguished
as two different concepts, they would be defined in two different dimensions,
causing a redundancy or overemphasis of matching this concept (since it would be
as if you matched two dimensions when you actually matched only one semantic
concept). Second, it did not say how to place documents and queries in this vector
space. We saw some examples of query and document vectors, but where exactly
should the vector for a particular document point to? This is equivalent to how to
define the term weights. This is a very important question because the term weight
in the query vector indicates the importance of a term; depending on how you assign
the weight, you might prefer some terms to be matched over others. Similarly,
term weight in the document is also very meaningful—it indicates how well the
term characterizes the document. If many nonrelevant documents are returned by
a search engine using this model, then the chosen terms and weights must not
represent the documents accurately. Finally, how to define the similarity measure is
also unclear. These questions must be addressed before we can have an operational
function that we can actually implement using a programming language. Solving
these problems is the main topic of the next section.

6.3 Vector Space Retrieval Models 93

6.3.1 Instantiation of the Vector Space Model
In this section, we will discuss how to instantiate a vector space model so that we
can get a very specific ranking function. As mentioned previously, the vector space
model is really a framework: it doesn’t specify many things. For example, it did not
say how we should define the dimensions of the vectors. It also did not say how
we place a document vector or query vector into this space. That is, how should we
define/calculate the values of all the elements in the query and document vectors?
Finally, it did not say how we should compute similarity between the query vector
and the document vector. As you can imagine, in order to implement this model,
we have to determine specifically how we should compute and use these vectors.

In Figure 6.3, we illustrate the simplest instantiation of the vector space model.
In this instantiation, we use each word in our vocabulary to define a dimension,
thus giving |V | dimensions—this is the bag-of-words instantiation. Now let’s look
at how we place vectors in this space. Here, the simplest strategy is to use a bit vector
to represent both a query and a document, and that means each element xi and yi

would take a value of either zero or one. When it’s one, it means the corresponding
word is present in the document or query. When it’s zero, it’s absent. If the user
types in a few words for a query, then the query vector would have a few ones and
many, many zeros. The document vector in general would have more ones than the
query vector, but there will still be many zeros since the vocabulary is often very
large. Many words in the vocabulary don’t occur in a single document; many words
will only occasionally occur in a given document. Most words in the vocabulary will
be absent in any particular document.

Now that we have placed the documents and the query in the vector space, let’s
look at how we compute the similarity between them. A commonly used similarity
measure is the dot product; the dot product of two vectors is simply defined as the
sum of the products of the corresponding elements of the two vectors. In Figure 6.3
we see that it’s the product of x1 and y1 plus the product of x2 and y2, and so on.

q = (x1, …, xN)

Sim(q, d) = q.d = x1y1 + … + xNyN = ΣN
i=1 xi yi

xi, yi 2{0, 1}
1: word Wi is present
0: word Wi is absentd = (y1, …, yN)

Figure 6.3 Computing the similarity between a query and document vector using a bit vector
representation and dot product similarity.

94 Chapter 6 Retrieval Models

This is only one of the many different ways of computing the similarity. So, we’ve
defined the dimensions, the vector space, and the similarity function; we finally
have the simplest instantiation of the vector space model! It’s based on the bit
vector representation, dot product similarity, and bag of words instantiation. Now
we can finally implement this ranking function using a programming language and
then rank documents in our corpus given a particular query.

We’ve gone through the process of modeling the retrieval problem using a vector
space model. Then, we made assumptions about how we place vectors in the vector
space and how we define the similarity. In the end, we’ve got a specific retrieval
function shown in Figure 6.3. The next step is to think about whether this individual
function actually makes sense. Can we expect this function will actually perform
well? It’s worth thinking about the value that we are calculating; in the end, we’ve
got a number, but what does this number mean? Please take a few minutes to think
about that before proceeding to the next section.

6.3.2 Behavior of the Bit Vector Representation
In order to assess whether this simplest vector space model actually works well,
let’s look at the example in Figure 6.4.

This figure shows some sample documents and a simple query. The query is
news about presidential campaign. For this example, we will examine five documents
from the corpus that cover different terms in the query. You may realize that some
documents are probably relevant and others probably not relevant. If we ask you to
rank these documents, how would you rank them? Your answer (as the user) is the
ideal ranking, R′(q). Most users would agree that d4 and d3 are probably better than

d1 d4 +
d3 +

d1 –
d2 –
d5 –

… news about …

d2 … news about organic food campaign …

d3 … news of presidential campaign …

d4 … news of presidential campaign …
… presidential candidate …

d5 … news of organic food campaign …
campaign … campaign … campaign …

Query = “news about presidential campaign” Ideal ranking?

Figure 6.4 Application of the bit vector VS model in a simple example.

6.3 Vector Space Retrieval Models 95

d1 … news about …

d3 … news of presidential campaign …

Query = “news about presidential campaign”

V = {news, about, presidential, campaign, food …}

f(q, d1) = 1 * 1 + 1 * 1 + 1 * 0 + 1 * 0 + 0 * 0 + … = 2

f(q, d3) = 1 * 1 + 1 * 0 + 1 * 1 + 1 * 1 + 0 * 0 + … = 3

q =
d1 =

(1,
(1,

1,
1,

1,
0,

1,
0,

0,
0,

…)
…)

d3 = (1, 0, 1, 1, 0, …)

Figure 6.5 Computation of the bit vector retrieval model on a sample query and corpus.

the others since these two really cover the query well. They match news, presidential,
and campaign, so they should be ranked on top. The other three, d1, d2, and d5, are
non-relevant.

Let’s see if our vector space model could do the same or could do something
close to our ideal ranking. First, think about how we actually use this model to
score documents. In Figure 6.5, we show two documents, d1 and d3, and we have
the query here also. In the vector space model, we want to first compute the vectors
for these documents and the query. The query has four words, so for these four
words, there would be a one and for the rest there will be zeros. Document d1 has
two ones, news and about, while the rest of the dimensions are zeros. Now that
we have the two vectors, we can compute the similarity with the dot product by
multiplying the corresponding elements in each vector. Each pair of vectors forms
a product, which represents the similarity between the two items. We actually don’t
have to care about the zeroes in each vector since any product with one will be zero.
So, when we take a sum over all these pairs, we’re just counting how many pairs of
ones there are. In this case, we have seen two, so the result will be two. That means
this number is the value of this scoring function; it’s simply the count of how many
unique query terms are matched in the document. This is how we interpret the
score. Now we can also take a look at d3. In this case, you can see the result is
three because d3 matched the three distinct query words news, presidential, and
campaign, whereas d1 only matched two. Based on this, d3 is ranked above d1. That
looks pretty good. However, if we examine this model in detail, we will find some
problems.

96 Chapter 6 Retrieval Models

d1 f (q, d1) = 2

f (q, d2) = 3

f (q, d3) = 3

f (q, d4) = 3

f (q, d5) = 2

… news about …

Query = “news about presidential campaign”

d2 … news about organic food campaign …

d3 … news of presidential campaign …

d4 … news of presidential campaign …
… presidential candidate …

d5 … news of organic food campaign …
campaign … campaign … campaign …

Figure 6.6 Ranking of example documents using the simple vector space model.

In Figure 6.6, we show all the scores for these five documents. The bit vector
scoring function counts the number of unique query terms matched in each docu-
ment. If a document matches more unique query terms, then the document will be
assumed to be more relevant; that seems to make sense. The only problem is that
there are three documents, d2, d3, and d4, that are tied with a score of three. Upon
closer inspection, it seems that d4 should be right above d3 since d3 only mentioned
presidential once while d4 mentioned it many more times. Another problem is that
d2 and d3 also have the same score since for d2, news, about, and campaign were
matched. In d3, it matched news, presidential, and campaign. Intuitively, d3 is more
relevant and should be scored higher than d2. Matching presidential is more impor-
tant than matching about even though about and presidential are both in the query.
But this model doesn’t do that, and that means we have to solve these problems.

To summarize, we talked about how to instantiate a vector space model. We need
to do three things:

1. define the dimensions (the concept of what a document is);

2. decide how to place documents and queries as vectors in the vector space;
and

3. define the similarity between two vectors.

Based on this idea, we discussed a very simple way to instantiate the vector
space model. Indeed, it’s probably the simplest vector space model that we can
derive. We used each word to define a dimension, with a zero-one bit vector to
represent a document or a query. In this case, we only care about word presence or
absence, ignoring the frequency. For a similarity measure, we used the dot product

6.3 Vector Space Retrieval Models 97

and showed that this scoring function scores a document based on the number of
distinct query words matched in it. We also showed that such a simple vector space
model still doesn’t work well, and we need to improve it. This is the topic for the
next section.

6.3.3 Improved Instantiation
In this section, we will improve the representation of this model from the bit
vector model. We saw the bit vector representation essentially counts how many
unique query terms match the document. From Figure 6.6 we would like d4 to be
ranked above d3, and d2 is really not relevant. The problem here is that this function
couldn’t capture the following characteristics.

. First, we would like to give more credit to d4 because it matches presidential
more times than d3.

. Second, matching presidential should be more important than matching
about, because about is a very common word that occurs everywhere; it doesn’t
carry that much content.

It’s worth thinking at this point about why we have these issues. If we look back at
the assumptions we made while instantiating the VS model, we will realize that the
problem is really coming from some of those assumptions. In particular, it has to
do with how we place the vectors in the vector space. Naturally, in order to fix these
problems, we have to revisit those assumptions. A natural thought is to consider
multiple occurrences of a term in a document as opposed to binary representation;
we should consider the TF instead of just the absence or presence. In order to
consider the difference between a document where a query term occurred multiple
times and one where the query term occurred just once, we have to consider the
term frequency—the count of a term in a document. The simplest way to express
the TF of a word w in a document d is

T F(w, d) = count(w, d). (6.1)

With the bit vector, we only captured the presence or absence of a term, ignoring
the actual number of times that a term occurred. Let’s add the count information
back: we will represent a document by a vector with as each dimension’s weight.
That is, the elements of both the query vector and the document vector will not be
zeroes and ones, but instead they will be the counts of a word in the query or the
document, as illustrated in Figure 6.7.

98 Chapter 6 Retrieval Models

q = (x1, …, xN)

Sim(q, d) = q.d = x1y1 + … + xNyN = ΣN
i=1 xi yi

xi = count of word Wi in query

yi = count of word Wi in docd = (y1, …, yN)

Figure 6.7 Frequency vector representation and dot product similarity.

q =
d2 =

(1,
(1,

1,
1,

1,
0,

1,
1,

0,
1,

…)
…)

d2 … news about organic food campaign …

q =
d3 =

(1,
(1,

1,
0,

1,
1,

1,
1,

0,
0,

…)
…)

q =
d4 =

(1,
(1,

1,
0,

1,
2,

1,
1,

0,
0,

…)
…)

f (q, d2) = 3

f (q, d3) = 3

f (q, d4) = 4!

d3 … news of presidential campaign …

d4 … news of presidential campaign …
… presidential candidate …

Figure 6.8 Frequency vector representation rewards multiple occurrences of a query term.

Now, let’s see what the formula would look like if we change this representation.
The formula looks identical since we are still using the dot product similarity. The
difference is inside of the sum since xi and yi are now different—they’re now the
counts of words in the query and the document. Because of the change in document
representation, the new score has a different interpretation. We can see whether
this would fix the problems of the bit vector VS model.

Look at the three documents again in Figure 6.8. The query vector is the same
because all these words occurred exactly once in the query. The same goes for d2

and d3 since none of these words has been repeated. As a result, the score is also
the same for both these documents. But, d4 would be different; here, presidential
occurred twice. Thus, the corresponding dimension would be weighted as two
instead of one, and the score for d4 is higher. This means, by using TF, we can
now rank d4 above d2 and d3 as we had hoped to.

6.3 Vector Space Retrieval Models 99

Unfortunately, d2 and d3 still have identical scores. We would like to give more
credit for matching presidential than matching about. How can we solve this prob-
lem in a general way? Is there any way to determine which word should be treated
more importantly and which word can be essentially ignored? About doesn’t carry
that much content, so we should be able to ignore it. We call such a word a stop
word. They are generally very frequent and they occur everywhere such that match-
ing it doesn’t have any significance. Can we come up with any statistical approaches
to somehow distinguish a content word like presidential from a stop word like
about? One difference is that a word like about occurs everywhere. If you count
the occurrence of the word in the whole collection of M documents (where M � 5),
then we would see that about has a much higher count than presidential. This idea
suggests that we could somehow use the global statistics of terms or some other
information to try to decrease the weight of the about dimension in the vector rep-
resentation of d2. At the same time, we hope to somehow increase the weight of
presidential in the d3 vector. If we can do that, then we can expect that d2 will get an
overall score of less than three, while d3 will get a score of about three. That way,
we’ll be able to rank d3 on top of d2.

This particular idea is called the inverse document frequency (IDF). It is a very
important signal used in modern retrieval functions. The document frequency
is the count of documents that contain a particular term. Here, we say inverse
document frequency because we actually want to reward a word that doesn’t occur
in many documents. The way to incorporate this into our vector is to modify the
frequency count by multiplying it by the IDF of the corresponding word, as shown
in Figure 6.9.

We can now penalize common words which generally have a low IDF and reward
informative words that have a higher IDF. IDF can be defined as

IDF(w) =
(

M + 1
df(w)

)
, (6.2)

where M is the total number of documents in the collection and df(.) counts the
document frequency (the total number of documents containing w).

Let’s compare the terms campaign and about. Intuitively, about should have a
lower IDF score than campaign since about is a less informative word. For clarity,
let’s assume M = 10, 000, df(about) = 5000, df(campaign) = 1166, and we use a
base two logarithm. Then,

IDF(about) = log
(

10, 001
df(about)

)
= log

(
10, 001

5000

)
≈ 1.0

100 Chapter 6 Retrieval Models

q = (x1, …, xN)

d = (y1, …, yN)

yi = c(Wi, d) *IDF(Wi)

xi = count of word Wi in queryW1

W2

W3

Figure 6.9 Representation of a blue document vector and red query vector with TF-IDF weighting.

1

IDF(W)

IDF(W) = log[(M + 1)/k]

M

log(M + 1)

k (doc freq)

Total number of docs in collection

Total number of docs containing W

(document frequency)

Figure 6.10 Illustration of the IDF function as the document frequency varies.

and

IDF(campaign) = log

(
10, 001

df(campaign)

)
= log

(
10, 001

1166

)
≈ 3.1.

Let k represent df(w); if you plot the IDF function by varying k, then you will see
a curve like the one illustrated in Figure 6.10. In general, you can see it would give
a higher value for a low df , indicating a rare word. You can also see the maximum
value of this function is log(M + 1). The specific function is not as important as the
heuristic it captures: penalizing popular terms. Whether there is a better form of

6.3 Vector Space Retrieval Models 101

the IDF function is an open research question. With the evaluation skills you will
learn in Chapter 9, you can test your different instantiations.

If we use a linear function like the diagonal line (as shown in the figure), it may
not be as reasonable as the IDF function we just defined. In the standard IDF,
we have a dropping off point where we say “these terms are essentially not very
useful.” This makes sense when the term occurs so frequently that it’s unlikely
to differentiate two documents’ relevance (since the term is so common). But, if
you look at the linear representation, there is no dropping off point. Intuitively,
we want to focus more on the discrimination of low df words rather than these
common words. Of course, which one works better still has to be validated by
running experiments on a data set.

Let’s look at the two documents again in Figure 6.11. Without IDF weighting,
we just had bit vectors. With IDF weighting, we now can adjust the TF (term
frequency) weight by multiplying it with the IDF weight. With this scheme, there
is an adjustment by using the IDF value of about which is smaller than the IDF
value of presidential. Thus, the IDF will distinguish these two words based on how
informative they are. Including the IDF weighting causes d3 to be ranked above
d2, since it matched a rare (informative) word, whereas d2 matched a common
(uninformative) word. This shows that the idea of weighting can solve our second
problem. How effective is this model in general when we use this TF-IDF weighting?
Well, let’s take a look at all the documents that we have seen before.

In Figure 6.12, we show all the five documents that we have seen before and their
new scores using TF-IDF weighting. We see the scores for the first four documents

d3 … news of presidential campaign …

V = {news, about, presidential, campaign, food …}

f(q, d2) = 5.6 < f(q, d3) = 7.1

IDF(W) =

q =
d2 =

q =
d3 =

1.5

(1,
(1 * 1.5,

(1,
(1 * 1.5,

1.0

1,
1 * 1.0,

1,
0,

2.5

1,
0,

1,
1 * 2.5,

3.1

1,
1 * 3.1,

1,
1 * 3.1,

1.8

0,
0,

0,
0,

…)
…)

…)
…)

d2 … news about organic food campaign …

Figure 6.11 The impact of IDF weighting on document ranking.

102 Chapter 6 Retrieval Models

d1 f (q, d1) = 2.5

f (q, d2) = 5.6

f (q, d3) = 7.1

f (q, d4) = 9.6

ff (q, , d5) = 13.9!) = 13.9!

… news about …

d2 … news about organic food campaign …

d3 … news of presidential campaign …

d4 … news of presidential campaign …
… presidential candidate …

d5 … news of organic food campaign …
campaign … campaign … campaign …

Query = “news about presidential campaign”

Figure 6.12 Scores of all five documents using TF-IDF weighting.

seem to be quite reasonable. But again, we also see a new problem since d5 did not
even have a very high score with our simplest vector space model, but now d5 has
the highest score. This is actually a common phenomenon when designing retrieval
functions; when you try to fix one problem, you tend to introduce other problems!
That’s why it’s very tricky to design an effective ranking function, and why finding
a “best” ranking function is an open research question. In the next few sections,
we’ll continue to discuss some additional ideas to further improve this model and
try to fix this problem.

6.3.4 TF Transformation
In the previous section, we derived a TF-IDF weighting formula using the vector
space model and showed that this model actually works pretty well for the examples
shown in the figures—except for d5, which has a very high score. This document is
intuitively non-relevant, so its position is not desirable. Now, we’re going to discuss
how to use a TF transformation to solve this problem. Before we discuss the details,
let’s take a look at the formula for the TF-IDF weighting and ranking function we
previously derived. It is shown in Figure 6.13.

If you look at the formula carefully, you will see it involves a sum over all the
matched query terms. Inside the sum, each matched query term has a particular
weight; this weight is TF-IDF weighting. It has an IDF component where we see two
variables: one is the total number of documents in the collection, M . The other is
the document frequency, df(w), which is the number of documents that contain
w. The other variables involved in the formula include the count of the query term

6.3 Vector Space Retrieval Models 103

xi yi = f (q, d) =
M + 1
—
df(w)

∑
w2q\d

N

∑
i=1

c(w, q)c(w, d)log

Total number of
documents in collection

Document
frequency

All matched query
words in document

Figure 6.13 A ranking function using a TF-IDF weighting scheme.

w in the query, and the count of w in the document, represented as c(w, q) and
c(w, d), respectively.

Looking at d5 again, it’s not hard to realize that the reason why it has received
a high score is because it has a very high count of the term campaign. Its count in
d5 is four, which is much higher than the other documents, and has contributed to
the high score of this document. Intriguingly, in order to lower the score for this
document, we need to somehow restrict the contribution of matching this term
in the document. Essentially, we shouldn’t reward multiple occurrences so gener-
ously. The first occurrence of a term says a lot about matching of this term because
it goes from a zero count to a count of one, and that increase is very informative.
Once we see a word in the document, it’s very likely that the document is talking
about this word. If we see an extra occurrence on top of the first occurrence, that
is to go from one to two, then we also can say the second occurrence confirmed
that it’s not an accidental mention of the word. But imagine we have seen, let’s
say, 50 occurrences of the word in the document. Then, adding one extra occur-
rence is not going to bring new evidence about the term because we are already
sure that this document is about this word. Thus, we should restrict the contribu-
tion of a high-count term. That is exactly the idea of TF transformation, illustrated
in Figure 6.14.

This transformation function is going to turn the raw count of word into a
TF weight for the word in the document. On the x-axis is the raw count, and on
the y-axis is the TF weight. In the previous ranking functions, we actually have
implicitly used some kind of transformation. For example, in the zero-one bit vector
representation, we actually used the binary transformation function as shown here.
If the count is zero then it has zero weight. Otherwise it would have a weight of
one. Then, we considered term count as a TF weight, which is a linear function.
We just saw that this is not desirable. With a logarithm, we can have a sublinear

104 Chapter 6 Retrieval Models

0 1 2

2

1

3 …

Term frequency weight

y = TF(w, d)

TF transformation: c(w, d) → TF(w, d)

x = c(w, d)

0/1 bit vector

y = log(1 + x)

y = log(1 + log(1 + x))

y = x

Figure 6.14 Illustration of different ways to transform TF.

transformation that looks like the red lines in the figure. This will control the
influence of a very high weight because it’s going to lower its influence, yet it will
retain the influence of a small count. We might even want to bend the curve more by
applying a logarithm twice. Researchers have tried all these methods and they are
indeed working better than the linear transformation, but so far what works the best
seems to be this special transformation called BM25 TF, illustrated in Figure 6.15,
where BM stands for best matching.

In this transformation, there is a parameter k which controls the upper bound of
this function. It’s easy to see this function has a upper bound, because if you look
at the x

x+k
as being multiplied by (k + 1), the fraction will never exceed one, since

the numerator is always less than the denominator. Thus, it’s upper-bounded by
(k + 1). This is also the difference between the BM25 TF function and the logarithm
transformation, which doesn’t have an upper bound. Furthermore, one interesting
property of this function is that as we vary k, we can actually simulate different
transformation functions including the two extremes that are shown in the figure.
When k = 0, we have a zero one bit transformation. If we set k to a very large number,
on the other hand, it’s going to look more like the linear transformation function.
In this sense, this transformation is very flexible since it allows us to control the
shape of the TF curve quite easily. It also has the nice property of a simple upper
bound. This upper bound is useful to control the influence of a particular term. For
example, we can prevent a spammer from just increasing the count of one term to
spam all queries that might match this term. In other words, this upper bound

6.3 Vector Space Retrieval Models 105

0 1 2

2

1

k + 1

k = 0

3 …

Term frequency weight

y = TF(w, d)

x = c(w, d)

y =
(k + 1)x
—

x + k

Very large k

Figure 6.15 Illustration of BM25 TF transformation.

ensures that all terms will be counted when we aggregate the weights to compute
a score.

To summarize, we need to capture some sublinearity in the TF function. This
ensures that we represent the intuition of diminishing return from high term
counts. It also avoids a dominance by one single term over all others. The BM25
TF formula we discussed has an upper bound while being robust and effective.
If we plug this function into our TF-IDF vector space model, then we would end
up having a ranking function with a BM25 TF component. This is very close to a
state-of-the-art ranking function called BM25. We’ll see the entire BM25 formula
soon.

6.3.5 Document Length Normalization
In this section, we will discuss the issue of document length normalization. So far
in our exploration of the vector space model we considered the TF or the count of
a term in a document. We have also considered the global statistic IDF. However,
we have not considered the document length.

In Figure 6.16, we show two example documents. Document d4 is very short with
only one hundred words. Conversely, d6 has five thousand words. If you look at the
matching of these query words we see that d6 has many more matchings of the
query words; one might reason that d6 may have matched these query words in a
scattered manner. Perhaps d6’s topic is not really the same as the query’s topic. In
the beginning of d6, there is discussion of a campaign. This discussion may have

106 Chapter 6 Retrieval Models

d4 d6 > d4?
... news of presidential campaign ...
... presidential candidate ...

d6 ... campaign...........campaign ..
..
.........news...
..
..news....
..
..
...............................presidential.........presidential.............

Query = “news about presidential campaign”

100 words

5000 words

Figure 6.16 Two documents with very different document lengths.

nothing to do with the mention of presidential at the end. In general, if you think
about long documents, they would have a higher chance to match any query since
they contain more words. In fact, if you generate a long document by randomly
sampling words from the distribution of all words, then eventually you probably
will match any query! In this sense, we should penalize long documents because
they naturally have a better chance to match any query. This is our idea of document
length normalization. On the one hand, we want to penalize a long document, but
on the other hand, we also don’t want to over-penalize them. The reason is that a
document may be long because of different reason: in one case the document may
be longer because it uses more words. For example, think about a research paper
article. It would use more words than the corresponding abstract. This is the case
where we probably should penalize the matching of a long document such as a full
paper. When we compare matching words in such long document with matching
words in the short abstract, the long papers generally have a higher chance of
matching query words. Therefore, we should penalize the long documents.

However, there is another case when the document is long—that is when the
document simply has more content. Consider a case of a long document, where we
simply concatenated abstracts of different papers. In such a case, we don’t want to
penalize this long document. That’s why we need to be careful about using the right
degree of length penalization, and an understanding of the discourse structure of
documents is needed for optimal document length normalization.

A method that has worked well is called pivoted length normalization, illustrated
in Figure 6.17 and described originally in Singhal et al. [1996]. Here, the idea is to

6.3 Vector Space Retrieval Models 107

0 1 2

1.0 b = 0

b > 0

b >> 0

b 2 [0, 1]

avdl

Pivoted length normalization

… …
|d|

normalizer = 1 – b + b
|d|
—
avdl

Shorter than avdl

Reward

Penalization

Longer than avdl

Figure 6.17 Illustration of pivoted document length normalization.

use the average document length as a pivot, or reference point. That means we will
assume that for the average length documents, the score is about right (a normalizer
would be one). If a document is longer than the average document length, then
there will be some penalization. If it’s shorter than the average document length,
there’s even some reward. The x-axis represents the length of a document. On the
y-axis we show the normalizer, i.e., the pivoted length normalization. The formula
for the normalizer is an interpolation of one and the normalized document lengths,
controlled by a parameter b. When we first divide the length of the document by
the average document length, this not only gives us some sense about how this
document is compared with the average document length, but also gives us the
benefit of not worrying about the unit of length. This normalizer has an interesting
property; first, we see that if we set the parameter b to zero, then the normalizer
value would be one, indicating no length normalization at all. If we set b to a
nonzero value, then the value would be higher for documents that are longer
than the average document length, whereas the value of the normalizer will be
smaller for shorter documents. In this sense we see there’s a penalization for
long documents and a reward for short documents. The degree of penalization is
controlled by b. By adjusting b (which varies from zero to one), we can control the
degree of length normalization. If we plug this length normalization factor into the

108 Chapter 6 Retrieval Models

Pivoted length normalization VSM

f (q , d) =
∑

w∈q∩d

c(w, q)
ln(1 + ln(1 + c(w, d)))

1 − b + b
|d|

avdl

log
M + 1
df(w)

b ∈ [0, 1]

BM25/Okapi

f (q , d) =
∑

w∈q∩d

c(w, q)
(k + 1)c(w, d)

c(w, d) + k(1 − b + b
|d|

avdl)
log

M + 1
df(w)

b ∈ [0, 1], k ∈ [0, +∞)

Figure 6.18 State-of-the-art vector space models: pivoted length normalization and Okapi BM25.

vector space model ranking functions that we have already examined, we will end
up with state-of-the-art retrieval models, some of which are shown in Figure 6.18.

Let’s take a look at each of them. The first one is called pivoted length normaliza-
tion. We see that it’s basically the TF-IDF weighting model that we have discussed.
The IDF component appears in the last term. There is also a query TF component,
and in the middle there is normalized TF. For this, we have the double logarithm
as we discussed before; this is to achieve a sublinear transformation. We also put a
document length normalizer in the denominator of the TF formula, which causes
a penalty for long documents, since the larger the denominator is, the smaller the
TF weight is. The document length normalization is controlled by the parameter b.

The next formula is called Okapi BM25, or just BM25. It’s similar to the pivoted
length normalization formula in that it has an IDF component and a query TF
component. In the middle, the normalization is a little bit different; we have a
sublinear transformation with an upper bound. There is a length normalization
factor here as well. It achieves a similar effect as discussed before, since we put
the normalizer in the denominator. Thus, again, if a document is longer, the term
weight will be smaller.

We have now reached one of the best-known retrieval functions by thinking
logically about how to represent a document and by slowly tweaking formulas and
considering our initial assumptions.

6.3.6 Further Improvement of Basic VS Models
So far, we have talked mainly about how to place the document vector in vector
space. This has played an important role in determining the performance of the
ranking function. However, there are also other considerations that we did not
really examine in detail. We’ve assumed that we can represent a document as a
bag of words. Obviously, we can see there are many other choices. For example,

6.3 Vector Space Retrieval Models 109

stemmed words (words that have been transformed into a basic root form) are a
viable option so all forms of the same word are treated as one, and can be matched
as one term. We also need to perform stop word removal; this removes some very
common words that don’t carry any content such as the, a, or of . We could use
phrases or even latent semantic analysis, which characterizes documents by which
cluster words belong to. We can also use smaller units, like character n-grams,
which are sequences of n characters, as dimensions. In practice, researchers have
found that the bag-of-words representation with phrases (or “bag-of-phrases”) is
the most effective representation. It’s also efficient so this is still by far the most
popular document representation method and it’s used in all the major search
engines.

Sometimes we need to employ language-specific and domain-specific represen-
tation. This is actually very important as we might have variations of the terms that
prevent us from matching them with each other even though they mean the same
thing. Take Chinese, for example. We first need to segment text to obtain word
boundaries because it’s originally just a sequence of characters. A word might cor-
respond to one character or two characters or even three characters. It’s easier in
English when we have a space to separate the words, but in some other languages we
may need to do some natural language processing to determine word boundaries.

There is also possibility to improve the similarity function. So far, we’ve used
the dot product, but there are other measures. We could compute the cosine of the
angle between two vectors, or we can use a Euclidean distance measure. The dot
product still seems the best and one of the reasons is because it’s very general; in
fact, it’s sufficiently general. If you consider the possibilities of doing weighting in
different ways, cosine measure can be regarded as the dot product of two normal-
ized vectors. That means we first normalize each vector, and then we take the dot
product. That would be equivalent to the cosine measure.

We mentioned that BM25 seems to be one of the most effective formulas—but
there has also been further development in improving BM25, although none of
these works have changed the BM25 fundamentally. In one line of work, people
have derived BM25-F. Here, F stands for field, and this is BM25 for documents
with structure. For example, you might consider the title field, the abstract field,
the body of the research article, or even anchor text (on web pages). These can all be
combined with an appropriate weight on different fields to help improve scoring for
each document. Essentially, this formulation applies BM25 on each field, and then
combines the scores, but keeps global (i.e., across all fields) frequency counts. This
has the advantage of avoiding over-counting the first occurrence of the term. Recall
that in the sublinear transformation of TF, the first occurrence is very important

110 Chapter 6 Retrieval Models

and contributes a large weight. If we do that for all the fields, then the same term
might have gained a large advantage in every field. When we just combine counts
on each separate field, the extra occurrences will not be counted as fresh first
occurrences. This method has worked very well for scoring structured documents.
More details can be found in Robertson et al. [2004].

Another line of extension is called BM25+. Here, researchers have addressed the
problem of over-penalization of long documents by BM25. To address this problem,
the fix is actually quite simple. We can simply add a small constant to the TF
normalization formula. But what’s interesting is that we can analytically prove that
by doing such a small modification, we will fix the problem of over-penalization
of long documents by the original BM25. Thus, the new formula called BM25+ is
empirically and analytically shown to be better than BM25 [Lv and Zhai 2011].

6.3.7 Summary
In vector space retrieval models, we use similarity as a notion of relevance, assum-
ing that the relevance of a document with respect to a query is correlated with the
similarity between the query and the document. Naturally, that implies that the
query and document must be represented in the same way, and in this case, we
represent them as vectors in a high dimensional vector space. The dimensions are
defined by words, concepts, or terms. We generally need to use multiple heuris-
tics to design a ranking function; we gave some examples which show the need for
several heuristics, which include:

. TF (term frequency) weighting and sublinear transformation;

. IDF (inverse document frequency) weighting; and

. document length normalization.

These three are the most important heuristics to ensure such a general ranking
function works well for all kinds of tasks. Finally, BM25 and pivoted length nor-
malization seem to be the most effective VS formulas. While there has been some
work done in improving these two powerful measures, their main idea remains
the same. In the next section, we will discuss an alternative approach to the vector
space representation.

6.4 Probabilistic Retrieval Models
In this section, we will look at a very different way to design ranking functions than
the vector space model that we discussed before. In probabilistic models, we define
the ranking function based on the probability that a given document d is relevant

6.4 Probabilistic Retrieval Models 111

to a query q, or p(R = 1 | d , q) where R ∈ {0, 1} is a binary random variable denoting
relevance. In other words, we introduce a binary random variable R and we model
the query and the documents as observations from random variables.

Note that in the vector space model, we assume that documents are all equal-
length vectors. Here, we assumed they are the data observed from random variables.
Thus, the problem is to estimate the probability of relevance.

In this category of models, there are many different variants. The classic prob-
abilistic model has led to the BM25 retrieval function, which we discussed in the
vector space model section because its form is quite similar to these types of mod-
els. We will discuss another special case of probabilistic retrieval functions called
language modeling approaches to retrieval. In particular, we’re going to discuss
the query likelihood retrieval model, which is one of the most effective models in
probabilistic models. There is also another line of functions called divergence-from-
randomness models (such as the PL2 function [Amati and Van Rijsbergen 2002]). It’s
also one of the most effective state-of-the-art retrieval models.

In query likelihood, our assumption is that this probability of relevance can
be approximated by the probability of a query given a document and relevance,
p(q | d , R = 1). Intuitively, this probability just captures the following probability:
if a user likes document d, how likely would the user enter query q in order to
retrieve document d? The condition part contains document d and R = 1, which
can be interpreted as the condition that the user likes document d. To understand
this idea, let’s first take a look at the basic idea of probabilistic retrieval models.

Figure 6.19 lists some imagined relevance status values (or relevance judgments)
of queries and documents. It shows that q1 is a query that the user typed in and d1 is
a document the user has seen. A “1” in the far right column means the user thinks
d1 is relevant to q1. The R here can be also approximated by the clickthrough data
that the search engine can collect by watching how users interact with the search
results. In this case, let’s say the user clicked on document d1, so there’s a one
associated with the pair (q1, d1). Similarly, the user clicked on d2, so there’s a one
associated with (q1, d2). Thus, d2 is assumed to be relevant to q1 while d3 is non-
relevant, d4 is non-relevant, d5 is again relevant, and so on and so forth. Perhaps
the second half of the table (after the ellipses) is from a different user issuing the
same queries. This other user typed in q1 and then found that d1 is actually not
useful, which is in contrast to the first user’s judgement.

We can imagine that we have a large amount of search data and are able to ask
the question, “how can we estimate the probability of relevance?” Simply, if we look
at all the entries where we see a particular d and a particular q, we can calculate
how likely we will see a one in the third column. We can first count how many times

112 Chapter 6 Retrieval Models

Query Document Relevant?
q d R

q1 d1 1
q1 d2 1
q1 d3 0
d1 d4 0
q1 d5 1

...
q1 d1 0
d1 d2 1
q1 d3 0
q2 d3 1
q3 d1 1
q4 d2 1
q4 d3 0

f (q , d) = p(R = 1 | d , q) = count(q , d , R = 1)

count(q , d)

P (R = 1 | q1, d1) = 1/2

P(R = 1 | q1, d2) = 2/2

P(R = 1 | q1, d3) = 0/2

Figure 6.19 Basic idea of probabilistic models for information retrieval.

we see q and d as a pair in this table and then count how many times we actually
have also seen a one in the third column and compute the ratio:

p(R = 1 | d , q) = count(R = 1, d , q)

count(d , q)
. (6.3)

Clearly, p(R = 1 | d , q) + p(R = 0 | d , q) = 1.
Let’s take a look at some specific examples. Suppose we are trying to compute

this probability for d1, d2, and d3 for q1. What is the estimated probability? If we are
interested in q1 and d1, we consider the two pairs containing q1 and d1; only in one
of the two cases has the user said that the document is relevant. So R is equal to 1 in
only one of the two cases, which gives our probability a value of 0.5. What about d2

and d3? For d2, R is equal to 1 in both cases. For d3, R is equal to 0 in both cases. We
now have a score for d1, d2, and d3 for q1. We can simply rank them based on these
probabilities—that’s the basic idea of probabilistic retrieval model. In our example,

6.4 Probabilistic Retrieval Models 113

it’s going to rank d2 above all the other documents because in all the cases, given
q1 and d2, R = 1.

With volumes of clickthrough data, a search engine can learn to improve its
results. This is a simple example that shows that with even a small number of
entries, we can already estimate some probabilities. These probabilities would give
us some sense about which document might be more useful to a user for this
query. Of course, the problem is that we don’t observe all the queries and all of
the documents and all the relevance values; there will be many unseen documents.
In general, we can only collect data from the documents that we have shown to the
users. In fact, there are even more unseen queries because you cannot predict what
queries will be typed in by users. Obviously, this approach won’t work if we apply
it to unseen queries or unseen documents. Nevertheless, this shows the basic idea
of the probabilistic retrieval model.

What do we do in such a case when we have a lot of unseen documents and
unseen queries? The solution is that we have to approximate in some way. In the
particular case called the query likelihood retrieval model, we just approximate this
by another conditional probability, p(q | d , R = 1) [Lafferty and Zhai 2003].

We assume that the user likes the document because we have seen that the
user clicked on this document, and we are interested in all these cases when a
user liked this particular document and want to see what kind of queries they
have used. Note that we have made an interesting assumption here: we assume
that a user formulates the query based on an imaginary relevant document. If you
just look at this as a conditional probability, it’s not obvious we are making this
assumption. We have to somehow be able to estimate this conditional probability
without relying on the big table from Figure 6.19. Otherwise, we would have similar
problems as before. By making this assumption, we have some way to bypass the
big table.

Let’s look at how this new model works for our example. We ask the following
question: which of these documents is most likely the imaginary relevant docu-
ment in the user’s mind when the user formulates this query? We quantify this
probability as a conditional probability of observing this query if a particular doc-
ument is in fact the imaginary relevant document in the user’s mind. We compute
all these query likelihood probabilities—that is, the likelihood of the query given
each document. Once we have these values, we can then rank these documents.

To summarize, the general idea of modeling relevance in the probabilistic re-
trieval model is to assume that we introduce a binary random variable R and let
the scoring function be defined based on the conditional probability p(R = 1 | d , q).
We also talked about approximating this by using query likelihood. This means we
have a ranking function that’s based on a probability of a query given the document.

114 Chapter 6 Retrieval Models

campaign
“presidential”

If the user is thinking of this doc,
how likely would she pose this query?

p(q = “presidential campaign”|d =)
… news of presidential
campaign … presidential
candidate …

“presidential”

campaign

Figure 6.20 Generating a query by sampling words from a document.

This probability should be interpreted as the probability that a user who likes doc-
ument d would pose query q. Now the question, of course, is how do we compute
this conditional probability? We will discuss this in detail in the next section.

6.4.1 The Query Likelihood Retrieval Model
In the query likelihood retrieval model, we quantify how likely a user would pose a
particular query in order to find a particular document.

Figure 6.20 shows how the query likelihood model assumes a user imagines
some ideal document and generates a query based on that ideal document’s con-
tent. In this example, the ideal document is about “presidential campaign news.”
Under this model, the user would use this ideal document as a basis to compose
a query to try and retrieve a desired document. More concretely, we assume that
the query is generated by sampling words from the document. For example, a user
might pick a word like presidential from this imaginary document, and then use
this as a query word. The user would then pick another word like campaign, and
that would be the second query word. Of course, this is only an assumption we
have made about how users pose queries. Whether a user actually follows this pro-
cess is a different question. Importantly, though, this assumption has allowed us
to formally characterize the conditional probability of a query given a document
without relying on the big table that was presented earlier. This is why we can use
this fundamental idea to further derive retrieval functions that we can implement
with language models.

6.4 Probabilistic Retrieval Models 115

… news of presidential campaign
… presidential candidate …p(q|d4 =

p(q = “presidential campaign”|d) = *
c(“presidential”, d)
—

|d|

c(“campaign”, d)
—

|d|

p(q|d3 =) =

p(q|d2 =

) = *
2—

|d4|
1—

|d4|

*
1—

|d3|
1—

|d3|

) = = 0*
0—

|d2|
1—

|d2|
… news about organic food
campaign …

… news of presidential campaign …

Figure 6.21 Computing the probability of a query given a document using the query likelihood
formulation.

We’ve made the assumption that each query word is independent and that
each word is obtained from the imagined ideal document satisfying the user’s
information need. Let’s see how this works exactly. Since we are computing a query
likelihood, then the total probability is the probability of this particular query,
which is a sequence of words. Since we make the assumption that each word
is generated independently, the probability of the query is just a product of the
probability of each query word, where the probability of each word is just the relative
frequency of the word in the document. For example, the probability of presidential
given the document would be just the count of presidential in the document divided
by the total number of words in the document (i.e., the document length). We now
have an actual formula for retrieval that we can use to rank documents.

Let’s take a look at some example documents from Figure 6.21. Suppose now
the query is presidential campaign. To score these documents, we just count how
many times we have seen presidential and how many times we have seen campaign.
We’ve seen presidential two times in d4, so that’s 2

|d4| . We also multiply by 1
|d4| for the

probability of campaign. Similarly, we can calculate probabilities for the other two
documents d3 and d2. If we assume d3 and d4 have about the same length, then it
looks like we will rank d4 above d3, which is above d2. As we would expect, it looks
like this formulation captures the TF heuristic from the vector space models.

However, if we try a different query like this one, presidential campaign update,
then we might see a problem. Consider the word update: none of the documents
contain this word. According to our assumption that a user would pick a word from
a document to generate a query, the probability of obtaining a word like update

116 Chapter 6 Retrieval Models

would be zero. Clearly, this causes a problem because it would cause all these
documents to have zero probability of generating this query.

While it’s fine to have a zero probability for d2 which is not relevant, it’s not okay
to have zero probability for d3 and d4 because now we no longer can distinguish
them. In fact, we can’t even distinguish them from d2. Clearly, that’s not desirable.
When one has such a result, we should think about what has caused this problem,
examining what assumptions have been made as we derive this ranking function.
We have made an assumption that every query word must be drawn from the
document in the user’s mind—in order to fix this, we have to assume that the user
could have drawn a word not necessarily from the document. So let’s consider an
improved model.

Instead of drawing a word from the document, let’s imagine that the user would
actually draw a word from a document language model as depicted in Figure 6.22.
Here, we assume that this document is generated by using this unigram language
model, which doesn’t necessarily assign zero probability for the word update. In
fact, we assume this model does not assign zero probability for any word. If we’re
thinking this way, then the generative process is a bit different: the user has this
model (distribution of words) in mind instead of a particular ideal document,
although the model still has to be estimated based on the documents in our corpus.

The user can generate the query using a similar process. They may pick a word
such as presidential and another word such as campaign. The difference is that now
we can pick a word like update even though it doesn’t occur in the document. This

“cam
paign”

“presidential”

p(q = “presidential campaign”|d =)
… news of presidential
campaign … presidential
candidate …

“presidential”

campaign

update

“update”

…
presidential 0.2
campaign 0.1
news 0.01
candidate 0.02
…
update 0.00001
…

Figure 6.22 Computing the probability of a query given a document using a document language
model.

6.4 Probabilistic Retrieval Models 117

Document LM Query q =
“data mining algorithms”

p(“data mining alg”|d1)

 = p(“data”|d1)

 × p(“mining”|d1)

 × p(“alg”|d1)

p(“data mining alg”|d2)

 = p(“data”|d2)

 × p(“mining”|d2)

 × p(“alg”|d2)

Document

p(w|d1)
…

text 0.2
mining 0.1
association 0.01
clustering 0.02
…

food 0.00001
…

p(w|d2)
…

food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
…

d1

d2

Text mining
paper

Food nutrition
paper

Figure 6.23 Scoring a query on two documents based on their language models.

would fix our problem with zero probabilities and it’s also reasonable because we’re
now thinking of what the user is looking for in a more general way, via a unigram
language model instead of a single fixed document.

In Figure 6.23, we show two possible language models based on documents d1

and d2, and a query data mining algorithms. By making an independence assump-
tion, we could have p(q | d) as a product of the probability of each query word in
each document’s language model. We score these two documents and then rank
them based on the probabilities we calculate.

Let’s formally state our scoring process for query likelihood. A query q contains
the words

q = w1, w2, . . . , wn

such that |q| = n. The scoring or ranking function is then the probability that we
observe q given that a user is thinking of a particular document d. This is the prod-
uct of probabilities of all individual words, which is based on the independence
assumption mentioned before:

p(q | d) = p(w1 | d) × p(w2 | d) × . . . × p(wn | d). (6.4)

118 Chapter 6 Retrieval Models

In practice, we score the document for this query by using a logarithm of the
query likelihood:

score(q , d) = log p(q | d) =
n∑

i=1

log p(wi | d) =
∑
w∈V

c(w, q) log p(w | d). (6.5)

We do this to avoid having numerous small probabilities multiplied together,
which could cause underflow and precision loss. By transforming using a loga-
rithm, we maintain the order of these documents while simultaneously avoiding
the underflow problem. Note the last term in the equation above; in this sum, we
have a sum over all the possible words in the vocabulary V and iterate through
each word in the query. Essentially, we are only considering the words in the query
because if a word is not in the query, its contribution to the sum would be zero.

The only part we don’t know is this document language model, p(w | d). There-
fore, we can convert the retrieval problem into the problem of estimating this
document language model so that we can compute the probability of a query being
generated by each document. Different estimation methods for p(w | d) lead to dif-
ferent ranking functions, and this is just like the different ways to place a document
into a vector in the vector space model. Here, there are different ways to estimate
parameters in the language model, which lead to different ranking functions for
query likelihood.

6.4.2 Smoothing the Document Language Model
When calculating the query likelihood retrieval score, recall that we take a sum of
log probabilities over all of the query words, using the probability of a word in the
query given the document (i.e., the document language model). The main task now
is to estimate this document language model. In this section we look into this task
in more detail.

First of all, how do we estimate this language model? The obvious choice would
be the maximum likelihood estimation (MLE) that we have seen before in Chap-
ter 2. In MLE, we normalize the word frequencies in the document by the document
length. Thus, all the words that have the same frequency count will have an equal
probability under this estimation method. Note that words that have not occurred
in the document will have zero probability. In other words, we assume the user will
sample a word from the document to formulate the query, and there is no chance
of sampling any word that is not in the document. But we know that’s not good,
so how would we improve this? In order to assign a non-zero probability to words
that have not been observed in the document, we would have to take away some

6.4 Probabilistic Retrieval Models 119

probability mass from seen words because we need some extra probability mass
for the unseen words—otherwise, they won’t sum to one.

To make this transformation and to improve the MLE, we will assign nonzero
probabilities to words that are not observed in the data. This is called smoothing,
and smoothing has to do with improving the estimate by including the probabilities
of unseen words. Considering this factor, a smoothed language model would be
a more accurate representation of the actual document. Imagine you have seen
the abstract of a research paper; or, imagine a document is just an abstract. If
we assume words that don’t appear in the abstract have a probability of zero, that
means sampling a word outside the abstract is impossible. Imagine the user who
is interested in the topic of this abstract; the user might actually choose a word
that is not in the abstract to use as query. In other words, if we had asked this
author to write more, the author would have written the full text of the article, which
contains words that don’t appear in the abstract. So, smoothing the language model
is attempting to try to recover the model for the whole article. Of course, we don’t
usually have knowledge about the words not observed in the abstract, so that’s why
smoothing is actually a tricky problem.

The key question here is what probability should be assigned to those unseen
words. As one would imagine, there are many different approaches to solve this
issue. One idea that’s very useful for retrieval is to let the probability of an unseen
word be proportional to its probability as given by a reference language model. That
means if you don’t observe the word in the corpus, we’re going to assume that its
probability is governed by another reference language model that we construct. It
will tell us which unseen words have a higher probability than other unseen words.
In the case of retrieval, a natural choice would be to take the collection LM as the
reference LM. That is to say if you don’t observe a word in the document, we’re going
to assume that the probability of this word would be proportional to the probability
of the word in the whole collection.

More formally, we’ll be estimating the probability of a word given a document
as follows:

p(w | d) =
{

pseen(w | d) if w seen in d

αd
. p(w | C) otherwise.

(6.6)

If the word is seen in the document, then the probability would be a discounted
MLE estimate pseen. Otherwise, if the word is not seen in the document, we’ll let the
probability be proportional to the probability of the word in the collection p(w | C),
with the coefficient αd controlling the amount of probability mass that we assign

120 Chapter 6 Retrieval Models

log p(q|d) = ∑
w2V

c(w, q) log p(w|d)

= ∑
w2V,c(w,d)>0

c(w, q) log pSeen(w|d) +

= + |q|log αd + ∑
w2V,c(w,d)>0

c(w, q) log ∑
w2V

c(w, q) log p(w|C)
pSeen(w|d)
—
αd p(w|C)

∑
w2V,c(w,d)=0

c(w, q) log αd p(w|C)

∑
w2V,c(w,d)>0

c(w, q) log αd p(w|C)∑
w2V

c(w, q) log αd p(w|C) –

Query words not matched in dQuery words matched in d

Query words matched in dAll query words

Figure 6.24 Substituting smoothed probabilities into the query likelihood retrieval formula.

to unseen words. Regardless of whether the word w is seen in the document or not,
all these probabilities must sum to one, so αd is constrained.

Now that we have this smoothing formula, we can plug it into our query likeli-
hood ranking function, illustrated in Figure 6.24. In this formula, we have a sum
over all the query words, written in the form of a sum over the corpus vocabulary.
Although we sum over words in the vocabulary, in effect we are just taking a sum of
query words since each word is weighted by its frequency in the query. Such a way to
write this sum is convenient in some transformations. In our smoothing method,
we’re assuming the words that are not observed in the document have a somewhat
different form of probability. Using this form we can decompose this sum into two
parts: one over all the query words that are matched in the document and the other
over all the words that are not matched. These unmatched words have a different
form of probability because of our assumption about smoothing.

We can then rewrite the second sum (of query words not matched in d) as a
difference between the scores of all words in the vocabulary minus all the query
words matched in d. This is actually quite useful, since part of the sum over all w ∈ V

can now be written as |q| log αd . Additionally, the sum of query words matched in d

6.4 Probabilistic Retrieval Models 121

log p(q|d) =
pSeen(w|d)
—
αd p(w|C)

∑
w2d
w2q

N

∑
i=1

c(w, q)[log] + n log αd + log p(wi|C)

TF weighting

Ignore for ranking

Doc length
normalization

Matched query terms IDF weighting

Figure 6.25 The query likelihood retrieval formula captures the three heuristics from the vector
space models.

is in terms of words that we observe in the query. Just like in the vector space model,
we are now able to take a sum of terms in the intersection of the query vector and
the document vector.

If we look at this rewriting further as shown in Figure 6.25, we can see how
it actually would give us two benefits. The first benefit is that it helps us better
understand the ranking function. In particular, we’re going to show that from this
formula we can see the connection of smoothing using a collection language model
with weighting heuristics similar to TF-IDF weighting and length normalization.
The second benefit is that it also allows us to compute the query likelihood more
efficiently, since we only need to consider terms matched in the query.

We see that the main part of the formula is a sum over the matching query
terms. This is much better than if we take the sum over all the words. After we
smooth the document using the collection language model, we would have nonzero
probabilities for all the words w ∈ V . This new form of the formula is much easier
to compute. It’s also interesting to note that the last term is independent of the
document being scored, so it can be ignored for ranking. Ignoring this term won’t
affect the order of the documents since it would just be the same value added onto
each document’s final score.

Inside the sum, we also see that each matched query term would contribute
a weight. This weight looks like TF-IDF weighting from the vector space models.
First, we can already see it has a frequency of the word in the query, just like in the
vector space model. When we take the dot product, the word frequency in the query
appears in the sum as a vector element from the query vector. The corresponding
term from the document vector encodes a weight that has an effect similar to TF-
IDF weighting. pseen is related to the term frequency in the sense that if a word
occurs very frequently in the document, then the seen probability will tend to be

122 Chapter 6 Retrieval Models

larger. This term is really doing something like TF weighting. In the denominator,
we achieve the IDF effect through p(w | C), or the popularity of the term in the
collection. Because it’s in the denominator, a larger collection probability actually
makes the weight of the entire term smaller. This means a popular term carries
a smaller weight—this is precisely what IDF weighting is doing! Only now, we
have a different form of TF and IDF. Remember, IDF has a logarithm of document
frequency, but here we have something different. Intuitively, however, it achieves
a similar effect to the VS interpretation.

We also have something related to the length normalization. In particular, αd

might be related to document length. It encodes how much probability mass we
want to give to unseen words, or how much smoothing we are allowed to do.
Intuitively, if a document is long then we need to do less smoothing because we
can assume that it is large enough that we have probably observed all of the words
that the author could have written. If the document is short, the number of unseen
words is expected to be large, and we need to do more smoothing in this case. Thus,
αd penalizes long documents since it tends to be smaller for long documents. The
variable αd actually occurs in two places. Thus its overall effect may not necessarily
be penalizing long documents, but as we will see later when we consider smoothing
methods, αd would always penalize long documents in a specific way.

This formulation is quite convenient since it means we don’t have to think about
the specific way of doing smoothing. We just need to assume that if we smooth with
the collection language model, then we would have a formula that looks like TF-
IDF weighting and document length normalization. It’s also interesting that we
have a very fixed form of the ranking function. Note that we have not heuristically
put a logarithm here, but have used a logarithm of query likelihood for scoring
and turned the product into a sum of logarithms of probabilities. If we only want
to heuristically implement TF-IDF weighting, we don’t necessarily have to have
a logarithm. Imagine if we drop this logarithm; we would still have TF and IDF
weighting. But, what’s nice with probabilistic modeling is that we are automatically
given a logarithm function which achieves sublinear scaling of our term “weights.”

In summary, a nice property of probabilistic models is that by following some
assumptions and probabilistic rules, we’ll get a formula by derivation. If we heuris-
tically design the formula, we may not necessarily end up having such a specific
form. Additionally, we talked about the need for smoothing a document language
model. Otherwise, it would give zero probability for unseen words in the document,
which is not good for scoring a query with an unseen word. It’s also necessary to
improve the accuracy of estimating the model representing the topic of this docu-
ment. The general idea of smoothing in retrieval is to use the collection language
model to give us some clue about which unseen word would have a higher proba-

6.4 Probabilistic Retrieval Models 123

bility. That is, the probability of the unseen word is assumed to be proportional to
its probability in the entire collection. With this assumption, we’ve shown that we
can derive a general ranking formula for query likelihood retrieval models that au-
tomatically contains the vector space heuristics of TF-IDF weighting and document
length normalization.

We also saw that through some rewriting, the scoring of such a ranking function
is primarily based on a sum of weights on matched query terms, also just like in
the vector space model. The actual ranking function is given to us automatically by
the probabilistic derivation and assumptions we have made, unlike in the vector
space model where we have to heuristically think about the forms of each function.
However, we still need to address the question: how exactly should we smooth
a document language model? How exactly should we use the reference language
model based on the collection to adjust the probability of the MLE of seen terms?
This is the topic of the next section.

6.4.3 Specific smoothing methods
From the last section, we showed how to smooth the query likelihood retrieval
model with the collection language model. We end up having a retrieval function
that looks like the following:∑

w∈d ,q

c(w, q) log
(

pseen(w | d)

αd
. p(w | C)

)
+ |q| log αd . (6.7)

We can see it’s a sum of all the matched query terms, and inside the sum it’s a
count of terms in the query with some weight for the term in the document. We saw
in the previous section how TF and IDF are captured in this sum. We also mentioned
how the second term αd can be used for document length normalization. If we
wanted to implement this function using a programming language, we’d still need
to figure out a few variables; in particular, we’re going to need to know how to
estimate the probability of a word and how to set αd . In order to answer these
questions, we have to think about specific smoothing methods, where we define
pseen and αd .

We’re going to talk about two different smoothing methods. The first is a lin-
ear interpolation with a fixed mixing coefficient. This is also called Jelinek-Mercer
smoothing. The idea is actually quite simple. Figure 6.26 shows how we estimate
the document language model by using MLE. That gives us word counts normal-
ized by the total number of words in the document. The idea of using this method
is to maximize the probability of the observed text. As a result, if a word like network
is not observed in the text, it’s going to get zero probability. The idea of smoothing
is to rely on the collection reference model where this word is not going to have a

124 Chapter 6 Retrieval Models

zero probability, helping us decide what non-zero probability should be assigned
to such a word. In Jelinek-Mercer smoothing, we do a linear interpolation between
the maximum likelihood estimate and the collection language model. This is con-
trolled by the smoothing parameter λ ∈ [0, 1]. Thus, λ is a smoothing parameter for
this particular smoothing method. The larger λ is, the more smoothing we have,
putting more weight on the background probabilities. By mixing the two distri-
butions together, we achieve the goal of assigning non-zero probability to unseen
words in the document that we’re currently scoring.

So let’s see how it works for some of the words here. For example, if we com-
pute the smoothed probability for the word text, we get the MLE estimate in the
document interpolated with the background probability. Since text appears ten
times in d and |d| = 100, our MLE estimate is 10

100 . In the background, we have
p(text | C) = 0.001, giving our smoothed probability of

pseen(w | d) = (1 − λ) . pMLE(w | d) + λ . p(w | C)

= (1 − λ) . 10
100

+ λ . 0.001.

In Figure 6.26 we also consider the word network, which does not appear in d.
In this case, the MLE estimate is zero, and its smoothed probability is 0 + λ .

p(w | C) = λ . 0.001. You can see now that αd in this smoothing method is just λ

Document d
Total #words = 100

p(“network”|d) = λ * 0.001p(“text”|d) = (1 – λ) + λ * 0.00110
—
100

p(w|d) = (1 – λ) λ2 [0, 1]+ λp(w|C)c(w, d)
—

|d|

Collection LM
P(w|C)Unigram LM p(w|θ) = ?

…

text ?
mining ?
association ?
database ?
…

query ?
network ?

10/100
5/100
3/100
3/100

1/100
0/100

text 10
mining 5
association 3
database 3
algorithm 2
…

query 1
efficient 1

the 0.1
a 0.08
…
computer 0.02
database 0.01
…
text 0.001
network 0.001
mining 0.0009
…

Figure 6.26 Smoothing the query likelihood retrieval function with linear interpolation: Jelinek-
Mercer smoothing.

6.4 Probabilistic Retrieval Models 125

because that’s the coefficient in front of the probability of the word given by the
collection language model.

The second smoothing method we will discuss is called Dirichlet prior smooth-
ing, or Bayesian smoothing. Again, we face the problem of zero probability for words
like network. Just like Jelinek-Mercer smoothing, we’ll use the collection language
model, but in this case we’re going to combine it with the MLE esimate in a some-
what different way. The formula first can be seen as an interpolation of the MLE
probability and the collection language model as before. Instead, however, αd is
not simply a fixed λ, but a dynamic coefficient which takes μ > 0 as a parameter.

Based on Figure 6.27, we can see if we set μ to a constant, the effect is that a
long document would actually get a smaller coefficient here. Thus, a long docu-
ment would have less smoothing as we would expect, so this seems to make more
sense than fixed-coefficient smoothing. The two coefficients |d|

|d|+μ
and μ

|d|+μ
would

still sum to one, giving us a valid probability model. This smoothing can be un-
derstood as a dynamic coefficient interpolation. Another way to understand this
formula—which is even easier to remember—is to rewrite this smoothing method
in this form:

p(w | d) = c(w, d) + μ . p(w | C)

|d| + μ
. (6.8)

Document d
Total #words = 100

p(“network”|d) = * 0.001

p(w|d) = = + μ2 [0, +∞)p(w|C)
c(w, d) + μp(w|C)
—

|d| + μ

p(“text”|d) =
10 + μ * 0.001
—

100 + μ

μ
—
100 + μ

c(w, d)
—

|d|

|d|
—
|d| + μ

μ
—
|d| + μ

Collection LM
P(w|C)Unigram LM p(w|θ) = ?

…

text ?
mining ?
association ?
database ?
…

query ?
network ?

10/100
5/100
3/100
3/100

1/100
0/100

text 10
mining 5
association 3
database 3
algorithm 2
…

query 1
efficient 1

the 0.1
a 0.08
…
computer 0.02
database 0.01
…
text 0.001
network 0.001
mining 0.0009
…

Figure 6.27 Smoothing the query likelihood retrieval function with linear interpolation: Dirichlet
prior smoothing.

126 Chapter 6 Retrieval Models

Here, we can easily see what change we have made to the MLE. In this form,
we see that we add a count of μ . p(w | C) to every word, which is proportional
to the probability of w in the entire corpus. We pretend every word w has μ .

p(w | C) additional pseudocounts. Since we add this extra probability mass in the
numerator, we have to re-normalize in order to have a valid probability distribution.
Since

∑
w∈V p(w | C) = 1, we can add a μ in the denominator, which is the total

number of pseudocounts we added for each w in the numerator.
Let’s also take a look at this specific example again. For the word text, we will have

ten counts that we actually observe but we also added some pseudocounts which
are proportional to the probability of text in the entire corpus. Say we set μ = 3000,
meaning we will add 3000 extra word counts into our smoothed model. We want
some portion of the 3000 counts to be allocated to text; since p(text | C) = 0.001,
we’ll assign 0.001 . 3000 counts to that word. The same goes for the word network;
for d, we observe zero counts, but also add μ . p(network | C) extra pseudocounts
for our smoothed probability.

In Dirichlet prior smoothing, αd will actually depend on the current document
being scored, since |d| is used in the smoothed probability. In the Jelinek-Mercer
linear interpolation, αd = λ, which is a constant. For Dirichlet prior, we have αd =

μ
|d|+μ

, which is the interpolation coefficient applied to the collection language
model. For a slightly more detailed derivation of these variables, the reader may
consult Appendix A.

Now that we have defined pseen and αd for both smoothing methods, let’s plug
these variables in the original smoothed query likelihood retrieval function. Let’s
start with Jelinek-Mercer smoothing:

pseen(w | d)

αd
. p(w | C)

= (1 − λ) . pMLE(w | d) + λ . p(w | C)

λ . p(w | C)
= 1 + 1 − λ

λ
. c(w, d)

|d| . p(w | C)
. (6.9)

Then, plugging this into the entire query likelihood retrieval formula, we get

scoreJM(q , d) =
∑

w∈q ,d

c(w, q) log
(

1 + 1 − λ

λ
. c(w, d)

|d| . p(w | C)

)
. (6.10)

We ignore the |q| log αd additive term (derived in the previous section) since
αd = λ does not depend on the current document being scored. We’ll end up having
a ranking function that is strikingly similar to a vector space model since it is a
sum over all the matched query terms. The value of the logarithm term is non-
negative. We see very clearly the TF weighting in the numerator, which is scaled
sublinearly. We also see the IDF-like weighting, which is the p(w | C) term in the
denominator; the more frequent the term is in the entire collection, the more

6.4 Probabilistic Retrieval Models 127

discounted the numerator will be. Finally, we can see the |d| in the denominator is a
form of document length normalization, since as |d| grows, the overall term weight
would decrease, suggesting that the impact of αd in this case is clearly to penalize
a long document. The second fraction can also be considered as the ratio of two
probabilities; if the ratio is greater than one, it means the probability of w in d is
greater than appearing by chance in the background. If the ratio is less than one,
the chance of seeing w in d is actually less likely than observing it in the collection.

What’s also important to note is that we received this weighting function auto-
matically by making various assumptions, whereas in the vector space model, we
had to go through those heuristic design choices in order to get this. These are the
advantages of using this kind of probabilistic reasoning where we have made ex-
plicit assumptions. We know precisely why we have a logarithm here, and precisely
why we have these probabilities. We have a formula that makes sense and does
TF-IDF weighting and document length normalization.

Let’s look at the complete function for Dirichlet prior smoothing now. We know
what pseen is and we know that αd = μ

|d|+μ
:

pseen(w | d) = c(w, d) + μ . p(w | C)

| d | +μ
= |d|

|d| + μ
. c(w, d)

|d| + μ

|d| + μ
. p(w | C), (6.11)

therefore,

pseen(w | d)

αd
. p(w | C)

=
c(w ,d)+μ.p(w|C)

|d|+μ

μ.p(w|C)
|d|+μ

= 1 + c(w, d)

μ . p(w | C)
. (6.12)

We can now substitute this into the complete formula:

scoreDIR(q , d) =
∑

w∈q ,d

c(w, q) log
(

1 + c(w, d)

μ . p(w | C)

)
+ |q| log

μ

μ + |d| . (6.13)

The form of the function looks very similar to the Jelinek-Mercer scoring func-
tion. We compute a ratio that is sublinearly scaled by a non-negative logarithm.
Both TF and IDF are computed in almost the exact same way. The difference here
is that Dirichlet prior smoothing can capture document length normalization dif-
ferently than Jelinek-Mercer smoothing. Here, we have retained the |q| log αd term
since αd depends on the document, namely |d|. If |d| is large, then less extra mass
is added onto the final score; if |d| is small, more extra mass is added to the score,
effectively rewarding a short document.

To summarize this section, we’ve talked about two smoothing methods: Jelinek-
Mercer, which is doing the fixed coefficient linear interpolation, and Dirichlet prior,

128 Chapter 6 Retrieval Models

which adds pseudo counts proportional to the probability of the current word in
the background collection. In most cases we can see, by using these smoothing
methods, we will be able to reach a retrieval function where the assumptions are
clearly articulated, making them less heuristic than some of the vector space mod-
els. Even though we didn’t explicitly set out to define the popular VS heuristics, in
the end we naturally arrived at TF-IDF weighting and document length normaliza-
tion, perhaps justifying their inclusion in the VS models. Each of these functions
also has a smoothing parameter (λ or μ) with an intuitive meaning. Still, we need to
set these smoothing parameters or estimate them in some way. Overall, this shows
that by using a probabilistic model, we follow very different strategies than the vec-
tor space model. Yet in the end, we end up with retrieval functions that look very
similar to the vector space model. Some advantages here are having assumptions
clearly stated and a final form dictated by a probabilistic model.

This section also concludes our discussion of the query likelihood probabilistic
retrieval models. Let’s recall what assumptions we have made in order to derive the
functions that we have seen the following.

1. The relevance can be modeled by the query likelihood, i.e., p(R | d , q) ≈
p(q | d).

2. Query words are generated independently, allowing us to decompose the
probability of the whole query into a product of probabilities of observed
words in the query.

3. If a word is not seen in the document, its probability is proportional to its
probability in the collection (smoothing with the background collection).

4. Finally, we made one of two assumptions about the smoothing, using either
Jelinek-Mercer smoothing or Dirichlet prior smoothing.

If we make these four assumptions, then we have no choice but to take the
form of the retrieval function that we have seen earlier. Fortunately, the function
has a nice property in that it implements TF-IDF weighting and document length
normalization. In practice, these functions also work very well. In that sense, these
functions are less heuristic compared with the vector space model.

Bibliographic Notes and Further Reading
A brief review of many different kinds of retrieval models can be found in Chapter
2 Zhai [2008]. The vector space model with pivoted length normalization was pro-
posed and discussed in detail in Singhal et al. [1996]. The query likelihood retrieval
model was initially proposed in Ponte and Croft [1998]. A useful reference for the

Exercises 129

BM25 retrieval function is Robertson and Zaragoza [2009]. A comprehensive survey
of language models for information retrieval can be found in Zhai [2008]. A formal
treatment of retrieval heuristics is given in Fang et al. [2004], and a diagnostic eval-
uation method for assessing deficiencies of a retrieval model is proposed in Fang
et al. [2011], where multiple improved basic retrieval functions are also derived.

Exercises
6.1. Here’s a query and document vector. What is the score for the given document
using dot product similarity?

d = {1, 0, 0, 0, 1, 4} q = {2, 1, 0, 1, 1, 1}

6.2. In what kinds of queries do we probably not care about query term frequency?

6.3. Let d be a document in a corpus. Suppose we add another copy of d to collec-
tion. How does this affect the IDF of all words in the corpus?

6.4. Given a fixed vocabulary size, the length of a document is the same as the
length of the vector used to represent it. True or false? Why?

6.5. Consider Euclidean distance as our similarity measure for text documents:

d(q , d) =
√√√√ |V |∑

i=1

(qi − di)
2.

What does this measure capture compared to the cosine measure discussed in this
chapter? Would you prefer one over the other?

6.6. If you perform stemming on words in V to create V ′ then |V ′| > |V |. True or
false? Why?

6.7. Which of the following ways is best to reduce the size of the vocabulary in a
large corpus?

Remove top 10 words

Remove words that occur 10 times or fewer

6.8. Why might using raw term frequency counts with dot product similarity not
give the best possible ranking?

6.9. How can you apply the VS model to a domain other than text documents? For
example, how do you find similar movies in IMDB or similar music to a specific
song? Hint: first define your concept space; what is your “term” vector?

130 Chapter 6 Retrieval Models

6.10. In Okapi BM25, how can we remove document length normalization by
setting a parameter? What value should it have?

6.11. Examine the Okapi BM25 retrieval function in META. You should see that
it is slightly different than the formula discussed in this chapter. What are the
differences and what do you suppose their effect is?

6.12. How are query likelihood and language models related?

6.13. In a unigram document LM, how many parameters are needed? (That is, how
many probabilities must be known in order to describe the LM?)

6.14. In a bigram document LM, how many parameters are needed?

6.15. Given a unigram language model θ estimated from this book’s content, and
two documents d1 =“information retrieval” and d2 =“retrieval information”, then
p(d1 | θ) > p(d2 | θ). True or false? Why?

6.16. For this and the next question, refer to this probabilistic retrieval method
called absolute discounting:

ps(w | d) = max(c(w, d) − δ , 0)

|d| + δ|d|u
|d|

. p(w | C)

and

αd = δ|d|u
|d| ,

where δ ∈ [0, 1] or |d|u is the total number of unique terms in a particular docu-
ment d.

What happens in the extreme cases where δ = 0 and δ = 1?

6.17. Does absolute discounting capture document length normalization? How?

6.18. Give two reasons why Dirichlet Prior smoothing is better than Add-1 smooth-
ing, which is defined as

ps(w | d) = c(w, d) + 1
|d| + |V | .

6.19. Which heuristics from the vector space models are captured in the general
smoothed query likelihood formula?

6.20. Is the following formula an acceptable scoring function? Why or why not?

score(q , d) =
∑

w∈q ,d

k . c(w, C)

c(w, d)
. ln

(
N + 1
df(w)

)
. n

navg

,

Exercises 131

where:

k > 0 is some parameter;

c(w, C) and c(w, d) are the count of the current word in the collection and
current document, respectively;

N is the total number of documents;

df(w) is the number of documents that the current word w appears in;

n is the document length of the current document;

navg is the average document length of the corpus.

7Feedback
In this chapter, we will discuss feedback in a TR system. Feedback takes the results
of a user’s actions or previous search results to improve retrieval results. This is
illustrated in Figure 7.1. As shown, feedback is often implemented as updates to
a query, which alters the list of returned documents. We can see the user would
type in a query and then the query would be sent to a standard search engine,
which returns a ranked list of results (we discussed this in depth in Chapter 6).
These search results would be shown to the user. The user can make judgements
about whether each returned document is useful or not. For example, the user may
say one document is good or one document is not very useful. Each decision on a
document is called a relevance judgment. This overall process is a type of relevance
feedback, because we’ve got some feedback information from the user based on the
judgements of the search results.

As one would expect, this can be very useful to the retrieval system since we
should be able to learn what exactly is interesting to a particular user or users.
The feedback module would then take these judgements as input and also use
the document collection to try to improve future rankings. As mentioned, it would
typically involve updating the query so the system can now rank the results more
accurately for the user; this is the main idea behind relevance feedback.

These types of relevance judgements are reliable, but the users generally don’t
want to make extra effort unless they have to. There is another form of feedback
called pseudo relevance feedback, or blind feedback. In this case, we don’t have to
involve users since we simply assume that the top k ranked documents are relevant.
Let’s say we assume the top k = 10 documents are relevant. Then, we will use these
documents to learn and to improve the query. But how could this help if the top-
ranked documents are random? In fact, the top documents are actually similar to
relevant documents, even if they are not relevant. Otherwise, how would they have
appeared high in the ranked list? So, it’s possible to learn some related terms to
the query from this set anyway regardless whether the user says that a document is
relevant or not.

134 Chapter 7 Feedback

Results:
d1 3.5
d2 2.4
…
dk 0.5
…

Judgments:
d1 +
d2 –
d3 +
…
dk –
…

Document
collection

Query

Updated
query

Feedback

Retrieval
engine

User

Figure 7.1 How feedback is part of an information retrieval system.

You may recall that we talked about using language models to analyze word
associations by learning related words to the word computer (see Chapter 3). First,
we used computer to retrieve all the documents that contain that word. That is,
imagine the query is computer. Then, the results will be those documents that
contain computer. We take the top k results that match computer well and we
estimate term probabilities (by counting them) in this set for our topic language
model. Lastly, we use the background language model to choose the terms that
are frequent in this retrieved set but not frequent in the whole collection. If we
contrast these two ideas, what we can find is that we’ll learn some related terms to
computer. These related words can then be added to the original query to expand
the query, which helps find documents that don’t necessarily match computer, but
match other words like program and software that may not have been in the original
query.

Unfortunately, pseudo relevance feedback is not completely reliable; we have
to arbitrarily set a cutoff and hope that the ranking function is good enough to
get at least some useful documents. There is also another feedback method called
implicit feedback. In this case, we still involve users, but we don’t have to explicitly
ask them to make judgements. Instead, we are going to observe how the users
interact with the search results by observing their clickthroughs. If a user clicked
on one document and skipped another, this gives a clue about whether a document
is useful or not. We can even assume that we’re going to use only the snippet here
in a document that is displayed on the search engine results page (the text that’s
actually seen by the user). We can assume this displayed text is probably relevant
or interesting to the user since they clicked on it. This is the idea behind implicit

7.1 Feedback in the Vector Space Model 135

feedback and we can again use this information to update the query. This is a very
important technique used in modern search engines—think about how Google and
Bing can collect user activity to improve their search results.

To summarize, we talked about three types of feedback. In relevance feedback,
we use explicit relevance judgements, which require some user effort, but this
method is the most reliable. We talked about pseudo feedback, where we simply
assumed the top k document are relevant without involving the user at all. In
this case, we can actually do this automatically for each query before showing the
user the final results page. Lastly, we mentioned implicit feedback where we use
clickthrough data. While this method does involve users, the user doesn’t have to
make explicit effort to make judgements on the results.

Next, we will discuss how to apply feedback techniques to both the vector space
and query likelihood retrieval models. The future sections do not make any note of
how the feedback documents are obtained since no matter how they are obtained,
they would be dealt with the same way by each of the following two feedback
methods.

7.1 Feedback in the Vector Space Model
This section is about feedback in the vector space retrieval model. As we have
discussed, feedback in a TR system is based on learning from previous queries to
improve retrieval accuracy in future queries. We will have positive examples, which
are the documents that we assume to be relevant to a particular query, and we have
negative examples, which are non-relevant to a specific query. The way the system
gets these judged documents depends on the particular feedback strategy that is
employed (which was discussed in the previous section).

The general method in the vector space model for feedback is to modify our
query vector. We want to place the query vector in a better position in the high-
dimensional term space, plotting it closer to relevant documents. We might adjust
weights of old terms or assign weights to new terms in the query vector. As a result,
the query will usually have more terms, which is why this is often called query
expansion. The most effective method for the vector space model feedback was
proposed several decades ago and is called Rocchio feedback.

We illustrate this idea in Figure 7.2 by using a two-dimensional display of all the
documents in the collection in addition to the query vector q. The query vector is in
the center and the + (positive) or − (negative) represent documents. When we have
a query vector and use a similarity function to find the most similar documents, we
are drawing this dotted circle, denoting the top-ranked documents. Of course, not

136 Chapter 7 Feedback

Centroid of
relevant documents

Centroid of
non-relevant documents

++
–

––
– –

–
–

– –– ––
–––

–
–

–
– –

––
––
–

++
+
+

+

+ +
+ ++

+ +++

+
+q

qm

Figure 7.2 Illustration of Rocchio Feedback: adjusting weights in the query vector to move it closer
to a cluster of relevant documents.

all the top-ranked documents will be positive, and this is the motivation behind
feedback in the first place. Our goal is to move the query vector to some position to
improve the retrieval accuracy, shifting the dotted circle of similarity. By looking at
this diagram, we see that we should move the query vector so that the dotted circle
encompasses more + documents than − documents. This is the basic idea behind
Rocchio feedback.

Geometrically, we’re talking about moving a vector closer to some vectors and
away from other vectors. Algebraically, it means we have the following formula
(using the arrow vector notation for clarity):

�qm = α . �q + β

|Dr|
.
∑
�dj∈Dr

�dj − γ

|Dn|
.
∑
�dj∈Dn

�dj , (7.1)

where �q is the original query vector that is transformed into �qm, the modified (i.e.,
expanded) vector. Dr is the set of relevant feedback documents and Dn is the set of
non-relevant feedback documents. Additionally, we have the parameters α , β , and
γ which are weights that control the amount of movement of the original vector.
In terms of movement, we see that the terms in the original query are boosted by a
factor of α, and terms from positive documents are boosted by a factor of β, while
terms from negative documents are shrunk by a factor of γ .

Another interpretation of the second term (the sum over positive documents)
is the centroid vector of relevant feedback documents while the third term is the
centroid vector of the negative feedback documents. In this sense, we shift the
original query towards the relevant centroid and away from the negative centroid.
Thus, the average over these two terms computes one dimension’s weight in the
centroid of these vectors.

7.1 Feedback in the Vector Space Model 137

After we have performed these operations, we will get a new query vector which
can be used again to score documents in the index. This new query vector will then
reflect the move of the original query vector toward the relevant centroid vector and
away from the non-relevant centroid vector.

Let’s take a look at a detailed example depicted below. Imagine we have a small
vocabulary,

V = {news, about, presidential , campaign, food , text}
and a query

�q = {1, 1, 1, 1, 0, 0}.

Recall from Chapter 6 that our vocabulary V is a fixed-length term vector. It’s not
necessary to know what type of weighting scheme this search engine is using, since
in Rocchio feedback, we will only be adding and subtracting term weights from the
query vector.

Say we are given five feedback documents whose term vectors are denoted as
relevant with a + prefix. The negative feedback documents are prefixed with −.

{ news about pres. campaign food text }
− d1 { 1.5 0.1 0.0 0.0 0.0 0.0 }
− d2 { 1.5 0.1 0.0 2.0 2.0 0.0 }
+ d3 { 1.5 0.0 3.0 2.0 0.0 0.0 }
+ d4 { 1.5 0.0 4.0 2.0 0.0 0.0 }
− d5 { 1.5 0.0 0.0 6.0 2.0 0.0 }

For Rocchio feedback, we first compute the centroid of the positive and nega-
tive feedback documents. The centroid of the positive documents would have the
average of each dimension, and the case is the same for the negative centroid:

{ news about pres. campaign food text }
+ Cr { 1.5+1.5

2 0.0 3.0+4.0
2

2.0+2.0
2 0.0 0.0 }

− Cn { 1.5+1.5+1.5
3

0.1+0.1+0.0
3 0.0 0.0+2.0+6.0

3
0.0+2.0+2.0

3 0.0 }

Now that we have the two centroids, we modify the original query to create the
expanded query �qm:

�qm = α . �q + β . Cr − γ . Cn

= {α + 1.5β − 1.5γ , α − 0.067γ , α + 3.5β , α + 2β − 2.67γ , −1.33γ , 0}.

138 Chapter 7 Feedback

We have the parameter α controlling the original query term weight, which all
happened to be one. We have β to control the influence of the relevant centroid
vector Cr . Finally, we have γ , which is the non-relevant centroid Cn weight. Shifting
the original query vector �q by these amounts yields our modified query �qm. We
rerun the search with this new query. Due to the movement of the query vector,
we should match the relevant documents much better, since we moved �q closer to
them and away from the non-relevant documents—this is precisely what we want
from feedback.

If we apply this method in practice we will see one potential problem: we would
be performing a somewhat large computation to calculate the centroids and modify
all the weights in the new query. Therefore, we often truncate this vector and
only retain the terms which contain the highest weights, considering only a small
number of words. This is for efficiency. Additionally, negative examples or non-
relevant examples tend not to be very useful, especially compared with positive
examples. One reason is because negative documents distract the query in all
directions, so taking the average doesn’t really tell us where exactly it should be
moving to. On the other hand, positive documents tend to be clustered together
and they are often in a consistent direction with respect to the query. Because of
this effect, we sometimes don’t use the negative examples or set the parameter γ

to be small.
It’s also important to avoid over-fitting, which means we have to keep relatively

high weight α on the original query terms. We don’t want to overly trust a small
sample of documents and completely reformulate the query without regard to
its original meaning. Those original terms are typed in by the user because the
user decided that those terms were important! Thus, we bias the modified vector
towards the original query direction. This is especially true for pseudo relevance
feedback, since the feedback documents are less trustworthy. Despite these issues,
the Rocchio method is usually robust and effective, making it a very popular method
for feedback.

7.2 Feedback in Language Models
This section is about feedback for language modeling in the query likelihood model
of information retrieval. Recall that we derive the query likelihood ranking function
by making various assumptions, such as term independence. As a basic retrieval
function, that family of functions worked well. However, if we think about in-
corporating feedback information, it is not immediately obvious how to modify

7.2 Feedback in Language Models 139

query likelihood to perform feedback. Many times, the feedback information is
additional information about the query, but since we assumed that the query is
generated by assembling words from an ideal document language model, we don’t
have an easy way to add this additional information.

However, we have a way to generalize the query likelihood function that will
allow us to include feedback documents more easily: it’s called a Kullback-Leibler
divergence retrieval model, or KL-divergence retrieval model for short. This model
actually makes the query likelihood retrieval function much closer to the vector
space model. Despite this, the new form of the language model retrieval can still be
regarded as a generalization of query likelihood (in that it covers query likelihood
without feedback as a special case). Here, the feedback can be achieved through
query model estimation or updating. This is very similar to Rocchio feedback which
updates the query vector; in this case, we update the query language model instead.

Figure 7.3 shows the difference between our original query likelihood formula
and the generalized KL-divergence model. On top, we have the query likelihood
retrieval function. The KL-divergence retrieval model generalizes the query term
frequency into a probabilistic distribution. This distribution is the only difference,
which is able to characterize the user’s query in a more general way. This query lan-
guage model can be estimated in many different ways—including using feedback
information. This method is called KL-divergence because this can be interpreted
as measuring the divergence (i.e., difference) between two distributions; one is the
query model p(w | θ̂Q) and the other is the document language model from before.
We won’t go into detail on KL-divergence, but there is a more detailed explanation
in appendix C.

f (q, d) =
pseen(w|d)
—
αd p(w|C)

∑
w2d
w2q

c(w, q) [log] + n log αd

f (q, d) =
pseen(w|d)
—
αd p(w|C)

∑
w2d,p(w|θQ)>0

[p(w|θ̂Q) log

c(w, Q)
—

|Q|
p(w|θ̂Q) =

] + log αd

Query likelihood

Query LM

KL-divergence
(cross entropy)

Figure 7.3 The KL-divergence retrieval model changes the way we represent the query. This
enables feedback information to be incorporated into the query more easily.

140 Chapter 7 Feedback

θD

D(θQ || θD)

Document D

Results

Feedback docs
F = {d1, d2, …, dn}Generative

model

Full
feedback

No
feedback

θQ

θQ′ = (1 – α)θQ + αθF

α = 0 α = 1

θQ′ = θQ θQ′ = θF

θF

Query Q

Figure 7.4 Model-based feedback.

So, the two formulas look almost identical except that in the generalized formula
we have a probability of a word given by a query language model. Still, we add all
the words that are in the document and have non-zero probability for the query
language model. Again, this becomes a generalization of summing over all the
matching query words. We can recover the original query likelihood formula by
simply setting the query language model to be the relative frequency of a word in
the query, which eliminates the query length term n = |q| which is a constant.

Figure 7.4 shows that we first estimate a document language model, then we
estimate a query language model and we compute the KL-divergence, often denoted
by D(.||.). We compute a language model from the documents containing the
query terms called the feedback language model θF . This feedback language model
is similar to the positive centroid Cr in Rocchio feedback. This model can be
combined with the original query language model using a linear interpolation,
which produces an updated model, again just like Rocchio.

We have a parameter α ∈ [0, 1] that controls the strength of the feedback docu-
ments. If α = 0, there is no feedback; if α = 1, we receive full feedback and ignore
the original query. Of course, these extremes are generally not desirable. The main
question is how to compute this θF .

Now, we’ll discuss one of the approaches to estimate θF . This approach is based
on a generative model shown in Figure 7.5. Let’s say we are observing the posi-
tive documents, which are collected by users’ judgements, the top k documents
from a search, clickthrough logs, or some other means. One approach to estimate
a language model over these documents is to assume these documents are gen-

7.2 Feedback in Language Models 141

P(w|C) w

w

Background words

Topic words

1 – λ

λ

P(source) F = {d1, …, dn}

P(w|θ)

log p(F|θ) = ∑
i
∑
w

c(w; di)log[(1 – λ)p(w|θ) + λp(w|C)]

λ = noise in feedback documents

Maximum likelihood θF = log p(F|θ)argmax
θ

Figure 7.5 Mixture model for feedback.

erated from some ideal feedback language model as we did before; this entails
normalizing all the frequency counts from all the feedback documents. But is this
distribution good for feedback? What would the top-ranked words in θF be?

As depicted in the language model on the right in Figure 7.6, the high-scoring
words are actually common words like the. This isn’t very good for feedback, be-
cause we will be adding many such words to our query when we interpolate with
our original query language model. Clearly, we need to get rid of these stop words.
In fact, we have already seen one way to do that, by using a background language
model while learning word associations in Chapter 2. Instead, we’re going to talk
about another approach which is more principled. What we can do is to assume
that those unwanted words are from the background language model. If we use a
maximum likelihood estimate, a single model would have been forced to assign
high probabilities to a word like the because it occurs so frequently. In order to re-
duce its probability in this model, we have to have another model to explain such a
common word. It is appropriate to use the background language model to achieve
this goal because this model will assign high probabilities to these common words.

We assume the machine that generated these words would work as follows.
Imagine we flip a coin to decide what distribution to use (topic words or background
words). With the probability of λ ∈ [0, 1] the coin shows up as heads and then
we’re going to use the background language model. Once we know we will use the
background LM, we can then sample a word from that model. Alternatively, with
probability 1 − λ, we decide to use an unknown topic model to generate a word. This
is a mixture model because there are two distributions that are mixed together, and
we actually don’t know when each distribution is used. We can treat this feedback

142 Chapter 7 Feedback

w w

security
airport
beverage
alcohol
bomb
terrorist
author
license
bond
counter-terror
terror
newsnet
attack
operation
headline

P(w|θF)

0.0558
0.0546
0.0488
0.0474
0.0236
0.0217
0.0206
0.0188
0.0186
0.0173
0.0142
0.0129
0.0124
0.0121
0.0121

λ = 0.9

Query: “airport security”

Mixture model approach

Web database

Top 10 docs

the
security
airport
beverage
alcohol
to
of
and
author
bomb
terrorist
in
license
state
by

P(w|θF)

0.0405
0.0377
0.0342
0.0305
0.0304
0.0268
0.0241
0.0214
0.0156
0.0150
0.0137
0.0135
0.0127
0.0127
0.0125

λ = 0.7

Figure 7.6 Example of query models learned via pseudo-relevance feedback.

mixture model as a single distribution in that we can still ask it to generate words,
and it will still give us a word in a random way (according to the underlying models).
Which word will show up depends on both the topic distribution and background
distribution. In addition, it would also depend on the mixing parameter λ; if λ is
high, it’s going to prefer the background distribution. Conversely, if λ is very small,
we’re going to use only our topic words.

Once we’re thinking this way, we can do exactly the same as what we did before
by using MLE to adjust this model and set the parameters to best explain the data.
The difference, however, is that we are not asking the unknown topic model alone
to explain all the words; rather, we’re going to ask the whole mixture model to
explain the data. As a result, it doesn’t have to assign high probabilities to words like
the, which is exactly what we want. It would then assign high probabilities to other
words that are common in the topic distribution but not having high probability
in the background distribution. As a result, this topic model must assign high
probabilities to the words common in the feedback documents yet not common
across the whole collection.

Mathematically, we have to compute the log likelihood of the feedback docu-
ments F with another parameter λ, which denotes noise in the feedback
documents. We assume it will be fixed to some value. Assuming it’s fixed, then

7.2 Feedback in Language Models 143

we only have word probabilities θ as parameters, just like in the simplest unigram
language model. This gives us the following formula to estimate the feedback lan-
guage model:

θF = arg max
θ

log p(F | θ)

= arg max
θ

∑
d∈F

∑
w

c(w, d) . log [(1 − λ) . p(w | θ) + λ . p(w | C)]
(7.2)

We choose this probability distribution θF to maximize the log likelihood of
the feedback documents under our model. This is the same idea as the maximum
likelihood estimator. Here though, the mathematical problem is to solve this opti-
mization problem. We could try all possible θ values and select the one that gives
the whole expression the maximum probability. Once we have done that, we ob-
tain this θF that can be interpolated with the original query model to do feedback.
Of course, in practice it isn’t feasible to try all values of θ , so we use the EM algo-
rithm to estimate its parameters [Zhai and Lafferty 2001]. Such a model involving
multiple component models combined together is called a mixture model, and
we will further discuss such models in more detail in the topic analysis chapter
(Chapter 17).

Figure 7.6 shows some examples of the feedback model learned from a web docu-
ment collection for performing pseudo feedback. We just use the top 10 documents,
and we use the mixture model with parameters λ = 0.9 and λ = 0.7. The query is air-
port security. We select the top ten documents returned by the search engine for this
query and feed them to the mixture model. The words in the two tables are learned
using the approach we described. For example, the words airport and security still
show up as high probabilities in each case naturally because they occur frequently
in the top-ranked documents. But we also see beverage, alcohol, bomb, and terrorist.
Clearly, these are relevant to this topic, and if combined with the original query can
help us match other documents in the index more accurately.

If we compare the two tables, we see that when λ is set to a smaller value, we’ll
still see some common words when we don’t use the background model often.
Remember that λ can “choose” the probability of using the background model to
generate to the text. If we don’t rely much on the background model, we still have
to use the topic model to account for the common words. Setting λ to a very high
value uses the background model more often to explain these words and there is no
burden on explaining the common words in the feedback documents. As a result,
the topic model is very discriminative—it contains all the relevant words without
common words.

144 Chapter 7 Feedback

To summarize, this section discussed feedback in the language model approach;
we transform our original query likelihood retrieval function to a more general KL-
divergence model. This generalization allows us to use a language model for the
query, which can be manipulated to include feedback documents. We described a
method for estimating the parameters in this feedback model that discriminates
between topic words (relevant to the query) and background words (useless stop
words).

In this chapter, we talked about the three major feedback scenarios: relevance
feedback, pseudo feedback, and implicit feedback. We talked about how to use
Rocchio to do feedback in the vector-space model and how to use query model esti-
mation for feedback in language models. We briefly talked about the mixture model
for its estimation, although there are other methods to estimate these parameters
that we mention later on in the book.

Bibliographic Notes and Further Reading
An early empirical comparison of various relevance feedback techniques can be
found in Salton and Buckley [1990]. Pseudo-relevance feedback has become popu-
lar after positive results being observed in TREC experiments (e.g., Buckley 1994,
Xu and Croft 1996). A comparison of feedback approaches in language models is
available in Lv and Zhai [2009]. The positional relevance model proposed in Lv and
Zhai [2010] appears to be one of the most effective methods for estimating a query
language model for pseudo feedback. Due to the availability of a large amount of
search engine log data, implicit feedback based on users’ interaction behavior has
become a very important and very effective technique to enable web search engines
to improve their accuracy over time as more and more users are using the systems,
though the interpretation of user clickthroughs must take position bias into con-
sideration, which is discussed in detail in Joachims et al. [2007]. A bibliography on
implicit feedback can be found in Kelly and Teevan [2003]. In the web search era,
implicit feedback is often implemented in the form of using feedback features in
a ranking function using machine learning, i.e., learning to rank techniques; they
are discussed briefly in Chapter 10 of the book. For a more thorough discussion of
mining query logs, see the tutorial [Silvestri 2010].

Exercises
7.1. How should you set the Rocchio parameters α , β , and γ depending on what
type of feedback you are using? That is, should the parameters be set differently if

Exercises 145

you are using pseudo feedback compared to user-supplied relevance judgements?
What about implicit feedback through clickthrough data?

7.2. Imagine you are in charge of a large search-engine company. What other
strategies could you devise to get relevance judgments from users?

7.3. Say one of your new strategies is to measure the amount of time t a user spends
on each search result document. How can you incorporate this t for each document
into a feedback measure for a particular query?

7.4. Implement Rocchio pseudo feedback in META.

7.5. Implement mixture model feedback for language models in META. Use which-
ever method is most convenient to estimate θF . Or, compare different estimation
methods for θF .

7.6. After implementing Rocchio pseudo feedback, index a dataset with relevance
judgements. Plot MAP (see Chapter 9) across different values of k. Do you see any
trends?

7.7. After implementing mixture model feedback, index a dataset with relevance
judgements. Plot MAP (see Chapter 9) across different values of the mixing param-
eter α. Do you see any trends?

7.8. Design a heuristic to automatically determine the best k for pseudo feedback
on a query-by-query basis. You could look at the query itself, the number of match-
ing documents, or the distribution of ranking scores in the original results. Test
your heuristic by doing experiments.

7.9. Design a heuristic to automatically determine the best α for mixture model
feedback on a query-by-query basis. You could look at the query itself, the number
of matching documents, or the distribution of ranking scores in the original results.
Test your heuristic by doing experiments.

7.10. In mixture model feedback, we discussed how to incorporate positive feed-
back documents via a language model θF . Design a formula that also incorporates
a set of negative feedback documents. Ensure that your new query language model
is still a valid probability distribution.

7.11. In mixture model feedback, we estimated the feedback LM with a probabilis-
tic model that ensures stop words do not affect the reformulated query. Do we need
to do anything like this for Rocchio feedback?

146 Chapter 7 Feedback

7.12. In the feedback methods we discussed in this chapter, we assumed we only
had sets of relevant and non-relevant documents. In reality, we actually have two
ranked lists of relevant and non-relevant documents. How can we take advantage
of these ranked lists for feedback? In other words, how can we treat feedback
documents differently depending on how similar they are to the original query?
Consider the vector space model, the query likelihood model, or both.

7.13. In a real search system, storing modified query vectors for all observed
queries will take up a large amount of space. How could you optimize the amount
of space required? What kind of solutions provide a tradeoff between space and
query time? How about an online system that benefits the majority of users or the
majority of queries?

8Search Engine
Implementation
This chapter focuses on how to implement an information retrieval (IR) system or
a search engine. In general, an IR system consists of four components.

Tokenizer. This component takes in documents as raw strings and determines
how to separate the large document string into separate tokens (or features).
These token streams are then passed on to the indexer. This is perhaps the
most vital part of the system as a whole, since a poor tokenization method
will affect all other parts of the indexing, and propagate downstream to the
end user.

Indexer. This is the module that processes documents and indexes them with
appropriate data structures. An Indexer can be run offline. The main chal-
lenges are to index large amounts of documents quickly with a limited amount
of memory. Other challenges include supporting addition and deletion of doc-
uments.

Scorer/Ranker. This is the module that takes a query and returns a ranked list of
documents. Here the challenge is to implement a retrieval model efficiently
so that we can score documents efficiently.

Feedback/Learner. This is the module that is responsible for relevance feed-
back or pseudo feedback. When there is a lot of implicit feedback information
such as user clickthroughs available (as in a modern web search engine), this
learning module can be fairly sophisticated. It was discussed in detail in the
previous chapter, so in this chapter we will just outline how it may be added
to an existing system.

For the first three items, there are fairly standard techniques that are essentially
used in all current search engines. The techniques for implementing feedback,

148 Chapter 8 Search Engine Implementation

however, highly depend on the learning approaches and applications. Despite this,
we did discuss some common methods for feedback in the previous chapter.

We will additionally investigate two additional optimizations. These are not
required to ensure the correctness of an information retrieval system, but they will
enable such a system to be much more efficient in both speed and disk usage.

Compression. The documents we index could consume hundreds of gigabytes
or terabytes. We can simultaneously save disk space and increase disk read
efficiency by losslessly compressing the data in our index, which is usually
just integers.1

Caching. Even after designing and compressing an efficient data structure for
document retrieval storage, the system will still be at the mercy of the hard
disk speed. Thus, it is common practice to add a cache between the front-
facing API and the document index on disk. The cache will be able to save
frequently-accessed term information so the number of slow disk seeks dur-
ing query-time is reduced.

The following sections in this chapter discuss each of the above components
in turn.

8.1 Tokenizer
Document tokenization is the first step in any text mining task. This determines
how we represent a document. We saw in the previous chapter that we often rep-
resent documents as document vectors, where each index corresponds to a single
word. The value stored in the index is then a raw count of the number of occurrences
of that word in a particular document.

When running information retrieval scoring functions on these vectors, we usu-
ally prefer some alternate representation of term count, such as smoothed term
count, or TF-IDF weighting. In real search engine systems, we often leave the term
scoring up to the index scorer module. Thus, in tokenization we will simply use
the raw count of features (words), since the raw count can be used by the scorer to
calculate some weighted term representation. Additionally, calculating something
like TF-IDF is more involved than a simple scanning of a single document (since we
need to calculate IDF). Furthermore, we’d like our scorer to be able to use different

1. As we will discuss, the string terms themselves are almost always represented as term IDs, and
most of the processing on “words” is done on integer IDs instead of strings for efficiency.

8.1 Tokenizer 149

scoring functions as necessary; storing only TF-IDF weight would then require us
to always use TF-IDF weighting.

Therefore, a tokenizer’s job is to segment the document into countable features
or tokens. A document is then represented by how many and what kind of tokens
appear in it. The raw counts of these tokens are used by the scorer to formulate the
retrieval scoring functions that we discussed in the previous chapter.

The most basic tokenizer we will consider is a whitespace tokenizer. This tok-
enizer simply delimits words by their whitespace. Thus,

whitespace_tokenizer(Mr. Quill’s book is very very long.)

could result in

{Mr.: 1, Quill′s: 1, book: 1, is: 1, very: 2, long.: 1}.

A slightly more advanced unigram words tokenizer could first lowercase the
sentence and split the words based on punctuation. There is a special case here
where the period after Mr. is not split (since it forms a unique word):

{mr.: 1, quill: 1, ’s: 1, book: 1, is: 1, very: 2, long: 1, .: 1}.

Of course, we aren’t restricted to using a unigram words representation. Look
back to the exercises from Chapter 4 to see some different ways in which we
can represent text. We could use bigram words, POS-tags, grammatical parse tree
features, or any combination. Common words (stop words) could be removed
and words could also be reduced to their common stem (stemming). Again, the
exercises in Chapter 4 give good examples of these transformations using META. In
essence, the indexer and scorer shouldn’t care how the term IDs were generated;
this is solely the job of the tokenizer.

Another common task of the tokenizer is to assign document IDs. It is much
more efficient to refer to documents as unique numbers as opposed to strings
such as /home/jeremy/docs/file473.txt. It’s much faster to do integer com-
parisons than string comparisons, in addition to integers taking up much less
space. The same argument may be made for string terms vs. term IDs. Finally, it
will almost always be necessary to map terms to counts or documents to counts. In
C++, we could of course use some structure internally such as std::unordered_
map<std::string, uint64_t>. As you know, using a hash table like this gives
amortized O(1) lookup time to find a uint64_t corresponding to a particular
std::string.

150 Chapter 8 Search Engine Implementation

However, using term IDs, we can instead write std::vector<uint64_t>. This
data structure takes up less space, and allows true O(1) access to each uint64_t

using a term ID integer as the index into the std::vector. Thus, for term ID 57,
we would look up index 57 in the array.

Using term IDs and the second tokenizer example, we could set mr.→ term id 0,
quill→ term id 1 and so on, then our document vector looks like

{1, 1, 1, 1, 1, 2, 1, 1}.

Of course, a real document vector would be much larger and much sparser—that
is, most of the dimensions will have a count of zero.

This process is also called feature generation. It defines the building blocks
of our document objects and gives us meaningful ways to compare them. Once
we define how to conceptualize documents, we can index them, cluster them,
and classify them, among many other text mining tasks. As mentioned in the
Introduction, tokenization is perhaps the most critical component of our indexer,
since all downstream operations depend on its output.

8.2 Indexer
Modern search engines are designed to be able to index data that is much larger
than the amount of system memory. For example, a Wikipedia database dump is
about 40 GB of uncompressed text. At the time of writing this book, this is much
larger than the amount of memory in common personal systems, although it is
quite a common dataset for computer science researchers. TREC research datasets
may even be as large as several terabytes. This doesn’t even take into account real-
world production systems such as Google that index the entire Web.

This requires us to design indexing systems that only load portions of the raw
corpus in memory at one time. Furthermore, when running queries on our indexed
files, we want to ensure that we can return the necessary term statistics fast enough
to ensure a usable search engine. Scanning over every document in the corpus to
match terms in the query will not be sufficient, even for relatively small corpora.

An inverted index is the main data structure used in a search engine. It allows
for quick lookup of documents that contain any given term. The relevant data
structures include (1) the lexicon (a lookup table of term-specific information, such
as document frequency and where in the postings file to access the per-document
term counts) and (2) the postings file (mapping from any term integer ID to a list
of document IDs and frequency information of the term in those documents).

8.2 Indexer 151

… news about Term # docs Total freq
news
campaign
presidential
food
…

3
2
1
1
…

3
2
2
1
…

Doc 1 Dictionary (or lexicon) Postings

Doc 2

Doc 3

… news about
organic food
campaign …

… news of presidential campaign …
… presidential candidate …

Doc ID Freq Position
1
2
3
2
3
3
2
…
…

1
1
1
1
1
2
1
…
…

p1
p2
p3
p4
p5
p6, p7
p8

Figure 8.1 Inverted index postings and lexicon files.

In order to support “proximity heuristics” (rewarding matching terms that are
together), it is also common to store the position of each term occurrence. Such
position information can be used to check whether all the query terms are matched
within a certain window of text, e.g., it can be used to check whether a phrase
is matched. This information is stored in the postings file since it is document-
specific.

Figure 8.1 shows a representation of the lexicon and postings files. The arrows
in the image are actually integer offsets that represent bit or byte indices into the
postings file.

For example, if we want to score the term computer, which is term ID 56, we look
up 56 in the lexicon. The information we receive could be:

Term ID: 56

Document frequency: 78

Total number of occurrences: 443

Offset into postings file: 8923754

Of course, the actual lexicon would just store 56 → {78, 443, 8923754}. Since
the tokenizer assigned term IDs sequentially, we could represent the lexicon as
a large array indexed by term ID. Each element in the large array would store tuples
of (document frequency, total count, offset) information. If we seek to position
8,923,754 in the large postings file, we could see something like

Term ID: 56

Doc ID: 4, count: 1, position 56

Doc ID: 7, count: 9, position 4, position 89, position...

Doc ID: 24, count: 19, position 1, position 67, position...

152 Chapter 8 Search Engine Implementation

Doc ID: 90, count: 4, position 90, position 93, position...

Doc ID: 141, count: 1, position 100

Doc ID: 144, count: 2, position 34, position 89
.
.
.

which is the counts and position information for the 78 documents that term ID 56
appears in. Notice how the doc IDs (and positions) are stored in increasing order;
this is a fact we will take advantage of when compressing the postings file. Also
make note of the large difference in size of the lexicon and postings file. For each
entry in the lexicon, we know we will only store three values per term. In the postings
file, we store at least three values (doc ID, count, positions) for each document that
the term appears in. If the term appears in all documents, we’d have a list of the
length of the number of documents in the corpus. This is true for all unique terms.
For this reason, we often assume that the lexicon can fit into main memory and the
postings file resides on disk, and is seeked into based on pointers from the lexicon.

Indexing is the process of creating these data structures based on a set of tok-
enized documents. A popular approach for indexing is the following sorting-based
approach.

. Scan the raw document stream sequentially. In tokenization, assign each
document an ID. Tokenize each document to obtain term IDs, creating new
term IDs as needed.

. While scanning documents, collect term counts for each term-document pair
and build an inverted index for a subset of documents in memory. When we
reach the limit of memory, write the incomplete inverted index into the disk.
(It will be the same format as the resulting postings file, just smaller.)

. Continue this process to generate many incomplete inverted indices (called
“runs”) all written on disk.

. Merge all these runs in a pair-wise manner to produce a single sorted (by
term ID) postings file. This algorithm is essentially the merge function from
mergesort.

. Once the postings file is created, create the lexicon by scanning through the
postings file and assigning the offset values for each term ID.

Figure 8.2 shows how documents produce terms originally in document ID order.
The terms from multiple documents are then sorted by term ID in small postings
chunks that fit in memory before they are flushed to the disk.

8.3 Scorer 153

<1,1,3>
<2,1,2>
<3,1,1>
…

<1,2,2>
<3,2,3>
<4,2,2>
…

doc1

doc2

doc300

…

Sort by doc-id

Parse and count

<1,300,3>
<3,300,1>
…

<1,1,3>
<1,2,2>
<2,1,2>
<2,4,3>
…

<1,5,3>
<1,6,2>
…

Sort by term-id

“Local” sort

<1,299,3>
<1,300,1>
…

<1,1,3>
<1,2,2>
<1,5,2>
<1,6,3>
…

<1,300,3>
<2,1,2>
…

All info about term 1 Term
lexicon:

Merge sort

<5000,299,1>
<5000,300,1>
…

the 1
campaign 2
news 3
a 4
…

DocID
lexicon:

doc1 1
doc2 2
doc3 3
…

Figure 8.2 Sort-based inversion of inverted index chunks.

A forward index may be created in a very similar way to the inverted index. Instead
of mapping terms to documents, a forward index maps documents to a list of
terms that occur in them. This type of setup is useful when doing other operations
aside from search. For example, clustering or classification would need to access
an entire document’s content at once. Using an inverted index to do this is not
efficient at all, since we’d have to scan the entire postings file to find all the terms
that occur in a specific document. Thus, we have the forward index structure that
records a term vector for each document ID.

In the next section, we’ll see how using the inverted term-to-document mapping
can greatly decrease query scoring time. There are other efficiency aspects that are
relevant to the forward index as well, such as compression and caching.

8.3 Scorer
Now that we have our inverted index, how can we use it to efficiently score queries?
Imagine for a moment that we don’t have an inverted index; we only have the
forward index, which maps document IDs to a list of terms that occur in them. To
score a query vector, we’d need to iterate through every single entry (i.e., document)
in the forward index and run a scoring function on the each (document, query) pair.

154 Chapter 8 Search Engine Implementation

Algorithm 8.1 Term-at-a-time Ranking

scores = {} // score accumulator maps doc IDs to scores
for w ∈ q do

for d , count ∈ Idx.fetch docs(w) do
scores[d] = scores[d] + score term(count)

end for
end for
return top k documents from scores

Most likely, many documents do not contain any of the query terms (especially
if stop word removal is performed), which means that their ranking score will be
zero. Why should we bother scoring these documents anyway? This is exactly how
we can benefit from an inverted index: we can only score documents that match
at least one query term—that is, we will only score documents that will have nonzero
scores. We assume (and verify in practice) that scoring only documents containing
terms that appear in the query results in much less scoring computation. This leads
us to our first scoring algorithm using the inverted index.

8.3.1 Term-at-a-time Ranking
Once an inverted index is built, scoring a query term-by-term can be done efficiently
on an inverted index Idx using Algorithm 8.1 with query q.

For each term, fetch the corresponding entries (frequency counts) in the inverted
index. Create document score accumulators as needed (variables that hold the
accumulated score for each document). Scan the inverted index entries for the
current term and for each entry (corresponding to a document containing the term),
update its score accumulator based on some term weighting method (the score_
term function). This could be (for example) Okapi BM25. As we finish processing
all the query terms, the score accumulators should have the final scores for all the
documents that contain at least one query term. Note that we don’t need to create
a score accumulator if the document doesn’t match any query term.

In reality, the fetch_docs function would return some object that contains in-
formation about the current term in the document, such as count, background
probability, or any other necessary information that the score_term function would
need to operate.

Once we’ve iterated through all the query terms, the score accumulators have
been finalized. We just need to sort these documents by their accumulated scores

8.3 Scorer 155

and return (usually) the top k. Again, we save time in this sorting operation by only
sorting documents that contained a query term as opposed to sorting every single
document in the index, even if its score is zero.

8.3.2 Document-at-a-time Ranking
One disadvantage to term-at-a-time ranking is that the size of the score accumula-
tors scores will be the size of the number of documents matching at least one term.
While this is a huge improvement over all documents in the index, we can still make
this data structure smaller.

Instead of iterating through each document multiple times for each matched
query term occurrence, we can instead score an entire document at once. Since
most (if not all) searches are top-k searches, we can only keep the top k documents at
any one time. This is only possible if we have the complete score for each document
in our structure that holds scored documents. Otherwise, as with term-at-a-time
scoring, a document may start out with a lower score than another, only to surpass
it as more terms are scored.

We can hold the k best completely scored documents with a priority queue. Using
the inverted index, we can get a list of document IDs and postings data that need to
be scored. As we score a complete document, it is added on the priority queue. We
assign high priorities to documents with low scores; this is so that after adding the
(k + 1)st document, we can (in O(log k) time) remove the lowest-score document
and only hold onto the top k. Once we’ve iterated through all the document IDs, we
can easily sort the k documents and return them. See Algorithm 8.2.

We can use a similar priority queue approach while extracting the top k docu-
ments from the term-at-a-time score accumulators, but we would still need to store
all the scores before finding the top k.

8.3.3 Filtering Documents
Another common task is only returning documents that meet a certain criteria. For
example, our index may store newspaper articles with dates as metadata. In our
top-k search, suppose we want to only return documents that were written within
the past year. This is a common document filtering problem.

With term-at-a-time ranking, we can ignore documents that are not in the correct
date range by not updating their scores in the score accumulator (thus not inserting
those document IDs into the structure). In document-at-a-time ranking, we can
simply skip the document if it doesn’t pass the filter when creating the context for
that particular document.

156 Chapter 8 Search Engine Implementation

Algorithm 8.2 Document-at-a-time Ranking

context = {} // maps a document to a list of matching terms
for w ∈ q do

for d , count ∈ Idx.fetch docs(w) do
context[d].append(count)

end for
end for
priority queue = {} // low score is treated as high priority
for d , term counts ∈ context do

score = 0
for count ∈ term counts do

score = score + score term(count)
end for
priority queue.push(d , score)
if priority queue.size() > k then

priority queue.pop() // removes lowest score so far
end if

end for
Return sorted documents from priority queue

Filters can be as complex as desired, since a filter is essentially just a Boolean
function that takes a document and returns whether or not it should be returned
in the list of scored documents. The filtering function can then be an optional
parameter to the scoring function which has access to the document metadata
store (usually a database) and a forward index (in order to filter documents that
contain certain terms).

8.3.4 Index Sharding
Index sharding is the concept of keeping more than one inverted index for a partic-
ular search engine. This is easily achieved by stopping the postings chunk merging
process when the number of chunks is equal to the number of desired shards. All
the same data is stored as one final chunk, but it’s just broken down into several
pieces.

But why would we want multiple inverted index chunks? Consider when we
have the number of shards equal to the number of threads (or cluster nodes) in
our search system. You can probably imagine an algorithm where each thread
searches for matching terms in its respective shard, and the final search results

8.4 Feedback Implementation 157

are then merged together. This type of algorithm design—distributing the work
and then merging the results—is a very common paradigm called Map Reduce. We
will discuss its generality and many other applications in future chapters.

8.4 Feedback Implementation
Chapter 7 discussed feedback in a standard information retrieval system. We saw
two implementations of feedback: the vector space Rocchio feedback and the query
likelihood mixture model for feedback.

Both can be implemented with the inverted index and document metadata we’ve
described in the previous sections. For Rocchio feedback, we can use the forward
index to obtain the vectors of both the query and feedback documents, running
the Rocchio algorithm on that set of vectors. The mixture model feedback method
requires a language model to be learned over the feedback documents; again, this
can be achieved efficiently by using the term counts from the forward index. The
only other information needed is the corpus background probabilities for each
term, which can be stored in the term lexicon.

With this information, it is now possible to create an online (or “in-memory”)
pseudo-feedback method. Recall that pseudo-feedback looks at the top k returned
documents from search and assumes they are relevant. The following process could
be used to enable online feedback.

. Run the user’s original query.

. Use the top k documents and the forward index to either modify the query vec-
tor (Rocchio) or estimate a language model and interpolate with the feedback
model (query likelihood).

. Rerun the search with the modified query and return the new results to the
user.

There are both advantages and disadvantages to this simple feedback model.
For one, it requires very little memory and disk storage to implement since each
modified query is “forgotten” as soon as the new results are returned. Thus, we
don’t need to create any additional storage structures for the index.

The downside is that all the processing is done at query time, which could
be quite computationally expensive, especially when using a search engine with
many users. The completely opposite tradeoff is to store every modified query in a
database, and look up its expanded form, running the search function only once. Of
course, this is infeasible as the number of queries would quickly make the database
explode in size, not to mention that adding more documents to the index would

158 Chapter 8 Search Engine Implementation

invalidate the stored query vectors (since the new documents might also match the
original query).

In practice, we can have some compromise between these two extremes, e.g.,
only storing the very frequently expanded queries, or using query similarity to
search for a similar query that has been saved. The caching techniques discussed
in a later section are also applicable to feedback methods, so consider how to adopt
them from caching terms to caching expanded queries.

Of course, this only touches on the pseudo-feedback method. There is also
clickthrough data, which can be stored in a database, and relevance judgements,
which can be stored the same way. Once we know which documents we’d like to
include in the chosen feedback method, all implementations are the same since
they deal with a list of feedback documents.

8.5 Compression
Another technical component in a retrieval system is integer compression, which
is applied to compress the very large postings file. A compressed index is not only
smaller, but also faster when it’s loaded into main memory. The general idea of
compressing integers (and compression in general) is to exploit the non-uniform
distribution of values. Intuitively, we will assign a short code to values that are
frequent at the price of using longer codes for rare values. The optimal compression
rate is related to the entropy of the random variable taking the values that we
consider—skewed distributions would have lower entropy and are thus easier to
compress.

It is important that all of our compression methods need to support random
access decoding; that is, we could like to seek to a particular position in the
postings file and start decompressing without having to decompress all the pre-
vious data.

Because inverted index entries are stored sequentially, we may exploit this fact
to compress document IDs (and position information) based on their gaps. The
document IDs would otherwise be distributed relatively uniformly, but the distri-
bution of their gaps would be skewed since when a term is frequent, its inverted list
would have many document IDs leading to many small gaps. Consider the following
example of a list of document IDs:

{23, 25, 34, 35, 39, 43, 49, 51, 57, 59, . . .}.

Instead of storing these exact numbers, we can store the offsets between them;
this creates more smaller numbers, which are easier to compress since they take

8.5 Compression 159

up less space and are more frequent:

{23, 2, 9, 1, 4, 4, 6, 2, 6, 2, . . .}.

To get the actual document ID values, simply add the offset to the previous value.
So the first ID is 23 and the second is 23 + 2 = 25. The third is 25 + 9 = 34, and
so on.

In this section, we will discuss the following types of compression, which may
or may not operate on gap-encoded values:

. unary encoding (bitwise);

. γ -encoding (bitwise);

. δ-encoding (bitwise);

. vByte (block); and

. frame of reference (block).

8.5.1 Bitwise compression
With bitwise compression, instead of writing out strings representing numbers
(like “1624”), or fixed byte-width chunks (like a 4-byte integer as “00000658”), we
are writing raw binary numbers. When the representation ends, the next number
begins. There is no fixed width, or length, of the number representations. Using
bitwise compression means performing some bit operations for every bit that is
encoded in order to “build” the compressed integer back into its original form.

Unary. Unary encoding is the simplest method. To write the integer k, we simply
write k − 1 zeros followed by a one. The one acts as a delimiter and lets us know
when to stop reading:

1 → 1

2 → 01

3 → 001

4 → 0001

5 → 00001

19 → 0000000000000000001

Note that we can’t encode the number zero—this is true of most other methods
as well. An example of a unary-encoded sequence is

000100100010000000101000100001 = 4, 3, 4, 8, 2, 4, 5.

160 Chapter 8 Search Engine Implementation

As long as the lexicon has a pointer to the beginning of a compressed integer, we
can easily support random access decoding. We also have the property that small
numbers take less space, while larger numbers take up more space. The next two
compression methods are built on the concept of unary encoding.

Gamma. To encode a number with γ -encoding, first simply write the number in
binary. Let k be the number of bits in your binary string. Then, prepend k − 1 zeros
to the binary number:

1 → 1
2 → 010
3 → 011
4 → 00100
5 → 00101

19 → 000010011
47 → 00000101111

To decode, read and count k zeros until you hit a one. Read the one and additional
k bits in binary. Note that all γ codes will have an odd number of bits.

Delta. In short, δ-encoding is γ -encoding a number and then γ -encoding the
unary prefix (including the one):

1 → 1 → 1
2 → 010 → 0100
3 → 011 → 0101
4 → 00100 → 01100
5 → 00101 → 01101

19 → 000010011 → 001010011
47 → 00000101111 → 0011001111

To decode, decode the γ code at your start position to get an integer k. Write
a one, and then read the next k + 1 bits in binary (including the one you wrote).
As you can see, the δ compression at first starts off to have more bits than the
γ encoding, but eventually becomes more efficient as the numbers get larger. It
probably depends on the particular dataset (the distribution of integers) as to which
compression method would be better in terms of compression ratio. A compression
ratio is simply the uncompressed size divided by the compressed size. Thus, a
compression ratio of 3 is better (in that the compressed files are smaller) than a
compression ratio of 2.

8.5.2 Block compression
While bitwise encoding can achieve a very high compression ratio due to its fine-
grained distribution model, its downside is the amount of processing that is re-

8.5 Compression 161

quired to encode and decode. Every single bit needs to be read in order to read
one integer. Block compression attempts to alleviate this issue by reading bytes at
a time instead of bits. In block compression schemes, only one bitwise operation
per byte is usually required as opposed to at least one operation per bit in the pre-
vious three schemes (e.g., count how many bit operations are required to δ-encode
the integer 47).

Block compression seeks to reduce the number of CPU instructions required
in decoding at the expense of using more storage. The two block compression
methods we will investigate deal mainly with bytes instead of bits.

vByte stands for variable byte encoding. It uses the lower seven bits of a byte to
store a binary number and the most significant bit as a flag. The flag signals whether
the decoder should keep reading the binary number. The parentheses below are
added for emphasis.

1 → (0)0000001

2 → (0)0000010

19 → (0)0010011

47 → (0)0101111

127 → (0)1111111

128 → (1)0000000(0)0000001

194 → (1)1000010(0)0000001

678 → (1)0100110(0)0000101

20, 000 → (1)0100000(1)0011100(0)0000001

The decoder works by keeping a sum (which starts at zero) and adding each
byte into the sum as it is processed. Notice how the bytes are “chained” together
backwards. For every “link” we follow, we left shift the byte to add by 7 × k, where k

is the number of bytes read so far. Therefore, the sum we have to decode the integer
20,000 is

(0100000 << 0) + (0011100 << 7) + (0000001 << 14)

which is the same as

0100000b

+ 00111000000000b

+ 000000100000000000000b

= 000000100111000100000b

= 20,000d

162 Chapter 8 Search Engine Implementation

In this method, the “blocks” that we are encoding are bytes.
Frame of reference encoding takes a block size k and encodes k integers at a time,

so a block in this method is actually a sequence of numbers. Take the following
block of size k = 8 as an example:

{45, 47, 51, 59, 63, 64, 70, 72}.

We transform this block by subtracting the minimum value in the list from each
element:

{0, 2, 6, 14, 18, 19, 25, 27}, min = 45.

Up to this point, this is similar to the gap encoding discussed previously. However,
instead of encoding each value with a bitwise compression such as γ - or δ-encoding,
we will simply use binary with the smallest number of bits possible. Since the
maximum number in this chunk is 27, we will store each of the integers in 5 bits:

{00000, 00010, 00110, 01110, 10010, 10011, 11001, 11011}, min = 45, bytes = 5.

This might look like

45, 5, 0000000010001100111010010100111100111011,

where 45 and 5 could be stored however is convenient (e.g., fixed binary length).
This method also reduces the number of bitwise operations, since we read chunks
of 5 bits and add them to the base value 45 to recreate the sequence. Another
nice side effect is that we know the minimum value and maximum possible value
stored in this chunk; therefore, if we are looking for a particular integer (say for a
document ID), we know we can skip this chunk and not decompress it if ID < 45
or ID > 45 + 25.

8.6 Caching
While we designed our inverted index structure to be very efficient, we still have
the issue of disk latency. For this reason, it is very common for a real-world search
engine to also employ some sort of caching structure stored in memory for postings
data objects. In this section, we’ll overview two different caching strategies.

The basic idea of a cache is to make frequently accessed objects fast to acquire.
To accomplish this, we attempt to keep the frequently accessed objects in memory
so we don’t need to seek to the disk. In our case, the objects we access are postings
lists. Due to Zipf’s law [Zipf 1949], we expect that a relatively small number of

8.6 Caching 163

Hash table

Doubly linked list

K7

V4

K1

V1

K4

V7

K9

V2

K2

V12

K12

V9

Figure 8.3 An implementation of a Least-Recently Used (LRU) cache.

postings lists (keyed by term ID) will be accessed the majority of the time. But how
do we know which terms to store? Even if we knew which terms are most queried,
how do we set a cutoff for memory consumption?

The two cache designs we describe address both these issues. That is: (1) the
most-frequently used items are fast to access, and (2) we can set a maximum size
for our cache so it doesn’t get too large.

8.6.1 LRU cache
We first consider the least recently used (LRU) cache as displayed in Figure 8.3. The
LRU algorithm is as follows, assuming we want to retrieve the postings list for term
ID x.

. First, search the cache for term ID x.

. If it exists in the cache, return the postings list corresponding to x.

. If it doesn’t exist in the cache, retrieve it from disk and insert it into the cache.
If this causes the cache to exceed its maximum size, remove the least-recently
used postings list.

We want searching the cache to be fast, so we use a hash table to store term IDs
as keys and postings lists as values. This enables O(1) amortized insert, find, and
delete operations. The interesting part of the LRU cache is how to determine the
access order of the objects. To do this, we link together the values as a doubly linked
list. Once an element is inserted or accessed, it is moved to the head (front) of the

164 Chapter 8 Search Engine Implementation

Primary map

Secondary map

K,V7

K,V3

K,V1

K,V13

K,V4

K,V17

K,V9

K,V20

K,V2

K,V5

K,V12

K,V8

Figure 8.4 A full Double Barrel Least-Recently Used (DBLRU) cache.

list in O(1) time. When we need to remove the LRU item, we look at the element at
the tail (end) of the linked list and delete it, also in constant time.

8.6.2 DBLRU cache
The double barrel LRU cache was originally used in the popular Lucene search
engine.2 It is a simplified approximation of the LRU cache. Figure 8.4 shows a
DBLRU cache with size six.

The DBLRU cache is just two hash tables named primary and secondary. The
algorithm is as follows, assuming we want to retrieve the postings list for term ID x.

. First, search primary for term ID x; if it exists, return it.

. If it’s not in primary, search secondary.

. If it’s in secondary, delete it. Insert it in primary and return it. If this causes
primary to reach the maximum size, clear the entire contents of secondary.
Then, swap the two hash tables.

. If it’s not in secondary, retrieve it from disk and insert it into secondary.

This cache has a rough hierarchy of usage: primary contains elements that are
more frequently accessed than secondary. So when the cache fills, the secondary
table is emptied to free memory. While the temporal accuracy of the DBLRU cache
is not as precise as the LRU cache, it is a much simpler setup, which translates to
faster access times. As usual, there is a tradeoff between the speed and accuracy of
these two caches.

2. https://lucene.apache.org/

Exercises 165

Bibliographic Notes and Further Reading
A classic reference book for the implementation of search engines is the book Man-
aging Gigabytes [Witten et al. 1999]. Other books on information retrieval, such
as Introduction to Information Retrieval [Manning et al. 2008], and Search Engines:
Information Retrieval in Practice [Croft et al. 2009], and Information Retrieval: Imple-
menting and Evaluating Search Engines [Büttcher et al. 2010] also have an excellent
coverage of implementations of search engines.

Exercises
8.1. Why is using an inverted index to score documents preferred over a more naive
solution?

8.2. For the following values, explain whether we can efficiently get the value from
a default (standard) inverted index postings file. By efficiently, we mean with one
lookup—not scanning the entire index.

Symbol Value

|d| total number of terms in a given doc

|d|u number of unique terms in a given doc

df number of documents a given term appears in

c(w, C) number of times w occurs in the corpus

c(w, d) count of w in d

p(w, d) probability of w occurring in d

8.3. For values in the previous question that were not able to be extracted efficiently
from the postings file, either explain what auxiliary structures need to be searched
or why it isn’t possible to retrieve the value efficiently.

8.4. Imagine that each document is tagged with some sentiment score (either
positive or negative). Outline a method on how you could score documents if you
only wanted to return documents of a certain sentiment on a per-query basis.

8.5. Compress the following sequence of integers using each of the compression
methods discussed:

{34, 36, 39, 42, 47, 48, 49, 51}
8.6. According to Zipf’s law, which of the following strategies is more effective for
reducing the size of an inverted index? (1) Remove all words that appear 10 times
or less or (2) remove the top 10 most frequent words.

166 Chapter 8 Search Engine Implementation

8.7. What type of integer compression is supported in META? Write one of the
implementations discussed in this chapter that does not exist in the toolkit.

8.8. Which type of scoring (document- vs. term-at-a-time) does META use? Hint:
see the file meta/src/index/ranker/ranker.cpp.

8.9. Implement the other type of query scoring and compare its runtime to the
existing method in META.

8.10. META has an implementation of a DBLRU cache. Experiment with the cache
size parameter and plot the retrieval speed against different cache sizes while
holding any other variables constant.

8.11. META does not currently have an implementation of an LRU cache as dis-
cussed in this chapter. Can you write one and compare its performance to the
DBLRU cache in terms of memory usage and speed?

9Search Engine Evaluation
This chapter focuses on the evaluation of text retrieval (TR) systems. In the previous
chapter, we talked about a number of different TR methods and ranking functions,
but how do we know which one works the best? In order to answer this question,
we have to compare them, and that means we’ll have to evaluate these retrieval
methods. This is the main focus of this chapter. We start out with the methodology
behind evaluation. Then, we compare the retrieval of sets with the retrieval of
ranked lists as well as judgements with multiple levels of relevance. We end with
practical issues in evaluation, followed by exercises.

9.1 Introduction
Let’s think about why we have to do evaluation. There are two main reasons;
the first is that we have to use evaluation to figure out which retrieval method
works the best. This is very important for advancing our knowledge, otherwise we
wouldn’t know whether a new idea works better than an old idea. Previously in this
book (Chapter 6), we discussed the problem of text retrieval and compared it with
database retrieval. Search engine evaluation must rely on users, so this becomes
a very challenging problem. Because of this, we must determine how we can get
users involved and draw a fair comparison of different methods.

The second reason to perform evaluation is to assess the actual utility of an
overall TR system (as opposed to specific methods). Imagine you’re building your
own applications; you would be interested in knowing how well your search engine
works for your users. In this case, measures must reflect the utility to the actual
users in the real application as opposed to measures on each individual retrieval
result. Typically, this has been done via user studies—where human users inter-
act with the corpus via the system. In the case of comparing different methods, the
measures we use all need to be correlated with the utility to the users. The measures
only need to be good enough to determine which method works better. This is usu-
ally done by using a test collection, which is a main idea that we’ll be talking about

168 Chapter 9 Search Engine Evaluation

in this chapter. This has been very important for comparing different algorithms
and for improving search engines systems in general.

9.1.1 What to Measure?
There are many aspects of a search engine we can measure—here are the three
major ones.

Effectiveness or accuracy. How accurate are the search results? In this case,
we’re measuring a system’s capability of ranking relevant documents on top
of non-relevant ones.

Efficiency. How quickly can a user get the results? How large are the computing
resources that are needed to answer a query? In this case, we need to measure
the space and time overhead of the system.

Usability. How useful is the system for real user tasks? Here, interfaces and
many other things are also important and we typically have to do user studies.

In this book, we’re going to talk mainly about the effectiveness and accu-
racy measures because the efficiency and usability dimensions are not unique
to search engines (they are needed for evaluating other software systems). There
is also very good coverage of such material in other books, so we suggest the
reader consult Harman [2011] for further reading in this area. Additional readings
are Sanderson [2010] and Kelly [2009], which cover user studies and A-B testing
(concepts that are discussed later in this chapter).

9.1.2 Cranfield Evaluation Methodology
The Cranfield evaluation methodology was developed in the 1960s and is a strategy
for laboratory testing of system components. It’s actually a methodology that has
been very useful not only for search engine evaluation, but also for evaluating
virtually all kinds of empirical tasks. For example, in image processing or other
fields where the problem is empirically defined we typically would need to use a
method such as this.

The basic idea of this approach is to build reusable test collections and define
measures using these collections. Once such a test collection is built, it can be used
again and again to test different algorithms or ideas. Using these test collections,
we will define measures that allow us to quantify the performance of a system or al-
gorithm. The assembled test collection of documents is similar to a real document
collection in a search application. We can also have a sample set of queries or topics
that simulate the user’s information need. Then, we need to have relevance judg-

9.1 Introduction 169

ments. These are judgments of which documents should be returned for which
queries. Ideally, they have to be made by users who formulated the queries because
those are the people that know exactly what the documents (search results) would
be used for. Finally, we have to have measures to quantify how well a system’s result
matches the ideal ranked list that would be constructed based on users’ relevance
judgements.

This methodology is very useful for evaluating retrieval algorithms because the
test set can be reused many times. It also provides a fair comparison for all the
methods, since the evaluation is exactly the same for each one. That is, we have the
same criteria, same corpus, and same relevance judgements to compare the differ-
ent algorithms. This allows us to compare a new algorithm with an old algorithm
that was invented many years ago by using the same approach.

In Figure 9.1, we illustrate how the Cranfield evaluation methodology works. As
mentioned, we need a set of queries that are shown here. We have Q1, Q2, and so
on. We also need the document collection, D1, D2, . . ., and on the far right side of
the figure, we have the relevance judgments which are plus or minus annotations
on each document specifying whether it is relevant (plus) or not relevant (minus).
Essentially, these are binary judgments of documents with respect to a specific
query since there are only two levels of relevance. For example, D1 and D2 are
judged as being relevant to Q1. D3 is judged as non-relevant with respect to Q1.

D1

D2 +
D1 +
D4 –

System A
Which is better?

How to quantify?

RA or RB?

System B

RA

D1 +
D4 –
D3 –
D5 +
D2 +

RB

Q1 Q2 Q3
… Q50 …

Queries
Query = Q1

Relevance
judgments

Document collection

Test Collection Evaluation

D3

D48

D2

…

Q1 D1 +
Q1 D2 +
Q1 D3 –
Q1 D4 –
Q1 D5 +
…

Q2 D1 –
Q2 D2 +
Q2 D3 +
Q2 D4 –
…

Q50 D1 –
Q50 D2 –
Q50 D3 +

Figure 9.1 Illustration of Cranfield evaluation methodology.

170 Chapter 9 Search Engine Evaluation

These Qi judgements are created by users that interact with each system. Once we
have these judgements, we can compare two or more systems. Each query is run on
each system, and we investigate the documents that each system returns.

Let’s say the query is Q1. In the figure we have RA as ranked results from system A
and RB as the ranked results from system B. Thus, RA is system A’s approximation
of relevant documents and RB is system B’s approximation. Let’s take a look at
these results—which is better? As a user, which one would you like? There are
some differences and there are some documents that are returned by both systems.
But if you look at the results you will feel that maybe system A is better in the
sense that we don’t have that many documents returned, and among the three
documents returned two of them are relevant. That’s good; system A is precise. On
the other hand, we can also say system B is better because it returned more relevant
documents; it returned three instead of two. So which one is better and how do we
quantify this? This question highly depends on a user’s task, and it depends on the
individual users as well! For some users, maybe system A is better if the user is not
interested in getting all the relevant documents so he or she doesn’t have to read
too much. On the other hand, imagine a user might need to have as many relevant
documents as possible, for example, in writing a literature survey. You might be
in the second category, and then you might find that system B is better. In either
case, we’ll have to also define measures that would quantify the information need
of a user. We will need to define multiple measures because users have different
perspectives when looking at the results.

9.2 Evaluation of Set Retrieval
In this section, we examine the basic measures for evaluation of text retrieval
systems. We discuss how to design these basic measures and how to quantitatively
compare two systems. Although the systems return a ranked list of documents, the
evaluation metrics discussed in this section deal with sets of returned documents;
that is, the order of the returned results is not taken into account. These measures
and their intuition are used to design other more sophisticated methods, but are
also quite valuable on their own.

9.2.1 Precision and Recall
Let’s return to Figure 9.1. Which set of results is better—system A’s or system
B’s? We can now discuss how to actually quantify their performance. Suppose we
have a total of ten relevant documents in the corpus for the current query, Q1. Of
course, the relevance judgements shown on the right did not include all the ten.

9.2 Evaluation of Set Retrieval 171

We have only seen three relevant documents there, but we can imagine there are
other documents judged for this query. Intuitively we thought that system A is better
because it did not have much noise. In particular we have seen, out of three results,
two are relevant. On the other hand, in system B we have five results and only three
of them are relevant. Based on this, it looks like system A is more accurate. This can
be captured by the measure of precision, where we simply compute to what extent
all the retrieval results are relevant. 100% precision would mean all the retrieved
documents are relevant. Thus in this case, system A has a precision of 2

3 = 0.66.
System B has 3

5 = 0.60. This shows that system A is better according to precision.
But we also mentioned that system B might be preferred by some other users who

wish to retrieve as many relevant documents as possible. So, in that case we have
to compare the number of total relevant documents to the number that is actually
retrieved. This is captured in another measure called recall, which measures the
completeness of coverage of relevant documents in your retrieval result. We assume
that there are ten relevant documents in the collection. Here we’ve got two of them
from system A, so the recall is 2

10 = 0.20. System B has 3
10 = 0.30. Therefore, system

B is better according to recall.
These two measures are the very basic foundation for evaluating search engines.

They are very important because they are also widely used in many other evaluation
problems. For example, if you look at the applications of machine learning you
tend to see precision and recall numbers being reported for all kinds of tasks.
Now, let’s define these two measures more precisely and how these measures are
used to evaluate a set of retrieved documents. That means we are considering that
approximation of a set of relevant documents. We can distinguish the results in
four cases, depending on the situation of a document, as shown in Figure 9.2.

A document is either retrieved or not retrieved since we’re talking about the set of
results. The document can be also relevant or not relevant, depending on whether
the user thinks this is a useful document. We now have counts of documents in each
of the four categories. We can have a represent the number of documents that are
retrieved and relevant, b for documents that are not retrieved but relevant, c for
documents that are retrieved but not relevant, and d for documents that are both
not retrieved and not relevant. With this table, we have defined precision as the ratio
of the relevant retrieved documents a to the total number of retrieved documents
a and c: a

a+c
. In this case, the denominator is all the retrieved documents. Recall

is defined by dividing a by the sum of a and b, where a + b is the total number of
relevant documents. Precision and recall are focused on looking at a, the number of
retrieved relevant documents. The two measures differ based on the denominator
of the formula.

172 Chapter 9 Search Engine Evaluation

Set can be defined by a cutoff (e.g., precision @ 10 docs)

Relevant
Doc

Retrieved

Action
Not retrieved

a b
c dNot relevant

Precision = Ideal results: precision = recall = 1.0

In reality, high recall tends to be
associated with low precision

a
—
a + c

Recall =
a

—
a + b

Figure 9.2 Basic measures: precision and recall.

So what would be an ideal result? If precision and recall are both 1.0, that
means all the results that we returned are relevant, and we didn’t miss any relevant
documents; there’s no single non-relevant document returned. In reality, however,
high recall tends to be associated with low precision; as you go down the list to
try to get as many relevant documents as possible, you tend to include many non-
relevant documents, which decreases the precision. We often are interested in the
precision up to ten documents for web search. This means we look at the top ten
results and see how many documents among them are actually relevant. This is a
very meaningful measure, because it tells us how many relevant documents a user
can expect to see on the first page of search results (where there are typically ten
results).

In the next section, we’ll see how to combine precision and recall into one score
that captures both measures.

9.2.2 The F Measure: Combining Precision and Recall
There tends to be a tradeoff between precision and recall, so it is natural to combine
them. One metric that is often used is called the Fβ measure, displayed in Figure 9.3.
In the case where β = 1, it’s a harmonic mean of precision and recall.

Considering the parameter β and after some simplification, we can see the F

measure may be written in the form on the right-hand side of the figure. Often, β

set to one, which indicates an equal preference towards precision and recall. In the
case where β = 1, we have a special case of the F measure, often called F1. This is
a popular measure that is often used as a combined precision and recall score. If β

is not equal to one, it controls the emphasis between precision and recall. It’s easy

9.2 Evaluation of Set Retrieval 173

Fβ = 1
β2

β2+1
1
R

1
β2+1

1
P

= (β2 + 1)P ∗ R

β2P + R

F1 = 2PR

P + R

whereP = precision, R = recall, β = parameter (often set to 1)

Figure 9.3 The F measure.

to see that if you have a large precision or large recall then the F1 measure would
be high. But what’s interesting is how the tradeoff between precision and recall is
captured in the F1 score.

In order to understand the formulation, we can first ask the natural question:
Why not combine them using a simple arithmetic mean? That would be likely the
most natural way of combining them. Why is this not as good as F1, i.e., what’s
the problem with an arithmetic mean?

The arithmetic mean tends to be dominated by large values. That means if you
have a very high P or a very high R, then you really don’t care about whether the
other value is low since the whole sum would be high. This is not the desirable
effect because one can easily have a perfect recall by returning all the documents!
Then we have a perfect recall and a low precision. This will still give a relatively
high average. Such search results are clearly not very useful for users even though
the average using this formula would be relatively high. In contrast, the F1 score will
reward a case where precision and recall are roughly similar. So, it would penalize
a case with an extremely high result for only one of them. This means F1 encodes
a different tradeoff between them than a simple arithmetic mean. This example
shows a very important methodology: when we try to solve a problem, you might
naturally think of one solution (e.g., the arithmetic mean), but it’s important not
to settle on this solution; rather, think whether there are other ways to approach it.
Once you have multiple ideas, it’s important to analyze their differences and then
think about which one makes more sense in a real scenario.

To summarize, we talked about precision, which addresses the question: are
the retrieval results all relevant? We also talked about recall, which addresses the
question: have all the relevant documents been retrieved? These two are the two
basic measures in information retrieval evaluation. They are used for many other
tasks as well. We talked about F measure as a way to combine precision and recall.
We also talked about the tradeoff between precision and recall, and it turns out to
depend on the users’ search tasks and preferences.

174 Chapter 9 Search Engine Evaluation

9.3 Evaluation of a Ranked List
In the previous section, we only considered whether a relevant document appeared
in the results or not—a binary measure. In this section, we will see how we can take
each document’s position into account when assigning an evaluation score.

We saw that precision and recall are the two basic ways to quantitatively measure
the performance of a search result. But, as we talked about in depth in Chapter 5, the
text retrieval problem is a ranking problem, not a classification one. Thus, we need
to evaluate the quality of a ranked list as opposed to whether a relevant document
was returned anywhere in the results.

How can we use precision and recall to evaluate a ranked list? Naturally, we will
have to look at precision and recall at different cutoffs since a ranked list of relevant
documents is determined by where the user stops browsing. If we assume the user
sequentially browses the list of results, the user would stop at some point. That
point would determine the size of the set. Therefore, that’s the most important
cutoff that we have to consider when we compute the precision-recall.

Without knowing where exactly the user would stop, we have to consider all the
possible positions where they might stop. A precision-recall curve does exactly this,
as illustrated in Figure 9.4

What if the user stops at the first document? What’s the precision-recall at this
point? Since D1 is relevant, the precision is one out of one since we have one

Total number of relevant documents in collection: 10

Evaluating Ranking: Precision–Recall (PR) Curve

0.1 0.2

1.0

0.8

0.6

0.4

0.2

0.0

D1 +

D2 +

D3 –

D4 –

D5 +

D6 –

D7 –

D8 +

D9 –

D10 –

1/1

2/2

2/3

3/5

4/8

?

1/10

2/10

2/10

3/10

4/10

10/10

Precision Recall

0.3 1.00.4

Precision

Recall

…

Figure 9.4 Computing a precision-recall curve.

9.3 Evaluation of a Ranked List 175

document and it is relevant. What about the recall? Note that we are assuming
that there are ten relevant documents for this query in the collection so it’s one out
of ten.

What if the user stops at the second position? The precision is the same since
both D1 and D2 are relevant: 100%, or two out of two. The recall is two out of
ten, or 20%. If the user stops at the third position, we have an interesting case
because we don’t have any additional relevant documents, so the recall does not
change. However, the precision is lower because we have two out of three relevant
documents. The recall won’t change until we see another relevant document. In
this case, that point is at D5. There, the recall has increased to three out of ten and
the precision is three out of five. As you can see, if we keep doing this, we can also get
to D8 and have a precision of four out of eight, because there are eight documents
and four of them are relevant. There, the recall is four out of ten.

When can we get a recall of five out of ten? In this list, we don’t have it. For
convenience, we often assume that the precision is zero in a situation like this.
This is a pessimistic assumption since the actual precision would be higher, but
we make this assumption in order to have an easy way to compute another measure
called average precision, that we will discuss soon.

Note that we’ve made some assumptions that are clearly not accurate. But, this
is okay for the relative comparison of two text retrieval methods. As long as the
deviation is not biased toward any particular retrieval method, the measure is
acceptable since we can still accurately tell which method works better. This is the
most important point to keep in mind: when you compare different algorithms,
the key is to avoid any bias toward a particular method. As long as you can avoid
that, it’s perfectly fine to do a transformation of these measures that preserves the
order.

Since we can get a lot of precision-recall numbers at different positions, we can
plot a curve; this is what’s shown on the right side of Figure 9.4. On the x-axis
are the recall values. On the y-axis are the precision values. We plot precision-
recall numbers so that we display at what recall we can obtain a certain precision.
Furthermore, we can link these points to form a curve. As you see in the figure, we
assumed all the precision values at the high-level recalls are zero. Although the real
curves will not be exactly like this, it doesn’t matter that much for comparing two
methods whether we get the exact precision values here or not.

In Figure 9.5, we compare two systems by plotting their PR-curves on the same
graph. System A is shown in red and system B is shown in blue. Which one is better?
On the left, system A is clearly better since for the same level of recall, the precision
value by system A is better than system B. In general, the higher the curve is, the

176 Chapter 9 Search Engine Evaluation

Recall

System A

System A

System B

System B

Ideal system
Precision

Recall

Precision

Which is better?

Figure 9.5 Comparison of two PR curves. (Courtesy of Marti Hearst)

better. The problem is that we might see a case like the right graph—this actually
happens quite often where the two curves cross each other. In this case, which one
is better? This is a real problem that you might actually have to face. Suppose you
build a search engine and you have an old algorithm that’s shown here in blue as
system B. Then, you have come up with a new idea and test it with results shown in
red as system A.

The question is, is your new method better than the old method? Or, more
practically, do you have to replace the algorithm that you’re already using in your
search engine with another new algorithm? If you make the replacement, the search
engine would behave like system A here, whereas if you don’t do that, it will be like
system B. Now, some users might like system A, while other users might like system
B. So what’s the difference here? Well, the difference is just that—in the low level
of recall, system B is better, but in the high recall region, system A is better. That
means it depends on whether the user cares about high recall, or low recall with
high precision. Imagine someone is just going to check out what’s happening today
and wants to find out something relevant in the news. Which system is better for
that task? In this case, system B is better because the user is unlikely to examine
many results, i.e., the user doesn’t care about high recall, only the first few results
being useful. On the other hand, if a user wants to determine whether an idea has
been thought of before, they will want to emphasize high recall so that they see as
many relevant documents as possible and don’t miss the chance to find the idea.
Therefore, those users would favor system A.

But this brings us back to the original question: which one is better? Again, this
actually depends on the users, or more precisely, the users’ task. You may not
necessarily be able to come up with one number that would accurately depict
the performance. You have to look at the overall picture. Despite this, it can be

9.3 Evaluation of a Ranked List 177

beneficial to have one number to compare the systems so that we can easily make
a lot of different system comparisons; we need a number to summarize the range
of precision-recall values. One way is to look at the area underneath the curve—the
average precision. Basically, we’re going to take a look at every different recall point
and consider the precision.

The precisions we add up correspond to retrieving the first relevant document,
the second, and so on. In the example in the figure, we missed many relevant
documents so in all of these cases we assume that they have zero precision. Finally,
we take the average and divide it by ten, which is the total number of relevant
documents in the collection. Note that we’re not dividing this sum by four (which
is the number of retrieved relevant documents). Dividing by four is a common
mistake; this favors a system that would retrieve very few documents, making the
denominator very small. In the correct formula, the denominator is ten, the total
number of relevant documents. This will allow us to compute the area under the
PR-curve, combining recall and precision.

Mathematically, we can define average precision on a ranked list L where
|L| = n as

avp(L) = 1
|Rel|

n∑
i=1

p(i), (9.1)

where p(i) denotes the precision at rank i of the documents in L, and Rel is the set
of all relevant documents in the collection. If Di is not relevant, we would ignore the
contribution from this rank by setting p(i) = 0. If Di is relevant, to obtain p(i) we
divide the number of relevant documents we’ve seen so far by the current position
in the list (which is i). If the first relevant document is at the second rank, then
p(2) = 1

2 . If the third relevant document is at the seventh rank, then p(7) = 3
7 . Let’s

use this formula to calculate the average precision of the documents returned in
Figure 9.4. Figure 9.6 shows the calculation.

This measure is sensitive to a small change in position of a relevant document. If
we move the third or fourth relevant document up, it would increase the averages.
Conversely, if we move any relevant document down, then it would decrease. There-
fore, this is a good measure because it’s sensitive to the ranking of each individual
relevant document. It can distinguish small differences between two ranked lists,
and that’s exactly what we want.

In contrast, if we look at the precision at ten documents it’s easy to see that
it’s four out of ten. That precision is very meaningful because it tells us what a
user would see from their perspective. But, if we use this measure to compare two
or more systems, it wouldn’t be as effective since precision alone is not sensitive

178 Chapter 9 Search Engine Evaluation

i Rel p(i)

1 + 1
1 = 1.0

2 + 2
2 = 1.0

3 − 0.0

4 − 0.0

5 + 3
5 = 0.6

6 − 0.0

7 − 0.0

8 + 4
8 = 0.5

... − 0.0

sum 3.1

avp 3.1
10 = 0.31

Figure 9.6 Calculating average precision for a ranked list of results.

to where these four relevant documents are ranked in the list. If they are moved
around the top ten spots, the precision at ten remains the same. In contrast, average
precision is a much better measure since subtle differences in rank affect the overall
score.

9.3.1 Evaluating Ranked Lists from Multiple Queries
Average precision is computed for just one query. Generally, though, we experiment
with many different queries in order to capture the variance across them. For ex-
ample, one system may perform very well with one query on which another system
happens to perform poorly; using only this query would not give an accurate assess-
ment of each systems’ capability. Using more queries then requires the researcher
to take an average of the average precision over all these queries. Naturally, we can
simply calculate an arithmetic mean. In fact, this would give us what’s called mean
average precision (MAP). In this case, we take arithmetic mean of all the average
precisions over several queries or topics. Let L= L1, L2, . . . , Lm be the ranked lists
returned from running m different queries. Then we have

MAP(L) = 1
m

m∑
i=1

avp(Li). (9.2)

9.3 Evaluation of a Ranked List 179

Recall our discussion about the F1 score. In this situation, is an arithmetic mean
of average precisions acceptable? We concluded before that the arithmetic mean
of precision and recall was not as good as the harmonic mean. Here, we have a
similar situation: we should think about the alternative ways of aggregating the
average precisions. Another way is the geometric mean; using the geometric mean
to consolidate the average precisions is called geometric mean average precision,
or gMAP for short. We define it below mathematically as

gMAP(L) =
(

m∏
i=1

avp(Li)

) 1
m

, (9.3)

or in log space as

gMAP(L) = exp

{
1
m

m∑
i=1

ln avp(Li)

}
. (9.4)

Imagine you are again testing a new algorithm. You’ve tested multiple topics
(queries) and have the average precision for each topic. You wish to consider the
overall performance, but which strategy would you use? Can you think of scenarios
where using one of them would make a difference? That is, is there a situation where
one measure would give different rankings of the two methods? Similar to our
argument about F1, we realize in the arithmetic mean the sum is dominated by large
values. Here, a large value means that the query is relatively easy. On the other hand,
gMAP tends to be affected more by low values—those are the queries that don’t have
good performance (the average precision is low). If you wish to improve the search
engine for those difficult queries, then gMAP would be preferred. If you just want to
improve over all kinds of queries, then perhaps MAP would be preferred. So again,
the answer depends on your users’ tasks and preferences. Which measure is most
likely going to represent your users’ needs?

As a special case of the mean average precision, we can also think about the case
where there is precisely one relevant document in the entire collection. This actually
happens quite often, for example, in what’s called a known item search, where you
know a target page such as Amazon or Facebook. Or in another application such
as question answering, there is only one answer. In this scenario, if you rank the
answers, then your goal is to rank that one particular answer on top. In this case,
the average precision will boil down to the reciprocal rank. That is, 1

r
where r is

the position (rank) of the single relevant document. If that document is ranked on
the very top, then the reciprocal rank would be 1

1 = 1. If it’s ranked at the second

180 Chapter 9 Search Engine Evaluation

position, then it’s 1
2 and so on. This means we can also take an average of all the

reciprocal ranks over a set of topics, which gives us the mean reciprocal rank (MRR).
It’s a very popular measure for known item search or any problem where you have
just one relevant item.

We can see this r is quite meaningful; it indicates how much effort a user would
have to make in order to find that one relevant document. If it’s ranked on the
top it’s low effort; if it’s ranked at 100 then you actually have to (presumably) sift
through 100 documents in order to find it. Thus, r is also a meaningful measure
and the reciprocal rank will take the reciprocal of r instead of using it directly.

The usual question also applies here: Why not just simply use r? If you were
to design a ratio to measure the performance of a system where there is only one
relevant item, you might have thought about using r directly as the measure. After
all, that measures the user’s effort, right? But, think about if you take an average of
this over a large number of topics. Again, it would make a difference. For one single
topic, using r or using 1

r
wouldn’t make any difference. A larger r corresponds to

a small 1
r

. The difference appears when there are many topics. Just like MAP, this
sum will be dominated by large values of r . So what are those values? Those are
basically large values that indicate lower ranked results. That means the relevant
items rank very low down on the list. The average would then be dominated by
the relevant documents that are ranked in the lower portion of the list. From a
user’s perspective we care more about the highly ranked documents, so by taking
this transformation by using reciprocal rank we emphasize more on the difference
on the top. Think about the difference between rank one and rank two and the
difference between rank 100 and 1000 using each method. Is one more preferable
than the other?

In summary, we showed that the precision-recall curve can characterize the
overall accuracy of a ranked list. We emphasized that the actual utility of a ranked
list depends on how many top ranked results a user would examine; some users will
examine more than others. Average precision is a standard measure for comparing
two ranking methods; it combines precision and recall while being sensitive to the
rank of every relevant document. We concluded this section with three methods to
summarize multiple average precision values: MAP, gMAP, and MRR.

9.4 Evaluation with Multi-level Judgements
In this section, we will explain how to evaluate text retrieval systems when there
are multiple levels of relevance judgments. So far we discussed about binary
judgements—that means a documents is judged as being relevant or non-relevant.

9.4 Evaluation with Multi-level Judgements 181

Gain

3
2
1
1
3
1
1
2
1
1

Cumulative
gain

3
3 + 2

3 + 2 + 1
3 + 2 + 1 + 1

…

Discounted
cumulative gain

3
3 + 2/log 2

3 + 2/log 2 + 1/log 3
…

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

DCG@10 = 3 + 2/log 2 + 1/log 3 + … + 1/log 10

IdealDCG@10 = 3 + 3/log 2 + 3/log 3 + … + 3/log 9 + 2/log 10

DCG@10
—
IdealDCG@10

Normalized DCG =

Assume: there are 9 documents rated “3” in total in the collection

Relevance level: r = 1 (non-relevant), 2 (marginally relevant), 3 (very relevant)

Figure 9.7 Computation of NDCG.

Earlier we made the point that relevance is a matter of degree. We often are able to
distinguish very highly relevant documents from documents that are still useful,
but with a lower relevance.

In Figure 9.7, we show an example of three relevance levels: level three for highly
relevant, two for marginally relevant, and one for non-relevant. How do we evaluate
a new system using these judgements? We can’t use average precision since it only
operates on binary relevance values; if we treat level two and three as only one level,
then we lose the information gained from comparing these two categories. MAP,
gMAP, and MRR depend on average precision, so we can’t use them either.

Let’s look at the top relevant results when using these judgments. We imagine
the user would mostly care about the top ten results. We call these multi-level
judgements “gains,” since they roughly correspond to how much information a
user gains when viewing a document. Looking at the first document, the user can
gain three points; looking at the non-relevant documents, the user would only
gain one point. This gain usually matches the utility of a document from a user’s
perspective. If we assume the user stops at ten documents we can cumulatively sum
the information gain from traversing the list of returned documents. Let ri be the
gain of result i, and let i range from one to n, where we set n to ten in our example.
We then have the cumulative gain (CG) as

CG(L) =
n∑

i=1

ri . (9.5)

182 Chapter 9 Search Engine Evaluation

If the user looks at more documents, the cumulative gain is more. This is at the
cost of spending more time to examine the list. Thus, cumulative gain gives us some
idea about how much total gain the user would have if the user examines all these
documents.

There is one deficiency which is not considering the rank or position of each
document. Looking at the CG sum of the top four documents, we know there is
only one highly relevant document, one marginally relevant document, two non-
relevant documents; we don’t know where they are ranked in the list. Ideally, we
want those with gains of three to be ranked on the top. But how can we capture that
intuition? The second three is not as good as the first three at the top. That means
the contribution of gain from different documents has to be weighted by their
position. The document at position one doesn’t need to be discounted because
you can assume that the user always sees this document, but the second one will
be discounted a little bit because there’s a small possibility that the user wouldn’t
notice it. We divide this gain by a weight based on the position in order to capture
this position-based penalty. The discounted cumulative gain does exactly this:

DCG(L) = r1 +
n∑

i=2

ri

log2 i
. (9.6)

Each document’s gain is discounted by dividing by a logarithm of its position in the
list. Thus, a lowly ranked document would not contribute as much gain as a highly
ranked document. That means if, for example, you switch the position of D5 and
D2, then the overall DCG score would increase since D5’s relevance score of three
is discounted less by being close to the top.

At this point, we have a discounted cumulative gain for measuring the utility of
a ranked list with multiple levels of judgment. We still need to do a little bit more
in order to make this measure comparable across different queries. The idea here
is normalized discounted cumulative gain (NDCG):

NDCG(L) = DCG(L)

IDCG
. (9.7)

It is simply DCG normalized by the ideal DCG (IDCG) for a particular query. The
IDCG is the DCG of an ideal ranked list with the most relevant documents at the
top, sorted in decreasing order of relevance. For example, imagine that we have nine
documents in the whole collection rated three. Then, our ideal ranked list would
have put all these nine documents on the very top. All this would be followed by
a two, because that’s the best we could do after we have run out of threes. Then,
we can compute the DCG for this ideal ranked list. This becomes the denominator

9.5 Practical Issues in Evaluation 183

for NDCG in order to normalize our own DCG in the range [0, 1]. Essentially, we
compare the actual DCG with the best result you can possibly get for this query.
This doesn’t affect the relative comparison of systems for just one topic because this
ideal DCG is the same for all the systems. The difference is when we have multiple
topics—if we don’t do normalization, different topics will have different scales of
DCG. For a query like this one, we have nine highly relevant documents, but of
course that will not always be the case.

Thus, NDCG is used for measuring relevance based on much more than one
relevance level. In a more general way, this is basically a measure that can be applied
through any ranked task with a large range of judgments. Furthermore, the scale
of the judgments can be dependant on the application at hand. The main idea of
this measure is to summarize the total utility of the top k documents; you always
choose a cutoff, and then you measure the total utility. It discounts the contribution
from lowly ranked documents, and finally, it performs normalization to ensure
comparability across queries.

9.5 Practical Issues in Evaluation
In order to create a test collection, we have to create a set of queries, a set of
documents, and a set of relevance judgments. It turns out that each requirement
has its own challenges.

First, the documents and queries must be representative. They must represent
real queries and real documents that users interact with. We also have to use many
queries and many documents in order to avoid biased conclusions. In order to
evaluate a high-recall retrieval task, we must ensure there exist many relevant doc-
uments for each query. If a query has only one relevant document in the collection,
then it’s not very informative to compare different methods using such a query
because there is not much room to see a difference.

In terms of relevance judgements, the challenge is to ensure complete judge-
ments of all the documents for all the queries while simultaneously minimizing
human effort. Because we have to use human effort to label these documents, it’s
a very labor-intensive task. As a result, it’s usually impossible to actually label all of
the documents for all the queries, especially considering a data set like the Web.

It’s also challenging to correlate the evaluation measures with the perceived
utility of users. We have to consider carefully what the users care about and then
design measures to capture their preferences.

With a certain probability, we can mathematically quantify whether the eval-
uation scores of two systems are indeed different. The way we do this is with a

184 Chapter 9 Search Engine Evaluation

Experiment I Experiment II
Query System A System B Query System A System B

1 0.20 0.40 1 0.02 0.76

2 0.21 0.41 2 0.39 0.07

3 0.22 0.42 3 0.16 0.37

4 0.19 0.39 5 0.58 0.21

5 0.17 0.37 6 0.04 0.02

6 0.20 0.40 6 0.09 0.91

7 0.21 0.41 7 0.12 0.46

Average 0.20 0.40 Average 0.20 0.40

Figure 9.8 Statistical significance: two sets of experiments with an identical MAP. (Courtesy of
Douglas W. Oard and Philip Resnik)

statistical significance test. The significance test gives us an idea as to how likely a
difference in evaluation scores is due to random chance. This is the reason why we
have to use a lot of queries; the more data points we have, the more confident we
can be in our measure.

Figure 9.8 displays some sample average precision results from system A and
system B in two different experiments. As you can see in the bottom of the figure,
we have the MAP for each system in each experiment. They happen to be identi-
cal in experiment one and two. Yet if you look at the exact average precisions for
different queries, you will realize that in one case you might feel that you can trust
the conclusion here given by the average. In the other case, you might not feel as
confident. Based on only the MAP score, we can easily say that system B is better.
After all, it’s 0.4, which is twice as much as 0.2. Clearly, that’s better performance.
But if you look at these two experiments and look at the detailed results, you will
see that we’ll be more confident to say that in experiment 1 that system B is in
fact better since the average precisions are consistently better than system A’s. In
experiment 2, we’re not sure that system B is better since the scores fluctuate so
wildly.

How can we quantitatively answer this question? This is why we need to do a
statistical significance test. The idea behind these tests is to assess the variance in
average precision scores (or any other score) across these different queries. If there’s
a big variance, that means that the results could fluctuate according to different
queries, which makes the result unreliable.

9.5 Practical Issues in Evaluation 185

Query System A System B Sign Test Wilcoxon

1 0.02 0.76 + +0.74

2 0.39 0.07 − −0.32

3 0.16 0.37 + +0.21

4 0.58 0.21 − −0.37

5 0.04 0.02 − −0.02

6 0.09 0.91 + +0.82

7 0.12 0.46 + +0.34

Average 0.20 0.40 p = 1.0 p = 0.9375

Figure 9.9 Statistical significance tests. (Courtesy Douglas W. Oard and Philip Resnik)

So let’s look at these results again in the second case. In Figure 9.9, we show
two different ways to compare them. One is a sign test. If system B is better than
system A, then we have a plus sign. If system A is better, we have a minus sign. Using
this, we have four cases where system B is better and three cases where system A is
better. Intuitively, these results appear random. If you flip seven coins, using plus
to denote heads and minus to denote tails, then these could easily be the results of
just randomly flipping the seven coins. The fact that the average is larger doesn’t
tell us anything! This intuition can be quantified by the concept of a p value. A p

value is the probability that this result is in fact from random fluctuation. In this
case, the probability is one; it means it surely is a random fluctuation.

There are many different significance tests that we can use to quantify the
likelihood that the observed difference in the results is simply due to random
fluctuations. A particularly interesting test is the Wilcoxon signed-rank test. It’s
a nonparametric test, and we not only look at the signs, but also consider the
magnitude of the difference in scores. Another is the (parametric) t -test where a
normal distribution is assumed. In any event, we would draw a similar conclusion in
our example case: the outcome is very likely to be random. For further study on this
and other statistical significance tests, we suggest the reader start with Smucker
et al. [2007].

To illustrate the concept of p-values, consider the distribution in Figure 9.10.
This is a normal distribution, with a mean of zero in the center. Say we started with
the assumption that there’s no difference between the two systems. But, we assume
that because of random fluctuations depending on the queries we might observe a
difference; thus, the actual difference might be on the left side or right side. This

186 Chapter 9 Search Engine Evaluation

95% of outcomes

0

Figure 9.10 The null hypothesis. (Courtesy of Douglas Oard and Philip Resnik)

curve shows the probability that we would observe values that are deviating from
zero here when we subtract system A’s MAP from system B’s MAP (or even vice
versa). Based on the picture, we see that if a difference is observed at the dot shown
in the figure, then the chance is very high that this is in fact a random observation.
We can define the region of likely observation due to random fluctuation; we usually
use the value 95% of all outcomes. Inside this interval the observed values are from
random fluctuation with 95% chance. If you observe a value in the tails on the side,
then the difference is unlikely from random fluctuation (only 5% likely). This 95%
value determines where the lines are drawn on the x axis. If we are only confident
in believing a 1% chance is due to random fluctuations, then the vertical lines are
redrawn farther from the mean; determining the exact x values where the lines are
drawn depends on the specific significance test used.

The takeaway message here is that we need to use many queries to avoid jumping
to an incorrect conclusion that one system is better than another. There are many
different ways of doing this statistical significance test, which is essentially deter-
mining where to place the boundary lines between random chance and an actual
difference in systems.

Now, let’s discuss the problem of making relevance judgements. As mentioned
earlier, it’s very hard to judge all the documents completely unless it is a very
small data set. The question is, if we can’t afford judging all the documents in
the collection, which subset should we judge? The solution here is pooling. This
is a strategy that has been used in many cases to solve this problem. First, choose
a diverse set of ranking methods; these are different types of retrieval systems. We
hope these methods can help us nominate likely relevant documents. The goal is
to pick out the relevant documents so the users can make judgements on them.
That way, we would have each system return the top k documents according to its
ranking function. The k value can vary between systems, but the point is to ask them
to suggest the most likely relevant documents. We then simply combine all these
top k sets to form a pool of documents for human assessors to judge. Of course,
there will be many duplicated documents since many systems might have retrieved

Bibliographic Notes and Further Reading 187

the same documents. There are also unique documents that are only returned by
one system, so the idea of having a diverse set of result ranking methods is to ensure
the pool is broad. We can include as many possible random documents as possible.
Then, the human assessors would make complete judgements on this data set, or
pool. The remaining unjudged documents are assumed to be non-relevant and the
human annotators do not need to spend time and effort manually judging them.
If the pool is large enough, this assumption is perfectly fine. That means if your
system participates in contributing to the pool then it’s unlikely that it will be
penalized since the top-ranked documents have all been judged. However, this is
problematic for evaluating a new system that may not have contributed to the pool,
since the documents it returns may not have been judged and are assumed to be
non-relevant.

What we haven’t covered are some other evaluation strategies such as A-B testing;
this is where an evaluating system would mix the results of two methods randomly,
showing the mix of results to users. Of course, the users don’t see which result
is from which method, so the users would judge those results or click on those
documents in a search engine application. In this case, then, the system can keep
track of the clicked documents, and see if one method has contributed more to
the clicked documents. If the user tends to click on one of the results from one
method, then that method may be better. A-B testing can also be used to compare
two different retrieval interfaces.

Text retrieval evaluation is extremely important since the task is empirically
defined. If we don’t rely on users, there’s no way to tell whether one method works
better. If we have an inappropriate experiment design, we might misguide our
research or applications, drawing the wrong conclusions. The main strategy is the
Cranfield evaluation methodology for all kinds of empirical evaluation tasks (not
just for search engines). MAP and NDCG are the two main measures that you should
definitely know about since you will see them often in research papers. Finally,
retrieving up to ten documents (or some small number) is easier to interpret from
a user’s perspective since this is the number of documents they would likely see in
a real application.

Bibliographic Notes and Further Reading
Evaluation has always been an important research problem in information re-
trieval, and in empirical AI problems in general. The Cranfield evaluation meth-
odology was established in 1960s by early pioneers of information retrieval re-
searchers; important early papers on the topic can be found in Sparck Jones and

188 Chapter 9 Search Engine Evaluation

Willett [1997]. The book Information Retrieval Evaluation by Harman [2011] is an ex-
cellent comprehensive introduction to this topic particularly in providing a histori-
cal view of the development of the IR evaluation methodology and initiatives of eval-
uation such as TREC. Sanderson’s book on test collection evaluation [Sanderson
2010] is another very useful survey of research work on evaluation. The book on in-
teractive IR evaluation by Kelly is yet another excellent introduction to interactive
IR evaluation via user studies [Kelly 2009].

Exercises
9.1. In reality, high recall tends to be associated with low precision. Why?

9.2. What is the range of values (minimum and maximum scores) for the following
measures?

(a) Precision

(b) Recall

(c) F1 score

(d) Average precision

(e) MAP

(f) gMAP

(g) MRR

(h) DCG

(i) NDCG

9.3. Assume there are 16 total relevant documents in a collection. Consider the
following result, where plus indicates relevant and minus indicates non-relevant:

{+, +, −, +, +, −, −, +, −, −}

Calculate the following evaluation measures on the ranked list.

(a) Precision

(b) Recall

(c) F1 score

(d) Average precision

9.4. Consider how recall and precision interact with each other.

(a) Can precision at five documents (P@5) ever be lower than P@10 for the same
ranked list?

Exercises 189

(b) Can recall at five documents (R@5) ever be lower than R@10 for the same
ranked list?

(c) Assume there are 100 relevant documents. Can R@5 be higher than P@5 for
the same ranked list?

(d) Assume there is only one relevant document. Can R@5 be higher than P@5
for the same ranked list?

9.5. When using the NDCG evaluation metric, researchers sometimes consider
NDCG@k. This is the NDCG score of the top k documents returned by the search
engine. When calculating the ideal DCG, should we consider only k results or
should we consider all relevant documents for the query?

9.6. The breakeven point precision is the precision at the cutoff in the ranked list
where precision and recall are equal. Can this value be used to compare two or more
retrieval systems? How does this measure compare to other single-point measures
such as F1 and average precision?

9.7. A researcher wishes to show that his method is better than an existing method.
He used a statistical significance test and found that with 95% confidence, the
results were random (i.e., his method was not arguably better). If he changes the
confidence level to 90%, he can show that his method is better than the baseline
using the same significance test. Is there anything wrong with this?

9.8. How does stemming words affect retrieval performance? Design an experi-
ment to find an answer. What is your dataset? What other information do you need
in order to perform this test? How can you quantify the results?

9.9. Use META to perform the stemming experiment described above. A corpus
with relevance judgements can be found on the META site.

9.10. Find the best unigram words tokenization method for retrieval. For exam-
ple, consider lowercasing, keeping only alpha characters, stemming, stopword
removal, or a combination of these. Quantify your results by using IR evaluation
techniques.

9.11. Find a publicly available dataset and create your own queries and relevance
judgements for it using the META format (described on the site).

9.12. Modify META’s index::ir_eval class to add support for mean reciprocal
rank (MRR) evaluation.

10Web Search
In this chapter, we discuss one of the most important applications of text retrieval:
web search engines. Although many information retrieval algorithms had been
developed before the web was born, it created the best opportunity to apply those
algorithms to a major application problem that everyone cares about. Naturally,
there had to be some further extensions of the classical search algorithms to fully
address new challenges encountered in web search.

First, this is a scalability challenge. How can we handle the size of the web and
ensure completeness of coverage of all its information (be it textual or not)? How
can we serve many users quickly by answering all their queries? Before the web was
born, the scale of search was relatively small, usually focused on libraries, so these
questions were not serious.

The second problem is that there is much low quality information known as
spam. Search engine optimization is the attempt to heighten a particular page’s rank
by taking advantage of how pages are scored, e.g., adding many words that are not
necessarily relevant to the actual content or creating many fake links to a particular
page to make it seem more popular than it really is. Many different approaches
have been designed to detect and prevent such spamming practices [Spirin and
Han 2012].

The third challenge is the dynamic nature of the web. New pages are constantly
created and updated very quickly. This makes it harder to keep the index fresh with
the most recent content. These are just some of the challenges that we have to solve
in order to build a high quality web search engine. Despite these challenges, there
are also some interesting opportunities that we can leverage to improve search
results. For example, we can imagine that using links between pages can improve
scoring.

The algorithms that we talked about such as the vector space model are general—
they can be applied to any search application. On the other hand, they also don’t
take advantage of special characteristics of pages or documents in specific applica-
tions such as web search. Due to these challenges and opportunities, there are new

192 Chapter 10 Web Search

techniques that have been developed specifically for web search. One such tech-
nique is parallel indexing and searching. This addresses the issue of scalability; in
particular, Google’s MapReduce framework is very influential.

There are also techniques that have been developed for addressing the spam
problem. We’ll have to prevent those spam pages from being ranked high. There are
also techniques to achieve robust ranking in the light of search engine optimizers.
We’re going to use a wide variety of signals to rank pages so that it’s not easy to
spam the search engine with one particular trick.

The third line of techniques is link analysis; these are techniques that can allow
us to improve search results by leveraging extra information about the networked
nature of the web. Of course, we will use multiple features for ranking—not just
link analysis. We can also exploit all kinds of features like the layout of web pages
or anchor text that describes a link to another page.

The first component of a web search engine is the crawler. This is a program
that downloads web page content that we wish to search. The second component
is the indexer, which will take these downloaded pages and create an inverted
index. The third component is retrieval, which answers a user’s query by talking
to the user’s browser. The browser will show the search results and allow the user
to interact with the web. These interactions with the user allow opportunities for
feedback (discussed in Chapter 7) and evaluation (discussed in Chapter 9). In the
next section, we will discuss crawling. We’ve already described all indexing steps
except crawling in detail in Chapter 8.

After our crawling discussion, we move onto the particular challenges of web
indexing. Then, we discuss how we can take advantage of links between pages in
link analysis. The last technique we discuss is learning to rank, which is a way to
combine many different features for ranking.

10.1 Web Crawling
The crawler is also called a spider or a software robot that crawls (traverses, parses,
and downloads) pages on the web. Building a toy crawler is relatively easy because
you just need to start with a set of seed pages, fetch pages from the web, and parse
these pages’ new links. We then add them to a queue and then explore those page’s
links in a breadth-first search until we are satisfied.

Building a real crawler is quite tricky and there are some complicated issues
that we inevitably deal with. One issue is robustness: What if the server doesn’t
respond or returns unparseable garbage? What if there’s a trap that generates
dynamically generated pages that attract your crawler to keep crawling the same

10.1 Web Crawling 193

site in circles? Yet another issue is that we don’t want to overload one particular
server with too many crawling requests. Those may cause the site to experience
a denial of service; some sites will also block IP addresses that they believe to be
crawling them or creating too many requests. In a similar vein, a crawler should
respect the robot exclusion protocol. A file called robots.txt at the root of the site
tells crawlers which paths they are not allowed to crawl. You also need to handle
different types of files such as images, PDFs, or any other kinds of formats on the
web that contain useful information for your search application. Ideally, the crawler
should recognize duplicate pages so it doesn’t repeat itself or get stuck in a loop.
Finally, it may be useful to discover hidden URLs; these are URLs that may not be
linked from any page yet still contain content that you’d like to index.

So, what are the major crawling strategies? In general, breadth-first search is the
most common because it naturally balances server load. Parallel crawling is also
very natural because this task is very easy to parallelize. One interesting variation is
called focused crawling. Here, we’re going to crawl some pages about a particular
topic, e.g., all pages about automobiles. This is typically going to start with a query
that you use to get some results. Then, you gradually crawl more. An even more
extreme version of focused crawling is (for example) downloading and indexing all
forum posts on a particular forum. In this case, we might have a URL such as

http://www.text-data-book-forum.com/boards?id=3

which refers to the third post on the forum. By changing the id parameter, we
can iterate through all forum posts and index them quite easily. In this scenario,
it’s especially important to add a delay between requests so that the server is not
overwhelmed.

Another challenge in crawling is to find new pages that have been created since
the crawler last ran. This is very challenging if the new pages have not been linked
to any old page. If they are, then you can probably find them by following links from
existing pages in your index.

Finally, we might face the scenario of incremental crawling or repeated crawling.
Let’s say you want to be able to create a web search engine. Clearly, you first crawl
data from the web. In the future we just need to crawl the updated pages. This is
a very interesting research question: how can we determine when a page needs to
be recrawled (or even when a new page has been created)? There are two major
factors to consider here, the first of which is whether a particular page would be
updated frequently. If the page is a static page that hasn’t been changed for months,
it’s probably not necessary to re-crawl it every day since it’s unlikely that it will be
changed frequently. On the other hand, if it’s (for example) a sports score page

194 Chapter 10 Web Search

that gets updated very frequently, you may need to re-crawl even multiple times on
the same day. The second factor to consider is how frequently a particular page is
accessed by users of the search engine system. If it’s a high-utility page, it’s more
important to ensure it is fresh. Compare it with another page that has never been
fetched by any users for a year; even though that unpopular page has been changed
a lot, it’s probably not necessary to crawl that page—or at least it’s not as urgent—to
maintain its freshness.

10.2 Web Indexing
In this section, we will discuss how to create a web-scale index. After our crawler
delivers gigabytes or terabytes of data, the next step is to use the indexer to create the
inverted index. In general, we can use the standard information retrieval techniques
for creating the index, but there are new challenges that we have to solve for web
scale indexing. The two main challenges are scalability and efficiency.

The index will be so large that it cannot actually fit into any single machine
or single disk, so we have to store the data on multiple machines. Also, because
the data is so large, it’s beneficial to process the data in parallel so that we can
produce the index quickly. To address these challenges, Google has made a number
of innovations. One is the Google File System, which is a general distributed file
system that can help programmers manage files stored on a cluster of machines.
The second is MapReduce, which is a general software framework for supporting
parallel computation. Hadoop is the most well known open source implementation
of MapReduce, now used in many applications.

Figure 10.1 shows the architecture of the Google File System (GFS). It uses a very
simple centralized management mechanism to manage all the specific locations of
files. That is, it maintains a file namespace and lookup table to know where exactly
each file is actually stored. The application client talks to the GFS master node,
which obtains specific locations of the files to process. This filesystem stores its
files on machines in fixed-size chunks; each data file is separated into many 64 MB
chunks. These chunks are replicated to ensure reliability. All of these details are
something that the programmer doesn’t have to worry about, and it’s all taken care
of by this filesystem. From the application perspective, the programmer would see
a normal file. The program doesn’t have to know where exactly it’s stored, and can
just invoke high level operators to process the file. Another feature is that the data
transfer is directly between application and chunk servers, so it’s efficient in this
sense as well.

On top of the GFS, Google proposed MapReduce as a general framework for par-
allel programming. This supports tasks like building an inverted index. Like GFS,

10.2 Web Indexing 195

Application

GFS client

GFS chunkserver

Linux file system

chunk 2ef()

Data messages
Control messages

Legend:

/foo/barGFS master

File namespace

Instructions to chunkserver

(file name, chunk index)

(chunk handle,
chunk locations)

(chunk handle, byte range)

Chunk data

Data transfer is directly
between applications

and chunkservers

Simple centralized
management

Fixed chunk size
(64 MB)

Chunk is replicated
to ensure reliability

Chunkserver state

GFS chunkserver

Linux file system

Figure 10.1 Illustration of Google File System. (Based on Ghemawat et al. [2003])

this framework hides low level features from the programmer. As a result, the pro-
grammer can make minimum effort to create an application that can be run on a
large cluster in parallel. Some of the low-level details hidden in the framework are
communications, load balancing, and task execution. Fault tolerance is also built
in; if one server goes down, some tasks may not be finished. Here, the MapReduce
mechanism would know that the task has not been completed and would automat-
ically dispatch the task on other servers that can do the job. Again, the programmer
doesn’t have to worry about this.

In MapReduce, the input data are separated into a number of (key, value) pairs.
What exactly the value is will depend on the data. Each pair will be then sent to
a map function which the programmer writes. The map function will then process
these (key, value) pairs and generate a number of other (key, value) pairs. Of course,
the new key is usually different from the old key that’s given to map as input. All the
outputs of all the calls to map are collected and sorted based on the key. The result
is that all the values that are associated with the same key will be grouped together.

For each unique key we now have a set of values that are attached to this key.
This is the data that is sent to the reduce function. Each reduce instance will
handle a different key. This function processes its input, which is a key and a
set of values, to produce another set of (key , value) pairs as the output. This is
the general framework of MapReduce. Now, the programmer only needs to write
the map function and the reduce function. Everything else is taken care of by the

196 Chapter 10 Web Search

Key, ValueInput

Map(K, V)

Key, Value

Output

Key, Value

…

Key, Value

Map(K, V)

Reduce(K, V[])

MapReduce internal collection/sorting

Key, Value

Key, Value

…

Key, Value

Map(K, V)

Key, Value

Key, Value

…

Key, Value Key, Value Key, Value

Figure 10.2 Computation flow of MapReduce.

MapReduce framework. With such a framework, the input data can be partitioned
into multiple parts which are processed in parallel first by map, and then processed
again in parallel once we reach the reduce stage.

Figure 10.3 shows an example of word counting. The input is files containing
tokenized words and the output that we want to generate is the number of occur-
rences of each word. This kind of counting would be useful to assess the popularity
of a word in a large collection or achieving an effect of IDF weighting for search. So,
how can we solve this problem? One natural thought is that this task can be done
in parallel by simply counting different parts of the file in parallel and combining
all the counts. That’s precisely the idea of what we can do with MapReduce: we can
parallelize lines in this input file. More specifically, we can assume the input to
each map function is a (key , value) pair that represents the line number and the
string on that line.

The first line is the pair (1, Hello World Bye World). This pair will be sent to amap
function that counts the words in this line. In this case, there are only four words
and each word gets a count of one. The map pseudocode shown at the bottom of
the figure is quite simple. It simply needs to iterate over all the words in this line,

10.2 Web Indexing 197

Map(K, V)

OutputInput

1. “Hello World Bye World” <Hello,1>
<World,1>

<Bye,1>
<World,1>

Map(K, V)
{For each word w in V, Collect(w, 1);}

Map(K, V)2. “Hello Hadoop Bye Hadoop”

…

<Hello,1>
<Hadoop,1>

<Bye,1>
<Hadoop,1>

Figure 10.3 The map function for word counting.

and then just call a Collect function, which means it would then send the word
and the counter to the collector. The collector would then try to sort all these key
value pairs from different map functions. The programmer specifies this function
as a way to process each part of the data. Of course, the second line will be handled
by a different instance of the map function, which will produce a similar output.

As mentioned, the collector will do the internal grouping or sorting. At this stage,
you can see we have collected multiple pairs. Each pair is a word and its count in the
line. Once we see all these pairs, then we can sort them based on the key, which is
the word. Each word now is attached to a number of values, i.e., a number of counts.
These counts represent the occurrences of this word in different lines. These new
(key , value) pairs will then be fed into a reduce function.

Figure 10.4 shows how the reduce function finishes the job of counting the total
occurrences of this word. It already has these partial counts, so all it needs to do
is simply add them up. We have a counter and then iterate over all the words that
we see in this array, shown in pseudocode at the bottom of the figure. Finally, we
output the key and the total count, which is precisely what we want as the output
of this whole program. As we can see, this is already very similar to building an
inverted index; the output here is indexed by a word, and we have a dictionary of the
vocabulary. What’s missing is the document IDs and the specific frequency counts
of words in each particular document. We can modify this slightly to actually build
an inverted index in parallel.

198 Chapter 10 Web Search

Output
Map output After

internal grouping
<Hello,1>
<World,1>

<Bye,1>
<World,1>

<Hello,1>
<Hadoop,1>

<Bye,1>
<Hadoop,1>

…

Reduce(K, V[])
{ Int count = 0; For each v in V, count +=v; Collect(K, count); }

<Hadoop → 1, 1, 1, 1>

<Bye → 1, 1, 1>

<Hello → 1, 1, 1>

<Hadoop, 4>

<Bye, 3>

<Hello, 3>

Reduce(K, V[])

Reduce(K, V[])

Reduce(K, V[])

Figure 10.4 The reduce function for word counting.

Let’s modify our word-counting example to create an inverted index. Figure 10.5
illustrates this example. Now, we assume the input to map function is a (key , value)

pair where the key is a document ID and the value denotes the string content of
all the words in that document. The map function will do something very similar to
what we have seen in the previous example: it simply groups all the counts of this
word in this document together, generating new pairs. In the new pairs, each key
is a word and the value is the count of this word in this document followed by the
document ID. Later, in the inverted index, we would like to keep this document ID
information, so the map function keeps track of it.

After the map function, there is a sorting mechanism that would group the
same words together and feed this data into the reduce function. We see the
reduce function’s input looks like an inverted index entry. It’s just the word and
all the documents that contain the word and the frequency of the word in those
documents. All we need to do is simply to concatenate them into a continuous
chunk of data, and this can be then stored on the filesystem. The reduce function
is going to do very minimal work. Algorithm 10.1 can be used for this inverted index
construction.

Algorithm 10.1, adapted from Lin and Dyer [2010], describes themap andreduce

functions. A programmer would specify these two functions to run on top of a
MapReduce cluster. As described before, map counts the occurrences of a word
using an associative array (dictionary), and outputs all the counts together with
the document ID. The reduce function simply concatenates all the input that it

10.2 Web Indexing 199

D1: java resource java class

Key
java
resource
class

Map

Reduce

Value
(D1, 2)
(D1, 1)
(D1, 1)

D2: java travel resource

Built in Shuffle and Sort: aggregate values by keys

Key
java
travel
resource

Value
(D2, 1)
(D2, 1)
(D2, 1)

Key
java
resource
class
travel

Value
{(D1, 2), (D2, 1)}
{(D1, 1), (D2, 1)}
{(D1, 1)}
{(D2, 1)}

D3: …

Figure 10.5 Using MapReduce to create an inverted index.

Algorithm 10.1 Pseudocode for inverted index construction

function MAP(docid n, doc d)
H ← new ASSOCIATIVEARRAY

for term t ∈ d do
H [t] ← H [t] + 1

end for
for t ∈ H do

EMIT(t , [n, H [t]])
end for

end function

function REDUCE(term t , postings [(a1, f1), (a2, f2), . . .])
P ← new LIST

for all (a , f) do
APPEND(P , (a , f))

end for
SORT(P)

EMIT(t , P)

end function

200 Chapter 10 Web Search

has been given and as single entry for this document ID key. Despite its simplicity,
this MapReduce function allows us to construct an inverted index at a very large
scale. Data can be processed by different machines and the programmer doesn’t
have to take care of the details. This is how we can do parallel index construction
for web search.

To summarize, web scale indexing requires some new techniques that go beyond
the standard traditional indexing techniques. Mainly, we have to store the index on
multiple machines, and this is usually done by using a distributed file system like
the GFS. Second, it requires creating the index in parallel because it’s so large. This
is done by using the MapReduce framework. It’s important to note that the both
the GFS and MapReduce framework are very general, so they can also support many
other applications aside from indexing.

10.3 Link Analysis
In this section, we’re going to continue our discussion of web search, particularly
focusing on how to utilize links between pages to improve search. In the previous
section, we talked about how to create a large index on using MapReduce on GFS.
Now that we have our index, we want to see how we can improve ranking of pages
on the web. Of course, standard IR models can be applied here; in fact, they are
important building blocks for supporting web search, but they aren’t sufficient for
the following reasons.

First, on the web we tend to have very different information needs. For example,
people might search for a web page or entry page—this is different from the tradi-
tional library search where people are primarily interested in collecting literature
information. These types of queries are often called navigational queries, where the
purpose is to navigate into a particular targeted page. For such queries, we might
benefit from using link information. For example, navigational queries could be
facebook or yahoo finance. The user is simply trying to get to those pages without
explicitly typing in the URL in the address bar of the browser.

Secondly, web documents have much more information than pure text; there is
hierarchical organization and annotations such as the page layout, title, or hyper-
links to other pages. These features provide an opportunity to use extra context in-
formation of the document to improve scoring. Finally, information quality greatly
varies. All this means we have to consider many factors to improve the standard
ranking algorithm, giving us a more robust way to rank the pages and making it
more difficult for spammers to manipulate one signal to improve a single page’s
ranking.

10.3 Link Analysis 201

Authority

“Extra text”/summary for a doc

Links indicate the utility of a doc

Hub

Description
(“anchor text”)

What does a link tell us?

Figure 10.6 Links provide useful information about pages.

As a result of all these concerns, researchers have made a number of major
extensions to the standard ranking algorithms. One is to exploit links to improve
scoring, which is the main topic of this section. There are also algorithms to
exploit large scale implicit feedback information in the form of clickthroughs. Of
course, that belongs in the category of feedback techniques, and machine learning
techniques are often used there. In general, web search ranking algorithms are
based on machine learning algorithms to combine all kinds of features. Many
of them are based on standard models such as BM25 that we talked about in
Chapter 6. Link information is one of the important features used in combined
scoring functions in modern web search systems.

Figure 10.6 shows a snapshot of a part of the web. We can see there are many
links that connect different pages, and in the center, there is a description of a link
that’s pointing to the document on the right side. This description text is called
anchor text. It is actually incredibly useful for search engines because it provides
some extra description of the page being pointed to. For example, if someone
wants to bookmark the Amazon.com front page, the person might make a link
called the big online bookstore pointing to Amazon. The description is very similar
to what the user would type in the query box when they are looking for such a page.
Suppose someone types in a query like online bookstore or big online bookstore. The
query would match this anchor text in the page. This actually provides evidence
for matching the page that’s been pointed to—the Amazon entry page. Thus, if you
match the anchor text that describes the link to a page, it provides good evidence
for the relevance of the page being pointed to.

202 Chapter 10 Web Search

On the bottom of Figure 10.6, there are some patterns of links which may indicate
the utility of a document. For example, on the right side you can see a page has
received many inlinks, meaning many other pages are pointing to this page. This
shows that this page is quite useful. On the left side you can see a page that points
to many other pages. This is a central page that would allow you to see many other
pages. We call the first case an authority page and the second case a hub page. This
means the link information can help in two ways; one is to provide extra text for
matching (in the case of anchors) and the other is to provide some additional scores
for the web pages to characterize how likely a page is a hub or an authority.

10.3.1 PageRank
Google’s PageRank, a main technique that was used originally for link analysis,
is a good example of leveraging page link information. PageRank captures page
popularity, which is another word for authority. The intuition is that links are just
like citations in literature. Think about one page pointing to another page; this is
very similar to one paper citing another paper. Thus, if a page is cited often, we
can assume this page is more useful. PageRank takes advantage of this intuition
and implements it in a principled approach. In its simplest sense, PageRank is
essentially doing citation counting or inlink counting.

It improves this simple idea in two ways. One is to consider indirect citations.
This means you don’t just look at the number of inlinks, rather you also look at the
inlinks of your inlinks, recursively. If your inlinks themselves have many inlinks,
your page gets credit from that. In short, if important pages are pointing to you,
you must also be important. On the other hand, if those pages that are pointing to
you are not pointed to by many other pages, then you don’t get that much credit.
This is the concept of indirect citations, or cascading citations.

Again, we can understand this idea by considering research papers. If you are
cited by ten papers that are not very influential, that’s not as good as if you’re cited
by ten papers that themselves have attracted a lot of other citations. Clearly, this is a
case where we would like to consider indirect links, which is exactly what PageRank
does. The other idea is that it’s good to smooth the citations to accommodate
potential citations that have not yet been observed. Assume that every page has
a non-zero pseudo citation count. Essentially, you are trying to imagine there are
many virtual links that will link all the pages together so that you actually get pseudo
citations from everyone.

Another way to understand PageRank is the concept of a random surfer visiting
every web page. Let’s take a look at this example in detail, illustrated in Figure 10.7.
On the left, there is a small graph, where each document d1, d2, d3, and d4 is a web

10.3 Link Analysis 203

page, and the edges between documents are hyperlinks connecting them to each
other. Let’s assume that a random surfer or random walker can be on any of these
pages. When the random surfer decides to move to a different page, they can either
randomly follow a link from the current page or randomly choose a document to
jump to from the entire collection. So, if the random surfer is at d1, with some
probability that random surfer will follow the links to either d3 or d4. The random
surfing model also assumes that the surfer might get bored sometimes and decide
to ignore the actual links, randomly jumping to any page on the web. If the surfer
takes that option, they would be able to reach any of the other pages even though
there is no link directly to that page. Based on this model, we can ask the question,
“How likely, on average, would the surfer reach a particular page?” This probability
is precisely what PageRank computes.

The PageRank score of a document di is the average probability that the surfer
visits di. Intuitively, this should be proportional to the inlink count. If a page has a
high number of inlinks then it would have a higher chance of being visited since
there will be more opportunities of having the surfer follow a link there. This is
how the random surfing model captures the idea of counting the inlinks. But, it
also considers the indirect inlinks; if the pages that point to di have themselves a
lot of inlinks, that would mean the random surfer would very likely reach one of
them. This increases the chance of visiting di. This is a nice way to capture both
indirect and direct links.

Mathematically, we can represent this document network as a matrix M , dis-
played in the center of Figure 10.7. Each row stands for a starting page. For example,
row one would indicate the probability of going to any of the four pages from d1.
We see there are only two non-zero entries. Each is one half since d1 is pointing to
only two other pages; thus if we can randomly choose to visit either of them from
d1, they’d each have a probability of 1

2 . We have zeros for the first two columns for

0
1
0

1/2

0
0
1

1/2

Transition matrix Mij = probability of
going from di to dj

d1

d2

d3

d4

1/2
0
0
0

M =

1/2
0
0
0

N

∑
j=1

Mij = 1

Figure 10.7 Example of a web graph and the corresponding transition matrix.

204 Chapter 10 Web Search

d1 since d1 doesn’t link to itself and it doesn’t link to d2. Thus, Mij is the probability
of going from di to dj . Each row’s values should sum to one, because the surfer will
have to go to precisely one of these pages. Now, how can we compute the probability
of a surfer visiting a particular page?

We can compute the probability of reaching a page as follows:

pt+1(dj) = (1 − α)

N∑
i=1

Mijpt(di)︸ ︷︷ ︸
reach dj by following a link

+ α

N∑
i=1

1
N

pt(di)︸ ︷︷ ︸
reach dj by random jumping

(10.1)

On the left-hand side is the probability of visiting page dj at time t + 1, the next time
count. On the right-hand side, we can see the equation involves the probability at
page di at time t , the current time step. The equation captures the two possibilities
of reaching a page dj at time t + 1: through random surfing or following a link. The
first part of the equation captures the probability that the random surfer would
reach this page by following a link. The random surfer chooses this strategy with
probability 1 − α; thus, there is a factor of 1 − α before this term. This term sums
over all the possible N pages that the surfer could have been at time t . Inside the
sum is the product of two probabilities. One is the probability that the surfer was
at di at time t . That’s pt(di). The other is the transition probability from di to dj ,
which we know is represented as Mij . So, in order to reach this dj page, the surfer
must first be at di at time t and would have to follow the link to go from di to dj .
The second part is a similar sum. The only difference is that now the transition
probability is uniform: 1

N
. This part captures the probability of reaching this page

through random jumping, where α is the probability of random jumping.
This also allows us to see why PageRank captures a smoothing of the transition

matrix. You can think this 1
N

comes from another transition matrix that has all the
elements as 1

N
. It is then clear that we can merge the two parts. Because they are

of the same form, we can imagine there’s a different matrix that’s a combination
of this M and the uniform matrix I . In this sense, PageRank uses this idea of
smoothing to ensure that there’s no 0 entry in the transition matrix.

Now, we can imagine that if we want to compute average probabilities, they
would satisfy this equation without considering the time index. So let’s drop the
time index and assume that they would be equal; this would give us N equations,
since each page has its own equation. Similarly, there are also precisely N variables.
This means we now have a system of N linear equations with N variables. The
problem boils down to solving this system of equations, which we can write in the
following form:

10.3 Link Analysis 205

p(dj) =
N∑

i=1

[
1
N

α + (1 − α)Mij

]
. p(di) → �p = (αI + (1 − α)M)T �p, (10.2)

where

Iij = 1
N

∀i , j .

The vector �p equals the transpose of a matrix multiplied by �p again. The trans-
posed matrix is in fact the sum from 1 to N written in matrix form. Recall from
linear algebra that this is precisely the equation for an eigenvector. Thus, this equa-
tion can be solved by using an iterative algorithm. In this iterative algorithm, called
power iteration, we simply start with a random �p. We then repeatedly update �p by
multiplying the transposed matrix expression by �p.

Let’s look at a concrete example: set α = 0.2. This means that there is a 20%
chance of randomly jumping to a page on the entire web and an 80% chance of
randomly following a link from the current page. We have the original transition
matrix M as before that encodes the actual links in the graph. Then, we have
this uniform smoothing transition matrix I representing random jumping. We
combine them together with interpolation via α to form another matrix we call A:

A = (1 − 0.2)M + 0.2I = 0.8

⎡⎢⎢⎢⎢⎣
0 0 1

2
1
2

1 0 0 0

0 1 0 0
1
2

1
2 0 0

⎤⎥⎥⎥⎥⎦ + 0.2

⎡⎢⎢⎢⎢⎣
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎤⎥⎥⎥⎥⎦ . (10.3)

The PageRank algorithm will randomly initialize �p first, and then iteratively
update it by using matrix multiplication. If we rewrite this matrix multiplication
in terms of just A, we’ll get the following:⎡⎢⎢⎢⎢⎣

pt+1(d1)

pt+1(d2)

pt+1(d3)

pt+1(d4)

⎤⎥⎥⎥⎥⎦ = AT

⎡⎢⎢⎢⎢⎣
pt(d1)

pt(d2)

pt(d3)

pt(d4)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0.05 0.85 0.05 0.45

0.05 0.05 0.85 0.45

0.45 0.05 0.05 0.05

0.45 0.05 0.05 0.05

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

pt(d1)

pt(d2)

pt(d3)

pt(d4)

⎤⎥⎥⎥⎥⎦ . (10.4)

If you want to compute the updated value for d1, you multiply the top row
in A by the column vector of PageRank scores from the previous iteration. This
is how we update the vector; we started with some initial values and iteratively
multiply the matrices together, which generates a new set of scores. We repeat
this multiplication until the values in �p converge. From linear algebra, we know

206 Chapter 10 Web Search

that since there are no zero values in the matrix, such iteration is guaranteed to
converge. At that point we will have the PageRank scores for all the pages.

Interestingly, this update formula can be interpreted as propagating scores
across the graph. We can imagine we have values initialized on each of these pages,
and if you look at the equation, we combine the scores of the pages that would lead
to reaching a page. That is, we’ll look at all the pages that are pointing to a page and
combine their scores with the propagated score in order to get the next score for
the current document. We repeat this for all documents, which transfers probability
mass across the network.

In practice, the calculation of the PageRank score is actually quite efficient
because the matrices are sparse—that means that if there isn’t a link into the
current page, we don’t have to worry about it in the calculation. It’s also possible
to normalize the equation, and that will give a somewhat different form, although
the relative ranking of pages will not change. The normalization is to address the
potential problem of zero outlinks. In that case, the probabilities of reaching the
next page from the current page will not sum to 1 because we have lost some
probability mass when we assume that there’s some probability that the surfer will
try to follow links (although in this case there are no links to follow!).

There are many extensions to PageRank. One extension is to do query-specific
PageRank, also called Personalized PageRank. For example, in this topic-specific
PageRank, we can simply assume when the surfer gets bored, they won’t randomly
jump into any page on the web. Instead, they jump to only those pages that are
relevant to the query. For example, if the query is about sports, then we could
assume that when we do random jumping, we randomly jump to a sports page.
By doing this, our PageRank scores align with sports. Therefore, if you know the
current query is about sports, we can use this specialized PageRank score to rank
the results. Clearly, this would be better than using a generic PageRank score for
the entire web.

PageRank is a general algorithm that can be used in many other applications
such as network analysis, particularly in social networks. We can imagine if you
compute a person’s PageRank score on a social network (where a link indicates a
friendship relation), you’ll get some meaningful scores for people.

10.3.2 HITS
We’ve talked about PageRank as a way to capture authority pages. In the beginning
of this section, we also mentioned that hub pages are useful. There is another
algorithm we will discuss called HITS that is designed to compute both these scores
for each page.

10.3 Link Analysis 207

0
1
0
1

0
0
1
1 Initial values: a(di) = h(di) = 1

Iterate

Adjacency matrix

Normalize:

d1

d2

d3

d4

1
0
0
0

A =

h(di) =

h
–

 = Aa–; a– = ATh
–

h
–

 = AATh
–
 ; a– = ATAa–

a(dj)

1
0
0
0

∑
dj2OUT(di)

a(di)2 = ∑
i

h(di)2 = 1 ∑
i

a(di) = h(dj)∑
dj2 IN(di)

Figure 10.8 Running the HITS algorithm on a small graph.

Authority pages capture the intuition of widely-cited pages. Hub pages are those
that point to good, authority pages, or contain some collection of knowledge in the
form of links. The main idea of the HITS algorithm is a reinforcement mechanism
to help improve the scoring for both hubs and authorities. It will assume that good
authorities are cited by good hubs. That means if you’re cited by many pages with
good hub scores, then that increases your authority score. Similarly, good hubs are
those that point to good authorities. So if you are pointing to many good authority
pages, then your hub score would be increased. Like PageRank, HITS is also quite
general and has many applications in graph and network analysis. Briefly, we’ll
describe how it works.

Figure 10.8 shows the following. First, we construct the adjacency matrix A; it
contains a 1 at position Aij if di links to dj and a zero otherwise. We define the hub
score of a page h(di) as a sum of the authority scores of all the pages that it points
to. In the second equation, we define the authority score of a page a(di) as a sum
of the hub scores of all pages that point to it. This forms an iterative reinforcement
mechanism.

These two equations can be also written in matrix form. The hub vector is equal
to the product of the adjacency matrix and the authority vector. Similarly, the
second equation can be written as the authority vector is equal to the product of
AT multiplied by the hub vector. These are just different ways of expressing these
equations. What’s interesting is that if you look at the matrix forms, you can plug
the authority equation into the first one. That is, you can actually eliminate the
authority vector completely, and you get the equation of only hub scores. We can

208 Chapter 10 Web Search

do the same trick for the hub formula. Thus, although we framed the problem as
computing hubs and authorities, we can actually eliminate one of them to obtain
the equation for the other.

The difference between this and PageRank is that now the matrix is actually a
multiplication of the adjacency matrix and its transpose. Mathematically then, we
would be computing a very similar problem. In HITS, we would initialize the values
to one and apply the matrix equations ATA and AAT. We still need to normalize the
adjacency matrix after each iteration. This would allow us to control the growth of
the values; otherwise they would grow larger and larger.

To summarize, this section has shown that link information is very useful. In
particular, the anchor text is an important feature in the text representation of
a page. We also talked about the PageRank and HITS algorithms as two major
link analysis algorithms in web search. Both can generate scores for pages that
can be used in addition to standard IR ranking functions. PageRank and HITS
are very general algorithms with useful variants, so they have many applications
in analyzing other graphs or networks aside from the web.

10.4 Learning to Rank
In this section, we discuss using machine learning to combine many different fea-
tures into a single ranking function to optimize search results. Previously, we’ve
discussed a number of ways to rank documents. We talked about some retrieval
models like BM25 or query likelihood; these can generate a content-based score
for matching document text with a query. We also talked about the link-based ap-
proaches like PageRank that can give additional scores to help us improve ranking.
The question now is how can we combine all these features (and potentially many
other features) to do ranking? This will be very useful for ranking web pages not
only just to improve accuracy, but also to improve the robustness of the ranking
function so that’s it not easy for a spammer to just perturb one or a few features to
promote a page.

The general idea of learning to rank is to use machine learning to combine
these features, optimizing the weight on different features to generate the best
ranking function. We assume that given a query-document pair (q , d), we can
define a number of features. These features don’t necessarily have to be content-
based features. They could be a score of the document with respect to the query
according to a retrieval function such as BM25, query likelihood, pivoted length
normalization, PL2, etc. There also can be a link-based score like PageRank or
HITS, or an application of retrieval models to the anchor text of the page, which

10.4 Learning to Rank 209

are the descriptions of links that point to d. These can all be clues about whether
this document is relevant or not to the query. We can even include a feature such
as whether the URL has a tilde because this might indicate a home page.

The question is, of course, how can we combine these features into a single
score? In this approach, we simply hypothesize that the probability that this docu-
ment is relevant to this query is a function of all these features. We hypothesize that
the probability of relevance is related to these features through a particular func-
tion that has some parameters. These parameters control the influence of different
features on the final relevance. This is, of course, just an assumption. Whether this
assumption really makes sense is still an open question.

Naturally, the next question is how to estimate those parameters. How do we
know which features should have high weight and which features should have low
weight? This is a task of training or learning.

In this approach, we use training data. This is data that have been judged by
users, so we already know the relevance judgments. We know which documents
should be highly ranked for which queries, and this information can be based
on real judgments by users or can be approximated by just using clickthrough
information as we discussed in Chapter 7. We will try to optimize our search
engine’s retrieval accuracy (using, e.g., MAP or NDCG) on the training data by
adjusting these parameters. The training data would look like a table of tuples.
Each tuple has three elements: the query, the document, and the judgment. Let’s
take a look at a specific method that’s based on logistic regression:

log
P(R = 1 | q , d)

1 − P(R = 1 | q , d)
= β0 +

n∑
i=1

βiXi . (10.5)

This is one of many different methods, and actually one of the simpler ones.
In this approach, we simply assume the relevance of a document with respect to
the query is related to a linear combination of all the features. Here we have Xi to
denote the ith feature value, and we can have as many features as we would like.
We assume that these features can be combined in a linear manner. The weight of
feature Xi is controlled by a parameter βi. A larger βi would mean the feature would
have a higher weight and it would contribute more to the scoring function.

The specific form of the function also gives the following probability of rele-
vance:

P(R = 1 | d , q) = 1
1 + exp

{−β0 − ∑n
i=1 βiXi

} . (10.6)

210 Chapter 10 Web Search

X1(q , d) X2(q , d) X3(q , d)

d1(R = 1) 0.7 0.11 0.65

d2(R = 0) 0.3 0.05 0.4

Figure 10.9 Example of a combination of multiple features in ranking.

We know that the probability of relevance is within the range [0, 1] and we assume
that the scoring function is a transformed form of the linear combination of
features. We could have had a scoring function directly based on the linear com-
bination of β and X, but then the value of this linear combination could easily go
beyond 1. Thus the reason why we use the logistic regression instead of linear re-
gression is to map this combination onto the range [0, 1]. This allows us to connect
the probability of relevance (which is between 0 and 1) to a linear combination of
arbitrary coefficients. If we rewrite this combination of weights into a probability
function, we will get the predicted score.

If this combination of features and weights gives us a high value, then the
document is more likely relevant. This isn’t necessarily the best hypothesis, but
it is a simple way to connect these features with the probability of relevance.

The next task is to see how we estimate the parameters so that the function can
truly be applied; that is, we need to estimate the β values. Let’s take a look at a
simple example shown in Figure 10.9.

In this example, we have three features. One is the BM25 score of the docu-
ment for the query. One is the PageRank score of the document, which might
or might not depend on the query. We might also have a topic-sensitive PageR-
ank score that would depend on the query. Lastly, we have a BM25 score on the
anchor text of the document. These are then the three feature values for a par-
ticular (document, query) pair. In this case the document is d1 and the judgment
says that it’s relevant. The document d2 is another training instance with differ-
ent feature values, but in this case it’s non-relevant. Of course, this is an overly-
simplified example where we just have two instances, but it’s sufficient to illustrate
the point.

We use the maximum likelihood estimator to estimate the parameters. That is,
we’re going to predict the relevance status of the document based on the feature
values. The likelihood of observing the relevance status of these two documents
using our model is

10.4 Learning to Rank 211

p({q , d1, R = 1}, {q , d2, R = 0}) = 1
1 + exp

{−β0 − 0.7β1 − 0.11β2 − 0.65β3
}

×
(

1 − 1
1 + exp

{−β0 − 0.3β1 − 0.05β2 − 0.4β3
})

.

We hypothesize that the probability of relevance is related to the features in this
way. We’re going to see for what values of β we can predict the relevance effectively.
The expression for d1 should give a higher value than the expression for d2; in fact,
we hope d1’s value is close to one since it’s a relevant document.

Let’s see how this can be mathematically expressed. It’s similar to expressing the
probability of a document, only we are not talking about the probability of words,
but the probability of relevance. We need to plug in the X values. The β values
are still unknown, but this expression gives us the probability that this document
is relevant if we assume such a model. We want to maximize this probability
for d1 since this is a relevant document. For the second document, we want to
predict the probability that the document is non-relevant. This means we have to
compute 1 minus the probability of relevance. That’s the reasoning behind this
whole expression then; it’s our probability of predicting these two relevance values.
The whole equation is our probability of observing a R = 1 and R = 0 for d1 and d2

respectively. Our goal is then to adjust the β values to make the whole expression
reach its maximum value. In other words, we will look at the function and choose
β values to make this expression as large as possible.

After we learn the regression parameters, we can use this expression for any new
query and new document once we have their features. This formula is then applied
to generate a ranking score for a particular query.

There are many more advanced learning algorithms than the regression-based
reproaches. They generally attempt to theoretically optimize a retrieval measure
such as MAP or NDCG. Note that the optimization objective we just discussed is
not directly related to a retrieval measure. By maximizing the prediction of one
or zero, we don’t necessarily optimize the ranking of those documents. One can
imagine that while our prediction may not be too bad, the ranking can be wrong.
We might have a larger probability of relevance for d2 than d1. So, that won’t be
good from a retrieval perspective, even though by likelihood the function is not
bad. More advanced approaches will try to correct this problem. Of course, then
the challenge is that the optimization problem will be harder to solve. In contrast,
we might have another case where we predicted probabilities of relevance around

212 Chapter 10 Web Search

0.9 for non-relevant documents. Even though the predicted score is very high, as
long as the truly relevant documents receive scores that are greater than 0.9, the
ranking will still be acceptable to a user.

These learning to rank approaches are actually quite general. They can be ap-
plied to many other ranking problems aside from retrieval problems. For exam-
ple, recommender systems, computational advertising, summarization, and many
other relevant applications can all be solved using this approach.

To summarize, we talked about using machine learning to combine features to
predict a ranking result. Actually, the use of machine learning in information re-
trieval began many decades ago. Rocchio feedback, discussed in Chapter 7, was
a machine learning approach applied to learn the optimal feedback. Many algo-
rithms are driven by the availability of massive amounts of training data in the
form of clickthroughs. This data provides much useful knowledge about relevance,
and so machine learning methods are applied to leverage this. The need for ma-
chine learning is also driven by the desire to combine many different feature types
to predict an accurate ranking. web search especially drives this need since there
are more features available on the web that can be taken advantage of for search.
Using many different features also increases the robustness of the scoring function,
which is useful in combating spam. Modern search engines all use some kind of
machine learning techniques to combine many features to optimize ranking, and
this is a major feature of current engines such as Google and Bing.

10.5 The Future of Web Search
Since this chapter concludes our coverage of search engines, we briefly talk about
some possible future trends of web search and intelligent information retrieval sys-
tems in general. To further improve the accuracy of a search engine, it’s important
to consider special cases of information need. One particular trend is to have more
and more specialized and customized search engines, which can be called vertical
search engines. These vertical search engines can be expected to be more effective
than the current general search engines because they could assume that a particular
user belongs to a special group that might have a common information need.

Due to this customization, it’s also possible to do personalization. The search
can be personalized because we have a better understanding of the users. Restrict-
ing the domain of the search engine can also have some advantages in handling the
documents, because we would have a better understanding of these documents.
For example, particular words may not be ambiguous in such a domain, so we can
bypass the problem of ambiguity.

10.5 The Future of Web Search 213

Another trend we can expect to see is search engines that are able to learn over
time, a form of lifetime learning or lifelong learning. This is very attractive because
that means the search engine will be able to self-improve. As more people use it,
the search engine will become better and better. This is already happening, because
the search engines can learn from the relevance feedback. More users use it, and
the quality of the search engine allows for the popular queries that are typed in by
many users to retrieve better results.

A third trend might be the integration of information access. Search, navigation,
and recommendation might be combined to form a full-fledged information man-
agement system. In the beginning of this book, we talked about push access versus
pull access; these modes can be combined. For example, if a search engine detects
that a user is unsatisfied with search results, a “note” may be made. In the future,
if a new document is crawled that matches the user’s information need recorded
in the note, this new document could be pushed to the user. Currently, most of
the cases of information recommendation are advertising, but in the future, you
can imagine recommendation is seamlessly integrated into the system with multi-
mode information access.

Another trend is that we might see systems that try to go beyond search to support
user tasks. After all, the reason why people want to search is to solve a problem or
to make a decision to perform a task. For example, consumers might search for
opinions about products in order to purchase a product, so it would be beneficial to
support the whole shopping workflow. For example, you can sometimes look at the
review displayed directly in search results; if the user decides to buy the product,
they can simply click a button to go to the shopping site directly and make the
purchase. While there is good support for shopping, current search engines do not
provide good task support for many other tasks. Researchers might want to find
related work or suggested citations. Currently, there’s not much support for a task
such as writing a paper.

We can think about any intelligent system—especially intelligent information
systems—specified by three nodes. If we connect these nodes into a triangle, then
we’ll able to specify an information system. We can call this triangle the Data-User-
Service Triangle. The three questions you ask are as follows.

. Who are you serving?

. What kind of data are you managing?

. What kind of service are you providing?

214 Chapter 10 Web Search

Users
Lawyers

Scientists
UIUC employees
Online shoppers

…

Services
Search

Browsing
Mining

Task support
…

Data
Web pages

News articles
Blog articles

Literature
Email

…

Figure 10.10 The Data-User-Service triangle.

These questions specify an information system; there are many different ways to
connect them. Depending on how they are connected, we can specify all different
types of systems. Let’s consider some examples.

On the top of Figure 10.10 there are different kinds of users. On the left side,
there are different types of data or information, and on the bottom, there are
different service functions. Now imagine you can connect all these in different
ways. For example, if you connect everyone with web pages, and support search and
browsing, you get web search. If we connect university employees with organization
documents or enterprise documents and support the search and browsing, we get
enterprise search.

We could connect scientists with literature information to provide all kinds of
services including search, browsing, alert to new relevant documents, mining or
analyzing research trends, or task and decision support. For example, we might be
able to provide support for automatically generating a related works section for a
research paper; this would be closer to task support. Then, we can imagine this
intelligent information system would be a type of literature assistant.

If we connect online shoppers with blog articles or product reviews, then we can
help these people improve their shopping experience. We can provide data mining
capabilities to analyze reviews, compare products and product sentiment, and pro-
vide task or decision support on choosing which product to buy. Or, we can connect

10.5 The Future of Web Search 215

customer service people with emails from the customers. Imagine a system that can
provide an analysis of these emails to find that the major complaints of the cus-
tomers. We can imagine a system that could provide task support by automatically
generating a response to a customer email by intelligently attaching a promotion
message if appropriate. If they detect a positive message (not a complaint) then they
might take this opportunity to attach some promotion information. If it’s a com-
plaint, then you might be able to automatically generate some generic response
first and tell the customer that he or she can expect a detailed response later. All of
these aim to help people to improve their productivity.

Figure 10.10 shows the trend of technology and characterizes intelligent infor-
mation systems with three angles. In the center of the figure there’s a triangle that
connects keyword queries to search a bag-of-words representation. That means the
current search engines basically provides search support to users and mostly model
users based on keyword queries, seeing the data through a bag-of-words representa-
tion. Current search engines don’t really “understand” information in the indexed
documents. Consider some trends to push each node toward a more advanced func-
tion, away from the center. Imagine if we can go beyond keyword queries, look at
the user search history, and then further model the user to completely understand
the user’s task environment, context, or other information. Clearly, this is pushing
for personalization and a more complete user model, which is a major direction
in order to build intelligent information systems. On the document side, we can
also go beyond a bag-of-words implementation to have an entity-relation represen-
tation. This means we’ll recognize people’s names, their relations, locations, and
any other potentially useful information. This is already feasible with today’s nat-
ural language processing techniques.

Google has initiated some of this work via its Knowledge Graph. Once we can get
to that level without much manual human effort, the search engine can provide a
much better service. In the future, we would like to have a knowledge representation
where we can perhaps add some inference rules, making the search engine more
intelligent. This calls for large-scale semantic analysis, and perhaps this is initially
more feasible for vertical search engines. That is, it’s easier to make progress in
one particular domain.

On the service side, we see we need to go beyond search to support information
access in general; search is only one way to get access to information. Going beyond
access, we also need to help people digest information once it is found, and this
step has to do with analysis of information or data mining. We have to find patterns
or convert the text information into real knowledge that can be used in application
or actionable knowledge that can be used for decision making. Furthermore, the

216 Chapter 10 Web Search

knowledge will be used to help a user improve productivity in finishing a task.
In this dimension, we anticipate that future intelligent information systems will
provide interactive task support.

We should emphasize interactive here, because it’s important to optimize the
combined intelligence of users and the system. We can get some help from users
in a natural way without assuming the system has to do everything. That is, the user
and the machine can collaborate in an intelligent and efficient way. This combined
intelligence will be high and in general, we can minimize the user’s overall effort
in solving their current problem.

This is the big picture of future intelligent information systems, and this hope-
fully can provide us with some insights about how to make further innovations on
top of what we have today and also motivate the additional techniques to be covered
in the later chapters of the book.

Bibliographic Notes and Further Reading
The classic reference for PageRank is Page et al. [1999], and that for HITS is
Kleinberg [1999]. Lin and Dyer [2010] provides an excellent introduction to us-
ing MapReduce for text processing applications, including particularly a detailed
treatment of how to use MapReduce for constructing an inverted index. Liu [2009]
gives an excellent survey of research work on learning to rank.

Exercises
10.1. Examine the robots.txt file for several common sites. Can you figure out
the format of this file? What type of data do these sites not want you to crawl? What
is a user agent?

10.2. Simple Web Crawlers. On Linux or Mac, try using wget to download a
web page:

wget http://www.[insert-domain-here].com/

The file is probably saved with the extension .html. Open it up in your favorite
text editor. It’s just a bunch of HTML! This is the same thing you’d see if you right
click the page in a browser and select “View Source”.

10.3. Parsing Web Content. An important step of web crawling is parsing the
HTML into plaintext. There are many libraries available that do this. These libraries
can also provide all the outgoing links (the a href= . . . tags). It’s the crawler’s job

Exercises 217

to schedule crawling these links and to not get stuck in a cycle. This is easily avoided
by keeping a list of already visited sites.

Using wget is not the only way to build a simple web crawler. You can make your
own in Ruby or Python. These languages have many useful libraries for crawling.
It’s also possible to use an existing web crawler. For Python, Scrapy and Beautiful
Soup are two popular crawling tools.

The last important point is to have a short wait period in between page requests.
Not only is it considered polite to wait a few seconds between requests to avoid
hammering the server, you may get blocked if you attempt to crawl too fast!

Use one of the above-mentioned tools to create a simple web crawler. Limit your
crawling to 100 pages initially.

10.4. JavaScript Crawlers. For a simple page, an easy call to wgetworks very well.
But nowadays, most web pages have a large amount of dynamically generated con-
tent that isn’t part of the downloadable source. Try crawling a page that generates
dynamic content. (Hint: you can find a page that generates dynamic content by us-
ing wget and searching for text you know is on the page. If you can’t find it in the
downloaded HTML file, it must have been dynamically generated!)

Most modern sites are composed almost entirely of dynamically generated con-
tent. Simply downloading the basic HTML source will not retrieve all the necessary
content for indexing. We need to actually load the page and run the JavaScript that
is called to populate the content.

Open up the URL of a dynamic page you’d like to crawl in your browser, and start
the JavaScript console. (In Chrome, it’s CTRL-SHIFT-I.) You can now interact with
the page via JavaScript. Try typing this in the console:

alert(’I’m a popup!’)

Then try

for(var i = 0; i < 5; ++i) { console.log(’Hello ’ + i); }

Besides making annoying popups and useless counters, we can access the page
title:

document.title

or we can access the text content:

document.body.innerText

This is what we want for indexing! Experiment with a JavaScript crawler using
a technology such as PhantomJS. We’ve provided a simple script to download a

218 Chapter 10 Web Search

page, located at: http://sifaka.cs.uiuc.edu/ir/textdatabook/files/text-scraper.js. Try
experimenting with the script to make it a true crawler instead of downloading
only a single page.

10.5. Crawling a Domain. Now that you know how to download a single HTML
file, you can start crawling a domain. This means starting with some base URL and
having the crawler follow and download links up to a certain depth. wget has some
nice options that make this very easy.

wget --recursive --level=3 --wait=2 --accept html [url]

This command tells wget to traverse the site recursively by following links up to
a depth of 3. It waits 2 between requests (which is considered polite and will help
you from getting blocked). Finally, it is told to only download HTML pages since
those are the ones with text that we want to index.

The output is kept in the same structure as on the web, downloaded into our
working directory.

If you don’t stop it manually (with CTRL-C), it will continue to crawl until all
pages at the specified depth have been downloaded. Start off with a conservative
depth, since you will not be sure how many pages are under a certain domain.

10.6. Cleaning HTML Files. Before we add a page to the search engine’s index,
we will probably want to “clean” the HTML page. This means converting the HTML
file into a plaintext file so that the keywords given to the search engine more easily
match the words in our crawled document.

There are many tools available to convert HTML to text, some of which are even
online. For our use though, we want to have a command-line based tool so we can
automate it. We suggest using Python or Ruby. Below are two simple programs that
both do the same thing.

Python:

from bs4 import BeautifulSoup

html = open(’filename.html’).read()

soup = BeautifulSoup(html)

print soup.get_text() # or save to another file

For this method, you will have to install the BeautifulSoup library.

Ruby:

require ’nokogiri’

http://sifaka.cs.uiuc.edu/ir/textdatabook/files/text-scraper.js

Exercises 219

html = File.open(’filename.html’).read

noko = Nokogiri::HTML(html)

puts noko.text # or save to another file

For this method, you will have to install the Nokogiri library.

Experiment with one or both of these cleaners to parse your crawled files. Or,
write your own cleaner with different technology!

10.7. Create a dynamically updating web search engine by combining your crawler,
cleaner, and META. You can schedule the crawler to run during a specified time
interval. Once new files are downloaded and cleaned, recreate the index.

10.8. Give a suggestion on how to improve a ranking function for web search to
take in additional page information such as the title field or page layout.

10.9. Write MapReduce pseudocode that creates an inverted index that contains
all the necessary information to rank documents using Dirichlet prior smoothing
or Jelinek-Mercer smoothing.

10.10. If we add a new page to the web, what happens to other existing PageRank
scores? Explain.

10.11. Compare PageRank with Personalized PageRank. Can one or both be pre-
computed to save query processing time? Why or why not?

10.12. Give a query where a high-scoring authority page could be a desired docu-
ment and a query where a high-scoring hub page could be a desired document.

10.13. After reading Chapter 15, you may have some alternative ideas of how to
design a learning to rank algorithm. For example, can you outline an idea of how
we can optimize (e.g.) MAP for a set of training queries?

10.14. Thinking back to Chapter 9, what is a good objective function to optimize
for learning to rank? Is MAP the best choice? Why or why not?

10.15. Outline a method for combining user feedback with a learning to rank
approach.

11Recommender Systems
In our many discussions of search engine systems, we have addressed the issue
of short-term (ad hoc) information need. This is a temporary need from a static
information source, where the user pulls relevant information. Examples are li-
brary or web search. Conversely, most users also have long-term information needs,
such as filtering or recommending documents (or any other item type) from a
dynamic information source; here, the user is pushed information by a system.
Examples include a news filter, email filter, movie/book recommender, or litera-
ture recommender. Although there is some distinction between a recommender
system (emphasizing delivery of useful items to users) and a filtering system (em-
phasizing exclusion of useless items), the techniques used are similar, so we will
use "recommender" and "filtering" interchangeably for convenience.

Unlike ad hoc search where we may not get much feedback from a user, in
filtering, we can expect to collect a lot of feedback information from the user,
making it important to learn from the feedback information to improve filtering
performance.

In filtering, documents are delivered from some dynamic information source.
A system must make a binary decision regarding the relevance of a document to a
user as soon as it “arrives.” This is more difficult than search where we can simply
provide a ranked list and rely on a user to flexibly set the cutoff. On the other hand,
since we can collect feedback information, we can expect to get more and more
information about what the user likes, making it easier to distinguish relevant
documents from non-relevant ones.

The essential filtering question is: will user u like item x? Our approach to
answering this question defines which of the following two strategies we apply.

. Content-based filtering: look at what u likes and characterize x

. Collaborative filtering: look at who likes x and characterize u

Content-based filtering is to learn what kind of content a user likes and then
match the content of a current article with a “content prototype” that we believe
describes well what the user likes. Collaborative filtering is to look at what other

222 Chapter 11 Recommender Systems

similar users like and assume that if those other users who are similar to you like an
item, you may also like it. Note that if we can get user ratings of items, collaborative
filtering can be applied to recommend any item. Content-based filtering, however,
can only be applied to a case where we know how to measure similarity of items. In
any specific application, we will want to combine the two approaches to optimize
the filtering performance.

Content-based filtering can usually be done by extending a retrieval system to
add a thresholding component. There are two challenges associated with threshold
setting. First, at the beginning, we must set an initial threshold without requiring
much information from a user. Second, over time, we need to learn from feedback
to optimize the threshold. Many threshold learning methods have been proposed.
In practice, a simple thresholding strategy such as the beta-gamma threshold
setting method we will discuss is often good enough.

The basic idea behind collaborative filtering is to predict the rating of a current
active user u for object x based on a weighted average of the ratings of x given by
similar users to u. Thus, we can think of this approach involving two steps: In the
first step, we simply “retrieve” similar users to the current user u where similarity
is often defined as the similarity between the two vectors for two users. Each user
can be represented by a rating vector (i.e., all the ratings given by this user). The
similarity of two vectors can be measured based on the cosine similarity or Pearson
correlation of the two vectors, which tends to perform very well empirically. In the
second step, we compute a weighted average of the ratings of x given by all these
retrieved similar users where the weight is the correlation between the active user
and the corresponding user (to the weight).

As we will see in this chapter, many recommender systems are extensions of
the information retrieval systems and techniques we have discussed previously.
Therefore, it may be beneficial to read Chapter 6 before this one if the reader is
unfamiliar with the basic concepts or terminology. We continue this chapter with
content-based recommendation, followed by a section on user-based recommen-
dation (collaborative filtering).

11.1 Content-based Recommendation
Figure 11.1 shows a generic information filtering system where a stream of content
is absorbed by a filtering system. Based on either the content of the item or the other
users that liked the item, the system decides whether or not to pass the item along
to the user. In this section, the filtering system will inspect the content of the item
and compare it to both the user’s preferences and feedback without considering
information from other users.

11.1 Content-based Recommendation 223

Filtering
system

…

My interest:

Figure 11.1 Diagram of a generic information filtering system; blue documents should be delivered
to the user based on the user’s preferences.

Binary
classifier

User
interest
profile

utility func

…

Initialization

Accepted docs

Doc source

User

Learning FeedbackAccumulated
docs

User profile
text

Figure 11.2 A content-based information filtering system with more details filled in for each
component.

As shown in Figure 11.2, in an information filtering system there would be a
binary classifier1 that would have some knowledge of the user’s interests, called
the user interest profile. Originally, the user profile could be a text summary or
keywords of what the user is interested in for the case of text document recommen-
dation. This information is set in an initialization module that would take a user’s

1. A binary classifier is an algorithm that can take an item and determine whether it belongs to one
of two categories. In this case, the categories are relevant or non-relevant. For more information
on classification, see Chapter 15.

224 Chapter 11 Recommender Systems

input, perhaps from the user’s specified keywords or chosen categories. This is fed
into the system as the initial user profile.

Next, there is a utility function to help the system make decisions; it helps the
system decide where to set an acceptance threshold θ determining whether or
not the current item should be shown to the user. The learning module adjusts
its parameters based on the user’s feedback over time. Typically in information
filtering applications, the users’ information need is stable. Due to this, the system
would have many opportunities to observe the user if the user views a recommended
item, since the user can indicate whether the recommended item was relevant or
not. Thus, such feedback can be long-term, allowing the system to collect much
information about this user’s interests, which is then used to improve the classifier.

How do we know this filtering system actually performs well? In this case, we
cannot use the ranking evaluation measures such as MAP or NDCG because we
can’t afford waiting for a significant number of documents to rank them to make a
decision for the user; the system must make a decision in real time. In general, this
decision is whether the item is above the acceptance threshold θ or not. In other
words, we’re trying to decide absolute relevance. One common strategy is to use a
utility function, and below is an example of a linear utility function:

U = 3 . |R| − 2 . |R′|, (11.1)

where R is the set of relevant documents delivered to the user and R′ is the set
of non-relevant documents delivered to the user (that the user rejected). In a way,
we can treat this as a gambling game. If the system delivers one good item, let’s
say you win $3, or you gain $3. If you deliver a bad document, you would lose $2.
This utility function measures how much money you would accumulate (or lose)
by considering this kind of game. It’s clear that if you want to maximize this utility
function, your strategy should be to deliver as many good items as possible while
simultaneously minimizing the delivery of bad items.

One interesting question here is how to set these coefficients. We just showed
a 3 and a −2 as the possible coefficients, but we can ask the question “are they
reasonable?” What about other choices? We could have 10 and −1, or 1 and −10.
How would these utility functions affect the system’s output? If we use 10 and −1,
you will see that while we get a big reward for delivering a good document, we
incur only a small penalty for delivering a bad one. Intuitively, the system would
be encouraged to deliver more documents, since delivering more documents gives
a better chance of obtaining a high reward. If we choose 1 and −10, it is the opposite
case: we don’t really get such a big prize if a good document is delivered, while a

11.1 Content-based Recommendation 225

large loss is incurred if we deliver a bad one. The system in this case would be
very reluctant to deliver many documents, and has to be absolutely sure that it’s a
relevant one. In short, the utility function has to be designed based on a specific
application preference, potentially different for different users.

The three basic components in content-based filtering are the following.

Initialization module. Gets the system started based only on a very limited text
description, or very few examples, from the user.

Decision module. Given a text document and a profile description of the user,
decide whether the document should be delivered or not.

Learning module. Learn from limited user relevance judgments on the deliv-
ered documents. (If we don’t deliver a document to the user, we’d never know
whether the user likes it or not.)

All these modules would have to be optimized to maximize the utility function
U . To solve these problems, we will talk about how to extend a retrieval system
for information filtering. First, we can reuse retrieval techniques to do scoring; we
know how to score documents against queries and measure the similarity between
a profile text description and a document. We can use a score threshold θ for the
filtering decision. If score(d) > θ , we say document d is relevant and we are going to
deliver it to the user. Of course, we still need to learn from the history, and for this
we can use the traditional feedback techniques to learn to improve scoring, such
as Rocchio. What we don’t know how to do yet is learn how to set θ . We need to set
it initially and then we have to learn how to update it over time as more documents
are delivered to the user and we have more information.

Figure 11.3 shows what the system might look like if we generalized a vector-
space model for filtering problems. The document vector could be fed into a scoring
module, which already exists in a search engine that implements the vector-space
model, where the profile will be treated as a query. The profile vector can be
matched with the document vector to generate the score. This score will be fed into
a thresholding module that would say yes or no depending on the current value of θ .
The evaluation would be based on the utility for the filtering results. If it says yes, the
document will be sent to the user, and then the user could give some feedback. The
feedback information would be used to both adjust the threshold and change the
vector representation. In this sense, vector learning is essentially the same as query
modification or feedback in search. The threshold learning is a new component
that we need to talk a little bit more about.

226 Chapter 11 Recommender Systems

Thresholding

Threshold
learning

Vector
learning

Utility
evaluation

Scoring

thresholdprofile vector

doc
vector

no

yes

Feedback
information

Figure 11.3 The three modules in content-based recommendation and how they fit into its
framework.

36.5
33.4
32.1
29.9
27.3

…
…

θ = 30.0

Rel
NonRel
Rel
?
?

No judgments are available for these documents

Figure 11.4 Information available to the content-based recommender system.

There are some interesting challenges in threshold learning. Figure 11.4 depicts
the type of data that you can collect in the filtering system. We have the scores and
the status of relevance. The first document has a score 36.5 and it’s relevant. The
second one is not relevant. We have many documents for which we don’t know the
status, since their scores are less than θ and are not shown to the user for judging.
Thus, the judged documents are not a random sample; it’s biased or censored
data, which creates some difficulty for learning an optimal θ . Secondly, there are in
general very little labeled data and very few relevant data, which make it challenging

11.1 Content-based Recommendation 227

for machine learning approaches, which require a large amount of training data.
In the extreme case at the beginning, we don’t even have any labeled data at all, but
the system still has to make a decision.

This issue is called the exploration-exploitation tradeoff. This means we want to
explore the document space to see if the user might be interested in the documents
that we have not yet labeled, but we don’t want to show the user too many non-
relevant documents or they will be unsatisfied with the system. So how do we do
that? We could lower the threshold a little bit and deliver some near misses to
the user to see what their response to this extra document is. This is a tradeoff
because on one hand, you want to explore, but on the other hand, you don’t
want to explore too much since you would over-deliver non-relevant information.
Exploitation means you would take advantage of the information learned about the
user. Say you know the user is interested in this particular topic, so you don’t want
to deviate that much. However, if you don’t deviate at all, then you don’t explore
at all, and you might miss the opportunity to learn another interest of the user.
Clearly, this is a dilemma and a difficult problem to solve.

Why don’t we just use the empirical utility optimization strategy to optimize
U? The problem is that this strategy is used to optimize the threshold based on
historical data. That is, you can compute the utility on the training data for each
candidate score threshold, keeping track of the highest utility observed given a
θ . This doesn’t account for the exploration that we just mentioned, and there is
also the difficulty of biased training samples. In general, we can only get an upper
bound for the true optimal threshold because the threshold might be lower than we
found; it’s possible that some of the discarded items might actually be interesting
to the user. So how do we solve this problem? We can lower the threshold to explore
a little bit. We’ll discuss one particular approach called beta-gamma threshold
learning [Zhai et al. 1998].

The basic idea of the beta-gamma threshold learning algorithm is as follows.
Given a ranked list of all the documents in the training database sorted by their
scores on the x-axis, their relevance, and a specific utility U , we can plot the utility
value at each different cutoff position θ . Each cutoff position corresponds to a score
threshold. Figure 11.5 shows this configuration and how a choice of α determines
a cutoff point between the optimal and the zero utility points, and how β and γ

help us to adjust α dynamically according to the number of judged examples in
the training database. The optimal point θopt is the point when we would achieve
the maximum utility if we had chosen this threshold. The θzero threshold is the
zero utility threshold. Between these two θ values give us a safe point to explore
the potential cutoff values. As one can see from the formula, the threshold will be

228 Chapter 11 Recommender Systems

Utility θoptimal

θzero

α

θ

0 1 2 3 … K …
β γ, N β, γ 2 [0, 1]

θ = α * θzero + (1 – α) * θoptimal

α = β + (1 – β) * e–N*γ

N = number of training examples

Encourage exploration
up to θzero

The more examples, the less
exploration (closer to θoptimal)

Cutoff position (descending
order of doc sources)

Figure 11.5 Beta-gamma threshold learning to set the optimal value of θ .

just the interpolation of the zero utility threshold and the optimal threshold via the
interpolation parameter α.

Now the question is how we should set α and deviate from the optimal utility
point. This can depend on multiple factors and one way to solve the problem is to
encourage this threshold mechanism to explore only up to the θzero point (which is
still a safe point), but not necessarily reach all the way to it. Rather, we’re going to
use other parameters to further define α’s value given some additional information.

The β parameter controls the deviation from θopt , which can be based on our
previously observed documents (i.e., the training data). What’s more interesting is
the γ parameter which controls the influence of the number of examples in the
training data set, N . As N becomes greater, it encourages less exploration. In other
words, when N is very small, the algorithm will try to explore more, meaning that
if we have seen only a few examples, we’re not sure whether we have exhausted the
space of interest. But, as we observe many data points from the user, we feel that
we probably don’t have to explore as much. This gives us a dynamic strategy for
exploration: the more examples we have seen, the less exploration we are going to
do, so the threshold will be closer to θopt .

This approach has worked well in some empirical studies, particularly on the
TREC filtering tasks. It’s also convenient that it welcomes any arbitrary utility
function with an appropriate lower bound. It explicitly addresses the exploration-
exploration tradeoff, and uses θzero as a safeguard. That is, we’re never going to
explore further than the zero utility point. If you take the analogy of gambling, you

11.2 Collaborative Filtering 229

don’t want to risk losing money, so it’s a “safe” strategy in that sense. The problem
is, of course, that this approach is purely heuristic and the zero utility lower bound
is often too conservative in practice. There are more advanced machine learning
projects that have been proposed for solving these problems; it is actually a very
active research area.

11.2 Collaborative Filtering
In collaborative filtering, a system makes decisions for an individual user based
on judgements of other users (hence it is “collaborative”). The basic idea is to
infer individual interests or preferences based solely on similar users. Given a user,
collaborative filtering finds a set of similar users. Based on the set of similar users,
it predicts the current user’s preferences.

This method makes some assumptions.

. Users with a common interest will have similar preferences

. Users with similar preferences share the same interest

For example, if a user has an interest in information retrieval, they might favor
papers published in SIGIR. If users favor SIGIR papers, then they might have an
interest in IR. The text content of items doesn’t matter! This is in sharp contrast
to the previous section, where we looked at item similarity through content-based
filtering.

Here, we will infer an individual’s interest based on other similar users. The
general idea is displayed in Figure 11.6: given a user u, we will rank other users
based on similarity, u1, . . . , um. We then predict user preferences based on the
preferences of these m other users. The preference is on a common set of items
o1, . . . , on. If we arrange the users and objects into a matrix X, we can consider the
user ui and the object oj as the point (ui , oj) in the matrix. If we have a judgment
by that user for that object, the element in that position would be the user rating
Xij .

Again, note that the exact content of each item doesn’t matter at all. We only
consider the relationship between the users and the items. This makes this ap-
proach very general since it can be applied to any items—not just text documents.
Those items could be movies or products and the users could give ratings (e.g.) one
through five. Some users have watched movies and rated them, but most movies
for a given user are unrated (since it’s unlikely that a user has examined all items in
the object space). Thus, many item entries have unknown values and it is the job of

230 Chapter 11 Recommender Systems

Ratings

The task

• Assume known f values for some (u,o)’s
• Predict f values for other (u,o)’s
• Essentially function approximation,

like other learning problems

Objects: O

Xij = f(ui, oj) = ?

Unknown function
f: U × O → R

Users: U

u1

o1 o2 onoj

u2
…

3 1.5 2

?

…

… …

3

2

1
…

um

ui

Figure 11.6 Collaborative filtering viewed as an m × n matrix with partially filled indices, repre-
senting user judgements.

collaborative filtering to infer the value of a element in this matrix based on other
known values.

One other assumption we have to make is that there are a sufficiently large
number of user preferences available to us. For example, we need an appreciable
number of ratings by users for movies that indicate their preferences for those
particular movies. If we don’t have sufficient data, there will be a data sparsity
problem and that’s often called the cold start problem.

We assume an unknown function f (., .), that maps a user and object to a rating.
In the matrix X, we have observed there are some output values of this function
and we want to infer the value of this function for other pairs that don’t have values.
This is very similar to other machine learning problems, where we would know the
values of the function on some training data and we hope to predict the values of
this function on some unseen test data. As usual, there are many approaches to
solving this problem. In fact, there is a major conference specifically dedicated to
this problem.

We will discuss what is called a memory-based approach. When we consider a
particular user, we’re going to try to retrieve the relevant (i.e., similar) users to the
current user. Then, we use those users to predict the preference of the current
user. Let ni be the average rating of all objects by user ui. We need ni so we can
normalize the ratings of objects by this user by subtracting the average rating from
all the ratings. This is necessary so that the ratings from different users will be
comparable; some users might be more generous and generally give higher ratings

11.2 Collaborative Filtering 231

while others might be more critical and have a lower average rating. So, their ratings
can not be directly compared with each other or aggregated together, which is why
we first normalize.

Let ua be the user that we are interested in recommending items to (the “active”
user). In particular, we are interested in recommending oj to ua. The idea here is
to look at whether similar users to this user have liked this object or not. Mathe-
matically, the predicted rating of this user on this object is a combination of the
normalized ratings of different users. We’re picking a sum of all the users, but not
all users contribute equally to the average; each user’s weight controls the influence
of a user on the prediction. Naturally, the weight is related to the similarity between
ua and a particular user, ui. The more similar they are, the more contribution we
would like user ui to make in predicting the preference of ua.

We have the following formulas. First, using the normalized ratings

Vij = Xij − ni (11.2)

we can write the predicted normalized rating

V̂aj = k .
m∑

i=1

w(ua , ui) . Vij , (11.3)

where w(., .) is the similarity function and k is the normalizer

k = 1∑m
i=1 w(ua , ui)

(11.4)

that ensures V̂aj ∈ [0, 1]. Once we have the predicted normalized rating, we trans-
form it into the rating range that ua uses:

X̂aj = V̂aj + na. (11.5)

If we want to write a program to implement this collaborative filtering, we still
face the problem of determining the weighting function. Once we know this, then
the formula is very easy to implement. Specific definitions of the weighting function
define the different interpretations of the collaborative filtering rating estimate. As
you may imagine, there are many possibilities of similarity functions. One popular
approach is the Pearson Correlation Coefficient:

wp(ua , ui) =
∑

j (Xaj − na)(Xij − ni)√∑
j (Xaj − na)

2
∑

j (Xij − ni)
2

.

232 Chapter 11 Recommender Systems

This is a sum of a common range of judged items and measures whether the two
users tended to all give higher ratings to similar items, or lower ratings to similar
items. Another measure is the cosine measure, which treats the rating vectors as
vectors in the vector space, and measures the cosine of the angle between the two
vectors:

wc(ua , ui) =
∑

j xajxij√∑
j x2

aj

∑
j x2

ij

.

As we’ve discussed previously in this book, this measure has been used in the vector
space model for retrieval. We’ll also see how it is used in clustering in Chapter 14.

In all these cases, note that the user similarity is based on their preferences
on items, and we did not actually use any content information of these items. It
didn’t matter what these items are; they can be movies, books, products, or text
documents. This allows such an approach to be applied to a wide range of problems.

There are some ways to improve this approach, most of which consider the user
similarity measure. There are some practical issues to deal with here as well; for
example, there will be many missing values. We could set them to default values
or the average ratings of other users. That will be a simple solution, but there are
advantages to approaches that can actually try to predict those missing values and
then use the predicted values to improve the similarity measure. In fact, in memory-
based collaborative filtering, we can predict judgements with missing values. As
you can imagine, we could apply an iterative approach where we first do some
preliminary prediction and then use the predicted values to further improve the
similarity function.

Another idea which is quite similar to the idea of IDF that we have seen in text
research, is called the inverse user frequency or IUF. Here, the idea is to look at where
the two users share similar ratings. If the item is a popular item that has been viewed
by many people, it’s not as informative. Conversely, if it’s a rare item that has not
been viewed by many users, then it says more about their similarity, emphasizing
more on similarity of items that are not viewed by many users.

Let’s summarize our discussion of recommender systems. In some sense, the
filtering task of recommendation is easy and in another sense the task is rather
difficult. It’s easy because the user expectation is low. That is, any recommendation
is better than none. The system takes initiative to push the information to the user,
so the user doesn’t really make an effort. Unless you recommend only noisy items
or useless documents, any information would be appreciated. Thus in that sense,
it’s easy.

11.3 Evaluation of Recommender Systems 233

Filtering can also be considered a much harder task because you have to make
a binary decision and can’t afford waiting for many items to enhance your belief
that one is better than others. Let’s think about news filtering as soon as the system
detects the news articles: you have to decide whether the news would be interesting
to a user. If you wait for a few days, even an accurate recommendation of the
most relevant news is not interesting. Another reason why it’s hard is due to data
sparseness. If you think of this as a learning problem in collaborative filtering, for
example, it’s purely based on learning from the past ratings. If you don’t have many
ratings, there’s really not much you can do. As we mentioned, there are strategies
that have been proposed to solve the problem. For example, we can use more user
information to assess their similarity instead of just using the item preferences.

We also talked about the two strategies for a filtering task; one is content-based
where we look at item content similarity. The other is user similarity, which is
collaborative filtering. We talked about push vs. pull as two strategies for getting
access to the text data. Recommender systems aid users in push mode whereas
search engines assist users in pull mode.

11.3 Evaluation of Recommender Systems
In evaluation setups for collaborative filtering, we have a set P of pairs of predicted
ratings r̂ and actual ratings r across all user-item pairs. A very common measure
called root-mean squared error (RMSE) has a mathematical formula that follows
its name:

RMSE(P) =
√

1
|P |

∑
(r̂ ,r)∈P

(r̂ − r)2. (11.6)

A similar metric is mean absolute error (MAE), defined as

MAE(P) =
√

1
|P |

∑
(r̂ ,r)∈P

|r̂ − r|. (11.7)

Due to the square in RMSE, RMSE is more affected by larger errors. The similarity
between RMSE and MAE should remind the reader of the differences between
gMAP and MAP. Both these measures quantify the difference in values between
r̂ and the true rating r . Using such a measure is natural when we have ratings on
some ordinal scale.

One important note is that these measures only capture the accuracy of predicted
ratings; in an actual recommender system, the top k elements are recommended
to the user. Despite having a low RMSE or MAE, it may be possible that the top

234 Chapter 11 Recommender Systems

documents may not actually be relevant to the user. In the extreme case where
k = 1, we may recommend the one element that received an erroneous high score.
To combat this issue, we can rank all ratings for a particular user and then use
an information retrieval metric such as NDCG to view the list as a whole when
compared to the true rating r .

In information filtering tasks, a system pushes items to a user if it thinks the
user would like the item. In this case, there are no explicit ratings for each item, but
rather a relevant vs not-relevant judgement. Once the user sees the item, the user
then determines if the suggestion was a good one. For a single user, it’s easy to see
that we can use some evaluation metrics from information retrieval, as discussed
in Chapter 9.

Since items are pushed to users as soon as they become available, we can’t use
any rank-sensitive measures. Still, we can examine the set of all documents pushed
to the user in some time period and compute statistics like precision, recall, F1

score, and other similar measures.
In a true information filtering system, there will be many users who receive all

pushed items. A simple way to aggregate scores would be to take an average of the
individual user metrics, e.g., average F1 score across all users. However, this may not
be the best measure if some users have more recommendations than others. Since
θ is set on a per-user basis, different users will aggregate different numbers of seen
documents. Furthermore, in a real system users may not all join at the same time,
or some users may have more training data available than others if they have more
complete user profiles or if they have been in the system longer. For these reasons,
it could be advantageous to instead take a weighted average of user metrics as an
overall metric. The weight may be assigned such that all weights sum to one, and
each user’s weight is determined by that user’s total number of judgements.

It may also be interesting to compute the precision or recall over time, where
time is measured as the number of documents that the filtering system has seen.
A variant of this is to measure time based on the number of elements judged by
the user (which are only those elements that are shown to the user). Ideally, as
the number of documents increases, the overall precision (or precision of the last
k documents) should increase. Once the precision has reached a flat line, we are
most likely at θopt given the current system setup. Of course, this learning-over-time
evaluation can also be generalized to multiple users in the same way as previously
discussed.

As a final note for both recommender system types, it is valuable to find those
users affecting the evaluation metric the most. That is, are there any outliers that
cause the evaluation metric to be significantly lower than expected? If so, these

Exercises 235

users can be further investigated and the overall system may be adjusted to en-
sure their satisfaction. Of course, these outliers depend heavily on the evaluation
metric used, so using multiple metrics will give the most complete view of user
satisfaction.

Bibliographic Notes and Further Reading
For further reading, we suggest that the reader consult Herlocker et al. [2004],
Shani and Gunawardana [2011]. Ricci et al. [2010] is a comprehensive resource for
learning more about recommender systems in general. More information about
the beta-gamma threshold setting algorithm can be found in Zhai et al. [2000].
A description of memory-based collaborative filtering algorithm can be found in
Breese et al. [1998], which also provides a comparison of different collaborative
filtering algorithms. A more recent comparison of multiple collaborative filtering
algorithms can be found in the Cacheda et al. [2011].

Exercises
11.1. When delivering content to a user, it’s important to not deliver duplicate
information. Describe a strategy that doesn’t deliver a document to a user if it is
a duplicate. Then, describe a strategy that doesn’t deliver a document if it is too
similar to a previously delivered document. Ensure that your methods are space
efficient. That is, don’t store the full text of every document seen!

11.2. A user may be interested in a few diverse information needs; a user may
enjoy both romance movies and action movies. Does this pose any problem to a
recommendation system? If so, suggest how this issue may be addressed. If not,
explain how the existing structure of the filtering system handles this.

11.3. In the introduction to this chapter, we noted that combining content-based
filtering and collaborative filtering could yield an optimal recommender applica-
tion. Suggest some ways to combine these two methods, explaining your intuition.

11.4. Beta-gamma thresholding compares search engine scores to a cutoff param-
eter θ . Consider the following argument: “Using a single fixed point θ does not allow
query comparability since query scores are not normalized.” Defend or refute this
statement.

11.5. Use META’s search engine to implement beta-gamma thresholding. Use a
dataset with relevance judgements as the user preferences, and a small number of

236 Chapter 11 Recommender Systems

related queries as the initial user profile. Shuffle document IDs and examine them
sequentially to simulate a data stream.

11.6. We described a linear utility function U for scoring the usefulness of the
filtering system’s output. Give an example of a nonlinear utility function. How does
this compare to the version introduced in this chapter?

11.7. In our description of beta-gamma thresholding, we showed the user a docu-
ment if score(d) > θ . Can you think of an alternate scoring strategy? Your strategy
may include additional features about the document or user if they are available.
If possible, evaluate your alternate scoring function in META.

11.8. Given n users and m objects, determine the running time of recommending
one item to each user using collaborative filtering. Keep in mind the running time
of a particular similarity algorithm—first, assume we are using cosine similarity.
Would using the Pearson Correlation Coefficient instead change the running time?

11.9. As a method to improve the running time of collaborative filtering, we can
consider only the top-k most active users, where k � n. An active user is one that
has given a large amount of ratings. What is a potential problem with this method?

11.10. Imagine we run a collaborative filtering system on a database of movies.
One movie producer creates many accounts on the collaborative filtering system
and only gives high ratings to movies produced by their own company and low
ratings to all others. Is the collaborative filtering system described in this chapter
susceptible to such spam? If so, brainstorm some anti-spamming measures.

11.11. A collaborative filtering system treats each item independently, even if they
are almost identical. For example, movies in a trilogy would be treated separately.
Give an example where this is desired and give an example where this is proble-
mental.

11.12. What steps need to be taken when new elements are added to the collab-
orative filtering dataset (e.g., new books are released)? Do we have the same cold
start problem as before?

11.13. Is there some relation of RMSE and MAE to L1 and L2 error? Recall that L1

error is defined as

n∑
i=1

|yi − f (xi)|

Exercises 237

and L2 error is defined as

n∑
i=1

(yi − f (xi))
2,

where yi represents the true value of a prediction, f (xi) is the prediction itself, and
n is the total number of predictions.

IIIP A R T

TEXT DATA ANALYSIS

12Overview of Text
Data Analysis
In the previous chapters that we grouped under Part II, we have covered techniques
for text data access, which is logically an initial step for processing text data for
the purpose of both significantly reducing the size of the data set to be further
processed (either by humans or machines) and filtering out any obvious noise in the
text data so as to focus on the truly relevant data to a particular application problem.
In Part III of the book, starting from this chapter, we will cover techniques for
further processing relevant text data so as to extract and discover useful actionable
knowledge that can be directly used for decision making or supporting a user’s task.
One difference between Part II and Part III is the extent to which the information
need of a user, or equivalently, a specific application, is emphasized. Specifically,
since the purpose of text data access is, in general, to connect users with the
right information at the right time so that they can further digest and exploit the
relevant text data (with or without the help of additional text analysis techniques),
the concept of information need and the closely related concept of relevance play an
important role in all the techniques covered in Part II. For example, queries play an
essential role in any search engines, and accurate modeling of a user’s interest and
information need plays an equally important role in any recommender systems. In
Part III, however, we generally can assume that the text data to be considered are
all relevant, so we will see that we no longer emphasize the information need so
much, but instead will emphasize the goal toward understand the content of text
in more detail and find any interesting patterns in text data such as topical trends
or sentiment polarity so as to eventually extract and discover actionable knowledge
directly useful for finishing a user task. As such, we will attempt to view the process
of text data analysis as a special case of the general process of data mining, where
users would use various data mining operators to probe and analyze the data in
an interactive manner. Multiple operators may be combined. Specifically, we will
view humans as “subjective sensors” of our world, and text data as data generated

242 Chapter 12 Overview of Text Data Analysis

by such subjective sensors, making text data more similar to other kinds of data
generated by objective machine sensors and enabling us to naturally discuss how
to jointly analyze text and non-text data together.

However, we must point out that the separation of the text data access stage and
text data analysis stage, thus also the separation of Part II and Part III in the book, is
somewhat artificial since in a sophisticated application, these two stages are often
interleaved, and an iterative process involving both stages is often followed. For
example, after a user has zoomed into a set of relevant documents and performed
an analysis task (such as clustering of documents into topical clusters), the user
may also choose to further search inside a particular cluster to further zoom into a
specific subset of documents, and additional analysis operators such as sentiment
analysis may then be applied to this newly obtained smaller subset. Moreover,
techniques from both Part II and Part III can often be combined to provide more
useful functions to users (e.g., summarization can be naturally combined with a
search engine or recommender system), and they may enhance each other (e.g., the
term weighitng methods discussed in Part II are also very useful for many tasks such
as clustering, categorization, and summarization in Part III, and clustering in Part
III can be useful for improving retrieval algorthm covered in Part II). Nevertheless,
we have chosen to separate them so as to allow the readers to see a meaningful
overall picture of all the techniques we covered and their high-level relations.

12.1 Motivation: Applications of Text Data Analysis
The importance of text data to our lives can be easily seen from the fact that we
all process a lot of text data on a daily basis. In most cases, however, the com-
puters only play a minor role in the entire process of making use of text data; for
example, we use search engines frequently, but once we find relevant documents,
the further processing of the found documents is generally done manually. Such
a manual process is acceptable when the amount of text data to be processed is
small, the application task does not demand a fast response, and when we have
the time to digest text data. However, as the amount of text data increases, the
manual processing of text data would not be feasible or acceptable, especially for
time-critical applications. Thus, it becomes increasingly essential to develop ad-
vanced text analysis tools to help us digest and make use of text data effectively and
efficiently.

In general, we may distinguish two kinds of text analysis applications. One kind
is those that can replace our current manual labor in digesting text content; they
help improve our productivity, but do not do anything beyond what we humans can

12.1 Motivation: Applications of Text Data Analysis 243

do. For example, automatic sorting of emails would save us a lot of time. The other
kind is those that can discover knowledge that we humans may not be able to do
even if we have “sufficient” time to read all the text data. For example, an intelligent
biomedical literature anlayzer may reveal a chain of associations of genes and
diseases by synthesizing gene-gene relations and gene-disease relations scattered
in many different research articles, thus suggesting a potential opportunity to
design drugs targeting some of the genes for treatment of a disease.

Due to the broad coverage of knowledge in text data and our reliance on text
data for communications, it is possible to imagine text analysis applications in
virtually any domain. Below are just a few specific examples that may provide some
application contexts for understanding the text analysis techniques covered in the
subsequent chapters.

One important application domain of text analysis is business intelligence. For
example, product managers may be interested in hearing customer feedback about
their products, knowing how well their products are being received as compared to
the products of competitors. This can be a good opportunity for leveraging text data
in the form of product reviews on the Web. If we can develop and master text mining
techniques to tap into such an information source to extract the knowledge and
opinions of people about these products, then we can help these product managers
gain business intelligence or gain feedback from their customers.

Another important application domain is scientific research, where timely di-
gestion of knowledge encoded in literature articles is essential. Scientists are also
interested in knowing the trends of research topics or learning about discover-
ies in fields related to their own. This problem is especially important in biology
research—different communities tend to use different terminologies, yet they’re
stating very similar problems. How can we integrate the knowledge that is covered
in different communities (using different vocabularies) to help study a particular
problem? Answering such a question speeds up scientific discovery. There are many
more such examples where we can leverage text data to discover usable knowledge
to optimize our decision-making processes.

Yet another broad category of applications is to leverage social media to opti-
mize decision making. In general, we can imagine building an intelligent sensor
system to “listen” to all the text data produced in real time, especially social me-
dia data such as tweets which report real-world events almost in real time, and
monitor interesting patterns relevant to an application. For example, perform-
ing sentiment analysis on people’s opinions about policies can help better un-
derstand society’s response to a policy and thus potentially improve the policy if
needed. Disaster response and management would benefit early discovery of any

244 Chapter 12 Overview of Text Data Analysis

warning signs of a natural disaster, which is possible through analyzing tweets in
real time.

In general, “big data” can enhance our perception. Just as a microscope allows
us to see things in the “micro world,” and a telescope allows us to see things far
away, in the era of big data, we may envision a “datascope” would allow us to “see”
useful hidden knowledge buried in large amounts of data. As a special kind of
data, text data presents unique opportunities to help us “see” virtually all kinds
of knowledge we encode in text, especially knowledge about people’s opinions and
thoughts, which may not be easy to see in other kinds of data.

12.2 Text vs. Non-text Data: Humans as Subjective Sensors
For the purpose of data mining, it is useful to view text data as data generated by
humans as subjective sensors. We can compare humans as subjective sensors to
physical sensors, such as a network sensor or a thermometer. Any sensor monitors
the real world in some way; it senses some signal from the real world and then
reports the signal as various forms of data. For example, a thermometer would
sense the temperature of the real world and then report the temperature as data
in a format like Fahrenheit or Celsius. Similarly, a geo-sensor would sense its
geographical location and then report it as GPS coordinates. Interestingly, we can
also think of humans as subjective sensors that observe the real world from their
own perspective. Humans express what they have observed in the form of text data.
In this sense, a human is actually a subjective sensor of what is happening in the
world, who then expresses what’s observed in the form of data—text data. This idea
is illustrated in Figure 12.1.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

nisi ut a q p

 Excepteur sint occaecat cupidatat non proide ,

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

idatat non proident, sunt in culpa qui

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.
Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Thermometer

Geo sensor

Network sensor

“Human sensor”

Perceive Express

3°C, 15°F, …

41°N and 120°W …

01000100011100

Weather

Locations

Networks

Figure 12.1 Humans as subjective sensors.

12.2 Text vs. Non-text Data: Humans as Subjective Sensors 245

Data mining
software

Video mining

…

Text mining
Text
data

Non-text
data

Sensor 1

Actionable knowledge

Real world Numerical
Categorical
Relational

Video

General data
miningSensor 2

…

…

Sensor k

Figure 12.2 The general problem of data mining.

Looking at text data in this way has an advantage of being able to integrate all
types of data together, which is instrumental in almost all data mining problems.
In a data mining scenario, we would be dealing with data about our world that are
related to a particular problem. Most problems would be dealing with both non-
text data and text data. Of course, the non-text data are usually produced by physical
sensors and can exist in many different formats such as numerical, categorical, or
relational. It could even be multimedia data like video or speech. Text data is also
very important because they contain knowledge about users, especially preferences
and opinions.

By treating text data as data observed from human sensors, we can examine
all this data together in the same framework. The data mining problem can then
be defined as to turn all such data into actionable knowledge that we can take
advantage of to change the world for the better. This is illustrated in Figure 12.2.

Inside of the data mining module, you can also see we have a number of different
kinds of mining algorithms. Of course, for different kinds of data, we generally
need different algorithms, each suitable for mining a particular kind of data. For
example, video data would require computer vision to understand video content,
which would facilitate more effective general mining. We also have many general
algorithms that are applicable to all kinds of data; those algorithms, of course, are
very useful, but for a particular kind of data, in order to achieve the best mining
results, we generally would still need to develop a specialized algorithm. This part
of the book will cover specialized algorithms that are particularly useful for mining
and analyzing text data.

246 Chapter 12 Overview of Text Data Analysis

Text
mining

Joint

mining

of

text and

non-text

…

Real world

Non-text data

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

i ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Actionable knowledge

Figure 12.3 Text mining as a special case of data mining.

Looking at the text mining problem more closely in Figure 12.3, we see that the
problem is similar to general data mining except that we’ll be focusing more on text.
We need text mining algorithms to help us turn text data into actionable knowledge
that we can use in the real world, especially for decision making or for completing
whatever tasks require text data support. Many real-world problems of data mining
also tend to have other kinds of data that are non-textual. So, a more general picture
would be to include non-text data as well. For this reason, we might be concerned
with joint mining of text and non-text data. With this problem definition we can
now look at the landscape of the topics in text mining and analytics.

12.3 Landscape of text mining tasks
In this section, we provide a high-level description of the landscape of various text
mining tasks, which also serves as a roadmap for the topics to be covered in the
subsequent chapters in Part III.

Figure 12.4 shows the process of generating text data in more detail. Specifically,
a human sensor or human observer would look at the world from some perspective.
Different people would be looking at the world from different angles and they’ll
pay attention to different things. The same person at different times might also
pay attention to different aspects of the observed world. Each human—a sensor—
would then form their own view of the world. This would be different from the real
world because the perspective that the person has taken can often be biased. The
observed world can be represented as (for example) entity-relation graphs or using

12.3 Landscape of text mining tasks 247

Real world

Text dataObserved world

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

nisi ut a q p

 Excepteur sint occaecat cupidatat non proide ,

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

idatat non proident, sunt in culpa qui

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.
Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Perceive

(perspective)

1. Mining knowledge
about language3. Mining knowledge

about the observer

4. Infer other real-world variables
(predictive analytics)

2. Mining content of text data

Express

(English)

Figure 12.4 Mining different types of knowledge from text data.

a knowledge representation language. This is basically what a person has in mind
about the world.

As the users of human-generated data, we will never exactly know what the real
world actually looked like at the moment when the author made the observation.
The human expresses what is observed using a natural language such as English:
the result is text data. In some cases, we might have text data of mixed languages
or different languages.

The main goal of text mining is to reverse this process of generating text data and
uncover various knowledge about the real world as it was observed by the human
sensor. As illustrated in Figure 12.4, we can distinguish four types of text mining
tasks.

Mining knowledge about natural language. Since the observed text is written
in a particular language, by mining the text data, we can potentially mine
knowledge about the usage of the natural language itself. For example, if the
text is written in English, we may be able to discover knowledge about English,
such as usages, collocations, synonyms, and colloquialisms.

Mining knowledge about the observed world. This has much to do with mining
the content of text data, focusing on extracting the major statements in the
text data and turn text data into high quality information about a particular
aspect of the world that we’re interested in. For example, we can discover
everything that has been said about a particular person or a particular entity.

248 Chapter 12 Overview of Text Data Analysis

This can be regarded as mining content to describe the observed world in the
author’s mind.

Mining knowledge about the observers (text producers). Since humans are sub-
jective sensors, the text data expressed by humans often contain subjective
statements and opinions that may be unique to the particular human observer
(text producers). Thus, we can potentially mine text data to infer some proper-
ties of the authors that produced the text data, such as the mood or sentiment
of the person toward an issue. Note that we distinguish mining knowledge
about the observed world from mining knowledge about the text producer
because text data is generally a mixture of objective statements about the
world observed and subjective statements or comments reflecting the text
producer’s opinions and beliefs, and it is possible and useful to extract each
separately.

Inferring knowledge about properties of the real world. On the left side of
the figure, we illustrate that text mining can also allow us to infer values of
interesting real world variables by leveraging the correlation of the values of
such variables and the content in text data. For example, there may be some
correlation between the stock price changes on the stock market and the
events reported in the news data (e.g., a positive earnings report of a company
may be correlated with the increase of the stock price of the company). Such
correlations can be leveraged to perform text-based forecasting, where we use
text data as a basis for prediction of other variables that may only be remotely
related to text data (e.g., prediction of stock prices). Inference about unknown
factors that affect decision making can have many applications, especially
if we can make predictions about future events (i.e., text-based predictive
analytics).

Note that when we infer other real-world variables, it is often possible and
beneficial to leverage the results of all kinds of text mining algorithms to
generate more effective features for use in a predictive model than the basic
features we can generate directly from the original text data. For example, if
we can mine text data to discover topics, we would be able to use topics (i.e., a
set of semantically related words), rather than individual words, as features.
Since topics can address the issue of word sense ambiguity and variations
of word usages when discussing a topic, such high-level semantic features
can be expected to be more effective than word-level features for prediction.
Another example is to predict what products may be liked by a user based on

12.3 Landscape of text mining tasks 249

what the user has said in text data (e.g., reviews), in which case, the results
from mining knowledge about the observer would clearly be very useful for
prediction.

Futhermore, non-text data can be very important in predictive analysis. For
example, if you want to predict stock prices or changes of stock prices, the
historical stock price data are presumably the best data to use for prediction
even though online discussions, news articles, or social media, may also
be useful for further improvement of prediction accuracy by contributing
additional effective features computed based on text data (which would be
combined with non-text features).

Non-text data can also be used for analyzing text by supplying context,
thus opening up many interesting opportunities to mine context-sensitive
knowledge from text data, i.e., associating the knowledge discovered from text
data with the non-text data (e.g., associating topics discovered from text with
time would generate temporal trends of topics). When we look at the text data
alone, we’ll be mostly looking at the content or opinions expressed in the text.
However, text data generally also has context associated with it. For example,
the time and the location of the production of the text data are both useful
“metadata” values of a text document. This context can provide interesting
angles for analyzing text data; we might partition text data into different time
periods because of the availability of the time. Now, we can analyze text data
in each time period and make a comparison. Similarly, we can partition text
data based on location or any other metadata that’s associated with it to
form interesting comparisons in those areas. In this sense, non-text data can
provide interesting angles or perspectives for text data analysis. It can help us
make context-sensitive analysis of content, language usage, or opinions about
the observer or the authors of text data. We discuss joint analysis of text and
non-text data in detail in Chapter 19.

This is a fairly general landscape of the topics in text mining and analytics. In
this book, we will selectively cover some of those topics that are representative of
the different kinds of text mining tasks. Chapters 2 and 3 already covered natural
language processing and the basics of machine learning, which allow us to under-
stand, represent, and classify text data—important steps in any text mining task. In
the remaining chapters of Part III of the book, we will start to enumerate different
text mining tasks that build upon the NLP and IR techniques discussed earlier.

First, we will discuss how to mine word associations from text data (Chapter 13),
revealing lexical knowledge about language. After word association mining, we will

250 Chapter 12 Overview of Text Data Analysis

look at clustering text objects (Chapter 14). This groups similar objects together,
allowing exploratory analysis, among many other applications. Chapter 15 covers
text categorization, which expands on the introduction to machine learning given
in Chapter 2. We also explore different methods of text summarization (Chapter 16).
Next, we’ll discuss topic mining and analysis (Chapter 17). This is only one way to
analyze content of text, but it’s very useful and used in a wide array of applica-
tions. Then, we will introduce opinion mining and sentiment analysis. This can be
regarded as one example of mining knowledge about the observer, and will be cov-
ered in Chapter 18. Finally, we will briefly discuss text-based prediction problems
where we try to predict some real-world variable based on text data and present a
number of cutting-edge research results on how to perform joint analysis of text
and non-text data (Chapter 19).

13Word Association Mining
In this chapter, we’re going to talk about how to mine associations of words from
text. This is an example of knowledge about the natural language that we can mine
from text data. We’ll first talk about what word association is and then explain why
discovering such relations is useful. Then, we’ll discuss some general ideas about
how to mine word associations.

In general, there are two types of word relations; one is called a paradigmatic re-
lation and the other is a syntagmatic relation. Word wa and wb have a paradigmatic
relation if they can be substituted for each other. That means the two words that
have paradigmatic relation would be in the same semantic class, or syntactic class.
We can replace one with another without affecting the understanding of the sen-
tence. Chapter 14 gives some additional ideas not discussed in this chapter about
how to group similar terms together.

As an example, the words cat and dog have a paradigmatic relation because they
are in the same word class: animal. If you replace cat with dog in a sentence, the
sentence would still be (mostly) comprehensible. Similarly, Monday and Tuesday
have a paradigmatic relation.

The second kind of relation is called a syntagmatic relation. In this case, the
two words that have this relation can be combined with each other. Thus, wa

and wb have a syntagmatic relation if they can be combined with each other in a
grammatical sentence—meaning that these two words are semantically related. For
example, cat and sit are related because a cat can sit somewhere (usually anywhere
they please). Similarly, car and drive are related semantically because they can be
combined with each other to convey some meaning. However, we cannot replace
cat with sit in a sentence or car with drive in the sentence and still have a valid
sentence. Therefore, the previous pairs of words have a syntagmatic relation and
not a paradigmatic relation.

These two relations are in fact so fundamental that they can be generalized to
capture basic relations between units in arbitrary sequences. They can be gener-
alized to describe relations of any items in a language; that is, wa and wb don’t

252 Chapter 13 Word Association Mining

have to be words. They could be phrases or entities. If you think about the general
problem of sequence mining, then we can think about any units being words. We
think of paradigmatic relations as relations that are applied to units that tend to
occur in a similar location in a sentence (or a sequence of data elements in general).
Syntagmatic relations capture co-occurring elements that tend to show up in the
same sequence. So, these two measures are complimentary and we’re interested in
discovering them automatically from text data.

Discovering such word relations has many applications. First, such relations can
be directly useful for improving accuracy of many NLP tasks, and this is because
these relations capture some knowledge about language. If you know two words
are synonyms, for example, that would help with many different tasks. Grammar
learning can be also done by using such techniques; if we can learn paradigmatic
relations, then we can form classes of words. If we learn syntagmatic relations, then
we would be able to know the rules for putting together a larger expression based
on component expressions by learning the sentence structure. Word relations can
be also very useful for many applications in text retrieval and mining.

In search and text retrieval, we can use word associations to modify a query
for feedback, making search more effective. As we saw in Chapter 7, this is often
called query expansion. We can also use related words to suggest related queries
to a user to explore the information space. Yet another application is to use word
associations to automatically construct a hierarchy for browsing. We can have
words as nodes and associations as edges, allowing a user to navigate from one word
to another to find information. Finally, such word associations can also be used
to compare and summarize opinions. We might be interested in understanding
positive and negative opinions about a new smartphone. In order to do that, we can
look at what words are most strongly associated with a feature word like battery in
positive vs. negative reviews. Such syntagmatic relations would help us show the
detailed opinions about the product.

13.1 General idea of word association mining
So, how can we discover such associations automatically? Let’s first look at the
paradigmatic relation. Here, we essentially can take advantage of similar context.
Figure 13.1 shows a simple example using the words dog and cat.

Generally, we see the two words occur in similar context. After all, that is the
definition of a paradigmatic relation. On the right side of the figure, we extracted
the context of cat and dog from this small sample of text data. We can have different
perspectives to look at the context. For example, we can look at what words occur

13.1 General idea of word association mining 253

My cat eats fish on Saturday
His cat eats turkey on Tuesday
My dog eats meat on Sunday
His dog eats turkey on Tuesday
…

Paradigmatic: similar context cat:

dog:

How similar are context (“cat”) and context (“dog”)?
How similar are context (“cat”) and context (“computer”)?

Similar
right

context

Similar
general
context

Similar
left

context

My _ eats fish on Saturday
His _ eats turkey on Tuesday
…

My _ eats meat on Sunday
His _ eats turkey on Tuesday
…

Figure 13.1 Intuition for paradigmatic relation discovery.

in the left part of this context. That is, what words occur before we see cat or dog?
Clearly, these two words have a similar left context. In the same sense, if you look at
the words that occur after cat and dog (the right context), we see that they are also
very similar in this case. In general, we’ll see many other words that can follow both
cat and dog. We can even look at the general context; this includes all the words in
the sentence or in sentences around this word. Even in the general context, there
is also similarity between the two words. Examining context is a general way of
discovering paradigmatic words.

Let’s consider the following questions. How similar is the context of cat and
dog? In contrast, how similar are the contexts of cat and computer? Intuitively, the
context of cat and the context of dog would be more similar than the context of cat
and computer. That means in the first case the similarity value would be high, and in
the second, the similarity would be low. This is the basic idea of what paradigmatic
relations capture.

For syntagmatic relations, we’re going to explore correlated occurrences, again
based on the definition of syntagmatic relations. Figure 13.2 shows the same sam-
ple of text as the example before. Here, however, we’re interested in knowing what
other words are correlated with the verb eats. On the right side of the figure we’ve
taken away the two words around eats. Then, we ask the question, what words tend
to occur to the left of eats? What words tend to occur to the right of eats? Therefore,
the question here has to do with whether there are some other words that tend to
co-occur with eats. For example, knowing whether eats occurs in a sentence would

254 Chapter 13 Word Association Mining

My cat eats fish on Saturday
His cat eats turkey on Tuesday
My dog eats meat on Sunday
His dog eats turkey on Tuesday
…

Syntagmatic: correlated occurrences

What words tend to occur
to the left of “eats”?

Whenever “eats” occurs, what other words also tend to occur?
How helpful is the occurrence of “eats” for predicting occurrence of “meat”?
How helpful is the occurrence of “eats” for predicting occurrence of “text”?

What words
to the right?

My _ eats _ on Saturday
His _ eats _ on Tuesday
My _ eats _ on Sunday
His _ eats _ on Tuesday
…

Figure 13.2 Intuition for syntagmatic relation discovery.

generally help us predict whether meat also occurs. This is the intuition we would
like to capture. In other words, if we see eats occur in the sentence, that should
increase the chance that meat would also occur.

In contrast, if you look at the question at the bottom, how helpful is the occur-
rence of eats for predicting an occurrence of text? Because eats and text are not
really related, knowing whether eats occurred in the sentence doesn’t really help
us predict whether text also occurs in the sentence. Essentially, we need to capture
the correlation between the occurrences of two words.

In summary, paradigmatic relations consider each word by its context and we
can compute the context similarity. We assume the words that have high context
similarity will have a high paradigmatic relation. For syntagmatic relations, we
will count how many times two words occur together in a context, which can be
a sentence, a paragraph, or even a document. We compare their co-occurrences
with their individual occurrences. We assume words with high co-occurrences but
relatively low individual occurrences will have a syntagmatic relation because they
tend to occur together and they don’t usually occur alone.

Note that paradigmatic relations and syntagmatic relations are closely related
in that paradigmatically related words tend to have a syntagmatic relation with
the same word. This fact suggests that we can perform a joint discovery of the two
relations.

13.2 Discovery of paradigmatic relations 255

cat:

Left1(“cat”) = {“my”, “his”, “big”, “a”, “the”, …}

Window8(“cat”) =
{“my”, “his”, “big”, “eats”, “fish”, …}

Right1(“cat”) = {“eats”, “ate”, “is”, “has”, …}

Context = pseudo document = “bag of words”
Context may contain adjacent or non-adjacent words

My _ eats fish on Saturday
His _ eats turkey on Tuesday
…

Figure 13.3 Context of words convey semantics.

13.2 Discovery of paradigmatic relations
By definition, two words are paradigmatically related if they share a similar context.
Naturally, our idea of discovering such a relation is to look at the context of each
word and then try to compute the similarity of those contexts.

In Figure 13.3, we have taken the word cat out of its context. The remaining
words in the sentences that contain cat are the words that tend to co-occur with it.
We can do the same thing for another word like dog. In general, we would like to
capture such contexts and then try to assess the similarity of the context of cat and
the context of a word like dog.

The question is how to formally represent the context and define the similarity
function between contexts. First, we note that the context contains many words.
These words can be regarded as a pseudo document, but there are also different
ways of looking at the context. For example, we can look at the word that occurs
before the word cat. We call this context the left context L. In this case, we will see
words like my, his, big, a, the, and so on. Similarly, we can also collect the words
that occur after the word cat, which is called the right context R. Here, we see words
like eats, ate, is, and has. More generally, we can look at all the words in the window
of text around the target word. For example, we can take a window of eight words
around the target word.

These word contexts from the left or from the right form a bag of words repre-
sentation. Such a word-based representation would actually give us a useful way to
define the perspective of measuring context similarity. For example, we can com-
pare only the L context, the R context, or both. A context may contain adjacent

256 Chapter 13 Word Association Mining

High sim(word1, word2)
 → word1 and word2 are paradigmatically related

Sim(“cat”, “dog”) =
 Sim(Left1(“cat”), Left1(“dog”))
 + Sim(Right1(“cat”), Right1(“dog”)) +
 …
 + Sim(Window8(“cat”), Window8(“dog”)) = ?

Figure 13.4 Multiple views of the context of a word can be used to compute similarity.

words like eats and my or non-adjacent words like Saturday or Tuesday. This flexi-
bility allows us to match the similarity in somewhat different ways. We might want
to capture similarity based on general content, which yields loosely related paradig-
matic relations. If we only used words immediately to the left and right, we would
likely capture words that are very much related by their syntactic categories. Thus,
the general idea of discovering paradigmatic relations is to compute the similarity
of context of two words. For example, we can measure the similarity of cat and dog
based on the similarity of their context, as shown in Figure 13.4.

The similarity function can be a combination of similarities on different con-
texts, and we can assign weights to these different similarities to allow us to focus
more on a particular kind of context. Naturally, this would be application-specific,
but again, the main idea for discovering pardigmatically related words is to com-
pute the similarity of their contexts.

Let’s see how we exactly compute these similarity functions. Unsurprisingly, we
can use the vector space model on bag-of-words context data to model the context
of a word for paradigmatic relation discovery. In general, we can represent a pseudo
document or context of cat as one frequency vector d1 and another word dog would
give us a different context, d2. We can then measure the similarity of these two
vectors. By viewing context in the vector space model, we convert the problem of
paradigmatic relation discovery into the problem of computing the vectors and
their similarity.

The two questions that we have to address are how to compute each vector and
how to compute their similarity. There are many approaches that can be used to
solve the problem, and most of them are developed for information retrieval. They
have been shown to work well for matching a query vector and a document vector.
We can adapt many of the ideas to compute a similarity of context documents for
our purpose.

13.2 Discovery of paradigmatic relations 257

Probability that a randomly

picked word from d1 is wi

Probability that two randomly picked words
from d1 and d2, respectively, are identical

Count of word wi in d1

Total counts of words in d1

N

∑
i=1

d1 = (x1, … xN) xi =
c(wi, d1)
—

|d1|

d2 = (y1, … yN) yi =
c(wi, d2)
—

|d2|

xi yiSim(d1, d2) = d1.d2 = x1 y2 + … + xNyN =

Figure 13.5 A similarity function for word contexts.

Figure 13.5 shows one plausible approach, where we match the similarity of con-
text based on the expected overlap of words, and we call this EOW. We represent a
context by a word vector where each word has a weight that’s equal to the proba-
bility that a randomly picked word from this document vector is the current word.
Equivalently, given a document vector x, xi is defined as the normalized account
of word wi in the context, and this can be interpreted as the probability that you
would randomly pick this word from d1. The xi’s would sum to one because they
are normalized frequencies, which means the vector is a probability distribution
over words. The vector d2 can be computed in the same way, and this would give
us then two probability distributions representing two contexts. This addresses the
problem of how to compute the vectors.

For similarity, we simply use a dot product of two vectors. The dot product, in
fact, gives us the probability that two randomly picked words from the two contexts
are identical. That means if we try to pick a word from one context and try to
pick another word from another context, we can then ask the question, are they
identical? If the two contexts are very similar, then we should expect we frequently
will see the two words picked from the two contexts are identical. If they are very
different, then the chance of seeing identical words being picked from the two
contexts would be small. This is quite intuitive for measuring similarity of contexts.

Let’s look at the exact formulas and see why this can be interpreted as the
probability that two randomly picked words are identical. Each term in the sum

258 Chapter 13 Word Association Mining

gives us the probability that we will see an overlap on a particular word wi, where xi

gives us a probability that we will pick this particular word from d1, and yi gives us
the probability of picking this word from d2. This is how expected overlap of words
in context similarity works.

As always, we would like to assess whether this approach would work well. Ul-
timately, we have to test the approach with real data and see if it gives us really
semantically related words. Analytically, we can also analyze this formula. Initially,
it does make sense because this formula will give a higher score if there is more over-
lap between the two contexts. However, if you analyze the formula more carefully,
then you also see there might be some potential problems.

The first problem is that it might favor matching one frequent term very well over
matching more distinct terms. That is because in the dot product, if one element
has a high value and this element is shared by both contexts, it contributes a lot
to the overall sum. It might indeed make the score higher than in another case
where the two vectors actually have much overlap in different terms. In our case,
we should intuitively prefer a case where we match more different terms in the
context, so that we have more confidence in saying that the two words indeed occur
in similar context. If you only rely on one high-scoring term, it may not be robust.
The second problem is that it treats every word equally. If we match a word like the,
it will be the same as matching a word like eats, although we know matching the
isn’t really surprising because it occurs everywhere. This is another problem of this
approach.

We can introduce some heuristics used in text retrieval that solve these prob-
lems, since problems like these also occur when we match a query with a docu-
ment. To tackle the first problem, we can use a sublinear transformation of term
frequency. That is, we don’t have to use the raw frequency count of the term to repre-
sent the context. To address this problem, we can transform it into some form that
wouldn’t emphasize the raw frequency so much. To address the second problem,
we can reward matching a rare word. A sublinear transformation of term frequency
and inverse document frequency (IDF) weighting are exactly what we’d like here;
we discussed these types of weighting schemes in Chapter 6.

In order to achieve this desired weighting, we will use BM25 weighting, which
is of course based on the BM25 retrieval function. It is able to solve the above two
problems by sublinearly transforming the count of wi in d1 and including the IDF
weighting heuristic in the similarity measure.

For this similarity scheme, we define the document vector as containing ele-
ments representing normalized BM25 TF values, as shown in Figure 13.6. The
normalization function takes a sum over all the words in order to normalize the

13.2 Discovery of paradigmatic relations 259

N

∑
i=1

d1 = (x1, … xN)

b 2 [0, 1]
k 2 [0, +∞)

xi =

BM25(wi, d1) =
(k + 1)c(wi, d1)

—
c(wi, d1) + k(1 – b + b * |d1|/avdl)

BM25(wi, d1)
—

BM25(wj, d1)

d2 = (y1, … yN) yi is defined similarly

IDF(wi)xi yiSim(d1, d2) =

N
∑
j=1

Figure 13.6 A different similarity function based on BM25.

weight of each word by the sum of the weights of all the words. This is to ensure
all the xi’s will sum to one in this vector. This would be very similar to what we had
before, in that this vector approximates a word distribution (since the xi’s will sum
to one). For the IDF factor, the similarity function multiplies the IDF of word wi by
xiyi, which is the similarity in the ith dimension. Thus, the first problem (sublinear
scaling) is addressed in the vector representation and the second problem (lack of
IDF) is addressed in the similarity function itself.

We can also use this approach to discover syntagmatic relations. When we rep-
resent a term vector to represent a context with a term vector we would likely see
some terms have higher weights and other terms have lower weights. Depending on
how we assign weights to these terms, we might be able to use these weights to dis-
cover the words that are strongly associated with a candidate word in the context.
The idea is to use the converted representation of the context to see which terms
are scored high. If a term has high weight, then that term might be more strongly
related to the candidate word.

We have each xi defined as a normalized weight of BM25. This weight alone
reflects how frequently the wi occurs in the context. We can’t simply say a frequent
term in the context would be correlated with the candidate word because many
common words like the will occur frequently in the context. However, if we apply
IDF weighting, we can then re-weight these terms based on IDF. That means the
words that are common, like the, will get penalized. Now, the highest-weighted
terms will not be those common terms because they have lower IDFs. Instead, the
highly weighted terms would be the terms that are frequently in the context but
not frequent in the collection. Clearly, these are the words that tend to occur in the
context of the candidate word. For this reason, the highly weighted terms in this

260 Chapter 13 Word Association Mining

idea of a weighted vector can also be assumed to be candidates for syntagmatic
relations.

Of course, this is only a byproduct of our approach for discovering paradigmatic
relations. In the next section, we’ll talk more about how to discover syntagmatic
relations in particular. This discussion clearly shows the relation between discover-
ing the two relations. Indeed, these two word relations may be discovered in a joint
manner by leveraging such associations. This also shows some interesting connec-
tions between the discovery of syntagmatic relations and paradigmatic relations.
Specifically, words that are paradigmatically related tend to have a syntagmatic re-
lation with the same word.

To summarize, the main idea of computing paradigmatic relations is to collect
the context of a candidate word to form a pseudo document which is typically
represented as a bag of words. We then compute the similarity of the corresponding
context documents of two candidate words; highly similar word pairs have the
highest paradigmatic relations, i.e., the words that share similar contexts. There are
many different ways to implement this general idea, but we just talked about a few
of the approaches. Specifically, we talked about using text retrieval models to help
us design an effective similarity function to compute the paradigmatic relations.
More specifically, we used BM25 TF and IDF weighting to discover paradigmatic
relations. Finally, syntagmatic relations can also be discovered as a byproduct when
we discover paradigmatic relations.

13.3 Discovery of Syntagmatic Relations
There are strong syntagmatic relations between words that have correlated co-
occurrences. That means when we see one word occur in some context, we tend
to see the other word.

Consider a more specific example shown in Figure 13.7. We can ask the ques-
tion, whenever eats occurs, what other words also tend to occur? Looking at the
sentences on the left, we see some words that might occur together with eats, like
cat, dog, or fish. If we remove them and look at where we only show eats surrounded
by two blanks, can we predict what words occur to the left or to the right?

If these words are associated with eats, they tend to occur in the context of eats.
More specifically, our prediction problem is to take any text segment (which can be
a sentence, paragraph, or document) and determine what words are most likely to
co-occur in a specific context.

Let’s consider a particular word w. Is w present or absent in the segment from
Figure 13.8? Some words are actually easier to predict than other words—if you

13.3 Discovery of Syntagmatic Relations 261

My cat eats fish on Saturday
His cat eats turkey on Tuesday
My dog eats meat on Sunday
His dog eats turkey on Tuesday
…

What words tend to occur
to the left of “eats”?

Whenever “eats” occurs, what other words also tend to occur?

What words are
to the right?

My _ eats _ on Saturday
His _ eats _ on Tuesday
My _ eats _ on Sunday
His _ eats _ on Tuesday
…

Figure 13.7 Prediction of words in a context of another word.

Text segment (any unit, e.g., sentence, paragraph, document)

Are some words easier to predict than others?

(1) w = “meat” (2) w = “the” (3) w = “unicorn”

… …

Prediction question: Is word w present (or absent) in this segment?

Figure 13.8 Prediction of absence and presence of a word.

take a look at the three words shown in the figure (meat, the, and unicorn), which
one do you think is easier to predict? If you think about it for a moment you might
conclude that the is easier to predict because it tends to occur everywhere. The word
unicorn is also relatively easy to predict because unicorn is rare. However, meat is
somewhere in between in terms of frequency, making it harder to predict (since it’s
possible that it occurs in the segment).

Recall our discussion of entropy from Chapter 2. Earlier, we talked about using
entropy to capture how easy it is to predict the presence or absence of a word. We
can create a random variable Xw for a particular word w that depicts whether w

occurs. Clearly, this is related to the previous question. Here we will further talk
about conditional entropy, which is useful for discovering syntagmatic relations.

262 Chapter 13 Word Association Mining

p(Xmeat = 1)
p(Xmeat = 0)

Know nothing about the segment

H(Xmeat) = –p(Xmeat = 0) log2 p(Xmeat = 0) – p(Xmeat = 1) log2 p(Xmeat = 1)

H(Xmeat|Xeats = 1) = –p(Xmeat = 0|Xeats = 1) log2 p(Xmeat = 0|Xeats = 1)

H(Xmeat|Xeats = 0) can be defined similarly

–p(Xmeat = 1|Xeats = 1) log2 p(Xmeat = 1|Xeats = 1)

p(Xmeat = 1|Xeats = 1)
p(Xmeat = 0|Xeats = 1)

Know “eats” is present (Xeats = 1)

Figure 13.9 Illustration of conditional entropy.

Now, we’ll address a different scenario where we assume that we know some-
thing about the random variable. That is, suppose we know that eats occurred in
the segment. How would that help us predict the presence or absence of a word
like meat? If we frame this question using entropy, that would mean we are inter-
ested in knowing whether knowing the presence of eats could reduce uncertainty
about meat. In other words, can we reduce the entropy of the random variable cor-
responding to the presence or absence of meat? What if we know of the absence
of eats? Would that also help us predict the presence or absence of meat? These
questions can be addressed by using conditional entropy.

To explain this concept, let’s first look at the scenario we had before, when we
know nothing about the segment. We have probabilities indicating whether a word
occurs or doesn’t occur in the segment. We have an entropy function that looks like
the one in Figure 13.9.

Suppose we know eats is present, which means we know the value of Xeats. That
fact changes all these probabilities to conditional probabilities. We look at the pres-
ence or absence of meat, given that we know eats occurred in the context. That is, we
have p(Xmeat | Xeats = 1). If we replace these probabilities with their corresponding
conditional probabilities in the entropy function, we’ll get the conditional entropy
(conditioned on the presence of eats). This is essentially the same entropy function
as before, except that all the probabilities now have a condition. This then tells us
the entropy of meat after we have known eats occurs in the segment. Of course, we
can also define this conditional entropy for the scenario where we don’t see eats.
Now, putting these different scenarios together, we have the complete definition
of conditional entropy:

13.3 Discovery of Syntagmatic Relations 263

H(Xmeat | Xeats) =
∑

u∈{0, 1}
p(Xeats = u)H(Xmeat | Xeats = u)

=
∑

u∈{0, 1}
p(Xeats = u)

.
∑

v∈{0, 1}

(−p(Xmeat = v | Xeats = u) log2 p(Xmeat = v | Xeats = u)
)

This formula considers both scenarios of the value of eats and captures the condi-
tional entropy regardless of whether eats is equal to 1 or 0 (present or absent). We
define the conditional entropy of meat given eats as the following expected entropy
of meat for both values of eat:

H(Xmeat | Xeats) =
∑

u∈{0, 1}
p(Xeats = u)H(Xmeat | Xeats = u). (13.1)

In general, for any discrete random variables X and Y , we have the conditional
entropy is no larger than the entropy of the variable X; that is,

H(X) ≥ H(X | Y). (13.2)

This is an upper bound for the conditional entropy. The inequality states that
we can only reduce uncertainty by adding more information, which makes sense.
As we know more information, it should always help us make the prediction and
can’t hurt the prediction in any case.

This conditional entropy gives us one way to measure the association of two
words because it tells us to what extent we can predict one word given that we know
the presence or absence of another word.

Before we look at the intuition of conditional entropy in capturing syntagmatic
relations, it’s useful to think of a very special case of the conditional entropy of a
word given itself: H(Xmeat | Xmeat). This means we know where meat occurs in the
sentence, and we hope to predict whether the meat occurs in the sentence. This is
zero because once we know whether the word occurs in the segment, we’ll already
know the answer of the prediction! That also happens to be when this conditional
entropy reaches the minimum.

Let’s look at some other cases. One is knowing the and trying to predict meat.
Another is the case of knowing eats and trying to predict meat. We can ask the ques-
tion: which is smaller, H(Xmeat | Xthe) or H(Xmeat | Xeats)? We know that smaller
entropy means it is easier to predict.

In the first case, the doesn’t really tell us much about meat; knowing the oc-
currence of the doesn’t really help us reduce entropy that much, so it stays fairly

264 Chapter 13 Word Association Mining

close to the original entropy of meat. In the case of eats, since eats is related to
meat, knowing presence or absence of eats would help us predict whether meat oc-
curs. Thus, it reduces the entropy of meat. For this reason, we expect the second
term H(Xmeat | Xeats) to have a smaller entropy, which means there is a stronger
association between these two words.

This suggests that when you use conditional entropy for mining syntagmatic
relations, the algorithm would look as follows.

1. For each word w1, enumerate all other words w2 from the corpus.

2. Compute H(Xw1 | Xw2). Sort all candidates in ascending order of the condi-
tional entropy.

3. Take the top-ranked candidate words as words that have potential syntag-
matic relations with w1.

Note that we need to use a threshold to extract the top words; this can be the
number of top candidates to take or a value cutoff for the conditional entropy.

This would allow us to mine the most strongly correlated words with a particular
word w1. But, this algorithm does not help us mine the strongest k syntagmatic
relations from the entire collection. In order to do that, we have to ensure that
these conditional entropies are comparable across different words. In this case of
discovering the syntagmatic relations for a target word like w1, we only need to
compare the conditional entropies for w1 given different words.

The conditional entropy of w1 given w2 and the conditional entropy of w1 given
w3 are comparable because they all measure how hard it is to predict the w1.
However, if we try to predict a different word other than w1, we will get a different
upper bound for the entropy calculation. This means we cannot really compare
conditional entropies across words. The next section shows how we can use mutual
information to solve this problem.

13.3.1 Mining syntagmatic relations using mutual information
The main issue with conditional entropy is that its values are not comparable across
different words, making it difficult to find the most highly correlated words in an
entire corpus. To address this problem, we can use mutual information.

In particular, the mutual information of X and Y , denoted I (X; Y), is the reduc-
tion in entropy of X obtained from knowing Y . Specifically, the question we are
interested in here is how much of a reduction in entropy of X can we obtain by
knowing Y . Mathematically, mutual information can be defined as

I (X; Y) = H(X) − H(X | Y) = H(Y) − H(Y | X). (13.3)

13.3 Discovery of Syntagmatic Relations 265

Mutual information is always non-negative. This is easy to understand because
the original entropy is always not going to be lower than the (possibly) reduced
conditional entropy. In other words, the conditional entropy will never exceed the
original entropy; knowing some information can always help us potentially, but
will not hurt us in predicting X. Another property is that mutual information is
symmetric: I (X; Y) = I (Y ; X). A third property is that it reaches its minimum, zero,
if and only if the two random variables are completely independent. That means
knowing one of them does not tell us anything about the other.

When we fix X to rank different Y s using conditional entropy, we would get
the same order as ranking based on mutual information. Thus, ranking based on
mutual entropy is exactly the same as ranking based on the conditional entropy of
X given Y , but the mutual information allows us to compare different pairs of X

and Y . That is why mutual information is more general and more useful.
Let’s examine the intuition of using mutual information for syntagmatic relation

mining in Figure 13.10.
The question we ask is: whenever eats occurs, what other words also tend to

occur? This question can be framed as a mutual information question; that is,
which words have high mutual information with eats? So, we need to compute the
mutual information between eats and other words.

For example, we know the mutual information between eats and meat, which is
the same as between meat and eats because the mutual information is symmetric.
This is expected to be higher than the mutual information between eats and the,
because knowing the does not really help us predict the other word. You also can
easily see that the mutual information between a word and itself is the largest,
which is equal to the entropy of the word. In that case, the reduction is maximum
because knowing one allows us to predict the other completely. In other words, the
conditional entropy is zero which means mutual information reaches its maximum.

Mutual information: I(X; Y) = H(X) – H(X|Y) = H(Y) – H(Y|X)

I(Xeats; Xmeats) = I(Xmeats; Xeats) > I(Xeats; Xthe) = I(Xthe; Xeats)

I(Xeats; Xeats) = H(Xeats) ≥ I(Xeats; Xw)

Whenever “eats” occurs, what other words also tend to occur?

Which words have high mutual information with “eats”?

Figure 13.10 Mutual information for discovering syntagmatic relations.

266 Chapter 13 Word Association Mining

In order to compute mutual information, we often use a different form of mutual
information that we can mathematically rewrite as

I (Xw1; Xw2)

=
∑

u∈{0, 1}

∑
v∈{0, 1}

p(Xw1 = u, Xw2 = v) log2
p(Xw1 = u, Xw2 = v)

p(Xw1 = u)p(Xw2 = v)
,

(13.4)

which is in the context of KL-divergence (see Appendix C). The numerator of the
fraction is the observed joint distribution and the denominator is the expected
joint distribution if they are independent. KL-divergence quantifies the difference
between these two distributions. That is, it measures the divergence of the actual
joint distribution from the expected distribution under an independence assump-
tion. The larger the divergence is, the higher the mutual information would be.

Continuing to inspect this formulation of mutual information, we see that it
is also summed over many combinations of different values of the two random
variables. Inside the sum, we are doing a comparison between the two joint distri-
butions. Again, the numerator has the actually observed joint distribution of the
two random variables while the denominator can be interpreted as the expected
joint distribution of the two random variables. If the two random variables are in-
dependent, their joint distribution is equal to the product of the two probabilities,
so this comparison will tell us whether the two variables are indeed independent.

If they are indeed independent, then we would expect that the numerator and
denominator are the same. If the numerator is different from the denominator,
that would mean the two variables are not independent and their difference can
measure the strength of their association. The sum is simply to take all of the
combinations of the values of these two random variables into consideration. In
our case, each random variable can choose one of the two values, zero or one, so we
have four combinations. If we look at this form of mutual information, it shows that
the mutual information measures the divergence of the actual joint distribution
from the expected distribution under the independence assumption. The larger
this divergence is, the higher the mutual information would be.

Let’s further look at exactly what probabilities are involved in the mutual infor-
mation formula displayed in Figure 13.11.

First, we have to calculate the probabilities corresponding to the presence or
absence of each word. For w1, we have two probabilities shown here. They should
sum to one, because a word can either be present or absent in the segment, and
similarly for the second word, we also have two probabilities representing presence

13.3 Discovery of Syntagmatic Relations 267

I(Xw1; Xw2) =

Presence and absence of w1: p(Xw1 = 1) + p(Xw1 = 0) = 1
Presence and absence of w2: p(Xw2 = 1) + p(Xw2 = 0) = 1

Both w1 and w2 occur

Co-occurrences of w1 and w2:

Only w1 occurs Only w2 occurs None of them occurs

∑
u2{0,1}

∑
v2{0,1}

p(Xw1 = u, Xw2 = v)log2

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 1, Xw2 = 0) + p(Xw1 = 0, Xw2 = 1) + p(Xw1 = 0, Xw2 = 0) = 1

p(Xw1 = u, Xw2 = v)
—
p(Xw1 = u)p(Xw2 = v)

Figure 13.11 Probabilities involved in the definition of mutual information.

Presence and absence of w1: p(Xw1 = 1) + p(Xw1 = 0) = 1
Presence and absence of w2: p(Xw2 = 1) + p(Xw2 = 0) = 1

Co-occurrences of w1 and w2:

Constraints:

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 1, Xw2 = 0) + p(Xw1 = 0, Xw2 = 1) + p(Xw1 = 0, Xw2 = 0) = 1

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 1, Xw2 = 0) = p(Xw1 = 1)

p(Xw1 = 0, Xw2 = 1) + p(Xw1 = 0, Xw2 = 0) = p(Xw1 = 0)

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 0, Xw2 = 1) = p(Xw2 = 1)

p(Xw1 = 1, Xw2 = 0) + p(Xw1 = 0, Xw2 = 0) = p(Xw2 = 0)

Figure 13.12 Constraints on probabilities in the mutual information function.

or absence of this word. These all sum to one as well. Finally, we have a lot of joint
probabilities that represent the scenarios of co-occurrences of the two words. They
also sum to one because the two words can only have the four shown possible sce-
narios. Once we know how to calculate these probabilities, we can easily calculate
the mutual information.

It’s important to note that there are some constraints among these probabilities.
The first was that the marginal probabilities of these words sum to one. The second
was that the two words have these four scenarios of co-occurrence. The additional
constraints are listed at the bottom of Figure 13.12.

268 Chapter 13 Word Association Mining

Presence and absence of w1: p(Xw1 = 1) + p(Xw1 = 0) = 1

Presence and absence of w2: p(Xw2 = 1) + p(Xw2 = 0) = 1

Co-occurrences of w1 and w2:

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 1, Xw2 = 0) + p(Xw1 = 0, Xw2 = 1) + p(Xw1 = 0, Xw2 = 0) = 1

We only need to know p(Xw1 = 1), p(Xw2 = 1), and p(Xw1 = 1, Xw2 = 1).

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 1, Xw2 = 0) = p(Xw1 = 1)

p(Xw1 = 0, Xw2 = 1) + p(Xw1 = 0, Xw2 = 0) = p(Xw1 = 0)

p(Xw1 = 1, Xw2 = 1) + p(Xw1 = 0, Xw2 = 1) = p(Xw2 = 1)

p(Xw1 = 1, Xw2 = 0) + p(Xw1 = 0, Xw2 = 0) = p(Xw2 = 0)

Figure 13.13 Computation of mutual information.

The first new constraint means if we add up the probabilities of two words
co-occurring and the probabilities when the first word occurs and the second
word does not occur, we get exactly the probability that the first word is observed.
The other three new constraints have a similar interpretation. These equations
allow us to compute some probabilities based on other probabilities, and this can
simplify the computation. More specifically, if we know the probability that a word
is present, then we can easily compute the absence probability. It is very easy to use
these equations to compute the probabilities of the presence and absence of each
word.

Now let’s look at the joint distribution. Assume that we also have available the
probability that they occurred together. It’s easy to see that we can actually compute
all the rest of these probabilities based on these, as shown in Figure 13.13. Using
the first of the four equations, we can compute the probability that the first word
occurred and the second word did not because we know the two probabilities in
the boxes. Similarly, using the third equation we can compute the probability that
we observe only the second word. The figure shows that we only need to know how
to compute the three boxed probabilities, namely the presence of each word and
the co-occurrence of both words in a segment. All others can be computed based
on them.

In general, we can use the empirical count of events in the observed data to
estimate the probabilities, as shown in Figure 13.14. A commonly used technique is

13.3 Discovery of Syntagmatic Relations 269

p(Xw1 = 1) = Segment_1

Segment_2

Segment_3

Segment_4

 …

Segment_N

count(w1) = total number segments that contain w1
count(w2) = total number segments that contain w2
count(w1, w2) = total number segments that contain both w1 and w2

w1

1

1

1

0

0

w2

0

1

1

0

1

Only w1 occurred

Both occurred

Both occurred

Neither occurred

Only w2 occurred

count(w1)
—

N

p(Xw2 = 1) =
count(w2)
—

N

p(Xw1 = 1, Xw2 = 1) =
count(w1, w2)
—

N

Figure 13.14 Estimation of probabilities involved in the definition of mutual information.

the maximum likelihood estimate (MLE), where we simply normalize the observed
counts. Using MLE, we can compute these probabilities as follows. For estimating
the probability that we see a word occuring in a segment, we simply normalize the
count of segments that contain this word. On the right side of Figure 13.14, you see
a list of some segments of data. In some segments you see both words occur, which
is indicated as ones for both columns. In some other cases only one will occur, so
only that column has a one and the other column has a zero.

To estimate these probabilities, we simply need to collect the three counts: the
count of w1 (the total number of segments that contain w1), the segment count for
w2, and the count when both words occur (both columns have ones). Once we have
these counts, we can just normalize these counts by N , which is the total number of
segments, giving us the probabilities that we need to compute mutual information.

There is a small problem when we have zero counts sometimes. In this case,
we don’t want a zero probability, so we use smoothing, as discussed previously in
this book.

To smooth, we will add a small constant to these counts so that we don’t get zero
probability in any case. Smoothing for this application is displayed in Figure 13.15.
We pretend to observe pseudo-segments that would contribute additional counts
of these words so that no event will have zero probability. In particular for this exam-
ple, we introduce four pseudo-segments. Each is weighted at 1/4. These represent
the four different combinations of occurrences of the two words.

Each combination will have at least a non-zero count from a pseudo-segment;
thus, in the actual segments that we’ll observe, it’s okay if we haven’t observed all of

270 Chapter 13 Word Association Mining

p(Xw1 = 1) =

Smoothing: Add pseudo data
so that no event has zero counts
(pretend we observed extra data)

¼ PseudoSeg_1

¼ PseudoSeg_2

¼ PseudoSeg_3

¼ PseudoSeg_4

w1

0

1

0

1

w2

0

0

1

1

Segment_1

…

Segment_N

1

0

0

1

count(w1) + 0.5
—

N + 1

p(Xw2 = 1) =
count(w2) + 0.5
—

N + 1

p(Xw1 = 1, Xw2 = 1) =
count(w1, w2) + 0.25
—

N + 1

Actually observed data

Figure 13.15 Smoothing in estimation of probabilities for computing mutual information.

the combinations. More specifically, you can see the 0.5 coming from the two ones
in the two pseudo-segments, because each is weighted at one quarter. If we add
them up, we get 0.5. Similar to this, 0.25 comes from one single pseudo-segment
that indicates the two words occur together. In the denominator, we add the total
number of pseudo-segments, which in this case is four pseudo-segments.

To summarize, syntagmatic relations can generally be discovered by measuring
correlations between occurrences of two words. We’ve used three concepts from
information theory: entropy, which measures the uncertainty of a random variable
X; conditional entropy, which measures the entropy of X given we know Y ; and
mutual information of X and Y , which matches the entropy reduction of X due to
knowing Y , or entropy reduction of Y due to knowing X. These three concepts are
actually very useful for other applications as well. Mutual information allows us to
have values computed on different pairs of words that are comparable, allowing
us to rank these pairs and discover the strongest syntagmatic relations from a
collection of documents.

Note that there is some relation between syntagmatic relation discovery and
paradigmatic relation discovery. We already discussed the possibility of using BM25
to weight terms in the context and suggest candidates that have syntagmatic re-
lations with the target word. Here, once we use mutual information to discover
syntagmatic relations, we can also represent the context with this mutual informa-
tion as weights. This would give us another way to represent the context of a word.
And if we do the same for all the words, then we can cluster these words or compute

13.4 Evaluation of Word Association Mining 271

the similarity between these words based on their context similarity. This provides
yet another way to do term weighting for paradigmatic relation discovery.

To summarize this chapter about word association mining, we introduced two
basic associations called paradigmatic and a syntagmatic relations. These are fairly
general since they apply to any items in any language; that is, the units don’t have
to be words (they can be phrases or entities). We introduced multiple statistical
approaches for discovering them, mainly showing that pure statistical approaches
are viable for discovering both kinds of relations. And they can be combined to
perform joint analysis as well. These approaches can be applied to any text with
no human effort, mostly because they are based on simple word counting, yet
they can actually discover interesting word relations. We can also use different
ways to define context and segment, and this would lead us to some interesting
variations of applications. For example, the context can be very narrow like a few
words, around a word, a sentence, or maybe paragraphs. Using differing contexts
would allow discovery of different flavors of paradigmatic relations. Of course, these
associations can support many other applications in both information retrieval and
text data mining.

Discovery of word associations is closely related to term clustering, a topic that
will be discussed in detail in Chapter 14, where some advanced techniques that can
be potentially used for word association discovery will also be briefly discussed.

13.4 Evaluation of Word Association Mining
Word association mining is a fundamental technique, in that it is often used as a
first step in many other tasks. In this chapter, we gave one example of using word
association mining for query expansion.

The best way to convince an application developer that they should use word as-
sociation mining is to show how it can improve their application. If the application
is search, the question becomes: Does adding query expansion via word association
mining improve MAP at a statistically-significant level? We know how to perform
this type of evaluation from Chapter 9. The variable we control here between the two
experiments is whether we perform query expansion or not. To be more thorough,
we can compare query expansion with word association mining to query expansion
with (for example) Rocchio feedback as a baseline model.

To evaluate word association mining in isolation, we would need some set of
gold standard data. If we don’t have such data, we would need to use human manual
effort to judge whether the associations found are acceptable. Let’s first consider
the case where we have gold-standard data.

272 Chapter 13 Word Association Mining

Without loss of generality, assume we wish to evaluate syntagmatic association
mining. Given a word, the task may be to rank all other words in the vocabulary
according to how similar they are to the target word. Thus, we could compute
average precision for each word, and use MAP as a summary metric over each word
that we evaluate. Of course, if such ranked lists contained numerical relevance
scores we could instead use NDCG and average NDCG.

A human-based evaluation metric would be intrusion detection. In fact, this is
one measure described in the evaluation of topic models [Chang et al. 2009], which
we discuss further in Chapter 17. If the word associations are good, it should be
fairly easy to find an “intruder” that has been added into the top k similar words.
For example, consider the following two examples of intrusion detection presented
in Chang et al. [2009]. We have two lists with k + 1 = 6 items. The top k = 5 items
are chosen for some word in the vocabulary and an additional random word from
the vocabulary is also added.

L1 = {dog , cat, horse, apple, pig , cow},

L2 = {car , teacher , platypus, agile, blue, Zaire}

The idea here is that if it’s easy to spot the intruder, the top k words form a
coherent group, meaning that they are a very good word association group. In L1,
it’s quite obvious that apple is the intruder since it doesn’t fit in with the other
words in the list. Thus, the remaining words form a good word association list. In
L2, we can’t really tell which word is the intruder, meaning the word association
algorithm used to create the k candidates in L2 is not as good as the one used to
generate L1. Performing this type of experiment over many different words in the
vocabulary is a good (yet expensive) way to strictly evaluate the word associations.
We say this method is expensive since it requires many human judgements.

Finally, it’s important to consider the time-accuracy tradeoff of using such a tool
in word association mining. Imagine the scenario where we have a baseline system
with a MAP of 0.89 on some dataset. If we use query expansion via word association
mining, we can get a statistically significantly higher MAP of 0.90. However, this
doesn’t take into account the preprocessing time of mining the word associations.
In this example, the query time is not affected because the word association mining
takes place beforehand offline, but it still is a non-negligible cost. The application
manager would have to decide whether an increase in MAP of 0.01 is worth the effort
of implementing, running, and maintaining the query expansion program. This is
actually quite a realistic and general issue whenever new technology is proposed to
replace or extend an existing one. As a data scientist, it is often part of the job to

Exercises 273

convince others that such modifications are useful and worthwhile to the overall
system.

Bibliographic Notes and Further Reading
Manning and Schütze [1999] has two useful relevant chapters on the discovery of
word associations: Chapter 5 (Collocations) and Chapter 8 (Lexical Acquisition). An
early reference on the use of mutual information for discovering word associations
is Church and Hanks [1990]. Both paradigmatic and syntagmatic relations can also
be discovered using random walks defined on word adjacency graphs, and a unified
framework for modeling both kinds of word associations was proposed in Jiang and
Zhai [2014]. Non-compositional phrases (also called lexical atoms) such as hot dog
can also be discovered using similar heuristics to what we have discussed in this
chapter (see Zhai 1997, Lin 1999). Another approach to word association discovery
is the n-gram class language model [Brown et al. 1992]. Recently, word embed-
ding techniques (e.g., word2vec; Mikolov et al. 2013) have shown great promise
for learning a vector representation of a word that can further enable computation
of similarity between two words, thus directly supporting paradigmatic relation dis-
covery. Both the n-gram class language model and word2vec are briefly discussed
in the context of term clustering in Chapter 14.

Exercises
13.1. What are the minimum and maximum possible values of the conditional
entropy H(X | Y)? Under what situations do they occur?

13.2. In the mutual information section, we applied a simple smoothing tech-
nique. Based on your knowledge from Chapter 6, define a more robust smoothing
method for calculating syntagmatic relations.

13.3. Feature selection is the process of reducing the dimensionality of the feature
space to increase performance and decrease running time (since there are fewer
features). Outline a feature selection method for the unigram words feature repre-
sentation using word relations.

13.4. Do you think using the syntagmatic and paradigmatic word association min-
ing methods would work for other feature types? Give some examples of other
features where it may work and others where it may not.

13.5. Use META to implement one or both of the word association mining meth-
ods. Use the default unigram tokenization chain to read over a corpus and create

274 Chapter 13 Word Association Mining

feature vectors for each term ID. Then, given a query term, return the most similar
terms.

13.6. Outline a method to group together groups of words (i.e., more than two)
that share similar meaning. For example, plane, car, and train may all be related.

13.7. Outline a method to determine synonyms based on search engine logs. That
is, you are given many queries, and for each query is a list of clicked (assumed
relevant) documents.

13.8. Outline a method to disambiguate homographs (two words that are spelled
the same) based on search engine logs. For example, how can we distinguish a
financial institution bank and a river bank based on these logs?

13.9. In what scenario (if any) is word association mining a generalization of an
n-gram language model?

13.10. Depending on the context size, we get many different types of semantic
meanings from word associations. Give two extremes of the types of relations we
get when the context is very large and when it is very small.

13.11. Is it possible to adjust the word association mining algorithms to find
antonyms instead of synonyms? If so, explain how; if not, explain why it is not
possible. That is, we would like to assign a high score to the pair (hot, cold) since
they are opposites and a low score to (freezing, cold) since they are synonyms.

14Text Clustering

Clustering is a natural problem in exploratory text analysis. In its most basic sense,
clustering (i.e., grouping) objects together lets us discover some inherent structure
in our corpus by collecting similar objects. These objects could be documents,
sentences, or words. We could cluster search engine queries, search engine results,
and even users themselves.

Clustering is a general data mining technique very useful for exploring large data
sets. When facing a large collection of text data, clustering can reveal natural se-
mantic structures in the data in the form of multiple clusters (i.e., groups) of data
objects. The clustering results can sometimes be regarded as knowledge directly
useful in an application. For example, clustering customer emails can reveal major
customer complaints about a product. In general, the clustering results are useful
for providing an overview of the data, which is often very useful for understanding
a data set at a high-level before zooming into any specific subset of the data for fo-
cused analysis. The clustering results can also support navigation into the relevant
subsets of the data since the structures can facilitate linking of objects inside a clus-
ter and linking of related clusters. In general, clustering methods are very useful
for text mining and exploratory text analysis with widespread applications espe-
cially due to the fact that clustering algorithms are mostly unsupervised without
requiring any manual effort, and can thus be applied to any text data set.

The object types that we cluster necessitate different tasks, and this variation
leads to many interesting applications. For example, clustering of retrieval results
can be used as a result summary or as a way to remove redundant documents.
Clustering the documents in our entire corpus lets us find common underlying
themes and can give us a better understanding of the type of data it contains. Term
clustering is a powerful way to find concepts or create a thesaurus.

However, how do we formally define the problem of clustering? In particular,
what does it actually mean for an object to be in a particular cluster? Intuitively, we

276 Chapter 14 Text Clustering

Figure 14.1 Illustration of clustering bias. The figure on the left shows a set of objects that can
be potentially clustered in different ways depending on the definition of similarity (or
clustering bias). The figure in the middle shows the clustering results when similarity
is defined based on the shape of an object. The figure on the right shows the clustering
results of the same set of objects when similarity is defined based on size.

imagine objects inside the same cluster are similar in some way—more so than ob-
jects that appear in two different clusters. However, such a definition of clustering is
strictly speaking not well defined as we did not make it clear how exactly we should
measure similarity. Indeed, an appropriate definition of similarity is quite crucial
for clustering as a different definition would clearly lead to a different clustering
result.

Consider the illustration in Figure 14.1. How should we cluster the objects
shown in the figure on the left side? What would an ideal clustering result look
like? Clearly these questions cannot be answered until we define the perspective
for measuring similarity very clearly, i.e., inject a particular “clustering bias.” If
we define similarity based on the shape of an object, we will obtain a clustering
result as shown in the picture in the middle of the figure. However, if we define
the similarity based on the size of an object, then we would have very different
results as shown in the figure on the right side. Thus, when we define a clustering
task, it is important to state the desired perspective of measuring similarity, which
we refer to as a “clustering bias.” This bias will also be the basis for evaluating
clustering results. The ambiguity of perspective for similarity not only exists in such
an artificial example, but also exists everywhere. Take words for example: are “car”
and “horse” similar? A car and a horse are clearly not similar physically. However,
if we look at them from the perspective of their functions, we may say that they are
similar since they can both be used as transportation tools. The “right” clustering
bias clearly has to be determined by the specific application.

In different algorithms, the clustering bias is injected in different ways. For
some clustering algorithms, it is up to the user to define or select explicitly a
similarity algorithm for the clustering method to use. It will put (for example)
documents that are all similar according to the chosen similarity algorithm in
the same cluster. Other clustering algorithms are model-based (typically based on

14.1 Overview of Clustering Techniques 277

generative probabilistic models), where the objective function of the model for the
data (e.g., the likelihood function in the case of a generative probabilistic model)
is to create an indirect bias on how similarity is defined. With these model-based
methods, it’s often the case that an object is assigned a probability distribution
over all the clusters, meaning there is no “hard cluster assignment” as in the
similarity-based methods. We explore both similarity-based clustering and model-
based clustering in this book. This particular chapter focuses on similarity-based
clustering, and the topic analysis chapter (Chapter 17) is a fine example of model-
based clustering.

In this chapter, we examine clustering techniques for both words and docu-
ments. Clustering sentences can be viewed as a case of clustering small documents.
We first start with an overview of clustering techniques, where we categorize the
different approaches. Next, we discuss similarity-based clustering via two common
methods (hierarchical and divisive methods). Then, we introduce term clustering
via both semantic-relatedness and pointwise mutual information before mention-
ing two more advanced topics. We end with clustering evaluation.

14.1 Overview of Clustering Techniques
As mentioned previously, document clustering groups documents together into
clusters. We can categorize document clustering methods into two categories.

Similarity-based clustering . These clustering algorithms need a similarity func-
tion to work. Any two objects have the potential to be similar, depending on
how they are viewed. Therefore, a user must define the similarity in some way.

Agglomerative clustering is a “bottom up” approach, also called hierarchi-
cal clustering. In this approach, we gradually merge similar objects to
generate clusters.

Divisive clustering is a “top down” approach. In this approach, we gradu-
ally divide the whole set of objects into smaller clusters.

For both above methods, each document can only belong to one cluster. This
is a “hard assignment,” unlike the clusters we receive from a model-based
method.

Model-based techniques design a probabilistic model to capture the latent struc-
ture of data (i.e., features in documents), and fit the model to data to obtain
clusters. Typically, this is an example of soft clustering, since one object can
be in multiple clusters (with a certain probability). There will be much more
discussion on this in the topic analysis chapter.

278 Chapter 14 Text Clustering

Term clustering has applications in query expansion. It allows similar terms to
be added to the query, increasing the possible number of documents matched from
the index. It also allows humans to understand advanced features more easily if
there are many hundreds or thousands of them, or if they are hard to conceptual-
ize. Later, we will first discuss term clustering using semantic relatedness via topic
language models mentioned in Chapter 2. Then, we explore a simple probabilistic
technique called pointwise mutual information. We briefly mention a hierarchical
technique for term clustering called Brown clustering. This technique has similar-
ity to the agglomerative document clustering along with the probabilistic nature
of model-based methods. We finish term clustering with an explanation of word
vectors, a context-based word representation that should remind you of the infor-
mation retrieval problem setup.

As we will see in Chapter 17, output from a model-based topic analysis addition-
ally gives us groups of similar words (in fact, these are the “topics”). Thus, topic
analysis delivers both term and document clusters to the user.

Although with an unsupervised clustering algorithm, we generally do not provide
any prior expectations as to what our clusters may contain, it is also possible to
provide some supervision in the form of requiring two objects to be in the same
cluster or not to be in the same cluster. Such supervision is useful when we have
some knowledge about the clustering problem that we would like to incorporate
into a clustering algorithm and allows users to “steer” the clustering in a flexible
way. A user can also control the number of clusters by setting the number of clusters
desired beforehand, or the user may leave it to the algorithm to determine what a
natural breakdown of our objects is, in which case the number of clusters is usually
optimized based on some statistical measures such as how well the data can be
explained by a certain number of clusters.

Most clustering output does not give labels for the clusters found; it’s up to the
user to examine the groups of terms or documents and mentally assign a label
such as “biology” or “architecture.” However, there are also approaches to automate
assignment of a label to a text cluster where a label is often a phrase or multiple
phrases [Mei et al. 2007b]. This labeling task can be regarded as a form of text
summarization which we will further discuss in Chapter 16.

Finally, a brief note on the implementation of clustering algorithms. As with the
rest of the chapters in this part of the book, we will see that the information retrieval
techniques that we discussed in Part II are often also very useful for implementing
many other algorithms for text analysis, including clustering. For example, in the
case of document clustering, we may assume we already have a forward index of
tokenized documents according to some feature representation. Leveraging the

14.2 Document Clustering 279

data structures already in place for supporting search is especially desirable in a
unified software system for supporting both text data access and text analysis. The
clustering techniques we discuss are general, so they can be potentially used for
clustering many different types of objects, including, e.g., unigram words, bigram
words, trigram POS-tags, or syntactic tree features. All the clustering algorithms
need are a term vocabulary represented as term IDs. The clustering algorithms only
care about term occurrences and probabilities, not what they actually represent.
Thus—with the same clustering algorithm—we can cluster documents by their
word usage or by similar stylistic patterns represented as grammatical parse tree
segments. For term clustering, we may not use an index, but we do also assume
that each sentence or document is tokenized and term IDs are assigned.

14.2 Document Clustering
In this section, we examine similarity-based document clustering through two
methods: agglomerative clustering and divisive clustering. As these are both
similarity-based clustering methods, a similarity measure is required. In case a
refresh of similarity measures is required, we suggest the reader consult Chapter 6.

In particular, the similarity algorithms we use for clustering need to be symmet-
ric; that is, sim(d1, d2) must be equal to sim(d2, d1). Furthermore, our similarity
algorithm must be normalized on some range. Usually, this range is [0, 1]. These
constraints ensure that we can fairly compare similarity scores of different pairs of
objects. Most retrieval formulas we have seen—such as BM25, pivoted length nor-
malization, and query likelihood methods—are asymmetric since they treat the
query differently from the current document being scored. Whissell and Clarke
[2013] explore symmetric versions of popular retrieval formulas and they show that
they are quite effective.

Despite the fact that default query-document similarity measures are not used
for clustering, it is possible to use (for example) Okapi BM25 term weighting in doc-
ument vectors which are then scored with a simple symmetric similarity algorithm
like cosine similarity. Recall that cosine similarity is defined as

simcosine(x , y) = x . y

||x|| . ||y|| =
∑

i xiyi√∑
i(xi)

2
√∑

i(yi)
2

. (14.1)

Since all term weights in our document vector representation are positive, the co-
sine similarity score ranges from [0, 1]. As mentioned, the term weights may be
raw counts, TF-IDF, or anything else the user could imagine. The cosine similar-
ity captures the cosine of the angle between the two document vectors plotted in

280 Chapter 14 Text Clustering

their high-dimensional space; the larger the angle, the more dissimilar the docu-
ments are.

Another common similarity metric is Jaccard similarity. This metric is a set
similarity; that is, it only captures the presence and absence of terms with no regard
to magnitude. It is defined as follows:

simJaccard(X, Y) = |X ∩ Y |
|X ∪ Y | , (14.2)

where X and Y represent the set of elements in the document vector x and y,
respectively. In plain English, it captures the ratio of shared objects and total objects
in both sets.

For a more in-depth study of similarity measures and their effectiveness, we sug-
gest that the reader consult Huang [2008]. For the rest of this chapter, it is sufficient
to assume that the base document-document similarity measure is cosine or Jac-
card similarity. In any event, the goal of a particular similarity algorithm is to find
an optimal partitioning of data to simultaneously maximize intra-group similarity
and minimize inter-group similarity.

14.2.1 Agglomerative Hierarchical Clustering
We are now ready to discuss our first general clustering strategy. This method
progressively constructs clusters to generate a hierarchy of merged groups. This
bottom-up (agglomerative) approach gradually groups similar objects (single doc-
uments or groups of documents) into larger and larger clusters until there is only
one cluster left. The tree may then be segmented as needed. Alternatively, the merg-
ing may be stopped when the desired number of clusters is found. This series of
merges forms a dendrogram, represented in Figure 14.2.

In the figure, the original documents are numbered one through eleven and
comprise the bottom row of the dendrogram. Circles represent clusters of more
than one document, and lines represent which documents or clusters were merged
together to form the next, larger cluster.

The clustering algorithm is straightforward: while there is more than one clus-
ter, find the two most similar clusters and merge them. This does present an issue
though when we need to compare the similarity of a cluster with a cluster, or a clus-
ter with a single document. Until now, we have only defined similarity measures
that take two documents as input. To simplify this problem, we will treat individ-
ual documents as clusters; thus we only need to compare clusters for similarity.
The cluster similarity measures we define make use of the document-document
similarity measures presented previously.

14.2 Document Clustering 281

1 2 3 4 5 6 7 8 9 10 11

A B C D

E F

H

I

J

G

Figure 14.2 Hierarchical clustering represented as a dendrogram.

Complete-link algorithm

Average-link algorithmSingle-link algorithm

?
……

g2g1

Figure 14.3 Three different cluster-cluster similarity metrics.

Below, we outline three cluster similarity measures and illustrate them in Fig-
ure 14.3.

Single-link merges the two clusters with the smallest minimum distance. This
results in “looser” clusters, since we only need to find two individually close
elements in each cluster in order to perform the merge.

Complete-link merges the two clusters with the smallest maximum distance be-
tween elements. This results in very “tight” and “compact” clusters since the
cluster diameter is kept small (i.e., the distance between all elements low).

282 Chapter 14 Text Clustering

Algorithm 14.1 K-means clustering algorithm

Initialize K randomly selected centroids
while not converged do

Assign each document to the cluster whose centroid is closest to
it using sim(.) (Ex.)

Recompute centroids of the new clusters found from previous step (Max.)
end while

Average-link is a compromise between the two previous measures. As its name
implies, it takes the smallest average distance between two clusters.

Both single-link and complete-link are sensitive to outliers since they rely on only
the similarity of one pair of documents. Average-link is essentially a group decision,
making it less sensitive to outliers. Of course, as with most methods discussed
in this book, the specific application will determine which method is preferred.
In fact, it may even be useful to try out different document-document similarity
measures combined with different cluster-cluster similarity measures to see how
the dataset is partitioned.

14.2.2 K-means
A complementary clustering method to our hierarchical algorithm is a top-down,
divisive approach. In this approach, we repeatedly apply a flat clustering algorithm
to partition the data into smaller and smaller clusters. In flat clustering, We will
start with an initial tentative clustering and iteratively improve it until we reach
some stopping criterion. Here, we represent a cluster with a centroid; a centroid is
a special document that represents all other documents in its cluster, usually as an
average of all its members’ values.

The K-means algorithm1 sets K centroids and iteratively reassigns documents
to each one until the change in cluster assignment is small or nonexistent. This
technique is described in the algorithm below. Let sim(.) be the chosen document-
document similarity measure.

The two steps in K-means are marked as the expectation step (Ex.) and the
maximization step (Max.); this algorithm is one instantiation of the widely found
Expectation-Maximization algorithm, commonly called just EM. We will return to
this powerful algorithmic paradigm in much more detail in Chapter 17 on topic

1. K-means is not at all related to the classification algorithm k-NN (see Chapter 15).

14.2 Document Clustering 283

2

3

1

2

3

1

2

3

1

2

3

1

(a) (b) (c)

(d) (e)

Figure 14.4 Steps in the K-means clustering algorithm for a small set of data points to be clustered
(shown in (a)). First, three initial (starting) centroids are randomly chosen (shown in
(b)). Then, all the data points are each assigned to one of the three clusters based on
their distances to each centroid; the decision boundaries are shown as lines in (c). The
assignments lead to three tentative clusters, each of which can then be used to compute
a new centroid to better represent the cluster (shown as three stars in new locations in
(d)). The algorithm continues to iterate with the new centroids as the starting centroids
to re-assign all the data points. The new boundaries are shown in (e), which are easily
seen to be already very close to the optimal centroids for generating three clusters from
this data set.

analysis through the PLSA algorithm. For this chapter, it is sufficient to realize that
K-means is a particular manifestation of hard cluster assignment via EM.

Figure 14.4 shows the K-means algorithm in action. Frame (a) shows our initial
setup with the data points to be clustered. Here we visualize the data points with
different shapes to suggest that there are three distinct clusters, corresponding to
three shapes (crosses, circles, and triangles). Frame (b) shows how three random
centroids are chosen (K = 3). In frame (c), the black lines show the partition of
documents in their respective centroid. These lines can be found by first drawing a
line to connect each pair of centroids and then finding the perpendicular bisectors
of the segments connecting two centroids. This step is marked (Ex.) in the pseu-
docode. Then, once the cluster assignments are determined, frame (d) shows how

284 Chapter 14 Text Clustering

the centroids are recomputed to improve the centroids’ positions. This centroid
reassignment step is marked as (Max.) in the pseudocode. Thus, frames (c) and (d)
represent one iteration of the algorithm which leads to improved centroids. Frames
(e) further shows how the algorithm can continue to obtain improved boundaries,
which in turn would lead to further improved centroids.

When a document is represented as a term vector (as discussed in Chapter 6),
and a Euclidean distance function is used, the K-means algorithm can be shown
to minimize an objective function that computes the average distances of all the
data points in a cluster to the centroid of the cluster. The algorithm is also known to
converge to a local minimum, but not guaranteed to converge to a global minimum.
Thus, multiple trials are generally needed in order to obtain a good local minimum.

The K-means algorithm can be repeatedly applied to divide the data set gradually
into smaller and smaller clusters, thus creating a hierarchy of clusters similar
to what we can achieve with the agglomerative hierarchical clustering algorithm.
Thus both agglomerative hierarchical clustering and K-means can be used for
hierarchical clustering; they complement each other in the sense that K-means
constructs the hierarchy by incrementally dividing the whole set of data (a top-down
strategy), while agglomerative hierarchical clustering constructs the hierarchy by
incrementally merging data points (a bottom-up strategy). Note that although in
its basic form, agglomerative hierarchical clustering generates a binary tree, it can
easily adapted to generate more than two branches by merging more than two
groups into a cluster at each iteration. Similarly, if we only allow a binary tree, then
we also do not have to set K in the K-means algorithm for creating a hierarchy.

14.3 Term Clustering
The goal of term clustering is quite similar to document clustering; we wish to find
related terms. By “related,” we usually mean words that have a similar semantic
meaning. For example, soccer and basketball are related in the sense that they
are both sports. Similarly, evaluation and assessment are related since they are
synonyms.

In this section we will refer to “terms” and “words” interchangeably, though keep
in mind we don’t necessarily only have to cluster words. We commonly use this
example since it is quite straightforward to imagine. The techniques we describe
in this section will generally work for any sequence of features, whether they are
words or parse tree fragments. It is important to keep in mind, however, that
the algorithms we discuss were designed for use on words in most cases. It’s
also important to note that in some forms of term “clustering,” we only receive

14.3 Term Clustering 285

a pairwise score between two words w1 and w2. If these scores are normalized, we
can still cluster the entire set of terms by using the pairwise scores.

As in all clustering problems, definition of similarity is important. In the case of
term clustering, the question is how we should define the similarity between two
terms. It is easy to see that the paradigmatic relations and syntagmatic relations
between words (or terms) are both natural candidates for serving as a basis to
define similarity. The paradigmatic relation similarity would lead to clusters of
terms that tend to occur in very similar contexts with the same relative “location”
in the context, whereas the syntagmatic relations would lead to clusters of terms
that are semantically related and also tend to co-occur in similar contexts but in
different “locations.”

In the rest, we will first revisit a method for finding semantically related words
from earlier in this book. Then, we introduce the concept of pointwise mutual
information and show how it can also be used to find related terms. We end with
an introduction to more advanced term clustering methods.

14.3.1 Semantically Related Terms
Recall from Section 3.4 where we found which words were semantically related with
the term computer. Figure 14.5 is reproduced here from Section 3.4.

the 0.03
a 0.02
is 0.015
we 0.01
. . .

computer 0.00001
. . .

the 0.032
a 0.019
is 0.014
we 0.008
computer 0.004
software 0.0001
. . .

text 0.00006

computer 400
software 150
program 104
. . .

text 3.0
. . .

the 1.1
a 0.99
is 0.9
we 0.8

Background LM: p(w|B)

General
background
English text

B

Topic LM: p(w|“computer”) Normalized topic LM:
p(w|“computer”)/p(w|B)

All documents
containing word

“computer”

Figure 14.5 Using topic language models and a background language model to find semantically
related words.

286 Chapter 14 Text Clustering

Also recall that we used the maximum likelihood estimate of a unigram language
model to find p(w | θ̂), where θ̂ in our case is the topic language model associated
with documents containing the term computer. That is,

p(w | θ̂) = c(w, D)

|D| . (14.3)

After we estimated the topic and background language models, we used the
following formula to assign scores to words in our vocabulary:

score(w) = p(w | computer)

p(w | C)
. (14.4)

The score indicates how related a word is to our topic language model term
computer. Using maximum likelihood estimation, this becomes

score(w) = p(w | computer)

p(w | C)
=

c(w ,D)
|D|
c(w)
|C|

= c(w, D) . |C|
c(w) . |D| , (14.5)

where D is the set of documents containing the term computer and C is the entire
collection of documents.

We see that words that are more likely to appear in the context of computer
will have a greater numerator than denominator, thus increasing the score. Words
(such as the) that appear about equally regardless of the context will have a score
close to one. Words that usually do not occur in the context of computer will have a
denominator less than the numerator, resulting in a score less than one.

As mentioned in Section 3.4, there is a slight issue with this normalization
formula. For example, assume the word artichoke appears only once in the corpus,
and it happens to be in a document where computer is mentioned. Using the above
formula will have artichoke and computer very highly related, even though we know
this is not true.

One way to solve this problem is to smooth a maximum likelihood estimator by
pretending that we have observed an extra pseudo count of every word, including
unseen words. Thus, the formula for computing a smoothed background language
model would be

p(w | C) = c(w, C) + 1
|C| + |V | , (14.6)

where |C| is the total count of all the words in collection C, and |V | is the size of
the complete vocabulary set. Note that the variable |V | in the denominator is the
total number of pseudo counts we have added to all the words in the vocabulary.

14.3 Term Clustering 287

With such a formula, an unseen word would not have a zero probability, and the
estimated probability is, in general, more accurate. We can replace p(w | C) in the
previous scoring function with our smoothed version. In the example, this brings
the score for artichoke much lower since we “pretend” to have seen a count of it in
the background. Words that actually are semantically related (i.e., that occur much
more frequently in the context of computer) would not be affected by this smoothing
and instead would “rise up” as the unrelated words are shifted downwards in the
list of sorted scores.

From Chapter 6 we learned that this Add-1 smoothing may not be the best
smoothing method as it applies too much probability mass to unseen words. In
an even more improved scoring function, we could use other smoothing methods
such as Dirichlet prior or Jelinek-Mercer interpolation.

In any event, this semantic relatedness is what we wish to capture in our term
clustering applications. However, you can probably see that it would be infeasible
to run this calculation for every term in our vocabulary. Thus, in the next section,
we will examine a more efficient method to cluster terms together. The basic idea
of the problem is exactly the same.

14.3.2 Pointwise Mutual Information
Pointwise Mutual Information (PMI) treats word occurrences as random variables
and quantifies the probability of their co-occurrence within some context of a
window of words. For example, to find words that co-occur with wi using a window
of size n, we look at the words

wi−n, . . . , wi−1, wi , wi+1, . . . , wi+n.

This allows us to calculate the probability of wi and wj co-occurring, which is rep-
resented as the joint probability p(wi , wj). Along with the individual probabilities
p(wi) and p(wj), we can write the formula for PMI:

pmi(xi , xj) = log

(
p(wi , wj)

p(wi)p(wj)

)
. (14.7)

Note that if wi and wj are independent, then p(wi)p(wj) = p(wi , wj). This forces
us to take a logarithm of 1, which yields a PMI of zero; there is no measure of
information transferred by two independent words. If, however, the probability of
observing the two words occurring together, i.e., p(wi , wj) is substantially larger
than their expected probability of co-occurrence if there were independent, i.e.,
p(wi)p(wj), then the PMI would be high as we would expect.

288 Chapter 14 Text Clustering

Depending on our application, we can define the context as the aforementioned
window of size n, a sentence, a document, and so on. Changing the context modifies
the interpretation of PMI—for example, if we only considered a context to be of
size n = 1, we will get significantly different results than if we set the context to
be an entire document from the corpus. In order to have comparable PMI scores,
we also need to ensure that our PMI measure is symmetric; this again depends
on our definition of context. If we define context to be “wj follows wi”, then
pmi(wi , wj) �= pmi(wj , wi), which is required to cluster terms.

It is possible to normalize the PMI score in the range [0, 1]:

npmi(wi , wj) = pmi(wi , wj)

− log p(wi , wj)
, (14.8)

making comparisons between different word pairs possible. However, this normal-
ization doesn’t fix a major issue in the PMI formula itself. Imagine that we have a
rare word that always occurs in the context of another (perhaps very common) word.
It would seem that this word pair is very highly related, but in fact our data is just
too sparse to model the connection appropriately. This problem can be alleviated
by using the mutual information measure introduced in Chapter 13 which consid-
ers not just the case when the rare word is observed, but also the case when it is not
observed. Indeed, since mutual information is bounded by the entropy of one of
the two variables, and a rare word has very low entropy, it generally wouldn’t have
a high mutual information with any other word.

Despite their drawbacks, however, PMI and nPMI are often used in practice and
are also useful building blocks for more advanced methods as well as allowing us
to understand the basic idea behind information capture in word co-occurrence.
We thus included a discussion in this book.

Below we will briefly introduce two advanced methods for term clustering. The
windowing technique employed here is critical in both of the following advanced
methods.

14.3.3 Advanced Methods
In this section, we introduce two advanced methods for term clustering.

14.3.3.1 N-gram Class Language Models
Brown clustering [Brown et al. 1992] is a model-based term clustering algorithm
that constructs term clusters (called word classes) to maximize the likelihood of
an n-gram class language model. However, since the optimization problem is in-
tractable to solve computationally, the actual process of constructing term clusters
is actually similar to hierarchical agglomerative clustering where single words are

14.3 Term Clustering 289

merged gradually, but the criterion for merging in Brown clustering is based on
a similarity function derived from the likelihood function. Specifically, the maxi-
mization of the likelihood function is shown to be equivalent to maximization of
the mutual information of adjacent word classes, thus when merging two words,
the algorithm would favor merging two words that are distributed very similarly
since when such words are replaced by their respective classes, it would minimize
the decrease of mutual information between adjacent classes.

Mathematically, assuming that we partition all the words in the vocabulary into
C classes, the n-gram class language model defines the probability of observing a
word wn given that we have already n − 1 words preceeding wn, i.e., wn−1, . . . , w1

as

p(wn | wn−1, . . . , w1) = p(wn | cn)p(cn | cn−1, . . . , c1),

where ci is the class of word wi. It essentially assumes that the probability of
observing wn only depends on the classes of the previous words, but does not
depend on the specific words, thus unless C is the same as vocabulary size (i.e.,
every word is in its own class), the n-gram class language model always has fewer
parameters than the regular n-gram language model.

As a generative model, we would generate a word by first looking up the classes
of the previous words, i.e., cn−1, . . . , c1, then sample a class for the n-th position cn

using p(cn | cn−1, . . . , c1), and finally sample a word at the n-th position by using
p(w | cn). The distribution p(w | cn) captures how frequently we will observe word
w when the latent class cn is used.

If we are given the partitioning of words into C classses, then the maximum
likelihood estimation is not hard as we can simply replace the words with their
corresponding classes to estimate p(cn | cn−1, . . . , c1) in the same way as we would
for estimating a regular n-gram language model, and the probability of a word given
a particular class p(w | c) can also be easily estimated by pooling together all the
observations of words in the data belonging to the class c and normalizing their
counts, which gives an estimate of p(w | c) essentially based on the count of word
w in the whole data set.

However, finding the best partitioning of words is computationally intractable.
Fortunately, we can use a greedy algorithm to construct word classes in very much
the same way as agglomerative hierarchical clustering, i.e., gradually merging
words to form classes by keeping track of the objective of maximizing the like-
lihood. A neat theoretical result is that the maximization of the likelihood is equiv-
alent to maximization of the mutual information between all the adjacent classes
in the case of bigram model. Thus, the best pairs of words to merge would tend to

290 Chapter 14 Text Clustering

be those that are distributed in very similar contexts (e.g., Tuesday and Wednesday)
since by putting such words in the same class, the prediction power of the class
would be about the same as that of the original word, allowing to minimize the loss
of mutual information. Computation-wise, we simply do agglomerative hierarchi-
cal clustering and measure the “distance” of two words based on a derived function
based on the likelihood function that can capture the loss of mutual information
due to merging the two words. Due to the complexity of the model, only bigrams
(n = 2) were originally investigated [Brown et al. 1992].

Empirically, the bigram class language model has been shown to work very
well and can generate very high-quality paradigmatic word associations directly by
treating words in the same class as having paradigmatic relation. Figure 14.6 shows
some sample word clusters taken from Brown et al. [1992]; they clearly capture
paradigmatic relations well.

The model can also be used to generate syntagmatic associations by essentially
computing the pointwise mutual information between words that occur in different

plan
letter

request
memo

case
question

charge
statement

draft

evaluation
assessment

analysis
understanding

opinion
conversation

discussion

accounts
people

customers
individuals
employees

students

day
year

week
month

quarter
half

reps
representatives

representative
rep

Figure 14.6 Sample word classes constructed hierarchically using n-gram class language model.
(From Brown et al. [1992])

14.3 Term Clustering 291

Word Pair Mutual Information

Humpty Dumpty 22.5

Klux Klan 22.2

Ku Klux 22.2

Chah NuIth 22.2

Lao Bao 22.2

Nuu Chah 22.1

Tse Tung 22.1

avant garde 22.1

Carena Bancorp 22.0

gizzard shad 22.0

Bobby Orr 22.0

Warnok Hersey 22.0

mutatis murtandis 21.9

Taj Mahal 21.8

Figure 14.7 Sample non-compositional phrases discovered using n-gram class language model.
(From Brown et al. [1992])

positions. When the window of co-occurrences is restricted to two words (i.e.,
adjacent co-occurrences), the model can discover “sticky phrases” (see Figure 14.7
for sample results), which are non-compositional phrases whose meaning is not a
direct composition of the meanings of individual words. Such non-compositional
phrases can also be discovered using some other statistical methods (see, e.g., Zhai
1997, Lin 1999).

14.3.3.2 Neural language model (word embedding)
In Chapter 13, we discussed in length how to represent a term as a term vector based
on the words in the context where the term occurs, and compute term similarity
based on the similarity of their vector representations. Such a contextual view of
term representation can not only be used for discovering paradigmatic relations,
but also support term clustering in general since we can use any document cluster-
ing algorithm by viewing a term as a “document” represented by a vector. It can also
help word sense disambiguation since when an ambiguous word takes a different

292 Chapter 14 Text Clustering

sense, it tends to “attract” different words in its surrounding text, thus would have
a different context representation.

This technique is not limited to unigram words, and we can think of other
representations for the vector such as part-of-speech tags or even elements like
sentiment. Adding these additional features means expanding the word vector
from |V | to whatever size we require. Additionally, aside from finding semantically-
related terms, using this richer word representation has the ability to improve
downstream tasks such as grammatical parsing or statistical machine translation.

However, the heuristic way to obtain vector representation discussed in Chap-
ter 13 has the disadvantage that we need to make many ad hoc choices, especially
in how to obtain the term weights. Another deficiency is that the vector spans the
entire space of words in the vocabulary, increasing the complexity of any further
processing applied to the vectors.

As an alternative, we can use a neural language model [Mikolov et al. 2010] to sys-
tematically learn a vector representation for each word by optimizing a meaningful
objective function. Such an approach is also called word embedding, which refers to
the mapping of a word into a vector representation in a low-dimensional space. The
general idea of these methods is to assume that each word corresponds to a vector
in an unknown (latent) low-dimensional space and define a language model solely
based on the vector representations of the involved words so that the parameters for
such a language model would be the vector representations of words. As a result, by
fitting the model to a specific data set, we can learn the vector representations for
all the words. These language models are called neural language models because
they can be represented as a neural network. For example, to model an n-gram lan-
guage model p(wn | wn−1, . . . , w1), the neural network would have wn−1, . . . , w1 as
input and wn as the output. In some neural language models, the hidden layer in
the neural network connected to a word can be interpreted as a vector represen-
tation of the word with the elements being the weights on the edges connected to
the word.

For example, in the skip-gram neural language model [Mikolov et al. 2013], the
objective function is to use each word to predict all other words in its context as
defined by a window around the word, and the probability of predicting word w1

given word w2 is given by

p(w1 | w2) = exp(�v1. �v2)∑
wi∈V exp(�vi . �v2)

where vi is the corresponding vector representation of word wi. In words, such a
model says that the probability p(w1 | w2) is proportional to the dot product of the

14.3 Term Clustering 293

Term Cosine similarity to “france”

spain 0.678515

belgium 0.665923

netherlands 0.652428

italy 0.633130

switzerland 0.622323

luxembourg 0.610033

portugal 0.577154

russia 0.571507

germany 0.563291

catalonia 0.534176

Figure 14.8 Using word2vec to find the most similar terms to the query “france”. (From Mikolov
et al. [2013])

vectors corresponding to the two words, w1 and w2. With such a model, we can
then try to find the vector representation for all the words that would maximize
the probability of using each word to predict all other words in a small window
of words surrounding the word. In effect, we would want the vectors representing
two semantically related words, which tend to co-occur together in a window, to be
more similar so as to generate a higher value when taking their dot product.

Google’s implementation of skip-gram, called word2vec [Mikolov et al. 2013] is
perhaps the most well-known software in this area. They showed that performing
vector addition on terms in vector space yielded interesting results. For example,
adding the vectors for Germany and capital resulted in a vector very close to the
vector Berlin. Figure 14.8 shows example output from using this tool. Although sim-
ilar results can also be obtained by using heuristic paradigmatic relation discovery
(e.g., using the methods we described in Chapter 13) and the n-gram class language
model, word embedding provides a very promising new alternative that can poten-
tially open up many interesting new applications of text mining due to its flexibility
in formulating the objective functions to be optimized and the fact that the vector
representation is systematically learned through optimizing an explicitly defined
objective function. One disadvantage of word embedding, at least in its current
form, is that the elements in the vector representation of a word are not meaning-
ful and cannot be easily interpreted intuitively. As a result, the utility of these word
vectors has so far been mostly limited to computation of word similarities, which
can also obtained by using many other methods.

294 Chapter 14 Text Clustering

In summary, we have shown several methods to measure term similarity, which
can then be used for term clustering. We started with a unigram language modeling
approach, followed by pointwise mutual information. We then briefly introduced
two model-based approaches, one based on n-gram language models and one based
on neural language models for word embedding. These term clustering methods
can be leveraged to improve the computation of similarity between documents or
other text objects by allowing inexact matching of terms (e.g., allowing words in
the same cluster or with high similarity to “match” with each other).

14.4 Evaluation of Text Clustering
All clustering methods attempt to maximize the following measures.

Coherence. How similar are objects in the same cluster?

Separation. How far away are objects in different clusters?

Utility. How useful are the discovered clusters for an application?

As with most text mining (and many other) tasks, we can evaluate in one of
two broad strategies: manual evaluation (using humans) or automatic evaluation
(using predefined measures). Of the three criteria mentioned above, coherence
and separation can be measured automatically with measures such as vector sim-
ilarity, purity, or mutual information. There is a slight challenge when evaluating
term clustering, since word-to-word similarity algorithms may not be as obvious as
document-to-document similarities. We may choose to encode terms as word vec-
tors and use the document similarity measures, or we may wish to use some other
concept of semantic similarity as defined by preexisting ontologies like WordNet.2

Although slightly more challenging, the concept of utility can also be captured if
the final system output can be measured quantitatively. For example, if clustering is
used as a component in search, we can see if using a different clustering algorithm
improves F1, MAP, or NCDG (see Chapter 9).

All clustering methods need some notion of similarity (or bias). After all, we wish
to find groups of objects that are similar to one another in some way. We mainly
discussed unigram words representations, though in this book we have elaborated
on many different feature types. Indeed, feature engineering is an important compo-
nent of implementing a clustering algorithm, and in fact any text mining algorithm
in general. Choosing the right representation for your text allows you to quantify
the important differences between items that cause them to end up in either the

2. https://wordnet.princeton.edu/

14.4 Evaluation of Text Clustering 295

same or different clusters. Even if your clustering algorithm performs spectacularly
in terms of (for example) intra-cluster similarity, the clusters may not be acceptable
from a human viewpoint unless an adequate feature representation was used; it’s
possible that the feature representation is not able to capture a crucial concept and
needs to be reexamined. Chapter 4 gives a good overview of many different textual
features supported by META. In the next chapter on text categorization (Chapter 15),
we also discuss how choosing the right features plays an important role in the over-
all classification accuracy.

As we saw in this chapter, similarity-based algorithms explicitly encode a simi-
larity function in their implementation. Ideally, this similarity between objects is
optimized to maximize intra-cluster coherence and minimize intra-cluster separa-
tion. In model-based methods (which will be discussed in Chapter 17), similarity
functions are not inherently part of the model; instead, the notion of object sim-
ilarity is most often captured by probabilistically high co-occurring terms within
“similar” objects.

Measuring coherence and separation automatically can potentially be accom-
plished by leveraging a categorization data set; such a corpus has predefined clus-
ters where each document belongs to a particular category. For example, a text
categorization corpus could be product descriptions from an online retailer, and
each product belongs in a product category, such as kitchenware, books, grocery,
and so on. A clustering algorithm would be effective if it was able to partition
the products based on their text into categories that roughly matched the prede-
fined ones. A simple measure to evaluate this application would be to consider
each output cluster and see if one of the predefined categories dominates the clus-
ter population. In other words, take each cluster Ci and calculate the percentage
of each predefined class in it. The clustering algorithm would be effective if, for
each Ci, one predefined category dominates and scarcely appears in other clusters.
Effectively, the clustering algorithm recreated the class assignments in the origi-
nal dataset without any supervision. Of course, however, we have to be careful (if
this is a parameter), to set the final number of clusters to match the number of
classes.

In fact, deciding the optimal number of clusters is a hard problem for all meth-
ods! For example, in K-means, the final clusters depend on the initial random
starting positions. Thus it’s quite common to run the algorithm several times and
manually inspect the results. The algorithm G-means [Hamerly and Elkan 2003]
reruns K-means in a more principled way, splitting clusters if the data assigned to
each cluster is not normally-distributed. Model-based methods may have some ad-
vantages in terms of deciding the optimal number of clusters, but the model itself

296 Chapter 14 Text Clustering

is often inaccurate. In practice, we may empirically set the number of clusters to a
fixed number based on application needs or domain knowledge.

Which method works the best highly depends on whether the bias (definition
of similarity) reflects our perspective for clustering accurately and whether the as-
sumptions made by an approach hold for the problem and applications. In general,
model-based approaches have more potential for doing “complex clustering” by
encoding more constraints into the probabilistic model.

Bibliographic Notes and Further Reading
Clustering is a general technique in data mining and is usually covered in detail in
any book on data mining [Han 2005], [Aggarwal 2015]. There is also a chapter on
text clustering in Aggarwal and Zhai [2012], where many text clustering methods
are reviewed. An empirical comparison of some document clustering techniques
can be found in Steinbach et al. [2000]. Term clustering is related to word associ-
ation discovery, a topic covered in Chapter 13. An interesting theoretical work on
clustering is Kleinberg [2002], where it is shown that there does not exist any clus-
tering that can satisfy a small number of desirable properties (i.e., an impossibility
theorem about clustering).

Exercises
14.1. Clustering search results to allow browsing was one application of clustering
given in this chapter. What clustering method would you choose to implement for
your search engine, assuming simplicity, effectiveness, and running time were all
concerns?

14.2. What type of clustering algorithm would you use to support browsing a
corpus? Imagine users start with a small set of clusters and continually refine (or
backtrack) their path in a search for interesting information.

14.3. The number of clusters plays an important role in the output of a clustering
algorithm. For which clustering algorithms does the number of clusters play a large
role in the overall running time, if any?

14.4. Cluster labeling is an active research field. Brainstorm some ideas how to
assign cluster labels when clustering documents and when clustering terms. A good
cluster-labeling algorithm would probably include some formulas based on term
or cluster statistics.

Exercises 297

14.5. Consider all three cluster-cluster similarity metrics discussed in this chapter.
Which of them is most likely to form “chains” of documents as opposed to a tighter
group? Why?

14.6. Implement K-means or hierarchical agglomerative clustering in META.
Make your algorithm general to any bag-of-words tokenization method by clus-
tering already-analyzed documents.

14.7. Design a heuristic to set the number of clusters (and their contents) given
a dendrogram of hierarchically clustered data. Try to make your algorithm run in
only one traversal of the tree.

14.8. Using the topic language models for semantic relatedness, rewrite the scor-
ing function using each of Dirichlet prior and Jelinek-Mercer smoothing. That is,
smooth p(w | C) in the following function:

score(w) = p(w | computer)

p(w | C)

14.9. What are the maximum and minimum values of (unnormalized) PMI?

14.10. We discussed one potential drawback to PMI and nPMI. Is there any sort
of preprocessing you can do that helps with this issue? For example, can we set a
threshold on the type of words in the window, the minimum or maximum frequency
of each word, or the implementation of the window itself?

14.11. What type of index structure could we use to efficiently store word vectors?
Assume that the distribution of values is sparse in each vector.

14.12. Design a way to cluster documents based on multiple feature types. As a
first case, consider clustering on both unigram words and unigram POS tags. As a
more advanced case, consider clustering documents via unigram words, sentence
lengths, and structural parse tree features. Hint: how would we do this in META?

14.13. In Chapter 11 we described collaborative filtering. One issue is that it does
not scale well when the number of users or items is large. Suggest a solution using
clustering that is able to provide a faster running time when many different users
need recommendations.

15Text Categorization

15.1 Introduction
In the previous chapter, we discussed how to perform text clustering—grouping
documents together based on similar features. Clustering techniques are unsuper-
vised, which has the advantage of not requiring any manual effort from humans
and being applicable to any text data. However, we often want to group text ob-
jects in a particular way according to a set of pre-defined categories. For example, a
news agency may be interested in classifying news articles into one or more topical
categories such as technology, sports, politics, or entertainment, etc. If we are to use
clustering techniques to solve this problem, we may obtain coherent topical clus-
ters, but these clusters do not necessarily correspond to the categories the news
agency has designed (for their application purpose). To solve such a problem, we
can use text categorization techniques, which have widespread applications.

In general, the text categorization problem is as follows. Given a set of predefined
categories, possibly forming a hierarchy, and often also a training set of labeled
text objects (i.e., text objects with known labels of categories), the task of text
categorization is to label (unseen) text objects with one or more categories. This
is illustrated in Figure 15.1.

At the very high level, text categorization is usually to help achieve two goals of
applications.

1. To enrich text representation (i.e., achieving more understanding of text):
with text categorization, we would be able to represent text in multiple levels
(keywords + categories). In such an application, we also call text categorization
text annotation. For example, semantic categories assigned to text can be
directly useful for an application as in the case of spam detection. Semantic
categories assigned to text data can also facilitate aggregation of text content
in a more meaningful way; for example, sentiment classification would enable
aggregation of all positive/negative opinions about a product so as to give a
more meaningful overall assessment of opinions.

300 Chapter 15 Text Categorization

Text objects
Categorization

system

Categorization results

Training data
(known categories)

Sports
Business
Education

Sports
Business
Education
Science…

Figure 15.1 The task of text categorization (with training examples available).

2. To infer properties of entities associated with text data (i.e., discovery of
knowledge about the world): as long as an entity can be associated with text
data in some way, it is always potentially possible to use the text data to help
categorize the associated entities. For example, we can use the English text
data written by a person to predict whether the person is a non-native speaker
of English. Prediction of party affiliation based on a political speech is another
example. Naturally, in such a case, the task of text categorization is much
harder as the “gap” between the category and text content is large. Indeed,
in such an application, text categorization should really be called text-based
prediction.

These two somewhat different goals can also be distinguished based on the
difference in the categories in each case. For the purpose of enriching text rep-
resentation, the categories tend to be “internal” categories that characterize a text
object (e.g., topical categories, sentiment categories). For the purpose of inferring
properties of associated entities with text data, the categories tend to be “external”
categories that characterize an entity associated with the text object (e.g., author at-
tribution or any other meaningful categories associated with text data, potentially
through indirect links). Computationally, however, these variations are all similar
in that the input is a text object and the output is one or multiple categories. We
thus do not further distinguish these different variations.

The landscape of applications of text categorization is further enriched due to
the variation we have in the text objects to be classified, which can include, e.g.,
documents, sentences, passages, or collections of text.

15.2 Overview of Text Categorization Methods
When there is no training data available (i.e., text data with known categories explic-
itly labelled), we often have to manually create heuristic rules to solve the problem

15.2 Overview of Text Categorization Methods 301

of categorization. For example, the rule if the word “governor” occurs → assign pol-
itics label. Obviously, designing effective rules requires a significant amount of
knowledge about the specific problem of categorization.

Such a rule-based manual approach would work well if: (1) the categories are
very clearly defined (usually means that the categories are relatively simple); (2) the
categories are easily distinguished based on surface features in text (e.g., particular
words only occur in a particular category of documents); and (3) sufficient domain
knowledge is available to suggest many effective rules.

However, the manual approach has some significant disadvantages. The first
is that it is labor-intensive, thus it does not scale up well both to the number of
categories (since a new category requires new rules) and to the growth of data (since
new data may also need new rules). The second is that it may not be possible to
come up with completely reliable rules and it is hard to handle the uncertainty in
the rules. Finally, the rules may not be all consistent with each other. As a result,
the categorization results may depend on the order of application of different
rules.

These problems with the rule-based manual approach can mostly be addressed
by using machine learning where humans would help the machine by labeling
some examples with the correct categories (i.e., creating training examples), and
the machine will learn from these examples to somewhat automatically construct
rules for categorization, only that the rules are somewhat “soft” and weighted, and
how the rules should be combined is also learned based on the training data. Note
that although in such a supervised machine learning approach, cateorization ap-
pears to be “automatic,” it does require human effort in creating the training data,
unless the training data is naturally available to us (which sometimes does happen).
The human-created rules, if any, can also be used as features in such a learning-
based approach, and they will be combined in a weighted manner to minimize the
classification errors on the training data with the weights automatically learned.
The machine may also automatically construct soft rules based on primitive fea-
tures provided by humans as in the case of decision trees [Quinlan 1986], which
can be easily interpreted as a “rule-based” classifier, but the paths from the root
to the leaves (i.e., the rules) are inducted automatically by using machine learning.
Once a classifier (categorizer) is trained, it can be used to categorize any unseen
text data.

In general, all these learning-based categorization methods rely on discrimina-
tive features of text objects to distinguish categories, and they would combine mul-
tiple features in a weighted manner where the weights are automatically learned
(i.e., adjusted to minimize errors of categorization on the training data). Different
methods tend to vary in their way of measuring the errors on the training data, i.e.,

302 Chapter 15 Text Categorization

they may optimize a different objective function (also called a loss/cost function),
and their way of combining features (e.g., linear vs. non-linear).

In the rest of the chapter, we will further discuss learning-based approaches
in more detail. These automatic categorization methods generally fall into three
categories. Lazy learners or instance-based classifiers do not model the class labels
explicitly, but compare the new instances with instances seen before, usually with
a similarity measure. These models are called “lazy” due to their lack of explicit
generalization or training step; most calculation is performed at testing time.
Generative classifiers model the data distribution in each category (e.g., unigram
language model for each category). They classify an object based on the likelihood
that the object would be observed according to each distribution. Discriminative
classifiers compute features of a text object that can provide a clue about which
category the object should be in, and combine them with parameters to control
their weights. Parameters are optimized by minimizing categorization errors on
training data.

As with clustering, we will be able to leverage many of the techniques we’ve dis-
cussed in previous chapters to create classifiers, the algorithms that assign labels
to unseen data based on seen, labeled data. This chapter starts out with an expla-
nation of the categorization problem definition. Next, we examine what types of
features (text representation) are often used for classification. Then, we investigate
a few common learning algorithms that we can implement with our forward and
inverted indexes. After that, we see how evaluation for classification is performed,
since the problem is inherently different from search engine evaluation.

15.3 Text Categorization Problem
Let’s take our intuitive understanding of categorizing documents and rewrite the
example from Chapter 2 into a more mathematical form. Let our collection of doc-
uments be X; perhaps they are stored in a forward index (see Chapter 8). Therefore,
one xi ∈ X is a term vector of features that represent document i. As with our re-
trieval setup, each xi has |xi| = |V | (one dimension for each feature, as assigned by
the tokenizer). Our vector from Chapter 8 is an example of such an xi with a very
small vocabulary of size |V | = 8.

{mr.: 1, quill: 1, ’s: 1, book: 1, is: 1, very: 2, long: 1, .: 1}.

Recall that if a document xj consisted of the text long long book, it would be

{mr.: 0, quill: 0, ’s: 0, book: 1, is: 0, very: 0, long: 2, .: 0}.

15.3 Text Categorization Problem 303

In our forward index, we’d store

xi = {1, 1, 1, 1, 1, 2, 1, 1} xj = {0, 0, 0, 1, 0, 0, 2, 0},

so xik is the kth term in the ith document.
We also have Y, which is a vector of labels for each document. Thus yi may be

sports in our news article classification setup and yj could be politics.
A classifier is a function f (.) that takes a document vector as input and outputs

a predicted label ŷ ∈ Y. Thus we could have f (xi) = sports. In this case, ŷ = sports
and the true y is also sports; the classifier was correct in its prediction.

Notice how we can only evaluate a classification algorithm if we know the true
labels of the data. In fact, we will have to use the true labels in order to learn a
good function f (.) to take unseen document vectors and classify them. For this
reason, we often split our corpus X into two parts: training data and testing data.
The training portion is used to build the classifier, and the testing portion is used
to evaluate the performance (e.g., seeing how many correct labels were predicted).

But what does the function f (.) actually do? Consider this very simple example
that determines whether a news article has positive or negative sentiment, i.e.,
Y = {positive, negative}:

f (x) =
{

positive if x’s count for the term good is greater than 1

negative otherwise.

Of course, this example is overly simplified, but it does demonstrate the basic
idea of a classifier: it takes a document vector as input and outputs a class label.
Based on the training data, the classifier may have determined that positive sen-
timent articles contain the term good more than once; therefore, this knowledge
is encoded in the function. Later in this chapter, we will investigate some specific
algorithms for creating the function f (.) based on the training data.

It’s also important to note that these learning algorithms come in several differ-
ent flavors. In binary classification there are only two categories. Depending on the
type of classifier, it may only support distinguishing between two different classes.
Multiclass classification can support an arbitrary number of labels. As we will see,
it’s possible to combine multiple binary classifiers to create a multiclass classifier.
Regression is a very related problem to classification; it assigns real-valued scores
on some range as opposed to discrete labels. For example, a regression problem
could be to predict the amount of rainfall for a particular day given rainfall data for
previous years. The output ŷ would be a number ≥ 0, perhaps representing rainfall

304 Chapter 15 Text Categorization

in inches. On the other hand, the classification variant could predict whether there
would be rainfall or not, Y = {yes, no}.

15.4 Features for Text Categorization
In Chapter 6 we emphasized the importance of the document representation in
retrieval performance. In Chapter 2, we emphasized the importance of the feature
representation in general. The case is the same—if not greater—in text categoriza-
tion. Suppose we wish to determine whether a document has positive or negative
sentiment. Clearly, a bad text representation method could be the average sentence
length. That is, the document term vector is a histogram of sentence lengths for
each document. Intuitively, sentence length would not be a good indicator of sen-
timent. Even the best learning algorithm would not be able to distinguish between
positive and negative documents based only on sentence lengths.1

On the other hand, suppose our task is basic essay scoring, where Y = {fail , pass}.
In this case, sentence length may indeed be some indicator of essay quality. While
not perfect, we can imagine that a classifier trained on documents represented as
sentence lengths would get a higher accuracy than a similar classification setup
predicting sentiment.2

As a slightly more realistic example, we return to the sentiment analysis problem.
Instead of using sentence length, we decide to use the standard unigram words
representation. That is, each feature can be used to distinguish between positive
or negative sentiment. Usually, most features are not useful, and the bulk of the
decision is based on a smaller subset of features. Determining this smaller subset
is the definition of feature selection, but we do not discuss this in depth at this
point.

Although most likely effective, even unigram words may not be the best repre-
sentation. Consider the terms good and bad, as mentioned in the classifier example
in the previous section. In this scenario, context is very important:

I thought the movie was good.
I thought the movie was not bad.

Alternatively,

I thought the movie was not good.
I thought the movie was bad.

1. This, we assume. As an exercise, create a document tokenizer for META that uses sentence
length as a feature. Can you get a decent sentiment classification accuracy?

2. Again, try this experiment in META using the same sentence-length tokenizer.

15.4 Features for Text Categorization 305

Clearly, a bigram words representation would most likely give better perfor-
mance since we can capture not good and not bad as well as was good and was bad.

As a counterexample, using only bigram words leads us to miss out on rarer infor-
mative single words such as overhyped. This term is now captured in bigrams such
as overhyped (period) and very overhyped. If we see the same rarer informative word
in a different context—such as was overhyped—this is now an out-of-vocabulary
term and can’t be used in determining the sentence polarity. Due to this phe-
nomenon, it is very common to combine multiple feature sets together. In this
case, we can tokenize documents with both unigram and bigram words.

A well-known strategy discussed in Stamatatos [2009] shows that low-level lexical
features combined with high-level syntactic features give the best performance in a
classifier. These two types of features are more orthogonal, thus capturing different
perspectives of the text to enrich the feature space. Having many different types of
features allows the classifier a wide range of space on which to create a decision
boundary between different class labels.

An example of very high-level features can be found in Massung et al. [2013]. Con-
sider the grammatical parse tree discussed in Chapter 4 reproduced in Figure 15.2.

many theoretical ideas

JJ JJ NNShave

VBP

They

PRP NP

NP VP

S

S

NP

NP

PRPVPNP

VBP NP JJ JJ NNS

VP
x

x

xx x x x

x

x

x

xx x

xx x

xx x

x

x

x

S

xx x x x

x

VP

NP

x xx x

xx x

xx x

NP

x

x

Figure 15.2 A grammatical parse tree and different feature representations derived from it. For
each feature type, each dimension in a feature vector would correspond to a weight of
a particular parse tree structure.

306 Chapter 15 Text Categorization

Here, we see three versions of increasingly “high-level” syntactic features. The bot-
tom left square shows rewrite rules; these are the grammatical productions found
in the sentence containing the syntactic node categories. For example, the S repre-
sents sentence, which is composed of a noun phrase (NP) followed by a verb phrase
(VP), ending with a period. The middle square in Figure 15.2 omits all node labels
except the roots of all subtrees. This captures a more abstract view of the produc-
tion rules, focused more on structure. Lastly, the right square is a fully abstracted
structural feature set, with no syntactic category labels at all. The authors found
that these structural features combined with low-level lexical features (i.e., unigram
words) improved the classification accuracy over using only one feature type.

Another interesting feature generation method is described in Massung and
Zhai [2015] and called SYNTACTICDIFF. The idea of SYNTACTICDIFF is to define three
basic (and therefore general) edit operations: insert a word, remove a word,
and substitute one word for another. These edits are used to transform a given
sentence. With a source sentence S and a reference text collection R, it applied
edits that make S appear to come from R. In the non-native text analysis sce-
nario [Massung and Zhai 2016], we operate on text from writers who are not native
English speakers. Thus, transforming S with respect to R is a form of grammatical
error correction.

While this itself is a specific application task, the series of edits performed on
each sentence can also be used to represent the sentences themselves. For example,

{insert(the) : 3, substitute(a → an) : 1, . . . , remove(of) : 2}

could be a feature vector for a particular sentence. This is just one example of a
feature representation that goes beyond bag-of-words. The effectiveness of these
“edit features” determines how effective the classifier can be in learning a model to
separate different classes. In this example, the features can be used to distinguish
between different native languages of essay writers. Again, it’s important to em-
phasize that almost all machine learning algorithms are not affected by the type of
features employed (in terms of operation; of course, the accuracy may be affected).
Since internally the machine learning algorithms will simply refer to each feature
as an ID, the algorithm may never even know if it’s operating on a parse tree, a word,
bigram POS tags, or edit features.

The NLP pipeline discussed in Chapter 3 and the tokenization schemes dis-
cussed in Chapter 4 give good examples of the options for effective feature repre-
sentations. Usually, unigram words will be the default method, and more advanced
techniques are added as necessary in order to improve accuracy. With these more

15.5 Classification Algorithms 307

advanced techniques comes a requirement for more processing time. When using
features from grammatical parse trees, a parser must first be run across the data-
set, which is often at least an order of magnitude slower than simple whitespace-
delimited unigram words processing. Running a parser requires the sentence to
be part-of-speech tagged, and running coreference resolution requires grammat-
ical parse trees. The level of sophistication in the syntactic or semantic features
usually depends on the practitioner’s tolerance for processing time and memory
usage.

15.5 Classification Algorithms
In this section, we will look into how the function f (.) is actually able to distinguish
between class labels. We examine three different algorithms, all of which are avail-
able in META. We will continue to use the sentiment analysis example, classifying
new text into either the positive or negative label. Let’s also assume we split our cor-
pus into a training partition and testing partition. The training documents will be
used to build f (.), and we will be able to evaluate its performance on each testing
document.

Remember that we additionally have the metadata information Y for all docu-
ments, so we know the true labels of all the testing and training data. When used in
production, we will not know the true label (unless a human assigns one), but we
can have some confidence of the algorithm’s prediction based on its performance
on the testing data, which mimics the unseen data from the real world. The closer
the testing data is to the data you expect to see in the wild, the greater is your belief
in the classifier’s accuracy.

15.5.1 k-Nearest Neighbors
k-NN is a learning algorithm that directly uses our inverted index and search engine.
Unlike the next two algorithms we will discuss, there is no explicit training step; all
we need to do is index the training documents. This makes k-NN a lazy learner or
instance-based classifier.

As shown in the training and testing algorithms, the basic idea behind k-NN is to
find the most similar documents to the query document, and use the most common
class label of the similar documents. The assumption is that similar documents
will have the same class label. Figure 15.3 shows an example of k-NN in action in
the document vector space. Here there are three different classes represented as
different colors plotted in the vector space. If k = 1, we would assign the red label
to the query; if k = 4, we would assign the blue label, since three out of the top four

308 Chapter 15 Text Categorization

Algorithm 15.1 k-NN Training

Create an inverted index over the training documents

Algorithm 15.2 k-NN Testing

Let R be the results from searching the index with the unseen document as the query
Select the top k results from R

return the label that is most common in the k documents via majority voting

(k = 1) (k = 4)

Figure 15.3 An example of k-NN with three classes where k = 1, 4. The query is represented as the
white square.

similar documents are blue. In the case of a tie, the highest ranking document of
the class with a tie would be chosen.

k-NN can be applied to any distance measure and any document representation.
With only some slight modifications, we can directly use this classification method
with an existing inverted index. A forward index is not required. Despite these ad-
vantages, there are some downsides as well. For one, finding the nearest neighbors
requires performing a search engine query for each testing instance. While this is a
heavily optimized operation, it will still be significantly slower than other machine
learning algorithms in test time. As we’ll see, the other two algorithms perform
simple vector operations on the query vector as opposed to querying the inverted
index. However, these other algorithms have a much longer training time than k-
NN—this is the tradeoff. One more important point is the chosen label for k-NN is
highly dependant on only the k neighbors; on the other hand, the other two algo-
rithms take all training examples in account. In this way, k-NN is sensitive to the
local structure of the feature space that the top k documents occupy. If it so hap-

15.5 Classification Algorithms 309

pens that there are a few outliers from a different class close to our query, it will be
classified incorrectly.

There are several variations on the basic k-NN framework. For one, we can weight
the votes of the neighbors based on distance to the query in weighted k-nearest
neighbors. That is, a closer neighbor to the query would have more influence,
or a higher-weighted vote. A simple weighting scheme would be to multiply each
neighbor’s vote by 1

d
, where d is the distance to the query. Thus, more distant

neighbors have less of an impact on the predicted label.
Another variant is the nearest-centroid classifier. In this algorithm, instead of

using individual documents as neighbors, we consider the centroid of each class
label (see Chapter 14 for more information on centroids and clustering). Here, if
we have n classes, we simply see which of the n is closest to the query. The centroid
of each class label may be thought of as a prototype, or ideal representation of a
document from that class. We also receive a performance benefit, since we only
need to do n similarity comparisons as opposed to a full search engine query over
all the training documents.

15.5.2 Naive Bayes
Naive Bayes is an example of a generative classifier. It creates a probability distribu-
tion of features over each class label in addition to a distribution of the class labels
themselves. This is very similar to language model topic probability calculation.
With the language model, we create a distribution for each topic. When we see a
new text object, we use our existing topics to find topic language model θ̂ that is
most likely to have generated it. Recall from Chapter 2 that

θ̂ = arg maxθ p(w1, . . . , wn | θ) = arg maxθ

n∏
i=1

p(wi | θ). (15.1)

Algorithm 15.3 Naive Bayes Training

Calculate p(y) for each class label in the training data
Calculate p(xi | y) for each feature for each class label in the training data

Algorithm 15.4 Naive Bayes Testing

return the y ∈ Y that maximizes p(y) . ∏n
i=1 p(xi | y)

310 Chapter 15 Text Categorization

Our Naive Bayes classifier will look very similar. Essentially, we will have a feature
distribution p(xi | y) for each class label y where xi is a feature. Given an unseen
document, we will calculate the most likely class distribution that it is generated
from. That is, we wish to calculate p(y | x) for each label y ∈ Y. Let’s use our
knowledge of Bayes’ rule from Chapter 2 to rewrite this into a form we can use
programmatically given a document x.

ŷ = arg maxy∈Y p(y | x1, . . . , xn)

= arg maxy∈Y
p(y)p(x1, . . . , xn | y)

p(x1, . . . , xn)

= arg maxy∈Y p(y)p(x1, . . . , xn | y)

= arg maxy∈Y p(y)

n∏
i=1

p(xi | y)

(15.2)

Notice that we eliminate the denominator produced by Bayes’ Rule since it does not
change the arg max result. The final simplification is the independence assump-
tion that none of the features depend on one another, letting us simply multiply
all the probabilities together when finding the joint probability. It is for this reason
that Naive Bayes is called naive.

This means we need to estimate the following distributions: p(y) for all classes
and p(xi | y) for each feature in each class. This estimation is done in the exact
same way as our unigram language model estimation. That is, an easy inference
method is maximum likelihood estimation, where we count the number of times
a feature occurs in a class divided by its total number of occurrences. As discussed
in Chapter 2 this may lead to some issues with unseen words or sparse data. In this
case, we can smooth the estimated probabilities using any smoothing method we’d
like as discussed in Chapter 6. We’ve covered Dirichlet prior smoothing and Jelinek-
Mercer interpolation, among others. Finally, we need to calculate p(y), which is just
the probability of each class label. This parameter is essential when the class labels
are unbalanced; that is, we don’t want to predict a label that occurs only a few times
in the training data at the same rate that we predict the majority label.

Whereas k-NN spent most of its calculation time in testing, Naive Bayes spends
its time in training while estimating the model parameters. In testing, |Y| calcula-
tions are performed to find the most likely label. When learning the parameters,
a forward index is used so it is known which class label to attribute features to;
that is, look up the counts in each document, and update the parameter for that

15.5 Classification Algorithms 311

document’s true class label. An inverted index is not necessary for this usage. Mem-
ory aside from the forward index is required to store the parameters, which can be
represented as O(|Y| + |V | . |Y|) floating point numbers.

Due to its simplicity and strong independence assumptions, Naive Bayes is often
outperformed by more sophisticated classification methods, many of which are
based on the linear classifiers discussed in the next section.

15.5.3 Linear Classifiers
Linear classifiers are inherently binary classifiers. Consider the following linear
classifier:

f (x) =
{ +1 if w . x > 0

−1 otherwise
(15.3)

It takes the dot product between the unseen document vector and the weights
vector w (where |w| = |x| = |V |). Training a linear classifier is learning (setting) the
values in the weights vector w such that dotting it with a document vector produces
a value greater than 0 for a positive instance and less than zero for a negative
instance. There are many such algorithms, including the state-of-the-art support
vector machines (SVM) classifier [Campbell and Ying 2011].

We call this group of learning algorithms linear classifiers because their decision
is based on a linear combination of feature weights (w and x). Figure 15.4 shows how
the dot product combination creates a decision boundary between two label groups
plotted in a simple two-dimensional example. Two possible decision boundaries

Figure 15.4 Two decision boundaries created by linear classifiers on two classes in two dimensions.

312 Chapter 15 Text Categorization

Algorithm 15.5 Perceptron Training

w ← {0, . . . , 0}
for iteration t ∈ T do

for each training element i do
ŷ = w . xi

wj = wj + α(yi − ŷ) . xij , ∀j ∈ [0, |V |]
end for
break if change in w is small

end for

are shown; the almost vertical line barely separates the two classes while the other
line has a wide margin between the two classes. The SVM algorithm mentioned
in the previous paragraph attempts to maximize the margin between the decision
boundary and the two classes, thus leaving more “room” for new examples to be
classified correctly, as they will fall on the side of the decision boundary close to
the examples of the same class.

Of course, it’s possible that not all data points are linearly separable, so the de-
cision boundary will be created such that it splits the two classes as accurately as
possible. Naive Bayes can also be shown to be a linear classifier. This is in contrast
to k-NN—since it only considers a local subspace in which the query is plotted, it
ignores the rest of the corpus and no lines are drawn. Some more advanced meth-
ods such as the kernel trick may change linear classifiers into nonlinear classifiers,
but we refer the reader to a text more focused on machine learning for the de-
tails [Bishop 2006].

In this book, we choose to examine the relatively simple perceptron classifier, on
which many other linear classifiers are based. We need to specify several parameters
which are used in the training algorithm. Let T represent the maximum number
of iterations to run training for. Let α > 0 be the learning rate. The learning rate
controls by how much we adjust the weights at each step. We may terminate training
early if the change in w is small; this is usually measured by comparing the norm
of the current iteration’s weights to the norm of the previous iteration’s weights.

There are many discussions about the choice of learning rate, convergence
criteria and more, but we do not discuss these in this book. Instead, we hope to
familiarize the reader with the general spirit of the algorithm, and again refer the
reader to Bishop [2006] for many more details on algorithm implementation and
theoretical properties.

15.6 Evaluation of Text Categorization 313

Algorithm 15.6 Perceptron Testing

ŷ ← w . x

return +1 if ŷ > 0, else return −1

As the algorithm shows, training of the perceptron classifier consists of contin-
uously updating the weights vector based on its performance in classifying known
examples. In the case where yi and ŷ have the same sign (classified correctly), the
weights are unchanged. In the case where yi < ŷ, the object should have been clas-
sified as −1 so weight is subtracted from each active feature index in w. In the
opposite case (yi > ŷ), weight is added to each active feature in w. By “active fea-
ture,” we mean features that are present in the current example x; only features
xij > 0 will contribute to the update in w.

Eventually, the change in w will be small after some number of iterations,
signifying that the algorithm has found the best accuracy it could. The final w vector
is saved as the model, and it can be used to classify unseen documents.

What if we need to support multiclass classification? Not all classification prob-
lems fit nicely into two categories. Fortunately, there are two common methods for
using multiple binary classifiers to create one multiclass categorization method on
k classes.

One-vs-all (OVA) trains one classifier per class (for k total classifiers). Each clas-
sifier is trained to predict +1 for its respective class and −1 for all other classes.
With this scheme, there may be ambiguities if multiple classifiers predict +1 at
test time. Because of this, linear classifiers that are able to give a confidence score
as a prediction are used. A confidence score such as +0.588 or +1.045 represents
the +1 label, but the latter is “more confident” than the former, so the class that
the algorithm predicting +1.045 would be chosen.

All-vs-all (AVA) trains k(k−1)
2 classifiers to distinguish between all pairs of k

classes. The class with the most +1 predictions is chosen as the final answer. Again,
confidence-based scoring may be used to add votes into totals for each class label.

15.6 Evaluation of Text Categorization
As with information retrieval evaluation, we can use precision, recall, and F1 score
by considering true positives, false positives, true negatives, and false negatives. We
are also usually more concerned about accuracy (the number of correct predictions
divided by the number of total predictions).

314 Chapter 15 Text Categorization

Training and testing splits were mentioned in the previous sections, but another
partition of the total corpus is also sometimes used; this is the development set,
used for parameter tuning. Typically, a corpus is split into about 80% training, 10%
development, and 10% testing. For example, consider the problem of determining
a good k value for k-NN. An index is created over the training documents, for
(e.g.) k = 5. The accuracy is determined using the development documents. This
is repeated for k = 10, 15, 20, 25. The best-performing k-value is then finally run on
the testing set to find the overall accuracy. The purpose of the development set is
to prevent overfitting, or tailoring the learning algorithm too much to a particular
corpus subset and losing generality. A trained model is robust if it is not prone to
overfitting.

Another evaluation paradigm is n-fold cross validation. This splits the corpus
into n partitions. In n rounds, one partition is selected as the testing set and the
remaining n − 1 are used for training. The final accuracy, F1 score, or any other
evaluation metric is then averaged over the n folds. The variance in scores between
the folds can be a hint at the overfitting potential of your algorithm. If the variance
is high, it means that the accuracies are not very similar between folds. Having
one fold with a very high accuracy suggests that your learning algorithm may have
overfit during that training stage; when using that trained algorithm on a separate
corpus, it’s likely that the accuracy would be very low since it modeled noise or other
uninformative features from that particular split (i.e., it overfit).

Another important concept is baseline accuracy. This represents the minimum
score to “beat” when using your classifier. Say there are 3,000 documents consisting
of three classes, each with 1,000 documents. In this case, random guessing would
give you about 33% accuracy, since you’d be correct approximately 1

3 of the time.
Your classifier would have to do better than 33% accuracy in order to make it useful!
In another example, consider the 3,000 documents and three classes, but with an
uneven class distribution: one class has 2,000 documents and the other two classes
have 500 each. In this case, the baseline accuracy is 66%, since picking the majority
class label will result in correct predictions 2

3 of the time. Thus, it’s important to
take class imbalances into consideration when evaluating a classifier.

A confusion matrix is a way to examine a classifier’s performance at a per-label
level. Consider Figure 15.5, the output from running META on a three-class classi-
fication problem to determine the native language of the author of English text.

Each (row, column) index in the table shows the fraction of times that row was
classified as column. Therefore, the rows all sum to one. The diagonal represents the
true positive rate, and hopefully most of the probability mass lies here, indicating
a good classifier. Based on the matrix, we see that predicting Chinese was 80.2%

Exercises 315

chinese english japanese

chinese | 0.802 0.011 0.187

english | 0.0069 0.807 0.186

japanese | 0.0052 0.0039 0.991

Figure 15.5 META’s confusion matrix output on a three-class classification problem.

accurate, with native English and Japanese as 80.7% and 99.1%, respectively. This
shows that while English and Chinese had relatively the same difficulty, Japanese
was very easy for the classifier to distinguish. We also see that if the classifier was
wrong in a prediction on a Chinese or English true label, it almost always chose
Japanese as the answer. Based on the matrix, the classifier seems to default to
the label “Japanese”. The table doesn’t tell us why this is, but we can make some
hypotheses based on our dataset. Based on this observation, we may want to tweak
our classifier’s parameters or do a more thorough feature analysis.

Bibliographic Notes and Further Reading
Text categorization has been extensively studied and is covered in Manning et al.
[2008]. An early survey of the topic can be found in Sebastiani [2002]; a more re-
cent one can be found in Aggarwal and Zhai [2012] where one chapter is devoted to
this topic. Yang [1999] includes a systematic empirical evaluation of multiple com-
monly used text categorization methods and a discussion of text categorization
evaluation. Moreover, since text categorization is often performed by using super-
vised machine learning, any book on machine learning is relevant (e.g., Mitchell
1997).

Exercises
15.1. In Section 15.4 we have two footnotes about sentence length feature gener-
ation. As they suggest, implement this tokenizer in META and see if one particular
dataset type benefits from this method or not.

15.2. Use META to experiment with document classification. Which of the k-NN
variants seems to perform the best? How dependent on the ranking function is the
k-NN accuracy?

15.3. In META, SVM is called SGD with hinge loss (the default classifier). Does SVM
always outperform Naive Bayes and k-NN? How do the runtimes in META compare
for these three learners?

316 Chapter 15 Text Categorization

15.4. In text categorization, there are often thousands if not millions of features.
This makes it very likely to be able to create a hyperplane separating class objects
plotted in this high-dimensional space. Based on this information, make a sugges-
tion for a default classifier to use in text categorization and explain your reasoning.

15.5. In an application setting, you must choose between using Naive Bayes or k-
NN in order to do classification on text documents. Your application demands a
very high performance and needs to classify documents very quickly. Explain your
choice of classifier in this setting.

15.6. Give one similarity and one difference between k-NN and Naive Bayes.

15.7. Why is Naive Bayes “naive”, and why is “Bayes” in the name?

15.8. Say we have a dataset and a classifier. We evaluate the classifier with 5-fold
cross validation and 10-fold cross validation. Which do you think gives a higher
accuracy? Why?

15.9. What is a difference between text categorization evaluation and information
retrieval evaluation?

15.10. How can we determine if we have “enough” training data for a classifier?
Make an argument using a plot, where the x axis is training data size and the y axis
is classification accuracy on unseen test data.

15.11. Explain how to read a confusion matrix in order to determine two classes
that are often mistaken for each other by the classifier.

15.12. Can a confusion matrix give us any clue to class imbalances? Explain.

16Text Summarization
Text summarization refers to the task of compressing a relatively large amount
of text data or a long text article into a more concise form for easy digestion.
It is obviously very important for text data access, where it can help users see
the main content or points in the text data without having to read all the text.
Summarization of search engine results is a good example of such an application.
However, summarization can also be useful for text data analysis as it can help
reduce the amount of text to be processed, thus improving the efficiency of any
analysis algorithm.

However, summarization is a non-trivial task. Given a large document, how can
we convey the important points in only a few sentences? And what do we mean
by “document” and “important”? Although it is easy for a human to recognize a
good summary, it is not as straightforward to define the process. In short, for any
text summarization application, we’d like a semantic compression of text; that is,
we would like to convey essentially the same amount of information in less space.
The output should be fluent, readable language. In general, we need a purpose for
summarization although it is often hard to define one. Once we know a purpose,
we can start to formulate how to approach the task, and the problem itself becomes
a little easier to evaluate.

In one concrete example, consider a news summary. If our input is a collection
of news articles from one day, a potentially valid output is a list of headlines. Of
course, this wouldn’t be the entire list of headlines, but only those headlines that
would interest a user. For a different angle, consider a news summarization task
where the input is one text news article and the output should be one paragraph
explaining what the article talks about in a readable format. Each task will require
a different solution.

Summarizing retrieval results is also of particular interest. On a search engine
result page, how can we help the user click on a relevant link? A common strategy is
to highlight words matching the query in a short snippet. An alternative approach
would be to take a few sentences to summarize each result and display the short

318 Chapter 16 Text Summarization

summaries on the results page. Using summaries in this way could give the user a
better idea of what information the document contains before he or she decides to
read it.

Opinion summarization is useful for both businesses and shoppers. Summariz-
ing all reviews of a product lets the business know whether the buyers are satisfied
(and why). The review summaries also let the shoppers make comparisons between
different products when searching online. Reviews can be further broken down
into summaries of positive reviews and summaries of negative reviews. An even
more granular approach described in Wang et al. [2010] and Wang et al. [2011] and
further discussed in Chapter 18 uses topic models to summarize product reviews
relating to different aspects. For hotel reviews, this could correspond to service,
location, price, and value. Although the output in these two works is not a human-
readable summary, we could imagine a system that is able to summarize all the
hotel reviews in English (or any other language) for the user.

In this chapter, we overview two main paradigms of summarization techniques
and investigate their different applications.

16.1 Overview of Text Summarization Techniques
There are two main methods in text summarization. The first is selection-based
or extractive summarization. With this method, a summary consists of a sequence
of sentences selected from the original documents. No new sentences are written,
hence the summary is extracted. The second method is generation-based or ab-
stractive summarization. Here, a summary may contain new sentences not in any
of the original documents. One method that we explore here is using a language
model. Previously in this book, we’ve used language models to calculate the like-
lihood of some text; in this chapter, we will show how to use a language model in
reverse to generate sentences. We also briefly touch on the field of natural language
generation in our discussion of abstractive techniques.

Following the pattern of previous chapters, we then move on to evaluation of text
summarization. The two methods each have evaluation metrics that are particularly
focused towards their respective implementation, but it is possible to use (e.g.) an
abstractive evaluation metric on a summary generated by an extractive algorithm.
Finally, we look into some applications of text summarization and see how they are
implemented in real-world systems.

Text summarization is a broad field and we only touch on the core concepts
in this chapter. For further reading, we recommend that the reader start with Das
and Martins [2007], which provides a systematic overview of the field and contains
much of the content from this chapter in an expanded form.

16.2 Extractive Text Summarization 319

16.2 Extractive Text Summarization
Information retrieval-based techniques use the notion of sentence vectors and
similarity functions in order to create a summarization text. A sentence vector is
equivalent in structure to a document vector, albeit based on a smaller number of
words. Below, we will outline a basic information retrieval-based summarization
system.

1. Split the document to be summarized into sections or passages.

2. For each passage, “compress” its sentences into a smaller number of relevant
(yet not redundant) sentences.

This strategy retains coherency since the sentences in the summary are mostly
in the same order as they were in the original document.

Step one is portrayed in Figure 16.1. The sentences in the document are traversed
in order and a normalized, symmetric similarity measure (see Chapter 14) is applied
on adjacent pairs of sentences. The plot on the right-hand side of the figure shows
the change in similarity between the sentences. We can inspect these changes to
segment the document into passages when the similarity is low, i.e., a shift in topic
occurs. An alternative approach to this segmentation is to simply use paragraphs
if the document being operated on contains that information, although most of
the time this is not the case. This rudimentary partitioning strategy is a task in

vector 1
vector 2
vector 3
…
…

similarity
similarity

vector n – 1
vector n

– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –

similarity

Figure 16.1 Segmenting a document into passages with a similarity-based discourse analysis.

320 Chapter 16 Text Summarization

Sentence 1

Sentence 2

Sentence 3

Summary

– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –

Figure 16.2 Text summarization using maximum marginal relevance to select one sentence from
each passage as a summary.

discourse analysis (a subfield of NLP). Discourse analysis deals with sequences of
sentences as opposed to only one sentence.

Now that we have our passages, how can we remove redundancy and increase
diversity in the resulting summarization during step two? The technique maximal
marginal relevance (MMR) reranking can be applied to our problem. Essentially,
this algorithm greedily reranks each sentence in the current passage, outputting
only the top few as a summary. Figure 16.2 shows the output of the algorithm when
we only select one sentence from each passage.

The MMR algorithm is as follows. Assume we are given an original list R and
a profile p to construct the set of selected sentences S (where |S| � |R|). R is a
partitioned chunk of sentences in the document we wish to summarize. The profile
p determines what is exactly meant by “relevance.” Originally, the MMR formula
was applied to documents returned from an information retrieval system (hence the
term reranking). Documents were selected based on their marginal relevance to a
query (which is our variable p) in addition to non-redundancy to already-selected
documents. Since our task deals with sentence retrieval, p can be a user profile (text
about the user), the entire document itself, or it could even be a query formulated
by the user.

According to marginal relevance, the next sentence si to be added into the
selected list S is defined as

16.3 Abstractive Text Summarization 321

si = arg maxs∈R\S
{
(1 − λ) . sim1(s , p) − λ . arg maxsj∈S sim2(s , sj)

}
. (16.1)

The R \ S notation may be read as “R set minus S”, i.e., all the elements in R that
are not in S. The MMR formulation uses λ ∈ [0, 1] to control relevance versus re-
dundancy; the positive relevance score is discounted by the amount of redundancy
(similarity) to the already-selected sentences. Again, the two similarity metrics may
be any normalized, symmetric measures. The simplest instantiation for the sim-
ilarity metric would be cosine similarity, and this is in fact the measure used in
Carbonell and Goldstein [1998].

The algorithm may be terminated once an appropriate number of words or
sentences is in S, or if the score sim1(s , p) is below some threshold. Furthermore,
the similarity functions may be tweaked as well. Could you think of a way to include
sentence position in the similarity function? That is, if a sentence is far away
(dissimilar) from the candidate sentence, we could subtract from the similarity
score. Even better, we could interpolate the two values into a new similarity score
such as

sim(s , s′) = α . simcosine(s , s′) + (1 − α) .
(

1 − d(s , s′)
max d(s , .)

)
, (16.2)

where α ∈ [0, 1] controls the weight between the regular cosine similarity and the
distance measure, and d(., .) is the number of sentences between the two param-
eters. Note the “one minus” in front of the distance calculation, since a smaller
distance implies a greater similarity.

Of course, λ in the MMR formula is also able to be set. In fact, for multi-document
summarization, Das and Martins [2007] suggests starting out with λ = 0.3 and
then slowly increasing to λ = 0.7. The reasoning behind this is to first emphasize
novelty and then default to relevance. This should remind you of the exploration-
exploitation tradeoff discussed in Chapter 11.

16.3 Abstractive Text Summarization
An abstractive summary creates sentences that did not exist in the original docu-
ment or documents. Instead of a document vector, we will use a language model to
represent the original text. Unlike the document vector, our language model gives
us a principled way in which to generate text. Imagine we tokenized our document
with unigram words. In our language model, we would have a parameter repre-
senting the probability of each word occurring. To create our own text, we will draw
words from this probability distribution.

322 Chapter 16 Text Summarization

“cat”

p(“cat”)

0 1

p(“cat”) + p(“dog”)

x1 ~ U(0, 1) x2 ~ U(0, 1)

p(“cat”) + p(“dog”) + p(“a”)

“dog” “a” “the” “fish”

Figure 16.3 Drawing words from a unigram language model.

Say we have the unigram language model θ estimated on a document we wish
to summarize. We wish to draw words w1, w2, w3, . . . from θ that will comprise
our summary. We want the word wi to occur in our summary with about the same
probability it occurred in the original document—this is how our generated text
will approximate the longer document. Figure 16.3 depicts how we can accomplish
this task. First, we create a list of all our parameters and incrementally sum their
probabilities; this will allow us to use a random number on [0, 1] to choose a word
wi. Simply, we get a uniform random floating point number between zero and one.
Then, we iterate through the words in our vocabulary, summing their probabilities
until we get to the random number. We output the term and repeat the process.

In the example, imagine we have the following values:

p(cat) 0.010

p(cat) + p(dog) 0.018

p(cat) + p(dog) + p(a) 0.038
...

...

p(cat) + p(dog) + p(a) + . . . + p(zap) 1.0

Say we generate a random number x1 using a uniform distribution on [0, 1]. This
is denoted as x1 ∼ U(0, 1). Now imagine that x1 = 0.032. We go to the cumulative
point 0.032 in our distribution and output “a”. We can repeat this process until our
summary is of a certain length or until we generate an end-of-sentence token </s>.

At this point, you may be thinking that the text we generate will not make any
sense—that is certainly true if we use a unigram language model since each word
is generated independently without regard to its context. If more fluent language is
required, we can use an n-gram language model, where n > 1. Instead of each word
being independently generated, the new word will depend on the previous n − 1

16.3 Abstractive Text Summarization 323

words. The generation will work the same way as in the unigram case: say we have
the word wi and wish to generate wi+1 with a bigram language model. Our bigram
language model gives us a distribution of words that occur after wi and we draw
the next word from there in the same way depicted in Figure 16.3.

The sentence generation from a bigram language model proceeds as follows:
start with (e.g.) The. Then, pick from the distribution p(w | The) using the cu-
mulative sum technique. The next selected word could be cat. Then, we use the
distribution p(w | cat) to find the next w, and so on. While the unigram model only
had one “sum table” (Figure 16.3), the bigram case needs V tables, one for each w′

in p(w | w′).
Typically, the n-value will be around three to five depending on how much

original data there is. We saw what happened when n is too small; we get a jumble
of words that don’t make sense together. But we have another problem if n is too
large. Consider the extreme case where n = 20. Then, given 19 words, we wish to
generate the next one using our 20-gram language model. It’s very unlikely that
those 19 words occurred more than once in our original document. That means
there would only be one choice for the 20th word. Because of this, we would just be
reproducing the original document, which is not a very good summary. In practice,
we would like to choose an n-gram value that is large enough to produce coherent
text yet small enough to not simply reproduce the corpus.

There is one major disadvantage to this abstractive summarization method. Due
to its nature, a given word only depends on the n surrounding words. That is, there
will be no long-range dependencies in our generated text. For example, consider
the following sentence generated from a trigram language model:

They imposed a gradual smoking ban on virtually all corn seeds planted are hybrids.

All groups of three words make sense, but as a whole the sentence is incompre-
hensible; it seems the writer changed the topic from a smoking ban to hybrid crops
mid-sentence. In special cases, when we restrict the length of a summary to a few
words when summarizing highly redundant text, such a strategy appears to be ef-
fective as shown in the micropinion summarization method described in Ganesan
et al. [2012].

16.3.1 Advanced Abstractive Methods
Some advanced abstractive methods rely more heavily on natural language process-
ing to build a model of the document to summarize. Named entity recognition can
be used to extract people, places, or businesses from the text. Dependency parsers
and other syntactic techniques can be used to find the relation between the entities

324 Chapter 16 Text Summarization

and the actions they perform. Once these actors and roles are discovered, they are
stored in some internal representation. To generate the actual text, some represen-
tations are chosen from the parsed collection, and English sentences are created
based on them; this is called realization.

Such realization systems have much more fine-grained control over the gener-
ated text than the basic abstractive language model generator described above. A
templated document structure may exist (such as intro→paragraph 1→paragraph
2→conclusion), and the structures are chosen to fill each spot. This control over
text summarization and layout enables an easily-readable summary since it has a
natural topical flow. In this environment, it would be possible to merge similar sen-
tences with conjunctions such as and or but, depending on the context. To make
the summary sound even more natural, pronouns can be used instead of entity
names if the entity name has already been mentioned. Below are examples of these
two operations:

Gold prices fell today. Silver prices fell today. → Gold and silver prices fell today.
Company A lost 9.43% today. Company A was the biggest mover. → Company A lost

9.43% today. It was the biggest mover.

Even better would be

Company A was today’s biggest mover, losing 9.43%.

These operations are possible since the entities are stored in a structured format.
For more on advanced natural language generation, we suggest Reiter and Dale
[2000], which has a focus on practicality and implementation.

16.4 Evaluation of Text Summarization
In extractive summarization, representative sentences were selected from passages
in the text and output as a summary. This solution is modeled as an information
retrieval problem, and we can evaluate it as such. Redundancy is a critical issue,
and the MMR technique we discussed attempts to alleviate it. When doing our
evaluation, we should consider redundant sentences to be irrelevant, since the user
does not want to read the same information twice. For a more detailed explanation
of IR evaluation measures, please consult Chapter 9.

For full output scoring, we should prefer IR evaluation metrics that do not
take into account result position. Although our summary is generated by ranked
sentences per passage, the entire output is not a ranked list since the original
document is composed of multiple passages. Therefore we can use precision, recall,
and F1 score.

16.5 Applications of Text Summarization 325

It is possible to rank the passage scoring retrieval function using position-
dependent metrics such as average precision or NDCG, but with the final output
this is not feasible. Thus we need to decide whether to evaluate the passage scoring
or the entire output (or both). Entire output scoring is likely more useful for ac-
tual users, while passage scoring could be useful for researchers to fine-tune their
methods.

In abstractive summarization, we can’t use the IR measures since we don’t have
a fixed set of candidate sentences. How can we compute recall if we don’t know the
total number of relevant sentences? There is also no intermediate ranking stage,
so we also can’t use average precision or NDCG (and again, we don’t even know the
complete set of correct sentences).

A laborious yet accurate evaluation would have human annotators create a gold
standard summary. This “perfect” summary would be compared with the generated
one, and some measure (e.g., ROUGE) would be used to quantify the difference.
For the comparison measure, we have many possibilities—any measure that can
compare two groups of text would be potentially applicable. For example, we can
use the cosine similarity between the gold standard and generated summary. Of
course, this has the downside that fluency is completed ignored (using unigram
words). An alternative means would be to learn an n-gram language model over
the gold standard summary, and then calculate the log-likelihood of the generated
summary. This can ensure a basic level of fluency at the n-gram level, while also
producing an interpretable result. Other comparisons between two probability
distributions would also be applicable, such as KL-divergence.

The overall effectiveness of a summary can be tested if users read a summary and
then answer questions about the original text. Was the summary able to capture
the important information that the evaluator needs? If the original text was an
entire textbook chapter, could the user read a three-paragraph summary and obtain
sufficient information to answer the provided exercises? This is the only metric that
can be used for both extractive and abstractive measures. Using a language model to
score an extractive summary vs. an abstractive one would likely be biased towards
the extractive one since this method contains phrases directly from the original
text, giving it a very high likelihood.

16.5 Applications of Text Summarization
At the beginning of the chapter, we’ve already touched on a few summarization
applications; we mentioned news articles, retrieval results, and opinion summa-
rization. Summarization saves users time from manually reading the entire corpus
while simultaneously enhancing preexisting data with summary “annotations.”

326 Chapter 16 Text Summarization

The aspect opinion analysis mentioned earlier segments portions of user reviews
into speaking about a particular topic. We can use this topic analysis to collect
passages of text into a large group of comments on one aspect. Instead of describing
this aspect with sorted unigram words, we could run a summarizer on each topic,
generating readable text as output. These two methods complement each other,
since the first step finds what aspects the users are interested in, while the second
step conveys the information.

A theme in this book is the union of both structured and unstructured data,
mentioned much more in detail in Chapter 19. Summarization is an excellent
example of this application. For example, consider a financial summarizer with text
reports from the Securities and Exchange Commission (SEC) as well as raw stock
market data. Summarizing both these data sources in one location would be very
valuable for (e.g.) mutual fund managers or other financial workers. Being able to
summarize (in text) a huge amount of structured trading data could reveal patterns
that humans would otherwise be unaware of—this is an example of knowledge
discovery.

E-discovery (electronic discovery) is the process of finding relevant information
in litigation (lawsuits and court cases). Lawyers rely on e-discovery to sift through
vast amounts of textual information to build their case. The Enron email dataset1

is a well-known corpus in this field. Summarizing email correspondence between
two people or a department lets investigators quickly decide whether they’d like to
dig deeper in a particular area or try another approach. In this way, summarization
and search are coupled; search allows a subset of data to be selected that is relevant
to a query, and the summarization can take the search results and quickly explain
them to the user. Finally, linking email correspondence together (from sender to
receivers) is a structured complement to the unstructured text content of the email
itself.

Perhaps of more interest to those reading this book is the ability to summarize
research from a given field. Given proceedings from a conference, could we have
a summarizer explain the main trends and common approaches? What was most
novel compared to previous conferences? When writing your own paper, can you
write everything except the introduction and related work? The introduction is
an overview summary of your paper. Related work is mostly a summary of papers
similar to yours.

1. https://www.cs.cmu.edu/~./enron/

Exercises 327

Bibliographic Notes and Further Reading
As mentioned in this chapter, Das and Martins [2007] is a comprehensive survey
on summarization techniques. Additionally, Nenkova and McKeown [2012] is a
valuable read. For applications, latent aspect rating analysis [Wang et al. 2010],
[Wang et al. 2011] is a form of summarization applied to product reviews. We
mention this particular application in more detail in Chapter 18. A typical extractive
summarizer is presented in Radev et al. [2004], a typical abstractive summarizer
is presented in Ganesan et al. [2010], and evaluation suggestions are presented
in Steinberger and Jezek [2009]. The MMR algorithm was originally described
in Carbonell and Goldstein [1998]. For advanced NLG (natural language generation)
techniques, a good starting point is Reiter and Dale [2000].

Exercises
16.1. Do you think one summarization method (extractive or abstractive) would
perform better on a small dataset? How about a large dataset? Justify your reason-
ing.

16.2. Explain how you can improve the passage detection by looking beyond only
the adjacent sentences. How would you implement this?

16.3. Write a basic passage segmenter in META. As input, take a document and
extract the sentences into a vector with a built-in tokenizer. Segment the vector
into passages using a similarity algorithm.

16.4. Now that you have a document segmented into passages, use META to set
up a search engine over each passage, where you treat passages as individual
documents. Ensure that you have enough sentences per passage. You many need
to tweak your previous answer to achieve this.

16.5. With your passage search engine, find a representative sentence from each
passage to create a summary for the original document.

16.6. Use META’s language model to learn a distribution of words over a document
you wish to summarize.

16.7. Add a generate function to the language model. It should take a context
(n − 1 terms) and generate the nth term. Use the calculation described in this
chapter to generate the next word.

16.8. Summarize the input document using the generator. Experiment with dif-
ferent stopping criteria. Which seems to work the best?

328 Chapter 16 Text Summarization

16.9. Create some simple post-processing rules for natural language generation
realization. The examples we gave in the text were sentence joining and pronoun
insertion. What else can you think of?

16.10. Explain how we can combine text summarization and topic modeling to
create a powerful exploratory text mining application.

16.11. What can we accomplish by interpolating a language model distribution
for an abstractive summarizer with another probability distribution, perhaps from
existing summaries?

17Topic Analysis
This chapter is about topic mining and analysis, covering a family of unsupervised
text mining techniques called probabilistic topic models that can be used to dis-
cover latent topics in text data.

A topic is something that we all understand intuitively, but it’s actually not easy to
formally define it. Roughly speaking, a topic is the main idea discussed in text data,
which may also be regarded as a theme or subject of a discussion or conversation.
A topic can have different granularities. For example, we can talk about the topic
of a sentence, the topic of an article, the topic of a paragraph, or the topic of all
the research articles in a library. Different granularities of topics have different
applications.

There are many applications that require discovery and analysis of topics in
text. For example, we might be interested in knowing about what Twitter users
are talking about today. Are they talking about NBA sports, international events,
or another topic? We may also be interested in knowing about research topics; one
might be interested in knowing the current research topics in data mining, and how
they are different from those five years ago. To answer such questions, we need to
discover topics in the data mining literature, including specifically topics in today’s
literature and those in the past so that we can make a comparison.

We might also be interested in knowing what people like about some products,
such as smartphones. This requires discovering topics in both positive reviews and
negative reviews. Or, perhaps we’re interested in knowing what the major topics
debated in a presidential election are. All these have to do with discovering topics
in text and analyzing them. How to do this is a main topic of this chapter.

We can view a topic as describing some knowledge about the world as shown
in Figure 17.1. From text data, we want to discover a number of topics which can
provide a description about the world. That is, a topic tells us something about the
world (e.g., about a product or a person).

Besides text data, we often also have some non-text data which can be used as
additional context for analyzing the topics. We might know the time associated

330 Chapter 17 Topic Analysis

Topic 1

Topic 2

…

Topic k

+ Context
Time

Location
…

Non-text dataKnowledge
about the world

…

Real world

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

si ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Figure 17.1 Mining topics as knowledge about the world.

with the text data, or locations where the text data were produced, or the authors
of the text, or the sources of the text. All such metadata (or context variables) can
be associated with the topics that we discover, and we can then use these context
variables to analyze topic patterns.

For example, looking at topics over time, we would be able to discover whether
there’s a trending topic or some topics might be fading away. Similarly, looking at
topics in different locations might help reveal insights about people’s opinions in
different locations.

Let’s look at the tasks of topic mining and analysis. As shown in Figure 17.2,
topic analysis first involves discovering a number of topics. In this case, there are k

topics. We also would like to know which topics are covered in which documents,
and to what extent. For example, in Doc 1, the visualization shows that Topic 1 is
well covered while Topic 2 and Topic k are covered with a small portion. Doc 2, on
the other hand, covered Topic 2 very well but it did not cover Topic 1 at all. It also
covers Topic k to some extent. Thus, there are generally two different tasks or sub-
tasks: the first is to discover the k topics from a collection of text; the second task
is to figure out which documents cover which topics to what extent.

More formally, we can define the problem as shown in Figure 17.3. First, we have
as input a collection of N text documents. Here we can denote the text collection
as C, and denote a text article as di. We also need to have as input the number of
topics, k, though this number may be potentially set automatically based on data
characteristics. However, in the techniques that we will discuss in this chapter, we
need to specify a number of topics.

Chapter 17 Topic Analysis 331

Topic 1

Topic 2

…

…

Topic k

Task 1: Discover k topics

Task 2: Figure out which documents
cover which topics

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

si ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Doc 1 Doc 2 Doc N

Figure 17.2 The task of topic mining.

. Input

A collection of N text documents C = {d1, . . . , dN}
Number of topics: k

. Output

k topics: {θ1, . . . , θk}

Coverage of topics in each di: {πi1, . . . , πik}
k∑

j=1

πij = 1

πij = prob of di covering topic θj

How to define θj?

Figure 17.3 Formal definition of topic mining tasks

The output includes the k topics that we would like to discover denoted by
θ1, . . . , θk, and the coverage of topics in each document of di, which is denoted
by πij . πij is the probability of document di covering topic θj . For each document,
we have a set of such π values to indicate to what extent the document covers each
topic. We assume that these probabilities sum to one, which means that we assume
a document won’t be able to cover other topics outside of the topics we discovered.

Now, the next question is, how do we define a topic θi? Our task has not been
completely defined until we define exactly what θ is. In the next section we will first
discuss the simplest way to define a topic (as a term).

332 Chapter 17 Topic Analysis

“Sports” π11 π21 = 0 πN1 = 0

π12 π22 πN2

π1k π2k πNk

θ1

θ2

θk

“Travel”

…

…

“Science”

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

si ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Doc 1

30%

12%

8%

Doc 2 Doc N

Figure 17.4 A term as a topic.

17.1 Topics as Terms
The simplest, natural way to define a topic is just as a term. A term can be a word
or a phrase. For example, we may have terms like sports, travel, or science to denote
three separate topics covered in text data, as shown in Figure 17.4.

If we define a topic in this way, we can then analyze the coverage of such topics in
each document based on the occurrences of these topical terms. A possible scenario
may look like what’s shown in Figure 17.4: 30% of the content of Doc 1 is about
sports, and 12% is about travel, etc. We might also discover Doc 2 does not cover
sports at all. So the coverage π21 is zero.

Recall that we have two tasks. One is to discover the topics and the other is to
analyze coverage. To solve the first problem, we need to mine k topical terms from a
collection. There are many different ways to do that. One natural way is to first parse
the text data in the collection to obtain candidate terms. Here candidate terms can
be words or phrases. The simplest case is to just take each word as a term. These
words then become candidate topics.

Next, we will need to design a scoring function to quantify how good each term
is as a topic. There are many things that we can consider when designing such a
function with a main basis being the statistics of terms. Intuitively, we would like
to favor representative terms, meaning terms that can represent a lot of content in
the collection. That would mean we want to favor a frequent term. However, if we
simply use the frequency to design the scoring function, then the highest scored
terms would be general terms or function words like the or a. Those terms occur

17.1 Topics as Terms 333

very frequently in English, so we also want to avoid having such words on the top.
That is, we would like to favor terms that are fairly frequent but not too frequent.

A specific approach to achieving our goal is to use TF-IDF weighting discussed
in some previous chapters of the book on retrieval models and word association
discovery. An advantage of using such a statistical approach to define a scoring
function is that the scoring function would be very general and can be applied
to any natural language, any text. Of course, when we apply such an approach
to a particular problem, we should always try to leverage some domain-specific
heuristics. For example, in news we might favor title words because the authors
tend to use the title to describe the topic of an article. If we’re dealing with tweets,
we could also favor hashtags, which are invented to denote topics.

After we have designed the scoring function, we can discover the k topical terms
by simply picking the k terms with the highest scores. We might encounter a
situation where the highest scored terms are all very similar. That is, they are
semantically similar, or closely related, or even synonyms. This is not desirable
since we also want to have a good coverage over all the content in the collection,
meaning that we would like to remove redundancy. One way to do that is to use a
greedy algorithm, called Maximal Marginal Relevance (MMR) re-ranking.

The idea is to go down the list based on our scoring function and select k topical
terms. The first term, of course, will be picked. When we pick the next term, we will
look at what terms have already been picked and try to avoid picking a term that’s
too similar. So while we are considering the ranking of a term in the list, we are
also considering the redundancy of the candidate term with respect to the terms
that we already picked. With appropriate thresholding, we can then get a balance
of redundancy removal and picking terms with high scores. The MMR technique is
described in more detail in Chapter 16.

After we obtain k topical terms to denote our topics, the next question is how to
compute the coverage of each topic in each document, πij . One solution is to simply
count occurrences of each topical term as shown in Figure 17.5. So, for example,
sports might have occurred four times in document di, and travel occurred twice.
We can then just normalize these counts as our estimate of the coverage probability
for each topic. The normalization is to ensure that the coverage of each topic in the
document would add to one, thus forming a distribution over the topics for each
document to characterize coverage.

As always, when we think about an idea for solving a problem, we have to ask the
following questions: how effective is the solution? Is this the best way of solving
problem? In general, we have to do some empirical evaluation by using actual data
sets and to see how well it works. However, it is often also instructive to analyze

334 Chapter 17 Topic Analysis

“Sports” count(“sports”, di) = 4

count(“travel”, di) = 2

count(“science”, di) = 1

πi1

πij = πi2

πik

θ1

θ2

θk

“Travel”

…

“Science”

Doc di

count(θL, di)

count(θj, di)
k

∑
L=1

Figure 17.5 Computing topic coverage when a topic is a term.

“Sports” πi1 / c(“sports”, di) = 0

πi2 / c(“travel”, di) = 1

πik / c(“science”, di) = 0

θ1

θ2

θk

“Travel”

…

“Science”

Doc di Cavaliers vs. Golden State Warriors: NBA playoff finals …

basketball game … travel to Cleveland … star …

1. Need to count
related words also!

3. Mine complicated topics?

2. “Star” can be ambiguous (e.g., star in the sky).

Figure 17.6 Problems in representing a topic as a term.

some specific examples. So now let’s examine the simple approach we have been
discussing with a sample document in Figure 17.6.

Here we have a text document that’s about an NBA basketball game. In terms of
the content, it’s about sports, but if we simply count these words that represent our
topics, we will find that the word sports actually did not occur in the article, even
though the content is about sports. Since the count of sports is zero, the coverage of
sports would be estimated as zero. We may note that the term science also did not
occur in the document, and so its estimate is also zero, which is intuitively what we
want since the document is not about science. However, giving a zero probability to
sports certainly is a problem because we know the content is about sports. What’s
worse, the term travel actually occurred in the document, so when we estimate

17.2 Topics as Word Distributions 335

the coverage of the topic travel, we would have a non-zero count, higher than the
estimated coverage of sports. This obviously is also not desirable.

Our analysis of this simple example thus reveals a few problems of this approach.
First, when we count what words belong to a topic, we also need to consider related
words. We cannot simply just count the extracted term denoting a topic (e.g.,
sports), which may not occur at all in a document about the topic. On the other
hand, there are many words related to the topic like basketball and game, which
should presumably also be counted when estimating the coverage of a topic.

The second problem is that a word like star is ambiguous. While in this article
it means a basketball star, it might also mean a star on the sky in another context,
so we need to consider the uncertainty of an ambiguous word.

Finally, a main restriction of this approach is that we have only one term to
describe the topic, so it cannot really describe complicated topics. For example,
a very specialized topic in sports would be harder to describe by using just a word
or one phrase. We need to use more words.

A key take-away point from analyzing this simple example is that there are three
general problems with our simple approach of defining a topic as a single term:
first, it lacks expressive power. It can only represent the simple general topics, but
cannot represent the complicated topics that might require more words to describe.
Second, it’s incomplete in vocabulary coverage, meaning that the topic itself is only
represented as one term. It does not suggest what other terms are related to the
topic, making it impossible to estimate the contribution of related words to the
coverage of a topic. Finally, there is a problem due to ambiguity of words. A topical
term or related term can be ambiguous. In the next section, we will discuss an
improved representation of a topic (as a distribution over words) that can address
these problems.

17.2 Topics as Word Distributions
A natural idea to address the problems of using one single term to denote a topic
is to use more words to describe the topic, which would immediately address the
first problem of lack of expressive power. When we have more words that we can use
to describe the topic, we would be able to describe complicated topics. To address
the second problem (of how to involve related words), we need to introduce weights
on words. This is what allows us to distinguish subtle differences in topics, and to
introduce semantically related words in a quantitative manner. Finally, to solve the
problem of word ambiguity, we need to “split” ambiguous words to allow them to
be used to (potentially) describe multiple topics.

336 Chapter 17 Topic Analysis

“Sports”

sports 0.02
game 0.01
basketball 0.005
football 0.004
play 0.003
star 0.003
…

nba 0.001
…

travel 0.0005
…

travel 0.05
attraction 0.03
trip 0.01
flight 0.004
hotel 0.003
island 0.003
…

culture 0.001
…

play 0.0002
…

science 0.04
scientist 0.03
spaceship 0.006
telescope 0.004
genomics 0.004
star 0.002
…

genetics 0.001
…

travel 0.00001
…

θ1 θ2 θk“Travel” … “Science”

P(w|θk)P(w|θ2)P(w|θ1)

∑
w2V

p(w|θi) = 1 Vocabulary set: V = {w1, w2, … }

Figure 17.7 Topic as a word distribution.

It turns out that all these can be elegantly achieved by using a probability distri-
bution over words (i.e., a unigram language model) to denote a topic, as shown in
Figure 17.7. Here, you see that for every topic, we have a word distribution over all
the words in the vocabulary.

For example, the high probability words for the topic “sports” are sports, game,
basketball, football, play, and star. These are all intuitively sports-related terms
whose occurrences should contribute to the likelihood of covering the topic
“sports” in an article. Note that, in general, the distribution may give all the words a
non-zero probability since there is always a very very small chance that even a word
not so related to the topic would be mentioned in an article about the topic. Note
also that these probabilities for all the words always sum to one for each topic, thus
forming a probability distribution over all the words.

Such a word distribution represents a topic in that if we sample words from the
distribution, we tend to see words that are related to the topic. It is also interesting
to note that as a very special case, if the probability of the mass is concentrated
entirely on just one word, e.g., sports, then the word distribution representation
of a topic would degenerate to the simplest representation of a topic as just one
single word discussed before. In this sense, the word distribution representation
is a natural generalization and extension of the single-term representation.

17.2 Topics as Word Distributions 337

However, representing a topic by a distribution over words can involve many
words to describe a topic and model subtle differences of topics. Through adjusting
probabilities of different words, we may model variations of the general “sports”
topic to focus more on a particular kind of sports such as basketball (where we
would expect basketball to have a very high probability) or football (where football
would have a much higher probability than basketball).

Similarly, in the distribution for “travel,” we see top words like attraction, trip,
flight, and so on. In “science,” we see scientist, spaceship, and genomics, which are all
intuitively related to the corresponding topic. It is important to note that it doesn’t
mean sports-related terms will necessarily have zero probabilities in a distribution
representing the topic “science,” but they generally have much lower probabilities.

Note that there are some words that are shared by these topics, meaning that they
have reasonably high probabilities for all these topics. For example, the word travel
occurred in the top-word lists for all the three topics, but with different probabili-
ties. It has the highest probability for the “travel” topic, 0.05, but with much smaller
probabilities for “sports” and “science,” which makes sense. Similarly, you can see
star also occurred in “sports” and “science” with reasonably high probabilities be-
cause the word is actually related to both topics due to its ambiguous nature. We
have thus seen that representing a topic by a word distribution effectively addresses
all the three problems of a topic as a single term mentioned earlier.

. It now uses multiple words to describe a topic, allowing us to describe fairly
complicated topics.

. It assigns weights to terms, enabling the modeling of subtle differences of
semantics in related topics. We can also easily bring in related words together
to model a topic and estimate the coverage of the topic.

. Because we have probabilities for the same word in different topics, we can
accommodate multiple senses of a word, addressing the issue of word ambi-
guity.

Next, we examine the task of discovering topics represented in this way. Since the
representation is a probability distribution, it is natural to use probabilistic models
for discovering such word distributions, which is referred to as probabilistic topic
modeling.

When using a word distribution to denote a topic, our task of topic analysis can
be further refined based on the formal definition in Figure 17.3 by making each
topic a word distribution. That is, each θi is now a word distribution, and we have

338 Chapter 17 Topic Analysis

∑
w∈V

p(w | θi) = 1. (17.1)

Naturally, we still have the same constraint on the topic coverage, i.e.,

k∑
j=1

πij = 1, ∀i . (17.2)

As a computation problem, our input is text data, a collection of documents C,
and we assume that we know the number of topics, k, or hypothesize that there
are k topics in the text data. As part of our input, we also know the vocabulary V ,
which determines what units would be treated as the basic units (i.e., words) for
analysis. In most cases, we will use words as the basis for analysis simply because
they are the most natural units, but it is easy to generalize such an approach to
use phrases or any other units that we can identify in text, as the basic units and
treat them as if they were words. Our output consists of two families of probability
distributions. The first is a set of topics represented by a set of θi’s, each of which is
a word distribution. The second is a topic coverage distribution for each document
di, {πi1, . . . , πik}.

The question now is how to generate such output from our input. There are
potentially many different ways to do this, but here we introduce a general way of
solving this problem called a generative model. This is, in fact, a very general idea
and a principled way of using statistical modeling to solve text mining problems.

The basic idea of this approach is to first design a generative model for our data,
i.e., a probabilistic model to model how the data are generated, or a model that can
allow us to compute the probability of how likely we will observe the data we have.
The actual data aren’t necessarily (indeed often unlikely) generated this way, but
by assuming the data to be generated in a particular way according to a particular
model, we can have a formal way to characterize our data which further facilitates
topic discovery.

In general, our model will have some parameters (which can be denoted by �);
they control the behavior of the model by controlling what kind of data would have
high (or low) probabilities. If you set these parameters to different values, the model
would behave differently; that is, it would tend to give different data points high (or
low) probabilities.

We design the model in such a way that its parameters would encode the knowl-
edge we would like to discover. Then, we attempt to estimate these parameters
based on the data (or infer the values of parameters based on the observed data) so
as to generate the desired output in the form of parameter values, which we have

17.2 Topics as Word Distributions 339

designed to denote the knowledge we would like to discover. How exactly we should
fit the model to the data or infer the parameter values based on the data is often a
standard problem in statistics, and there are many different ways to do this as we
discussed briefly in Chapter 2.

Following the idea of using a generative model to solve the specific problem of
discovering topics and topic coverages from text data, we see that our generative
model needs to contain all the k word distributions representing the topics and
the topic coverage distributions for all the documents, which is all the output we
intend to compute in our problem setup. Thus, there will be many parameters in
the model. First, we have |V | parameters for the probabilities of words in each
word distribution, so we have in total |V |k word probability parameters. Second,
for each document, we have k values of π , so we have in total Nk topic coverage
probability parameters. Thus, we have in total |V |k + Nk parameters. Given that
we have constraints on both θ and π , however, the number of free parameters
is smaller at (|V | − 1)k + N(k − 1); in each word distribution, we only need to
specify |V | − 1 probabilities and for each document, we only need to specify k − 1
probabilities.

Once we set up the model, we can fit its parameters to our data. That means we
can estimate the parameters or infer the parameters based on the data. In other
words, we would like to adjust these parameter values until we give our data set
maximum probability. Like we just mentioned, depending on the parameter values,
some data points will have higher probabilities than others. What we’re interested
in is what parameter values will give our data the highest probability.

In Figure 17.8, we illustrate �, the parameters, as a one-dimensional variable.
It’s oversimplification, obviously, but it suffices to show the idea. The y axis shows
the probability of the data. This probability obviously depends on this setting of �,
so that’s why it varies as you change �’s value in order to find �∗, the parameter

�* �

p(data|model, �)

Parameter estimation/inferences
�* = argmax� p(data|model, �)

Figure 17.8 Maximum likelihood estimate of a generative model.

340 Chapter 17 Topic Analysis

settings that maximize the probability of the observed data. Such a search yields our
estimate of the model parameters. These parameters are precisely what we hoped
to discover from the text data, so we view them as the output of our data mining or
topic analysis algorithm.

This is the general idea of using a generative model for text mining. We design
a model with some parameter values to describe the data as well as we can. After
we have fit the data, we learn parameter values. We treat the learned parameters as
the discovered knowledge from text data.

17.3 Mining One Topic from Text
In this section, we discuss the simplest instantiation of a generative model for
modeling text data, where we assume that there is just one single topic covered
in the text and our goal is to discover this topic.

More specifically, as illustrated in Figure 17.9, we are interested in analyzing
each document and discovering a single topic covered in the document. This is
the simplest case of a topic model. Our input now no longer has k topics because
we know (or rather, specify) that there is only one topic. Since each document can
be mined independently, without loss of generality, we further assume that the
collection has only one document. In the output, we also no longer have coverage
because we assumed that the document has a 100% coverage of the topic we would
like to discover. Thus, the output to compute is the word distribution represent-
ing this single topic, or probabilities of all words in the vocabulary given by this
distribution, as illustrated in Figure 17.9.

text ?
mining ?
association ?
database ?
…
query ?
…

θ

Text data

Lorem ipsum,
 Dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat.
 Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Dolor sit amet, consectetur adipiscing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.
 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur.

Doc dP(w|θ)

Output: {θ}Input: C = {d}, V

100%

Figure 17.9 The simplest topic model with one topic.

17.3 Mining One Topic from Text 341

17.3.1 The Simplest Topic Model: Unigram Language Model
When we use a generative model to solve a problem, we start with thinking about
what kind of data we need to model and from what perspective. Our data would
“look” differently if we use a different perspective. For example, we may view a
document simply as a set of words without considering the frequencies of words,
which would lead to a bit vector representation as we discussed in the context
of the vector space retrieval model. Such a representation would need a different
generative model than if we view the document as a bag of words where we care
about the different frequencies of words. In topic analysis, the frequencies of words
can help distinguish subtle semantic variations, so we generally should retain the
word frequencies.

Once we decide on a perspective to view the data, we will design a specific model
for generating the data from the desired perspective, i.e., model the data based
on the representation of the data reflecting the desired perspective. The choice of
a particular model partly depends on our domain knowledge about the data and
partly depends on what kind of knowledge we would like to discover. The target
knowledge would determine what parameters we would include in the model since
we want our parameters to denote the knowledge interesting to us (after we estimate
the values of these parameters).

Here we are interested in discovering a topic represented as a word distribution,
so a natural choice of model would be a unigram language model, as in Section 3.4.
After we specify the model, we can formally write down the likelihood function, i.e.,
the probability of the data given the assumed model. This is generally a function
of the (unknown) parameters, and the value of the function would vary according
to the values of the parameters. Thus, we can attempt to find the parameter values
that would maximize the value of this function (the likelihood) given data from
the model. Such a way of obtaining parameters is called the Maximum Likelihood
Estimate (MLE) as we’ve discussed previously. Sometimes, it is desirable to also
incorporate some additional knowledge (a prior belief) about the parameters that
we may have about a particular application. We can do this by using Bayesian
estimation of parameters, which seeks a compromise of maximizing the probability
of the observed data (maximum likelihood) and being consistent with the prior
belief that we impose.

In any case, once we have a generative model, we would be able to fit such a
model to our data and obtain the parameter values that can best explain the data.
These parameter values can then be taken as the output of our mining process.

Let’s follow these steps to design the simplest topic model for discovering a
topic from one document; we will examine many more complicated cases later.
The model is shown in Figure 17.10 where we see that we have decided to view a

342 Chapter 17 Topic Analysis

. Data: Document d = x1x2 . . . x|d|, xi ∈ V = {w1, . . . , wM} is a word

. Model: Unigram LMθ(= topic) : {θi = p(wi | θ)}, i = 1, . . . , M ; θ1 + . . . + θM = 1

. Likelihood function:

p(d | θ) = p(x1 | θ) × . . . × p(x|d| | θ)

= p(w1 | θ)c(w1,d) × . . . × p(wM | θ)c(wM ,d)

=
M∏
i=1

p(wi | θ)c(wi ,d) =
M∏
i=1

θ
c(wi ,d)

i

. ML estimate: (θ̂1, . . . , θ̂M) arg maxθ1, . . . ,θM
p(d | θ) = arg maxθ1, . . . ,θM

M∏
i=1

θ
c(wi ,d)

i

Figure 17.10 Unigram language model for discovering one topic.

document as a sequence of words. Each word here is denoted by xi. Our model is a
unigram language model, i.e., a word distribution that denotes the latent topic that
we hope to discover. Clearly, the model has as many parameters as the number of
words in our vocabulary, which is M in this case. For convenience, we will use θi to
denote the probability of word wi. According to our model, the probabilities of all
the words must sum to one:

∑M
i=1 θi = 1.

Next, we see that our likelihood function is the probability of generating this
whole document according to our model. In a unigram language model, we assume
independence in generating each word so the probability of the document equals
the product of the probability of each word in the document (the first line of the
equation for the likelihood function). We can rewrite this product into a slightly
different form by grouping the terms corresponding to the same word together so
that the product would be over all the distinct words in the vocabulary (instead of
over all the positions of words in the document), which is shown in the second line
of the equation for the likelihood function.

Since some words might have repeated occurrences, when we use a product over
the unique words we must also incorporate the count of a word wi in document
d, which is denoted by c(wi , d). Although the product is taken over the entire
vocabulary, it is clear that if a word did not occur in the document, it would have a
zero count (c(wi , d) = 0), and that corresponding term would be essentially absent
in the formula, thus the product is still essentially over the words that actually
occurred in the document. We often prefer such a form of the likelihood function
where the product is over the entire vocabulary because it is convenient for deriving
formulas for parameter estimation.

17.3 Mining One Topic from Text 343

Maximize p(d | θ): (θ̂1, . . . , θ̂M) = arg maxθ1, . . . ,θM
p(d | θ) = arg maxθ1, . . . ,θM

M∏
i=1

θ
c(wi ,d)

i

Max. Log-Likelihood: (θ̂1, . . . , θ̂M) = arg maxθ1, . . . ,θM
log[p(d | θ)] = arg maxθ1, . . . ,θM

M∑
i=1

c(wi , d) log θi

Subject to constraint:
M∑
i=1

θi = 1 Use Lagrange multiplier approach

Lagrange function: f (θ | d) =
M∑
i=1

c(wi , d) log θi + λ

(
M∑
i=1

θi − 1

)

∂f (θ | d)

∂θi

= c(wi , d)

θi

+ λ = 0 → θi = − c(wi , d)

λ

M∑
i=1

− c(wi , d)

λ
= 1 → λ = −

M∑
i=1

c(wi , d) → θ̂t = p(wt | θ̂) = x(wt , d)∑M
i=1 c(wi , d)

= c(wt , d)

| d |

Figure 17.11 Computation of a maximum likelihood estimate for a unigram language model.

Now that we have a well defined likelihood function, we will attempt to find
the parameter values (i.e., word probabilities) that maximize this likelihood func-
tion. Let’s take a look at the maximum likelihood estimation problem more closely
in Figure 17.11. The first line is the original optimization problem of finding the
maximum likelihood estimate. The next line shows an equivalent optimization
problem with the log-likelihood. The equivalence is due to the fact that the log-
arithm function results in a monotonic transformation of the original likelihood
function and thus does not affect the solution of the optimization problem. Such
a transformation is purely for mathematical convenience because after the loga-
rithm transformation our function will become a sum instead of product; the sum
makes it easier to take the derivative, which is often needed for finding the optimal
solution of this function.

Although simple, this log-likelihood function reflects some general characteris-
tics of a log-likelihood function of some more complex generative models.

. The sum is over all the unique data points (the words in the vocabulary).

. Inside the sum, there’s a count of each unique data point, i.e., the count of
each word in the observed data, which is multiplied by the logarithm of the
probability of the particular unique data point.

344 Chapter 17 Topic Analysis

At this point, our problem is a well-defined mathematical optimization prob-
lem where the goal is to find the optimal solution of a constrained maximization
problem. The objective function is the log-likelihood function and the constraint is
that all the word probabilities must sum to one. How to solve such an optimization
problem is beyond the scope of this book, but in this case, we can obtain a simple
analytical solution by using the Lagrange multiplier approach. This is a commonly
used approach, so we provide some detail on how it works in Figure 17.11.

We will first construct a Lagrange function, which combines our original ob-
jective function with another term that encodes our constraint with the Lagrange
multiplier, denoted by λ, introducing an additional parameter. It can be shown that
the solution to the original constrained optimization problem is the same as the
solution to the new (unconstrained) Lagrange function.

Since there is no constraint involved any more, it is straightforward to solve this
optimization problem by taking partial derivatives with respect to all the parame-
ters and setting all of them to zero, obtaining an equation for each parameter.1 We
thus have, in total, M + 1 linear equations, corresponding to the M word probability
parameters and λ. Note that the equation for the Lagrange multiplier λ is precisely
our original constraint. We can easily solve this system of linear equations to obtain
the Maximum Likelihood estimate of the unigram language model as

p(wi | θ̂) = c(wi , d)∑M
j=1 c(wj , d)

= c(wi , d)

|d| . (17.3)

This has a very meaningful interpretation: the estimated probability of a word is
the count of each word normalized by the document length, which is also a sum of
all the counts of words in the document. This estimate mostly matches our intuition
in order to maximize the likelihood: words observed more often “deserve” higher
probabilities, and only words observed are “allowed” to have non-zero probabilities
(unseen words should have a zero probability). In general, maximum likelihood
estimation tends to result in a probability estimated as normalized counts of the
corresponding event so that the events observed often would have a higher proba-
bility and the events not observed would have zero probability.

While we have obtained an analytical solution to the maximum likelihood esti-
mate in this simple case, such an analytical solution is not always possible; indeed,
it is often impossible. The optimization problem of the MLE can often be very

1. Zero derivatives are a necessary condition for the function to reach an optimum, but not
sufficient. However, in this case, we have only one local optimum, thus the condition is also
sufficient.

17.3 Mining One Topic from Text 345

p(w|θ)

the 0.031
a 0.018
…
text 0.04
mining 0.035
association 0.03
clustering 0.005
computer 0.0009
…
food 0.000001
…

Text mining
paper

d
Can we get rid of these
common words?

Figure 17.12 Common words dominate the estimated unigram language model.

complicated, and numerical optimization algorithms would generally be needed
to solve the problem.

What would the topic discovered from a document look like? Let’s imagine the
document is a text mining paper. In such a case, the estimated unigram language
model (word distribution) may look like the distribution shown in Figure 17.12. On
the top, you will see the high probability words tend to be those very common words,
often function words in English. This will be followed by some content words that
really characterize the topic well like text and mining. In the end, you also see there
is a small probability of words that are not really related to the topic but might
happen to be mentioned in the document.

As a topic representation, such a distribution is not ideal because the high prob-
ability words are function words, which do not characterize the topic. Giving com-
mon words high probabilities is a direct consequence of the assumed generative
model, which uses one distribution to generate all the words in the text. How can
we improve our generative model to down-weight such common words in the es-
timated word distribution for our topic? The answer is that we can introduce a
second background word distribution into the generative model so that the com-
mon words can be generated from this background model, and thus the topic word
distribution would only need to generate the content-carrying topical words. Such a
model is called a mixture model because multiple component models are “mixed”
together to generate data. We discuss it in detail in the next section.

17.3.2 Adding a Background Language Model
In order to solve the problem of assigning highest probabilities to common words
in the estimated unigram language model based on one document, it would be

346 Chapter 17 Topic Analysis

useful to think about why we end up having this problem. It is not hard to see that
the problem is due to two reasons. First, these common words are very frequent
in our data, thus any maximum likelihood estimator would tend to give them high
probabilities. Second, our generative model assumes all the words are generated
from one single unigram language model. The ML estimate thus has no choice
but to assign high probabilities to such common words in order to maximize the
likelihood.

Thus, in order to get rid of the common words, we must design a different gen-
erative model where the unigram language model representing the topic doesn’t
have to explain all the words in the text data. Specifically, our target topic unigram
language model should not have to generate the common words. This further sug-
gests that we must introduce another distribution to generate these common words
so that we can have a complete generative model for all the words in the document.
Since we intend for this second distribution to explain the common words, a natu-
ral choice for this distribution is the background unigram language model. We thus
have a mixture model with two component unigram language models, one being
the unknown topic that we would like to discover, and one being a background
language model that is fixed to assign high probabilities to common words.

In Figure 17.13, we see that the two distributions can be mixed together to
generate the text data, with the background model generates common words while
the topic language model to generate content-bearing words in the document.
Thus, we can expect the discovered (learned) topic unigram language model to

Topic: θd

Background (topic) θB

p(w|θd) p(θd) = 0.5

p(θd) + p(θB) = 1

p(θB) = 0.5
p(w|θB)

…
text 0.04
mining 0.035
association 0.03
clustering 0.005
…
the 0.000001

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006
…

Text mining
paper

Topic choice

d

Figure 17.13 A two-component mixture model with a background component model.

17.3 Mining One Topic from Text 347

assign high probabilities to such content-bearing words rather than the common
function words in English.

The assumed process for generating a word with such a mixture model is just
slightly different from the generation process of our simplest unigram language.
Since we now have two distributions, we have to decide which distribution to
use when we generate the word, but each word will still be a sample from one
of the two distributions. The text data are still generated in the same way, by
generating one word at a time. More specifically, when we generate a word, we
first decide which of the two distributions to use. This is controlled by a new
probability distribution over the choices of the component models to use (two
choices in our case), including specifically the probability of θd (using the unknown
topic model) and the probability of θB (using the known background model). Thus,
p(θd) + p(θB) = 1.

In the figure, we see that both p(θd) and p(θB) are set to 0.5. This means that we
can imagine flipping a fair coin to decide which distribution to use, although in
general these probabilities don’t have to be equal; one topic could be more likely
than another.

The process of generating a word from such a mixture model is as follows. First,
we flip a biased coin which would show up as heads with probability p(θd) (and
thus as tails with probability p(θB) = 1 − p(θd)) to decide which word distribution
to use. If the coin shows up as heads, we would use θd ; otherwise, θB. We will use
the chosen word distribution to generate a word. This means if we are to use θd ,
we would sample a word using p(w | θd), otherwise using p(w | θB), as illustrated in
Figure 17.13.

We now have a generative model that has some uncertainty associated with the
use of which word distribution to generate a word. If we treat the whole generative
model as a black box, the model would behave very similarly to our simplest topic
model where we only use one word distribution in that the model would specify
a distribution over sequences of words. We can thus examine the probability of
observing any particular word from such a mixture model, and compute the prob-
ability of observing a sequence of words.

Let’s assume that we have a mixture model as shown in Figure 17.13 and consider
two specific words, the and text. What’s the probability of observing a word like
the from the mixture model? Note that there are two ways to generate the, so the
probability is intuitively a sum of the probability of observing the in each case.
What’s the probability of observing the being generated using the background
model? In order for the to be generated in this way, we must have first chosen
to use the background model, and then obtained the word the when sampling

348 Chapter 17 Topic Analysis

P(“the”) = p(θd)p(“the” | θd) + p(θB)p(“the” | θB)

= 0.5 × 0.000001 + 0.5 × 0.03

P(“text”) = p(θd)p(“text” | θd) + p(θB)p(“text” | θB)

= 0.5 × 0.04 + 0.5 × 0.000006

Figure 17.14 Probability of the and text.

a word from the background language model p(w | θB). Thus, the probability of
observing the from the background model is p(θB)p(the | θB), and the probability
of observing the from the mixture model regardless of which distribution we use
would be p(θB)p(the | θB) + p(θd)p(the | θd), as shown in Figure 17.14, where we
also show how to compute the probability of text.

It is not hard to generalize the calculation to compute the probability of observ-
ing any word w from such a mixture model, which would be

p(w) = p(θB)p(w | θB) + p(w | θd)p(θd). (17.4)

The sum is over the two different ways to generate the word, corresponding to us-
ing each of the two distributions. Each term in the sum captures the probability of
observing the word from one of the two distributions. For example, p(θB)p(w | θB)

gives the probability of observing word w from the background language model.
The product is due to the fact that in order to observe word w, we must have (1) de-
cided to use the background distribution (which has the probability of p(θB)), and
(2) obtained word w from the distribution θB (which has the probability of p(w | θB)).
Both events must happen in order to observe word w from the background distri-
bution, thus we multiply their probabilities to obtain the probability of observing
w from the background distribution. Similarly, p(θd)p(w | θd) gives the probability
of observing word w from the topic word distribution. Adding them together gives
us the total probability of observing w regardless which distribution has actually
been used to generate the word.

Such a form of likelihood actually reflects some general characteristics of the
likelihood function of any mixture model. First, the probability of observing a
data point from a mixture model is a sum over different ways of generating the
word, each corresponding to using a different component model in the mixture
model. Second, each term in the sum is a product of two probabilities: one is the
probability of selecting the component model corresponding to the term, while

17.3 Mining One Topic from Text 349

the other is the probability of actually observing the data point from that selected
component model. Their product gives the probability of observing the data point
when it is generated using the corresponding component model, which is why the
sum would give the total probability of observing the data point regardless which
component model has been used to generate the data point. As will be seen later,
more sophisticated topic models tend to use more than two components, and their
probability of generating a word would be of the same form as we see here except
that there are more than two products in the sum (more precisely as many products
as the number of component models).

Once we write down the likelihood function for one word, it is very easy to see that
as a whole, the mixture model can be regarded as a single word distribution defined
in a somewhat complicated way. That is, it also gives us a probability distribution
over words as defined above. Thus, conceptually the mixture model is yet another
generative model that also generates a sequence of words by generating each word
independently. This is the same as the case of a simple unigram language model,
which defines a distribution over words by explicitly specifying the probability of
each word.

The main idea of a mixture model is to group multiple distributions together as
one model, as shown in Figure 17.15, where we draw a box to “encapsulate” the two
distributions to form a single generative model. When viewing the whole box as one
model, we can easily see that it’s just like any other generative model that would
give us the probability of each word. However, how this probability is determined
in such a mixture model is quite different from when we have just one unigram
language model.

w

θd

θB

p(w|θd) p(θd) = 0.5

p(θd) + p(θB) = 1

p(θB) = 0.5
p(w|θB)

text 0.04
mining 0.035
association 0.03
clustering 0.005
…
the 0.000001

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006

Topic choice

Mixture model

“the”?

“text”?

Figure 17.15 The idea of a mixture language model.

350 Chapter 17 Topic Analysis

It’s often useful to examine some special cases of a model as such an exercise can
help interpret the model intuitively and reveal relations between simpler models
and a more complicated model. In this case, we can examine what would happen
if we set the probability of choosing the background component model to zero. It
is easy to see that in such a case, the term corresponding to the background model
would disappear from the sum, and the mixture model would degenerate to the
special case of just one distribution characterizing the topic to be discovered. In
this sense, the mixture model is more general than the previous model where we
have just one distribution, which can be covered as a special case. Naturally, our
reason for using a mixture model is to enforce a non-zero probability of choosing
the background language model so that it can help explain the common words in
the data and allow our topic word distribution to be more concentrated on content
words.

Once we write down the likelihood function, the next question is how to esti-
mate the parameters. As in the case of the single unigram language model, we
can use any method (e.g., the maximum likelihood estimator) to estimate the pa-
rameters, which can then be regarded as the knowledge that we discover from
the text.

. Data: Document d

. Mixture Model: parameters � = ({p(w | θd)}, {p(w | θB)}, p(θB), p(θd))

Two unigram LMs: θd (the topic of d); θB (background topic)

Mixing weight (topic choice): p(θd) + p(θB) = 1

. Likelihood function:

p(d | �) =
|d|∏
i=1

p(xi | �) =
|d|∏
i=1

[p(θd)p(xi | θd) + p(θB)p(xi | θB)]

=
M∏
i=1

[p(θd)p(wi | θd) + p(θB)p(wi | θB)]c(w ,d)

. ML Estimate: �∗ = arg max� p(d | �)

Subject to
M∑
i=1

p(wi | θd) =
M∑
i=1

p(wi | θB) = 1 p(θd) + p(θB) = 1

Figure 17.16 Summary of a two-component mixture model.

17.3 Mining One Topic from Text 351

What parameters do we have in such a two-component mixture model? In Fig-
ure 17.16, we summarize the mixture of two unigram language models, list all the
parameters, and illustrate the parameter estimation problem. First, our data is just
one document d, and the model is a mixture model with two components. Second,
the parameters include two unigram language models and a distribution (mixing
weight) over the two language models. Mathematically, θd denotes the topic of doc-
ument d while θB represents the background word distribution, which we can set
to a fixed word distribution with high probabilities on common words. We denote
all the parameters collectively by �. (Can you see how many parameters exactly we
have in total?)

The figure also shows the derivation of the likelihood function. The likelihood
function is seen to be a product over all the words in the document, which is exactly
the same as in the case of a simple unigram language model. The only difference
is that inside the product, it’s now a sum instead of just one probability as in the
simple unigram language model. We have this sum due to the mixture model where
we have an uncertainty in using which model to generate a data point. Because of
this uncertainty, our likelihood function also contains a parameter to denote the
probability of choosing each particular component distribution. The second line of
the equation for the likelihood function is just another way of writing the product,
which is now a product over all the unique words in our vocabulary instead of over
all the positions in the document as in the first line of the equation.

We have two types of constraints: one is that all the word distributions must sum
to one, and the other constraint is that the probabilities of choosing each topic
must sum to one. The maximum likelihood estimation problem can now be seen
as a constrained optimization problem where we seek parameter values that can
maximize the likelihood function and satisfy all the constraints.

17.3.3 Estimation of a mixture model
In this section, we will discuss how to estimate the parameters of a mixture model.
We will start with the simplest scenario where one component (the background)
is already completely known, and the topic choice distribution has an equal prob-
ability of choosing either the background or the topic word distribution. Our goal
is to estimate the unknown topic word distribution where we hope to not see com-
mon words with high probabilities. A main assumption is that those common
words are generated using the background model, while the more discriminative
content-bearing words are generated using the (unknown) topic word distribution,

352 Chapter 17 Topic Analysis

θd

θB

p(w|θd)
p(θd) = 0.5

p(θd) + p(θB) = 1

p(θB) = 0.5
p(w|θB)

text 0.04
mining 0.035
association 0.03
clustering 0.005
…
the 0.000001

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006

Topic choice

Text mining paper

d

… text mining …

is … clustering …

we … Text … the

Figure 17.17 A mixture language model to factor out background words.

as illustrated in Figure 17.17. This is also the scenario that we used to motivate the
use of the mixture model.

Figure 17.18 illustrates such a scenario. In this scenario, the only parameters
unknown would be the topic word distribution p(w | θd). Thus, we have exactly the
same number of parameters to estimate as in the case of a single unigram language
model. Note that this is an example of customizing a general probabilistic model
so that we can embed an unknown variable that we are interested in computing,
while simplifying other parts of the model based on certain assumptions that we
can make about them. That is, we assume that we have knowledge about other
variables. Setting the background model to a fixed word distribution based on the
maximum likelihood estimate of a unigram language model of a large sample of
English text is not only feasible, but also desirable since our goal of designing
such a generative model is to factor out the common words from the topic word
distribution to be estimated. Feeding the model with a known background word
distribution is a powerful technique to inject our knowledge about what words are
counted as noise (stop words in this case). Similarly, the parameter p(θB) can also be
set based on our desired percentage of common words to factor out; the larger p(θB)

is set, the more common words would be removed from the topic word distribution.
It’s easy to see that if p(θB) = 0, then we would not be able to remove any common
words as the model degenerates to the simple case of using just one distribution
(to explain all the words).

Note that we could have assumed that both θB and θd are unknown, and we can
also estimate both by using the maximum likelihood estimation, but in such a case,
we would no longer be able to guarantee that we will obtain a distribution θB that

17.3 Mining One Topic from Text 353

θd

θB

p(θd) = 0.5

p(θd) + p(θB) = 1

p(θB) = 0.5

text ?
mining ?
association ?
clustering ?
…
the ?

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006

Topic
choiced

… text mining …

is … clustering …

we … Text … the

Would the ML estimate demote
background words in θd?

Adjust θd to maximize p(d|�)
(all other parameters are known)

Figure 17.18 Estimation of one topic language model.

assigns high probabilities to common words. For our application scenario (i.e.,
factoring out common words), it is more appropriate to pre-set the background
word distribution to bias the model toward allocating the common words to the
background word distribution, and thus allow the topic word distribution to focus
more on the content words as we will further explain.

If we view the mixture model in Figure 17.18 as a black box, we would notice
that it actually now has exactly the same number of parameters (indeed, the same
parameters) as the simplest single unigram language model. However, the mix-
ture model gives us a different likelihood function which intuitively requires θd to
work together optimally with the fixed background model θB to best explain the ob-
served document. It might not be obvious why the constraint of “working together”
with the given background model would have the effect of factoring out the com-
mon words from θd as it would require understanding the behavior of parameter
estimation in the case of a mixture model, which we explain in the next section.

17.3.4 Behavior of a Mixture Model
In order to understand some interesting behaviors of mixture models, we take

a look at a very simple case, as illustrated in Figure 17.19. Although the example is
very simple, the observed patterns here actually are applicable to mixture models
in general.

Let’s assume that the probability of choosing each of the two models is exactly
the same. That is, we will flip a fair coin to decide which model to use. Furthermore,
we will assume that there are precisely two words in our vocabulary: the and text.

354 Chapter 17 Topic Analysis

θd

θB

p(θd) = 0.5

p(θB) = 0.5

text ?
the ?

the 0.9
text 0.1

d = text the

Note that p(“text”|θd) + p(“the”|θd) = 1

How can we set p(“text”|θd) and p(“the”|θd) to maximize it?

Likelihood:

 P(“text”) = p(θd)p(“text”|θd) + p(θB)p(“text”|θB)
 = 0.5 * p(“text”|θd) + 0.5 * 0.1

 P(“the”) = 0.5 * p(“the”|θd) + 0.5 * 0.9

p(d|�) = p(“text”|�)p(“the”|�)

 = [0.5 * p(“text”|θd) + 0.5 * 0.1] ×
 [0.5 * p(“the”|θd) + 0.5 * 0.9]

Figure 17.19 Illustration of behavior of mixture model.

Obviously this is a naive oversimplification of the actual text, but it’s useful to ex-
amine the behavior in such a special case. We further assume that the background
model gives probability of 0.9 to the and 0.1 to text.

We can write down the likelihood function in such a case as shown in Fig-
ure 17.19. The probability of the two-word document is simply the product of the
probability of each word, which is itself a sum of the probability of generating the
word with each of the two distributions. Since we already know all the parameters
except for the θd , the likelihood function has just two unknown variables, p(the | θd)

and p(text | θd). Our goal of computing the maximum likelihood estimate is to find
out for what values of these two probabilities the likelihood function would reach
its maximum.

Now the problem has become one to optimize a very simple expression with two
variables as shown in Figure 17.20. Note that the two probabilities must sum to
one, so we have to respect this constraint. If there were no constraint, we would
have been able to set both probabilities to their maximum value (which would be
1.0) to maximize the likelihood expression. However, we can’t do this because we
can’t give both words a probability of one, or otherwise they would sum to 2.0.

How should we allocate the probability between the two words? As we shift
probability mass from one word to the other, it would clearly affect the value of the
likelihood function. Imagine we start with an even allocation between the and text,
i.e., each would have a probability of 0.5. We can then imagine we could gradually
move some probability mass from the to text or vice versa. How would such a change
affect the likelihood function value?

17.3 Mining One Topic from Text 355

θd

θB

p(θd) = 0.5

p(θB) = 0.5

text ?
the ?

the 0.9
text 0.1

d = text the

Note that p(“text”|θd) + p(“the”|θd) = 1

Behavior 1: if p(w1|θB) > p(w2|θB), then p(w1|θd) < p(w2|θd)

→ p(“text”|θd) = 0.9 >> p(“the”|θd) = 0.1!

If x + y = constant, then xy reaches maximum when x = y

p(d|�) = p(“text”|�)p(“the”|�)

 = [0.5 * p(“text”|θd) + 0.5 * 0.1] ×
 [0.5 * p(“the”|θd) + 0.5 * 0.9]

0.5 * p(“text”|θd) + 0.5 * 0.1 = 0.5 * p(“the”|θd) + 0.5 * 0.9

Figure 17.20 Behavior of a mixture model: competition of the two component models.

If you examine the formula carefully, you might intuitively feel that we want to
set the probability of text to be somewhat larger than the, and this intuition can
indeed be supported by a mathematical fact: when the sum of two variables is a
constant, their product would reach the maximum when the two variables have the
same value.

In our case, the sum of the two terms in the product is

0.5 . p(text | θd) + 0.5 . 0.1 + 0.5 . p(the | θd) + 0.5 . 0.9 = 1.0,

so their product reaches maximum when

0.5 . p(text | θd) + 0.5 . 0.1 = 0.5 . p(the | θd) + 0.5 . 0.9.

Plugging in the constraint p(text | θd) + p(the | θd) = 1, we can easily obtain the
solution p(text | θd) = 0.9 and p(the | θd) = 0.1.

Therefore, the probability of text is indeed much larger than the probability of
the, effectively factoring out this common word. Note that this is not the case when
we have just one distribution where the has a much higher probability than text.
The effect of reducing the estimated probability of the is clearly due to the use of the
background model, which assigned very high probability to the and low probability
to text.

Looking into the process of reaching this solution, we see that the reason why
text has a higher probability than the is because its corresponding probability by
the background model p(text | θB) is smaller than that of the; had the background
model given the a smaller probability than text, our solution would give the a

356 Chapter 17 Topic Analysis

higher probability than text in order to ensure that the overall probability given
by the two models working together is the same for text and the. Thus, the ML
estimate tends to give a word a higher probability if the background model gives
it a smaller probability, or more generally, if one distribution has given word w1 a
higher probability than w2, then the other distribution would give word w2 a higher
probability than word w1 so that the combined probability of w1 given by the two
distributions working together would be the same as that of w2. In other words, the
two distributions tend to give high probabilities to different words as if they try to
avoid giving the high probability to the same word.

In such a two-component mixture model, we see that the two distributions
will be collaborating to maximize the probability of the observed data, but they
are also competing on the words in the sense that they would tend to “bet” high
probabilities on different words to gain advantages in this competition. In order
to make their combined probability equal (so as to maximize the product in the
likelihood function), the probability assigned by θd must be higher for a word that
has a smaller probability given by the background model θB.

The general behavior we have observed here about a mixture model is that if
one distribution assigns a higher probability to one word than another, the other
distribution would tend to do the opposite; it would discourage other distributions
to do the same. This also means that by using a background model that is fixed to
assigning high probabilities to common (stop) words, we can indeed encourage
the unknown topical word distribution to assign smaller probabilities for such
common words so as to put more probability mass on those content words that
cannot be explained well by the background model.

Let’s look at another behavior of the mixture model in Figure 17.21 by examining
the response of the estimated probabilities to the data frequencies. In Figure 17.21,
we have shown a scenario where we’ve added more words to the document, specif-
ically, more the’s to the document. What would happen to the estimated p(w | θ) if
we keep adding more and more the’s to the document?

As we add more words to the document, we would need to multiply the likelihood
function by additional terms to account for the additional occurrences. In this
case, since all the additional terms are the, we simply need to multiply by the term
representing the probability of the. This obviously changes the likelihood function,
and thus also the solution of the ML estimation. How exactly would the additional
terms accounting for multiple occurrences of the change the ML estimate? The
solution we derived earlier, p(text | θd) = 0.9, is no longer optimal. How should we
modify this solution to make it optimal for the new likelihood function?

17.3 Mining One Topic from Text 357

d = text the

Behavior 2: high frequency words get higher p(w|θd)

What if we increase p(θB)?

→ p(“text”|θd) = 0.9 >> p(“the”|θd) = 0.1!

What is the optimal solution now? p(“text”|θd) > 0.1? or p(“the”|θd) < 0.1?

p(d|�) = [0.5 * p(“text”|θd) + 0.5 * 0.1]
 × [0.5 * p(“the”|θd) + 0.5 * 0.9]

p(d′|�) = [0.5 * p(“text”|θd) + 0.5 * 0.1]
 × [0.5 * p(“the”|θd) + 0.5 * 0.9]
 × [0.5 * p(“the”|θd) + 0.5 * 0.9]
 × [0.5 * p(“the”|θd) + 0.5 * 0.9]

 …

 × [0.5 * p(“the”|θd) + 0.5 * 0.9]

d′ =
text the
the the
the … the

Figure 17.21 Behavior of a mixture model: maximizing data likelihood.

One way to address this question is to take away some probability mass from one
word and add the probability mass to the other word, which would ensure that they
sum to one. The question is, of course, which word to have a reduced probability
and which word to have a larger probability. Should we make the probability of the
larger or that of text larger?

If you look at the formula for a moment, you might notice that the new likelihood
function (which is our objective function for optimization) is influenced more by
the than text, so any reduction of probability of the would cause more decrease of
the likelihood than the reduction of probability of text. Indeed, it would make sense
to take away some probability from text, which only affects one term, and add the
extra probability to the, which would benefit more terms in the likelihood function
(since the occurred many times), thus generating an overall effect of increasing
the value of the likelihood function. In other words, because the is repeated many
times in the likelihood function, if we increase its probability a little bit, it will have
substantial positive impact on the likelihood function, whereas a slight decrease of
probability of text will have a relatively small negative impact because it occurred
just once.

The analysis above reveals another behavior of the ML estimate of a mixture
model: high frequency words in the observed text would tend to have high prob-
abilities in all the distributions. Such a behavior should not be surprising at all
because—after all—we are maximizing the likelihood of the data, so the more a

358 Chapter 17 Topic Analysis

word occurs, the higher its overall probability should be. This is, in fact, a very gen-
eral phenomenon of all the maximum likelihood estimators. In our special case, if
a word occurs more frequently in the observed text data, it would also encourage
the unknown distribution θd to assign a somewhat higher probability to this word.

We can also use this example to examine the impact of p(θB), the probability of
choosing the background model. We’ve been so far assuming that each model is
equally likely, i.e., p(θB) = 0.5. But, you can again look at this likelihood function
shown in Figure 17.21 and try to picture what would happen to the likelihood
function if we increase the probability of choosing the background model.

It is not hard to notice that if p(θB) > 0.5 is set to a very large value, then all
the terms representing the probability of the would be even larger because the
background has a very high probability for the (0.9), and the coefficient in front
of 0.9, which was 0.5, would be even larger.

The consequence is that it is now less important for θd to increase the probability
mass for the even when we add more and more occurrences of the to the document.
This is because the overall probability of the is already very large (due to the large
p(θB) and large p(the | θB)), and the impact of increasing p(the | θd) is regulated
by the coefficient p(θd) which would be small if we make p(θB) very large. It would
be more beneficial for θd to ensure p(text | θd) to be high since text does not get
any help from the background model, and it must rely on θd to assign a high
probability. While high frequency words tend to get higher probabilities in the
estimated p(w | θd), the degree of increase of probability due to the increased
counts of a word observed in the document is regularized by p(θd) (or equivalently
p(θB)). The smaller p(θd) is, the less important for θd to respond to the increase
of counts of a word in the data. In general, the more likely a component is being
chosen in a mixture model, the more important it is for the component model to
assign higher probability values to these frequent words.

To summarize, we discussed the mixture model, the estimation problem of the
mixture model, and some general behaviors of the maximum likelihood estimator.
First, every component model attempts to assign high probabilities to high fre-
quent words in the data so as to collaboratively maximize the likelihood. Second,
different component models tend to bet high probabilities on different words in
order to avoid the “competition,” or waste of probability. This would allow them
to collaborate more efficiently to maximize the likelihood. Third, the probabil-
ity of choosing each component regulates the collaboration and the competition
between component models. It would allow some component models to respond
more to the change of frequency of a word in the data. We also discussed the special
case of fixing one component to a background word distribution, which can be es-
timated based on a large collection of English documents using the simplest single

17.3 Mining One Topic from Text 359

unigram language model to model the data. The behaviors of the ML estimate of
such a mixture model ensure that the use of a fixed background model in such a spe-
cialized mixture model can effectively factor out common words such as the in the
other topic word distribution, making the discovered topic more discriminative.

We may view our specialized mixture model as one where we have imposed a
very strong prior on the model parameter and we use Bayesian parameter estima-
tion. Our prior is on one of the two unigram language models and it requires that
this particular unigram LM must be exactly the same as a pre-defined background
language model. In general, Bayesian estimation would seek for a compromise
between our prior and the data likelihood, but in this case, we can assume that
our prior is infinitely strong, and thus there is essentially no compromise, hold-
ing one component model as constant (the same as the provided background
model). It is useful to point out that this mixture model is precisely the mix-
ture model for feedback in information retrieval that we introduced earlier in the
book.

17.3.5 Expectation-Maximization
The discussion of the behaviors of the ML estimate of the mixture model provides
an intuition about why we can use a mixture model to mine one topic from a docu-
ment with common words factored out through the use of a background model.
In this section, we further discuss how we can compute such an ML estimate.
Unlike the simplest unigram language model, whose ML estimate has an analyti-
cal solution, there is no analytical solution to the ML estimation problem for the
two-component mixture model even though we have exactly the same number of
parameters to estimate as a single unigram language model after we fix the back-
ground model and the choice probability of the component models (i.e., p(θd)). We
must use a numerical optimization algorithm to compute the ML estimate.

In this section, we introduce a specific algorithm for computing the ML esti-
mate of the two-component mixture model, called the Expectation-Maximization
(EM) algorithm. EM is a family of useful algorithms for computing the maximum
likelihood estimate of mixture models in general.

Recall that we have assumed both p(w | θB) and p(θB) are already given, so the
only “free” parameters in our model are p(w | θd) for all the words subject to the
constraint that they sum to one. This is illustrated in Figure 17.22. Intuitively, when
we compute the ML estimate, we would be exploring the space of all possible values
for the word distribution θd until we find a set of values that would maximize the
probability of the observed documents.

According to our mixture model, we can imagine that the words in the text data
can be partitioned into two groups. One group will be explained (generated) by

360 Chapter 17 Topic Analysis

θd

θB

p(w|θd)
p(θd) = 0.5

p(θd) + p(θB) = 1

p(θB) = 0.5

p(w|θB)

text ?
mining ?
association ?
clustering ?
…
the ?

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006

Topic choiced

d′

… text mining …

is … clustering …

we … Text … the

If we know which word is from which distribution …

p(wi|θd) =
c(w′, d′)

c(wi, d′)

∑
w′2V

Figure 17.22 Estimation of a topic when each word is known to be from a particular distribution.

the background model. The other group will be explained by the unknown topical
model (the topic word distribution). The challenge in computing the ML estimate
is that we do not know this partition due to the possibility of generating a word
using either of the two distributions in the mixture model.

If we actually know which word is from which distribution, computation of the
ML estimate would be trivial as illustrated in Figure 17.22, where d ′ is used to denote
the pseudo document that is composed of all the words in document d that are
known to be generated by θd , and the ML estimate of θd is seen to be simply the
normalized word frequency in this pseudo document d ′. That is, we can simply pool
together all the words generated from θd , compute the count of each word, and then
normalize the count by the total counts of all the words in such a pseudo document.
In such a case, our mixture model is really just two independent unigram language
models, which can thus be estimated separately based on the data points generated
by each of them.

Unfortunately, the real situation is such that we don’t really know which word
is from which distribution. The main idea of the EM algorithm is to guess (infer)
which word is from which distribution based on a tentative estimate of parameters,
and then use the inferred partitioning of words to improve the estimate of param-
eters, which, in turn, enables improved inference of the partitioning, leading to an
iterative hill-climbing algorithm to improve the estimate of the parameters until
hitting a local maximum. In each iteration, it would invoke an E-step followed by
an M-step, which will be explained in more detail.

17.3 Mining One Topic from Text 361

For now, let’s assume we have a tentative estimate of all the parameters. How can
we infer which of the two distributions a word has been generated from? Consider
a specific word such as text. Is it more likely from θd or θB? To answer this question,
we compute the conditional probability p(θd | text). The value of p(θd | text) would
depend on two factors.

. How often is θd (as opposed to θB) used to generate a word in general? This
probability is given by p(θd). If p(θd) is high, then we’d expect p(θd | text) to
be high.

. If θd is indeed chosen to generate a word, how likely would we observe text?
This probability is given by p(w | θd). If p(text | θd) is high, then we’d also
expect p(θd | text) to be high.

Our intuition can be rigorously captured by using Bayes’ rule to infer p(θd | text),
where we essentially compare the product p(θd)p(text | θd) with the product p(θB)

p(text | θB) to see whether text is more likely generated from θd or from θB. This is
illustrated in Figure 17.23.

The Bayesian inference involved here is a typical one where we have some prior
about how likely each of these two distributions is used to generate any word
(i.e., p(θd) and p(θB)). These are prior because they encode our belief about which
distribution before we even observe the word text; a prior that has very high p(θd)

would encourage us to lean toward guessing θd for any word. Such a prior is then

θd

θB

p(w|θd)
p(θd) = 0.5p(θd)p(“text”|θd)

p(θd) + p(θB) = 1

p(θB) = 0.5

p(w|θB)

text 0.04
mining 0.035
association 0.03
clustering 0.005
…
the 0.000001

Is “text” more likely
from θd or θB?

From θd (z = 0)?

Given all the parameters, infer the distribution a word is from …

p(θB)p(“text”|θB)

From θB (z = 1)?

p(z = 0|w = “text”) =

the 0.03
a 0.02
is 0.015
we 0.01
food 0.003
…
text 0.000006

Topic choice

p(θd)p(“text”|θd)
—

p(θd)p(“text”|θd) + p(θB)p(“text”|θB)

Figure 17.23 Inference of which distribution a word is from.

362 Chapter 17 Topic Analysis

updated by incorporating the data likelihood p(text | θd) and p(text | θB) so that we
would favor a distribution that gives text a higher probability.

In the example shown in Figure 17.23, our prior says that each of the two models
is equally likely; thus, it is a non-informative prior (one with no bias). As a result, our
inference of which distribution has been used to generate a word would solely be
based on p(w | θd) and p(w | θB). Since p(text | θd) is much larger than p(text | θB),
we can conclude that θd is much more likely the distribution that has been used to
generate text. In general, our prior may be biased toward a particular distribution.
Indeed, a heavily biased prior can even dominate over the data likelihood to essen-
tially dictate the decision. For example, imagine our prior says p(θB) = 0.99999999,
then our inference result would say that text is more likely generated by θB than by
θd even though p(text | θd) is much higher than p(text | θB), due to the very strong
prior. Bayes’ Rule provides us a principled way of combining the prior and data
likelihood.

In Figure 17.23, we introduced a binary latent variable z here to denote whether
the word is from the background or the topic. When z is 0, it means it’s from
the topic, θd ; when it’s 1, it means it’s from the background, θB. The posterior
probability p(z = 0 | w = text) formally captures our guess about which distribution
has been used to generate the word text, and it is seen to be proportional to the
product of the prior p(θd) and the likelihood p(text | θd), which is intuitively very
meaningful since in order to generate text from θd , we must first choose θd (as
opposed to θB), which is captured by p(θd), and then obtain word text from the
selected θd , which is captured by p(w | θd).

Understanding how to make such a Bayesian inference of which distribution has
been used to generate a word based on a set of tentative parameter values is very
crucial for understanding the EM algorithm. This is essentially the E-step of the
EM algorithm where we use Bayes’ rule to partition data and allocate all the data
points among all the component models in the mixture model.

Note that the E-step essentially helped us figure out which words have been
generated from θd (and equivalently, which words have been generated from θB)
except that it does not completely allocate a word to θd (or θB), but splits a word in
between the two distributions. That is, p(z = 0 | text) tells us what percent of the
count of text should be allocated to θd , and thus contribute to the estimate of θd .
This way, we will be able to collect all the counts allocated to θd , and renormalize
them to obtain a potentially improved estimate of p(w | θd), which is our goal. This
step of re-estimating parameters based on the results from the E-step is called the
M-step.

17.3 Mining One Topic from Text 363

With the E-step and M-step as the basis, the EM algorithm works as follows.
First, we initialize all the (unknown) parameters values randomly. This allows us
to have a complete specification of the mixture model, which further enables us
to use Bayes’ rule to infer which distribution is more likely to generate each word.
This prediction (i.e., E-step) essentially helps us (probabilistically) separate words
generated by the two distributions. Finally, we will collect all the probabilistically
allocated counts of words belonging to our topic word distribution and normalize
them into probabilities, which serve as an improved estimate of the parameters.
The process can then be repeated to gradually improve the parameter estimate
until the likelihood function reaches a local maximum. The EM algorithm can
guarantee reaching such a local maximum, but it cannot guarantee reaching a
global maximum when there are multiple local maxima. Due to this, we usually
repeat the algorithm multiple times with different initializations in practice, using
the run that gives the highest likelihood value to obtain the estimated parameter
values.

The EM algorithm is illustrated in Figure 17.24 where we see that a binary hidden
variable z has been introduced to indicate whether a word has been generated
from the background model (z = 1) or the topic model (z = 0). For example, the
illustration shows that the is generated from background, and thus the z value is
1.0, while text is from the topic, so its z value is 0. Note that we simply assumed
(imagined) the existence of such a binary latent variable associated with each word

p(n)(z = 0|w) = E-step
p(θd)p(n)(w|θd)

—
p(θd)p(n)(w|θd) + p(θB)p(w|θB)

p(n+1)(w|θd) =

How likely w is from θd

Initialize p(w|θd) with random values.
 Then iteratively improve it using E-step and M-step.
 Stop when likelihood doesn’t change.

The Expectation-Maximization (EM) Algorithm

the
paper
presents
a
text
mining
algorithm
for
clustering
…

Hidden variable:
z 2 [0, 1]

z

1
1
1
1
0
0
0
1
0
…

M-stepc(w, d)p(n)(z = 0|w)
—
∑

w′2V c(w′, d)p(n)(z = 0|w′)

Figure 17.24 The EM algorithm.

364 Chapter 17 Topic Analysis

token, but we don’t really observe these z values. This is why we referred to such a
variable as a hidden variable.

A main idea of EM is to leverage such hidden variables to simplify the computa-
tion of the ML estimate since knowing the values of these hidden variables makes
the ML estimate trivial to compute; we can pool together all the words whose z val-
ues are 0 and normalize their counts. Knowing z values can potentially help simplify
the task of computing the ML estimate, and EM exploits this fact by alternating the
E-step and M-step in each iteration so as to improve the parameter estimate in a
hill-climbing manner.

Specifically, the E-step is to infer the value of z for all the words, while the M-step
is to use the inferred z values to split word counts between the two distributions,
and use the allocated counts for θd to improve its estimation, leading to a new
generation of improved parameter values, which can then be used to perform a
new iteration of E-step and M-step to further improve the parameter estimation.

In the M-step, we adjust the count c(w, d) based on p(z = 0 | w) (i.e., probability
that the word w is indeed from θd) so as to obtain a discounted count c(w, d)p(z =
0 | w) which can be interpreted as the expected count of the event that word w is
generated from θd . Similarly, θB has its own share of the count, which is c(w, d)p(z =
1 | w) = c(w, d)[1 − p(z = 0 | w)], and we have

c(w, d)p(z = 0 | w) + c(w, d)p(z = 1 | w) = c(w, d), (17.5)

showing that all the counts of word w have been split between the two distributions.
Thus, the M-step is simply to normalize these discounted counts for all the words

to obtain a probability distribution over all the words, which can then be regarded as
our improved estimate of p(w | θd). Note that in the M-step, if p(z = 0 | w) = 1 for all
words, we would simply compute the simple single unigram language model based
on all the observed words (which makes sense since the E-step would have told us
that there is no chance that any word has been generated from the background).

In Figure 17.25, we further illustrate in detail what happens in each iteration of
the EM algorithm. First, note that we used superscripts in the formulas of the E-
step and M-step to indicate the generation of parameters. Thus, the M-step is seen
to use the n-th generation of parameters together with the newly inferred z values
to obtain a new (n + 1)th generation of parameters (i.e., pn+1(w | θd)). Second, we
assume the two component models (θd and θB) have equal probabilities; we also
assume that the background model word distribution is known (fixed as shown in
the third column of the table).

The computation of EM starts with preparation of relevant word counts. Here
we assume that we have just four words, and their counts in the observed text data

17.3 Mining One Topic from Text 365

E-step: p(n)(z = 0 | w) = p(θd)p
(n)(w | θd)

p(θd)p
(n)(w | θd) + p(θB)p(w | θB)

M-step: p(n+1)(w | θd) = c(w, d)p(n)(z = 0 | w)∑
w′∈V c(w′, d)p(n)(z = 0 | w′)

Assume p(θd) = p(θB) = 0.5 and p(w | θB) is known.

Iteration 1 Iteration 2 Iteration 3

Word No. p(w | θB) P (w | θ) p(z = 0 | w) P (w | θ) P (z = 0 | w) P (w | θ) P (z = 0 | w)

The 4 0.5 0.25 0.33 0.20 0.29 0.18 0.26

Paper 2 0.3 0.25 0.45 0.14 0.32 0.10 0.25

Text 4 0.1 0.25 0.71 0.44 0.81 0.50 0.93

Mining 2 0.1 0.25 0.71 0.22 0.69 0.22 0.69

Log-Likelihood −16.96 −16.13 −16.02

Likelihood increasing −→

Figure 17.25 An example of EM computation.

are shown in the second column of the table. The EM algorithm then initializes all
the parameters to be estimated. In our case, we set all the probabilities to 0.25 in
the fourth column of the table.

In the first iteration of the EM algorithm, we will apply the E-step to infer
which of the two distributions has been used to generate each word, i.e., to com-
pute p(z = 0 | w) and p(z = 1 | w). We only showed p(z = 0 | w), which is needed
in our M-step (p(z = 1 | w) = 1 − p(z = 0 | w)). Clearly, p(z = 0 | w) has different
values for different words, and this is because these words have different prob-
abilities in the background model and the initialized θd . Thus, even though the
two distributions are equally likely (by our prior) and our initial values for p(w | θd)

form a uniform distribution, the inferred p(z = 0 | w) would tend to give words
with smaller probabilities if p(w | θB) give them a higher probability. For example,
p(z = 0 | text) > p(z = 0 | the).

Once we have the probabilities of all these z values, we can perform the M-step,
where these probabilities would be used to adjust the counts of the corresponding
words. For example, the count of the is 4, but since p(z = 0 | the) = 0.33, we would
obtain a discounted count of the, 4 × 0.33, when estimating p(the | θd) in the M-step.
Similarly, the adjusted count for text would be 4 × 0.71. After the M-step, p(text | θd)

would be much higher than p(the | θd) as shown in the table (shown in the first

366 Chapter 17 Topic Analysis

column under Iteration 2). Those words that are believed to have come from the
topic word distribution θd according to the E-step would have a higher probability.

This new generation of parameters would allow us to further adjust the inferred
latent variable or hidden variable values, leading to a new generation of probabili-
ties for the z values, which can be fed into another M-step to generate yet another
generation of potentially improved estimate of θd .

In the last row of the table, we show the log-likelihood after each iteration. Since
each iteration would lead to a different generation of parameter estimates, it would
also give a different value for the log-likelihood function. These log-likelihood val-
ues are all negative because the probability is between 0 and 1, which becomes a
negative value after the logarithm transformation. We see that after each iteration,
the log-likelihood value is increasing, showing that the EM algorithm is iteratively
improving the estimated parameter values in a hill-climbing manner. We will pro-
vide an intuitive explanation of why it converges to a local maximum later.

For now, it is worth pointing out that while the main goal of our EM algorithm
is to obtain a more discriminative word distribution to represent the topic that we
hope to discover, i.e., p(w | θd), the inferred p(z = 0 | w) after convergence is also
meaningful and may sometimes be a useful byproduct. Specifically, these are the
probabilities that a word is believed to have come from the topic distribution, and
we can add them up to obtain an estimate of to what extent the document has cov-
ered background vs. content, or to what extent the content of the document deviates
from a “typical” background document. This would give us a single numerical score
for each document, so we can then use the score to compare different documents
or different subsets of documents (e.g., those associated with different authors or
from different sources). Thus, our simple two-component mixture model can not
only help us discover a single topic from the document, but also provide a useful
measure of “typicality” of a document which may be useful in some applications.

Next, we provide some intuitive explanation why the EM algorithm will converge
to a local maximum in Figure 17.26. Here we show the parameter θd on the X-axis,
and the Y-axis denotes the likelihood function value. This is an over-simplification
since θd is an M-dimensional vector, but the one-dimensional view makes it much
easier to understand the EM algorithm. We see that, in general, the original like-
lihood function (as a function of θd) may have multiple local maxima. The goal of
computing the ML estimate is to find the global maximum, i.e., the θd value that
makes the likelihood function reach it global maximum.

The EM algorithm is a hill-climbing algorithm. It starts with an initial (random)
guess of the optimal parameter value, and then iteratively improves it. The picture
shows the scenario of going from iteration n to iteration n + 1. At iteration n, the

17.3 Mining One Topic from Text 367

θ

EM as Hill-Climbing → Converse to Local Maximum

Likelihood p(d|θ)

Original likelihood
Lower bound of likelihood function

M-step = maximizing the lower bound

E-step = computing the lower bound

Next guess p(n+1)(w|θd)

Current guess p(n)(w|θd)

Figure 17.26 EM as hill-climbing for optimizing likelihood.

current guess of the parameter value is p(n)(w | θd), and it is seen to be non-optimal
in the picture. In the E-step, the EM algorithm (conceptually) computes an auxiliary
function which lower bounds the original likelihood function. Lower bounding
means that for any given value of θd , the value of this auxiliary function would
be no larger than that of the original likelihood function. In the M-step, the EM
algorithm finds an optimal parameter value that would maximize the auxiliary
function and treat this parameter value as our improved estimate, p(n+1)(w | θd).
Since the auxiliary function is a lower bound of the original likelihood function,
maximizing the auxiliary function ensures the new parameter to also have a higher
value according to the original likelihood function unless it has already reached a
local maximum, in which case, the optimal value maximizing the auxiliary function
is also a local maximum of the original likelihood function. This explains why the
EM algorithm is guaranteed to converge to a local maximum. You might wonder
why we don’t work on finding an improved parameter value directly on the original
likelihood function. Indeed, it is possible to do that, but in the EM algorithm, the
auxiliary function is usually much easier to optimize than the original likelihood
function, so in this sense, it reduces the problem into a somewhat simpler one.
Although the auxiliary function is generally easier to optimize, it does not always
have an analytical solution, which means that the maximization of the auxiliary
function may itself require another iterative process, which would be embedded in
the overall iterative process of the EM algorithm.

In our case of the simple mixture model, we did not explicitly compute this
auxiliary function in the E-step because the auxiliary function is very simple and

368 Chapter 17 Topic Analysis

as a result, our M-step has an analytical solution, thus we were able to bypass the
explicit computation of this auxiliary function and go directly to find a re-estimate
of the parameters. Thus in the E-step, we only computed a key component in the
auxiliary function, which is the probability that a word has been generated from
each of the two distributions, and our M-step directly gives us an analytical solution
to the problem of optimizing the auxiliary function, and the solution directly uses
the values obtained from the E-step.

The EM algorithm has many applications. For example, in general, parameter es-
timation of all mixture models can be done by using the EM algorithm. The hidden
variables introduced in a mixture model often indicate which component model
has been used to generate a data point. Thus, once we know the values of these
hidden variables, we would be able to partition data and identify the data points
that are likely generated from any particular distribution, thus facilitating estima-
tion of component model parameters. In general, when we apply the EM algorithm,
we would augment our data with supplementary unobserved hidden variables to
simplify the estimation problem. The EM algorithm would then work as follows.
First, it would randomly initialize all the parameters to be estimated. Second, in
the E-step, it would attempt to infer the values of the hidden variables based on the
current generation of parameters, and obtain a probability distribution of hidden
variables over all possible values of these hidden variables. Intuitively, this is to take
a good guess of the values of the hidden variables. Third, in the M-step, it would
use the inferred hidden variable values to compute an improved estimate of the
parameter values. This process is repeated until convergence to a local maximum
of the likelihood function. Note that although the likelihood function is guaran-
teed to converge to a local maximum, there is no guarantee that the parameters to
be estimated always have a stable convergence to a particular set of values. That is,
the parameters may oscillate even though the likelihood is increasing. Only if some
conditions are satisfied would the parameters be guaranteed to converge (see Wu
1983).

17.4 Probabilistic Latent Semantic Analysis
In this section, we introduce probabilistic latent semantic analysis (PLSA), the most
basic topic model, with many applications. In short, PLSA is simply a generalization
of the two-component mixture model that we discussed earlier in this chapter to
discover more than one topic from text data. Thus, if you have understood the two-
component mixture model, it would be straightforward to understand how PLSA
works.

17.4 Probabilistic Latent Semantic Analysis 369

government 0.3
response 0.2
…

city 0.2
new 0.1
orleans 0.05
…

donate 0.1
relief 0.05
help 0.02
…

Topic θk

the 0.04
a 0.03
…

…

Blog article about “Hurricane Katrina”

[Criticisms of government response to the

hurricane primarily consisted of criticism of its

response to the approach of the storm and its

aftermath, specifically in the delayed response]

to the [flooding of New Orleans. … 80% of the

1.3 million residents of the greater New Orleans

metropolitan area evacuated] … [Over seventy

countries pledged monetary donations or other

assistance.] …

Many applications are possible if we
can “decode” the topics in text …

Background θB

Topic θ2

Topic θ1

Figure 17.27 A document as a sample of words from mixed topics.

As we mentioned earlier, the general task of topic analysis is to mine multiple
topics from text documents and compute the coverage of each topic in each doc-
ument. PLSA is precisely designed to perform this task. As in all topic models, we
make two key assumptions. First, we assume that a topic can be represented as
a word distribution (or more generally a term distribution). Second, we assume
that a text document is a sample of words drawn from a probabilistic model.
We illustrate these two assumptions in Figure 17.27, where we see a blog article
about Hurricane Katrina and some imagined topics, each represented by a word
distribution, including, e.g., a topic on government response (θ1), a topic on the
flood of the city of New Orleans (θ2), a topic on donation (θk), and a background
topic θB. The article is seen to contain words from all these distributions. Specif-
ically, we see there is a criticism of government response at the beginning of this
excerpt, which is followed by discussion of flooding of the city, and then a sen-
tence about donation. We also see background words mixed in throughout the
article.

The main goal of topic analysis is to try to decode these topics behind the text
(by segmenting them), and figure out which words are from which distribution
so that we can obtain both characterizations of all the topics in the text data
and the coverage of topics in each document. Once we can do these, they can
be directly used in many applications such as summarization, segmentation, and
clustering.

370 Chapter 17 Topic Analysis

sports 0.02
game 0.01
basketball 0.005
football 0.004
…

π11 π21 = 0% πN1 = 0%

π12 π22 πN2

π1k π2k πNk

θ1

travel 0.05
attraction 0.03
trip 0.01
…

science 0.04
scientist 0.03
spaceship 0.006
…

θ2

θk

…

…

Text data

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

i d minim veniam, quis nostrud exercitation ullamco laboris

i te irure dolor in

, quis nostrud exercitation ullamco laboris

si ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Doc 1

Output: {θ1, …, θk}, {πi1, …, πik}Input: C, k, V

30%

12%

8%

Doc 2 Doc N

Figure 17.28 Task of mining multiple topics in text.

The formal definition of mining multiple topics from text is illustrated in Fig-
ure 17.28. The input is a collection of text data, the number of topics, and a vocab-
ulary set. The output is of two types. One is topic characterization where each topic
is represented by θi, which is a word distribution. The other is the topic coverage for
each document πij which refers to the probability that document di covers topic θj .

Such a problem can be solved by using PLSA, a generalization of the simple two-
component mixture model to more than two components. Such a more generative
model is illustrated in Figure 17.29, where we also retain the background model
used in the two-component mixture model (which, if you recall, was designed to
discover just one topic). Different from the simple mixture model discussed earlier,
the model here includes k component models, each of which represents a distinct
topic and can be used to generate a word in the observed text data. Adding the
background model θB, we thus have a total of k + 1 component unigram language
models in PLSA.2

2. The original PLSA [Hofmann 1999] did not include a background language model, thus it gives
common words high probabilities in the learned topics if such common words are not removed
in the preprocessing stage.

17.4 Probabilistic Latent Semantic Analysis 371

government 0.3
response 0.2
…

city 0.2
new 0.1
orleans 0.05
…

donate 0.1
relief 0.05
help 0.02
…

Topic θk

the 0.04
a 0.03
…

…

…

Background θB

Topic θ2

Topic θ1

p(w|θB)

p(θB) = λB

1 – λB

Topic
choice

Generating Text with Multiple Topics: p(w) = ?

p(θk) = πd,k

p(θ2) = πd,2

p(θ1) = πd,1

p(w|θk)
W

p(w|θ2)

p(w|θ1) πd, i = 1
k

∑
i=1

Figure 17.29 Generating words from a mixture of multiple topics.

As in the case of the simple mixture model, the process of generating a word
still consists of two steps. The first is to choose a component model to use; this
decision is controlled by both a parameter λB (denoting the probability of choosing
the background model) and a set of πd , i (denoting the probability of choosing
topic θi if we decided not to use the background model). If we do not use the
background model, we must choose one from the k topics, which has the constraint∑k

i=1 πd , i = 1. Thus, the probability of choosing the background model is λB while
the probability of choosing topic θi is (1 − λB)πd , i.

Once we decide which component word distribution to use, the second step in
the generation process is simply to draw a word from the selected distribution,
exactly the same as in the simple mixture model.

As usual, once we design the generative model, the next step is to write down
the likelihood function. We ask the question: what’s the probability of observing a
word from such a mixture model? As in the simple mixture model, this probability
is a sum over all the different ways to generate the word; we have a total of k + 1
different component models, thus it is a sum of k + 1 terms, where each term
captures the probability of observing the word from the corresponding component
word distribution, which can be further written as the product of the probability

372 Chapter 17 Topic Analysis

Percentage of
background

words (known)

Probability of word w in topic θj

Background
LM (known)

Coverage of topic θj in doc d

pd(w) = λB p(w|θB) + (1 – λB) πd, j p(w|θj)
k

∑
j=1

k

∑
j=1

log p(d) =

Unknown parameters: � = ({πd, j }, {θj}), j = 1, …, k

Probabilistic Latent Semantic Analysis (PLSA)

c(w, d) log [λB p(w|θB) + (1 – λB) πd, j p(w|θj)]∑
w2V

k

∑
j=1

log p(C|�) = c(w, d) log [λB p(w|θB) + (1 – λB) πd, j p(w|θj)]∑
w2V

∑
d2C

Figure 17.30 The likelihood function of PLSA.

of selecting the particular component model and the probability of observing the
particular word from the particular selected word distribution.

The likelihood function is as illustrated in Figure 17.30. Specifically, the prob-
ability of observing a word from the background distribution is λBp(w | θB), while
the probability of observing a word from a topic θj is (1 − λB)πd ,jp(w | θj). The
probability of observing the word regardless of which distribution is used, pd(w),
is just a sum of all these cases.

Assuming that the words in a document are generated independently, it follows
that the likelihood function for document d is the second equation in Figure 17.30,
and that the likelihood function for the entire collection C is given by the third
equation.

What are the parameters in PLSA? First, we see λB, which represents the percent-
age of background words that we believe exist in the text data (and that we would like
to factor out). This parameter can be set empirically to control the desired discrim-
ination of the discovered topic models. Second, we see the background language
model p(w | θB), which we also assume is known. We can use any large collection
of text, or use all the text that we have available in collection C to estimate p(w | θB)

(e.g., assuming all the text data are generated from θB, we can use the ML estimate
to set p(w | θB) to the normalized count of word w in the data). Third, we see πd ,j ,
which indicates the coverage of topic θj in document d. This parameter encodes the
knowledge we hope to discover from text. Finally, we see the k word distributions,

17.4 Probabilistic Latent Semantic Analysis 373

Constrained Optimization: �∗ = arg max� p(C | �)

∀j ∈ [1, k],
M∑
i=1

p(wi | θj) = 1 ∀d ∈ C ,
k∑

j=1

πd ,j = 1

Figure 17.31 ML estimate of PLSA.

each representing a topic p(w | θj). This parameter also encodes the knowledge we
would like to discover from the text data. Can you figure out how many unknown
parameters are there in such a PLSA model? This would be a useful exercise to do,
which helps us understand what exactly are the outputs that we would generate by
using PLSA to analyze text data.

After we have obtained the likelihood function, the next question is how to
perform parameter estimation. As usual, we can use the Maximum Likelihood
estimator as shown in Figure 17.31, where we see that the problem is essentially
a constrained optimization problem, as in the case of the simple mixture model,
except that:

. we now have a collection of text articles instead of just one document;

. we have more parameters to estimate; and

. we have more constraint equations (which is a consequence of having more
parameters).

Despite the third point, the kinds of constraints are essentially the same as
before; namely, there are two. One ensures the topic coverage probabilities sum
to one for each document over all the possible topics, and the other ensures that
the probabilities of all the words in each topic sum to one.

As in the case of simple mixture models, we can also use the EM algorithm to
compute the ML estimate for PLSA. In the E-step, we have to introduce more hidden
variables because we have more topics. Our hidden variable z, which is a topic
indicator for a word, now would take k + 1 values {1, 2, . . . , k , B}, corresponding
to the k topics and the extra background topic. The E-step uses Bayes’ Rule to
infer the probability of each value for z, as shown in Figure 17.32. A comparison
between these equations as the E-step for the simple two-component mixture
model would reveal immediately that the equations are essentially similar, only
now we have more topics. Indeed, if we assume there is just one topic, k = 1, then
we would recover the E-step equation of the simple mixture model with just one
small difference: p(zd ,w = j) is not quite the probability that the word is generated

374 Chapter 17 Topic Analysis

Probability that w in doc d is generated from topic θj

Probability that w in doc d is generated from background θB

Use of Bayes Rule

Hidden variable (= topic indicator): zd,w 2 {B, 1, 2, …, k}

p(zd,w = j) =

p(zd,w = B) =
∑k

j=1π p(n)(w|θj)
(n)
d,j

λBp(w|θB)

λBp(w|θB) + (1 – λB)

EM Algorithm for PLSA: E-Step

∑k
j′=1π p(n)(w|θj′)

(n)
d,j′

π p(n)(w|θj)
(n)
d,j

Figure 17.32 E-Step of the EM Algorithm for estimating PLSA.

from topic θj , but rather this probability conditioned on having not chosen the
background model. In other words, the probability of generating a word using θj

is (1 − p(zd ,w = B))p(zd ,w = j). In the case of having just one topic other than the
background model, we would have p(zd ,w = j) = 1 only for θj .

Note that we use document d here to index the word w. In our model, whether
w has been generated from a particular topic actually depends on the document!
Indeed, the parameter πd ,j is tied to each document, and thus each document
can have a potentially different topic coverage distribution. Such an assumption is
reasonable as different documents generally have a different emphasis on specific
topics. This means that in the E-step, the inferred probability of topics for the
same word can be potentially very different for different documents since different
documents generally have different πd ,j values.

The M-step is also similar to that in the simple mixture model. We show the
equations in Figure 17.33. We see that a key component in the two equations, for
re-estimating π and p(w | θ) respectively, is c(w, d)(1 − p(zd ,w = B))p(zd ,w = j),
which can be interpreted as the allocated counts of w to topic θj . Intuitively, we use
the inferred distribution of z values from the E-step to split the counts of w among
all the distributions. The amount of split counts of w that θj can get is determined
based on the inferred likelihood that w is generated by topic θj .

Once we have such a split count of each word for each distribution, we can easily
pool together these split counts to re-estimate both π and p(w | θ), as shown in
Figure 17.33. To re-estimate πd ,j , the probability that document d covers topic θj ,

17.4 Probabilistic Latent Semantic Analysis 375

Re-estimated probability of doc d covering topic θj

Re-estimated probability of word w for topic θj

ML estimate based
on “allocated” word
counts to topic θj

Hidden variable (= topic indicator): zd,w 2 {B, 1, 2, …, k}

=

p(n+1)(w|θj) =

EM Algorithm for PLSA: M-Step

∑w2V c(w, d)(1 – p(zd,w = B)) p(zd,w = j)
—
∑ j′∑w2V c(w, d)(1 – p(zd,w = B)) p(zd,w = j′)

∑d2C c(w, d)(1 – p(zd,w = B)) p(zd,w = j)
—
∑w′2V∑d2C c(w′, d)(1 – p(zd,w′ = B)) p(zd,w′ = j)

π (n+1)
d,j

Figure 17.33 M-Step of the EM Algorithm for estimating PLSA.

we would simply collect all the split counts of words in document d that belong
to each θj , and then normalize these counts among all the k topics. Similarly, to
re-estimate p(w | θj), we would collect the split counts of a word toward θj from
all the documents in the collection, and then normalize these counts among all
the words. Note that the normalizers are very different in these two cases, which
are directly related to the constraints we have on these parameters. In the case of
re-estimation of π , the constraint is that the π values must sum to one for each
document, thus our normalizer has been chosen to ensure that the re-estimated
values of π indeed sum to one for each document. The same is true for the re-
estimation of p(w | θ), where our normalizer allows us to obtain a word distribution
for each topic.

What we observed here is actually generally true when using the EM algorithm.
That is, the distribution of the hidden variables computed in the E-step can be
used to compute the expected counts of an event, which can then be aggregated
and normalized appropriately to obtain a re-estimate of the parameters. In the
implementation of the EM algorithm, we can thus just keep the counts of various
events and then normalize them appropriately to obtain re-estimates for various
parameters.

In Figure 17.34, we show the computation of the EM algorithm for PLSA in more
detail. We first initialize all the unknown parameters randomly, including the cov-
erage distribution πd ,j for each document d, and the word distribution for each
topic p(w | θj). After the initialization step, the EM algorithm would go through

376 Chapter 17 Topic Analysis

• Initialize all unknown parameters randomly
• Repeat until likelihood converges

– E-step

– M-step / ∑w2V c(w, d)(1 – p(zd,w = B)) p(zd,w = j)

p(zd,w = j) / ∑k
j=1 p(zd,w = j) = 1

8d2C, ∑k
j=1πd, j = 1

8j2[1,k], ∑w2V p(w|θj) = 1

p(zd,w = B) / λBp(w|θB) What’s the normalizer for this one?

p(n)(w|θj)

p(n+1)(w|θj) / ∑d2C c(w, d)(1 – p(zd,w = B)) p(zd,w = j)

π (n+1)
d,j

π (n)
d, j

Figure 17.34 Computation of the EM Algorithm for estimating PLSA.

a loop until the likelihood converges. How do we know when the likelihood con-
verges? We can keep track of the likelihood values in each iteration and compare
the current likelihood with the likelihood from the previous iteration or the average
of the likelihood from a few previous iterations. If the current likelihood is very sim-
ilar to the previous one (judged by a threshold), we can assume that the likelihood
has converged and can stop the algorithm.

In each iteration, the EM algorithm would first invoke the E-step followed by the
M-step. In the E-step, it would augment the data by predicting the hidden variables.
In this case, the hidden variable, zd ,w indicates whether word w in d is from a “real”
topic or the background. If it’s from a real topic, it determines which of the k topics
it is from.

From Figure 17.34, we see that in the E-step we need to compute the probability
of z values for every unique word in each document. Thus, we can iterate over
all the documents, and for each document, iterate over all the unique words in
the document to compute the corresponding p(zd ,w). This computation involves
computing the product of the probability of selecting a topic and the probability of
word w given by the selected distribution. We can then normalize these products
based on the constraints we have, to ensure

∑k
j=1 p(zd ,w = j) = 1. In this case, the

normalization is among all the topics.
In the M-step, we will also collect the relevant counts and then normalize appro-

priately to obtain re-estimates of various parameters. We would use the estimated
probability distribution p(zd ,w) to split the count of word w in document d among
all the topics. Note that the same word would generally be split in different ways in
different documents. Once we split the counts for all the words in this way, we can
aggregate the split counts and normalize them. For example, to re-estimate πd ,j

17.5 Extension of PLSA and Latent Dirichlet Allocation 377

(coverage of topic θj in document d), the relevant counts would be the counts of
words in d that have been allocated to topic θj , and the normalizer would be the
sum of all such counts over all the topics so that after normalization, we would ob-
tain a probability distribution over all the topics. Similarly, to re-estimate p(w | θj),
the relevant counts are the sum of all the split counts of word w in all the doc-
uments. These aggregated counts would then be normalized by the sum of such
aggregated counts over all the words in the vocabulary so that after normalization,
we again would obtain a distribution, this time over all the words rather than all
the topics.

If we complete all the computation of the E-step before starting the M-step, we
would have to allocate a lot of memory to keep track of all the results from the E-step.
However, it is possible to interleave the E-step and M-step so that we can collect and
aggregate relevant counts needed for the M-step while we compute the E-step. This
would eliminate the need for storing many intermediate values unnecessarily.

17.5 Extension of PLSA and Latent Dirichlet Allocation
PLSA works well as a completely unsupervised method for analyzing topics in text
data, thus it does not require any manual effort. While this is an advantage in the
sense of minimizing human effort, the discovery of topics is solely driven by the
data characteristics with no consideration of any extra knowledge about the topics
and their coverage in the data set. Since we often have such extra knowledge or
our application imposes a particular preference for the topics to be analyzed, it is
beneficial or even necessary to impose some prior knowledge about the parameters
to be estimated so that the estimated parameters would not only explain the text
data well, but also be consistent with our prior knowledge. Prior knowledge or
preferences may be available for all the parameters.

First, a user may have some expectations about which topics to analyze in the
text data, and such knowledge can be used to define a prior on the topic word
distributions. For example, an analyst may expect to see “retrieval models” as a
topic in a data set with research articles about information retrieval, thus we would
like to tell the model to allocate one topic to capture the retrieval models topic.
Similarly, a user may be interested in analyzing review data about a laptop with a
focus on specific aspects such as battery life and screen size, thus we again want
the model to allocate two topics for battery life and screen size, respectively.

Second, users may have knowledge about what topics are (or are not) covered in
a document. For example, if we have (topical) tags assigned to documents by users,
we may regard the tags assigned to a document as knowledge about what topics

378 Chapter 17 Topic Analysis

are covered in the document. Thus, we can define a prior on the topic coverage to
ensure that a document can only be generated using topics corresponding to the
tags assigned to it. This essentially gives us a constraint on what topics can be used
to generate words in a document, which can be useful for learning co-occuring
words in the context of a topic when the data are sparse and pure co-occurrence
statistics are insufficient to induce a meaningful topic.

All such prior knowledge can be incorporated into PLSA by using Maximum A
Posteriori Estimation (MAP) instead of Maximum Likelihood estimation. Specifi-
cally, we denote all the parameters by � and introduce a prior distribution p(�)

over all the possible values of � to encode our preferences. Such a prior distribu-
tion would technically include a distribution over all possible word distributions
(for topic characterization) and all possible coverage distributions of topics in a
document (for topic coverage), and can be defined based on whatever knowledge
or preferences we would like to inject into the model. With such a prior, we can
then estimate parameters by using MAP as follows:

�∗ = arg max� p(�)p(Data | �), (17.6)

where p(Data | �) is the likelihood function, which would be the sole term to
maximize in the case of ML estimation. Adding the prior p(�) would encourage
the model to seek a compromise of the ML estimate (which maximizes p(Data | �))
and the mode of the prior (which maximizes p(�)).

There are potentially many different ways to define p(�). However, it is partic-
ularly convenient to use a conjugate prior distribution, in which the prior density
function p(�) is of the same form as the likelihood function p(Data | �) as a func-
tion of the parameter �. Due to the same form of the two functions, we can generally
merge the two to derive a single function (again, of the same form). In other words,
our posterior distribution is written as a function of the parameter, so the maxi-
mization of the posterior probability would be similar to the maximization of the
likelihood function. Since the posterior distribution is of the same form as the like-
lihood function of the original data, we can interpret the posterior distribution as
the likelihood function for an imagined pseudo data set that is formed by augment-
ing the original data with additional “pseudo data” such that the influence of the
prior is entirely captured by the addition of such pseudo data to the original data.

When using such a conjugate prior, the computation of MAP can be done by
using a slightly modified version of the EM algorithm that we introduced earlier
for PLSA where appropriate counts of pseudo data are added to incorporate the
prior. As a specific example, if we define a conjugate prior on the word distributions

17.5 Extension of PLSA and Latent Dirichlet Allocation 379

=

p(n+1)(w|θj) =

EM Algorithm with Conjugate on p(w|θj)

Prior: p(w|θ′j)

battery 0.5
life 0.5

What if μ = 0? What if μ = +∞?
Sum of all pseudo counts

Pseudo counts
of w from

prior θ′

∑w2V c(w, d)(1 – p(zd,w = B)) p(zd,w = j)
—
∑ j′∑w2V c(w, d)(1 – p(zd,w = B)) p(zd,w = j′)

∑d2C c(w, d)(1 – p(zd,w = B)) p(zd,w = j) + μp(w|θ′j)
—
∑w′2V∑d2C c(w′, d)(1 – p(zd,w′ = B)) p(zd,w′ = j) + μ

p(zd,w = B) =
λBp(w|θB)

—
λBp(w|θB) + (1 – λB)∑k

j=1π
(
d
n
,
)
j p(n)(w|θj)

p(zd,w = j) =
π(

d
n
,
)
j p(n)(w|θj)

—
∑k

j′=1π
(
d
n
,
)
j′p

(n)(w|θj′)

π (n+1)
d,j

Figure 17.35 Maximum a posteriori estimation of PLSA with prior.

representing the topics p(w | θj), then the EM algorithm for computing the MAP is
shown in Figure 17.35. We see that the difference is adding an additional pseudo
count for word w in the M-step which is proportional to the probability of the word
in the prior p(w | θ ′

j
). Specifically, the pseudo count is μp(w | θ ′

j
) for word w. The

denominator needs to be adjusted accordingly (adding μ which is the sum of all
the pseudo counts for all the words) to ensure the estimated word probabilities for
a topic sum to one.

Here, μ ∈ [0, +∞) is a parameter encoding the strength of our prior. If μ = 0,
we recover the original EM algorithm for PLSA, i.e., with no prior influence. A
more interesting case is when μ = +∞, in such a case, the M-step is simply to set
the estimated probability of a word p(w | θj) to the prior p(w | θ ′

j
), i.e., the word

distribution is fixed to the prior. This is why we can interpret our heuristic inclusion
of a background word distribution as a topic in PLSA as simply imposing such an
infinitely strong prior on one of the topics. Intuitively, in Bayesian inference, this
means that if the prior is infinitely strong, then no matter how much data we collect,
we will not be able to override the prior. In general, however, as we increase the
amount of data, we will be able to let the data dominate the estimate, eventually
overriding the prior completely as we collect infinitely more data. A prior on the

380 Chapter 17 Topic Analysis

coverage distribution π can be added in a similar way to the updating formula for
πd ,j to force the updated parameter value to give some topics higher probabilities
by reducing the probabilities of others. In the extreme, it is also possible to achieve
the effect of setting the probability of a topic to zero by using an infinitely strong
prior that gives such a topic a zero probability.

PLSA is a generative model for modeling the words in a given document, but it
is not a generative model for documents since it cannot give a probability of a new
unseen document; it cannot give a distribution over all the possible documents.
However, we sometimes would like to have a generative model for documents. For
example, if we can estimate such a model for documents in each topic category,
then we would be able to use the model for text categorization by comparing the
probability of observing a document from the generative model of each category
and assigning the document to the category whose generative model gives the high-
est probability to the document. The difficulty in giving a new unseen document
a probability using PLSA is that the topic coverage parameter in PLSA is tied to an
observed document, and we do not have available in the model the coverage of top-
ics in a new unseen document, which is needed in order to generate words in a
new document. Although it is possible to use a heuristic approach to estimate the
topic coverage in an unseen document, a more principled way to solve the prob-
lem is to add priors on the parameters of PLSA and make a Bayesian version of the
model. This has led to the development of the Latent Dirichlet Allocation (LDA)
model.

Specifically, in LDA, the topic coverage distribution (a multinomial distribution)
for each document is assumed to be drawn from a prior Dirichlet distribution,
which defines a distribution over the entire space of the parameters of a multi-
nomial distribution, i.e., a vector of probabilities of topics. Similarly, all the word
distributions representing the latent topics in a collection of text are also assumed
to be drawn from another Dirichlet distribution. In PLSA, both the topic coverage
distribution and the word distributions are assumed to be (unknown) parameters
in the model. In LDA, they are no longer parameters of the model since they are
assumed to be drawn from the corresponding Dirichlet (prior) distributions.

Thus, LDA only has parameters to characterize these two kinds of Dirichlet
distributions. Once these parameters are fixed, the behavior of these two Dirichlet
distributions would be fixed, and thus the behavior of the entire generative model
would also be fixed. Once we have sampled all the word distributions for the whole
collection (which shares these topics), and the topic coverage distribution for a
document, the rest of the process of generating words in the document is exactly
the same as in PLSA. The generalization of PLSA to LDA by imposing Dirichlet priors
is illustrated in Figure 17.36, where we see that the Dirichlet distribution governing

17.5 Extension of PLSA and Latent Dirichlet Allocation 381

government 0.3
response 0.2
…

city 0.2
new 0.1
orleans 0.05
…

donate 0.1
relief 0.05
help 0.02
…

Topic θk

…

…

Topic θ2

Topic θ1

PLSA → LDA

p(θk) = πd,k

p(θ2) = πd,2

p(θ1) = πd,1

Both word distributions and
topic choices are free in PLSA

LDA imposes a prior on both

p(w|θk)

W
p(w|θ2)

p(w|θ1)

θ �i = (p(w1|θi), …, p(wM|θi))

π�d = (πd,1, …, πd,k)

p(π�d) = Dirichlet(α �)

α � = (α1, …, αk), αi > 0

p(θ �i) = Dirichlet(β �)

β � = (β1, …, βM), βi > 0

Figure 17.36 Illustration of LDA as PLSA with a Dirichlet prior.

the topic coverage has k parameters, α1, . . . , αk, and the Dirichlet distribution
governing the topic word distributions has M parameters, β1, . . . , βM . Each αi can
be interpreted as the pseudo count of the corresponding topic θi according to our
prior, while each βi can be interpreted as the pseudo count of the corresponding
word wi according to our prior. With no additional knowledge, they can all be set
to uniform counts, which in effect, assumes that we do not have any preference for
any word in each word distribution and we do not have any preference for any topic
either in each document.

The likelihood function of LDA is given in Figure 17.37 where we also make
a comparison between the likelihood of PLSA and that of LDA. The comparison
allows us to see that both PLSA and LDA share the common generative model
component to define the probability of observing a word w in document d from
a mixture model involving k word distributions, θ1, . . . , θk, representing k topics
with a topic coverage distribution πd ,j . Indeed, such a mixture of unigram language
models is the common component in most topic models, and is key for modeling
documents with multiple topics covered in the same document. However, the like-
lihood function for a document and the entire collection C is clearly different with
LDA adding the uncertainty of the topic coverage distribution and the uncertainty
of all the word distributions in the form of an integral.

382 Chapter 17 Topic Analysis

Core assumption
in all topic models

Added by LDA

PLSA component

pd(w|{θj}, {πd, j }) = πd, j p(w|θj)
k

∑
j=1

k

∑
j=1

log p(d|{θj}, {πd, j }) =

Likelihood Functions for PLSA vs. LDA

PLSA

c(w, d) log [πd, j p(w|θj)]∑
w2V

log p(C|{θj}, {πd, j }) = log p(d|{θj}, {πd, j })∑
d2C

pd(w|{θj}, {πd, j }) = πd, j p(w|θj)
k

∑
j=1

k

∑
j=1

log p(d|α � , {θj}) = ∫

LDA

c(w, d) log [πd, j p(w|θj)] p(π�d|α �)dπ�d∑
w2V

log p(C|α � , β �) = ∫ log p(d|α � , {θj}) p(θj|β �,) d θ1… d θk∑
d2C

k

∏
j=1

Figure 17.37 Likelihood function of PLSA and LDA.

Although the likelihood function of LDA is more complicated than PLSA, we can
still use the MLE to estimate its parameters, �α and �β:

(�̂α , �̂β) = arg max�α , �β log p(C | �α , �β). (17.7)

Naturally, the computation required to solve such an optimization problem is more
complicated than LDA.

It is now easy to see that LDA has only k + M parameters, far fewer than PLSA.
However, the cost is that the interesting output that we would like to generate in
topic analysis, i.e., the k word distributions {θi} characterizing all the topics in a
collection, and the topic coverage distribution {πd ,j} for each document, is unfor-
tunately, no longer immediately available to us after we estimate all the parameters.
Indeed, as usually happens in Bayesian inference, to obtain values of such latent
variables in LDA, we must rely on posterior inference. That is, we must compute

17.6 Evaluating Topic Analysis 383

p({θi}, {πd ,j} | C , α , β) as follows by using Bayes’ Rule:

p({θi}, {πd ,j} | C , α , β) = p(C | {θi}, {πd ,j})p({θi}, {πd ,j} | α , β)

p(C | α , β)
. (17.8)

This gives us a posterior distribution over all the possible values of these interesting
variables, from which we can then further obtain a point estimate or compute
other interesting properties that depend on the distribution. The computation
process is once again complicated due to the integrals involved in some of the
probabilities. Many different inference algorithms have been proposed. A very
popular and efficient approach is collapsed Gibbs sampling, which works in a very
similar way to the EM algorithm of PLSA.

Empirically, LDA and PLSA have been shown to work similarly on various tasks
when using such a model to learn a low-dimensional semantic representation of
documents (by using πd ,j to represent a document in the k-dimensional space).
The learned word distributions also tend to look very similar.

17.6 Evaluating Topic Analysis
Topic analysis evaluation has similar difficulties to information retrieval evalua-
tion. In both cases, there is usually not one true answer, and evaluation metrics
heavily depend on the human issuing judgements. What defines a topic? We ad-
dressed this issue the best we could when defining the models, but the challenging
nature of such a seemingly straightforward question complicates the eventual eval-
uation task.

Log-likelihood and model perplexity are two common evaluation measures used
by language models, and they can be applied for topic analysis in the same way. Both
are predictive measures, meaning that held-out data is presented to the model and
the model is applied to this new information, calculating its likelihood. If the model
generalizes well to this new data (by assigning it a high likelihood or low perplexity),
then the model is assumed to be sufficient.

In Chapter 13, we mentioned Chang et al. [2009]. Human judges responded to
intrusion detection scenarios to measure the coherency of the topic-word distribu-
tions. A second test that we didn’t cover in the word association evaluation is the
document-topic distribution evaluation. This test can measure the coherency of top-
ics discovered from documents through the previously used intrusion test.

The setup is as follows: given a document d from the collection the top three
topics are chosen; call these most likely topics θ1, θ2, and θ3. An additional low-
probability topic θu is also selected, and displayed along with the top three topics.

384 Chapter 17 Topic Analysis

The title and a short snippet is shown from d along with the top few high-probability
words from each topic. The human judge must determine which θ is θu. As with the
word intrusion test, the human judge should have a fairly easy task if the top three
topics make sense together and with the document title and snippet. If it’s hard
to discern θu, then the top topics must not be an adequate representation of d. Of
course, this process is repeated for many different documents in the collection.

Directly from Chang et al. [2009]:

. . . we demonstrated that traditional metrics do not capture whether topics are
coherent or not. Traditional metrics are, indeed, negatively correlated with the
measures of topic quality.

“Traditional metrics” refers to log-likelihood of held-out data in the case of gen-
erative models. This misalignment of results is certainly a pressing issue, though
most recent research still relies on the traditional measures to evaluate new models.

Downstream task improvement is perhaps the most effective (and transparent)
evaluation metric. If a different topic analysis variant is shown to statistically signif-
icantly improve some task precision, then an argument may be made to prefer the
new model. For example, if the topic analysis is meant to produce new features for
text categorization, then classification accuracy is the metric we’d wish to improve.
In such a case, log-likelihood of held-out data and even topic coherency is not a
concern if the classification accuracy improves—although model interpretability
may be compromised if topics are not human-distinguishable.

17.7 Summary of Topic Models
In summary, we introduced techniques for topic analysis in this chapter. We started
with the simple idea of using one term to represent a topic, and discussed the
deficiency of such an approach. We then introduced the idea of representing a topic
with a word distribution, or a unigram language model, and introduced the PLSA
model, which is a mixture model with k unigram language models representing k

topics. We also added a pre-specified background language model to help discover
discriminative topics, because this background language model can help attract
the common terms. We used the maximum likelihood estimator (computed using
the EM algorithm) to estimate the parameters of PLSA. The estimated parameter
values enabled us to discover two things, one is k word distributions with each
one representing a topic, and the other is the proportion of each topic in each
document.

The topic word distributions and the detailed characterization of coverage of
topics in each document can enable further analysis and applications. For exam-

Bibliographic Notes and Further Reading 385

ple, we can aggregate the documents in a particular time period to assess the
coverage of a particular topic in the time period. This would allow us to gener-
ate a temporal trend of topics. We can also aggregate topics covered in documents
associated with a particular author to reveal the expertise areas of the author. Fur-
thermore, we can also cluster terms and cluster documents. In fact, each topic
word distribution can be regarded as a cluster (for example, the cluster can be eas-
ily obtained by selecting the top N words with the highest probabilities). So we
can generate term clusters easily based on the output from PLSA. Documents can
also be clustered in the same way: we can assign a document to the topic cluster
that’s covered most in the document. Recall that πd ,j indicates to what extent each
topic θj is covered in document d. We can thus assign the document to the top-
ical cluster that has the highest πd ,j . Another use of the results from PLSA is to
treat the inferred topic coverage distribution in a document as an alternative way
of representing the document in a low-dimensional semantic space where each
dimension corresponds to a topic. Such a representation can supplement the bag-
of-words representation to enhance inexact matching of words in the same topic,
which can generally be beneficial (e.g., for information retrieval, text clustering,
and text categorization).

Finally, a variant of PLSA called latent Dirichlet allocation (LDA) extends PLSA
by adding priors to the document-topic distributions and topic-word distributions.
These priors can force a small number of topics to dominate in each document,
which makes sense because usually a document is only about one or two topics
as opposed to a true mixture of all k topics. Secondly, adding these priors can
give us sparse word distributions in each topic as well, which mimics the Zipfian
distribution of words we’ve discussed previously. Finally, LDA is a generative model,
which can be used to simulate (generate) values of parameters in the model as well
as apply the model to a new, unseen document [Blei et al. 2003].

Bibliographic Notes and Further Reading
We’ve mentioned the original PLSA paper [Hofmann 1999] and its successor LDA
[Blei et al. 2003]. Asuncion et al. [2009] compares various inference methods for
topic models and concludes that they are all very similar. For evaluation, we’ve
referenced Chang et al. [2009] in this chapter, and it showed that convenient math-
ematical measures such as log-likelihood are not correlated with human measures.
For books, Koller and Friedman [2009] is a large and detailed introduction to prob-
abilistic graphical models. Bishop [2006] covers graphical models, mixture models,
EM, and inference in the larger scope of machine learning. Steyvers and Griffiths

386 Chapter 17 Topic Analysis

[2007] is a short summary of topic models alone. In the exercises, we mention su-
pervised LDA [McAuliffe and Blei 2008]. There are many other variants of LDA such
as MedLDA [Zhu et al. 2009] (another supervised model which attempts to maxi-
mize the distance between classes) and LabeledLDA [Ramage et al. 2009] (which
incorporates metadata tags).

Exercises
17.1. What is the input and output of the two-topic mixture model?

17.2. What is the input and output of PLSA?

17.3. For a product review dataset, there are k different product types. The true
value of k is in the range [2, 5]. How many product types do you think there were?
How can you use topic analysis to help you? (A product type is something like “CPU”
or “router”).

17.4. Give an idea about how you could use topic models to enhance search results.
What type of access mode does your suggestion support?

17.5. Give an idea about how you could use topic models for a document represen-
tation in vector space. What does a similarity measure capture for this representa-
tion?

17.6. Sketch an idea about how you could use PLSA to model topical trends over
time, given a dataset of documents that are tagged with dates.

17.7. Chapter 18 discusses sentiment analysis and opinion mining. In order to
discover positive and negative sentiment topics, we set k = 2 and run a topic analysis
method. What is an issue with this idea?

17.8. We mentioned that PLSA is a discriminative model and LDA is a generative
model. Discuss how these differences affect:

(a) defining the model,

(b) incorporating prior knowledge,

(c) learning the model parameters (inference), and

(d) applying the model to new data.

17.9. An alternative topic analysis evaluation scheme is to hold out a certain num-
ber of words in the vocabulary from some documents. Explain how this can be
used to evaluate topic models. Does this evaluate the topic-document distributions,
topic-word distributions, or both?

Exercises 387

17.10. Supervised LDA (sLDA) is a probabilistic model over labeled documents,
where each document contains some real-valued response variable. For example,
if the dataset is movie reviews, the response variable could be the average rating.
Explain what additional knowledge sLDA can discover in comparison to LDA or
PLSA aside from predicting response variables for a new document.

18Opinion Mining and
Sentiment Analysis

In this chapter, we’re going to talk about mining a different kind of knowledge,
namely knowledge about the observer or humans that have generated the text data.
In particular, we’re going to talk about opinion mining and sentiment analysis. As
we discussed earlier, text data can be regarded as data generated from humans as
subjective sensors. In contrast, we have other devices such as video recorders that
can report what’s happening in the real world to generate data. The main difference
between text data and other data (like video data) is that it has rich opinions, and
the content tends to be subjective because it’s generated from humans, as shown in
Figure 18.1. This is actually a unique advantage of text data as compared to other
data because this offers us a great opportunity to understand the observers—we
can mine text data to understand their opinions.

Let’s start with the concept of an opinion. It’s not that easy to formally define
an opinion, but for the most part we would define an opinion as a subjective
statement describing what a person believes or thinks about something, as shown
in Figure 18.2.

Let’s first look at the key word subjective in the figure; this is in contrast with an
objective statement or factual statement. This is a key differentiating factor from
opinions which tends to be not easy to prove wrong or right, because it reflects
what the person thinks about something. In contrast, an objective statement can
usually be proved wrong or right. For example, you might say a computer has a
screen and a battery. Clearly, that’s something you can check; either it has a battery
or doesn’t. In contrast with this, think about a sentence such as, “This laptop has
the best battery life” or “This laptop has a nice screen.” These statements are more
subjective and it’s very hard to prove whether they are wrong or right.

The word person indicates an opinion holder. When we talk about an opinion,
it’s about an opinion held by someone. Of course, an opinion will depend on culture,

390 Chapter 18 Opinion Mining and Sentiment Analysis

Real world

Observed
world

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

nisi ut a q p

 Excepteur sint occaecat cupidatat non proide ,

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

idatat non proident, sunt in culpa qui

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.
Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Perceive

(perspective)

Record Output

Express

(English) Subjective and
opinion rich!

Text data

Video data

Figure 18.1 Objective vs. Subjective Sensors.

In contrast: Objective statement or factual statement
(can be proved right/wrong)

Opinion holder

Opinion targetDepends on culture,
background, and context

Opinion ≈ a subjective statement describing what a person

believes or thinks about something

Figure 18.2 Definition of “opinion.”

background, and the context in general. This thought process shows that there are
multiple elements that we need to include in order to characterize opinions.

The next logical question is “What’s a basic opinion representation?” It should
include at least three elements. First, it has to specify who the opinion holder
is. Second, it must also specify the target, or what the opinion is about. Third,
of course, we want the opinion content. If you can identify these, we get a basic
understanding of opinions. If we want to understand further, we need an enriched
opinion representation. That means we also want to understand, for example,
the context of the opinion and in what situation the opinion was expressed. We
would also like to understand the opinion sentiment; i.e., whether it is a positive
or negative feeling.

Chapter 18 Opinion Mining and Sentiment Analysis 391

HolderTarget

Target

Harder to mine and analyze: Need deeper NLP

A Sentence in the News (Implicit Holder and Target)

ContextNegative

“… In an effort to get residents to wake up and pay attention to

Hurricane Sandy, the governor of Connecticut just said that

Sandy might be as bad as the worst hurricane ever to hit New

England—the hurricane of 1938. …”

Figure 18.3 A sentence from news with sentiment. (Courtesy of © 2012 Henry Blodget / Business
Insider)

Let’s take a simple example of a product review. In this case, we already know the
opinion holder and the target. When the review is posted, we can usually extract this
information. Additional understanding by analyzing the user-generated text adds
value to mining the opinions.

Figure 18.3 shows a sentence extracted from a news article. In this case, we have
an implicit holder and an implicit target since we don’t automatically know this
information. This makes the task harder. As humans, we can identify the opinion
holder as the governor of Connecticut. We can also identify the target, Hurricane
Sandy, but there is also another target mentioned which is the hurricane of 1938.
What’s the opinion? There is negative sentiment indicated by words like bad and
worst. We can also identify context, which is New England. All these elements must
be extracted by using NLP techniques. Analyzing the sentiment in news is still quite
difficult; it’s more difficult than the analysis of opinions in product reviews.

There are also some other interesting variations. First, let’s think about the
opinion holder. The holder could be an individual or it could be group of people.
Sometimes, the opinion is from a committee or from a whole country of people.
Opinion targets will vary greatly as well; they can be about one entity, a particular
person, a particular product, a particular policy, and so on. An opinion could also
only be about one attribute of a particular entity. For example, it could just be

392 Chapter 18 Opinion Mining and Sentiment Analysis

about the battery of a smartphone. It could even be someone else’s opinion, and
one person might comment on another person’s opinion. Clearly, there is much
variation here that will cause the problem to take different forms.

Opinion content can also vary on the surface: we can identify a one-sentence opin-
ion or a one-phrase opinion. We can also have longer text to express an opinion,
such as a whole news article. Furthermore, we can identify the variation in the sen-
timent or emotion of the opinion holder. We can distinguish positive vs. negative
or neutral sentiment.

Finally, the opinion context can also vary. We can have a simple context, like a
different time or different locations. There could be also complex contexts, such
as some background of a topic being discussed. When an opinion is expressed in
a particular discourse context, it has to be interpreted in different ways than when
it’s expressed in another context.

From a computational perspective, we’re mostly interested in what opinions can
be extracted from text data. One computational objective might be to determine
the target of an opinion. For example, “I don’t like this phone at all,” is clearly
an opinion by the speaker about a phone. In contrast, the text might also report
opinions about others. One could make an observation about another person’s
opinion and report this opinion. For example, “I believe he loves the painting.”
That opinion is really expressed from another person; it doesn’t mean this person
loves that painting. Clearly, these two kinds of opinions need to be analyzed in
different ways. Sometimes, a reviewer might mention opinions of his or her friend.

Another complication is that there may be indirect opinions or inferred opinions
that can be obtained by making inferences about what is expressed in the text
that might not necessarily look like opinion. For example, one statement might
be, “This phone ran out of battery in only one hour.” Now, this is in a way a
factual statement because it’s either true or false. However, one can also infer some
negative opinions about the quality of the battery of this phone, or the opinion
about the battery life. These are interesting variations that we need to pay attention
to when we extract opinions.

The task of opinion mining can be defined as taking contextualized input to gen-
erate a set of opinion representations, as shown in Figure 18.4. Each representation
should identify the opinion holder, target, content, and context. Ideally, we can also
infer opinion sentiment from the comment and the context to better understand
the opinion. Often, some elements of the representation are already known. We
just saw an example in the case of a product review where the opinion holder and
the opinion target are often explicitly identified.

18.1 Sentiment Classification 393

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

t occaecat cupidatat non pro

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

d i im veniam quis nostrud exercitation ullamco laboris

d lor
 Ut enim ad minim veniam, quis n

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

t cupidatat non proident, sunt in culpa qui

Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.
Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

ccaecat cupidat p

st laborum.
citation ullamco laboris

olor in
Lorem ipsum,
 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.
 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Lorem ipsum,

 dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor

incididunt ut labore et dolore magna aliqua.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor.

 Excepteur sint occaecat cupidatat non proident, sunt in culpa qui

officia deserunt mollit anim id est laborum.

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris

nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in

reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla

pariatur.

Text data A set of opinion representations

Opinion holder

Opinion target

Opinion content

Opinion context

Opinion
sentiment

Figure 18.4 The task of opinion mining.

Opinion mining is important and useful for three major reasons. First, it can
aid decision support; it can help us optimize our decisions. We often look at other
people’s opinions by reading their reviews in order to make a decision such as
which product to buy or which service to use. We also would be interested in others’
opinions when we decide whom to vote for. Policymakers may also want to know
their constituents’ opinions when designing a new policy. The second application is
to understand people. For example, it could help understand human preferences.
We could optimize a product search engine or optimize a recommender system
if we know what people are interested in. It also can help with advertising; we
can have targeted advertising if we know what kind of people tend to like which
types of products. The third kind of application is aggregating opinions from many
humans at once to assess a more general opinion. This would be very useful for
business intelligence where manufacturers want to know where their products have
advantages or disadvantages. What are the winning features of their products or
competitors’ products? Market research has to do with understanding consumer
opinions. Data-driven social science research can benefit from this because they
can do text mining to understand group opinions. If we aggregate opinions from
social media, we can study the behavior of people on social networks. In general,
we can gain a huge advantage in any prediction task because we can leverage the
text data as extra data to any problem.

18.1 Sentiment Classification
If we assume that most of the elements in an opinion representation are already
known, then our only task may be sentiment classification. That is, suppose we
know the opinion holder and the opinion target, and also know the content and

394 Chapter 18 Opinion Mining and Sentiment Analysis

the context of the opinion. The only component remaining is to decide the opinion
sentiment of the review. Sentiment classification can be defined more specifically
as follows: the input is an opinionated text object and the output is typically a
sentiment label (or a sentiment tag) that can be defined in two ways. One is polarity
analysis, where we have categories such as positive, negative, or neutral. The other
is emotion analysis that can go beyond polarity to characterize the precise feeling
of the opinion holder. In the case of polarity analysis, we sometimes also have
numerical ratings as you often see in some reviews on the Web. A rating of five
might denote the most positive, and one may be the most negative, for example. In
emotion analysis there are also different ways to design the categories. Some typical
categories are happy, sad, fearful, angry, surprised, and disgusted. Thus, the task
is essentially a classification task, or categorization task, as we’ve seen before.

If we simply apply default classification techniques, the accuracy may not be
good since sentiment classification requires some improvement over regular text
categorization techniques. In particular, it needs two kind of improvements. One
is to use more sophisticated features that may be more appropriate for sentiment
tagging. The other is to consider the order of these categories, especially in polarity
analysis since there is a clear order among the choices. For example, we could use
ordinal regression to predict a value within some range. We’ll discuss this idea in
the next section.

For now, let’s talk about some features that are often very useful for text cat-
egorization and text mining in general, but also especially needed for sentiment
analysis. The simplest feature is character n-grams, i.e., sequences of n adjacent
characters treated as a unit. This is a very general and robust way to represent text
data since we can use this method for any language. This is also robust to spelling
errors or recognition errors; if you misspell a word by one character, this representa-
tion still allows you to match the word as well as when it occurs in the text correctly.
Of course, such a representation would not be as discriminating as words.

Next, we have word n-grams, a sequence of words as opposed to characters. We
can have a mix of these with different n-values. Unigrams are often very effective for
text processing tasks; it’s mostly because words are the basic unit of information
used by humans for communication. However, unigram words may not be suffi-
cient for a task like sentiment analysis. For example, we might see a sentence, “It’s
not good” or “It’s not as good as something else.” In such a case, if we just take
the feature good, that would suggest a positive text sample. Clearly, this would not
be accurate. If we take a bigram (n = 2) representation, the bigram not good would
appear, making our representation more accurate. Thus, longer n-grams are gen-
erally more discriminative. However, long n-grams may cause overfitting because

18.1 Sentiment Classification 395

they create very unique features that machine learning programs associate as be-
ing highly correlated with a particular class label when in reality they are not. For
example, if a 7-gram phrase appears only in a positive training document, that 7-
gram would always be associated with positive sentiment. In reality, though, the
7-gram just happened to occur with the positive document and no others because
it was so rare.

We can consider n-grams of part-of-speech tags. A bigram feature could be an
adjective followed by a noun. We can mix n-grams of words and n-grams of POS tags.
For example, the word great might be followed by a noun, and this could become
a feature—a hybrid feature—that could be useful for sentiment analysis.

Next, we can have word classes. These classes can be syntactic like POS tags, or
could be semantic by representing concepts in a thesaurus or ontology like Word-
Net [Princeton University 2010]. Or, they can be recognized name entities (like
people or place), and these categories can be used to enrich the representation as
additional features. We also can learn word clusters since we’ve talked about min-
ing associations of words in Chapter 13. We can have clusters of paradigmatically
related words or syntagmatically related words, and these clusters can be features
to supplement the base word representation.

Furthermore, we can have a frequent pattern syntax which represents a frequent
word set; these are words that do not necessarily occur next to each other but often
occur in the same context. We’ll also have locations where the words may occur
more closely together, and such patterns provide more discriminative features
than words. They may generalize better than just regular n-grams because they are
frequent, meaning they are expected to occur in testing data, although they might
still face the problem of overfitting as the features become more complex. This is a
problem in general, and the same is true for parse tree-based features, e.g., frequent
subtrees. Those are even more discriminating, but they’re also more likely to cause
overfitting.

In general, pattern discovery algorithms are very useful for feature construction
because they allow us to search a large space of possible features that are more
complex than words, and natural language processing is very important to help us
derive complex features that can enrich text representations.

As we’ve mentioned in Chapter 15, feature design greatly affects categorization
accuracy and is arguably the most important part of any machine learning applica-
tion. It would be most effective if you can combine machine learning, error analysis,
and specific domain knowledge when designing features. First, we want to use do-
main knowledge, that is, a specialized understanding of the problem. With this,
we can design a basic feature space with many possible features for the machine

396 Chapter 18 Opinion Mining and Sentiment Analysis

learning program to work on. Machine learning methods can be applied to select
the most effective features or to even construct new features. These features can
then be further analyzed by humans through error analysis, using evaluation tech-
niques we discuss in this book. We can look at categorization errors and further
analyze what features can help us recover from those errors or what features cause
overfitting. This can lead into feature validation that will cause a revision in the
feature set. These steps are then iterated until a desired accuracy is achieved.

In conclusion, a main challenge in designing features is to optimize a tradeoff
between exhaustivity and specificity. This tradeoff turns out to be very difficult.
Exhaustivity means we want the features to have high coverage on many documents.
In that sense, we want the features to be frequent. Specificity requires the features
to be discriminative, so naturally the features tend to be less frequent. Clearly, this
causes a tradeoff between frequent versus infrequent features. Particularly in our
case of sentiment analysis, feature engineering is a critical task.

18.2 Ordinal Regression
In this section, we will discuss ordinal logistic regression for sentiment analysis.
A typical sentiment classification problem is related to rating prediction because
we often try to predict sentiment value on some scale, e.g., positive to negative
with other labels in between. We have an opinionated text document d as input,
and we want to generate as output a rating in the range of 1 through k. Since
it’s a discrete rating, this could be treated as a categorization problem (finding
which is the correct of k categories). Unfortunately, such a solution would not
consider the order and dependency of the categories. Intuitively, the features that
can distinguish rating 2 from 1 may be similar to those that can distinguish k from
k − 1. For example, positive words generally suggest a higher rating. When we train
a categorization problem by treating these categories as independent, we would not
capture this. One approach that addresses this issue is ordinal logistic regression.

Let’s first think about how we use logistic regression for binary sentiment (which
is a binary categorization problem). Suppose we just wanted to distinguish positive
from negative. The predictors (features) are represented as X, and we can output a
score based on the log probability ratio:

log
p(Y = 1 | X)

p(Y = 0 | X)
= log

p(Y = 1 | X)

1 − p(Y = 1 | X)
= β0 +

M∑
i=1

xiβi , (18.1)

or the conditional probability

18.2 Ordinal Regression 397

p(Y = 1 | X) =
exp

{
β0 + ∑M

i=1 xiβi

}
1 + exp

{
β0 + ∑M

i=1 xiβi

} . (18.2)

There are M features all together and each feature value xi is a real number. As usual,
these features can be a representation of a text document. X is a binary response
variable 0 or 1, where 1 means X is positive and 0 means X is negative. Of course, this
is then a standard two category categorization problem and we can apply logistic
regression. You may recall from Chapter 10 that in logistic regression, we assume
the log probability that Y = 1 is a linear function of the features. This would allow
us to also write p(Y = 1 | X) as a transformed form of the linear function of the
features. The βi’s are parameters. This is a direct application of logistic regression
for binary categorization.

If we have multiple categories or multiple levels, we will adapt the binary logistic
regression problem to solve this multilevel rating prediction, as illustrated in Fig-
ure 18.5. The idea is that we can introduce multiple binary classifiers; in each case
we ask the classifier to predict whether the rating is j or above. So, when Yj = 1, it
means the rating is j or above. When it’s 0, that means the rating is lower than j .
If we want to predict a rating in the range of 1 to k, we first have one classifier to
distinguish k versus the others. Then, we’re going to have another classifier to dis-
tinguish k − 1 from the rest. In the end, we need a classifier to distinguish between
2 and 1 which altogether gives us k − 1 classifiers.

Classifier 1

p(r ≥ j|X) = eαj+∑M
i=1xiβji

—
eαj+∑M

i=1xiβji + 1

log = log = αj + ∑M
i=1xiβji βji 2 <

p(Yj = 1|X)
—
p(Yj = 0|X)

p(r ≥ j|X)
—
1 – p(r ≥ j|X)Rating

Classifier 2

Classifier k – 1

k – 1

k – 2
…

2

1

k

Yj =
1

0

rating is j or above

rating is lower than j

Predictors: X = (x1, x2, …, xM), xi 2 <
Rating: r 2 {1, 2, …, k}

Figure 18.5 Logistic regression for multiple-level sentiment analysis.

398 Chapter 18 Opinion Mining and Sentiment Analysis

p(r ≥ j|X) =

p(r ≥ k|X) > 0.5?

eαj+∑M
i=1xiβji

—
eαj+∑M

i=1xiβji + 1

No

Yes
r = k

r = 2

r = 1

j = k, k – 1, …, 2

After training k – 1
Logistic regression classifiers r = k – 1p(r ≥ k – 1|X) > 0.5?

No

…

Yes

p(r ≥ 2|X) > 0.5?

No

Yes

Text object: X = (x1, x2, …, xM), xi 2 <
Rating: r 2 {1, 2, …, k}

Figure 18.6 Multi-level logistic regression for sentiment analysis: prediction of ratings.

With this modification, each classifier needs a different set of parameters, yield-
ing many more parameters overall. We will index the logistic regression classifiers
by an index j , which corresponds to a rating level. This is to make the notation more
consistent with what we show in the ordinal logistic regression. So, we now have
k − 1 regular logistic regression classifiers, each with its own set of parameters.
With this approach, we can now predict ratings, as shown in Figure 18.6.

After we have separately trained these k − 1 logistic regression classifiers, we can
take a new instance and then invoke classifiers sequentially to make the decision.
First, we look at the classifier that corresponds to the rating level k. This classifier
will tell us whether this object should have a rating of k or not. If the probability
according to this logistic regression classifier is larger than 0.5, we’re going to say
yes, the rating is k. If it’s less than 0.5, we need to invoke the next classifier, which
tells us whether it’s at least k − 1. We continue to invoke the classifiers until we hit
the end when we need to decide whether it’s 2 or 1.

Unfortunately, such a strategy is not an optimal way of solving this problem.
Specifically, there are two issues with this approach. The first problem is that there
are simply too many parameters. For each classifier, we have M + 1 parameters with
k − 1 classifiers all together, so the total number of parameters is (k − 1) . (M + 1).
When a classifier has many parameters, we would in general need more training
data to help us decide the optimal parameters of such a complex model.

The second problem is that these k − 1 classifiers are not really independent.
We know that, in general, words that are positive would make the rating higher for
any of these classifiers, so we should be able to take advantage of this fact. This is

18.2 Ordinal Regression 399

Classifier 1

p(r ≥ j|X) = eαj+∑M
i=1xiβi

—
eαj+∑M

i=1xiβi + 1

How many parameters are there in total?

 → Share training data

Key idea: 8i = 1, …, M, 8j = 3, …, k, βji = βj–1i

 → Reduce number of parameters

M + k – 1

= log log = αj + ∑M
i=1xiβi βi 2 <

p(Yj = 1|X)
—
p(Yj = 0|X)

p(r ≥ j|X)
—
1 – p(r ≥ j|X)Rating

Classifier 2

Classifier k – 1

k – 1

k – 2
…

2

1

k

Figure 18.7 The idea of ordinal logistic regression.

precisely the idea of ordinal logistic regression, which is an improvement over the
k − 1 independent logistic regression classifiers, as shown in Figure 18.7.

The improvement is to tie the β parameters together; that means we are going
to assume the β values are the same for all the k − 1 classifiers. This encodes our
intuition that positive words (in general) would make a higher rating more likely.
In fact, this would allow us to have two benefits. One is to reduce the number of
parameters significantly. The other is to allow us to share the training data amongst
all classifiers since the parameters are the same. In effect, we have more data to help
us choose good β values.

The resulting formula would look very similar to what we’ve seen before, only
now the β parameter has just one index that corresponds to a single feature; it
no longer has the other indices that correspond to rating levels. However, each
classifier still has a distinct predicted rating value. Of course, this value is needed
to predict the different rating levels. So αj is different since it depends on j , but the
rest of the parameters (the βi’s) are the same. We now have M + k − 1 parameters.

It turns out that with this idea of tying all the parameters, we end up having a
similar way to make decisions, as shown in Figure 18.8.

More specifically, the criteria whether the predictor probabilities are at least 0.5
or above is equivalent to whether the score of the object is larger than or equal to αk.
The scoring function is just taking a linear combination of all the features with the β

values. This means now we can simply make a rating decision by looking at the value
of this scoring function and seeing which bracket it falls into. In this approach,
we’re going to score the object by using the features and trained parameter values.

400 Chapter 18 Opinion Mining and Sentiment Analysis

Classifier 1

p(r ≥ j|X) ≥ 0.5 ,

r = j , score 2 [–αj, –αj+1), define α1 = 1, αk+1 = –1

≥ 0.5 , score(X) ≥ –αj

score(X) = ∑M
i=1βixi

–αk

–αk–1

–α2

eαj+score(X)
—
eαj+score(X) + 1

Rating

Classifier 2

Classifier k – 1

k – 1

r = k

r = 2

r = 1

r = k – 1

k – 2
…

2

1

k

Figure 18.8 The decision process with ordinal logistic regression.

This score will then be compared with a set of trained α values to see which range
the score is in. Then, using the range, we can decide which rating the object should
receive.

18.3 Latent Aspect Rating Analysis
In this section, we’re going to continue discussing opinion mining and senti-
ment analysis. In particular, we’re going to introduce Latent Aspect Rating Analysis
(LARA) which allows us to perform detailed analysis of reviews with overall ratings.

Figure 18.9 shows two hotel reviews. Both reviewers are given five stars. If you
just look at the overall score, it’s not very clear whether the hotel is good for its
location or for its service. It’s also unclear specifically why a reviewer liked this hotel.
What we want to do is to decompose this overall rating into ratings on different
aspects such as value, room, location, and service. If we can decompose the overall
ratings into ratings on these different aspects, we can obtain a much more detailed
understanding of the reviewers’ opinions about the hotel. This would also allow us
to rank hotels along different dimensions such as value or room quality.

Using this knowledge, we can better understand how the reviewers view this
hotel from their own perspective. Not only do we want to infer these aspect ratings,
we also want to infer the aspect weights. That is, some reviewers may care more
about value as opposed to the service. Such a case is what’s shown on the left for
the weight distribution, where you can see most weight is placed on value. Clearly,
different users place priority on different rating aspects. For example, imagine a

18.3 Latent Aspect Rating Analysis 401

Hotel XXX
Reviewer 1: ★★★★★
“Great location + spacious room = happy traveler”
Stayed for a weekend in July. Walked everywhere,
enjoyed comfy bed and quiet hallways.…

Reviewer 2: ★★★★★
“Terrific service and gorgeous facility”
I stayed at the hotel with my young daughter
for three nights June 17–20, 2010 and absolutely
loved the hotel. The room was one of the nicest
I’ve ever stayed in …

How to infer aspect ratings?

How to infer aspect weights?

Value
Rooms
Location
Service

Value

★★★★
★★★★★
★★★★★
★★★★

Value
Rooms
Location
Service

★★★★
★★★★★
★★★★★
★★★★

Location Service … Value Location Service …

Figure 18.9 Motivation of LARA.

hotel with five stars for value. Despite this, it might still be very expensive. If a
reviewer really cares about the value of a hotel, then the five-star review would most
likely mean a competitive price. In order to interpret the ratings on different aspects
accurately, we also need to know these aspect weights. When these different aspects
are combined together with specific weights for each user, we can have a much
more detailed understanding of the overall opinion.

Thus, the task is to take these reviews and their overall ratings as input and
generate both the aspect ratings and aspect weights as output. This is called Latent
Aspect Rating Analysis (LARA).

More specifically, we are given a set of review articles about a topic with overall
ratings, and we hope to generate three things. One is the major aspects commented
on in the reviews. Second is ratings on each aspect, such as value and room service.
Third is the relative weights placed on different aspects by each reviewer. This task
has many applications. For example, we can do opinion-based entity ranking or
we can generate an aspect-level opinion summary. We can also analyze reviewers’
preferences, compare them, or compare their preferences on different hotels. All
this enables personalized product recommendation.

As in other cases of these advanced topics, we won’t cover the technique in detail.
Instead, we will present a basic introduction to the technique developed for this
problem, as shown in Figure 18.10. First, we will talk about how to solve the problem
in two stages. Later, we mention that we can do this in a unified model.

402 Chapter 18 Opinion Mining and Sentiment Analysis

★★★★★
Term

weights

0.0
3.9
0.1

–0.2
0.1
1.7
0.1
3.9
2.1
1.2
1.7
1.2
0.6

Aspect segments

location: 1
amazing: 1
walk: 1
far: 1
room: 1
nicely: 1
appointed: 1
comfortable: 1
nice: 1
accommodating: 1
smile: 1
friendliness: 1
attentiveness: 1

“A friend and I stayed at the Hotel …

The hotel was very nice. The location

was amazing. We could walk almost

anywhere, but … far. The room was

very nicely appointed and the bed

was sooo comfortable. Even though

the bathroom door did not close

all the way, it was still very private.…

But what I liked best about the hotel

was the staff. They were soooo nice

and accommodating …”

3.8

4.8

5.8

0.2

0.2

0.6

Aspect
rating

Aspect
weight

αi (d)βi,w ri (d)

Latent!Observed

Latent rating regressionAspect segmentation +

rd

ci (w, d)

Figure 18.10 A two-step approach to solving the LARA problem. (Courtesy of Hongning Wang)

As input, we are given a review with the overall rating. First, we will segment
the aspects; we’re going to pick out what words are talking about location, what
words are talking about room condition, and so on. In particular, we will obtain the
counts of all the words in each segment, denoted by ci(w, d), where i is a particular
segment index. This can be done by using seed words like location, room, or price
to retrieve the aspect label of each segment. From those segments, we can further
mine correlated words with these seed words, which allows us to segment the text
into partitions discussing different aspects. Later, we will see that we can also use
unsupervised models to do the segmentation.

In the second stage, Latent Rating Regression, we’re going to use these words
and their frequencies in different aspects to predict the overall rating. This pre-
diction happens in two stages. In the first stage, we’re going to use the weights of
these words in each aspect to predict the aspect rating. For example, if in the dis-
cussion of location, you see a word like amazing mentioned many times, it will have
a high weight (in the figure it’s given a weight of 3.9). This high weight increases the
aspect rating for location. In the case of another word like far, which is mentioned
many times, the weight will decrease. The aspect ratings assume that it will be a
weighted combination of these word frequencies where the weights are the senti-

18.3 Latent Aspect Rating Analysis 403

ment weights of the words. Of course, these sentiment weights might be different
for different aspects. For each aspect i we have a set of term sentiment weights for
word w denoted as βi ,w.

In the second stage, we assume that the overall rating is simply a weighted
combination of these aspect ratings. We assume we have aspect weights αi(d),
and these will be used to take a weighted average of the aspect ratings ri(d). This
method assumes the overall rating is simply a weighted average of these aspect
ratings, which allows us to predict the overall rating based on the observable word
frequencies.

On the left side of Figure 18.10 is all the observed information, rd (the overall
rating) and ci(w, d). On the right side is all the latent (hidden) information that
we hope to discover. This is a typical case of a generative model where we embed
the interesting latent variables. Then, we set up a generative probability for the
overall rating given the observed words. We can adjust these parameter values to
maximize the conditional probability of the observed rating given the document.
We have seen such cases before in other models such as PLSA, where we predict
topics in text data. Here, we’re predicting the aspect ratings and other parameters.

More formally, the data we are modeling here is a set of review documents with
overall ratings, as shown in Figure 18.11. Each review document is denoted as d

and the overall ratings denoted by rd . We use ci(w, d) to denote the count of word
w in aspect segment i. The model is going to predict the rating based on d, so
we’re interested in the rating regression problem of p(rd | d). This model is set

• Data: a set of review documents with overall ratings: C = {(d, rd)}
 – d is pre-segmented into k aspect segments
 – ci(w, d) = count of word w in aspect segment i (zero if w didn’t occur)

• Model: predict rating based on d: p(rd|d)

Overall rating = weighted average of aspect ratings

Aspect rating = sum of sentiment weights of words in the aspect

Aspect-specific
sentiment of w

Multivariate
Gaussian prior

rd » N(∑k
i=1αi (d)ri (d), δ2), α � (d) » N(μ �,
)

ri (d) = ∑w2V ci (w, d)βi ,w βi ,w 2 <

Figure 18.11 Latent rating regression.

404 Chapter 18 Opinion Mining and Sentiment Analysis

up as follows. rd is assumed to follow a normal distribution with a mean that is
a weighted average of the aspect ratings ri(d) and variance δ2. Of course, this is just
our assumption. As always, when we make this assumption, we have a formal way
to model the problem and that allows us to compute the interesting quantities—in
this case, the aspect ratings and the aspect weights.

Each aspect rating ri(d) is assumed to be a sum of sentiment weights of words
in aspect i. The vector of weights α for the aspects in the overall rating is it-
self drawn from another multivariate Gaussian distribution, α(d) ∼ N (μ,). This
means when we generate our overall rating, we’re going to first draw a set of α val-
ues from this multivariate Gaussian prior distribution. Once we get these α values,
we’re going to compute the weighted average of aspect ratings as the mean of the
normal distribution to generate the overall rating rd . Note that β is indexed by both
i and w. That gives us a way to model different aspect segments of the same word,
since the same word might have positive sentiment for one aspect and negative for
another.

How can we estimate all these parameters? Let’s collectively denote them as
� = (βi ,w , μ, , δ2). As usual, we can use the maximum likelihood estimate which
yields parameters that maximize observed ratings conditioned on their respective
reviews, as shown in Figure 18.12.

Once we estimate the parameters, we can easily compute the aspect rating for a
particular aspect by taking all counts of the words that occurred in segment i and
multiplying them by βi ,w, summing over all words. The sum would be zero for words
that do not occur, so we can simply take the sum of all the words in the vocabulary.

• Maximum likelihood estimate

 – Parameters: � = ({βi ,w}, μ �,
, δ2)

 – ML estimate: �* = argmax� ∏d2C p(rd|d, �)

• Aspect rating for aspect i

• Aspect weights: αi (d) = weight on aspect i

Maximum a posteriori

ci (w, d) = 0 for words
not occurring in
aspect segment i

ri (d) = ∑w2V ci (w, d)βi ,w

Prior Likelihood

α � (d)* = argmax p(α � (d)|μ,
)p(rd|d, {βi ,w}, δ2, α � (d))α � (d)

Figure 18.12 Latent rating regression estimation.

18.3 Latent Aspect Rating Analysis 405

To compute the αi(d) values, we must use maximum a posteriori. This means that
we maximize the product of the prior of α (according to our assumed multivariate
Gaussian distribution) and the likelihood of the rating rd :

α(d)∗ = arg maxα(d) p(α(d) | μ,)p(rd | d , βi ,w , δ2, α(d)). (18.3)

The likelihood rating is the probability of generating this observed overall rating
given this particular α value and some other parameters. For more details about
this model, we refer the reader to Wang et al. [2010].

Earlier, we talked about how to solve the LARA problem in two stages. First, we
did segmentation of different aspects, and then used a latent regression model to
learn the aspect ratings and weights. It’s also possible to develop a unified gen-
erative model for solving this problem. That is, we not only model the generation
of overall ratings based on text, but also model the generation of the text itself. A
natural solution would be to use a topic model.

Given an entity, we can assume there are aspects that are described by word
distributions (i.e., topics). We then use a topic model to model the generation
of the reviewed text. We assume words in the review text are drawn from these
distributions in the same way as we assumed in PLSA. Then, we can plug in the
latent regression model to use the text to further predict the overall rating. To
predict the overall rating based on the generated text, we first predict the aspect
rating and then combine them with aspect weights to predict the overall rating.
This gives us a unified generative model, where we model both the generation of
text and the overall rating conditioned on text. We don’t have space to discuss this
model in detail, so we refer reader to Wang et al. [2011] for additional reading.

Let’s look at some applications enabled by using these kinds of generative mod-
els. First, consider the decomposed ratings for some hotels that have the same
overall rating. If you just look at the overall rating, you can’t really tell much differ-
ence between these hotels, but by decomposing these ratings into aspect ratings
we can see some hotels have higher ratings for some dimension (like value) while
others might score better in other dimensions (like location). This breakdown can
give us detailed opinions at the aspect level.

Another application is that you can compare different reviews on the same hotel.
At a high level, overall ratings may look the same, but after decomposing the ratings,
you might see that they have high scores on different dimensions. This is because
the model can discern differences in opinions of different reviewers. Such a detailed
understanding can help us learn about the reviewers and better incorporate their
feedback.

406 Chapter 18 Opinion Mining and Sentiment Analysis

Value Rooms Location Cleanliness

resort 22.80 view 28.05 restaurant 24.47 clean 55.35

value 19.64 comfortable 23.15 walk 18.89 smell 14.38

excellent 19.54 modern 15.82 bus 14.32 linen 14.25

worth 19.20 quiet 15.37 beach 14.11 maintain 13.51

bad −24.09 carpet −9.88 wall −11.70 smelly −0.53

money −11.02 smell −8.83 bad −5.40 urine −0.43

terrible −10.01 dirty −7.85 road −2.90 filthy −0.42

overprice −9.06 stain −5.85 website −1.67 dingy −0.38

Figure 18.13 Sentiment lexicon learned by LARA. (Based on results from Wang et al. [2010])

In Figure 18.13, we show some highly weighted words and the negatively
weighted words for each of the four aspect dimensions: value, room, location, and
cleanliness. Thus, we can also learn sentiment information directly from the data.
This kind of lexicon is very useful because in general, a word like long may have
different sentiment polarities for different contexts. If we see “The battery life of
this laptop is long,” then that’s positive. But if we see “The rebooting time for the
laptop is long,” then that’s clearly not good. Even for reviews about the same prod-
uct (i.e., a laptop) the word long is ambiguous. However, with this kind of lexicon,
we can learn whether a word is positive or negative for a particular aspect. Such
a lexicon can be directly used to tag other reviews about hotels or tag comments
about hotels in social media.

Since this is almost completely unsupervised aside from the overall ratings, this
can allow us to learn from a potentially larger amount of data on the internet to
create a topic-specific sentiment lexicon. Recall that the model can infer whether
a reviewer cares more about service or the price. How do we know whether the
inferred weights are correct? This poses a very difficult challenge for evaluation.

Figure 18.14 shows prices of hotels in different cities. These are the prices of
hotels that are favored by different groups of reviewers. Here we show the ratio of
importance of value to other aspects. For example, we have value vs. location. In the
figure, “top ten” refers to the reviewers that have the highest ratios by a particular
measure. This means these top ten reviewers tend to put a lot of weight on value
as compared with other dimensions. The bottom ten refers to reviewers that have
put higher weights on other aspects than value; these are people who care about

18.3 Latent Aspect Rating Analysis 407

221.1

236.2

225.3

311.4

220.3

292.6

Higher!

Val/Ser

214.9

333.9

249.0

311.1

248.9

293.4

Val/Rm

190.7

270.8

214.5

321.1

269.4

298.9

Val/Loc

top-10

bot-10

top-10

bot-10

top-10

bot-10

Group

241.6

261.3

272.1

Amsterdam

San Francisco

Florence

Top-10: Reviewers with the highest Val/X ratio (emphasize “value”)
Bot-10: Reviewers with the lowest Val/X ratio (emphasize a non-value aspect)

Avg. priceCity

Figure 18.14 Sample results showing inferred weights are meaningful. (Based on results from Wang
et al. [2010])

another dimension and don’t care so much about value, at least compared to the
top ten group.

These ratios are computed based on the inferred weights from the model. We can
see the average prices of hotels favored by the top ten reviewers are indeed much
cheaper than those that are favored by the bottom ten. This provides some indirect
way of validating the inferred weights. Looking at the average price in these three
cities, you can actually see the top ten group tends to have below average prices,
whereas the bottom half (that cares about aspects like service or room condition)
tend to have hotels that have higher prices than average.

With these results, we can build many interesting applications. For example,
a direct application would be to generate a collective summary for each aspect,
including the positive sand negative sentences about each aspect. This is more
informative than the original review that just has an overall rating and review text.

Figure 18.15 shows some interesting results on analyzing user rating behavior.
What you see is average weights along different dimensions by different groups
of reviewers. On the left side you see the weights of viewers that like the expensive
hotels. They gave the expensive hotels five stars, with heavy aspect weight on service.
That suggests that people like expensive hotels because of good service, which is
not surprising. This is another way to validate the model by the inferred weights.

The five-star ratings on the right side correspond to the reviewers that like the
cheaper hotels. As expected, they put more weight on value. If you look at when
they didn’t like cheaper hotels, you’ll see that they tended to have more weights on
the condition of the room cleanliness. This shows that by using this model, we can

408 Chapter 18 Opinion Mining and Sentiment Analysis

Value

Room

Location

Cleanliness

Service

0.134

0.098

0.171

0.081

0.251

People like cheap hotels
because of good value.

5 Stars

Expensive Hotel Cheap Hotel

0.148

0.162

0.074

0.163

0.101

3 Stars

0.171

0.126

0.161

0.116

0.101

5 Stars

0.093

0.121

0.082

0.294

0.049

3 Stars

People like expensive hotels
because of good service.

Figure 18.15 Analysis of reviewer preferences. (Based on results from Wang et al. [2010])

infer some information that’s very hard to obtain even if you read all the reviews.
This is a case where text mining algorithms can go beyond what humans can do,
to discover interesting patterns in the data. We can compare different hotels by
comparing the opinions from different consumer groups in different locations. Of
course, the model is quite general, so it can be applied to any reviews with an overall
ratings.

Finally, the results of applying this model for personalized ranking or recom-
mendation of entities are shown in Figure 18.16. Because we can infer the reviewers’
weights on different dimensions, we can allow a user to indicate what they actu-
ally care about. For example, we have a query here that shows 90% of the weight
should be on value and 10% on others. That is, this user just cares about getting a
cheap hotel—an emphasis on the value dimension. With this model, we can find
the reviewers whose weights are similar to the query user’s. Then, we can use those
reviewers to recommend hotels; this is what we call personalized or query specific
recommendation. The non-personalized recommendations are shown on the top,
and you can see the top results generally have much higher price than the bottom
group. That’s because the reviewers on the bottom cared more about the value. This
shows that by doing text mining we can better understand and serve the users.

To summarize our discussion, sentiment analysis is an important topic with
many applications. Text sentiment analysis can be readily done by using just text
categorization, but standard techniques tend to be insufficient so we need to have
an enriched feature representation. We also need to consider the order of the senti-
ment categories if there are more than two; this is where our discussion on ordinal
regression comes into play. We have also shown that generative models are pow-

18.4 Evaluation of Opinion Mining and Sentiment Analysis 409

Majestic Colonial

Agua Resort

Majestic Elegance

Grand Palladium

Iberostar

Elan Hotel Modern

Marriott San Juan Resort

Punta Cana Club

Comfort Inn

Hotel Commonwealth

Hotel

A
p

p
ro

ac
h

 1
A

p
p

ro
ac

h
 2

5.0

5.0

5.0

5.0

5.0

5.0

4.0

5.0

5.0

4.5

Overall Rating

339

753

537

277

157

216

354

409

155

313

Price

Punta Cana

Punta Cana

Punta Cana

Punta Cana

Punta Cana

Los Angeles

San Juan

Punta Cana

Boston

Boston

Location

Non-personalized

Personalized

(Query-specific)

Query:
0.9 value
0.2 others

Figure 18.16 Personalized entity ranking. (Based on results from Wang et al. [2010])

erful for mining latent user preferences, in particular the generative model for
mining latent rating regression. Here, we embedded some interesting preference
information and sentiment by weighting words in the model. For product reviews,
the opinion holder and the opinion target are clear, making them easy to analyze.
There, of course, we have many practical applications. Opinion mining from news
and social media is also important, but that’s more difficult than analyzing review
data mainly because the opinion holders and opinion targets are not clearly de-
fined. This challenge calls for more advanced natural language processing.

For future reading on topics presented in this chapter, we suggest [Pang and Lee
2008], a comprehensive survey on opinion mining and sentiment analysis.

18.4 Evaluation of Opinion Mining and Sentiment Analysis
In this chapter we investigated opinion mining and sentiment analysis from the
viewpoint of both classification (or regression) and topic analysis. Thus, evaluation
from these perspectives will be similar to those discussed in Chapter 15 (catego-
rization) and Chapter 17 (topic analysis).

From a classification viewpoint, we can use a dataset with documents labeled
as positive or negative, or as ratings on a numerical scale as described in this
chapter. This then becomes the standard machine learning testing setup where
we can use techniques such as cross-fold validation to determine the effectiveness
of our method. Additionally, feature selection can show which features are the most

410 Chapter 18 Opinion Mining and Sentiment Analysis

useful for determining whether a sentence (e.g.) is positive or negative. Based on the
useful features, we can either adjust the algorithm or try to fine-tune the feature set.

From a topic analysis viewpoint, we would like to ensure that the topics are
coherent and have a believable coverage and distribution over the documents in
the dataset. We mentioned that corpus log likelihood is a way to test how well
the model fits to the data. While this evaluation metric doesn’t always agree with
human judges [Chang et al. 2009], it does serve as a sanity check or proxy for true
usefulness.

Additionally, we can test the effectiveness of adding opinion mining and senti-
ment analysis to an existing system by the method discussed in Chapter 13. That
is, we can compare the system’s performance before sentiment analysis, and then
compare its performance afterwards. If the system performs statistically signifi-
cantly better under some evaluation metric relevant to the task at hand, then the
sentiment analysis is a definitive improvement.

Bibliographic Notes and Further Reading
Opinion mining and sentiment analysis have been extensively studied. Two ex-
cellent books on this general topic are the book Opinion Mining and Sentiment
Analysis [Pang and Lee 2008] and the book Sentiment Analysis and Opinion Min-
ing [Liu 2012]. Multiple extensions of topic models for analyzing opinionated topics
have been made (e.g., topic-sentiment mixture model [Mei et al. 2007a], multi-grain
topic model [Titov and McDonald 2008], and aspect and sentiment unification
model [Jo and Oh 2011]). Techniques for Latent Aspect Rating Analysis are mainly
covered in two KDD papers [Wang et al. 2010], [Wang et al. 2011].

Exercises
18.1. In this chapter, we mainly discussed how to determine overall sentiment for
a text object. Imagine that we already have the sentiment information as part of
the object and we are instead interested in identifying the target of the sentiment.
Brainstorm some ideas using NLP techniques mentioned in this book.

18.2. META has an implementation of the LDA topic modeling algorithm, which
contains symmetric priors for the word and topic distributions. Modify META to
contain non-uniform priors on the topic-word distributions to encode some addi-
tional knowledge into the prior. For example, in the sentiment analysis task, create
two prior distributions that have high weights on particular “good” and “bad” topic
distributions. That is, the prior for the “good” topic should probably weight the

Exercises 411

term excellent relatively high and the “bad” topic should weight the term broken
relatively high.

18.3. A simple version of sentiment analysis is called word valence scoring. A finite
list of words has a positive or negative valence score. When determining the senti-
ment for a sentence, the valence scores are added up for each word in the sentence;
if the result is positive, the sentiment is positive. If the result is negative, the sen-
timent is negative. For example, some valences could be bad = −4.5, awesome =
6.3, acceptable = 1.1. What is a potential weakness to this method?

18.4. How can we automatically create the sentiment word valence scores based
on a list of sentences labeled as positive or negative?

18.5. The techniques discussed in this chapter can be applied to other problems
aside from sentiment analysis in particular. Name some applications that also
would benefit from the general methods discussed in this chapter. Explain how
you would implement them.

18.6. Cross-fold validation is a useful way to evaluate classifiers as mentioned in
Chapter 15. How can cross-fold validation be used to detect potential overfitting?

18.7. We mentioned that a main challenge in designing features is to optimize
the tradeoff between exhaustivity and specificity. Can you design an experimental
training setup that takes these variables into account?

18.8. In LARA, why do you imagine the vector of weights α is drawn from a multi-
variate Gaussian distribution? That is, why not use some other distribution?

18.9. In LARA, each word is assigned an aspect, but this means that one sentence
may be assigned many different aspects. Can you outline an adjustment to ensure
that each sentence only covers one topic or a small number of topics? Similarly,
can we ensure that sequences of words all belong to the same aspect?

18.10. Instead of a classification task, it may be beneficial to instead rank text
objects by how positive they are (so low-ranking documents are very negative).
Outline a few methods on how this may be achieved. What are the benefits and
downsides compared to classification?

18.11. Imagine that you have an unlabeled dataset of product reviews. How can
you design a sentiment classifier based on this dataset without manually labeling
all of the documents?

19Joint Analysis of Text
and Structured Data
In this chapter, we discuss techniques for joint analysis of text and structured data,
which not only enriches text analysis, but is often necessary for many prediction
problems involving both structured data and unstructured text data. Due to the
complexity of many of these methods and the limited space, we will only give a brief
introduction to the main ideas and show sample results to provide a sense about
what kind of applications these techniques can support. Details of these techniques
can be found in the references provided at the end of this chapter.

19.1 Introduction
In real-world big data applications, we would have both structured data and un-
structured text data available to help us make predictions and support decision
making. It is thus important to analyze both kinds of data jointly, especially when
the goal is to predict some latent real-world variable that is not directly observed
in the data. To illustrate this problem setup and the big picture of data mining in
general, we show the data mining loop in Figure 19.1.

In this figure, we see that there are multiple sensors—including human sen-
sors—to report what we have seen in the real world in the form of data. The data
include both non-text data and text data. Our goal is to see if we can predict some
values of important real world variables that matter to us. For example, we might
be interested in predicting the condition of a bridge, the weather, stock prices, or
presidential election results. We are interested in predicting such variables because
we might want to act on the inferred values or make decisions based on the inferred
values.

How can we get from the data to these predicted values? We’ll first have to do data
mining and analysis of the data. In general, we should try to leverage all the data
that we can collect, and joint mining of non-text and text data is critical. Through

414 Chapter 19 Joint Analysis of Text and Structured Data

Joint mining
of non-text

and textText
data

Non-text
data

Multiple
predictors
(features)

Real world

Predicted
values of real

world variables

Sensor 1
…

…

…

Sensor k

Predictive
model

The Big Picture of Prediction: Data Mining Loop

Change the world

Figure 19.1 The data mining loop.

analysis of all the data, we can generate multiple predictors of the interesting
variables to us. We call these predictors features, and they can further be combined
and put into a predictive model to actually predict the value of any interesting
variable. The prediction results would then allow us to act and change the world.
This is the general process for making a prediction based on any data.

It’s important to emphasize that a human actually plays a very important role in
this process, especially because of the involvement of text data. First, a human user
would be involved in the mining of the data. The user can control the generation
of these features and can even manually create features. Second, humans can
help understand the text data, because text data are created to be consumed by
humans, and humans can consume and interpret text data much more effectively
than a machine. The challenge, of course, is when there is an enormous amount
of text data, since it would not be feasible for humans to read and digest all the
information. Thus, machines must help and that’s why we need to do text data
mining. Sometimes machines can even “see” patterns in data that humans may
not see even if they have the time to read all the data.

Next, humans also must be involved in building, adjusting and testing a predic-
tive model. In particular, we humans will have important domain knowledge about

19.1 Introduction 415

the prediction problem that we can build into the predictive model. Once we have
the predicted values for the variables, humans would be involved in taking actions
to change the world or make decisions based on these particular values.

Finally, it’s interesting that a human could be involved in controlling the sensors
to collect the most useful data for prediction. Thus, this forms a data mining loop
because as we perturb the sensors, they will collect additional new and potentially
more useful data, allowing us to improve the prediction. In this loop, humans
will recognize what additional data will need to be collected. Machines can help
humans identify what data should be collected next. In general, we want to collect
data that is most useful for learning. The study of how to identify data points that
would be most helpful for machine learning is often referred to as active learning,
which is an important subarea in machine learning.

There is a loop from data acquisition to data analysis; from data mining to
prediction of values; from actions to change the world; and finally, we observe what
happens. We can then decide what additional data have to be collected and adjust
the sensors accordingly. Analysis of the prediction errors can help reveal what
additional data we need to acquire in order to improve the accuracy of prediction.
This big picture is actually very general and can serve as a model for many important
applications of big data.

Since the focus of the book is on text data, it is useful to consider the special case
of the loop shown in Figure 19.2 where the goal is to use text data to infer values of
some other variables in the real world that may not be directly related to the text.
Such an analysis task is different from a task such as topic mining where the goal is
to directly characterize the content of text. In text-based prediction, our goal can be
to infer any information about the world. This is, of course, only possible if there
exist clues in the text data about the target variable; fortunately, this is often the
case since people report everything in text data. In many cases (e.g., stock price
prediction), the non-text data (historical stock prices) are much more effective for
prediction than text data, though text data can generally help provide additional
indicators for the prediction task.

Sometimes text data contain more useful indicators than non-text data, and
text data alone may also be sufficient for making predictions. Typically, in such
a case, the prediction is about human behavior or human preferences or opinions.
In general though, text data will be put together with non-text data.

In all cases of text-based prediction, there are two important questions. First,
what features (indicators) are most useful for the prediction task? Second, how can
we generate such effective indicators from text? For convenience, we will use the
term “feature” and “indicator” interchangeably. The first question has much to do

416 Chapter 19 Joint Analysis of Text and Structured Data

Joint mining
of non-text

and textText
data

Non-text
data

Multiple
predictors
(features)

Real world

Sensor 1
…

…

…

Sensor k

Text-Based Prediction

How can we generate effective predictors from text?

How can we jointly mine text and non-text data?

Figure 19.2 Illustration of text-based prediction.

with the specific prediction problem, and is thus inevitably application-specific.
However, there are some generic features we can often start with (like n-grams
or topics) as discussed in some previous chapters. Supervised learning methods
can be used to learn what features are most effective. The second question has
been addressed to some extent in the previous chapters of the book since many
techniques that we have introduced can be potentially used to obtain features
from text data. For example, topic mining can be very useful to generate topic-
based indicators or predictors that can be further fed into a predictive model.
Such topic-based features can be mixed with word-based features to enrich the
feature representation. Sizes of a certain cluster of terms or cluster of documents
may also be potential features. A set of terms with paradigmatic relations may be
a better indicator than any single term, and sentiment tags that we may be able
to generate based on text data are yet another kind of useful feature for some
prediction problems.

What has not been discussed is how we can jointly mine text and non-text data
together to discover interesting knowledge that could not be otherwise discovered
by using either one alone. This interaction is the topic of the chapter.

The benefit of joint analysis of text and non-text data can be seen from two differ-
ent perspectives. First, non-text data can enrich text analysis. Specifically, non-text
data can often provide a context for mining text data and thus enable us to partition

19.2 Contextual Text Mining 417

data in different ways based on the companion non-text data (e.g., partitioning text
based on time or location). This opens up possibilities of contextual text mining, or
mining text data in the context defined by non-text data to discover context-specific
knowledge (such as topics associated with a specific non-text variable such as time),
or patterns across different contexts like temporal trends. Second, text data can
help interpret patterns discovered from non-text data. For example, if a frequent
pattern is discovered from non-text data, we can separate the text data associated
with the data instances where the pattern occurs from those associated with the
instances that do not match the pattern. We can then analyze the difference be-
tween these two sets of text data, which may be associated with the meaning of the
pattern, and thus can offer insights about how to interpret the pattern which would
otherwise be hard to interpret by only looking at the non-text data. This technique
is called pattern annotation and discussed in detail in Mei et al. [2006].

19.2 Contextual Text Mining
In this section, we discuss how to use non-text data as context to enrich topic
analysis of text data. Such analysis techniques can be regarded as an extension
of topic analysis to further reveal the correlation of topics and any associated
context (e.g., time or location). When topics represent opinions, we may also reveal
context-dependent opinions. Contextual text mining can be very useful for text-
based prediction because it allows us to combine non-text data with text data to
derive potentially very effective sophisticated predictors.

Contextual text mining is generally useful because text often has rich contextual
information. First, text data almost always have metadata available (such as time,
location, author, and source of the data), which can be regarded as direct context
information. Second, text data may also have indirect context which refers to addi-
tional data related to the metadata. For example, from the authors of a text article,
we can further obtain additional context such as the social network of the author,
the author’s age, or the author’s location. Such information is not in general di-
rectly related to the text, yet through such a propagation process, we can connect
all of them. There may also be other articles from the same source as a current arti-
cle, and we can connect these articles from the same source and make them related
as well. In general, any related data can be regarded as context.

What can the context of text data be used for? Context can be used to partition
text data in many interesting ways. It can almost allow us to partition text data in
any way that we want, and thus enables comparative analysis of text to be done
across any context dimension that is interesting to us.

418 Chapter 19 Joint Analysis of Text and Structured Data

1998

Papers written
in 1998

www

Context = Partitioning of Text

1999

2005

… …

2006

sigir acl kdd sigmod

Papers about
“text mining”

Papers written by
authors in the U.S.

Enable discovery of knowledge associated with different context as needed

Figure 19.3 Context leads to partitioning of text data.

As a specific example, we show how some context variables enable partition-
ing of research papers in many different ways in Figure 19.3. The horizontal di-
mension of the figure shows different conference venues where the papers are
published, and the vertical dimension shows the time of a publication. We can
treat each paper as a separate unit; in this case, a paper ID serves as the con-
text and each paper has its own context. We can treat all the papers published
in 1998 as one group, and partition papers by the year due to the availability of
time as a non-text variable. Such a partitioning would allow us to compare top-
ics in different years. Similarly, we can partition the data based on the venues;
we can group all the papers published in SIGIR and compare them with those
published in KDD or ACL. This comparison is enabled by the availability of the
non-text variable of the conference venue. Furthermore, we can also partition the
data to obtain the papers written by authors in the U.S. by using additional con-
text of the authors. Such a contextual view of the data would allow us to com-
pare papers written by American authors with those written by authors in other
countries.

19.3 Contextual Probabilistic Latent Semantic Analysis 419

Sometimes, we can use topics to partition the data without involving non-text
data. For example, we can obtain a set of papers about the topic “text mining,” and
compare them with the papers about another topic. Note that these partitions can
be intersected with each other to generate even more complicated partitions. So,
we may form constraints on non-text variables to create interesting contexts for
partitioning text data, which can then facilitate discovery of knowledge associated
with different contexts.

The incorporation of non-text contextual variables enables the association of
topics from text data with potentially many different contexts, generating interest-
ing and useful patterns. For example, in comparing topics over time, we can see
topical trends. Comparing topics in different contexts can also reveal differences
about the two contexts.

There are many interesting questions that require contextual text mining to
answer. For example, to answer a question such as “What topics have been getting
increasing attention recently in data mining research?” we would need to analyze
text in the context of time. Is there any difference in the responses of people in
different regions to an event? To answer such a question, location can be the
context. What are the common research interests of two researchers? In this case,
authors can be the context. Is there any difference in the research topics published
by authors in the U.S. and those outside? Here, the context would include the
authors and their affiliation and location. This is a case where we need to go beyond
just the authors and further look at the additional information connected to the
author.

Is there any difference in the opinions of all the topics, expressed in one social
network compared to another? In this case, the social network of authors and the
topic can be a context. Are there topics in news data whose coverage is correlated
with sudden changes in stock prices? Such a question can be addressed by using
a time series such as stock prices as context. What issues mattered in the 2012
presidential campaign and election? Here time serves again as context. Clearly,
contextual text mining can have many applications.

19.3 Contextual Probabilistic Latent Semantic Analysis
In this section, we briefly introduce a specific technique for contextual text mining
called Contextual Probabilistic Latent Semantic Analysis (CPLSA). CPLSA is an
extension of PLSA to incorporate context variables into a generative model so that
both the selection of topics and the topic word distributions can depend on the
context associated with text.

420 Chapter 19 Joint Analysis of Text and Structured Data

Recall that in PLSA the text data are generated by first selecting a topic and then
generating a word from a topic. The topics are shared by all the documents in the
collection, but the selection probability (i.e., coverage of topics) is specific to a
document. In CPLSA, the generation process is similar, but since we assume that
we have context information (time or location) about a document, the generation of
words in the document may be conditioned on the specific context of the document.
Instead of assuming just one set of common topics for the collection, we assume
that there may be variations of this set of topics depending on the context. For
example, we might have a particular view of all the topics imposed by a particular
context (such as a particular time period or a particular location), so we may have
multiple sets of comparable topics that represent different views of these topics
associated with different contexts.

In Figure 19.4, we use a collection of blog articles about Hurricane Katrina to
illustrate this idea. In such a collection, we can imagine potential topics such as
government response, donation, and flooding of New Orleans. These are shown as
different “themes,” each represented by a word distribution. Besides these themes,
we also show three potentially different views of these three themes (topics): View1
is associated with a location context (Texas) and contains Texas-specific word dis-
tributions for all the three themes shown in the figure, which may reflect how the
authors in Texas talk about these topics, which presumably would be different from
how the authors in Illinois talk about them, which can be represented as a differ-
ent view. Similarly, View2 is associated with a time context (July 2005), and View3

is associated with a context of author occupation (a sociologist).
The selection of topics when generating words in a document can also be in-

fluenced by the context of the document. For example, the authors in Texas may
tend to cover one particular aspect more than another, while the authors in other
locations may be different. Similarly, contexts such as the time and author occu-
pation may also suggest a preference for certain topics. In the standard PLSA, we
assume that every document has its own preference for topics; this can be regarded
as a special case of CPLSA where we have taken each document ID as a context for
the document. The different topic selection preferences of different contexts are
illustrated at the bottom of Figure 19.4.

To generate a word in document d, we would first choose a particular view of
all the topics based on the context of the document. For example, the view being
chosen may be the location (Texas); in such a case, we would be using the Texas-
specific topics to generate the word. The next step is to decide a topic coverage,
which again depends on the context. We may choose the coverage associated with
the time (July 2005). Note that this same coverage would be used when generating

19.3 Contextual Probabilistic Latent Semantic Analysis 421

View1Themes

Theme
coverage:

Government

Donation

New
Orleans Texas

Texas

View2

July
2005

July 2005

…

Document

View3

Sociologist Choose a view

Choose a
coverage

Choose a topic
government 0.3
response 0.2 …

Document context:

Time = July 2005
Location = Texas
Author = xxx
Occupation = sociologist
Age group = 45+
…

donate 0.1
relief 0.05
help 0.02 …

city 0.2
new 0.1
orleans 0.05 …

Figure 19.4 CPLSA as a generative model depending on context. (Courtesy of Qiaozhu Mei)

all documents with July 2005 as the time context. This is very different from the
PLSA where each document has its own coverage preference, which is independent
of each other. The dependency (on context) introduced here enables all the text with
a particular context associated to contribute to the learning of the topic coverage.

Once a view of topics and a topic coverage distribution have been chosen, the
rest of the generation process is exactly the same as in PLSA. That is, we will use
the topic coverage and selection distribution to sample a topic, and then use the
corresponding word distribution of the topic (i.e., chosen view of the topic) to gen-
erate a word. In such a generation process, each word can be potentially generated
using a different view and a different topic coverage distribution depending on the
contexts chosen to direct the generation process. Note that the context that deter-
mines the choice of view of a topic can be different from the context chosen to
decide the topic coverage. This is illustrated in Figure 19.5 where we show that all
the words in the document have now been generated by using CPLSA, which is es-
sentially a mixture model with many component models associated with different
contexts.

In CPLSA, both the views of topics and the topic coverage depend on context, so
it enables discovery of different variations of the same topic in different contexts
(due to the dependency of a view of topics on context) and different topic cover-
ages in different contexts (due to the dependency of topic coverage on context).

422 Chapter 19 Joint Analysis of Text and Structured Data

View1Themes

Theme
coverage:

Government

Donation

New
Orleans Texas

Texas

View2

July
2005

July 2005

…

Document

View3

Sociologist Choose a view

Choose a
coverage

government 0.3
response 0.2 …

Criticism of government
response to the hurricane
primarily consisted of
criticism of its response
to … The total shut-in oil
production from the Gulf
of Mexico … approximately
24% of the annual
production and the shut-in
gas production … Over
seventy countries pledged
monetary donations or
other assistance. …

donate 0.1
relief 0.05
help 0.02 …

city 0.2
new 0.1
orleans 0.05 …

Figure 19.5 Generation of all words in a document using CPLSA. (Courtesy of Qiaozhu Mei)

Such context-dependent topic patterns can be very useful for answering various
questions as we mentioned earlier.

The standard PLSA can easily be seen as a special case of CPLA when we have
used just one single view of topics by using the whole collection as context, and used
each document ID as a context for deciding topic coverage. As a result, what we can
discover using PLSA is just one single set of topics characterizing the content in the
text data with no way to reveal the difference of topics covered in different contexts.
The standard PLSA can only reveal the coverage of topics in each document, but
cannot discover the topic coverage associated with a particular context.

In contrast, CPLSA would provide more flexibility to embed the context variables
as needed to enable discovery of multiple views of topics and context-specific
coverage of topics, thus enriching the topical patterns that can be discovered.

Since CPLSA remains a mixture model, we can still use the EM algorithm to
solve the problem of parameter estimation, although the number of parameters to
be estimated would be significantly larger than PLSA. Thus, theoretically speaking,
CPLSA can allow us to discover any context-specific topics and topic coverage distri-
butions. However, in reality, due to the inevitable sparsity of data, we must restrict
the space of the context variables to control the complexity of the model. Once esti-
mated, the parameters of CPLSA would naturally contain context variables, includ-
ing particularly many conditional probabilities of topics (given a certain context)

19.3 Contextual Probabilistic Latent Semantic Analysis 423

Cluster 1

Common
theme

Iraq
theme

Afghan
theme

united 0.042
nations 0.04
…

n 0.03
weapons 0.024
inspections 0.023
…

northern 0.04
alliance 0.04
kabul 0.03
taleban 0.025
aid 0.02
…

Cluster 2

killed 0.035
month 0.032
deaths 0.023
…

troops 0.016
hoon 0.015
sanches 0.012
…

taleban 0.026
rumsfeld 0.02
hotel 0.012
front 0.011
…

Cluster 3

…

…

…

The common theme indicates that “United Nations” is involved in both wars

Collection-specific themes indicate different roles of “United Nations” in the two wars

Figure 19.6 Sample results of comparing two sets of news articles. (Results were generated using
the method in Zhai et al. [2004], which is a special case of CPLSA)

which are precisely what we hope to discover in contextual text mining. For details
of CPLSA, readers can refer to Mei and Zhai [2006].

We now show some sample results of CPLSA. First, in Figure 19.6, we show re-
sults from comparing two sets of news articles about the Iraq and Afghanistan
wars, respectively, including high probability words in both common topics and
collection-specific topics. In this case, the context is the topic and leads to a parti-
tioning of news articles into two sets corresponding to these two wars, and CPLSA
degenerates to a simpler cross-collection mixture model [Zhai et al. 2004].

We have 30 articles on the Iraq war and 26 articles on the Afghanistan war. Our
goal is to compare the two sets of articles to discover the common topics shared by
the two sets and understand the variations of these topics in each set. The results
in Figure 19.6 show that CPLSA can discover meaningful topics. The first column
(Cluster 1) shows a very meaningful common topic about the United Nations on the
first row, which intuitively makes sense given the topics of these two collections.
Such a topic may not be surprising to people who know the background about these
articles, but the result shows that CPLSA can automatically discover it.

424 Chapter 19 Joint Analysis of Text and Structured Data

What’s more interesting, however, is the two cells of word distributions shown
on the second and third rows in the first column, right below the cell about the
United Nations. These two cells show the Iraq-specific view of the topic about
the United Nations and the Afghanistan view of the same topic, respectively. The
results show that in the Iraq War, the United Nations was more involved in weapon
inspections, whereas in the Afghanistan War, it was more involved in, perhaps,
aid to the Northern Alliance. These two context-specific views of the topic of the
United Nations show different variations of the topic in the two wars, and reveal a
more detailed understanding of topics in a context-specific way. This table is not
only immediately useful for understanding the major topics and their variations
in these two sets of news articles, but can also serve as entry points to facilitate
browsing into very specific topics in the text collection; e.g., each cell can be made
clickable to enable a user to examine the relevant discussion in the news articles
in detail.

The second column shows another shared common topic about fatalities, which
again should not be surprising given that these articles are about wars. It also again
confirms that CPLSA is able to extract meaningful common topics. As in the case
of the first column, the collection-specific topics in the third column also further
show the variations of the topic in these two different contexts.

In Figure 19.7, we show the temporal trends of topics discovered from blog
articles about Hurricane Katrina. The x-axis is the time, and the y-axis is the
coverage of a topic. The plots are enabled directly by the parameters of CPLSA where
we used time and location as context.

In Figure 19.7, we show a visualization of the trends of topics over time. The top
plot shows the temporal trends of two topics. One is oil price, and one is about the
flooding of the city of New Orleans. The plot is based on the conditional probability
of a topic given a particular time period, which is one of the parameters in CPLSA
for capturing time-dependent coverage of topics. Here we see that initially the two
curves tracked each other very well. Interestingly, later, the topic of New Orleans
was mentioned again but oil prices was not. This turns out to be the time period
when another hurricane (Hurricane Rita) hit the region, which apparently triggered
more discussion about the flooding of the city, but not the discussion of oil price.

The bottom figure shows the coverage of the topic about flooding of the city New
Orleans by blog article authors in different locations (different states in the U.S.).
We see that the topic was initially heavily covered by authors in the victim areas
(e.g., Louisiana), but the topic was then picked up by the authors in Texas, which
might be explained by the move of people from the state of Louisiana to Texas.
Thus, these topical trends not only are themselves useful for revealing the topics

19.3 Contextual Probabilistic Latent Semantic Analysis 425

0.08

0.06

0.04

0.02

0.00
8/23 8/30 9/06 9/13

Time

P
(t

/θ
, l

)

0.08

0.06

0.04

0.02

0.00
8/23 8/30 9/06 9/13

Time

(b) Theme “New Orleans” over states
(Hurricane Katrina)

(a) Theme life cycles in Texas
(Hurricane Katrina)

P
(t

/θ
, l

)

9/20 9/27 10/03

Florida
Louisiana
Texas
Washington

city 0.0634
orleans 0.0541
new 0.0342
louisiana 0.0235
flood 0.0227
evacuate 0.0211
storm 0.0177
…

Hurricane Rita

New Orleans

Oil price price 0.0772
oil 0.0643
gas 0.0454
increase 0.0210
product 0.0203
fuel 0.0188
company 0.0182
…

Figure 19.7 Temporal trends of topics discovered from blog articles about Hurricane Katrina.
(Based on results from Mei et al. [2006a])

and their dynamics over time, but also enable comparative analysis of topics across
different contexts to help discover interesting patterns and potentially interesting
events associated with the patterns.

In Figure 19.8, we show spatiotemporal patterns of the coverage of the topic of
government response in the same data set of blog articles about Hurricane Katrina.
These visualizations show the distribution of the coverage of the topic in different
weeks of the event over the states in the U.S. We see that initially, the coverage
is concentrated mostly in the victim states in the south, but the topic gradually
spread to other locations over time. In week four (shown on the bottom left), the
coverage distribution pattern was very similar to that of the first week (shown on the
top left). This can again be explained by Hurricane Rita hitting the region around

426 Chapter 19 Joint Analysis of Text and Structured Data

Probability × 100000
Katrina_0823-0829.GOVERNMENT

0–7
8–19
20–51
52–115
116–190
191–336
337–917

Probability × 100000
Katrina_0830-0905.GOVERNMENT

0–7
8–19
20–51
52–115
116–190
191–336
337–917

Probability × 100000
Katrina_0906-0912.GOVERNMENT

0–7
8–19
20–51
52–115
116–190
191–336
337–917

Probability × 100000
Katrina_0913-0919.GOVERNMENT

0–7
8–19
20–51
52–115
116–190
191–336
337–917

Probability × 100000
Katrina_0920-0926.GOVERNMENT

0–7
8–19
20–51
52–115
116–190
191–336
337–917

(a) Week One: 08/23–08/29 (b) Week Two: 08/30–09/05

(c) Week Three: 09/06–09/12 (d) Week Four: 09/13–09/19

(d) Week Five: 09/20–09/26

Theme 1
Government Response

bush 0.0716374
president 0.0610942
federal 0.0514114
govern 0.0476977
fema 0.0474692
administrate 0.0233903
response 0.0208351
brown 0.0199573
blame 0.0170033
governor 0.0142153

Figure 19.8 Spatiotemporal trends of the coverage of the topic about the governmental response.
(Based on results from Mei et al. [2006a])

that time. These results show that CPLSA can leverage location and time as context
to reveal interesting topical patterns in text data. Note that the CPLSA model is
completely general, so it can be easily applied to other kinds of text data to reveal
similar spatiotemporal patterns or topical patterns.

In Figure 19.9, we show yet another application of CPLSA for analysis of the
impact of an event. The basic idea is to compare the views of topics covered in
text before and after an event so as to reveal any difference. The difference can be

19.3 Contextual Probabilistic Latent Semantic Analysis 427

term 0.1599
relevance 0.0752
weight 0.0660
feedback 0.0372
independence 0.0311
model 0.0310
frequent 0.0233
probabilistic 0.0188
document 0.0173
…

Topic:
Retrieval models

SIGIR papers

vector 0.0514
concept 0.0298
extend 0.0297
model 0.0291
space 0.0236
boolean 0.0151
function 0.0123
feedback 0.0077
…

xml 0.0678
email 0.0197
model 0.0191
collect 0.0187
judgment 0.0102
rank 0.0097
subtopic 0.0079
…

probabilist 0.0778
model 0.0432
logic 0.0404
ir 0.0338
boolean 0.0281
algebra 0.0200
estimate 0.0119
weight 0.0111
…

YearStart of TREC

A seminal paper [Croft & Ponte 98]
1992

1998

model 0.1687
language 0.0753
estimate 0.0520
parameter 0.0281
distribution 0.0268
probable 0.0205
smooth 0.0198
markov 0.0137
likelihood 0.0059
…

Figure 19.9 Using CPLSA for event impact analysis. (Courtesy of Qiaozhu Mei)

assumed to be potentially related to the impact of the event. The results shown
here are the topics discovered from research articles on information retrieval,
particularly SIGIR papers. The topic we are focusing on is about the retrieval models
(shown on the left). The goal is to analyze the impact of two events. One is the
launch of the Text and Retrieval Conference (TREC) around 1992, a major annual
evaluation effort sponsored by the U.S. government, which is known to have made
a huge impact on the topics of research in information retrieval. The other event is
the publication of a seminal paper in 1998 by Ponte and Croft [1998], in which the
language modeling approach to information retrieval was introduced. The paper
is also known to have made a high impact on information retrieval research. To
understand the impact of these two events, we can use time periods before and
after an event as different contexts and apply CPLSA.

The results on the top show that before TREC, the study of retrieval models
was mostly on the vector space model and Boolean models, but after TREC, the
study of retrieval models apparently explored a variety application tasks (e.g., XML

428 Chapter 19 Joint Analysis of Text and Structured Data

retrieval, email retrieval, and subtopic retrieval, which are connected to some tasks
introduced in TREC over the years). The results on the bottom show that before
the language modeling paper was published in 1998, the study of retrieval models
focused on probabilistic, logic, and Boolean models, but after 1998, there was a
clear focus on language modeling approaches and parameter estimation, which is
an integral part of studies of language models for IR. Thus, these results can help
potentially reveal the impact of an event as reflected in the text data.

19.4 Topic Analysis with Social Networks as Context
In this section, we discuss how to mine text data with a social network as context.
The context of a text article can sometimes form a network; the authors of research
articles might form collaboration networks. Similarly, authors of social media
content might form social networks via a social network platform such as Twitter
or Facebook. For example, in Twitter, people might follow each other, whereas in
Facebook, people might be friends. Such a network context can indirectly connect
the content written by the authors involved in a network.

Similarly, locations associated with text can also be connected to form geograph-
ical networks, which again add indirect connections between text data that would
otherwise not be directly connected.

In general, you can imagine the metadata of the text data can easily form a
network if we can identify some relations among the metadata. When we have
network context available, it offers an interesting opportunity to jointly analyze
text and its associated network context. The benefit of such a joint analysis is as
follows. First, we can use a network to impose some constraints on topics of text.
For example, it’s reasonable to assume that authors connected in collaboration
networks tend to write about similar topics. Such heuristics can be used to guide us
in analyzing topics. Second, text can also help characterize the content associated
with each subnetwork. For example, the difference between the opinions expressed
in two subnetworks can be revealed by doing this type of joint analysis.

We now introduce a specific technique for analysis of text with network as
context called a network supervised topic model. The general idea of such a model
is illustrated in Figure 19.10. First, we can view any generative model (e.g., PLSA) as
defining an optimization problem where the variables are the parameters (denoted
by � here in the figure), and the objective function is the likelihood function.
From the perspective of mining text data, the estimated parameter values �∗ can
be regarded as the output of the mining algorithm based on the model. With
this view, we can then potentially use any context information of the text data to
impose constraints or preferences on the parameters so as to incorporate domain

19.4 Topic Analysis with Social Networks as Context 429

• Probabilistic topic modeling as optimization: maximize likelihood

 �* = arg max� p(TextData|�)

• Main idea: network imposes restraints on model parameters �
 – The text at two adjacent nodes of the network tends to cover similar topics
 – Topic distributions are smoothed over adjacent nodes
 – Add network-induced regularizers to the likelihood objective function

Any network

Any regularizer

Any generative model

Any way to combine

�* = arg max� f (p(TextData|�), r(�, Network))

Figure 19.10 The general idea of a regularizing likelihood function.

knowledge or any preferences dictated by the user or application. This would lead
to a modification to the original optimization problem such that the likelihood is
no longer the only objective to optimize.

Following this thinking, the main idea of performing joint analysis of text and
associated network context is to use the network to impose some constraints on
the model parameters. For example, the text at adjacent nodes of the network can
be assumed to cover similar topics. Indeed, in many cases, they do tend to cover
similar topics; two authors collaborating with each other tend to publish papers
on similar topics. Such a constraint or preference would essentially attempt to
smooth the topic distributions on the graph or network so that adjacent nodes
will have very similar topic distributions. This means we expect them to share
a common distribution on the topics, or have just slight variations of the topic
coverage distribution.

We add a network-induced regularizer to the likelihood objective function, as
shown in Figure 19.10. That is, instead of optimizing the probability p(TextData |
�), we will optimize another function f , which combines the likelihood function
p(TextData | �) with a regularizer r(�, Network) defined based on whatever prefer-
ences we can derive from the network context. When optimizing the new objective
function f , we would seek a compromise between parameter values that maximize
the likelihood and those that satisfy our regularization constraints or preferences.
Thus we may also view the impact of the network context as imposing some prior
on the model parameters if we view the new optimization problem conceptually as
Bayesian inference of parameter values, even though we do not have any explicitly
defined prior distribution of parameters.

430 Chapter 19 Joint Analysis of Text and Structured Data

Note that such an idea of regularizing likelihood function is quite general; in-
deed, the probabilistic model can be any generative model for text (such as a lan-
guage model), and the network can be also any network or graph that connects the
text objects that we hope to analyze. The regularizer can also be any regularizer that
we would like to use to capture different heuristics suitable for a particular appli-
cation; it may even be a combination of multiple regularizers. Finally, the function
f can also vary, allowing for many different ways to combine the likelihood func-
tion with the regularizers. Another variation is to specify separate constraints that
must be satisfied based on network context, making a constrained optimization
problem.

Although the idea is quite general, in practice, the challenge often lies in how
to instantiate such a general idea with specific regularizers so as to make the op-
timization problem remain tractable. Below we introduce a specific instantiation
called NetPLSA (shown in Figure 19.11), which is an extension of PLSA to incor-
porate network context by implementing the heuristic that the neighbors on the
network must have similar topic distributions.

As shown in Figure 19.11, the new modified objective function is a weighted sum
of the standard PLSA likelihood function and a regularizer where the parameter
λ ∈ [0, 1] controls the weight on the regularizer. Clearly, if λ = 0, the model reduces
to the standard PLSA. In the regularizer, we see that the main constraint is the

Network-induced prior: Neighbors have similar topic distribution

Modified objective function

PLSA log-likelihood

Quantify the difference in the
topic coverage at nodes u and v

Text collection

Network graph

Influence of
network constraint

Weight of
edge (u, v)

O(C, G) = (1 – λ) · (c(w, d) log p(θj|d)p(w|θj))∑
d
∑
w

k
∑
j=1

+ λ · (–1–2 w(u, v) (p(θj|u) – p(θj|v))2)∑
hu,vi2E

k
∑
j=1

Figure 19.11 The NetPLSA model.

19.4 Topic Analysis with Social Networks as Context 431

square loss defined on the difference of the topic selection probabilities of the two
neighboring nodes u and v:

∑k
j=1(p(θj | u) − p(θj | v))2, which strongly prefers to

give p(θj | u) and p(θj | v) similar values. In front of this regularization term, we see
a weight w(u, v), which is based on our network context where the edges may be
weighted. This weight states that the more connected the two nodes are, the more
important it is to ensure the two nodes have similar topics. In the case when the
edges are not weighted, we may set w(u, v) = 1 if there exists an edge between u

and v, and w(u, v) = 0 otherwise, essentially to keep only the regularizer for edges
that exist on the graph. Note that there’s a negative sign in front of the regularizer
because while we want to maximize the likelihood part, we want to minimize the
loss defined by the regularizer.

Such a modified optimization problem can still be solved using a variant of the
EM algorithm, called General EM, where in the M-step, the algorithm does not
attempt to find a maximum of the auxiliary function, but instead, just finds a new
parameter value that would increase the value of the auxiliary function, thus also
ensuring an increase of the likelihood function due to the fact that the auxiliary
function is a lower bound of the original function (see Section 17.3.5 on the EM
algorithm for more explanation about this). The whole algorithm is still a hill-
climbing algorithm with guarantee of convergence to a local maximum.

In Figure 19.12, we show the four major topics discovered using the standard
PLSA from a bibliographic database data set DBLP which consists of titles of papers
from four research communities, including information retrieval (IR), data mining

Topic 1 Topic 2 Topic 3 Topic 4

term 0.02 peer 0.02 visual 0.02 interface 0.02

question 0.02 patterns 0.01 analog 0.02 towards 0.02

protein 0.01 mining 0.01 neurons 0.02 browsubg 0.02

training 0.01 clusters 0.01 vlsi 0.01 xml 0.01

weighting 0.01 stream 0.01 motion 0.01 generation 0.01

multiple 0.01 frequent 0.01 chip 0.01 design 0.01

recognition 0.01 e 0.01 natural 0.01 engine 0.01

relations 0.01 page 0.01 cortex 0.01 service 0.01

library 0.01 gene 0.01 spike 0.01 social 0.01

Figure 19.12 Sample results of PLSA. (Based on results from Mei et al. [2008])

432 Chapter 19 Joint Analysis of Text and Structured Data

Information Retrieval Data Mining Machine Learning Web

retrieval 0.13 mining 0.11 neural 0.06 web 0.05

information 0.05 data 0.06 learning 0.02 services 0.03

document 0.03 discovery 0.03 networks 0.02 semantic 0.03

query 0.03 databases 0.02 recognition 0.02 services 0,03

text 0.03 rules 0.02 analog 0.01 peer 0.02

search 0.03 association 0.02 vlsi 0.01 ontologies 0.02

evaluation 0.02 patterns 0.02 neurons 0.01 rdf 0.02

user 0.02 frequent 0.01 gaussian 0.01 management 0.01

relevance 0.02 streams 0.01 network 0.01 onotology 0.01

Figure 19.13 Sample results of NetPLSA (in comparison to PLSA). (Based on results from Mei et al.
[2008])

(DM), machine learning (ML), and World Wide Web (Web). The data set has been
constructed by pooling together papers from these research communities, and
our goal is to see if NetPLSA can more successfully learn topics well aligned to
the communities than the standard PLSA. The results in Figure 19.12 show that
PLSA is unable to generate the four communities that correspond to our intuition.
The reason was because they are all mixed together and there are many words that
are shared by these communities, and the co-occurrence statistics in the data are
insufficient for separating them.

In contrast, the results of NetPLSA, shown in Figure 19.13, are much more
meaningful, and the four topics correspond well to the four communities that we
intend to discover from the data set. Indeed, it is very easy to label them with the
four communities as shown in the table. The reason why NetPLSA can separate
these communities well and discover more meaningful topics is because of the
influence of the network context. Since our network is the collaboration network
of authors, when we impose the preference for two nodes connected in the network
to have similar topics, the model would further tune the discovered topics to
better reflect the topics worked on by authors involved in the same collaboration
network. As a result, the topics would be more coherent and also better correspond
to the communities (represented by subnetworks of collaboration). These results
are also useful for characterizing the content associated with each subnetwork of
collaboration.

Taking a more general view of text mining in the context of networks, we can
treat text data as living in a rich information network environment. That is, we can

19.5 Topic Analysis with Time Series Context 433

connect all the related data together as a big network, and associate text data with
various structures in the network. For example, text data can be associated with the
nodes of the network; such a case can be analyzed by using NetPLSA as we have just
discussed. However, text data can also be associated with edges in a network, paths,
or even subnetworks to help discover topics or perform comparative analysis.

19.5 Topic Analysis with Time Series Context
In many applications, we may be interested in mining text data to understand
events that happened in the real world. As a special case, we may be interested
in using text mining to understand a time series. For example, we might have
observed a sudden drop in prices on the stock market in a particular time period
and would like to see if the companion text data such as news might help explain
what happened. If the crashing time of the stocks corresponds to a time when
a particular news topic suddenly appeared in the news stream, there might be a
potential relationship between the topic and the stock crash. Similarly, one might
also be interested in understanding what topics reported in the news stream were
relevant for a presidential election, and thus interested in finding topics in news
stream that are correlated with the fluctuation of the Presidential Prediction Market
(which measures people’s opinions toward each presidential candidate).

All these cases are special cases of a general problem of joint analysis of text
and a time series to discover causal topics. Here we use the term causal in a non-
rigorous way to refer to any topic that might be related to the time series and thus
can be potentially causal. This analysis task is illustrated in Figure 19.14.

The input includes a time series plus text data that are produced in the same time
period, also known as a companion text stream. The time series can be regarded as a

• Input:
 – Time series
 – Text data produced in a similar time period (text stream)
• Output:
 – Topics whose coverage in the text stream has strong correlations
 with the time series (“causal” topics)

Time

Tax cut

Gun control

…
…

Figure 19.14 The task of causal topic mining.

434 Chapter 19 Joint Analysis of Text and Structured Data

context for analyzing the text data. The output that we want to generate is the topics
whose coverage in the text stream has strong correlations with the time series. That
is, whenever the topic is mentioned frequently in the text stream, the time series
variable tends to have higher (or lower) values.

We call these topics causal topics since they can potentially explain the cause of
fluctuation of the time series and offer insights for humans to further analyze the
topics for better understanding of the time series. They can also be useful features
for predicting time series.

Intuitively, the output is similar to what we generate by using a topic model,
but with an important difference. In regular topic modeling, our goal is to discover
topics that best explain the content in the text data, but in our setup of discovering
causal topics, the topics to be discovered should not only be semantically meaning-
ful and coherent (as in the case of regular topic modeling), but also be correlated
with the external time series.

To solve this problem, a natural idea is to apply a model such as CPLSA to our
text stream so as to discover a number of topics along with their coverage over time.
This would allow us to obtain a time series for each topic representing its coverage
in the text such as the temporal trends shown in Figure 19.7. We can then choose
the topics from this set that have the strongest correlation with the external time
series.

However, this approach is not optimal because the content of the topics would
have been discovered solely based on the text data (e.g., maximizing the likelihood
function) without consideration of the time series at all. Indeed, the discovered
topics would tend to be the major topics that explain the text data well (as they
should be), but they are not necessarily correlated with time series. Even if we
choose the best ones from them, the most correlated topics might still have a low
correlation, and thus not be very useful from the perspective of discovering causal
topics.

One way to improve this simple approach is to use time series context to not
only select the topics with the highest correlations with the time series, but also
influence the content of topics. One approach is called Iterative Causal Topic
Modeling, shown in Figure 19.15.

The idea of this approach is to do an iterative adjustment of topics discovered
by topic models using time series to induce a prior. Specifically, as shown in
Figure 19.15, we first take the text stream as input and apply regular topic modeling
to generate a number of topics (four shown here). Next, we use the external time
series to assess which topic is more causally related (correlated) with the external
time series by using a causality measure such as Granger Test. For example, in this

19.5 Topic Analysis with Time Series Context 435

Text stream

Zoom into
word level

Non-text
time series

Sept.
2001

Topic 1

Oct.
2001

…

Topic 2

Topic 3 Topic 4

Topic modeling

Split words

Topic 1

Topic 1
W1
W2
W3
W4

W5

+
–
+
–

Topic 2

Topic 3 Topic 4

Causal topics

Causal
words

Feedback
as prior

Topic 1
W1
W3

Pos
+
+

Topic 1
W2
W4

Neg
–
–

Figure 19.15 Causal topic discovery algorithm. (Adapted from Kim et al. [2013])

figure, topic 1 and topic 4 may be more correlated than topic 2 and topic 3. The
simple approach that we discussed earlier would have just stopped here and taken
topics 1 and 4 as potential causal topics. However, here we go further to improve
them by zooming into the word level to further identify the words that are most
strongly correlated with the time series. Specifically, we can look into each word in
the top ranked words for each topic (those with highest probabilities), and compute
the correlation of each word with the time series.

This would allow us to further separate those words into three groups: strongly
positively correlated words; strongly negatively correlated words; and weakly cor-
related words. The first two groups can then each be regarded as seeds to define
two new subtopics that can be expected to be positively and negatively correlated
with the time series, respectively. The figure shows a potential split of topic 1 into
two such potentially more correlated subtopics: one with w1 and w3 (positive) and
one with w2 and w4 (negative). However, these two subtopics may not necessarily
be coherent semantically. To improve the coherence, the algorithm would not take
these directly as topics, but rather feed them as a prior to the topic model so as
to steer the topic model toward discovering topics matching these two subtopics.
Thus, we can expect the topics discovered by the topic model in the next iteration
to be more correlated with the time series than the original topics discovered from
the previous iteration. Once we discover a new generation of topics, we can repeat
the process to analyze the words in correlated topics and generate another set of
seed topics, which would then be fed into the topic model again as prior.

436 Chapter 19 Joint Analysis of Text and Structured Data

Causality
test

Ideal causal
topics

Pure topic model

Topic coherence

T
op

ic
-t

im
e

se
ri

es
 c

au
sa

li
ty

Figure 19.16 Alternating optimization of coherence and causality/correlation. (Courtesy of Hyun
Duk Kim)

The whole process is seen as a heuristic way of optimizing causality and coher-
ence, which is precisely our goal in discovery of causal topics. When applying the
topic model, we ensure the semantic coherence in the discovered topics, but when
splitting a topic into positively and negatively subtopics, we improve the correlation
with the time series, essentially iteratively improving both coherence and correla-
tion (causality), as illustrated in Figure 19.16.

Here we see that the pure topic models will be very good at maximizing topic
coherence, thus scoring high on the x-axis, meaning the discovered topics will all
be meaningful. If we only use a causality test or correlation measure, then we would
generate a set of words that are strongly correlated with the time series, thus scor-
ing high on the y-axis (causality), but they aren’t necessarily coherent semantically.
Our goal is to have a causal topic that scores high, in both topic coherence and
correlation. The approach discussed above can be regarded as an alternate way to
maximize both axes. When we apply the topic models we’re maximizing the co-
herence, while when we decompose the topic model words into sets of words that
are very strongly correlated with the time series, we would select the most strongly
correlated words with the time series. Thus we are, in effect, pushing the model
back to the causal dimension to make it better in causal scoring. When we apply
the selected words as a prior to guide topic models in topic discovery, we again go
back to optimize the coherence. Eventually, such an iterative process can be ex-
pected to reach a compromise of semantic coherence and strong correlation with
time series.

19.5 Topic Analysis with Time Series Context 437

This general approach relies on two specific technical components: a topic
model and a causality measure. The former has already been introduced earlier in
the book, so we briefly discuss the latter. There are various ways to measure causality
between two time series. The simplest measure is Pearson correlation. Pearson
correlation is one of the most common methods used to measure the correlation
between two variables. It gives us a correlation value in the range of [−1, +1], and
the sign of the output value indicates the orientation of the correlation (which we
will exploit to quantify the impact in the case of a causal relation). We can also
measure the significance of the correlation value. If used directly, the basic Pearson
correlation would have zero lag because it compares values on the same time stamp.
However, we can compute a lagged correlation by shifting one of the input time
series variables by the lag and measuring the Pearson correlation after the shift.

A more common method for causality test on time series data is the Granger
Test. The Granger test performs a statistical significance test with different time
lags by using autoregression to see if one time series has a causal relationship with
another series. Formally, let yt and xt be two time series to be tested, where we
hope to see if xt has Granger causality for yt with a maximum p time lag. The basic
formula for the Granger test is the following:

yt = a0 + a1yt−1 + . . . + apyt−p + b1xt−1 + . . . + bpxt−p. (19.1)

We then perform an F -test to evaluate if retaining or removing the lagged x terms
would make a statistically significant difference in fitting the data. Because the
Granger test is essentially an F -test, it naturally gives us a significance value of
causality. We can estimate the impact of x on y based on the coefficients of the

xi terms; for example, we can take the average of the xi term coefficients,
∑p

i=1 bi

p
,

use it as an “impact value.” The impact values can be used to assign weights to the
selected seed words so that highly correlated words would have a higher probability
in the prior that we pass to topic modeling.

We now show some sample results generated by this approach to illustrate the
applications that it can potentially support. First, we show a sample of causal topics
discovered from a news data set when using two different stock time series as
context in Figure 19.17.

The text data set here is the New York Times news articles in the time period of
June 2000 through December 2011. The time series used is the stock prices of two
companies, American Airlines (AAMRQ) and Apple Inc. (AAPL). If we are to use a
topic model to mine the news data set to discover topics, we would obtain topics
that are neutral to both American Airlines and Apple.

438 Chapter 19 Joint Analysis of Text and Structured Data

russia russian putin
europe european

germany
bush gore presidential

police court judge
airlines airport air

united trade terrorism
food foods cheese

nets scott basketball
tennis williams open

awards gay boy
moss minnesota chechnya

AAMRQ (American Airlines) AAPL (Apple)

paid notice st
russia russian europe

olympicgames olympics
she her ms

oil ford prices
black fashion blacks

computer technology software
internet com web

football giants jets
japan japanese plane

Topics are biased toward each time series

Figure 19.17 Sample results: topics mined using two different stock time series. (Adapted from Kim
et al. [2013])

We would like to see whether we can discover biased topics toward either Amer-
ican Airlines or Apple when we use their corresponding time series as context. The
results here show that the iterative causal topic modeling approach indeed gener-
ates topics that are more tuned toward each stock time series. Specifically, on the
left column, we see topics highly relevant to American Airlines, including, e.g., a
topic about airport and airlines, and another about terrorism (the topic is relevant
because of the September 11th terrorist attack in 2001, which negatively impacted
American Airlines), though the correlation of other topics with American Airlines
stock is not obvious. In contrast, on the right column, we see topics that are clearly
more related to AAPL, including a topic about computer technology, and another
about the Web and Internet. While not all topics can be easily interpreted, it is
clear the use of the time series as context has impacted the topics discovered and
enabled discovery of specific topics that are intuitively related to the time series.
These topics can serve as entry points for analysts to further look into the details
for any potential causal relations between topics and time series. These results also
clearly suggest the important role that humans must play in any real application
of causal topic discovery, but these topics can be immediately used as features in a
predictive model (for predicting stock prices). It is reasonable to assume that some
of these topics would make better features than simple features such as n-grams or
ordinary topics discovered from the collection without considering the time series
context.

19.6 Summary 439

Top three words in significant
topics from New York Times

tax cut 1
screen pataki guiliani
enthusiasm door symbolic
oil energy prices
news w top
pres al vice
love tucker presented
partial abortion privatization
court supreme abortion
gun control nra

Issues known to be
important in the 2000
presidential election

Text: New York Times (May 2000 – Oct. 2000)
Time series: Iowa Electronic Market
http://tippie.uiowa.edu/iem/

Figure 19.18 Sample results of causal topics discovered using Presidential Prediction Market.
(Adapted from Kim et al. [2013])

In Figure 19.18, we see some additional results from analyzing presidential
election time series. The time series data used here is from the Iowa Electronic
market, and the text data is the New York Times data from May–October 2000 that
matched at least one candidate’s name (i.e., either Bush or Gore). The goal here was
to see if we can use causal topic mining to help understand what issues mattered
in the 2000 presidential campaign and election. The results shown here are the
top three words from the most significant (causal) topics from New York Times.
Intuitively, they are indeed quite related to the campaign. The high relevance of
topics discovered is at least partly due to the use of the presidential candidate
names as an additional context (i.e., as filters), which helped eliminate a lot of non-
relevant text data. However, what is interesting is that the list does contain a few
topics that are known to be important in that presidential election, including tax
cut, oil energy, abortion, and gun control (see Kim et al. [2013] for a more detailed
discussion of the results).

19.6 Summary
In this chapter, we discussed the general problem of analyzing both structured
data and unstructured text data in a joint manner, which is needed for predictive
modeling based on big data. We specifically focused on the discussion of text-based
prediction, which is generally very useful for big data applications that involve text
data. Since text-based prediction can help us infer new knowledge about the world,

440 Chapter 19 Joint Analysis of Text and Structured Data

some of which can even go beyond what’s discussed in the content of text, text-
based prediction is often very useful for optimizing our decision making, especially
when combined with other non-text data that are often also available, and it has
widespread applications.

Non-text data can provide a context for mining text data, while text data can
also help interpret patterns discovered from non-text data (such as pattern annota-
tion). The joint analysis of text and non-text data is a relatively new active research
frontier. In this chapter, we covered a number of general techniques that com-
bine topic analysis with non-text data, including contextual probabilistic latent
semantic analysis (CPLSA) that embeds context variables such as time and location
directly in a topic model, network-supervised topic modeling that uses companion
network/graph structure of text data to regularize topic discovery, and time series
as context for discovering potentially causal topics from text data. Due to space
limitations, we only provided a brief introduction to the high-level ideas of these ap-
proaches without elaboration, but we have included sample results of all of them to
help understand the potential applications that they can enable. These approaches
are all general, and thus they can be potentially applied to many different domains.

Bibliographic Notes and Further Reading
The dissertation Mei [2009] has an excellent discussion of contextual text mining
with many specific explorations of using context for text analysis, notably with topic
modeling. Specifically, both the contextual probabilistic latent semantic analysis
model [Mei and Zhai 2006] and topic modeling with network as context [Mei et al.
2008] are discussed in detail in the dissertation. The iterative topic modeling ap-
proach with time series for supervision is described in Kim et al. [2013]. A general
discussion of text-driven forecasting and its many applications can be found in
Smith [2010]. Text and the companion structured data can often be generally mod-
eled as an information network. A systematic discussion of algorithms for analyzing
information networks can be found in Sun and Han [2012]. Interactive joint analysis
of text and structured data can also be supported by combining the traditional On-
line Analytical Processing (OLAP) techniques with topic modeling to enable users to
drill-down and roll-up in the “text dimension” using a hierarchical topic structure
as described in Zhang et al. [2009].

Exercises
1. We gave several examples of how to integrate text and structured data into

one application. Brainstorm some other ideas that were not discussed in this

Exercises 441

chapter. What types of techniques would be used to support the application?
Consider, for example, clustering, categorization, or topic analysis.

2. In our discussion on contextual text mining, we showed several ways to par-
tition data, e.g., by year or venue for research papers. Imagine that we would
like to add another context variable such as author affiliation. Can we simply
filter out results based on a target affiliation or is it necessary to rerun the
entire application to incorporate this additional knowledge?

3. In contextual text mining, we gave several example queries.

What topics have been getting increasing attention recently in data
mining research?

Is there any difference in the responses of people in different regions
to an event?

What are the common research interests of two researchers?

Is there any difference in the research topics published by authors in
the U.S. and those outside?

What would actual answers returned by such a system look like? For exam-
ple, what actual object(s) would be returned by the system and what would
human users have to do in order to interpret them?

4. In what ways is CPLSA related to LARA or other sentiment topic mining
algorithms? Does one have an advantage over the other in certain tasks?

5. For topic analysis with network context, we used networks to enforce con-
straints on topic models. Can we use the same model to predict when links
will be formed between nodes? If not, is it possible to adjust the model to
support this?

6. META includes a graph library. Can you combine this with META’s topic mod-
els to create a network-constrained topic analysis? For example, the Yelp aca-
demic dataset (https://www.yelp.com/academic_dataset) contains both text
and network information in addition to business review data.

7. The resolution of time series data will have some effect on joint applications
with text data. For example, consider intraday stock data on the resolution of
one second (that is, there is a data point for each symbol for every second).
Would text mining applications integrating newspaper articles be able to take
advantage of such data? How can this data best be leveraged?

8. In time series applications, data is often streaming (receiving updates at
specified time intervals). Do the discussed models support streaming time
series (and text) data? Is there any way to adjust them if they don’t?

IVP A R T

UNIFIED TEXT
DATA MANAGEMENT
ANALYSIS SYSTEM

20Toward A Unified System
for Text Management
and Analysis

In the previous chapters, we introduced many specific algorithms and techniques
for managing and analyzing text data. These algorithms are currently implemented
in separate toolkits, but from an application perspective, it would be beneficial
to develop a unified system that can support potentially all these algorithms in a
general way so that it can be used in many different applications. In this chapter,
we discuss how we can model these different algorithms as operators in a unified
analysis framework and potentially develop a general system to implement such a
framework.

From a user’s perspective, we distinguished (at a very high level) two related ap-
plication tasks: text data access and text analysis. The goal of text data access is to
enable users to identify and obtain the most useful text data relevant to an appli-
cation problem, which is often achieved through the support of a search engine.
The current search engines primarily support querying, which is, however, only
one way to help users find relevant documents. Browsing is another useful form
of information access where the users can take the initiative to navigate through a
structure into relevant information. The support of browsing is generally achieved
by adding structures to text data by using clustering, categorization, or topic analy-
sis. In addition to supporting querying and browsing, a search engine can also
support recommendation of information, thus providing multi-mode information
access through both pull mode (querying and browsing) and push mode (recom-
mendation).

Since text data are created by humans and often meant to be consumed by
humans—and the current NLP techniques are still not mature enough for comput-
ers to have accurate understanding of text data—it is generally necessary to involve

446 Chapter 20 Toward A Unified System for Text Management and Analysis

humans in any text data application. In this sense, a text data management and
analysis system should serve as an intelligent assistant for users requiring informa-
tion, or the analysts that would like to leverage text data for intelligence to optimize
decision making.

Thus, it is quite important to optimize the collaboration of humans and ma-
chines. This means that we should take advantage of a computer’s ability to handle
large amounts of text data while exploiting humans’ expertise in detailed language
understanding and assessing knowledge for decision making. Supporting an inter-
active process to engage users in a “dialogue” with the intelligent text information
system is generally beneficial as it enables the users and system to have more com-
munications between each other and assist each other to work together toward
accomplishing the common goal of solving a user’s problem by analyzing text data.

Looking at the problem in this way, we can easily see the possibility of dividing
the work between a human user and a machine in different ways. At one extreme,
we would mostly rely on users to complete access and analysis tasks, and have the
computer to do only the support that the computer can robustly provide. This is
the current scenario when people use a search engine to perform mostly manual
text mining, as shown in Figure 20.1. For example, we can all use a web search
engine to help us get access to the most relevant information buried in the large
amounts of text data on the Web, and then read all the relevant information, which
is essentially manual text mining and analysis. In such a scenario, the search engine

Search Information synthesis
and analysis

Task completion

Decision making
Learning
…

Search1

Search2

…

Information interpretation

Information synthesis

Potentially iterate …
Multiple searches

Figure 20.1 Manual analysis based on a search engine.

Chapter 20 Toward A Unified System for Text Management and Analysis 447

Search Information synthesis and analysis

Analysis engine

Task completion

Decision making
Learning
…

Search1

Search2

…

Figure 20.2 Extending a search engine to create an analysis engine that directly supports a user’s
task.

plays two important roles. For one, it enables a user to quickly identify the most
relevant text data, which is often what we really need for solving a problem, thus
avoiding dealing with a huge amount of non-relevant text data. Such a strategy
of data selection (reduction) is logically the very first step we should take when
tackling the scalability problem caused by the size of data. Secondly, it provides
knowledge provenance in the sense that it allows a user to easily navigate into any
source to examine its reliability in depth. At this extreme, the computer has done
the minimum, if anything at all, to support text analysis. However, the system (i.e.,
search engine) is very robust and can handle large amounts of data quickly.

At the other extreme, the system can attempt to provide task support directly to
the user so as to minimize the user’s effort, as illustrated in Figure 20.2.

Providing such a support for arbitrary tasks or even a large class of tasks is im-
possible due to the inability of computers to understand natural language and the
lack of knowledge about specific task requirements. As a result, we can only build
very specialized predictive models for a particular problem, where the features gen-
erally have to be designed by humans. This kind of system may provide maximum
support for a decision task, but the function of the system is inevitably restricted
to a specific task. Since predictive modeling generally requires the use of machine
learning techniques and combining features extracted from both text and non-text

448 Chapter 20 Toward A Unified System for Text Management and Analysis

data, it clearly requires additional support beyond text management and analysis.
Yet, we can envision the possibility of developing a relatively general text analysis
system to help users identify and extract effective features for a particular predic-
tion task. In order to ensure generality, such a text analysis system must provide
relatively general text analysis operators that can be applied to many different prob-
lems; most algorithms we introduced in this book are of this kind of nature and can
thus be implemented in a system as general operators. However, each specific text
analysis application would inevitably have different requirements, thus the opera-
tors must also be standardized and compatible with each other so that they can be
flexibly combined to support potentially many different workflows. Note that text
data access functions such as querying, browsing and recommendation, can all be
regarded as instances of specific operators to be “blended” with other operators
such as categorization, clustering, or topic analysis.

The benefit of such an operator-based text analysis system for supporting text
mining and analysis is similar to the benefit that a comprehensive package of
car-repairing toolkits brings to car repairers. In order to diagnose the problem
of a car and fix it, repairers need to use many different tools and combine them
in an ad hoc way to open up components in a car or probe a component with
electrical testers. Although the actual workflow often varies depending on the
specific problem and models of a car, a common set of tools is often sufficient
to accommodate all kinds of tasks. In much the same way, in order to integrate
scattered information, digest all the latent relevant knowledge about a problem in
text data, analysts can also combine various text analysis tools to open up complex
connections between entities or topics buried in text data, identify interesting
patterns, and compute useful features for prediction tasks. As in the case of car
repairing, although the actual workflow may vary dramatically depending on the
specific application, a common set of extensible and trainable analysis tools might
also be sufficient to accommodate all kinds of text analysis applications. Most
algorithms we introduced in this book can potentially serve as such analysis tools,
thus providing a basis for developing a unified system to enable analysts to perform
text analysis in such a way. Although there are still many challenges in designing
and building such a system, it is an important goal to work on.

20.1 Text Analysis Operators
Relational databases are able to support many different applications via a set of
common operators as defined in a query language such as SQL. Similarly, we may
identify a common set of operators for supporting text analysis. In this section, we
discuss some possibilities of defining text analysis operators.

20.1 Text Analysis Operators 449

First, we would need to define the data types that we may be interested in pro-
cessing. Naturally, the most important data type is a TEXTOBJECT, which can be
defined as a sequence of words in a vocabulary set V . Clearly, a word, a phrase,
a sentence, a paragraph, and an article can all be regarded as specific instances
of the type TEXTOBJECT. We can then also naturally define derived data types
based on TEXTOBJECT, including, e.g., TEXTOBJECTSET, which naturally captures
instances such as a collection of text articles, a set of sentences, which further
covers a set of terms as a special case when a sentence is just a term. Another
possibility is TEXTOBJECTSEQUENCE, where we care about order of the text objects;
TEXTOBJECTSEQUENCE can capture interesting data structures such as a ranked list
of articles or sentences. Again, a special case is a ranked list of terms.

Based on these types, we may also further define a topic as a WEIGHTEDTEXT-
OBJECTSET, where each text object is associated with a numerical weight. As a spe-
cial case, we can have words as text objects, and thus have a word distribution
represented as a WEIGHTEDTEXTOBJECTSET. WEIGHTEDTEXTOBJECTSEQUENCE can cover
a ranked list of search results with scores.

Second, we need to define operators on top of various data types. Here we
can potentially have a very large number of operators, depending on specific text
analysis algorithms. Here we briefly discuss a few most commonly used algorithms
that we covered in the previous chapters of the book, and show that even with a
few operators, we can already potentially combine them in many different ways
to flexibly support very different workflows required in a particular application
context.

For example, in Figure 20.3, we show the following operators. Since our goal is
mainly to present some speculative ideas, we present these operators in a mostly
informal and non-rigorous way.

Select. TEXTOBJECTSET → TEXTOBJECTSET. The Select operator maps a set of text
objects into a subset of text objects. Querying, browsing, and recommenda-
tion can all be regarded as an instance of Select. We can additionally further
apply a Ranking operator to each selection.

Split. TEXTOBJECTSET → TEXTOBJECTSET, . . . , TEXTOBJECTSET. The Split operator
maps a set of text objects into multiple subsets of text objects. Text catego-
rization and text clustering are all instances of Split.

Union and Intersection. these are standard set operators that can be applied
to any sets.

450 Chapter 20 Toward A Unified System for Text Management and Analysis

Select

Topic
Union

Intersect

Ranking

Interpret

Compare

Split …

Common C1 C2

Figure 20.3 Illustration of potential operators for text analysis.

Ranking. (WEIGHTED) TEXTOBJECTSET → TEXTOBJECTSEQUENCE. The Ranking
operator takes as input a weighted set of text objects that specifies the per-
spective of ranking and a set of text objects, and it produces a sequence
of text objects (sorted in order) as output. As a special case, the WEIGHTED

TEXTOBJECTSET can be a word distribution representing a query language
model.

TopicExtraction. TEXTOBJECTSET → TOPICSET. The TopicExtraction operator
maps a set of text objects into a set of topics.

Interpret. {TOPIC, TEXTOBJECTSET} → TEXTOBJECTSET. The Interpret operator
maps a topic and a set of text objects into another set of text objects.

Compare. {TEXTOBJECTSET, . . . , TEXTOBJECTSET} → TOPICSET, . . . , TOPICSET. The
Compare operator maps a set of comparable sets of text objects into a set of
common topics covered in all the comparable sets of text objects, and sets of
context-specific topics.

The formalization of some of the operators is illustrated in Figure 20.4, where
θ denotes a weighted word vector. Even with these few operators, we already have
some interesting combinations. For example, in Figure 20.5, we see an example of

20.1 Text Analysis Operators 451

. C = {D1, . . . , Dn}; S , S1, S2, . . . , Sk subset of C

. Select Operator

Querying(Q): C → S

Browsing: C → S

. Split

Categorization (supervised): C → S1, S2, . . . , Sk

Clustering (unsupervised): C → S1, S2, . . . , Sk

. Interpret

C × θ → S

. Ranking

θ × Si → ordered Si

Figure 20.4 Formalization of text analysis operators.

Select
Topic 1

…

Select
Topic k

Compare

Interpret(Compare(Select(T1, C), Select(T2, C), …, Select(Tk, C)), C)

Interpret Interpret

Interpret

Common S1 S2

Figure 20.5 Example of combination of topic selection, comparison, and interpretation.

combination of multiple topic selections followed by a comparison operator, which
would then be followed by an Interpret operator.

In Figure 20.6, we show another example of combination of a Split operator
followed by a comparison operator, which would then be followed by an Interpret
operator. It is easy to imagine that there are many other ways to combine these
operators.

452 Chapter 20 Toward A Unified System for Text Management and Analysis

Split

…
Compare

Interpret(Compare(Split(S, k)), C)

Interpret Interpret

Interpret

Common S1 S2

Figure 20.6 Example of combination of topic splitting, comparison, and interpretation.

20.2 System Architecture
In general, we can envision a high-level architecture of a unified system for sup-
porting text management and analysis, as shown in Figure 20.7, where multiple
levels of services are provided to users, including a preprocessing step of natural
language processing, a low-level service for multi-mode text data access, which in-
cludes querying, browsing, and recommendation, a medium-level service for text
data analysis, which includes general analysis operators that can be combined
with each other, and high-level application support, which includes support of
application-specific user tasks. It is important that a user has access to all these lev-
els via a unified interaction interface where the user also has access to a working
space that is personalized according to a specific user and a specific application
task. In this figure, we also show the availability of the non-textual data, which
would generally need a database system to manage it and serve some other mod-
ules such as text analysis (in this case, non-text data can be used as context for
analyzing text data). Finally, we see that we can often further apply general data
mining algorithms such as EM and predictive modeling to process the results that
our analysts have obtained.

As an example, consider a news mining application. If a user performs a keyword
search, a large number of documents containing matching text may be returned.
If we run a topic analysis on the set of returned articles, we can enable browsing
the results to allow the user to more efficiently sift through the data. If the user

20.3 META as a Unified System 453

Text data

Unified interaction interface

General
data mining service

predictive model
graph mining

…

Application support

Users

Text data analysis service

Natural language processing

Relational database

Non-text data

Text data access service
(querying, browsing, recommendation)

Work
space

Figure 20.7 High level architecture of a unified text analysis system.

finds two promising clusters, they can be merged together and searched again with
different keywords. This process may be repeated until the user’s information need
is satisfied.

20.3 META as a Unified System
In this section, we discuss some interesting possibilities of extending META to a
general and unified text data management and analysis system. In one direction, we
can envision implementing the architecture shown in Figure 20.8 where we extend a
search engine to support various topic models, which can further enable improved
text categorization, text summarization, and text clustering.

Indexes (forward and inverted) are a common storage mechanism for most
text mining applications in META. Analyzers and tokenizers are the first operators
applied on text, where various features are created and term IDs are assigned. If
the terms are not stored in an index, they are usually stored in a meta::sequence,
which maintains term order for further analysis. Additionally, most text mining
applications take an index as input.

454 Chapter 20 Toward A Unified System for Text Management and Analysis

Search and analysis interface

ResultsQuery Information synthesis
Comparison
Summarization
Categorization
…

Topic
models

Search
engine

Workspace

Figure 20.8 Extension of a search engine to create a general topic analysis engine.

This common structure for all tasks enables higher-level “wrapper” functions to
be implemented that act in the same way as previously described in this chapter.
For example:

. TEXTOBJECT is represented in META as a meta::corpus::document

. TEXTOBJECTSET is meta::index::forward_index or meta::index::
inverted_index

. One example of a TEXTOBJECTSEQUENCE is meta::sequence::sequence.

. One example of a WEIGHTEDTEXTOBJECTSEQUENCE is the output from the score
function in meta::index::ranker.

If we make higher-level functions that pass these objects to different analysis
components, we enable this unified view of text analysis. Using meta::corpus::

metadata allows basic structured data to be stored for each document. More ad-
vanced structured operations like those found in databases are not currently imple-
mented, but simple filtering and grouping commands are easily supported, such
as the filtering functions inmeta::index::rankerandmeta::classify::clas-
sifier::knn.

20.3 META as a Unified System 455

The index structure also facilitates the idea mentioned earlier: advanced text
mining techniques are run on a smaller relevant subset of the entire dataset. For
this, we can take the output from searching an inverted index and run (e.g.) topic
modeling algorithms on the relevant documents.

Thus, the analysis operators such as Select and Split take META’s index objects
as input and return objects such as a sequence. The algorithms that run for Select
could be a filter or search engine, and Split could be meta::topics::lda_model

or some other clustering algorithm.

AAPPENDIX

Bayesian Statistics
Here, we examine Bayesian statistics in more depth as a continuation of Chapter 2
and Chapter 17.

A.1 Binomial Estimation and the Beta Distribution
From section 2.1.5, we already know the likelihood of our binomial distribution is

p(D | θ) = θH(1 − θ)T , (A.1)

but what about the prior, p(θ)? A prior should represent some “prior belief” about
the parameters of the model. For our coin flipping (i.e., binomial distribution), it
would make sense to have the prior also be proportional to the powers of θ and
(1 − θ). Thus, the posterior will also be proportional to those powers:

p(θ | D) ∝ p(θ)p(D | θ)

= θa(1 − θ)bθH(1 − θ)T

= θa+H(1 − θ)b+T .

So we need to find some distribution of the form P(θ) ∝ θa(1 − θ)b. Luckily, there
is something called the Beta distribution. We say x ∼ Beta(α , β) if for x ∈ [0, 1]

p(x | α , β) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1. (A.2)

This is the probability density function (pdf) of the Beta distribution. But what is

�(α + β)

�(α)�(β)
? (A.3)

The �(.) is the Gamma function. It can be thought of as the continuous version
of the factorial function. That is, �(x) = (x − 1)�(x − 1). Or rather for an x ∈ Z

+,
�(x) = (x − 1)!. That still doesn’t explain the purpose of that constant in front of
xα−1(1 − x)β−1.

458 Appendix A Bayesian Statistics

In fact, this constant just ensures that given the α and β parameters, the Beta
distribution still integrates to one over its support. As you probably recall, this is a
necessity for a probability distribution. Mathematically, we can write this as∫ 1

0
xα−1(1 − x)β−1dx = �(α)�(β)

�(α + β)
. (A.4)

Note that the sum over the support of x is the reciprocal of that constant. If we
divide by it (multiply by reciprocal), we will get one as desired:∫ 1

0

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1dx = 1. (A.5)

If you’re proficient in calculus (or know how to use Wolfram Alpha or similar),
you can confirm this fact for yourself.

One more note on the Beta distribution: its expected value is

α

α + β
. (A.6)

We’ll see how this can be useful in a minute. Let’s finally rewrite our estimate
of p(θ | D). The data we have observed is H , T . Additionally, we are using the two
hyperparameters α and β for our Beta distribution prior. They’re called hyperparam-
eters because they are parameters for our prior distribution.

p(θ | H , T , α , β) ∝ p(H , T | θ)p(θ | α , β)

∝ θH(1 − θ)T θα−1(1 − θ)β−1

= θH+α−1(1 − θ)T +β−1.

But this is itself a Beta distribution! Namely,

p(θ | H , T , α , β) = Beta(H + α , T + β). (A.7)

Finally, we can get our Bayesian parameter estimation. Unlike maximum likeli-
hood estimation (MLE), where we have the parameter that maximizes our data, we
integrate over all possible θ , and find its expected value given the data, E[θ | D]. In
this case, our “data”, is the flip results and our hyperparameters α and β:

E[θ | D] =
∫ 1

0
p(x = H | θ)p(θ | D)dθ = H + α

H + T + α + β
. (A.8)

We won’t go into detail with solving the integral since that isn’t our focus. What
we do see, though, is our final result. This result is general for any Bayesian estimate
of a binomial parameter with a Beta prior.

A.2 Pseudo Counts, Smoothing, and Setting Hyperparameters 459

6

5

4

3

2

1

0

0.0 0.2 0.4 0.6 0.8 1.0

5

4

3

2

1

0.0 0.2 0.4 0.6

Sparse betaUnimodel beta Symmetric beta

0.8 1.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0

B(0.1, 0.1)
B(1, 1)
B(2, 2)

Parameters
B(0.1, 0.5)
B(0.1, 0.1)
B(0.5, 0.5)

Parameters
B(3, 20)
B(20, 20)
B(3, 3)
B(3, 1.5)
B(1.5, 1.5)

Parameters

Figure A.1 How the α and β parameters affect the shape of the Beta distribution. Shown from left
to right are the unimodal Beta (α, β > 1), the sparse Beta (α, β < 1), and the symmetric
Beta (α = β).

A.2 Pseudo Counts, Smoothing, and Setting Hyperparameters
How can we interpret our result for a Bayesian estimate of binomial parameters?

E[θ | D] = H + α

H + T + α + β
(A.9)

We know that the Beta and binomial distributions are similar. In fact, their re-
lationship can be stated as the Beta distribution is the conjugate prior of the binomial
distribution. All distributions in the exponential family have conjugate priors. The
relationship is such: given a likelihood from an X distribution, picking the conju-
gate prior distribution of X (say it’s Y) will ensure that the posterior distribution is
also a Y distribution.

For our coin flipping case, the likelihood was a binomial distribution. We picked
our prior to be the Beta distribution, and our posterior distribution ended up also
being a Beta distribution—this is because we picked the conjugate prior!

In any event, the whole reasoning behind having a prior is so we can include
some reasonable guess for the parameters before we even see any data. For coin
flipping, we might want to assume a “fair” coin. If for some reason we believe that
the coin may be biased, we can incorporate that knowledge as well.

If we look at the estimate for θ , we can imagine how setting our hyperparameters
can influence our prediction. Recall that θ is the probability of heads; if we want
to make our estimate biased toward more heads, we can set an α > β since this
increases θ . This agrees with the mean of the prior as well: α

α+β
. Setting the mean

equal to 0.8 means that our prior belief is a coin that lands heads 80% of the time.

460 Appendix A Bayesian Statistics

This can be accomplished with α = 4, β = 1, or α = 16, β = 4, or even α = 0.4, β =
0.1. But what is the difference? Figure A.1 shows a comparison of the Beta distribu-
tion with varying parameters. It’s also important to remember that a draw from a
Beta prior θ ∼ Beta(α , β) gives us a distribution. Even though it’s a single value on
the range [0, 1], we are still using the prior to produce a probability distribution.

Perhaps we’d like to choose a unimodal Beta prior, with a mean 0.8. As we can
see from Figure A.1, the higher we set α and β, the sharper the peak at 0.8 will be.
Looking at our parameter estimation,

H + α

H + T + α + β
, (A.10)

we can imagine the hyperparameters as pseudo counts—counts from the outcome
of experiments already performed. The higher the hyperparameters are, the more
pseudo counts we have, which means our prior is “stronger.” As the total number
of experiments increases, the sum H + T also increases, which means we have less
dependence on our priors.

Initially, though, when H + T is relatively low, our prior plays a stronger role in
the estimation of θ . As we all know, a small number of flips will not give an accurate
estimate of the true θ—we’d like to see what our estimate becomes as our number
of flips approaches infinity (or some “large enough” value). In this sense, our prior
also smooths our estimation. Rather than the estimate fluctuating greatly initially,
it could stay relatively smooth if we have a decent prior.

If our prior turns out to be incorrect, eventually the observed data will over-
shadow the pseudo counts from the hyperparameters anyway, since α and β are
held constant.

A.3 Generalizing to a Multinomial Distribution
At this point, you may be able to rationalize how Dirichlet prior smoothing for
information retrieval language models or topic models works. However, our proba-
bilities are over words now, not just a binary heads or tails outcome. Before we talk
about the Dirichlet distribution, let’s figure out how to represent the probability of
observing a word from a vocabulary.

For this, we can use a categorical distribution. In a text information system, a
categorical distribution could represent a unigram language model for a single
document. Here, the total number of outcomes is k = |V |, the size of our vocabulary.
The word at index i would have a probability pi of occurring, and the sum of all
words’ probabilities would sum to one.

A.4 The Dirichlet Distribution 461

The categorical distribution is to the multinomial distribution as the Bernoulli
is to the binomial. The multinomial is the probability of observing each word ki

occur xi times in a total of n trials. If we’re given a document vector of counts, we
can use the multinomial to find the probability of observing documents with those
counts of words (regardless of position). The probability density function is given
as follows:

p(X1 = xi , . . . , Xk = xk) = n!
x1! . . . xk!

p
x1
1

. . . p
xk

k , (A.11)

where

k∑
i=1

xi = n,
k∑

i=1

pi = 1.

We can also write its pdf as

p(X1 = xi , . . . , Xk = xk) =
�
(∑k

i=1 xi + 1
)

∏k
i=1 �(xi + 1)

k∏
i=1

p
xi

i . (A.12)

It should be straightforward to relate the more general multinomial distribution
to its binomial counterpart.

A.4 The Dirichlet Distribution
We now have the likelihood function determined for a distribution with k out-
comes. The conjugate prior to the multinomial is the Dirichlet. That is, if we use a
Dirichlet prior, the posterior will also be a Dirichlet.

Like the multinomial, the Dirichlet is a distribution over positive vectors that
sum to one. (The “simplex” is the name of the space where these vectors live.) Like
the Beta distribution, the parameters of the Dirichlet are reals. Here’s the pdf:

p(θ | �α) =
�
(∑k

i=1 αi

)
∏k

i=1 �(αi)

k∏
i=1

θ
αi−1
i . (A.13)

In this notation we have p(θ | �α). θ is what we draw from the Dirichlet; in
the Beta, it was the parameter to be used in the binomial. Here, it is the vector
of parameters to be used in the multinomial. In this sense, the Dirichlet is a
distribution that produces distributions (so is the Beta!). The hyperparameters
of the Dirichlet are also a vector (denoted with an arrow for emphasis). Instead
of just two hyperparameters as in the Beta, the Dirichlet needs k—one for each
multinomial probability.

462 Appendix A Bayesian Statistics

Figure A.2 How the α parameter affects the shape and sparsity of the Dirichlet distribution of
three parameters. From left to right, α = 0.1, 1, 10. (From Bishop [2006])

When used as a prior, we usually don’t have any specific information about the
individual indices in the Dirichlet. Because of this, we set them all to the same
value. So instead of writing p(θ | �α), where �α is (e.g.) {0.1, 0.1, . . . , 0.1}, we simply say
p(θ | α), where alpha is a scalar representing a vector of identical values. θ ∼ Dir(α)

and θ ∼ Dir(0.1) are also commonplace, as is θ ∼ Beta(α , β) or θ ∼ Beta(0.4, 0.1).
Figure A.2 shows how the choice of α characterizes the Dirichlet. The higher the

area, the more likely a point (representing a vector) will be drawn.
Let’s take a moment to understand what a point drawn from the Dirichlet means.

Look at the far right graph in Figure A.2. If the point we draw is from the peak of
the graph, we’ll get a multinomial parameter vector with a roughly equal proportion
of each of the three components. For example, θ = {0.33, 0.33, 0.34}. With α = 10,
it’s very likely that we’ll get a θ like this. In the middle picture, we’re unsure what
kind of θ we’ll draw. It is equally likely to get an even mixture, uneven mixture, or
anywhere in between. This is called a uniform prior—it can represent that we have
no explicit information about the prior distribution. Finally, the plot on the left is
a sparse prior (like a Beta where α , β < 1).

Note: a uniform prior does not mean that we get an even mixture of components;
it means it’s equally likely to get any mixture. This could be confusing since the
distribution we draw may actually be a uniform distribution.

A sparse prior is actually quite relevant in a textual application; if we have a few
dimensions with very high probability and the rest with relatively low occurrences,
this should sound just like Zipf’s law. We can use a Dirichlet prior to enforce a
sparse word distribution per topic (θ = {0.9, 0.02, 0.08}). In topic modeling, we can
use a Dirichlet distribution to force a sparse topic distribution per document. It’s
most likely that a document mainly discusses a handful of topics while the rest are

A.5 Bayesian Estimate of Multinomial Parameters 463

largely unrepresented, just like the words the, to, of , and from are common while
many words such as preternatural are rare.

A.5 Bayesian Estimate of Multinomial Parameters
Let’s do parameter estimation with our multinomial distribution and relate it to
the Beta-binomial model from before. For MLE, we would have

θi = xi

n
. (A.14)

Using Bayes’ rule, we represent the posterior as the product of the likelihood
(multinomial) and prior (Dirichlet):

p(θ | D , α) ∝ p(D | θ)p(θ | α)

∝
k∏

i=1

θ
xi

i

k∏
i=1

θ
αi−1
i

=
k∏

i=1

θ
xi+αi−1
i .

We say these are proportional because we left out the constant of proportionality
in the multinomial and Dirichlet distributions (the ratio with Gammas). We can
now observe that the posterior is also a Dirichlet as expected due to the conjugacy.

To actually obtain the Bayesian estimate, we’d need to fully substitute the multi-
nomial and Dirichlet distributions into the posterior and integrate over all θs to
get our estimate. Since this isn’t a note on calculus, we simply display the final
answer as

E[θi | D] = xi + αi

n + ∑k
j=1 αj

. (A.15)

This looks very similar to the binomial estimation! We see the Dirichlet hyper-
parameters act as pseudo counts, smoothing our estimate.

In Dirichlet prior smoothing for information retrieval, we have the formula:

p(w | d) = c(w, d) + μp(w | C)

|d| + μ
. (A.16)

So we have x = c(w, d) and n = |d|, the count of the current word in a document
and the length of the document respectively. Then we have αi = μp(w | C) and
μ = ∑k

j=1 αj , the number of pseudo counts for word w and the total number of
pseudo counts. Can you tell what the vector of hyperparameters for query likelihood

464 Appendix A Bayesian Statistics

smoothing would be now? It’s

�μ = {
μp(w1 | C), μp(w2 | C), . . . , μp(wk | C)

}
(A.17)

In other words, the Dirichlet prior for this smoothing method is proportional to
the background, collection language model.

Looking back at Add-1 smoothing, we can imagine this as a special case of
Dirichlet prior smoothing. If we drew the uniform distribution from our Dirichlet,
we’d get

p(w | d) = c(w, d) + 1
|d| + |V | (A.18)

This implies that each word is equally likely in our collection language model,
which is most likely not the case. Note |V | = k, or

∑k
i=1 1 since �μ = {1, 1, . . . , 1}.

A.6 Conclusion
Starting with the Bernoulli distribution for a single coin flip, we expanded it into a
set of trials with the binomial distribution. We investigated parameter estimation
via MLE, and then moved onto a Bayesian approach. We compared the Bayesian re-
sult to smoothing with pseudo counts and saw how hyperparameters affected the
distribution. Once we had this foundation, we moved onto multidimensional dis-
tributions capable of representing individual words. We saw how the Beta-binomial
model is related to the Dirichlet-multinomial model, and inspected it in the context
of Dirichlet prior smoothing for query likelihood in IR.

BAPPENDIX

Expectation-
Maximization
The Expectation-Maximization (EM) algorithm is a general algorithm for maxi-
mum-likelihood estimation where the data are “incomplete” or the likelihood
function involves latent variables. Note that the notion of “incomplete data” and
“latent variables” are related: when we have a latent variable, we may regard our
data as being incomplete since we do not observe values of the latent variables;
similarly, when our data are incomplete, we often can also associate some latent
variable with the missing data. For language modeling, the EM algorithm is often
used to estimate parameters of a mixture model, in which the exact component
model from which a data point is generated is hidden from us.

Informally, the EM algorithm starts with randomly assigning values to all the pa-
rameters to be estimated. It then iteratively alternates between two steps, called the
expectation step (i.e., the “E-step”) and the maximization step (i.e., the “M-step”),
respectively. In the E-step, it computes the expected likelihood for the complete
data (the so-called Q-function) where the expectation is taken with respect to the
computed conditional distribution of the latent variables (i.e., the “hidden vari-
ables”) given the current settings of parameters and our observed (incomplete)
data. In the M-step, it re-estimates all the parameters by maximizing the Q-function.
Once we have a new generation of parameter values, we can repeat the E-step and
another M-step. This process continues until the likelihood converges, reaching
a local maxima. Intuitively, what EM does is to iteratively augment the data by
“guessing” the values of the hidden variables and to re-estimate the parameters
by assuming that the guessed values are the true values.

The EM algorithm is a hill-climbing approach, thus it can only be guaranteed to
reach a local maxima. When there are multiple maximas, whether we will actually
reach the global maxima depends on where we start; if we start at the “right hill,”
we will be able to find a global maxima. When there are multiple local maximas,
it is often hard to identify the “right hill.” There are two commonly used strategies

466 Appendix B Expectation- Maximization

to solving this problem. The first is that we try many different initial values and
choose the solution that has the highest converged likelihood value. The second
uses a much simpler model (ideally one with a unique global maxima) to determine
an initial value for more complex models. The idea is that a simpler model can
hopefully help locate a rough region where the global optima exists, and we start
from a value in that region to search for a more accurate optima using a more
complex model.

Here, we introduce the EM algorithm through a specific problem—estimating
a simple mixture model. For a more in-depth introduction to EM, please refer to
McLachlan and Krishnan [2008].

B.1 A Simple Mixture Unigram Language Model
In the mixture model feedback approach [Zhai and Lafferty 2001], we assume
that the feedback documents F = {d1, . . . , dk} are “generated” from a mixture
model with two multinomial component models. One component model is the
background model p(w | C) and the other is an unknown topic language model
p(w | θF) to be estimated. (w is a word.) The idea is to model the common (non-
discriminative) words in F with p(w | C) so that the topic model θF would attract
more discriminative content-carrying words.

The log-likelihood of the feedback document data for this mixture model is

log L(θF) = log p(F | θF) =
k∑

i=1

|di|∑
j=1

log((1 − λ)p(dij | θF) + λp(dij | C)),

where dij is the j th word in document di, |di| is the length of di, and λ is a parameter
that indicates the amount of “background noise” in the feedback documents,
which will be set empirically. We thus assume λ to be known, and want to estimate
p(w | θF).

B.2 Maximum Likelihood Estimation
A common method for estimating θF is the maximum likelihood (ML) estimator,
in which we choose a θF that maximizes the likelihood of F . That is, the estimated
topic model (denoted by θ̂F) is given by

θ̂F = arg maxθF
L(θF) (B.1)

= arg maxθF

k∑
i=1

|di|∑
j=1

log((1 − λ)p(dij | θF) + λp(dij | C)). (B.2)

B.3 Incomplete vs. Complete Data 467

The right side of this equation is easily seen to be a function with p(w | θF) as
variables. To find θ̂F , we can, in principle, use any optimization methods. Since
the function involves a logarithm of a sum of two terms, it is difficult to obtain a
simple analytical solution via the Lagrange Multiplier approach, so in general, we
must rely on numerical algorithms. There are many possibilities; EM happens to
be just one of them which is quite natural and guaranteed to converge to a local
maxima, which, in our case, is also a global maximum, since the likelihood function
can be shown to have one unique maximum.

B.3 Incomplete vs. Complete Data
The main idea of the EM algorithm is to “augment” our data with some latent
variables so that the “complete” data has a much simpler likelihood function—
simpler for the purpose of finding a maximum. The original data are thus treated as
“incomplete.” As we will see, we will maximize the incomplete data likelihood (our
original goal) through maximizing the expected complete data likelihood (since
it is much easier to maximize) where expectation is taken over all possible values
of the hidden variables (since the complete data likelihood, unlike our original
incomplete data likelihood, would contain hidden variables).

In our example, we introduce a binary hidden variable z for each occurrence of a
word w to indicate whether the word has been “generated” from the background
model p(w | C) or the topic model p(w | θF). Let dij be the j th word in document
di. We have a corresponding variable zij defined as follows:

zij =
{

1 if word dij is from background

0 otherwise.

We thus assume that our complete data would have contained not only all the
words in F , but also their corresponding values of z. The log-likelihood of the
complete data is thus

Lc(θF) = log p(F , z | θF)

=
k∑

i=1

|di|∑
j=1

[(1 − zij) log((1 − λ)p(dij | θF)) + zij log(λp(dij | C))].

Note the difference between Lc(θF) and L(θF): the sum is outside of the log-
arithm in Lc(θF), and this is possible because we assume that we know which
component model has been used to generated each word dij .

What is the relationship between Lc(θF) and L(θF)? In general, if our parameter
is θ , our original data is X, and we augment it with a hidden variable H , then

468 Appendix B Expectation- Maximization

p(X, H | θ) = p(H | X, θ)p(X | θ). Thus,

Lc(θ) = log p(X, H | θ) = log p(X | θ) + log p(H | X, θ) = L(θ) + log p(H | X, θ).

B.4 A Lower Bound of Likelihood
Algorithmically, the basic idea of EM is to start with some initial guess of the pa-
rameter values θ(0) and then iteratively search for better values for the parameters.
Assuming that the current estimate of the parameters is θ(n), our goal is to find
another θ(n+1) that can improve the likelihood L(θ).

Let us consider the difference between the likelihood at a potentially better
parameter value θ and the likelihood at the current estimate θ(n), and relate it with
the corresponding difference in the complete likelihood:

L(θ) − L(θ(n)) = Lc(θ) − Lc(θ
(n)) + log

p(H | X, θ(n))

p(H | X, θ)
. (B.3)

Our goal is to maximize L(θ) − L(θ(n)), which is equivalent to maximizing L(θ).
Now take the expectation of this equation w.r.t. the conditional distribution of the
hidden variable given the data X and the current estimate of parameters θ(n), i.e.,
p(H | X, θ(n)). We have

L(θ) − L(θ(n)) =
∑
H

Lc(θ)p(H | X, θ(n)) −
∑
H

Lc(θ
(n))p(H | X, θ(n))

+
∑
H

p(H | X, θ(n)) log
p(H | X, θ(n))

p(H | X, θ)
.

Note that the left side of the equation remains the same as the variable H

does not occur there. The last term can be recognized as the KL-divergence of
p(H | X, θ(n)) and p(H | X, θ), which is always non-negative. We thus have

L(θ) − L(θ(n)) ≥
∑
H

Lc(θ)p(H | X, θ(n)) −
∑
H

Lc(θ
(n))p(H | X, θ(n))

or

L(θ) ≥
∑
H

Lc(θ)p(H | X, θ(n)) + L(θ(n)) −
∑
H

Lc(θ
(n))p(H | X, θ(n)). (B.4)

We thus obtain a lower bound for the original likelihood function. The main idea
of EM is to maximize this lower bound so as to maximize the original (incomplete)
likelihood. Note that the last two terms in this lower bound can be treated as
constants as they do not contain the variable θ , so the lower bound is essentially

B.5 The General Procedure of EM 469

the first term, which is the expectation of the complete likelihood, or the so-called
“Q-function” denoted by Q(θ ; θ(n)).

Q(θ ; θ(n)) = Ep(H |X ,θ(n))[Lc(θ)] =
∑
H

Lc(θ)p(H | X, θ(n)).

The Q-function for our mixture model is the following

Q(θF ; θ(n)
F) =

∑
z

Lc(θF)p(z | F , θ
(n)
F)

=
k∑

i=1

|di|∑
j=1

[p(zij = 0 | F , θ
(n)
F) log((1 − λ)p(dij | θF))

+ p(zij = 1 | F , θ
(n)
F) log(λp(dij | C))]

B.5 The General Procedure of EM
Clearly, if we find a θ(n+1) such that Q(θ(n+1); θ(n)) > Q(θ(n); θ(n)), then we will also
have L(θ(n+1)) > L(θ(n)). Thus, the general procedure of the EM algorithm is the
following.

1. Initialize θ(0) randomly or heuristically according to any prior knowledge
about where the optimal parameter value might be.

2. Iteratively improve the estimate of θ by alternating between the following two-
steps:

1. the E-step (expectation): Compute Q(θ ; θ(n)), and

2. the M-step (maximization): Re-estimate θ by maximizing the Q-
function:

θ(n+1) = argmaxθQ(θ ; θ(n)).

3. Stop when the likelihood L(θ) converges.

As mentioned earlier, the complete likelihood Lc(θ) is much easier to maximize
as the values of the hidden variable are assumed to be known. This is why the
Q-function, which is an expectation of Lc(θ), is often much easier to maximize
than the original likelihood function. In cases when there does not exist a natural
latent variable, we often introduce a hidden variable so that the complete likelihood
function is easy to maximize.

The major computation to be carried out in the E-step is to compute p(H |
X, θ(n)), which is sometimes very complicated. In our case, this is simple:

470 Appendix B Expectation- Maximization

p(zij = 1 | F , θ
(n)
F) = λp(dij | C)

λp(dij | C) + (1 − λ)p(dij | θ
(n)
F)

. (B.5)

And, of course, p(zij = 0 |F , θ
(n)
F) = 1 − p(zij = 1 |F , θ

(n)
F). Note that, in general, zij

may depend on all the words in F . In our model, however, it only depends on the
corresponding word dij .

The M-step involves maximizing the Q-function. This may sometimes be quite
complex as well. But, again, in our case, we can find an analytical solution. In order
to achieve this, we use the Lagrange multiplier method since we have the following
constraint on the parameter variables {p(w | θF)}w∈V , where V is our vocabulary:∑

w∈V

p(w | θF) = 1.

We thus consider the following auxiliary function:

g(θF) = Q(θF ; θ(n)
F) + μ(1 −

∑
w∈V

p(w | θF))

and take its derivative with respect to each parameter variable p(w | θF)

∂g(θF)

∂p(w | θF)
=

⎡⎣ k∑
i=1

|di|∑
j=1,dij=w

p(zij = 0 | F , θ
(n)
F)

p(w | θF)

⎤⎦ − μ. (B.6)

Setting this derivative to zero and solving the equation for p(w | θF), we obtain

p(w | θF) =
∑k

i=1

∑|di|
j=1,dij=w p(zij = 0 | F , θ

(n)
F)∑k

i=1

∑|di|
j=1 p(zij = 0 | F , θ

(n)
F)

(B.7)

=
∑k

i=1 p(zw = 0 | F , θ
(n)
F)c(w, di)∑k

i=1

∑
w′∈V p(zw′ = 0 | F , θ

(n)
F)c(w′, di)

. (B.8)

Note that we changed the notation so that the sum over each word position in
document di is now a sum over all the distinct words in the vocabulary. This is
possible, because p(zij |F , θ

(n)
F) depends only on the corresponding word dij . Using

word w, rather then the word occurrence dij , to index z, we have

p(zw = 1 | F , θ
(n)
F) = λp(w | C)

λp(w | C) + (1 − λ)p(w | θ
(n)
F)

. (B.9)

We therefore have the following EM updating formulas for our simple mixture
model:

B.5 The General Procedure of EM 471

p(zw = 1 | F , θ
(n)
F) = λp(w | C)

λp(w | C) + (1 − λ)p(w | θ
(n)
F)

(E) (B.10)

p(w | θ
(n+1)
F) =

∑k
i=1(1 − p(zw = 1 | F , θ

(n)
F))c(w, di)∑k

i=1

∑
w′∈V (1 − p(zw′ = 1 | F , θ

(n)
F)c(w′, di))

(M). (B.11)

Note that we never need to explicitly compute the Q-function; instead, we compute
the distribution of the hidden variable z and then directly obtain the new parameter
values that will maximize the Q-function.

CAPPENDIX

KL-divergence
and Dirichlet
Prior Smoothing
This appendix is a more detailed discussion of the KL-divergence function and its
relation to Dirichlet prior smoothing in the generalized query likelihood smoothing
framework. We briefly touched upon KL-divergence in Chapter 7 and Chapter 13.

As we have seen, given two probability mass functions p(x) and q(x), D(p‖q),
the Kullback-Leibler divergence (or relative entropy) between p and q is defined as

D(p‖q) =
∑
x

p(x) log
p(x)

q(x)
.

It is easy to show that D(p‖q) is always non-negative and is zero if and only if
p = q. Even though it is not a true distance between distributions (because it is
not symmetric and does not satisfy the triangle inequality), it is still often useful
to think of the KL-divergence as a “distance” between distributions [Cover and
Thomas 1991].

C.1 Using KL-divergence for Retrieval
Suppose that a query q is generated by a generative model p(q | θQ) with θQ denot-
ing the parameters of the query unigram language model. Similarly, assume that a
document d is generated by a generative model p(d | θD) with θD denoting the pa-
rameters of the document unigram language model. If θ̂Q and θ̂D are the estimated
query and document language models, respectively, then, the relevance value of d
with respect to q can be measured by the following negative KL-divergence function
[Zhai and Lafferty 2001]:

−D(θ̂Q‖θ̂D) =
∑
w

p(w | θ̂Q) log p(w | θ̂D) + (−
∑
w

p(w | θ̂Q) log p(w | θ̂Q)).

474 Appendix C KL-divergence and Dirichlet Prior Smoothing

Note that the second term on the right-hand side of the formula is a query-
dependent constant, or more specifically, the entropy of the query model θ̂Q. It can
be ignored for the purpose of ranking documents. In general, the computation of
the above formula involves a sum over all the words that have a non-zero probability
according to p(w | θ̂Q). However, when θ̂D is based on certain general smoothing
method, the computation would only involve a sum over those that both have a
non-zero probability according to p(w | θ̂Q) and occur in document d. Such a sum
can be computed much more efficiently with an inverted index.

We now explain this in detail. The general smoothing scheme we assume is the
following:

p(w | θ̂D) =
{

ps(w | d) if word w is seen

αdp(w | C) otherwise.

where ps(w | d) is the smoothed probability of a word seen in the document, p(w | C)

is the collection language model, and αd is a coefficient controlling the probability
mass assigned to unseen words, so that all probabilities sum to one. In general, αd

may depend on d. Indeed, if ps(w | d) is given, we must have

α = 1 − ∑
w:c(w;d)>0 ps(w | d)

1 − ∑
w:c(w;d)>0 p(w | C)

.

Thus, individual smoothing methods essentially differ in their choice of ps(w | d).
The collection language model p(w | C) is typically estimated by c(w ,C)∑

w′ c(w′ ,C)
, or a

smoothed version c(w ,C)+1
V +∑

w′ c(w′ ,C)
, where V is an estimated vocabulary size (e.g., the

total number of distinct words in the collection). One advantage of the smoothed
version is that it would never give a zero probability to any term, but in terms
of retrieval performance, there will not be any significant difference in these two
versions, since

∑
w′ c(w′, C) is often significantly larger than V .

It can be shown that with such a smoothing scheme, the KL-divergence scoring
formula is essentially (the two sides are equivalent for ranking documents)

∑
w

p(w | θ̂Q) log p(w | θ̂D) =
⎡⎢⎣ ∑

w:c(w;d)>0,p(w|̂θQ)>0

p(w | θ̂Q) log
ps(w | d)

αdp(w | C)

⎤⎥⎦
+ log αd . (C.1)

Note that the scoring is now based on a sum over all the terms that both have
a non-zero probability according to p(w | θ̂Q) and occur in the document, i.e., all
“matched” terms.

C.3 Computing the Query Model p(w | θ̂Q) 475

C.2 Using Dirichlet Prior Smoothing
Dirichlet prior smoothing is one particular smoothing method that follows the
general smoothing scheme mentioned in the previous section. In particular,

ps(w | d) = c(w, d) + μp(w | C)

|d| + μ

and

αd = μ

μ + |d| .

Plugging these into equation C.1, we see that with Dirichlet prior smoothing, our
KL-divergence scoring formula is⎡⎢⎣ ∑

w:c(w;d)>0,p(w|̂θQ)>0

p(w | θ̂Q) log(1 + c(w, d)

μp(w | C)
)

⎤⎥⎦ + log
μ

μ + |d| .

C.3 Computing the Query Model p(w | θ̂Q)

You may be wondering how we can compute p(w | θ̂Q). This is exactly where the
KL-divergence retrieval method is better than the simple query likelihood method—
we can have different ways of computing it! The simplest way is to estimate this
probability by the maximum likelihood estimator using the query text as evidence,
which gives us

pml(w | θ̂Q) = c(w, q)

|q| .

Using this estimated value, you should see easily that the KL-divergence scoring for-
mula is essentially the same as the query likelihood retrieval formula as presented
in Zhai and Lafferty [2004].

A more interesting way of computing p(w | θ̂Q) is to exploit feedback documents.
Specifically, we can interpolate the simple pml(w | θ̂Q) with a feedback model p(w |
θF) estimated based on feedback documents. That is,

p(w | θ̂Q) = (1 − α)pml(w | θ̂Q) + αp(w | θF), (C.2)

where α is a parameter that needs to be set empirically. Please note that this α is
different from αd in the smoothing formula.

Of course, the next question is how to estimate p(w | θF)? One approach is to
assume the following two component mixture model for the feedback documents,

476 Appendix C KL-divergence and Dirichlet Prior Smoothing

where one component model is p(w | θF) and the other is p(w | C), the collection
language model.

log p(F | θF) =
k∑

i=1

∑
w

c(w; di) log((1 − λ)p(w | θF) + λp(w | C)),

where F = {d1, . . . , dk} is the set of feedback documents, and λ is yet another param-
eter that indicates the amount of “background noise” in the feedback documents,
and that needs to be set empirically. Now, given λ, the feedback documents F , and
the collection language model p(w | C), we can use the EM algorithm to compute
the maximum likelihood estimate of θF , as detailed in Appendix B.

References

C. C. Aggarwal. 2015. Data Mining - The Textbook. Springer. DOI: 10.1007/978-3-319-
14142-8. 296

C. C. Aggarwal and C. Zhai, editors. 2012. Mining Text Data. Springer. DOI: 10.1007/978-
1-4614-3223-4. 296, 315

J. Allen. 1995. Natural Language Understanding. 2nd ed. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA. 54

G. Amati and C. J. Van Rijsbergen. October 2002. Probabilistic models of information
retrieval based on measuring the divergence from randomness. ACM Trans. Inf.
Syst., 20(4):357–389. DOI: 10.1145/582415.582416. 87, 88, 90, 111

A. U. Asuncion, M. Welling, P. Smyth, and Y. W. Teh. 2009. On smoothing and inference
for topic models. In UAI 2009, Proc. of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, pp. 27–34. 385

R. A. Baeza-Yates and B. A. Ribeiro-Neto. 2011. Modern Information Retrieval - the
concepts and technology behind search. 2nd ed. Pearson Education Ltd., Harlow, UK.
http://www.mir2ed.org/. xvii, 18, 19

Y. Bar-Hillel, The Present Status of Automatic Translation of Languages, in Advances in
Computers, vol. 1 (1960), pp. 91–163.

R. Belew. 2008. Finding Out About: A Cognitive Perspective on Search Engine Technology
and the WWW . Cambridge University Press. 18

N. J. Belkin and W. B. Croft. 1992. Information filtering and information retrieval: Two
sides of the same coin? Commun. ACM, 35(12):29–38. DOI: 10.1145/138859.138861.
84

C. M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ. 19, 37, 312, 385, 462

D. M. Blei, A. Y. Ng, and M. I. Jordan. March 2003. Latent Dirichlet Allocation. J. of
Mach. Learn. Res., 3:993–1022. 385

http://dx.doi.org/10.1007/978-3-319-14142-8
http://dx.doi.org/10.1007/978-3-319-14142-8
http://dx.doi.org/10.1007/978-1-4614-3223-4
http://dx.doi.org/10.1007/978-1-4614-3223-4
http://dx.doi.org/10.1145/582415.582416
http://www.mir2ed.org/
http://dx.doi.org/10.1145/138859.138861

478 References

J. S. Breese, D. Heckerman, and C. Kadie. 1998. Empirical analysis of predictive
algorithms for collaborative filtering. In Proc. of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, UAI’98, Morgan Kaufmann Publishers
Inc. pp. 43–52, San Francisco, CA. http://dl.acm.org/citation.cfm?id=2074094
.2074100. 235

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. 1992. Class-
based N-gram Models of Natural Language. Comput. Linguist., 18(4):467–479. 273,
288, 290, 291

C. Buckley. 1994. Automatic query expansion using smart: Trec 3. In Proc. of The third
Text REtrieval Conference (TREC-3, pp. 69–80. 144

S. Büttcher, C. Clarke, and G. V. Cormack. 2010. Information Retrieval: Implementing
and Evaluating Search Engines. The MIT Press. xvii, 18, 165

F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso. 2011. Comparison of
collaborative filtering algorithms: Limitations of current techniques and proposals
for scalable, high-performance recommender systems. ACM Trans. Web, 5(1):2:1–
2:33. DOI: 10.1145/1921591.1921593. 235

C. Campbell and Y. Ying. 2011. Learning with Support Vector Machines. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers.
DOI: 10.2200/S00324ED1V01Y201102AIM010. 311

J. Carbonell and J. Goldstein. 1998. The Use of MMR, Diversity-based Reranking for
Reordering Documents and Producing Summaries. In Proc. of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98,ACM, pp. 335–336, New York. DOI: doi=10.1.1.188.3982 321,
327

C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A Library for Support Vector Machines. ACM
Trans. Intell. Syst. Technol., 2(3):27:1–27:27. 58

J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei. 2009. Reading Tea
Leaves: How Humans Interpret Topic Models. In Y. Bengio, D. Schuurmans, J.D.
Lafferty, C.K.I. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, Curran Associates, Inc. 22, pp. 288–296. 272, 383, 384, 385, 410

K. W. Church and P. Hanks. 1990. Word association norms, mutual information,
and lexicography. Comput. Linguist., 16(1):22–29. http://dl.acm.org/citation
.cfm?id=89086.89095. 273

T. Cover and J. Thomas. 1991. Elements of Information Theory. New York: Wiley. DOI:
DOI: 10.1002/047174882X 37, 473

B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval in
Practice, 1st ed., Addison-Wesley Publishing Company. xvii, 18, 165

http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dx.doi.org/10.1145/1921591.1921593
http://dx.doi.org/10.2200/S00324ED1V01Y201102AIM010
http://dx.doi.org/doi=10.1.1.188.3982
http://dl.acm.org/citation.cfm?id=89086.89095
http://dl.acm.org/citation.cfm?id=89086.89095
http://dx.doi.org/DOI: 10.1002/047174882X

References 479

D. Das and A. F. T. Martins. 2007. A Survey on Automatic Text Summarization. Technical
report, Literature Survey for the Language and Statistics II course at Carnegie
Mellon University. 318, 321, 327

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A
Library for Large Linear Classification. J. Mach. Learn. Res., 9:1871–1874. 58

H. Fang, T. Tao, and C. Zhai. 2004. A formal study of information retrieval heuristics.
In Proc. of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’04, ACM, pp. 49–56, New York. DOI:
10.1145/1008992.1009004. 129

H. Fang, T. Tao, and C. Zhai. April 2011. Diagnostic evaluation of information retrieval
models. ACM Trans. Inf. Syst., 29(2):7:1–7:42. DOI: 10.1145/1961209.1961210. 88,
90, 129

R. Feldman and J. Sanger. 2007. The Text Mining Handbook - Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press. 18

E. A. Fox, M. A. Gonçalves, and R. Shen. 2012. Theoretical Foundations for Digital
Libraries: The 5S (Societies, Scenarios, Spaces, Structures, Streams) Approach.
Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan
& Claypool Publishers. DOI: 10.2200/S00434ED1V01Y201207ICR022. 80

W. B. Frakes and R. A. Baeza-Yates, editors. 1992. Information Retrieval: Data Structures
& Algorithms. Prentice-Hall, 18

K. Ganesan, C. Zhai, and J. Han. 2010. Opinosis: A graph-based approach to
abstractive summarization of highly redundant opinions. In Proc. of the 23rd
International Conference on Computational Linguistics, COLING ’10, Association for
Computational Linguistics, pp. 340–348, Stroudsburg, PA. 327

K. Ganesan, C. Zhai, and E. Viegas. 2012. Micropinion generation: an unsupervised
approach to generating ultra-concise summaries of opinions. In Proc. of the 21st
World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages
869–878. DOI: 10.1145/2187836.2187954 323

J. Gantz, and D. Reinsel. 2012. The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East, IDC Report, December, 2012. 3

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 1995.
Bayesian Data Analysis. Chapman & Hall. 37

S. Ghemawat, H. Gobioff, and S.-T. Leung. 2003. The Google file system. In Proc. of the
nineteenth ACM symposium on Operating systems principles (SOSP ’03). ACM, New
York, 29–43. 195

M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp. 2004. Streams, structures,
spaces, scenarios, societies (5s): A formal model for digital libraries. ACM Trans.
Inf. Syst., 22(2):270–312. DOI: 10.1145/984321.984325. 84

http://dx.doi.org/10.1145/1008992.1009004
http://dx.doi.org/10.1145/1961209.1961210
http://dx.doi.org/10.2200/S00434ED1V01Y201207ICR022
http://dx.doi.org/10.1145/2187836.2187954
http://dx.doi.org/10.1145/984321.984325

480 References

D. A. Grossman and O. Frieder. Kluwer, 2004. Information Retrieval - Algorithms and
Heuristics, Second Edition, vol. 15 of The Kluwer International Series on Information
Retrieval. DOI: 10.1007/978-1-4020-3005-5. 18

G. Hamerly and C. Elkan. 2003. Learning the k in k-means. In Advances in Neural
Information Processing Systems 16 [Neural Information Processing Systems, NIPS
December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada], pp.
281–288. DOI: doi=10.1.1.9.3574 295

J. Han. 2005. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA. 296

D. Harman. 2011. Information Retrieval Evaluation. Synthesis Lectures on Information
Concepts, Retrieval, and Services. Morgan & Claypool Publishers. DOI: 10.1145/
215206.215351 168, 188

M. A. Hearst. 2009. Search User Interfaces. 1st ed. Cambridge University Press, New
York. 19, 85

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating
Collaborative Filtering Recommender Systems. ACM Trans. Inf. Syst., 22(1):5–53.
DOI: 10.1145/963770.963772 235

J. L. Hodges and E. L. Lehmann. 1970. Basic Concepts of Probability and Statistics.
Holden Day, San Francisco. 36

T. Hofmann. 1999. Probabilistic Latent Semantic Analysis. In Proc. of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, UAI’99, Morgan Kaufmann
Publishers Inc., pp. 289–296, San Francisco, CA. DOI: 10.1145/312624.312649 370,
385

A. Huang. 2008. Similarity Measures for Text Document Clustering. In Proc. of the
Sixth New Zealand Computer Science Research Student Conference (NZCSRSC2008),
Christchurch, New Zealand, pages 49–56. 280

F. Jelinek. 1997. Statistical Methods for Speech Recognition. MIT Press, Cambridge, MA.
30, 54

J. Jiang. 2012. Information extraction from text, In Charu C. Aggarwal and ChengXiang
Zhai (Eds.), Mining Text Data, Springer, pp. 11–41. 19, 55

S. Jiang and C. Zhai. 2014. Random walks on adjacency graphs for mining lexical
relations from big text data. In 2014 IEEE International Conference on Big Data,
Big Data 2014, Washington, DC, USA, October 27-30, pages 549–554. DOI:
10.1109/BigData.2014.7004272. 273

Y. Jo and A. H. Oh. 2011. Aspect and sentiment unification model for online review
analysis. In Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, ACM, pp. 815–824, New York. DOI: 10.1145/1935826
.1935932. 410

http://dx.doi.org/10.1007/978-1-4020-3005-5
http://dx.doi.org/doi=10.1.1.9.3574
http://dx.doi.org/10.1145/215206.215351
http://dx.doi.org/10.1145/215206.215351
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1145/312624.312649
http://dx.doi.org/10.1109/BigData.2014.7004272
http://dx.doi.org/10.1145/1935826.1935932
http://dx.doi.org/10.1145/1935826.1935932

References 481

T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. 2007. Evaluating
the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM Trans. Inf. Syst., 25(2). DOI: 10.1145/1229179.1229181. 144

D. Jurafsky and J. H. Martin. 2009. Speech and Language Processing. 2nd ed. Prentice-
Hall, Inc., Upper Saddle River, NJ. 19, 54

D. Kelly. 2009. Methods for Evaluating Interactive Information Retrieval Systems
with Users. Foundations and Trends in Information Retrieval, 3(1-2):1–224. DOI:
10.1561/1500000012 168, 188

D. Kelly and J. Teevan. 2003. Implicit feedback for inferring user preference: A
bibliography. SIGIR Forum, 37(2):18–28. DOI: 10.1145/959258.959260. 144

H. D. Kim, M. Castellanos, M. Hsu, C. Zhai, T. Rietz, and D. Diermeier. 2013. Mining
causal topics in text data: iterative topic modeling with time series feedback.
In Proc. of the 22nd ACM international conference on Conference on information
and knowledge management, CIKM ’13, ACM pages 885–890, New York, NY. DOI:
10.1145/2505515.2505612. 435, 438, 439, 440

J. M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632. DOI: 10.1145/324133.324140. 216

J. M. Kleinberg. 2002. An impossibility theorem for clustering. In Advances in Neural
Information Processing Systems 15 [Neural Information Processing Systems, NIPS
2002, December 9-14, 2002, Vancouver, British Columbia, Canada], pp. 446–453.
http://papers.nips.cc/paper/2340-an-impossibility-theorem-for-clustering. 296

D. Koller and N. Friedman. 2009. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press. 385

J. Lafferty and C. Zhai. 2003. Probabilistic relevance models based on document and
query generation. In W. Bruce Croft and John Lafferty, editors, Language Modeling
and Information Retrieval. Kluwer Academic Publishers. DOI: 10.1007/978-94-017-
0171-6_1 87, 113

D. Lin. 1999. Automatic identification of non-compositional phrases. In Proc. of the 37th
Annual Meeting of the Association for Computational Linguistics on Computational
Linguistics, ACL ’99, Association for Computational Linguistics, pages 317–324,
Stroudsburg, PA. DOI: 10.3115/1034678.1034730. 273, 291

J.Lin and C. Dyer. 2010. Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers. DOI: 10.2200/S00274ED1V01Y201006HLT007. 198, 216

Bing Liu. 2012. Sentiment Analysis and Opinion Mining. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers. DOI: 10.2200/
S00416ED1V01Y201204HLT016. 410

T.-Y. Liu. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retr.,
3(3):225–331. DOI: 10.1561/1500000016. 216

http://dx.doi.org/10.1145/1229179.1229181
http://dx.doi.org/10.1561/1500000012
http://dx.doi.org/10.1145/959258.959260
http://dx.doi.org/10.1145/2505515.2505612
http://dx.doi.org/10.1145/324133.324140
http://papers.nips.cc/paper/2340-an-impossibility-theorem-for-clustering
http://dx.doi.org/10.1007/978-94-017-0171-6_1
http://dx.doi.org/10.1007/978-94-017-0171-6_1
http://dx.doi.org/10.3115/1034678.1034730
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
http://dx.doi.org/10.1561/1500000016

482 References

Y. Lv and C. Zhai. 2009. A comparative study of methods for estimating query language
models with pseudo feedback. In Proc. of the 18th ACM Conference on Information
and Knowledge Management, CIKM ’09, ACM, pp. 1895–1898, New York. DOI:
10.1145/1645953.1646259. 144

Y. Lv and C. Zhai. 2010. Positional relevance model for pseudo-relevance feedback. In
Proc. of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’10, ACM, pages 579–586, New York. DOI: 10.1145/
1835449.1835546. 144

Y. Lv and C. Zhai. 2011. Lower-bounding Term Frequency Normalization. In Proc. of
the 20th ACM International Conference on Information and Knowledge Management,
CIKM ’11, pp. 7–16. DOI: 10.1145/2063576.2063584 88, 110

P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N. Good, L.L. Jordan, and J. Pal.
2003. How much information? http://www2.sims.berkeley.edu/research/projects/
how-much-info-2003. 3

C. D. Manning and H. Schütze. 1999. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA. 19, 54, 273

C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information Retrieval.
Cambridge University Press, New York. xvii, 18, 165, 315

M. E. Maron and J. L. Kuhns. 1960. On relevance, probabilistic indexing and information
retrieval. Journal of the ACM, 7:216–244. DOI: 10.1145/321033.321035 87

S. Massung and C. Zhai. 2015. SyntacticDiff: Operator-Based Transformation for
Comparative Text Mining. In Proc. of the 3rd IEEE International Conference on Big
Data, pp. 571–580. 306

S. Massung and C. Zhai. 2016. Non-Native Text Analysis: A Survey. The Journal of Natural
Language Engineering, 22(2):163–186. DOI: 10.1017/S1351324915000303 306

S. Massung, C. Zhai, and J.Hockenmaier. 2013. Structural Parse Tree Features for Text
Representation. In IEEE Seventh International Conference on Semantic Computing,
pp. 9–13. DOI: 10.1109/ICSC.2013.13 305

J. D. McAuliffe and D. M. Blei. 2008. Supervised topic models. In J.C. Platt, D. Koller,
Y. Singer, and S.T. Roweis, eds., Advances in Neural Information Processing Systems
20, pages 121–128. Curran Associates, Inc. 386

G. J. McLachlan and T. Krishnan. 2008. The EM algorithm and extensions. 2nd ed. Wiley
Series in Probability and Statistics. Hoboken, NJ., Wiley. http://gso.gbv.de/DB=2.1/
CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+52983362X&sourceid=fbw_
bibsonomy. DOI: 10.1002/9780470191613 466

Q. Mei. 2009. Contextual text mining. Ph.D. Dissertation, University of Illinois at
Urbana-Champaign. 440

http://dx.doi.org/10.1145/1645953.1646259
http://dx.doi.org/10.1145/1835449.1835546
http://dx.doi.org/10.1145/1835449.1835546
http://dx.doi.org/10.1145/2063576.2063584
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
http://www2.sims.berkeley.edu/research/projects/how-much-info-2003
http://dx.doi.org/10.1145/321033.321035
http://dx.doi.org/10.1017/S1351324915000303
http://dx.doi.org/10.1109/ICSC.2013.13
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+52983362X&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+52983362X&sourceid=fbw_bibsonomy
http://dx.doi.org/10.1002/9780470191613

References 483

Q. Mei and C. Zhai. 2006. A mixture model for contextual text mining. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, ACM, pp. 649–655, New York. DOI: 10.1145/1150402.1150482.
423, 440

Q. Mei, D. Xin, H. Cheng, J. Han, and C. Zhai. 2006. Generating semantic annotations
for frequent patterns with context analysis. In Proc. of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’06, ACM,
pp. 337–346, New York. DOI: 10.1145/1150402.1150441. 417

Q. Mei, C. Liu, H. Su, and C. Zhai. 2006. A probabilistic approach to spatiotemporal
theme pattern mining on weblogs. In Proc.of the 15th international conference
on World Wide Web (WWW ’06). ACM. New York, 533–542. DOI: 10.1145/1135777
.1135857. 425, 426

Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. 2007a. Topic sentiment mixture:
Modeling facets and opinions in weblogs. In Proc. of the 16th International
Conference on World Wide Web, WWW ’07, ACM, pp. 171–180, New York. DOI:
10.1145/1242572.1242596. 410

Q. Mei, X. Shen, and C. Zhai. 2007b. Automatic labeling of multinomial topic models.
In Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Jose, California, August 12-15, 2007, pp. 490–499. DOI:
10.1145/1281192.1281246. 278

Q. Mei, D. Cai, D. Zhang, and C. Zhai. 2008. Topic modeling with network regularization.
In Proceedings of the 17th International Conference on World Wide Web, WWW ’08,
ACM, pp. 101–110, New York. DOI: 10.1145/1367497.1367512. 431, 432, 440

T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. 2010. Recurrent
neural network based language model. In INTERSPEECH 2010, 11th Annual
Conference of the International Speech Communication Association, Makuhari, Chiba,
Japan, September 26-30, 2010, pp. 1045–1048. http://www.isca-speech.org/archive/
interspeech_2010/i10_1045.html. 292

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and their Compositionality. In Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, NV, pp. 3111–3119. 273, 292, 293

T. M. Mitchell. 1997. Machine learning. McGraw Hill Series in Computer Science.
McGraw-Hill. 19, 37, 315

M.-F. Moens. 2006. Information Extraction: Algorithms and Prospects in a Retrieval Context
(The Information Retrieval Series). Springer-Verlag New York, Inc., Secaucus, NJ.
DOI: 10.1007/978-1-4020-4993-4. 55

http://dx.doi.org/10.1145/1150402.1150482
http://dx.doi.org/10.1145/1150402.1150441
http://dx.doi.org/10.1145/1135777.1135857
http://dx.doi.org/10.1145/1135777.1135857
http://dx.doi.org/10.1145/1242572.1242596
http://dx.doi.org/10.1145/1281192.1281246
http://dx.doi.org/10.1145/1367497.1367512
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://dx.doi.org/10.1007/978-1-4020-4993-4

484 References

I. J. Myung. 2003. Tutorial on maximum likelihood estimation. J. Math. Psychol.,
47(1):90–100. DOI: 10.1016/S0022-2496(02)00028-7. 36

A. Nenkova and K. McKeown. 2012. A survey of text summarization techniques. In
Charu C. Aggarwal and C. Zhai, eds, Mining Text Data, pp. 43–76. Springer US. DOI:
10.1007/978-1-4614-3223-4_3. 327

L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank Citation Ranking:
Bringing Order to the Web. http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf. 216

B. Pang and L. Lee. 2008. Opinion Mining and Sentiment Analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135. DOI: 10.1561/1500000011 409, 410

J. M. Ponte and W. B. Croft. 1998. A language modeling approach to information
retrieval. In Proc. of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’98, ACM, pp. 275–281, New York,
NY. DOI: 10.1145/290941.291008. 87, 90, 128, 427

J. R. Quinlan. 1986. Induction of Decision Trees. Machine Learning, 1(1):81–106. DOI:
10.1007/BF00116251. 301

D. R. Radev, H. Jing, M. Styś, and D. Tam. 2004. Centroid-based summarization of
multiple documents. Information Processing & Management, 40(6):919–938. DOI:
10.1016/j.ipm.2003.10.006. 327

D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. 2009. Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 -
Volume 1, EMNLP ’09, Association for Computational Linguistics, pages 248–256,
Stroudsburg, PA. 386

E. Reiter and R. Dale. 2000. Building Natural Language Generation Systems. Cambridge
University Press, New York. 324, 327

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. 2010. Recommender Systems Handbook.
1st ed. Springer-Verlag New York, Inc. DOI: 10.1007/978-0-387-85820-3 235

C. J. Van Rijsbergen. 1979. Information Retrieval. 2nd ed. Butterworth-Heinemann,
Newton, MA.

S. Robertson and K. Sparck Jones. 1976. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27:129–146. 87

S. E. Robertson. 1997. Readings in Information Retrieval. In The Probability Ranking
Principle in IR, San Francisco, CA, Morgan Kaufmann Publishers Inc. pp. 281–286.
84, 85

S. Robertson and H. Zaragoza. 2009. The Probabilistic Relevance Framework: BM25
and Beyond. Found. Trends Inf. Retr., 3(4):333–389. DOI: 10.1561/1500000019. 88,
89, 129

http://dx.doi.org/10.1016/S0022-2496(02)00028-7
http://dx.doi.org/10.1007/978-1-4614-3223-4_3
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.1145/290941.291008
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/j.ipm.2003.10.006
http://dx.doi.org/10.1007/978-0-387-85820-3
http://dx.doi.org/10.1561/1500000019

References 485

S. Robertson, H. Zaragoza, and M. Taylor. 2004. Simple BM25 Extension to Multiple
Weighted Fields. In Proc. of the Thirteenth ACM International Conference on
Information and Knowledge Management, CIKM ’04, pp. 42–49. DOI: 10.1145/
1031171.1031181 110

C. Roe. 2012. The growth of unstructured data: what to do with all those zettabytes?
http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to
-do-with-all-those-zettabytes/. 3

R. Rosenfeld. 2000. Two decades of statistical language modeling: Where do we go
from here. In Proceedings of the IEEE. 54

G. Salton. 1989. Automatic Text Processing: The Transformation, Analysis and Retrieval of
Information by Computer. Addison-Wesley. 18

G. Salton and M. McGill. 1983. Introduction to Modern Information Retrieval. McGraw-
Hill. 18

G. Salton, A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620. 87

G. Salton and C. Buckley. 1990. Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science, 41:288–297. 144

M. Sanderson. 2010. Test Collection Based Evaluation of Information Retrieval Systems.
Foundations and Trends in Information Retrieval, 4(4):247–375. 168, 188

M. Sanderson and W. B. Croft. 2012. The history of information retrieval research. Proc.
of the IEEE, 100(Centennial-Issue):1444–1451, 2012. DOI: 10.1109/JPROC.2012.
2189916. 85

S. Sarawagi. 2008. Information extraction. Found. Trends databases, 1(3):261–377. DOI:
10.1561/1900000003. 19, 55

F. Sebastiani. 2002. Machine learning in automated text categorization. ACM Comput.
Surv., 34(1):1–47. DOI: 10.1145/505282.505283. 315

G. Shani and A. Gunawardana. 2011. Evaluating Recommendation Systems. In
Recommender Systems Handbook, 2nd ed., pp. 257–297. Springer, New York, NY.
DOI: 10.1007/978-0-387-85820-3_8. 235

F. Silvestri. 2010. Mining query logs: Turning search usage data into knowledge. Found.
Trends Inf. Retr., 4:1–174. DOI: 10.1561/1500000013 144

A. Singhal, C. Buckley, and Mandar Mitra. 1996. Pivoted document length normaliza-
tion. In Proc. of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’96,ACM, pp. 21–29, New York. DOI:
10.1145/243199.243206. 89, 106, 128

N. Smith. 2010. Text-driven forecasting. http://www.cs.cmu.edu/ñasmith/papers/
smith.whitepaper10.pdf. 440

http://dx.doi.org/10.1145/1031171.1031181
http://dx.doi.org/10.1145/1031171.1031181
http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to-do-with-all-those-zettabytes/
http://www.dataversity.net/the-growth-of-unstructured-data-what-are-we-going-to-do-with-all-those-zettabytes/
http://dx.doi.org/10.1109/JPROC.2012.2189916
http://dx.doi.org/10.1109/JPROC.2012.2189916
http://dx.doi.org/10.1561/1900000003
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1561/1500000013
http://dx.doi.org/10.1145/243199.243206
http://www.cs.cmu.edu/~nasmith/papers/smith.whitepaper10.pdf
http://www.cs.cmu.edu/~nasmith/papers/smith.whitepaper10.pdf

486 References

Mark D. Smucker, James Allan, and Ben Carterette. 2007. A Comparison of Statistical
Significance Tests for Information Retrieval Evaluation. In Proc. of the Sixteenth
ACM Conference on Conference on Information and Knowledge Management, CIKM
’07, ACM, pp. 623–632, New York. DOI: 10.1145/1321440.1321528. 185

K. Sparck Jones and P. Willett, eds. 1997. Readings in Information Retrieval. San
Francisco, CA, Morgan Kaufmann Publishers Inc. 18, 85, 188

N. Spirin and J. Han. May 2012. Survey on Web Spam Detection: Principles and
Algorithms. SIGKDD Explor. Newsl., 13(2):50–64. DOI: 10.1145/2207243.2207252.
191

E. Stamatatos. 2009. A Survey of Modern Authorship Attribution Methods. J. Am. Soc.
Inf. Sci. Technol., 60(3):538–556. DOI: 10.1002/asi.v60:3 305

M. Steinbach, G. Karypis, and V. Kumar. 2000. A comparison of document clustering
techniques. In KDD Workshop on Text Mining. 296

J. Steinberger and K. Jezek. 2009. Evaluation measures for text summarization.
Computing and Informatics, 28(2):251–275. 327

M. Steyvers and T. Griffiths. 2007. Probabilistic topic models. Handbook of Latent
Semantic Analysis, 427(7):424–440. 385, 386

Y. Sun and J. Han. 2012. Mining Heterogeneous Information Networks: Principles and
Methodologies. Morgan & Claypool Publishers. DOI: 10.2200/S00433ED1V01
Y201207DMK005. 440

I. Titov and R. McDonald. 2008. Modeling online reviews with multi-grain topic models.
In Proc. of the 17th International Conference on World Wide Web, WWW ’08, ACM,
pp. 111–120, New York. DOI: 10.1145/1367497.1367513. 410

H. Turtle and W. B. Croft. 1990. Inference networks for document retrieval. In Proc. of
the 13th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’90, ACM, pp. 1–24, New York. DOI: 10.1145/96749
.98006. 88

Princeton University. 2010. About wordnet. http://wordnet.princeton.edu. 395

C. J. van Rijsbergen. 1979. Information Retrieval. Butterworths. 18

H. Wang, Yue Lu, and C. Zhai. 2010. Latent Aspect Rating Analysis on Review Text
Data: A Rating Regression Approach. In Proc. of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, ACM, pp. 783–792,
New York. DOI: 10.1145/1835804.1835903. 318, 327, 405, 406, 407, 408, 409, 410

H. Wang, Y. Lu, and C. Zhai. 2011. Latent Aspect Rating Analysis Without Aspect
Keyword Supervision. In Proc. of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, ACM, pp. 618–626, New York. DOI:
10.1145/2020408.2020505. 318, 327, 405, 410

http://dx.doi.org/10.1145/1321440.1321528
http://dx.doi.org/10.1145/2207243.2207252
http://dx.doi.org/10.1002/asi.v60:3
http://dx.doi.org/10.2200/S00433ED1V01Y201207DMK005
http://dx.doi.org/10.2200/S00433ED1V01Y201207DMK005
http://dx.doi.org/10.1145/1367497.1367513
http://dx.doi.org/10.1145/96749.98006
http://dx.doi.org/10.1145/96749.98006
http://wordnet.princeton.edu
http://dx.doi.org/10.1145/1835804.1835903
http://dx.doi.org/10.1145/2020408.2020505

References 487

J. Weizenbaum. 1966. ELIZA—A Computer Program for the Study of Natural Language
Communication Between Man and Machine, Communications of the ACM 9 (1):
36–45, DOI: 10.1145/265153.365168. 44

J. S. Whissell and C. L. A. Clarke. 2013. Effective Measures for Inter-document Similarity.
In Proc. of the 22nd ACM International Conference on Conference on Information
& Knowledge Management, CIKM ’13, ACM, pages 1361–1370, New York. DOI:
10.1145/2505515.2505526. 279

R. W. White and R. A. Roth. 2009. Exploratory Search: Beyond the Query-Response
Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services.
Morgan & Claypool Publishers. DOI: 10.2200/S00174ED1V01Y200901ICR003. 85

R. W. White, B. Kules, S. M. Drucker, and m.c. schraefel. 2006. Introduction. Commun.
ACM, 49(4):36–39. DOI: 10.1145/1121949.1121978. 85

I. H. Witten, A. Moffat, and T. C. Bell. 1999. Managing Gigabytes (2Nd Ed.): Compressing
and Indexing Documents and Images. Morgan Kaufmann Publishers Inc., San
Francisco, CA. 18, 165

C.F J. Wu. 1983. On the convergence properties of the EM algorithm. Ann. of stat.,
95–103. 368

J. Xu and W. B. Croft. 1996. Query expansion using local and global document analysis.
In Proc. of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’96, ACM, pp. 4–11, New York. DOI:
10.1145/243199.243202. 144

Y. Yang. 1999. An evaluation of statistical approaches to text categorization. Journal of
Information Retrieval, 1:67–88. 315

C. Zhai. 1997. Exploiting context to identify lexical atoms—a statistical view of linguistic
context. In Proc. of the International and Interdisciplinary Conference on Modelling
and Using Context (CONTEXT-97), pages 119–129. Rio de Janeiro, Brazil. 273, 291

C. Zhai. 2008. Statistical Language Models for Information Retrieval. Synthesis Lectures
on Human Language Technologies. Morgan & Claypool Publishers. DOI: 10.2200/
S00158ED1V01Y200811HLT001. 55, 87, 128, 129

C. Zhai and J. Lafferty. 2001. Model-based Feedback in the Language Modeling
Approach to Information Retrieval. In Proceedings of the Tenth International
Conference on Information and Knowledge Management, CIKM ’01, ACM, pp. 403–
410, New York. DOI: 10.1145/502585.502654. 143, 466, 473

C. Zhai and J. Lafferty. 2004. A Study of Smoothing Methods for Language Models
Applied to Information Retrieval. ACM Trans. Inf. Syst., 22(2):179–214. 475

C. Zhai, P. Jansen, E. Stoica, N. Grot, and D. A. Evans. 1998. Threshold Calibration in
CLARIT Adaptive Filtering. In Proc. of Seventh Text REtrieval Conference (TREC-7),
pp. 149–156. 227

http://dx.doi.org/10.1145/265153.365168
http://dx.doi.org/10.1145/2505515.2505526
http://dx.doi.org/10.2200/S00174ED1V01Y200901ICR003
http://dx.doi.org/10.1145/1121949.1121978
http://dx.doi.org/10.1145/243199.243202
http://dx.doi.org/10.2200/S00158ED1V01Y200811HLT001
http://dx.doi.org/10.2200/S00158ED1V01Y200811HLT001
http://dx.doi.org/10.1145/502585.502654

488 References

C. Zhai, P. Jansen, and D. A. Evans. 2000. Exploration of a heuristic approach to
threshold learning in adaptive filtering. In SIGIR, ACM, pp. 360–362. DOI: 10.1145/
345508.345652. 235

C. Zhai, A. Velivelli, and B. Yu. 2004. A cross-collection mixture model for comparative
text mining. In Proc. of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, ACM, pp. 743–748, New York. DOI: 10.1145/
1014052.1014150. 423

D. Zhang, C. Zhai, J. Han, A. Srivastava, and N. Oza. 2009. Topic modeling for OLAP on
multidimensional text databases: topic cube and its applications. Stat. Anal. Data
Min. 2, 5–6 (December 2009), 378–395. DOI: 10.1002/sam.v2.5/6. 440

J. Zhu, A. Ahmed, and E. P. Xing. 2009. Medlda: Maximum margin supervised topic
models for regression and classification. In Proc. of the 26th Annual International
Conference on Machine Learning, ICML ’09, ACM, pp. 1257–1264, New York. DOI:
10.1145/1553374.1553535. 386

G. K. Zipf. 1949. Human Behavior and the Principle of Least-Effort. Cambridge, MA,
Addison-Wesley, 162

http://dx.doi.org/10.1145/345508.345652
http://dx.doi.org/10.1145/345508.345652
http://dx.doi.org/10.1145/1014052.1014150
http://dx.doi.org/10.1145/1014052.1014150
http://dx.doi.org/10.1002/sam.v2.5/6
http://dx.doi.org/10.1145/1553374.1553535

Index

Absolute discounting, 130
Abstractive text summarization, 318, 321–

324
Access modes, 73–76
Accuracy in search engine evaluation, 168
Ad hoc information needs, 8–9
Ad hoc retrieval, 75–76
Add-1 smoothing, 130, 464
Adjacency matrices, 207–208
Advertising, opinion mining for, 393
Agglomerative clustering, 277, 280–282, 290
Aggregating

opinions, 393
scores, 234

All-vs-all (AVA) method, 313
Ambiguity

full structure parsing, 43
LARA, 406
NLP, 40–41, 44
one-vs-all method, 313
text retrieval vs. database retrieval, 80
topics, 335, 337

Analyzers in META toolkit, 61–64, 453
analyzers::filters namespace, 64
analyzers::tokenizers namespace, 64
Anaphora resolution in natural language

processing, 41
Anchor text in web searches, 201
Architecture

GFS, 194–195
META toolkit, 60–61
unified systems, 452–453

Art retrieval models, 111
Aspect opinion analysis, 325–326
Associations, word. See Word association

mining
Authority pages in web searches, 202, 207
Automatic evaluation in text clustering, 294
AVA (all-vs-all) method, 313
Average-link document clustering, 282
Average precision

ranked lists evaluation, 175, 177–180
search engine evaluation, 184

Axiomatic thinking, 88

Background models
mining topics from text, 345–351
mixture model estimation, 351–353
PLSA, 370–372

Background words
mixture models, 141, 351–353
PLSA, 368–369, 372

Bag-of-words
frequency analysis, 69
paradigmatic relations, 256
text information systems, 10
text representation, 88–90
vector space model, 93, 109
web searches, 215

Bar-Hillel report, 42
Baseline accuracy in text categorization, 314
Bayes, Thomas, 25
Bayes’ rule

EM algorithm, 361–363, 373–374

490 Index

Bayes’ rule (continued)
formula, 25–26
LDA, 383

Bayesian inference
EM algorithm, 361–362
PLSA, 379, 382

Bayesian parameter estimation
formula, 458
overfitting problem, 28–30
unigram language model, 341, 359

Bayesian smoothing, 125
Bayesian statistics

binomial estimation and beta distribu-
tion, 457–459

Dirichlet distribution, 461–463
LDA, 382
multinomial distribution, 460–461
multinomial parameters, 463–464
Naive Bayes algorithm, 309–312
pseudo counts, smoothing, and setting

hyperparameters, 459–460
Berkeley study, 3
Bernoulli distribution, 26
Beta distribution, 457–459
Beta-gamma threshold learning, 227–228
Bias, clustering, 276
Big text data, 5–6
Bigram language model

abstractive summarization, 323
Brown clustering, 290

Bigrams
frequency analysis, 68
sentiment classification, 394–395
text categorization, 305
words tokenizers, 149

Binary classification
content-based recommendation, 223
text categorization, 303

Binary hidden variables in EM algorithm,
362–364, 366, 368, 467

Binary logistic regression, 397
Binomial distribution, 26–27
Binomial estimation, 457–459
Bit vector representation, 93–97

Bitwise compression, 159–160
Blind feedback, 133, 135
Block compression, 161–162
Block world project, 42
BM25 model

description, 88
document clustering, 279
document length normalization, 108–109
link analysis, 201
Okapi, 89, 108
popularity, 90
probabilistic retrieval models, 111

BM25-F model, 109
BM25 score

paradigmatic relations, 258–261
syntagmatic relations, 270
web search ranking, 210

BM25 TF transformation
description, 104–105
paradigmatic relations, 258–259

BM25+ model, 88, 110
Breadth-first crawler searches, 193
Breakeven point precision, 189
Brown clustering, 278, 288–291
Browsing

multimode interactive access, 76–78
pull access mode, 73–75
support for, 445
text information systems, 9
web searches, 214
word associations, 252

Business intelligence
opinion mining, 393
text data analysis, 243

C++ language, 16, 58
Caching

DBLRU, 164–165
LRU, 163–164
META toolkit, 60
search engine implementation, 148,

162–165
Categories

categorical distributions, 460–461

Index 491

sentiment classification, 394, 396–397
text information systems, 11–12

Causal topic mining, 433–437
Centroid vectors, 136–137
Centroids in document clustering, 282–284
CG (cumulative gain) in NDCG, 181–182
character_tokenizer tokenizer, 61
Citations, 202
Classes

Brown clustering, 289
categories, 11–12
sentiment, 393–396

Classification
machine learning, 34–36
NLP, 43–44

Classifiers in text categorization, 302–303
classify command, 57
Cleaning HTML files, 218–219
Clickthroughs

probabilistic retrieval model, 111–113
web searches, 201

Clustering bias, 276
Clusters and clustering

joint analysis, 416
sentiment classification, 395
text. See Text clustering

Coherence in text clustering, 294–295
Coin flips, binomial distribution for, 26–27
Cold start problem, 230
Collaborative filtering, 221, 229–233
Collapsed Gibbs sampling, 383
Collect function, 197
Collection language model

KL-divergence, 474
smoothing methods, 121–126

Common form of retrieval models, 88–90
Common sense knowledge in NLP, 40
Common words

background language model, 346–347,
350–351

feedback, 141, 143
filtering, 54
mixture models, 352–353, 355–356
unigram language model, 345–346

vector space retrieval models, 99, 109
Compact clusters, 281
Compare operator, 450, 452
Complete data for EM algorithm, 467–468
Complete-link document clustering, 281–

282
Component models

background language models, 345,
347–350

CPLSA, 421
description, 143
EM algorithm, 359
mixture models, 355–356, 358–359
PLSA, 370–373

Compression
bitwise, 159–160
block, 161–162
overview, 158–159
search engines, 148
text representation, 48–49

Compression ratio, 160–161
Concepts in vector space model, 92
Conceptual framework in text information

systems, 10–13
Conditional entropy

information theory, 33
syntagmatic relations, 261–264, 270

Conditional probabilities
Bayes’ rule, 25–26
overview, 23–25

Configuration files, 57–58
Confusion matrices, 314–315
Constraints in PLSA, 373
Content analysis modules, 10–11
Content-based filtering, 221–229
Content in opinion mining, 390–392
Context

Brown clustering, 290
non-text data, 249
opinion mining, 390–392
paradigmatic relations, 253–258
social networks as, 428–433
syntagmatic relations, 261–262
text mining, 417–419

492 Index

Context (continued)
time series, 433–439

Context variables in topic analysis, 330
Contextual Probabilistic Latent Semantic

Analysis (CPLSA), 419–428
Continuous distributions

Bayesian parameter estimation, 28
description, 22

Co-occurrences in mutual information,
267–268

Corpus input formats in META toolkit,
60–61

corpusname.dat file, 60
corpusname.dat.gz file, 60
corpusname.dat.labels file, 60
corpusname.dat.labels.gz file, 60
Correlations

mutual information, 270
syntagmatic relations, 253–254
text-based forecasting, 248
time series context, 437

Cosine similarity
document clustering, 279–280
extractive summarization, 321
text summarization, 325
vector measurement, 222, 232

Coverage
CPLSA, 420–422, 425–426
LDA, 380–381
topic analysis, 332–333

CPLSA (Contextual Probabilistic Latent
Semantic Analysis), 419–428

Cranfield evaluation methodology, 168–170
Crawlers

domains, 218
dynamic content, 217
languages for, 216–217
web searches, 192–194

Cross validation in text categorization, 314
Cumulative gain (CG) in NDCG, 181–182
Current technology, 5

Data-driven social science research, opinion
mining for, 393

Data mining
joint analysis, 413–415
probabilistic retrieval model algorithms,

117
text data analysis, 245–246

Data types in text analysis, 449–450
Data-User-Service Triangle, 213–214
Database retrieval, 80–82
DBLRU (Double Barrel Least-Recently Used)

caches, 164–165
DCG (discounted cumulative gain), 182–

183
Decision boundaries for linear classifiers,

311–312
Decision modules in content-based

filtering, 225
Decision support, opinion mining for, 393
Deep analysis in natural language

processing, 43–45
Delta bitwise compression, 160
Dendrograms, 280–281
Denial of service from crawlers, 193
Dependency parsers, 323
Dependent random variables, 25
Design philosophy, META, 58–59
Development sets for text categorization,

314
Dirichlet distribution, 461–463
Dirichlet prior smoothing

KL-divergence, 475
probabilistic retrieval models, 125–127

Disaster response, 243–244
Discounted cumulative gain (DCG), 182–183
Discourse analysis in NLP, 40
Discrete distributions

Bayesian parameter estimation, 29
description, 22

Discriminative classifiers, 302
Distances in clusters, 281
Distinguishing categories, 301–302
Divergence-from-randomness models, 87,

111
Divisive clustering, 277
Document-at-a-time ranking, 155

Index 493

Document clustering, 277
agglomerative hierarchical, 280–282
K-means, 282–284
overview, 279–280

Document frequency
bag-of-words representation, 89
vector space model, 99–100

Document IDs
compression, 158–159
inverted indexes, 152
tokenizers, 149

Document language model, 118–123
Document length

bag-of-words representation, 89
vector space model, 105–108

Documents
filters, 155–156
ranking vs. selecting, 82–84
tokenizing, 148–150
vectors, 92–96
views in multimode interactive access, 77

Domains, crawling, 218
Dot products

document length normalization, 109
linear classifiers, 311
paradigmatic relations, 257–258
vector space model, 93–95, 98

Double Barrel Least-Recently Used (DBLRU)
caches, 164–165

Dynamic coefficient interpolation in
smoothing methods, 125

Dynamically generated content and
crawlers, 217

E step in EM algorithm, 362–368, 373–377,
465, 469

E-discovery (electronic discovery), 326
Edit features in text categorization, 306
Effectiveness in search engine evaluation,

168
Efficiency

database data retrieval, 81–82
search engine evaluation, 168

Electronic discovery (E-discovery), 326

Eliza project, 42, 44–45
EM algorithm. See Expectation-

maximization (EM) algorithm
Email counts, 3
Emotion analysis, 394
Empirically defined problems, 82
Enron email dataset, 326
Entity-relation re-creation, 47
Entropy

information theory, 31–33
KL-divergence, 139, 474
mutual information, 264–265
PMI, 288
skewed distributions, 158
syntagmatic relations, 261–264, 270

Evaluation, search engine. See Search
engine evaluation

Events
CPLSA, 426–427
probability, 21–23

Exhaustivity in sentiment classification, 396
Expectation-maximization (EM) algorithm

CPLSA, 422
general procedure, 469–471
incomplete vs. complete data, 467–468
K-means, 282–283
KL-divergence, 476
lower bound of likelihood, 468–469
MAP estimate, 378–379
mining topics from text, 359–368
mixture unigram language model, 466
MLE, 466–467
network supervised topic models, 431
overview, 465–466
PLSA, 373–377

Expected overlap of words in paradigmatic
relations, 257–258

Expected value in Beta distribution, 458
Exploration-exploitation tradeoff in

content-based filtering, 227
Extractive summarization, 318–321

F measure
ranked lists evaluation, 179

494 Index

F measure (continued)
set retrieval evaluation, 172–173

F -test for time series context, 437
F1 score

text categorization, 314
text summarization, 324

Fault tolerance in Google File System,
195

Feature generation for tokenizers, 150
Features for text categorization, 304–307
Feedback

content-based filtering, 225
KL-divergence, 475–476
language models, 138–144
overview, 133–135
search engines, 147, 157–158
vector space model, 135–138
web searches, 201

Feedback documents in unigram language
model, 466

Feelings. See Sentiment analysis
fetch_docs function, 154
file_corpus input format, 60
Files in Google File System, 194–195
Filter chains for tokenization, 61–64
Filters

content-based, 221–229
documents, 155–156
recommender systems. See Recom-

mender systems
text information systems, 11
unigram language models, 54

Focused crawling, 193
forward_index indexes, 60–61
Forward indexes

description, 153
k-nearest neighbors algorithm, 308

Frame of reference encoding, 162
Frequency and frequency counts

bag-of-words representation, 89–90
MapReduce, 197
META analyses, 68–70
term, 97–98
vector space model, 99–100

Frequency transformation in paradigmatic
relations, 258–259

Full structure parsing, 43

G-means algorithm, 294
Gain in search engine evaluation, 181–183
Gamma bitwise compression, 160
Gamma function, 457
Gaussian distribution, 22, 404–405
General EM algorithm, 431
Generation-based text summarization, 318
Generative classifiers, 309
Generative models

background language model, 346–347,
349

CPLSA, 419, 421
description, 30, 36, 50
LARA, 403, 405–406
LDA, 381
log-likelihood functions, 343–344, 384
mining topics from text, 347
n-gram models, 289
network supervised topic models, 428–

430
PLSA, 370–371, 380
topics, 338–340
unigram language model, 341

Geographical networks, 428
Geometric mean average precision (gMAP),

179
GFS (Google File System), 194–195
Gibbs sampling, 383
Google File System (GFS), 194–195
Google PageRank, 202–206
Grammar learning, 252
Grammatical parse trees, 305–307
Granger test, 434, 437
Graph mining, 49
gz_corpus input format, 60

Hidden variables
EM algorithm, 362–364, 366, 368, 373–

376, 465, 467
LARA, 403

Index 495

Hierarchical clustering, 280–282
High-level syntactic features, 305–306
Hill-climbing algorithm, EM, 360, 366–367,

465
HITS algorithm, 206–208
HTML files, cleaning, 218–219
Hub pages in web searches, 202, 207–208
Humans

joint analysis, 413–415
NLP, 48
opinion mining. See Opinion mining
as subjective sensors, 244–246
unified systems, 445–448

Hyperparameters
Beta distribution, 458–460
Dirichlet distribution, 461, 463

ICU (International Components for
Unicode), 61

Icu_filter filter, 61
Icu_tokenizer tokenizer, 61
IDF (inverse document frequency)

Dirichlet prior smoothing, 126
paradigmatic relations, 258–260
query likelihood retrieval model, 122
vector space model, 99–101

Illinois NLP Curator toolkit, 64
Impact

CPLSA, 426–427
time series context, 437

Implicit feedback, 134–135
Incomplete data in EM algorithm, 467–468
Incremental crawling, 193
Independent random variables, 25
Index sharding, 156–157
Indexes

compressed, 158–162
forward, 153, 308
k-nearest neighbors algorithm, 308
MapReduce, 198–199
META toolkit, 60–61, 453–455
search engine implementation, 150–153
search engines, 147, 150–153
text categorization, 314

web searches, 194–200
Indirect citations in web searches, 202
Indirect opinions, 391–392
Indri/Lemur search engine toolkit, 64
Inferences

NLP, 41
probabilistic, 88
real world properties, 248

Inferred opinions, 391–392
Information access in text information

systems, 7
Information extraction

NLP, 43
text information systems, 9, 12

Information retrieval (IR) systems, 6
evaluation metrics, 324–325
implementation. See Search engine

implementation
text data access, 79

Information theory, 31–34
Initial values in EM algorithm, 466
Initialization modules in content-based

filtering, 224–225
Inlink counts in PageRank, 203
Instance-based classifiers, 302
Instructor reader category, 16–17
Integer compression, 158–162
Integration of information access in web

searches, 213
Integrity in text data access, 81
Interactive access, multimode, 76–78
Interactive task support in web searches,

216
International Components for Unicode

(ICU), 61
Interpolation for smoothing methods,

125–126
Interpret operator, 450–452
Intersection operator, 449–450
Intrusion detection, 271–273
Inverse document frequency (IDF)

Dirichlet prior smoothing, 126
paradigmatic relations, 258–260
query likelihood retrieval model, 122

496 Index

Inverse document frequency (IDF)
(continued)

vector space model, 99–101
Inverse user frequency (IUF), 232
inverted_index indexes, 60
Inverted index chunks, 156–157
Inverted indexes

compression, 158
k-nearest neighbors algorithm, 308
MapReduce, 198–199
search engines, 150–153

IR (information retrieval) systems, 6
evaluation metrics, 324–325
implementation. See Search engine

implementation
text data access, 79

Iterative algorithms for PageRank, 205–206
Iterative Causal Topic Modeling, 434–435
IUF (inverse user frequency), 232

Jaccard similarity, 280
Jelinek-Mercer smoothing, 123–126
Joint analysis of text and structured data,

413
contextual text mining, 417–419
CPLSA, 419–428
introduction, 413–415
social networks as context, 428–433
time series context, 433–439

Joint distributions for mutual information,
266–268

Joint probabilities, 23–25

K-means document clustering, 282–284
K-nearest neighbors (k-NN) algorithm,

307–309
Kernel trick for linear classifiers, 312
Key-value pairs in MapReduce, 195–198
KL-divergence

Dirichlet prior smoothing, 475
EM algorithm, 468
feedback, 139–140
mutual information, 266
query model, 475–476

retrieval, 473–474
Knowledge acquisition in text information

systems, 8–9
Knowledge discovery in text summarization,

326
Knowledge Graph, 215
Knowledge provenance in unified systems,

447
Known item searches in ranked lists

evaluation, 179
Kolmogorov axioms, 22–23
Kullback-Leibler divergence retrieval

model. See KL-divergence

Lagrange Multiplier approach
EM algorithm, 467, 470
unigram language model, 344

Language models
feedback in, 138–144
in probabilistic retrieval model, 87, 111,

117
Latent Aspect Rating Analysis (LARA),

400–409
Latent Dirichlet Allocation (LDA), 377–

383
Latent Rating Regression, 402–405
Lazy learners in text categorization, 302
Learners

search engines, 147
text categorization, 302

Learning modules in content-based
filtering, 224–225

Least-Recently Used (LRU) caches, 163–164
length_filter filter, 61
Length normalization

document length, 105–108
query likelihood retrieval model, 122

Lexical analysis in NLP, 39–40
Lexicons for inverted indexes, 150–152
LIBLINEAR algorithm, 58
libsvm_analyzer analyzer, 62
libsvm_corpus file, 61
LIBSVM package, 58, 64
Lifelong learning in web searches, 213

Index 497

Likelihood and likelihood function
background language model, 349–351
EM algorithm, 362–363, 367–368, 376,

465–469
LARA, 405
LDA, 378, 381–382
marginal, 28
mixture model behavior, 354–357
MLE, 27
network supervised topic models, 428–

431
PLSA, 372–374
unigram language model, 342–344

line_corpus input format, 60
Linear classifiers in text categorization,

311–313
Linear interpolation in Jelinek-Mercer

smoothing, 124
Linearly separable data points in linear

classifiers, 312
Link analysis

HITS, 206–208
overview, 200–202
PageRank, 202–206

list_filter filter, 62
Local maxima, 360, 363, 367–368, 465
Log-likelihood function

EM algorithm, 365–366, 466–467
feedback, 142–143
unigram language model, 343–344

Logarithm transformation, 103–104
Logarithms in probabilistic retrieval model,

118, 122
Logic-based approach in NLP, 42
Logical predicates in NLP, 49–50
Logistic regression in sentiment classifica-

tion, 396–400
Long-range jumps in multimode interactive

access, 77
Long-term needs in push access mode, 75
Low-level lexical features in text categoriza-

tion, 305
Lower bound of likelihood in EM algorithm,

468–469

LRU (Least-Recently Used) caches, 163–164
Lucene search engine toolkit, 64

M step
EM algorithm, 361–368, 373–377, 465,

469–470
MAP estimate, 379
network supervised topic models, 431

Machine-generated data, 6
Machine learning

overview, 34–36
sentiment classification methods, 396
statistical, 10
text categorization, 301
web search algorithms, 201
web search ranking, 208–212

Machine translation, 42, 44–45
Magazine output, 3
Manual evaluation for text clustering, 294
map function, 195–198
MAP (Maximum a Posteriori) estimate

Bayesian parameter estimation, 29
LARA, 404–405
PLSA, 378–379
word association mining, 271–273

MAP (mean average precision), 178–180
Map Reduce paradigm, 157
MapReduce framework, 194–200
Maps in multimode interactive access,

76–77
Marginal probabilities

Bayesian parameter estimation, 29
mutual information, 267

Market research, opinion mining for, 393
Massung, Sean, biography, 490
Matrices

adjacency, 207–208
PageRank, 204–208
text categorization, 314–315
transition, 204

Matrix multiplication in PageRank, 205
Maximal marginal relevance (MMR)

reranking
extractive summarization, 320–321

498 Index

Maximal marginal relevance (MMR)
reranking (continued)

topic analysis, 333
Maximization algorithm for document

clustering, 282
Maximum a Posteriori (MAP) estimate

Bayesian parameter estimation, 29
LARA, 404–405
PLSA, 378–379
word association mining, 271–273

Maximum likelihood estimation (MLE)
background language model, 346, 350
Brown clustering, 289
Dirichlet prior smoothing, 125–126
EM algorithm, 359–368, 466–467
feedback, 141–143
generative models, 339
Jelinek-Mercer smoothing, 124
KL-divergence, 475–476
LARA, 404
LDA, 382
mixture model behavior, 354–359
mixture model estimation, 352–353
multinomial distribution, 463
mutual information, 268–269
overview, 27–28
PLSA, 372–373, 378
query likelihood retrieval model, 118–119
term clustering, 286
unigram language models, 52–53, 341–

345
web search ranking, 210

Mean average precision (MAP), 178–180
Mean reciprocal rank (MRR), 180
Measurements in search engine evaluation,

168
Memory-based approach in collaborative

filtering, 230
META toolkit

architecture, 60–61
classification algorithms, 307
design philosophy, 58–59
exercises, 65–70
overview, 57–58
related toolkits, 64–65

setting up, 59–60
text categorization, 314–315
tokenization, 61–64
as unified system, 453–455

Metadata
classification algorithms, 307
contextual text mining, 417
networks from, 428
text data analysis, 249
topic analysis, 330

Mining
contextual, 417–419
demand for, 4–5
graph, 49
joint analysis, 413–419
opinion. See Opinion mining; Sentiment

analysis
probabilistic retrieval model, 117
tasks, 246–250
toolkits, 64
topic analysis, 330–331
word association. See Word association

mining
Mining topics from text, 340

background language model, 345–351
expectation-maximization, 359–368
joint analysis, 416
mixture model behavior, 353–359
mixture model estimation, 351–353
unigram language model, 341–345

Mixture models
behavior, 353–359
EM algorithm, 466
estimation, 351–353
feedback, 140–142, 157
mining topics from text, 346–351

MLE. See Maximum likelihood estimation
(MLE)

MMR (maximal marginal relevance)
reranking

extractive summarization, 320–321
topic analysis, 333

Model-based clustering algorithms, 276–
277

Model files for META toolkit, 59

Index 499

Modification in NLP, 41
Modules in content-based filtering, 224–226
MRR (mean reciprocal rank), 180
Multiclass classification

linear classifiers, 313
text categorization, 303

Multi-level judgments in search engine
evaluation, 180–183

Multimode interactive access, 76–78
Multinomial distributions

Bayesian estimate, 463–464
generalized, 460–461
LDA, 380

Multinomial parameters in Bayesian
estimate, 463–464

Multiple-level sentiment analysis, 397–398
Multiple occurrences in vector space model,

103–104
Multiple queries in ranked lists evaluation,

178–180
Multivariate Gaussian distribution, 404–405
Mutual information

information theory, 33–34
syntagmatic relations, 264–271
text clustering, 278

n-fold cross validation, 314
n-gram language models

abstractive summarization, 322–323
frequency analysis, 68–69
sentiment classification, 394–395
term clustering, 288–291
vector space model, 109

Naive Bayes algorithm, 309–312
Named entity recognition, 323
Natural language, mining knowledge about,

247
Natural language generation in text

summarization, 323–324
Natural language processing (NLP)

history and state of the art, 42–43
pipeline, 306–307
sentiment classification, 395
statistical language models, 50–54
tasks, 39–41

text information systems, 43–45
text representation, 46–50

Navigating maps in multimode interactive
access, 77

Navigational queries, 200
NDCG (normalized discounted cumulative

gain), 181–183
NDCG@k score, 189
Nearest-centroid classifiers, 309
Negative feedback documents, 136–138
Negative feelings, 390–394
NetPLSA model, 430–433
Network supervised topic models, 428–433
Neural language model, 291–294
News summaries, 317
Newspaper output, 3
ngram_pos_analyzer analyzer, 62
ngram_word_analyzer analyzer, 62
NLP. See Natural language processing (NLP)
NLTK toolkit, 64
no_evict_cache caches, 60
Nodes in word associations, 252
Non-text data

context, 249
predictive analysis, 249
vs. text, 244–246

Normalization
document length, 105–108
PageRank, 206
query likelihood retrieval model, 122
term clustering, 286
topic analysis, 333

Normalized discounted cumulative gain
(NDCG), 181–183

Normalized ratings in collaborative
filtering, 230–231

Normalized similarity algorithm, 279

Objective statements vs. subjective, 389–390
Observed world, mining knowledge about,

247–248
Observers, mining knowledge about, 248
Office documents, 3
Okapi BM25 model, 89, 108
One-vs-all (OVA) method, 313

500 Index

Operators in text analysis systems, 448–452
Opinion analysis in text summarization,

325–326
Opinion holders, 390–392
Opinion mining

evaluation, 409–410
LARA, 400–409
overview, 389–392
sentiment classification. See Sentiment

analysis
Opinion summarization, 318
Optimization in web searches, 191
Ordinal regression, 394, 396–400
Organization in text information systems, 8
OVA (one-vs-all) method, 313
Over-constrained queries, 84
Overfitting problem

Bayesian parameter estimation, 28, 30
sentiment classification, 395
vector space model, 138

Overlap of words in paradigmatic relations,
257–258

p-values in search engine evaluation,
185–186

PageRank technique, 202–206
Paradigmatic relations

Brown clustering, 290
discovering, 252–260
overview, 251–252

Parallel crawling, 193
Parallel indexing and searching, 192
Parameters

background language model, 350–351
Bayesian parameter estimation, 28–30,

341, 359, 458, 463–464
Beta distribution, 458–460
Dirichlet distribution, 461–463
EM algorithm, 363, 465
feedback, 142–144
LARA, 404–405
LDA, 380–381
mixture model estimation, 352
MLE. See Maximum likelihood

estimation (MLE)

network supervised topic models, 429
PLSA, 372–373, 379–380
probabilistic models, 30–31
ranking, 209–211
statistical language models, 51–52
topic analysis, 338–339
unigram language models, 52

Parsing
META toolkit, 67–68
NLP, 43
web content, 216

Part-of-speech (POS) tags
META toolkit, 67
NLP, 47
sentiment classification, 395

Partitioning
Brown clustering, 289
extractive summarization, 319–320
text data, 417–419

Patterns
contextual text mining, 417–419
CPLSA, 425–426
joint analysis, 417
NLP, 45
sentiment classification, 395

Pdf (probability density function)
Beta distribution, 457
Dirichlet distribution, 461
multinomial distribution, 461

Pearson correlation
collaborative filtering, 222, 231–232
time series context, 437

Perceptron classifiers, 312–313
Personalization in web searches, 212, 215
Personalized PageRank, 206
Perspective in text data analysis, 246–247
Pivoted length normalization, 89, 107–108
PL2 model, 90
PLSA (probabilistic latent semantic

analysis)
CPLSA, 419–428
extension, 377–383
overview, 368–377

Pointwise Mutual Information (PMI), 278,
287–288

Index 501

Polarity analysis in sentiment classification,
394

Policy design, opinion mining for, 393
Pooling in search engine evaluation, 186–

187
Porter2 English Stemmer, 66–67
porter2_stemmer filter, 62
POS (part-of-speech) tags

META toolkit, 67
NLP, 47
sentiment classification, 395

Positive feelings, 390–394
Posterior distribution, 28
Posterior probability in Bayesian parameter

estimation, 29
Postings files for inverted indexes, 150–152
Power iteration for PageRank, 205
Practitioners reader category, 17
Pragmatic analysis in NLP, 39–40
Precision

search engine evaluation, 184
set retrieval evaluation, 170–178

Precision-recall curves in ranked lists
evaluation, 174–176

Predictive analysis for non-text data, 249
Predictors features in joint analysis, 413–

416
Presupposition in NLP, 41
Prior probability in Bayesian parameter

estimation, 29
Probabilistic inference, 88
Probabilistic latent semantic analysis

(PLSA)
CPLSA, 419–428
extension, 377–383
overview, 368–377

Probabilistic retrieval models
description, 87–88
overview, 110–112
query likelihood retrieval model, 114–118

Probability and statistics
abstractive summarization, 322
background language model, 346–349
basics, 21–23
Bayes’ rule, 25–26

Bayesian parameter estimation, 28–30
binomial distribution, 26–27
EM algorithm, 362–366
joint and conditional probabilities, 23–25
KL-divergence, 474
LARA, 403
maximum likelihood parameter

estimation, 27–28
mixture model behavior, 354–358
mutual information, 266–270
Naive Bayes algorithm, 310
PageRank, 202–206
paradigmatic relations, 257–258
PLSA, 368–377, 380
probabilistic models and applications,

30–31
syntagmatic relations, 262–263
term clustering, 286–289
topics, 336–339
unigram language model, 342–344
web search ranking, 209–211

Probability density function (pdf)
Beta distribution, 457
Dirichlet distribution, 461
multinomial distribution, 461

Probability distributions
overview, 21–23
statistical language models, 50–54

Probability ranking principle, 84
Probability space, 21–23
Producer-initiated recommendations, 75
Product reviews in opinion mining, 391–392
profile command, 65–66
Properties

inferring knowledge about, 248
text categorization for, 300

Proximity heuristics for inverted indexes,
151

Pseudo counts
Bayesian statistics, 459–460
LDA, 381
multinomial distribution, 463
PLSA, 379, 381
smoothing techniques, 128, 286

Pseudo data in LDA, 378

502 Index

Pseudo feedback, 133, 135, 142, 157–158
Pseudo-segments for mutual information,

269–270
Pull access mode, 8–9, 73–76
Push access mode, 8–9, 73–76
Python language

cleaning HTML files, 218
crawlers, 217

Q-function, 465, 469–471
Queries

multimode interactive access, 77
navigational, 200
text information systems, 9
text retrieval vs. database retrieval, 80

Query expansion
vector space model, 135
word associations, 252

Query likelihood retrieval model, 90, 113
document language model, 118–123
feedback, 139
KL-divergence, 475–476
overview, 114–118
smoothing methods, 123–128

Query vectors, 92–98, 135–137

Random access decoding in compression,
158

Random numbers in abstractive summa-
rization, 322

Random observations in search engine
evaluation, 186

Random surfers in PageRank, 202–204
Random variables

Bayesian parameter estimation, 28
dependent, 25
entropy of, 158, 262–263, 270
information theory, 31–34
PMI, 287
probabilistic retrieval models, 87, 111,

113
probability distributions, 22

Ranked lists evaluation
multiple queries, 178–180
overview, 174–178

Rankers for search engines, 147
Ranking

extractive summarization, 320
probabilistic retrieval model. See

Probabilistic retrieval models
vs. selection, 82–84
text analysis operator, 450–451
text data access, 78
vector space model. See Vector space (VS)

retrieval models
web searches, 201, 208–212

Ratings
collaborative filtering, 230–231
LARA, 400–409
sentiment classification, 396–399

Real world properties, inferring knowledge
about, 248

Realization in abstractive summarization,
324

Recall in set retrieval evaluation, 170–178
Reciprocal ranks, 179–180
Recommendations in text information

systems, 11
Recommender systems

collaborative filtering, 229–233
content-based recommendation, 222–

229
evaluating, 233–235
overview, 221–222

reduce function, 198
Redundancy

MMR reranking, 333
text summarization, 320–321, 324
vector space retrieval models, 92

Regression
LARA, 402–405
machine learning, 34–35
sentiment classification, 394, 396–400
text categorization, 303–304
web search ranking, 209–211

Regularizers in network supervised topic
models, 429–431

Relevance and relevance judgments
Cranfield evaluation methodology,

168–169

Index 503

description, 133
document ranking, 83
document selection, 83
extractive summarization, 321
probabilistic retrieval models, 110–112
search engine evaluation, 181–184,

186–187
set retrieval evaluation, 171–172
text data access, 79
vector space model, 92
web search ranking, 209–211

Relevant text data, 5–6
Relevant word counts in EM algorithm,

364–365, 376–377
Repeated crawling, 193
Representative documents in search engine

evaluation, 183
reset command, 57–59
Retrieval models

common form, 88–90
overview, 87–88
probabilistic. See Probabilistic retrieval

models
vector space. See Vector space (VS)

retrieval models
Reviews

LARA, 400–409
opinion mining, 391–392
sentiment classification, 394
text summarization, 318

RMSE (root-mean squared error), 233
robots.txt file, 193
Rocchio feedback

forward indexes, 157
vector space model, 135–138

Root-mean squared error (RMSE), 233
Ruby language

cleaning html files, 218–219
crawlers, 217

Rule-based text categorization, 301

Scalability in web searches, 191–192
Scanning inverted indexes, 152
Scientific research, text data analysis for,

243

Scikit Learn toolkit, 64
score_term function, 154
Scorers

document-at-a-time ranking, 155
filtering documents, 155–156
index sharding, 156–157
search engines, 147, 153–157
term-at-a-time ranking, 154–155

Scoring functions
KL-divergence, 474
topic analysis, 332

SDI (selective dissemination of informa-
tion), 75

Search engine evaluation
Cranfield evaluation methodology,

168–170
measurements, 168
multi-level judgments, 180–183
practical issues, 183–186
purpose, 167–168
ranked lists, 174–180
set retrieval, 170–173

Search engine implementation
caching, 162–165
compression, 158–162
feedback implementation, 157–158
indexes, 150–153
overview, 147–148
scorers, 153–157
tokenizers, 148–150

Search engine queries
pull access mode, 74–75
text data access, 78–79

Search engine toolkits, 64
Searches

text information systems, 11
web. See Web searches

Segmentation in LARA, 405
Select operator, 449–451, 455
Selection

vs. ranking, 82–84
text data access, 78

Selection-based text summarization, 318
Selective dissemination of information

(SDI), 75

504 Index

Semantic analysis in NLP, 39–40, 43, 47
Semantically related terms in clustering,

187, 285–287
Sensors

humans as, 244–246
joint analysis, 413–415
opinion mining. See Opinion mining

Sentence vectors in extractive summariza-
tion, 319

Sentiment analysis, 389
classification, 393–396
evaluation, 409–410
NLP, 43
ordinal regression, 396–400
text categorization, 304

Separation in text clustering, 294–295
Sequences of words in NLP, 46–47
Set retrieval evaluation

description, 170
F measure, 172–173
precision and recall, 170–173

Shadow analysis in NLP, 48
Shallow analysis in NLP, 43–45
Short-range walks in multimode interactive

access, 77
Short-term needs in pull access mode, 75
Sign tests in search engine evaluation, 185
Signed-rank tests in search engine

evaluation, 185
Significance tests in search engine

evaluation, 183–186
Similarity algorithm for clustering, 276
Similarity in clustering
Similarity functions and measures

extractive summarization, 319, 321
paradigmatic relations, 256–259
vector space model, 92, 109
description, 277
document clustering, 279–281
term clustering, 285

Single-link document clustering, 281–282
Skip-gram neural language model, 292–293
sLDA (supervised LDA), 387
Smoothing techniques

Add-1, 130, 464

Bayesian statistics, 459–460
KL-divergence, 474–475
maximum likelihood estimation, 119–

128
multinomial distribution, 463–464
Naive Bayes algorithm, 310
unigram language models, 53

Social media in text data analysis, 243
Social networks as context, 428–433
Social science research, opinion mining for,

393
Soft rules in text categorization, 301
Spam in web searches, 191–192
Sparse Beta, 459
Sparse data in Naive Bayes algorithm,

309–311
Sparse priors in Dirichlet distribution,

461–462
Spatiotemporal patterns in CPLSA, 425–426
Specificity in sentiment classification, 396
Speech acts in NLP, 47–48
Speech recognition

applications, 42
statistical language models, 51

Spiders for web searches, 192–194
Split counts in EM algorithm, 374–375
Split operator for text analysis, 449–452, 455
Stanford NLP toolkit, 64
State-of-the-art support vector machines

(SVM) classifiers, 311–312
Statistical language models

NLP, 45
overview, 50–54

Statistical machine learning
NLP, 42–43
text information systems, 10

Statistical significance tests in search
engine evaluation, 183–186

Statistics. See Probability and statistics
Stemmed words in vector space model, 109
Stemming process in META toolkit, 66–67
Sticky phrases in Brown clustering, 291
Stop word removal

feedback, 141
frequency analysis, 69

Index 505

META toolkit, 62, 66
mixture models, 352
vector space model, 99, 109

Story understanding, 42
Structured data

databases, 80
joint analysis with text. See Joint analysis

of text and structured data
Student reader category, 16
Stylistic analysis in NLP, 49
Subjective sensors

humans as, 244–246
opinion mining. See Opinion mining

Subjective statements vs. objective, 389–390
Sublinear transformation

term frequency, 258–259
vector space model, 103–104

Summarization. See Text summarization
Supervised LDA (sLDA), 387
Supervised machine learning, 34
SVM (state-of-the-art support vector

machines) classifiers, 311–312
Symbolic approach in NLP, 42
Symmetric Beta, 459
Symmetric probabilities in information

theory, 32
Symmetry in document clustering, 279–280
Synonyms

vector space model, 92
word association, 252

Syntactic ambiguity in NLP, 41
Syntactic analysis in NLP, 39–40, 47
Syntactic structures in NLP, 49
SyntacticDiff method, 306
Syntagmatic relations, 251–252

Brown clustering, 290–291
discovering, 253–254, 260–264
mutual information, 264–271

System architecture in unified systems,
452–453

Tags, POS
META toolkit, 67
NLP, 47
sentiment classification, 395

Targets in opinion mining, 390–392
Temporal trends in CPLSA, 424–425
Term-at-a-time ranking, 154–155
Term clustering, 278

n-gram class language models, 288–291
neural language model, 291–294
overview, 284–285
Pointwise Mutual Information, 287–288
semantically related terms, 285–287

Term frequency (TF)
bag-of-words representation, 89
vector space model, 97–98

Term IDs
inverted indexes, 151–152
tokenizers, 149–150

Term vectors, 92
Terms, topics as, 332–335
Terrier search engine toolkit, 64
Test collections in Cranfield evaluation

methodology, 168–169
Testing data

machine learning, 35
text categorization, 303

Text
joint analysis with structured data. See

Joint analysis of text and structured
data

mining. See Mining; Mining topics from
text

usefulness, 3–4
Text annotation. See Text categorization
Text-based prediction, 300
Text categorization

classification algorithms overview, 307
evaluation, 313–315
features, 304–307
introduction, 299–301
k-nearest neighbors algorithm, 307–309
linear classifiers, 311–313
machine learning, 35
methods, 300–302
Naive Bayes, 309–311
problem, 302–304

Text clustering, 12
document, 279–284

506 Index

Text clustering (continued)
evaluation, 294–296
overview, 275–276
techniques, 277–279
term, 284–294

Text data access, 73
access modes, 73–76
document selection vs. document

ranking, 82–84
multimode interactive, 76–78
text retrieval vs. database retrieval, 80–82
text retrieval overview, 78–80

Text data analysis overview, 241–242
applications, 242–244
humans as subjective sensors, 244–246
operators, 448–452
text information systems, 8
text mining tasks, 246–250

Text data understanding. See Natural
language processing (NLP)

Text information systems (TISs)
conceptual framework, 10–13
functions, 7–10
NLP, 43–45

Text management and analysis in unified
systems. See Unified systems

Text organization in text information
systems, 8

Text representation in NLP, 46–50
Text retrieval (TR)

vs. database retrieval, 80–82
demand for, 4–5
overview, 78–80

Text summarization, 12
abstractive, 321–324
applications, 325–326
evaluation, 324–325
extractive, 319–321
overview, 317–318
techniques, 318

TextObject data type operators, 449, 454
TextObjectSequence data type operators,

449, 454
TF (term frequency)

bag-of-words representation, 89

vector space model, 97–98
TF-IDF weighting

Dirichlet prior smoothing, 128
probabilistic retrieval model, 122–123
topic analysis, 333
vector space model, 100–103

TF transformation, 102–105
TF weighting, 125–126
Themes in CPLSA, 420–422
Therapist application, 44–45
Thesaurus discovery in NLP, 49
Threshold settings in content-based

filtering, 222, 224–227
Tight clusters, 281
Time series context in topic analysis,

433–439
TISs (text information systems)

conceptual framework, 10–13
functions, 7–10
NLP, 43–45

Tokenization
META toolkit, 61–64, 453
search engines, 147–150

Topic analysis
evaluation, 383–384
LDA, 377–383
mining topics from text. See Mining

topics from text
model summary, 384–385
overview, 329–331
PLSA, 368–377
social networks as context, 428–433
text information systems, 12
time series context, 433–439
topics as terms, 332–335
topics as word distributions, 335–340

Topic coherence in time series context, 436
Topic coverage

CPLSA, 420–422, 425–426
LDA, 380–381

Topic maps in multimode interactive
access, 76–77

TopicExtraction operator, 450
TR (text retrieval)

vs. database retrieval, 80–82

Index 507

demand for, 4–5
overview, 78–80

Training and training data
classification algorithms, 307–309
collaborative filtering, 229–230
content-based recommendation, 227–

228
linear classifiers, 311–313
machine learning, 34–36
Naive Bayes, 309–310
NLP, 42–43, 45
ordinal regression, 398–399
text categorization, 299–303, 311–314
web search ranking, 209–210, 212

Transformations
frequency, 258–259
vector space model, 103–104

Transition matrices in PageRank, 204
Translation, machine, 42, 44–45
TREC filtering tasks, 228
tree_analyzer analyzer, 62
Trends in web searches, 215–216
Trigrams in frequency analysis, 69
Twitter searches, 83
Two-component mixture model, 356

Unary bitwise compression, 159–160
Under-constrained queries, 84
Unified systems

META as, 453–455
overview, 445–448
system architecture, 452–453
text analysis operators, 448–452

Uniform priors in Dirichlet distribution,
461

Unigram language models, 51–54
EM algorithm, 466
LDA, 381
mining topics from text, 341–345
PLSA, 370

Unigrams
abstractive summarization, 321–323
frequency analysis, 68
sentiment classification, 394
words tokenizers, 149

Unimodel Beta, 459
Union operator, 449–450
University of California Berkeley study, 3
Unseen words

document language model, 119–120,
122–123

KL-divergence, 474
Naive Bayes algorithm, 310–311
smoothing, 124, 285–287
statistical language models, 52

Unstructured text access, 80
Unsupervised clustering algorithms, 275,

278
Unsupervised machine learning, 34, 36
URLs and crawlers, 193
Usability in search engine evaluation, 168
Utility

content-based filtering, 224–228
text clustering, 294

Valence scoring, 411
Variable byte encoding, 161
Variables

context, 330
contextual text mining, 419
CPLSA, 422
EM algorithm, 362–364, 366, 368, 373–

376, 465, 467
LARA, 403
random. See Random variables

vByte encoding, 161
Vector space (VS) retrieval models, 87

bit vector representation, 94–97
content-based filtering, 225–226
document length normalization, 105–108
feedback, 135–138
improved instantiation, 97–102
improvement possibilities, 108–110
instantiation, 93–95
overview, 90–92
paradigmatic relations, 256–258
summary, 110
TF transformation, 102–105

Vectors
collaborative filtering, 222

508 Index

Vectors (continued)
neural language model, 292

Versions, META toolkit, 59
Vertical search engines, 212
Video data mining, 245
Views

CPLSA, 420–422
multimode interactive access, 77

Visualization in text information systems,
12–13

VS retrieval models. See Vector space (VS)
retrieval models

Web searches
crawlers, 192–194
future of, 212–216
indexing, 194–200
link analysis, 200–208
overview, 191–192
ranking, 208–212

Weighted k-nearest neighbors algorithm,
309

WeightedTextObjectSequence data type,
449

WeightedTextObjectSet data type,
449

Weights
collaborative filtering, 231
Dirichlet prior smoothing, 127–128
document clustering, 279–280
LARA, 401–409
linear classifiers, 313
mutual information, 269–270
NetPLSA model, 430
network supervised topic models, 431
paradigmatic relations, 258–261
query likelihood retrieval model, 121–123

text categorization rules, 301
topics, 333, 335–336
vector space model, 92, 99–103

Weka toolkit, 64
whitespace_tokenizer command, 149
Whitespace tokenizers, 149
Wilcoxon signed-rank test, 185
Word association mining

evaluation, 271–273
general idea of, 252–254
overview, 251–252
paradigmatic relations discovery, 254–

260
syntagmatic relations discovery, 260–271

Word counts
EM algorithm, 364–365, 376–377
MapReduce, 195–198
vector space model, 103–104

Word distributions
CPLSA, 424–425
LARA, 405
topics as, 335–340

Word embedding in term clustering, 291–
294

Word-level ambiguity in NLP, 41
Word relations, 251–252
Word segmentation in NLP, 46
Word sense disambiguation in NLP, 43
Word valence scoring, 411
Word vectors in text clustering, 278
word2vec skip-gram, 293
WordNet ontology, 294

Zhai, ChengXiang, biography, 489
Zipf’s law

caching, 163
frequency analysis, 69–70

Authors’ Biographies
ChengXiang Zhai

ChengXiang Zhai is a Professor of Computer Sci-
ence and Willett Faculty Scholar at the University
of Illinois at Urbana–Champaign, where he is also
affiliated with the Graduate School of Library and
Information Science, Institute for Genomic Biol-
ogy, and Department of Statistics. He received a
Ph.D. in Computer Science from Nanjing Univer-
sity in 1990, and a Ph.D. in Language and Informa-
tion Technologies from Carnegie Mellon Univer-
sity in 2002. He worked at Clairvoyance Corp. as a
Research Scientist and then Senior Research Sci-
entist from 1997–2000. His research interests in-
clude information retrieval, text mining, natural
language processing, machine learning, biomed-

ical and health informatics, and intelligent education information systems. He has
published over 200 research papers in major conferences and journals. He served
as an Associate Editor for Information Processing and Management, as an Associate
Editor of ACM Transactions on Information Systems, and on the editorial board of
Information Retrieval Journal. He was a conference program co-chair of ACM CIKM
2004, NAACL HLT 2007, ACM SIGIR 2009, ECIR 2014, ICTIR 2015, and WWW 2015,
and conference general co-chair for ACM CIKM 2016. He is an ACM Distinguished
Scientist and a recipient of multiple awards, including the ACM SIGIR 2004 Best
Paper Award, the ACM SIGIR 2014 Test of Time Paper Award, Alfred P. Sloan Re-
search Fellowship, IBM Faculty Award, HP Innovation Research Program Award,
Microsoft Beyond Search Research Award, and the Presidential Early Career Award
for Scientists and Engineers (PECASE).

510 Authors’ Biographies

Sean Massung

Sean Massung is a Ph.D. candidate in computer
science at the University of Illinois at Urbana–
Champaign, where he also received both his B.S.
and M.S. degrees. He is a co-founder of META and
uses it in all of his research. He has been instruc-
tor for CS 225: Data Structures and Programming
Principles, CS 410: Text Information Systems, and
CS 591txt: Text Mining Seminar. He is included
in the 2014 List of Teachers Ranked as Excel-
lent at the University of Illinois and has received
an Outstanding Teaching Assistant Award and
CS@Illinois Outstanding Research Project Award.
He has given talks at Jump Labs Champaign and
at UIUC for Data and Information Systems Sem-
inar, Intro to Big Data, and Teaching Assistant

Seminar. His research interests include text mining applications in information
retrieval, natural language processing, and education.

	ACM Books
	Contents
	Preface
	PART I. OVERVIEW AND BACKGROUND
	1. Introduction
	2. Background
	3. Text Data Understanding
	4. MeTA: A Unified Toolkit for Text Data Management and Analysis
	PART II. TEXT DATA ACCESS
	5. Overview of Text Data Access
	6. Retrieval Models
	7. Feedback
	8. Search Engine Implementation
	9. Search Engine Evaluation
	10. Web Search
	11. Recommender Systems
	PART III. TEXT DATA ANALYSIS
	12. Overview of Text Data Analysis
	13. Word Association Mining
	14. Text Clustering
	15. Text Categorization
	16. Text Summarization
	17. Topic Analysis
	18. Opinion Mining and Sentiment Analysis
	19. Joint Analysis of Text and Structured Data
	PART IV. UNIFIED TEXT DATA MANAGEMENT ANALYSIS SYSTEM
	20. Toward a Unified System for Text Managment and Analysis
	App. A. Bayesian Statistics
	App. B. Expectation-Maximization
	App C. KL-divergence and Dirichlet Prior Smoothing
	References
	Index
	Authors’ Biographies

