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Verified Functional 
Programming in Agda
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Agda is an advanced programming language based on Type Theory. Agda’s type system is 
expressive enough to support full functional verification of programs, in two styles.  In exter-
nal verification, we write pure functional programs and then write proofs of properties about 
them.  The proofs are separate external artifacts, typically using structural induction.  In 
internal verification, we specify properties of programs through rich types for the programs 
themselves.  This often necessitates including proofs inside code, to show the type checker 
that the specified properties hold.  The power to prove properties of programs in these two 
styles is a profound addition to the practice of programming, giving programmers the power to 
guarantee the absence of bugs, and thus improve the quality of software more than previously 
possible.

Verified Functional Programming in Agda is the first book to provide a systematic ex-
position of external and internal verification in Agda, suitable for undergraduate students of 
Computer Science.  No familiarity with functional programming or computer-checked proofs 
is presupposed.  The book begins with an introduction to functional programming through 
familiar examples like booleans, natural numbers, and lists, and techniques for external ver-
ification. Internal verification is considered through the examples of vectors, binary search 
trees, and Braun trees.  More advanced material on type-level computation, explicit reasoning 
about termination, and normalization by evaluation is also included.  The book also includes a 
medium-sized case study on Huffman encoding and decoding.

“Verified Functional Programming in Agda is an excellent introduction to the field of de-
pendently typed programming. Stump does a great job of making the subject accessible to 
beginners without shying away from the more advanced topics.”

—Ulf Norell, Chalmers University of Technology, Sweden 

“Previously, when someone asked me how to learn dependently typed programming, I’d point 

them to various tutorials, papers, and blog posts about Agda. Now, I just give them this book.”           

— Jesper Cockx, K. U. Leuven, Belgium
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Preface

Programming languages are one of the absolutely essential parts of Computer Sci-
ence. Without them, programmers could not express their ideas about how to process
information in all the amazing and intricate ways necessary to support the contin-
uing explosion of applications for computing in the 21st century. Most students of
Computer Science, certainly in the U.S., start learning a programming language right
at the beginning of their studies. We may go on to learn analysis of sophisticated
algorithms and data structures, graphics, operating systems, databases, network pro-
tocols, robotics, and many other topics, but programming languages are the practical
starting point for Computer Science.

Programming is an intellectually challenging task, and creating high-quality pro-
grams that do what they are supposed to do, and that can be maintained and adapted
over time, is very difficult. In this book, we will focus on how to write programs that
work as desired. We will not be concerned with maintainability and adaptability di-
rectly (though of course, these topics cannot be totally ignored when writing any
significant piece of software). The state of the art for achieving correct software for
most industrial programming at major corporations is testing. Unit testing, system
testing, regression suites—these are powerful and effective tools for rooting out bugs
and thus ensuring software quality. But they are limited. A famous aphorism by Tur-
ing award winner Edsger Dijkstra is that “Program testing can be used to show the
presence of bugs, but never to show their absence!” [1972]. For there is only a finite
number of tests you can run, but in practice, the number of possible inputs or sys-
tem configurations that should be tested is infinite (technically, modern computers
only have finitely many states since they have only finite memories, but the number
is beyond astronomical, and should be considered infinite for practical purposes).

Verified Programming
This book is about a new way to program, where instead of just testing programs
on a finite number of inputs, we write mathematical proofs that demonstrate their
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correctness on all possible inputs. These proofs are written with a specific syntax,
in the programming language itself. The compiler checks those proofs when it type-
checks and compiles the code. If all the proofs are correct, then we can be sure that
our program really does satisfy the property we have proved it has. Testing can still be
an important way of assuring code quality, because writing proofs is hard, and often
it may be more practical just to do some testing. But we have now a new tool that we
can use in our quest to build high-quality software: we can verify software correctness
by writing mathematical proofs about it.

While these ideas have been known in the Programming Languages and Verifi-
cation research communities for many decades, it has proven difficult to design lan-
guages and tools that really make this vision of verified programming a feasible reality.
In the past 10–15 years, however, this has changed. New languages and tools, building
on new research results in programming language theory and new insights into the
design of effective languages for verified programming, have made it realistic, for the
first time in the history of programming, to prove properties of interesting programs
in reasonably general-purpose programming languages, without a PhD in logic and
without a huge and tedious engineering investment.

Agda
In this book, we will learn how to write verified programs using one such advanced
programming language called Agda. Agda is a research language developed over a
number of years at Chalmers University of Technology in Gothenburg, Sweden. The
current version, Agda 2, was designed and implemented by Ulf Norell as part of his
doctoral dissertation [Norell 2007]. Since then, it has been improved and developed
further by a long list of authors, including (from the Agda package information):

Ulf Norell, Nils Anders Danielsson, Andreas Abel, Makoto Takeyama, Catarina
Coquand, with contributions by Stevan Andjelkovic, Marcin Benke, Jean-Philippe
Bernardy, James Chapman, Dominique Devriese, Peter Divanski, Fredrik Nordvall
Forsberg, Olle Frediksson, Daniel Gustafsson, Alan Jeffrey, Fredrik Lindblad, Guil-
hem Moulin, Nicolas Pouillard, Andrés Sicard-Ramı́rez and many more.

The basic mode for working with Agda is to use the EMACS text editor as a rudi-
mentary Integrated Development Environment (IDE). Text is entered into a buffer in
EMACS, and then with commands like Ctrl+c Ctrl+l (typed in sequence), the text in that
buffer is sent to Agda for type checking and proof checking. An amazing feature of
Agda and its EMACS editing mode is that they support Unicode characters. So rather
than just using alphanumeric characters and basic punctuation, you can use a much
larger character set. Unicode supports almost 110,000 characters. Usually, we write
programs using basic Latin characters, like those shown in Figure 1.
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0040 0050 0060 0070

004 005 006 007003

0041 0051 0061 0071

0042 0052 0062 0072

0043 0053

0030

0031

0032

0033 0063 0073

@ P ` p

A Q a q

B R b r

C S

0

1

2

3 c s

Figure 1 Basic Latin characters.

10080 10090 100A0 100B0

1008 1009 100A 100B

10081 10091 100A1 100B1

10082 10092 100A2 100B2

10083 10093 100A3 100B3

10084 10094 100A4 100B4

Figure 2 Linear B ideograms.

Imagine the cool programs we could write if we were allowed to use Linear B
ideograms (part of Unicode, though we would need to install a special font package
to get these into Agda), such as those shown in Figure 2.

Okay, maybe we do not actually want to program with ancient symbols for agricul-
tural commodities, but it is nice to be able to use mathematical notations, particularly
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when we are stating and proving properties of programs. So the Unicode support in
Agda is a great feature, though it takes a little practice to get used to entering text in
Unicode. The Agda mode for EMACS recognizes certain names that begin with a back-
slash, as you type them. It then converts them to the special symbol associated with
those names. For example, if you type \all into EMACS in Agda mode, EMACS will mag-
ically change it to ∀ (the logical symbol that is used when expressing that “for all”
elements of some particular type, some formula is true).

Functional Programming
There is another important aspect of programming in Agda: Agda is a functional pro-
gramming language. Functional programming is a programming paradigm, different
from the object-oriented or imperative paradigms. There are two meanings to “func-
tional programming.”

The weak sense. Functions are central organizing abstractions of the language.
Furthermore, they can be defined anonymously, passed as input arguments, or
returned as output values.

The strong sense. Every function that you define in the programming language
behaves like a mathematical function, in the sense that if you call it with the
same inputs, you are guaranteed to get the same outputs. Such languages are
called pure functional languages. Languages that are functional in the weak but
not the strong sense are sometimes called impure functional languages.

While many languages can be argued to be functional languages in the weak sense,
very few are functional in the strong sense. For how can a function like gettimeof-

day() behave like a mathematical function? It takes no arguments, and if everything
is working properly, it should always give you a different answer! It would seem to be
impossible to support such functions in a pure functional programming language.
Other examples include input/output and mutable data structures like arrays where
a function can, as a side effect of its operation, change which values are stored in
the data structure. Amazingly, handling side effects in a pure functional language is
possible, and we will see a hint of this in this book. Thoroughly exploring how side ef-
fects are supported in a pure functional language is, however, outside the scope of our
subject here. The pure functional language for which this issue has been most deeply
resolved is Haskell. Agda is implemented in Haskell, and imports a small portion of
Haskell’s solution to the problem.

Functional programming is a beautiful and natural fit for the task of verified pro-
gramming. We know reasonably well how to reason about mathematical functions,



Preface xvii

using basic principles and tools of logical reasoning. Examples include reasoning
about “and”, “or”, “not”, “implies”, and other propositional connectives; equational
reasoning, like concluding that f x must equal f y if x = y; mathematical induction
(which we will review later in the book); and more. If programs can essentially be
viewed as mathematical functions—as they can in a pure functional language—then
all these tools apply, and we are well on our way to a reasonably simple approach to
formal reasoning about the behavior of programs.

In Agda, as we will see, there is one further restriction on programs. Not only must
they be pure—so using mutable data structures like arrays, or input/output, must
be done carefully (the way Haskell does)—Agda also must be able to tell that they
are guaranteed to terminate on all inputs. For many programs we will want to write
this is easily done, but sometimes it is a nuisance. And, of course, there are some
programs like Web browsers or operating systems that are intended to run indefinitely.
In addition, one can prove that for any scheme to limit programs just to ones that
terminate on all inputs (these are called uniformly terminating), there will be programs
that actually do terminate on all inputs but which that scheme cannot recognize. This
is a deep result, with a nontrivial proof, but it shows that we cannot hope to recognize
exactly the uniformly terminating programs. So Agda will prevent us from writing
some programs we might wish to write, though it allows us to disable terminationg
checking globally or for specific functions. In practice, for many natural programs
we’d like to write, uniform termination can be easily checked by Agda. So it is not as
burdensome as you might think, to write only uniformly terminating programs.

One feature of Agda which we will not explore in this book is the lazy representation
of infinite data structures, like infinite lists and trees. This is an important part of
functional programming in Haskell, to which Agda compiles. Such data structures are
known as coinductive, and one writes corecursive programs operating on them. The
theory and practice of corecursive programming has received significant attention
in recent years [Abel and Pientka 2013]. Agda currently supports several distinct
approaches to this style of programming. Partly because there is not (quite?) yet a
settled solution for this problem, at least in Agda—and partly because the subject is yet
more advanced than what is covered here—I have chosen not to include coinduction
and corecursive programming in this book.

Types
At the heart of Agda’s approach to verified functional programming is its type system.
In mainstream typed programming languages like Java, we have basic datatypes like
int and boolean, and also container types like List<A>, for lists of elements of type
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A. Agda’s type system is much more expressive, and supports two uses of types that
are not found in industrial languages.

Types indexed by data values. Instead of just having a type list A for lists of
elements of type A, Agda’s data-indexed types allow us to define a type vector A

n of vectors of length n containing elements of type A. The index n to the vector
type constructor is a natural number ({0, 1, 2, . . .}) giving the length of the vector.
This makes it possible to specify interesting properties of functions, just through
the types of their inputs and outputs. A very well-known example of this is the
type of the append operation on vectors, which is essentially:

append : vector A n → vector A m → vector A(n + m)

The length of the output vector is equal to the sum of the lengths of the input
vectors—and we can express this using the length index to vector. Whenever a
property like this relationship between input and output lengths for vector ap-
pend is established through the types of the inputs and outputs to the function,
that property is said to have been internally verified. The verification is internal
to the function definition itself, and is confirmed when the function’s code is
type-checked. We will see several examples of this in Chapter 5.

Types expressing logical formulas. Agda considers specifications like “for any list
L, the reverse of the reverse of a list L is equal to L”, which we will write as
∀L → rev(revL) ≡ L in Agda, to be just fancy kinds of types. To prove a formula
F expressed as a type, we just have to write a program that has type F . That is
because, as mentioned before, Agda requires all programs to terminate on all
inputs. So if we can write a function which takes in a list L and produces a proof
that rev (rev L) equals L, then that function is guaranteed to succeed for any
list L: the function cannot run forever, or throw an exception (Agda does not
have these), or fail for any other reason. Such a function can thus be regarded
as a proof of the formula. In this case, we say that the type is inhabited: there is
some program that has that type. If we prove a property about a function like rev
by showing a type like this one is inhabited, then we have externally verified the
function. We have written our code (for rev, in this case), and then externally to
that code we have written a proof of a property about it.

Agda’s support for both internal and external verification of functions opens up
a really interesting domain of possibilities for writing verified code. We will see ex-
amples of these two verification styles in what follows, both of which rest on Agda’s
powerful type system.
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A Few Questions

Why Study This?
Some readers of this book may be enthusiastically interested in learning how to write
verified functional programs and how to use Agda. But maybe someone else is wonder-
ing why this is worthwhile. It may sound at least somewhat intellectually interesting,
but shouldn’t we be learning how to write software for real-world applications like
Web services, or maybe embedded systems like pacemakers or power substations con-
trollers, or electronic control units (ECUs) in cars?

In the not-so-distant future, it is my prediction and firm belief that a significant
body of industrial practitioners will be using a language similar to Agda to implement
such systems. Why? Because all those example systems just mentioned have been
shown to be vulnerable to malicious computer attacks in recent years (see, e.g., Fu
and Blum [2013]). And in the arms race against black-hat hackers, the ability to prove
that code is absolutely correct (with respect to some specification) is too powerful a de-
fensive weapon to remain unused. At some point, the costs of security-critical bugs—
which can be extremely high, perhaps unquantifiable (imagine a voting-machine bug
that allows someone to swing the election for U.S. President)—will be so high and
the tools for language-based verification will have become usable enough that main-
stream industry will begin to adopt them.

A second answer is that functional programming itself is gaining momentum in
industry. A significant number of major companies, including Twitter, LinkedIn,
and quite a few more, have adopted the Scala programming language. Scala is a
descendant of Java incorporating functional-programming features and idioms. It
also has quite a complex type system. OCaml and Haskell are two other influential
functional languages that are seeing increased use in industry. Certain sectors, notably
finance, value the more concise and mathematical expression of computational ideas
which is often possible with functional code, as this makes it easier for domain experts
(e.g., securities traders) to communicate with the developers providing their tools.
And because the paradigm of pure functional programming provides a much simpler
model for concurrent computation than imperative programming—it is easy to reason
about concurrent executions of functions that have no side effects, while reasoning
about side effects quickly becomes very complicated with concurrent code—Haskell is
finding applications at companies like Facebook, where massively concurrent coding
is the norm [Metz 2015]. And, basic ideas from functional programming appear in
many other very mainstream languages. For example, JavaScript and Python both
have anonymous functions, which (as already mentioned) are central to functional
programming. Apple’s Swift language for programming iOS devices is another highly
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visible industrial language adopting important ideas from functional programming
[Eidhof et al. 2014].

Agda is, in some ways, the most advanced functional programming language in
existence, and so if you learn how to program in Agda, you will have a very strong
foundation for programming in other languages that use the idioms of functional
programming. Beyond such pragmatic considerations, though, I hope you will find
that it is an amazing experience to write code and be able to prove definitively that it
satisfies its specification.

What Background Is Needed?
This book is intended for students of Computer Science, either undergraduates or be-
ginning graduate students without significant prior background in verified functional
programming. Students who already know functional programming will likely find
they can move quickly through the explanations of basic programs on pure functional
data, and focus on how to write proofs about these. But knowledge of functional pro-
gramming is not expected; indeed, the book seeks to provide an introduction to this
topic. The main background I am assuming is knowledge of some other programming
language (not Agda), such as Python, Java, C/C++, or other mainstream languages.
Since most Computer Science majors, at least in the U.S, learn Java, I will often try to
explain something in Agda by relating it to Java.

While verification is based heavily on logic, the contents of an undergraduate
course in discrete math should be sufficient. We will review basic forms of logical
reasoning like propositional reasoning, equational reasoning, use of quantifiers, and
induction, in the context of Agda. Agda is based on constructive logic, which differs
somewhat from the usual classical logic considered in discrete math courses. Con-
structive proofs give explicit computational evidence for formulas. So in Agda, doing
logic is literally just programming. For students of Computer Science, logical reason-
ing will likely be more natural in Agda than in previous coursework.

Finally, in order to have some interesting programs to write and reason about, I am
assuming knowledge of basic algorithms and data structures like lists and trees. An
undergraduate algorithms course should be sufficient for this.

How Do I Install Agda?
You can find instructions on how to install Agda on the Agda wiki:
http://wiki.portal.chalmers.se/agda/pmwiki.php

Agda is implemented in Haskell, and runs on all major platforms (Mac, Linux, and
Windows). As mentioned earlier, the usual mode of programming in Agda is to write
and type-check Agda code in the EMACS text editor, which you may also need to install

http://wiki.portal.chalmers.se/agda/pmwiki.php
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and configure. See the instructions on the Agda wiki for all this. In addition to being
implemented in Haskell, the Agda compiler can translate Agda programs into Haskell,
which can then be compiled by the Haskell compiler to native executables. It is not
necessary to know Haskell to learn Agda, though occasionally we will see code where
ideas from Haskell or connections from Agda to Haskell are used.

The code in this book has been confirmed to work with the latest version of Agda
(2.4.2.2 at the time of this writing).

What Is the Iowa Agda Library?
The chapters of this book are organized around different ideas and abstractions from
functional programming, as implemented in a library I have been working on for
several years, called the Iowa Agda Library (IAL). Agda has its own standard library,
which you can download from the Agda wiki. I have learned a lot about verified
programming in Agda from this standard library, and incorporated several ideas and
idioms from it into my version. For purposes of learning the language, though, I have
found the Agda standard library a bit too advanced, and somewhat challenging to
navigate. You can obtain version 1.2 of the IAL, on which this book is based, via
subversion (or browse it with a Web browser) here:
http://svn.divms.uiowa.edu/repos/clc/projects/agda/ial-releases/1.2

If you access this via subversion, use username “guest” and password “guest”. This
library currently has a completely flat structure, so all files mentioned in the chapters
to come can be found in that directory.

What Is Not Covered?
Though Agda is absolutely central to this book, nevertheless this is not intended to
be a book about Agda. There are important features of Agda that are not covered. For
the biggest example, I do not attempt to cover coinductive types—which are types
for lazy infinite data structures. As noted previously, there are several competing
proposals for how to support these in Agda, and so it seems premature to focus
on one. There are other features like irrelevant arguments and instance arguments
that I am not covering, and no doubt many Agda tricks and features known only
to more advanced users than I. Records and modules are covered, though there is
surely more to say about them in Agda than you will find here. For those new to
functional programming or new to type theory—the intended audience for this book—
omission of these more advanced features should not detract from the essential
topics. Another very important idea in pure functional programming is that of a
monad. This is an elegant abstraction which is all but essential for larger-scale pure
functional programming, to handle side effects in as clean and elegant a way as

http://svn.divms.uiowa.edu/repos/clc/projects/agda/ial-releases/1.2
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is currently known. Monads are central to functional programming in Haskell, for
example. Regrettably, I have not managed to cover that abstraction in this book. See
tutorials on Haskell like the one of Hudak et al. for more on monads [Hudak et al.
2000].

What Are Some Other Materials about Agda?
On the “Documentation” page of the Agda wiki, you can find a number of other
tutorials about Agda, such as that by Norell and Chapman [2009]. Research papers
presenting some of the features not covered in this book include the following.

. On the Bright Side of Type Classes, on a feature called instance arguments, which
is intended to replace type classes used in languages like Haskell to support ad-
hoc polymorphism (also known as operator overloading) [Devriese and Piessens
2011].

. MiniAgda: Integrating Sized and Dependent Types, on integrating sized types, a
type-based approach to termination-checking, with dependent typing as found
in Agda [Abel 2010].

. Irrelevance in Type Theory with a Heterogeneous Equality Judgement, showing how
to integrate existing ideas on irrelevant terms (terms which can be erased during
compilation or even to check definitional equality) with Agda [Abel 2011].

What Is Some Other Reading on Type Theory More Generally?
Type theory, upon which Agda is based, is a deep field of theoretical Computer Science,
going back many decades. Indeed, its roots are in constructive logic and lambda
calculus, fields which have been under development since the early 20th century; see
Cardone and Hindley, and Troelstra for interesting historical perspectives on these
topics [Cardone and Hindley 2006, Troelstra 2011]. The particular branch of type
theory on which Agda has been developed is that of Martin-Löf type theory, developed
by the Swedish philosopher and logician Per Martin-Löf; see Nordström, Petersson,
and Smith for a readable and informative introduction to Martin-Löf type theory
[Nordström 1990]. Developing on a different branch of the type theory tree, but with
many connections and influences, is Coq, a theorem prover based on type theory,
developed at INRIA, France; see Bertot and Castéran for a thorough and accessible
introduction [Bertot and Castéran 2004]. Several other excellent books either about
Coq or strongly based on Coq are Software Foundations and Certified Programming with
Dependent Types [Pierce et al. 2015, Chlipala 2011].
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Why This Book?
Students of programming owe the authors of Agda a big debt of gratitude for creating
a very nice tool based on a powerful and expressive theory of verified functional
programing called type theory. In the course of trying to learn more about verified
functional programming in Agda, I found that while there are a number of helpful
tutorials and other sources online for learning Agda, and a very responsive email list,
a more systematic description of how to do verified functional programming in Agda
was missing. I am hoping that this book will contribute to the Agda community by
helping fill that gap. There are many others who have much more expertise than I
do on advanced functional programming idioms, and on using Agda. Nevertheless, I
hope that you, the reader, can benefit from what I have learned about this topic, and
that you will find verified programming in Agda as interesting and enjoyable as I have.

A Note for Instructors
As you well appreciate, learning programming generally requires doing a substantial
amount of it and, of course, the same can be said for theorem proving. While I have
included modest handfuls of exercises at the ends of the chapters, you will likely need
much more for the graded work of a semester-long course. My strategy for devising
homework based on this book, for the past three semesters (at the time of writing) at
The University of Iowa, has been as follows.

The first two, or maybe three, homeworks are focused on very small programming
and proving tasks, along the lines of: write a function to return every other element of
a list, and then prove that the length of the resulting list is less than or equal to that
of the starting list. One can begin with booleans or other non-recursive datatypes,
and non-recursive programs and proofs over them and then move on to recursive
datatypes and recursive programs (inductive proofs). The IAL has many examples,
which unfortunately you may feel you have to exclude from re-assigning for homework,
since the solutions are publicly available in the IAL. I find it is still not too hard to come
up with a good array of small problems along these lines.

Subsequent homeworks become more like mini projects, using existing code in the
IAL (tries, Braun trees, etc.) to solve problems on roughly the scale as the case study in
Chapter 8 (maybe a little smaller or a little more ambitious, depending on student
preparation and level). I find that these problems generally will not involve much
if any external verification. At best, there is some lightweight internal verification,
and most of the focus is just on pure functional programming. In my case, I suspect
this is largely due to the challenge of identifying a reasonably interesting property or
invariant to try to prove statically, which is still within reach for students to be able to
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complete with a reasonable amount of time and effort. It is not that such properties do
not exist. Rather, I have found that they are hard enough to find as part of the task of
creating an interesting assignment, that I tend not to manage to do it. Furthermore,
many undergraduates have enough trouble grasping pure functional programming
that further challenges are unnecessary.
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1Functional Programming
with the Booleans
There are few datatypes in computer science simpler than the booleans. They make
a good starting point for learning functional programming in Agda. The Agda code
displayed below can be found in bool.agda in the Iowa Agda Library (IAL; see the
preface for the URL for this). We will spend this chapter studying this code. In the next
chapter, we will begin our study of theorem proving in Agda, with theorems about the
boolean operations we define in this chapter.

1.1 Declaring the Datatype of Booleans
If you open bool.agda in EMACS, you should see text that starts out like this:

bool.agdamodule bool where

open import level

--------------------------------------------------------

-- datatypes

--------------------------------------------------------

data B : Set where

tt : B

ff : B

The main thing we want to consider here is the declaration of the boolean datatype B,
but there are a few things to look at before that.

Module declaration. Every Agda file needs to contain the definition of a single
module. Here, the module is declared by the line

module bool where

The name of the module is bool, which is required to match the name of the
file (as it does, since the file is bool.agda). Modules are organizational units



2 Chapter 1 Functional Programming with the Booleans

that can contain code and type declarations, like packages in Java. They can be
nested, and can even have parameters which you have to fill in when you import
the module. We will see more about Agda’s module system later (for example,
Section 5.4).

Import statements. To use code contained in another file, we have to import it
using import and then the name of the module provided by that other file. If we
just said import level, we would be allowed to use the code and types defined
in level.agda, but we would have to qualify them with the prefix “level.” By
writing open import level, we are telling Agda we wish to import the level

module and make use of all the types and code defined there, without writing
this qualifying “level.” prefix. We will see what the level package is providing
that is needed for the definition of the booleans.

Comments. Agda follows Haskell in using -- to indicate the start of a comment
that runs to the end of the line (similar to // in Java). To comment out a whole
block of Agda code, one can put {- in front of that block, and -} at the end of it.
This comments out the whole region, similar to /* and */ in Java. One advantage
of Agda and Haskell’s notation over Java’s is that comments in Agda and Haskell
can be nested, like this:

{-

-- a nested comment {- and another -}

-}

Now let us consider the definition of the boolean datatype B:

bool.agdadata B : Set where

tt : B

ff : B

The data keyword signals the beginning of a datatype declaration. Datatypes in Agda
are for constructing immutable data. As mentioned in the Preface, Agda is a pure
functional programming language, and mutable datatypes like arrays or updatable
reference cells are not supported (directly) by the language. So you could think of
this boolean datatype as similar to the immutable class Boolean in Java, for objects
containing a boolean value.

Following data, we have the name B for the new datatype we are defining (for the
booleans). There is no backslash command that will enter this symbol in EMACS by
default. Appendix C explains how to add some new key combinations to EMACS which
will let you include this symbol by typing \bb. Then we have “: Set”, which indicates
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that B itself has type Set. Every expression in Agda has a type, and this expression
“Set” is the type for types. So B has type Set.

1.1.1 Aside: Type Levels
You might wonder: if every expression in Agda has a type, and if Set is the type for
types, does that mean that Set is its own type? The answer is a bit surprising. It is
known that if one literally makes Set the type of itself, then the language becomes
nonterminating (we can write diverging programs, which is disallowed in Agda). This
remarkable result is discussed in a paper by Meyer and Reinhold [1986]. To avoid this,
Agda uses a trick: an infinite hierarchy of type levels. Set really stands for Set 0, and
for every natural number n ∈ {0, 1, 2, . . .}, the expression Set n has type Set (n + 1).
This is why we needed to import the level module at the beginning of this file, to
define the datatype for levels n in Set n. For the definition of the boolean datatype
B, all we really need to know is that data B : Set is declaring a datatype B, which is
itself of type Set (which is an abbreviation for Set 0).

1.1.2 Constructors tt and ff

Returning to the declaration of the booleans: we next have the where keyword, and
finally the definitions of the constructorstt andff, both of type B. These constructors
are like constructors in object-oriented programming, in that they construct elements
of the datatype. But they are primitive operations: there is no code that you write
in Agda that defines how tt and ff work. The Agda compiler will translate uses of
tt and ff to code, which actually ends up creating values in memory to represent
true and false. But within the Agda language, constructors of datatypes are primitive
operations, which we are to assume create data for us in such a way that we can inspect
it later via pattern matching.

1.1.3 Aside: Some Compiler Directives
If you are looking in bool.agda, after this declaration of the type B, you will see some
of these comments:

bool.agda{-# BUILTIN BOOL B #-}

{-# BUILTIN TRUE tt #-}

{-# BUILTIN FALSE ff #-}

{-# COMPILED_DATA B Bool True False #-}

Comments written with the delimiters “{-#” and “#-}” are directives to the Agda com-
piler. In this case, they are telling Agda that B and its constructors are the definition
to use for a built-in notion of booleans that the compiler is supporting. There is also a
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directive with COMPILED_DATA, telling Agda to compile the B datatype as the Haskell
datatype Bool, which has constructors (in Haskell) True and False.

1.2 First Steps Interacting with Agda
As noted in the Preface, Agda is usually used from within the EMACS text editor. Let
us see a few initial commands for interacting with Agda in EMACS. You can find more
such commands from the Agda menu item in the EMACS menu bar.

Loading a file. If you are viewing an Agda file (ending in .agda) in EMACS, you can
tell Agda to process that file by typing Ctrl+c Ctrl+l. This will then enable the
following two operations.

Checking the type of an expression. After Agda has successfully loaded a file using
the previous command, you can ask it to tell you the type of an expression by
typing Ctrl+c Ctrl+d, then typing the expression, and hitting enter. For example,
you can ask Agda to see the type of tt this way. You will see B in response.

Evaluating an expression. To see what value an expression computes to (or normal-
izes to, in the terminology of type theory), type Ctrl+c Ctrl+n, then the expression,
and then hit enter. The file must be loaded first. A rather boring example is to ask
Agda to normalize tt. This expression is already a final value (no computation
required), so Agda will just print back tt. We will see more interesting examples
shortly.

1.3 Syntax Declarations
Let us continue our tour of bool.agda. Shortly below the declaration of the B datatype
of booleans, you will see declarations like this (and a few more):

bool.agdainfix 7 ~_

infixl 6 _xor_ _nand_

infixr 6 _&&_

infixr 5 _||_

These are syntax declarations. Agda has an elegant mechanism for allowing program-
mers to declare new syntactic notations for functions they wish to define. For example,
we are going to define a boolean “and” operation && just a little below in this file. This
operation is also called conjunction, and its arguments are called conjuncts. We would
like to be able to write that operation in infix notation (meaning, with the operator
between its arguments), like this:

tt && ff
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Furthermore, we would like Agda to understand that the negation operator ~ grabs
its argument more tightly than the conjunction operator &&. So if we write

~ tt && ff

we would like Agda to treat this as

(~ tt) && ff

as opposed to

~ (tt && ff)

We do this by telling Agda that the negation operator ~ has higher precedence than
&&. Each operator can be assigned a number as a precedence with a syntax declaration
like the ones displayed previously. In this case, we have told Agda that negation has
precedence 7 and conjunction has precedence 6:

infix 7 ~_

infixr 6 _&&_

Operators with higher precedence grab their arguments more eagerly than oper-
ators with lower precedence. Syntax declarations can also specify the associativity of
the operators. If we have an expression like

tt && ff && tt

should this be viewed as

(tt && ff) && tt

or as

tt && (ff && tt)

Here, the syntax declaration for conjunction uses the infixr keyword, which means
that conjunction associates to the right. So the second parse displayed is the one that is
chosen. Of course, for conjunction it does not matter which associativity is used, since
either way we get the same result. Actually, this is proved in bool-thms2.agda as &&-
assoc. We will learn how to prove theorems like this in Agda in the next chapter. Some
operators are not associative, of course. An example is subtraction, since (5 − 3) − 1
has value 1, while 5 − (3 − 1) has value 3. But it is up to us to declare how Agda should
parse uses of infix operators like conjunction or subtraction. This is a matter of syntax.
Proving that either associativity (left or right) gives the same result is a matter of the
semantics (meaning) of the operators.
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Why are there underscores _ written next to these operators? These tell Agda where
the arguments of the operator will appear. By writing _&&_, we are telling Agda that
conjunction’s arguments will appear to the left and the right, respectively, of the
conjunction symbol &&. So we are saying that && is an infix operator by writing it _&&_.
Similarly, by writing if_then_else_, we are saying that the three arguments of this
operator—the boolean guard, the then-part, and the else-part—appear in the usual
positions with respect to the if, then, and else symbols. So we can write

if x then y else z

and Agda will understand that we are applying the if_then_else_ operator (which
we will define in a moment) to the three arguments x, y, and z. In fact, Agda will treat
the nice mixfix notation (where arguments can be declared to appear in and around
various symbols constituting the operator name) displayed just above as convenient
shorthand for applying the if_then_else_ function to the three arguments in suc-
cession:

if_then_else_ x y z

Occasionally it is necessary to refer to a mixfix function like if_then_else_ sepa-
rately from its arguments. In this case, we actually have to include the underscores in
the name. So for example, you can ask Agda what the type of an expression like tt &&

ff is using Ctrl+c Ctrl+d (as mentioned in Section 1.2), or you can also ask it for the
type of the negation operator ~_ by typing Ctrl+c Ctrl+d and then literally ~_. You will
see that the type is

B → B

We will consider next what this type means and how operations like conjunction
can be defined in Agda. One final note before we do: syntax declarations can appear
anywhere in the file, as long as that file does indeed define the functions in question.

1.4 Defining Boolean Operations by Pattern Matching: Negation
Just below the precedence declarations in bool.agda, which we were just examining,
we have the definitions of a number of central functions related to the booleans. Let
us look first at the simplest, negation ~_. The definition is this:

bool.agda~_ : B → B

~ tt = ff

~ ff = tt
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Definitions of functions in Agda, however complex they may be, follow a basic
pattern. First we declare the type of the function. This is accomplished by the line

~_ : B → B

This declares that the ~_ function takes in a boolean and returns a boolean. In Agda,
types that look like A → B are the types of functions which take in input of type A

and produce output of type B. So B → B is the type for functions from B to B. And
negation certainly has this type, since if we give it boolean value tt, we expect to get
back boolean value ff; and vice versa. In fact, this is exactly what is expressed by the
rest of the definition of the ~_ function:

~ tt = ff

~ ff = tt

Functions in Agda are defined by sets of equations. The left side of each equation
is required to be a pattern which matches a set of function calls, namely, the ones that
could be made with the function we are defining. Patterns can contain constructors
(like tt and ff here for type B), as well as variables, which are any other symbols that
do not already have a definition at this point in the code. In this case, which is very
simple, the first equation describes the function call ~ tt, and the second describes
the function call ~ ff. These are the only two possible function calls, since negation
just takes in a single boolean argument, and there are only two possible values for
this argument. The patterns do not need to use variables to cover all the possible
function calls to ~_. Agda requires that the patterns used in the equations defining
each function cover all possible function calls to that function. We will get an error
message if we leave some function calls uncovered by the patterns we have written.
For example, if you delete the second equation for ~_ and then reload the file with
Ctrl+c Ctrl+l, Agda will complain with an error message like this:

Incomplete pattern matching for ~_. Missing cases:

~_ ff

when checking the definition of ~_

So, we need to include both those equations for our definition of negation. To test
out the definition, try normalizing the term ~ ~ tt (for example) in Agda, by typing
Ctrl+c Ctrl+n, then ~ ~ tt, and then enter. Agda will tell you that this term normalizes
(evaluates) to tt.
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1.4.1 Aside: Space around Operators and in Files
If you ask Agda to normalize ~~tt, you will get a nasty error message:

1,1-5

Not in scope:

~~tt at 1,1-5

when scope checking ~~tt

What is Agda complaining about? Isn’t ~~tt treated the same as ~ ~ tt, which we
just asked Agda to evaluate a moment ago? The answer, which is obvious from this
little experiment with ~~tt, is no. One quirk of Agda that takes a little getting used to
is that user-defined operators need to be separated from most other symbols with at
least one space. Otherwise, Agda thinks that you are really using just a single strange
operator name. So the error message Agda is giving us for ~~tt makes sense: it says
that ~~tt, viewed as a single symbol, is not in scope. It thinks that ~~tt is the name
of some defined operation. So it is parsing ~~tt as a single symbol, rather than two
nested function calls of the ~_ operator.

This requirement of whitespace around operators can lead to lots of irritating errors
for beginners with Agda. But by imposing this requirement, the language designers
have made it feasible to use a very rich set of names for operations. For example,
we might actually want to use ~~tt as the name for something, maybe a theorem
about applying negation twice. Also, this requirement is a small price to pay for Agda’s
flexible and natural system of user-defined notations. So it is worth getting used to.

One other note about spacing in Agda files. Agda resembles Haskell and some
other languages like Python in attaching semantic significance to the whitespace
used in your programs. Generally, indenting a further or lesser amount in Agda code
can change the meaning of what you are writing. The basic rule is that parts of your
Agda code that are linguistically parallel should be at the same indentation level. For
example, consider again our declaration of the boolean datatype:

data B : Set where

tt : B

ff : B

For example, you will get a parse error from Agda if you change the indentation like
this:

data B : Set where

tt : B

ff : B
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This is because constructor declarations are linguistically parallel, and so they should
be at the same indentation level. How far you indent does not matter, but you should
indent at least one space in this case (and generally for nested subexpressions), and
you must indent with the same number of spaces. For another example, if you change
the definition of negation like this

~_ : B → B

~ tt = ff

~ ff = tt

so that the second equation is at a different indentation level than the first, you will
get a parse error.

1.5 Defining Boolean Operations by Pattern Matching: And, Or
Let us look next, in bool.agda in the IAL, at the definition of conjunction (boolean
“and”) _&&_, shown in Figure 1.1. We see from the first line that the type of conjunc-
tion is

B → B → B

The arrow operator is grouped to the right, so this type is actually parsed by Agda as

B → (B → B)

This type says that _&&_ takes in a boolean (the first conjunct) and returns a function
of type B → B. This function is waiting for a boolean (the second conjunct), and then
it will return the “and” of those two booleans. We know from our discussion of syntax
declarations in Section 1.3 that this operator can be given two arguments in infix
notation, like this:

tt && ff

bool.agda_&&_ : B → B → B

tt && b = b

ff && b = ff

Figure 1.1 The definition of boolean conjunction.
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or in prefix notation, if we include the underscores as part of the operator name:

_&&_ tt ff

Because the type for conjunction is parsed by Agda as B → (B → B), we can also just
give the conjunction operation a single argument:

_&&_ tt

If you ask Agda what type this has by typing Ctrl+c Ctrl+d and then _&&_ tt, you
will see that it has type B → B. This makes sense, given that conjunction has type B

→ (B → B). We have given it a boolean, and now we get back a boolean-to-boolean
function. So _&&_ takes in two booleans and returns a boolean, but it can take its
booleans one at a time.

Now let us look at the code (repeated from Figure 1.1) defining the conjunction
operation:

tt && b = b

ff && b = ff

We are defining the behavior of conjunction using equations as we did for negation
(Section 1.4). Conjunction takes in two boolean arguments, and since there are two
independent possibilities for each of these, you might expect that we would have four
defining equations for conjunction. Indeed, we could just as well have defined it this
way:

tt && tt = tt

tt && ff = ff

ff && tt = ff

ff && ff = ff

But this is unnecessary. As the definition from bool.agda demonstrates, we can
define conjunction just by looking at the first argument. If the first argument is true
(tt), then the truth of the conjunction is completely determined by the truth of the
second argument. So we use the first equation

tt && b = b

to express that. Here the symbol b is treated by Agda as a variable, since it is not
defined previously. Variable names can be any symbols, with very few restrictions.
They cannot be constructor names, naturally. The symbols used can involve almost
any Unicode characters, though a few pieces of built-in punctuation cannot be used:
dot, semicolon, and parentheses.
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If the first argument is false (ff), on the other hand, then there is no hope for
this poor conjunction: it will turn out false independent of the value of the second
argument. That is expressed by the second equation:

ff && b = ff

Again, we are using a variable to range over the two possibilities for the second
argument. Notice that the fact that we used the same variable b in both equations is
not semantically significant: pattern variables like these have scope only on the right-
hand side of their equation. So we could have used b1 in the first equation and b2 in
the second, for example.

The definition of disjunction (boolean “or”), which comes next in bool.agda, is
quite similar:

bool.agda_||_ : B → B → B

tt || b = tt

ff || b = b

Here the situation is dual to that of conjunction. We again just consider the first
argument. If it is tt, then this disjunction wins the jackpot: it will come out tt

regardless of the value of the second argument. And if the first argument isff, then the
only hope is that the second argument istt; the disjunction’s value is now determined
completely by that second argument.

You can test out these definitions by evaluating something like

tt && (ff || tt)

using Ctrl+c Ctrl+n in Agda (you should get tt in this case).

1.6 The if-then-else Operation
As mentioned in our discussion of syntax declarations in Section 1.3, we can define
our own if-then-else operation in Agda. In many languages, this operation is built in,
but we will define it ourselves. Here is the code:

bool.agdaif_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

if tt then t else f = t

if ff then t else f = f

As we have seen already, every function definition in Agda starts by stating the type
of the function (using a colon ‘:’), and then gives the actual code for the function. The
complicated part of this definition is the type, so let’s come back to that in a moment.
The equations defining the functions are very easy to understand:
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if tt then y else z = y

if ff then y else z = z

An if-then-else expression like if x then y else z consists of a guard x, a then-part
y, and an else-part z. The equations are pattern-matching on the guard. They say that
if the guard of the if-then-else expression is true (tt), then we should return the then-
part y (whatever value that has). And if the guard is false (ff), then we should return
the else-part z. So if we ask Agda to evaluate a term like

if tt then ff else tt

using Ctrl+c Ctrl+n, we will get the then-part, which is ff in this case.
Now the interesting thing about this if-then-else operator is that it is polymorphic:

it will work just fine no matter what the type of the then-part and the else-part are,
as long as those parts have the same type. So when we define the natural numbers in
Chapter 3, we will be able to ask Agda to evaluate terms like

if tt then 21 else 32

(and get the value 21 back). We cannot do that at the moment while inspecting the
file bool.agda, because the natural numbers are defined in nat.agda, which is not
imported by bool.agda. So Agda does not yet know about the natural numbers in the
file bool.agda. But the main point is that as long as x has type B and y and z have the
same type, the expression if x then y else z is typeable.

And this is what the type for the if-then-else operator says:

if_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

Let us read through this type slowly. First, we have the symbol ∀, which can be used to
introduce some variables which may be used later in the type expression itself. To type
this symbol into EMACS, you type \all. Here, we are introducing � (which is typed with
\ell in EMACS) and A. Agda always requires a type for each variable that we introduce,
but a lot of times it can figure those types out. Here, Agda sees that we are using � as
an argument to Set, and it is able to deduce that � is a type level. We mentioned those
toward the end of Section 1.1. The point of these variables is to express polymorphism.
The if-then-else operation works for any type A, from any type level �. Now, we won’t
use type levels too much in this book, but it is a good idea to make our basic operations
like if-then-else as polymorphic as we reasonably can in Agda. So we should make them
both type and level polymorphic. By putting those type variables in curly braces, we
are instructing Agda to try to infer their values. We will see more about this feature
later. So when we call the function, we do not actually have to tell Agda what the values
for � and A are. It will try to figure them out from the types of the other arguments.
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After these type variables expressing polymorphism of if-then-else, we have a part
of the type expression that hopefully is less exotic:

B → A → A → A

This is expressing the basic idea that if-then-else takes in three inputs, which are a
boolean (B, for the guard) and then an A value (for the then-part) and another A value
(for the else-part); and returns an A value. This works for whatever type A Agda has
inferred for the then- and else-parts.

1.6.1 Some Examples with if-then-else
If we ask Agda to type-check (with Ctrl+c Ctrl+d) the expression

if tt then ff else ff

it will figure out that the type variable A must be B, since the then- and else-parts are
both booleans. And since B is at type level 0, the variable � can be inferred to be the
value for level zero. The type for the whole term is B, of course.

Slightly more interestingly, we can use then- and else-parts which have functional
type. If we ask Agda to type-check

if tt then _&&_ else _||_

then it will reply that the type is B → B → B. We are using the conjunction and
disjunction operators without their two arguments, so we have to put the underscores
as part of their names. And we are using conjunction as the then-part, and disjunction
as the else-part, of this expression. Since conjunction and disjunction both have the
same type (B → B → B), this is a legal use of if-then-else.

Finally, to demonstrate a little bit of just how polymorphic Agda’s type system is,
we can ask Agda to type-check the following:

if tt then B else (B → B)

This is certainly not something you can write in a mainstream programming lan-
guage. This expression evaluates to the type B if its guard is true (which it is) and to
the type B → B otherwise. We know that B has type Set (which is just an abbreviation
for Set 0, as mentioned in Section 1.1). It turns out that B → B has type Set, also. In
fact, in Agda, if A and B both have type Set �, then so does A → B. So both the then-
part (B) and else-part (B → B) of this if-then-else expression have type Set, and so the
whole expression has that type, too. And that is what Agda will tell you if you check
the type of the expression with Ctrl+c Ctrl+d.
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1.7 Conclusion
In this chapter, we have seen some basics of programming in Agda in EMACS.

. We saw the declaration of the boolean datatype B, with its constructors tt and
ff. To type mathematical symbols like B in EMACS, you use key sequences that
begin with a backslash, like \bb for B (see Appendix A).

. Agda’s flexible mixfix notation system allows you to specify where arguments go
in and around parts of an operator name. This lets us declare infix operators
(where the arguments are on either side, and the operator is in between them),
as well as fancier things like if-then-else. When the function is used by itself,
we have to write the underscores as part of its name, which indicate where the
arguments go.

. We saw how to define functions on the booleans using pattern matching and
equations. The examples we saw were negation ~_, conjunction _&&_, and dis-
junction _||_.

. We can ask Agda to do a couple interesting things for us, from EMACS.

Check the type of an expression by typing Ctrl+c Ctrl+d, then the expres-
sion, and then Enter.

Normalize (evaluate) an expression by typing Ctrl+c Ctrl+n, then the ex-
pression, and then Enter.

. Function types like B → B describe functions. The type B → B → B describes
functions which take in two booleans as input, one at a time, and produce a
boolean output.

. We also saw an example of a polymorphic function, namely, if-then-else. Its type
quantifies over a type level � and a type A at that type level, and then takes in the
expected arguments:

if_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

In the next chapter, we will start to see the feature that really distinguishes Agda
from programming languages as most of us have known them until now: theorem
proving.

Exercises
1.1. Evaluate the following expressions in Agda within EMACS. For this, the easiest
thing to do is to open and load the bool.agda file first:

(a) tt && (ff xor ~ ff)
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(b) ~ tt && (ff imp ff)

(c) if tt xor tt then ff else ff

1.2. What is the type of each of the following expressions? (You can check these in
Agda with Ctrl+c Ctrl+d?)

(a) tt

(b) if tt then ff else tt

(c) _&&_

(d) B

1.3. Pick a function defined in bool.agda like _xor_, _imp_, or another, to redefine
yourself. You can do this in a new file called my-bool.agda that begins this way, where
X should be replaced by the name of the function you will redefine (e.g., _xor_, with
the underscores):

module my-bool where

open import bool hiding ( X )

1.4. Define a datatype day, which is similar to the B datatype but has one constructor
for each day of the week.

1.5. Using the day datatype from the previous problem, define a function nextday

of type day → day, which given a day of the week will return the next day of the week
(so nextday Sunday should return Monday).

1.6. Define a datatype suit for suits from a standard deck of cards. You should have
one constructor for each of the four suits: hearts, spades, diamonds, and clubs.

1.7. Define a function is-red, which takes in a suit as defined in the previous
problem and returns tt if and only if the suit is a red one (hearts and diamonds).





2Introduction to
Constructive Proof
In the previous chapter, we saw the definition of the booleans and how to define
functions on them using pattern matching and equations. It is pretty interesting to
be able to declare our own mixfix operators like if-then-else. And writing code with
equations is rather elegant; for example, the definition of negation looks just like we
might expect from a mathematical definition:

~_ : B → B

~ tt = ff

~ ff = tt

And it is somewhat intriguing that we can form if-then-else expressions with then- and
else-parts of any type, including then- and else-parts that are types themselves. That
is rather exotic, and not something we find in mainstream programming languages.
But you could be forgiven for not being overawed by the features we have considered
so far.

I hope this chapter will start to change that a little, as we consider how to state and
prove theorems about the boolean operations we defined in the previous chapter. All
the proofs we will write in Agda are constructive, in a sense which we will examine in
detail in this chapter. The Agda code we will study can be found in bool-thms.agda

in the IAL (there is also a bool-thms2.agda with yet more theorems about boolean
operations). As described in Section 1.2, you can load this file by opening it within
EMACS and then typing Ctrl+c Ctrl+l. I will assume in what follows that you have already
done this.

2.1 A First Theorem about the Booleans
There are many properties that we might be interested in proving about our boolean
operations. For example, in Section 1.4 we saw how to evaluate the expression ~ ~ tt
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in Agda, using Ctrl+c Ctrl+n. Of course, the answer we get back is tt. If our defini-
tion of ~_ were incorrect, this property—that double negation on booleans can be
eliminated—might not hold. For example, suppose we had this definition of negation
instead:

~_ : B → B

~ tt = ff

~ ff = ff

Admittedly, we’d have to be having a pretty bad coding day to define ~ ff to be ff, but
it could happen. And certainly if we were writing some more complicated code, we
know very well that we could make mistakes and accidentally introduce bugs into the
code without meaning to. If we wrote the previous definition, evaluating ~ ~ tt would
give us ff, instead of the expected tt. So it would be nice to record and check the
fact that ~ ~ tt is supposed to be tt. We could write some test code and remember
to run it from time to time to check that we get the expected answer. But we can use
this test case as a very rudimentary form of theorem, and use Agda’s theorem-proving
capabilities to confirm that the theorem holds (i.e., the test succeeds).

2.1.1 Types as Formulas: The Curry-Howard Isomorphism
First, we have to express the theorem of interest, namely, that ~ ~ tt equals tt. In
Agda, this is done with an equality type:

~ ~ tt ≡ tt

An equality like this is called a propositional equality, to distinguish it from another
form of equality we will consider shortly. To type that triple-equals symbol, you use\==
(also \equiv works), and then you may need to hit space to select that symbol from a
few choices that can be typed with a key sequence starting with “\==”. If you ask Agda
what type this has (using Ctrl+c Ctrl+d as described in Section 1.2), Agda will respond
with Set. So Agda views a formula like this equation as a type (recall from Section 1.1
that Set is the type for types). The idea that formulas can be viewed as types is a central
idea in type theory, known as the Curry-Howard isomorphism, after Haskell Curry and
William Howard, the two people primarily credited with discovering it. It is a powerful
idea, because when developed in full as in a language like Agda, it allows us to use one
and the same language for writing types and writing formulas. We will see shortly that
we can also use the same language for writing programs (which have types) and proofs
(which prove formulas). This cuts down on the new languages we need to learn to do
verified programming. Instead of needing to know

. a language for programs,

. a language for their types,
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. a language for formulas, and

. a language for proofs,

we just need to grasp a fairly straightforward language for programs, along with an
admittedly much richer language for types. But the Curry-Howard isomorphism has
positive benefits for both programming and theorem proving. By giving us a way to
write formulas just as certain special types, the Curry-Howard isomorphism has intro-
duced new types into our mental universe, which we can use to write typed programs
that are not possible with the usual types we are familiar with from mainstream pro-
gramming languages. We will see several interesting examples of this in Chapters 5
and 6.

2.1.2 Proofs as Programs: More Curry-Howard
Let us see now how to write a proof of our example formula, as a program. This example
is in bool-test.agda, in the Iowa Agda Library. We will give our proof a name: ~~tt.
It is not easy coming up with good names for theorems. Naturally we want to pick
names that give some indication of what the theorem in question is, without being too
verbose. Here, since our theorem is about the value of ~ ~ tt, I am using ~~tt as the
name. Thanks to Agda’s requirement of spaces around operators (see Section 1.4.1),
this is a legal symbol we can use to name anything we like (here, a proof) within Agda.

In Agda, writing a proof is just programming, so we have to approach this just the
way we did writing boolean operations in Chapter 1. We have to declare the type of
our function, which is easy:

~~tt : ~ ~ tt ≡ tt

And now we have to write a set of equations—in this case we will need just one—that
gives the definition of ~~tt.

Okay, so finally: how do we prove that ~ ~ tt equals tt? Well, how would we prove
it if we were just reasoning on paper? We would likely just say that ~ ~ tt evaluates
to tt by running the program expression ~ ~ tt. If pressed, we could give some more
detail, by showing how individual calls to the ~_ operation evaluate:

~ ~ tt = ~ ff = tt

Fortunately, Agda does not need us to do this. Agda adopts the simple but powerful
idea of treating any program expressions that appear inside types as equal if their
defining equations make them equal. So when Agda’s type checker is asked to consider
the type

~ ~ tt ≡ tt
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it takes into account the defining equation for the negation operator ~_. So it treats
this type as equivalent to just

tt ≡ tt

Now this is a formula you would hope is easy to prove—and it is! The proof is just
refl, which stands for reflexivity. We can recall from discrete math that this is a
general property one can ascribe to different mathematical relations (like equality,
in this case), which says that every element is related to itself.

Finally we have enough information to write our proof (which you can find in bool-

test.agda):

bool-test.agda~~tt : ~ ~ tt ≡ tt

~~tt = refl

Let us review what is happening with this piece of Agda code. We are writing a
definition for the symbol ~~tt. As usual with definitions in Agda, and as we saw for
the definitions of the boolean operations in Chapter 1, we first have to write the type
for ~~tt and then give equations defining ~~tt. The type is ~ ~ tt ≡ tt. Agda’s type
checker treats program expressions that appear in types as equal if their defining
equations, which explain how to evaluate calls to the functions occurring in those
expressions, make them equal. Since ~ ~ tt evaluates to tt (as we can easily confirm
with Ctrl+c Ctrl+n), Agda treats the formula we are trying to prove as equivalent to
the trivial formula tt ≡ tt. The two formulas are said to be definitionally equal. The
formula tt ≡ tt can be proved with refl, and so we complete our definition of ~~tt
by saying that ~~tt is defined to be refl. This refl is actually the sole constructor of
the equality type, as you can see in eq.agda if you are interested.

We have proved our first theorem in Agda. Time to celebrate!

2.2 Universal Theorems
Despite our careful, not to say painstaking, consideration of the proof in Section 2.1.2,
I hope you will agree that this theorem is easy, and surely theorem proving cannot be so
trivial in general. Yes, mathematicians are in business for a reason: theorem proving
can be extremely difficult, with a single conjecture stumping the brightest minds
humankind has to offer for centuries. Most proofs about everyday programs, however,
are not so difficult as that. They lie somewhere in between the totally trivial proof we
just considered and more complicated developments. Let us take some further steps
into the world of theorem proving by considering universal theorems.

We proved that ~ ~ tt equals tt. And we could just as well prove, in essentially the
same way, that ~ ~ ff equals ff (see bool-test.agda):
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bool-test.agda~~ff : ~ ~ ff ≡ ff

~~ff = refl

Now it is a natural step of human reasoning to generalize from the concrete to the
abstract. We notice that ~ ~ tt equals tt and that ~ ~ ff equals ff, and part of our
basic intellectual equipment as humans cries out for us to abstract from the concrete
data tt and ff, to observe that for any boolean b, we have ~ ~ b ≡ b. In mathematical
terms, we would like to write a universally quantified formula, to express this idea for
any boolean b:

∀ (b : B) → ~ ~ b ≡ b

The upside-down capital “A” is called the universal quantifier. Here, it allows us to
make a statement about any b of type B.

But we have seen this ∀ notation before, in the type of if-then-else (Section 1.6). It
is the operator for type polymorphism. Well, in Agda, because types can contain pro-
gram expressions, this operator can also be used to express program polymorphism.
Just as the polymorphic type for if-then-else can be instantiated with any type, for the
then- and else-parts, that we wish; similarly, some types can be instantiated with any
program that we wish. We can view ∀ as the operator for universal quantification or
for polymorphism. In Agda, these concepts are unified, by the Curry-Howard isomor-
phism.

2.2.1 Proving the Theorem Using Pattern Matching
So let us see how to prove our universal theorem, which you can find a short way into
the file bool-thms.agda in our library. We should begin just as we have for other
definitions in Agda, by choosing a symbol and then writing the type we want that
symbol to have:

~~-elim : ∀ (b : B) → ~ ~ b ≡ b

This says that we are starting a definition of the ~~-elim symbol, which will have the
given universal type. Now we have to write equations defining ~~-elim. Here we need
to combine ideas we saw from our definitions of boolean operations like negation and
conjunction with the Curry-Howard isomorphism. This theorem that we are trying to
prove can be shown by case analysis on the variable b. That is, since we know that
~ ~ tt equals tt and ~ ~ ff equals ff, to prove that ~ ~ b ≡ b, we just have to consider
explicitly the two possibilities for b. This is done in Agda by pattern matching, just as
when we were defining functions. In each case, the proof is by refl. So we get this



22 Chapter 2 Introduction to Constructive Proof

final definition proving our theorem:

bool-thms.agda~~-elim : ∀ (b : B) → ~ ~ b ≡ b

~~-elim tt = refl

~~-elim ff = refl

We have written two equations defining the behavior of ~~-elim for the two pos-
sibilities for boolean variable b. So we are actually defining ~~-elim as if it were a
function taking in one argument, namely, the boolean value for b. So the universal
type ∀ (b : B) → ~ ~ b ≡ b can be seen as a function type: given input b, the ~~-elim
function will return an output of type ~ ~ b ≡ b. This is also part of the Curry-Howard
isomorphism.

We should note something important about how Agda type-checks a definition like
this. Our two equations are for the two cases for boolean variable b. Each equation
deals with one instantiation of this variable. Once the left-hand side of the equation
has specified an instantiation for a variable, then the rest of the equation—including
any additional parts of the left-hand side and then the whole right-hand side—are
type-checked under that instantiation. So in the first equation, after it sees tt as
the instantiation for b, Agda is checking that the right-hand side has type ~ ~ b ≡
b, under the instantiation of b to tt. In other words, Agda is checking that the right-
hand side has type ~ ~ tt ≡ tt, since we have instantiated b to tt. This process of
proceeding with type checking using an instantiated version of the type we started
with is sometimes called type refinement. We are refining the type ~ ~ b ≡ b, which
we have for the right-hand sides of our equations, based on instantiations encountered
on their left-hand sides.

2.2.2 An Alternative Proof and Implicit Arguments
The great thing about a proof in Agda is that if the type checker accepts it, then the
formula in question is valid (assuming no bugs in Agda, no cosmic rays flipping bits
of the computer’s memory system while running Agda, etc.). We do not need to know
how a proof works, if all we care to know is that the formula it proves is valid. But still,
you may be curious: can we prove our ~~-elim theorem another way? Could we use
our ~~tt and ~~ff theorems to prove the two cases? We certainly can do that. Agda
also accepts the following as a proof of our example theorem (see bool-test.agda):

~~-elim2 : ∀ (b : B) → ~ ~ b ≡ b

~~-elim2 tt = ~~tt

~~-elim2 ff = ~~ff
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This makes sense, since ~~tt and ~~ff have exactly the types we need for their
respective cases. Is this really a different proof? Not really, because ~~tt and ~~ff

are both defined to equal refl, so this proof is equal to the first proof we wrote.
While we are thinking about proofs being equal, we know that ~~tt equals refl

and ~~ff equals refl. So shouldn’t that imply that ~~tt equals ~~ff? If that is true,
then even though it seems a bit wrong, wouldn’t the following proof type-check in
Agda?

~~-elim3 : ∀ (b : B) → ~ ~ b ≡ b

~~-elim3 tt = ~~ff

~~-elim3 ff = ~~tt

If you try this out, you will see that the answer is no. The reason is more subtle than
you might think, and it has to do with a very handy feature of Agda called implicit
arguments. Implicit arguments are one of the great features of Agda, and we will see
more examples of their use shortly. Implicit arguments to a function are arguments
that you do not have to write when you call the function. Agda will try to infer them.
We saw these already, briefly, in discussing the if-then-else operator in Chapter 1:

if_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

if tt then t else f = t

if ff then t else f = f

The curly braces around � and A in the type tell Agda to try to infer the values for those
inputs. Agda uses an inference algorithm, which unfortunately—and for deep math-
ematical reasons—cannot always succeed, to try to figure out what the instantiations
for � and A have to be, based on the other arguments to if-then-else, or on how the
if-then-else expression is being used in a bigger surrounding context.

The refl function we have been using also has implicit arguments. One of these
implicit arguments is the program expression x for which we are proving x ≡ x. In the
case of ~~tt this implicit argument is tt, while in the case of ~~ff it is ff. Agda allows
us to write implicit arguments explicitly if we wish, within curly braces. If we were to
write these arguments out, we would have the following definitions (where lzero is
the type level for B; these definitions are also listed in bool-test.agda):

bool-test.agda~~tt’ : ~ ~ tt ≡ tt

~~tt’ = refl{lzero}{B}{tt}

~~ff’ : ~ ~ ff ≡ ff

~~ff’ = refl{lzero}{B}{ff}

This makes it clear that ~~tt does not equal ~~ff, contrary to what we were previously
thinking might be the case.
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2.2.3 Using Holes in Proofs
When trying to prove something complicated, it is very helpful to be able to put some
holes in your proof, to be filled in later. In fact, you can even put a hole for your entire
proof! Of course, then you have not proved anything, but there is still some benefit:
you can make sure that the formula you are trying to prove can be type-checked by
Agda. The syntax for a hole in Agda is a question mark (“?”). So we could write this
proof with holes, for the example we have been considering:

~~-elim : ∀ (b : B) → ~ ~ b ≡ b

~~-elim = ?

When you ask Agda to check the file (by typing Ctrl+c Ctrl+l), this hole will turn into
a green region in between curly braces, followed by a distinct number for each hole.
We will see some other commands later, for getting information about holes. Holes
can go anywhere on the right-hand side of an equation. So we could also take a first
step on the proof and then put some more holes, like this:

~~-elim : ∀ (b : B) → ~ ~ b ≡ b

~~-elim tt = ?

~~-elim ff = ?

Loading the file with Ctrl+c Ctrl+l will change this text so it looks like

~~-elim : ∀ (b : B) → ~ ~ b ≡ b

~~-elim tt = { }0

~~-elim ff = { }1

where { }0 and { }1 are highlighted in green. These are the holes. We will see more
about working with holes in Section 3.2.2. For now, let us just note that we can fill
the hole by typing refl inside the green highlighted region and then entering Ctrl+c
Ctrl+space. This will instruct Agda to try to use what we have typed in the green
highlighted region to fill in the hole, thus completing the proof at that point. In this
case, as we have seen earlier, we can fill both holes with refl to complete the proof.

To remove a hole, by the way, you cannot use backspace or delete in EMACS. Instead,
you have to cut the hole out. A simple way to do this is to position your cursor at the start
of the hole (at the “{” symbol), and type Ctrl+k. This is a standard EMACS command
to cut all the text to the end of the line. You can paste it back in with Ctrl+y. For other
basic EMACS commands, see Figure B.2 at the end of the book.
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2.3 Another Example, and More On Implicit Arguments
Let us prove an obvious theorem about conjunction. You can find this coming next in
bool-thms.agda, but we are going to build up to the exact form of proof that is used
there. To start with, the theorem we will prove is that for any boolean b, we have b && b

equals b. In English: conjoining b with itself gives you the same thing as just b. First,
let us make sure we know how to state this theorem in Agda. It is a universal theorem,
so we should use our universal quantifier ∀ with a variable b of type B:

∀ (b : B) → b && b ≡ b

We can prove this theorem very similarly to the previous example, because each
instance, for each concrete boolean value for b, follows by just running the code for
conjunction. So the proof looks like this:

&&-idem : ∀(b : B) → b && b ≡ b

&&-idem tt = refl

&&-idem ff = refl

Now, one thing about Agda, and functional programming in general, is that a great
emphasis is placed on being as concise as possible. This is taken almost to the point of
fanaticism, and certainly less code is not always more useful for programmers trying
to come back and understand how something they or someone else wrote actually
works. Still, the ability to omit unnecessary parts of code is powerful, and can help
craft very elegant and more easily understandable programs—if used wisely. In the
case of the theorems we have considered so far, there is not a lot of fat to trim, except
that Agda’s inference mechanism is clever enough to deduce the type of the variable
b from the fact that b is used as an argument to a boolean operation. So we can write
this alternative and minutely shorter proof for the theorem:

&&-idem : ∀ b → b && b ≡ b

&&-idem tt = refl

&&-idem ff = refl

The equations for the proof are unchanged, but we have shortened the type from

∀(b : B) → b && b ≡ b

to

∀ b → b && b ≡ b

This is somewhat nice: there was no need to tell Agda that b has type B, because Agda
can figure this out from the way b is used later in the type.
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One other possible improvement we can make to the theorem is to make this
boolean b an implicit argument. To do this, as we saw for if-then-else, we just have
to put curly braces around the variable in the type:

∀{b} → b && b ≡ b

One new issue that arises, though, is that unlike the case for the variables � and A

in the code for if-then-else, here we must pattern-match on the input argument given
for variable b, to consider the cases where b is tt and where it is ff. Agda has a very
sensible notation for pattern matching on implicit arguments. The arguments have to
be given in curly braces in the patterns on the left-hand sides of the defining equations.
So the final code we have for &&-idem is

bool-thms.agda&&-idem : ∀{b} → b && b ≡ b

&&-idem{tt} = refl

&&-idem{ff} = refl

Making this argument implicit is rather neat, because sometimes when we use the
theorem later on, we will not have to supply an argument for b, just the way we do not
have to supply arguments for � and A when we call if-then-else. For example, bool-
thms.agda includes the following, just to demonstrate this point:

test-&&-idem : tt && tt ≡ tt

test-&&-idem = &&-idem

Notice that we do not have to give any implicit argument to &&-idem where we are
using it in the definition of test-&&-idem. Agda can infer that the implicit b must be
tt, since we are using &&-idem here to prove tt && tt ≡ tt.

Using implicit arguments can lead to much more concise code in Agda, but it can
also cause confusion, because if Agda cannot infer an implicit argument, you may get
a somewhat unpleasant error message including variables whose names start with
underscores (these are meta-variables Agda has introduced for expressions it needs
to deduce). If this happens, you can supply implicit arguments explicitly using curly
braces. For example, we could just as well write

test-&&-idem : tt && tt ≡ tt

test-&&-idem = &&-idem{tt}

Note that curly braces are treated as punctuation specially by Agda, just like parenthe-
ses, and do not need to have spaces around them. One further note: You must supply
the implicit arguments in the order they are declared in the type for the function. So
if we wanted to supply an argument for the type variable A of the if-then-else oper-
ator, we would have to supply an argument for � first. This can be a bit of a nuisance
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bool-thms.agda||-idem : ∀{b} → b || b ≡ b

||-idem{tt} = refl

||-idem{ff} = refl

Figure 2.1 A proof about disjunction (“or”).

(for example, we have not even seen how to construct type levels, though you can find
the constructors in the file level.agda). To get around this problem, Agda lets you
name the variable you wish to instantiate, as part of the curly-braces notation. So for
if_then_else_, we know we have this type:

∀ {�} {A : Set �} → B → A → A → A

To instantiate A to B, without explicitly instantiating �, we can write

if_then_else_{A = B}

Then we will see the type B → B → B → B, as expected. This feature of Agda is a
little dangerous, because we have to name the variable (A, in this case) where we are
doing the instantiation. If we decided to change the name of the variable where we
are defining the if-then-else function, we would break every call to if-then-else that
instantiates A by name. But probably such renaming of variables in types for function
definitions is relatively rare, so this should not trouble us too often. Note that the
spaces around the equality symbol are required; you will get an error if you write if_
then_else_{A=B}.

Figure 2.1 has a proof of a very similar example about disjunction (“or”). We have
an implicit boolean argument b, which we pattern-match on by writing the patterns
in curly braces, on the left-hand sides of the defining equations. In each case, the
equality type refines to something that Agda can see is trivial. In the first equation,
where b is instantiated to tt, the equality we are trying to prove is refined by Agda to

tt || tt ≡ tt

This is definitionally equal to

tt ≡ tt

and so we can trivially prove it with refl. As we were seeing previously, two expres-
sions in Agda are definitionally equal iff they can be proved equal using the defining
equations for the function symbols involved (and one more equation which is built in
to Agda, which is not needed for our examples so far).
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2.4 Theorems with Hypotheses
Continuing our tour of bool-thms.agda, let us consider this theorem:

bool-thms.agda||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → b1 ≡ ff

||≡ff1 {ff} p = refl

||≡ff1 {tt} ()

Note that the subscripted 1 can be written in Agda mode in EMACS with \_1. Let us
make sure we can read the theorem that is being proved:

∀ {b1 b2} → b1 || b2 ≡ ff → b1 ≡ ff

Let us insert some parentheses (always legal in Agda) to make the syntax of this
formula a little clearer:

∀ {b1 b2} → ((b1 || b2) ≡ ff) → (b1 ≡ ff)

This says that for any booleans b1 and b2, if the disjunction (“or”) of b1 and b2 is
ff (false), then b1 must be ff. This makes sense: since a disjunction is true if either
disjunct is true, if we have a false disjunction, then both disjuncts must be false, in
particular the first disjunct. If b1 were true, that would make the whole disjunction
true, but this theorem is assuming it is false.

This is our first theorem with an assumption. Under the Curry-Howard isomor-
phism, to express an assumption, we write a function that takes in a proof of that
assumption and then produces the proof of the desired result. Here, our assumption is

b1 || b2 ≡ ff

and the final desired result is

b1 ≡ ff

So in the type, we write

b1 || b2 ≡ ff → b1 ≡ ff

to indicate that the function we are writing takes in a proof of

b1 || b2 ≡ ff

and then produces a proof of the desired result. Notice this fits the basic pattern for
function types: a function type A → B is the type for functions with inputs of type A

and outputs of type B.
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Assumptions allow us to express more interesting theorems than we have so far,
since many interesting properties of our programs are true only under some assump-
tions. Writing proofs when we have assumptions to take into account also becomes
more complex. Let us consider the first defining equation for the proof:

||≡ff1 {ff} p = refl

This is defining the function in question, namely,

||≡ff1

by giving patterns for several arguments. We are here considering the case where the
first implicit argument b1 is ff. So we have one pattern in curly braces:

{ff}

After this, we have a variable p corresponding to the sole explicit argument of this
proof, namely, the proof of our assumption. We actually do not need to use this
variable on the right-hand side in this case, because if we are in the case where b1

is ff, then our desired result is definitionally equal to just ff ≡ ff. So this equation
has just refl on the right-hand side, to prove that trivial equation ff ≡ ff.

2.4.1 The Absurd Pattern
Now let us consider the second defining equation. Actually, it is not an equation at
all, just a left-hand side of an equation containing the absurd pattern (). This is an
interesting Agda feature we have not used up to now. Let us look at this left-hand side
again:

||≡ff1 {tt} ()

Where is the equals sign and the right-hand side? They are omitted because we are
using the absurd pattern () to point out to Agda that the case being considered here
is impossible.

Let us puzzle out what is happening. We have written our theorem with two implicit
input arguments, b1 and b2. The pattern we are looking at is instantiating b1 with tt,
using the curly braces for implicit arguments. If we instantiate b1 with tt in the type
of the theorem (which Agda is using to check this clause of the definition), we will get
this type:

∀ {b2} → tt || b2 ≡ ff → tt ≡ ff
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This type is obtained from the starting type for the theorem by just replacing b1 with
tt everywhere. Now look closely at what the desired final result has become:

tt ≡ ff

That doesn’t look good! We cannot prove tt equal to ff, because they are distinct
constructors. In general, Agda’s type theory will never let us prove that two terms are
equal, if those two terms begin with distinct datatype constructors. What are we going
to do? We know we cannot prove this formula, so are we stuck? Is this really not a
theorem?

If you are asked to prove something impossible, there is a way out, if some assump-
tion you are using is also impossible. If you have to prove the impossible, but only
if some impossible assumption is true, then your job is done, since that impossible
assumption can never be satisfied by someone who wants to use your theorem. And in
this case, our sole assumption is actually impossible to satisfy, because the assump-
tion is

tt || b2 ≡ ff

And this type is definitionally equal to

tt ≡ ff

That is because the definition of disjunction (from bool.agda) is this:

_||_ : B → B → B

tt || b = tt

ff || b = b

This code looks at the first argument, and if that first argument is tt, it just returns
tt, without even looking at the second argument.

Agda’s absurd pattern () is special notation that allows us to “quit early” when we
have an obviously impossible assumption. An assumption is obviously impossible if
it is definitionally equal to an equation between two terms that start with different
constructors. Here our assumption is definitionally equal to tt ≡ ff, and the two
terms in question (tt and ff) do indeed start with different constructors. So we can
use the absurd pattern to tell Agda to take notice of the fact that we have an impossible
assumption, and let us off the hook for proving the desired result in this case. You
simply write () in place of the pattern corresponding to the assumption. In this case,
our theorem only has one explicit argument, which is the proof of the assumption. So
we just write () there. Agda accepts this definition as a correct proof of our theorem.
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2.4.2 An Alternative Proof
We could also have proved the theorem this way:

||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → b1 ≡ ff

||≡ff1 {ff} p = refl

||≡ff1 {tt} p = p

This is the same as the earlier proof, but for the second clause of the definition, we have
an actual defining equation that just returns the proofpof the impossible assumption.
The type of p is definitionally equal to tt ≡ ff, which is what we have for the desired
result with b1 instantiated to tt.

Is there any reason to prefer our first proof using the absurd pattern over this
one? Yes, because the first proof is more robust to some minor changes we might
conceivably make to the statement of the theorem. For example, suppose we changed
our theorem to this one:

∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1

Here, I have just changed the desired result fromb1 ≡ ff toff ≡ b1. You would expect
this makes little or no difference, and that is correct, for the first proof we wrote. The
absurd pattern still can be used for the second clause of the definition, and the exact
same proof we wrote is accepted by Agda:

||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1

||≡ff1 {ff} p = refl

||≡ff1 {tt} ()

But things do not adapt so smoothly for the second proof:

||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1

||≡ff1 {ff} p = refl

||≡ff1 {tt} p = p

Why? Because in this case, the type of p is definitionally equal to tt ≡ ff, but the
desired result formula is ff ≡ tt. These are very similar, and one obviously follows
from the other, but they are not definitionally equal. And so Agda will complain that
on the right-hand side of that second defining equation, p has the wrong type. We can
rectify this problem if we want, using an explicit proof of symmetry of equality:

||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1

||≡ff1 {ff} p = refl

||≡ff1 {tt} p = sym p
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The sym operator is defined in eq.agda. It takes a proof of x ≡ y and returns a proof
of y ≡ x. So we can use it here to go from tt ≡ ff (the type of p) to the desired result
ff ≡ tt. But this is not necessary: the first proof using the absurd pattern is easier
and shorter.

2.4.3 Matching on Equality Proofs
A little further on in bool-thms.agda, you will find this example theorem:

bool-thms.agda||-cong1 : ∀ {b1 b1’ b2} → b1 ≡ b1’ →
b1 || b2 ≡ b1’ || b2

||-cong1 refl = refl

As usual, let us make sure we understand what this theorem is saying, and then
take a detailed look at the (very short) proof. The theorem is

∀ {b1 b1’ b2} → b1 ≡ b1’ → b1 || b2 ≡ b1’ || b2

We can see that we have three universally quantified variables, b1, b1’, and b2. Let us
first insert some parentheses to make the structure a little clearer:

∀ {b1 b1’ b2} → (b1 ≡ b1’) → ((b1 || b2) ≡ (b1’ || b2))

So this is saying that if b1 equals b1’, then the following two expressions are also
equal:

b1 || b2

b1’ || b2

This is expressing a special case of the general property, sometimes called congru-
ence, that if x equals y, then any term containing x is equal to that same term with
some of the x’s replaced by y. This property holds already for definitional equality (the
equality Agda applies automatically during type checking), because definitional equal-
ity is already defined by replacing terms with ones they are defined to equal, wherever
those terms occur. For propositional equalities x ≡ y (which are ones we explicitly
state and prove), the general congruence property—or special cases as here—must be
proved.

Now let us look carefully at the proof. The variables b1, b1’, and b2 are all implicit,
since they are declared with curly braces in the type. There is only one explicit argu-
ment, and it is the assumption that b1 ≡ b1’. As noted earlier in this chapter, there
is actually only one way to construct an equality proof, and that is with the refl con-
structor. When we write refl as the pattern for this case, Agda deduces that since
refl can only prove something of the form t ≡ t, then b1 must be exactly b1’. Ac-
tually, because Agda always takes definitional equality into account, it knows that b1
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must be definitionally equal to b1’. Indeed, Agda refines the desired type using this
definitional equality. So we now really only need to prove

((b1 || b2) ≡ (b1 || b2))

And this formula can obviously be proved by refl.
This trick of using refl as a pattern for an equality assumption seems really great.

Can we just use it everywhere? What about the proof we considered at the start of
Section 2.4? Would the following proof work?

||≡ff1 : ∀ {b1 b2} → b1 || b2 ≡ ff → ff ≡ b1

||≡ff1 refl = refl

The answer is no. There is an important rule about using type refinements in Agda.
Agda will not allow us to refine types in such a way that nonvariable terms are dis-
covered to be definitionally equal to other such terms. Here, refinement would force
Agda to conclude that the following two nonvariable terms are definitionally equal:

b1 || b2

ff

Agda cannot reason internally about assumed definitional equalities between non-
variable terms. So it will not allow us to use refl as a pattern in this case.

One final note about pattern matching on equality proofs: a detail has been hidden
here because the booleans b1, b1’, and b2 are implicit arguments to this proof.
Suppose we decide to include them in the pattern on the left-hand side of the equation,
using the curly-braces notation we saw in Section 2.3:

||-cong1 : ∀ {b1 b1’ b2} → b1 ≡ b1’ → b1 || b2 ≡ b1’ || b2

||-cong1{b1}{b1’}{b2} refl = refl

If we do this, Agda will complain with a strange error:

b1 != b1’ of type B

when checking that the pattern refl has type b1 ≡ b1’

The problem is that to type-check this pattern, we cannot have possibly distinct values
b1 and b1’. Agda is deducing that b1 and b1’ must be definitionally equal, and for
this reason does not allow them to be distinct variables. The solution to this is to use
a dot pattern:

||-cong1 : ∀ {b1 b1’ b2} → b1 ≡ b1’ → b1 || b2 ≡ b1’ || b2

||-cong1{b1}{.b1}{b2} refl = refl
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Writing a dot (“.”) in front of a term in a pattern tells Agda that the term written there
is not a subpattern to match, but rather has a form which is dictated by the type of the
whole pattern. We did not need to do this in the first proof we considered at the start
of this section, because we did not match on the implicit arguments.

2.4.4 The rewrite Directive
One further important theorem-proving feature of Agda is the rewrite directive that
can be used in equations. We will see this in a similar example to the one we just solved
by pattern matching on an equality proof:

bool-thms.agda||-cong2 : ∀ {b1 b2 b2’} → b2 ≡ b2’ →
b1 || b2 ≡ b1 || b2’

||-cong2 p rewrite p = refl

This theorem is quite similar to the one in the previous section. We could prove it the
same way, but let us see an interesting alternative. We just introduce a pattern variable
p, which has type b2 ≡ b2’. Now, whenever you have such a pattern variable, you can
tell Agda you wish to rewrite every occurrence of the left-hand side, as it appears in the
current goal, with the right-hand side. The goal is just the formula we have to prove
on the right-hand side of the current equation. The rewrite p directive tells Agda to
transform the b2 in

b1 || b2 ≡ b1 || b2’

to b2’. So the goal (the type Agda is checking against the right-hand side of the
equation) becomes

b1 || b2’ ≡ b1 || b2’

And of course, this does follow by refl.
In general, rewrite works as follows in Agda. Suppose you have a proof p of some

equation X ≡ Y. The proof p is simply any expression which has X ≡ Y as its type; it
does not have to be a variable, but could be a call to a lemma that has already been
proved, for example. Then rewrite p instructs the Agda type checker to look in the
goal for any occurrences of X, and transform those into Y. X and Y could be complex
expressions; they do not have to be just variables. The rewrite directive will be very
useful for later proofs, as we will see in what follows.
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2.5 Going Deeper: Curry-Howard and Constructivity
The Curry-Howard isomorphism was originally developed for constructive logic, and
this is still the setting in which it is most used and best known. Constructive logic
is a restriction of standard, or as it is called, classical logic. Have you ever asked a
friend if they want to go get pizza or burgers and they say “yes”? This humorous
answer is (likely unwittingly) playing on the difference between constructive and
nonconstructive logic. In constructive logic, if we prove that A or B is true, we always
know exactly which one of those facts it is that is true. You expect to be in this situation
when you ask about pizza (A) or burgers (B). Similarly, if we prove that there exists an
object x satisfying some property, we know what the identity of that object x is. To
convince me that this x exists, you need to “show me” (as they say in Missouri). You
might think that all proofs of disjunctions (“or” statements) and existential statements
are like that, and hence that all reasoning must be constructive. Here is a well-known
clever proof, first brought to the attention of logicians by Roger Hindley [Hindley
2014], that shows this is not the case.

Theorem 2.1 There exist irrational numbers a and b such that ab is rational.

Proof We have to remember that a rational number is one which can be described as a
fraction p

q
, where p and q are integers, with q �= 0; and an irrational number is one that

lacks such a description. The ancient Greeks knew that
√

2 is irrational, and we will

use that fact now in the proof. Either
√

2
√

2
is rational or else it is not. Let us suppose

it is rational. In that case, our proof is complete, as we can take a and b both to be
√

2.

So let us suppose that
√

2
√

2
is irrational. We will take a to be this number and b to be

just
√

2. Let us confirm that ab is rational (in fact, an integer):

ab = (
√

2
√

2
)
√

2 definition of a and b

= √
2

(
√

2
√

2)
basic property of exponentiation

= √
2

2
definition of

√
2

= 2 definition of
√

2

At the end of this proof, we know that a and b are either
√

2 and
√

2 or else
√

2
√

2
and√

2. But we do not know which it is. Now it happens that other results in the theory of
irrational numbers can confirm that indeed the second possibility is the correct one
and the first possibility is wrong. But the proof we have just seen—which is a perfectly
correct classical proof of the theorem—does not tell us. We are left in the dark about
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the exact values of a and b, even though we have established they exist. This is a good
example of a nonconstructive proof.

The essential nonconstructive reasoning here is the use of what is called the law of
excluded middle: for every formula F , F ∨ ¬F (either F is true or else F is false). It is
a rather philosophical question whether or not this statement is, in fact, true of the
real world (at least as we conceptualize it). From a computational viewpoint, under the
Curry-Howard isomorphism, the law of excluded middle says that for any fact F , we
can compute whether or not F is true. And it is well known from the theory of compu-
tation that some properties simply cannot be computationally tested in general. The
paradigmatic example is the halting problem: does a particular program terminate
in a finite number of steps, or does it run forever? It is not hard to prove that there
is no computer program which can decide the halting problem. So constructively, we
cannot prove the following formula, expressing that every program P either halts or
does not halt:

∀P . (Halts(P ) ∨ ¬Halts(P ))

Proving this constructively would amount to writing a program that can solve the
halting problem, which, as just mentioned, is impossible.

The impact of the previous example proof is somewhat lessened by the fact that we
have a simple constructive proof of the same theorem (see Hindley [2014] for sources).

Theorem 2.2 Constructive version. There exist irrational numbers a and b such that ab is rational.

Proof Take a to be
√

2 and b to be log2 9. We must see that ab is rational and also that log2 9
is irrational. For the former:

ab = √
2

log2 9
definition of a and b

= √
2

2 log2 3
basic property of logarithms

= (
√

2
2
)log2 3 basic property of exponentiation

= 2log2 3 definition of
√

2

= 3 definition of log2 3

To see that log2 9 is irrational, let us assume that it is rational, and then derive a
contradiction. If log2 9 is rational, then it must equal p

q
for some integer p and nonzero

integer q. So we have

log2 9 = p

q
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Multiplying by q gives

q log2 9 = p

A basic property of logarithms gives

log2 9q = p

The definition of logarithm now gives

9q = 2p

This is impossible, since if it were true, 2 would have to divide 9q evenly, and it does not.

Here is another example, whose nonconstructive proof is perhaps not quite as strik-
ingly ingenious as the previous one, but for which no constructive proof is currently
known. We must recall that an algebraic number is one which is the root of a nonzero
polynomial with rational coefficients, and a transcendental number is one which is
not algebraic. The numbers π and e are transcendental, though this was only proved
in the late nineteenth century.

Theorem 2.3 Either the sum π + e or the product πe (or both) is irrational.

Proof Consider the polynomial (x − π)(x − e) = x2 − (π + e)x + πe. The roots of this polyno-
mial are π and e. A number is algebraic, as we just recalled, if it is the root of a nonzero
polynomial with rational coefficients. So this polynomial must fail to have rational co-
efficients, otherwise by the definition of an algebraic number, π and e would both be
algebraic, and we know they are both not algebraic. Hence, one of the coefficients of
the polynomial must fail to be a rational number. So either π + e or πe, or possibly
both, are irrational.

Notice that the proof does not show that π + e is irrational, nor does it show that
πe is irrational. Indeed, it is not currently known which is true (or if both are true).
The proof just shows that one of those numbers must be irrational. This is another
example of nonconstructivity: we have a proof of a disjunction (“or” statement) but
not of either disjunct (the statements being combined with “or”).

Finally, let us consider the Curry-Howard isomorphism and classical logic. It does
not appear possible to use the Curry-Howard isomorphism with nonconstructive
reasoning. For it seems that a program that proves ∀F . F ∨ ¬F would have to be a
universal oracle, which given any formula F could compute whether F is true or else
report that F is false. So if one wanted to know if the Goldbach Conjecture (which
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states that every integer greater than two is the sum of two prime numbers) is true or
false, one could just ask this oracle.

Quite surprisingly, it turns out that if we expand the kinds of programs we are
allowed to write, the Curry-Howard isomorphism can be made to work for classical
logic. This amazing insight is due to Timothy Griffin [Griffin 1990] and is still an active
subject of research. To get a hint for how this could make sense, here is how a proof
of ∀F . F ∨ ¬F can be viewed computationally. The proof—let us call it p—takes in a
formula F , and is required to tell you whether either F is true or else ¬F is true. Now,
¬F is very often defined in logic just to be F → False. That is, we say ¬F is true if and
only if the truth of F would imply a contradiction. So here is what p does. It tells you
that yes, ¬F is true, by returning a “proof” q (we will see how q works in a moment).
The proof p always returns this proof q saying that ¬F is true, regardless of what F

is. How can we make use of this (dubious) information that p has given us? Well, the
only thing you can do with a proof of A → B, in general, is call it with an argument
of type A. Here we have a proof of F → False. So imagine that at some point we want
to use this proof. That means we are going to call it with an argument of type F . Let
us call this argument r . As soon as q sees r , it, so to speak, travels back in time to the
moment when p was being asked to return either a proof of F or a proof of ¬F . And
it changes the past, so that now, p returns r showing that F is true. So the proof q,
which p returns initially, is a sort of placeholder. It just says that sure, ¬F is true, but
if anyone ever tries to use that information by giving a proof r of F , then it jumps back
and tells p to return this proof r instead of q.

This backtracking sounds a bit like exceptions in programming languages, and
indeed, the computational interpretation of such proofs is as control operators, which
are like more powerful forms of exceptions. With this approach, a proof of ∀F . F ∨ ¬F

is not a universal oracle that can tell you whether any formula F is true or false. For you
can never take irrevocable action based on the truth or falsity of F . You must always
be prepared to backtrack, if it turns out that the answer ¬F which the proof gave you
is not definitive. So you could never send a network message or initiate some control
sequence based on the answer you get from this proof of ∀F . F ∨ ¬F . And that is
where the Curry-Howard isomorphism for classical logic requires, at the least, more
care for programming than the Curry-Howard isomorphism for constructive logic. For
an example of researchers making use of Curry-Howard for classical logic for a new
approach to concurrent programming, see Mazurak and Zdancewic [2010].

2.6 Further Examples
Let us conclude this chapter with a couple more examples of theorem proving with
boolean operations, from bool-thms.agda. First, let us see an example of proving a
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“polymorphic theorem.” This sounds fancier than it needs to. We are really just going
to prove a theorem that includes a universal quantification over types (and type levels),
so that we can reason about type-polymorphic functions like if-then-else. Here is our
example theorem:

bool-thms.agdaite-same : ∀{a}{A : Set a} →
∀(b : B) (x : A) →
(if b then x else x) ≡ x

ite-same tt x = refl

ite-same ff x = refl

As usual, let us first read through the type (i.e., the formula being proved) carefully:

∀{�}{A : Set �} → ∀(b : B) (x : A) →
(if b then x else x) ≡ x

This says that for every type level � and every type A at that level, and for all booleans
b and values x of type A, the following expression equals x:

(if b then x else x)

This if-then-else expression returns x if b is true and also if it is false. So of course it
is equal to x!

How does the proof of this work in Agda? Well, since the type level � and the type
A are implicit arguments (since they are introduced with curly braces in the type), we
do not need to write any arguments for them in the patterns on the left-hand sides of
our defining equations. Then we are reasoning by cases on b. If b is tt, the rest of the
desired type becomes

∀(x : A) → (if tt then x else x) ≡ x

This type is definitionally equal to

∀(x : A) → x ≡ x

And that formula is easily proved by just taking in the argument x (without any pattern
matching, since the type A could be anything, and so we do not have any information
about what x could look like) and then returning refl. The same works for the second
case, where b is ff. So the fact that this theorem includes a quantification over the
type level � and the type A at that level does not lead to any extra complexity in the
proof.

Let us see one more example proof from bool-thms.agda to close this chapter. We
have seen that if we have an assumption which is obviously impossible—because it
is an equality between two terms which start with different constructors, like tt and
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ff—then we can use the absurd pattern () to point out to Agda that the assumption
is impossible, and stop early in our code to handle that case. Here we use this same
approach to prove that if ff ≡ tt holds, then we can prove any formula P we want:

bool-thms.agdaB-contra : ff ≡ tt → ∀ {P : Set} → P

B-contra ()

The name of this theorem is B-contra, for “boolean contradiction.” The formula we
are proving can be written with some more parentheses this way:

(ff ≡ tt) → (∀ {P : Set} → P)

We are saying that if ff ≡ tt is true, then the universal formula

∀ {P : Set} → P

is also true. That formula says that for every formula P, this P is true. Not every formula
is true, in fact, so this is another way of expressing a falsehood in Agda. We are
effectively saying that if ff ≡ tt is true, then something false is true. This can be
handy in a case where our assumptions entail the obviously impossible equality ff ≡
tt, but it is not convenient to use the absurd pattern. The absurd pattern is, of course,
how we show Agda that there is nothing to prove in this case; the defining clause for
this theorem is just

B-contra ()

where the absurd pattern is written for the first argument to B-contra, namely, the
assumption of ff ≡ tt.

2.7 Conclusion
In this chapter, we have gotten our first taste of theorem proving in Agda. The theo-
rems we proved are very simple, and their proofs are easy. The point was, of course, to
see how to write these proofs in Agda. We saw a number of important features.

. The equality type t ≡ t’ expresses equality of expressions t and t’, which must
have the same type.

. The basic way to prove an equality is with refl, which will prove t ≡ t’ for any
definitionally equal t and t’.

. Two expressions are definitionally equal in Agda if they can be proved equal
using their defining equations.

. A proof in Agda is just a program, which is defined like all other Agda programs,
using pattern matching.
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. Pattern matching can instantiate universally quantified variables which appear
in the type. This has the effect of specializing the desired formula to the specific
instances of those variables.

. Arguments can be declared implicit with curly braces in the type. We can still
pattern-match on implicit arguments, by writing curly braces around the pat-
tern, on the left-hand side of an equation.

. Assumptions in theorems are just treated as extra arguments to the programs
which are serving as proofs of those theorems.

. The absurd pattern () can be used when an assumption is definitionally equal
to an obviously impossible equality, where the equated terms start with different
datatype constructors (like tt and ff).

. If you use refl as the pattern for an equality assumption t ≡ t’, Agda will try
to refine the type by making t and t’ definitionally equal. This will fail unless
the expressions can be unified: there must be a way to assign values to variables
occurring in t and t’ that make the expressions identical [Coquad 1992]. The
simplest case of this, which we saw previously, is if one of these expressions
(either t or t’) is definitionally equal to a variable.

In the next chapter, we will take a big step forward in programming and theorem-
proving complexity, by considering recursive functions on the natural numbers.

Exercises
2.1. Pick a theorem from bool-thms.agda or bool-thms2.agda and reprove it your-
self.

2.2. Think of a theorem about the boolean operations that is missing from the IAL
(i.e., from bool-thms.agda and bool-thms2.agda) and prove it.

2.3. Which of the following formulas could be proved by refl? (There may be several
correct answers.)

(a) tt ≡ tt

(b) ff ≡ ff

(c) ff ≡ tt

(d) ff && ff ≡ ~ tt

(e) tt && x ≡ x, where x is a variable of type B

(f) x && tt ≡ x, where x is a variable of type B
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The natural numbers are the nonnegative integers

0, 1, 2, 3, . . .

The notation N is used for the set of natural numbers. There are quite a few differ-
ences between the mathematical natural numbers and numeric types in programming
languages like Java and many others. In Java, for example, the int type, in addition
to including negative numbers, only allows you to represent a finite set of numbers.
There are (infinitely!) many numbers that are too big to fit into the 32 bits which the
Java language specification says is the size of an int. Any number that needs more
than that many bits cannot be represented as an int. Such restrictions are imposed
by the arithmetic hardware in a modern microprocessor, which operates on numbers
of some maximum binary representation. There are many ways to get around this
while retaining efficient arithmetic operations on large numbers.

In this book, we will work with so-called Peano numbers. These are numbers rep-
resented not in binary but in unary. Unary can be thought of as caveman counting. To
write 1, we make one scratch along the cave wall. To write 2, we make two scratches.
This representation is exponentially inefficient compared to binary or decimal nota-
tion, since a number like 1000 can be represented with just 4 symbols in decimal (a
1 and then three 0s), while it requires a hand-cramping 1000 marks on the cave wall.
Your savvy caveman will quit in disgust—maybe to go invent positional notation like
decimal (or sexagesimal if his cave is in Babylon)!

Operations on Peano numbers are much easier to reason about than operations on
binary or decimal numbers, because the representation of numbers is so simple. For
mathematical reasoning, as opposed to numeric programming, Peano numbers are
the go-to representation scheme. They also make for an excellent testbed for learning
some more mathematically interesting theorem proving in Agda. They are inherently
inefficient, though, compared to positional notation schemes like binary or decimal.
Fortunately, Agda supports efficient numeric computation by mapping such natural
numbers to Haskell integers [Norell 2015]—though we will not rely on this fact.
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3.1 Peano Natural Numbers
The code in this section can be found in nat.agda in the Iowa Agda Library. Near the
top of the file, you will find the inductive definition of the type N for the Peano natural
numbers:

nat.agdadata N : Set where

zero : N

suc : N → N

Since this is only the second datatype definition we have considered (the first was
for the booleans, Section 1.1), let us look at it carefully. We have the data keyword
telling Agda that we are declaring a datatype. Then we have the name of the type, which
is N. Then we are giving the type of this datatype, which is Set (see Section 1.1.1). Then
we have the declarations of the constructors of the N type. There are two: zero is for
zero (obviously), and suc is for the successor of a number. So here is how we would
write the first few numbers as elements of the N datatype:

0 = zero

1 = suc zero

2 = suc (suc zero)

3 = suc (suc (suc zero))
...

Notice that to call the constructor suc on an argument like zero, we write suc zero,
and for nested calls, we need to use some parentheses:

suc (suc (suc zero))

In general in Agda (and in other functional languages like Haskell), we have to
use parentheses around nested function calls. Otherwise, without parentheses, Agda
would misinterpret an expression like

suc suc suc zero

as an application of suc to three arguments: suc, suc, and then zero. Actually, we
could use syntax declarations (discussed in Section 1.3) to tell Agda to treat the term
as a nested application—but we will not usually write out such terms, and so we will
not bother. Agda has built-in support to turn decimal notation like 3 into a term like
the one earlier, built using suc and zero. In fact, to enable this notation, nat.agda
has the following pragmas a little below the definition of N:

nat.agda{-# BUILTIN NATURAL N #-}
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If you ask Agda to normalize suc 3 (using Ctrl+c Ctrl+n), it will report 4 as the result.
But this is just cosmetic: Agda views 4 as definitionally equal to suc 3 (and to suc

(suc 2), etc.). And if you ask Agda what the type of 3 is (using Ctrl+c Ctrl+d), you will
see N, as expected.

Around the same place in nat.agda, there are a few syntax declarations, for
smoother parsing of expressions built using the arithmetic operators, which we will
consider next.

3.2 Addition
In mainstream programming languages, we mostly take the definition of arithmetic
operations like addition and multiplication for granted (unless we get bitten by a bug
due to arithmetic overflow, for example, when the result of a computation is too big
to fit into an int or other finite built-in datatype). In Agda and other theorem-proving
languages, the natural numbers and their operations are usually defined. Here is the
definition of addition, from a little further in nat.agda:

nat.agda_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

This definition is very similar to the ones we saw previously, for boolean operations
like conjunction (_&&_). We first have the name of our function, which is _+_. We are
using the underscores to tell Agda that this will be an infix operator: the arguments go
to the left and right of the symbol when it is used in an expression. If it is used without
two arguments, we have to write _+_. Then we have the type of the function, which is

N → N → N

As discussed in Section 1.5, the arrows are really grouped like this:

N → (N → N)

So addition is a function which takes in the first number to add, and then returns a
function which is waiting for the second number and will then return their sum. So if
you ask Agda for the type of a partial application like

_+_ 2

using Ctrl+c Ctrl+d, you will get

N → N

And, of course, if you ask for the type of 2 + 4, you will get N.
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Now let us look carefully at the defining equations for addition:

zero + n = n

suc m + n = suc (m + n)

These follow the same pattern as for the boolean operations. We have some equa-
tions, whose left-hand sides are patterns matching the possible forms for calls to the
addition function. The first pattern covers all calls where the first summand (the first
argument to addition) is zero. The second pattern covers all calls where the first sum-
mand looks like suc m, where m is a pattern variable matching any natural number.
Since every value of type N is either zero or suc m for some other value m of type N,
this indeed covers all the cases for what the first summand could be. And since each
of the two left-hand sides just lists a pattern variable (n) for the second summand, our
two patterns have covered all the possible calls to the addition function.

Phew! We are not used to thinking this hard about the definition of addition, right?
We usually just take it for granted. But when we are building everything up from first
principles as Agda does, these details must be considered. Now that we know we
are correctly covering all the possible inputs, we can consider what the right-hand
sides present as the outputs. In the first defining equation, the output is just n. So we
are returning n if the first input is zero and the second is n. In the second defining
equation, the first input is suc m and the second is n. The right-hand side says that to
add these numbers, what we should do is recursively add m and n, and then take the
successor of that.

Notice that we are making a recursive call on a structurally smaller expression: we
are defining addition for the case where the first input is suc m, and we are making a
recursive call to addition on m. Since m is subdata of suc m, it is structurally smaller. If
our functions only make recursive calls on structurally smaller inputs, for one chosen
input argument, then they are guaranteed to terminate. Agda requires all functions
to terminate, to ensure that we cannot prove a theorem like A → B by just writing a
function that takes in an input of type A and then immediately goes into an infinite
loop, like

f a = f a

An infinite loop like this allows us to prove any formula we want, which would destroy
the usefulness of Agda as a theorem-proving language. Such a language is only inter-
esting if it distinguishes some formulas as true and others as false. If we can prove
every formula by writing an infinite loop, then we are saying all formulas are true.

Here is how the preceding code for addition will execute on an example, adding 3
and 2. I am underlining each expression as it is transformed using one of the defining
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equations for addition just given.

3 + 2 = (suc (suc (suc zero))) + (suc (suc zero))

= suc ((suc (suc zero)) + (suc (suc zero)))

= suc (suc ((suc zero) + (suc (suc zero))))

= suc (suc (suc (zero+ (suc (suc zero)))))

= suc (suc (suc (suc (suc zero))))

= 5

The definition of addition is pulling uses of suc from the first summand out, until
they have all been removed and the first summand is just zero. We are so used to
performing addition with decimal numbers that this algorithm may seem strange,
even to be thinking about. But it is simpler and more basic than decimal addition.

3.2.1 Simplest Theorems about Addition
The simplest theorems about addition concern adding 0 to a number. You can find
the examples we are about to consider in nat-thms.agda. The first one is very easy:

nat-thms.agda0+ : ∀ (x : N) → 0 + x ≡ x

0+ x = refl

The name of the theorem is 0+, and the theorem itself (the type) is

∀ (x : N) → 0 + x ≡ x

This says: “for any natural number x, 0 plus x equals x.” This is very obvious from the
definition we saw previously for addition:

_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

We just have to remember that Agda automatically treats 0 as the constructor zero
of the N datatype, and then we can see that the 0+ theorem should just follow from
definitional equality. And that is exactly how the proof works. We take in an argument
x and then just return refl, because Agda can see, from the first defining equation
for addition, that zero + x is definitionally equal to x.

That was so easy, it feels like we are still living on the Easy Street of theorems about
boolean operations we were considering in the previous chapter. Let’s try to prove the
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same theorem, but with the order of the summands reversed:

+0 : ∀ (x : N) → x + 0 ≡ x

+0 x = refl

If you try this (by copying it into nat-thms.agda, say, and doing Ctrl+c Ctrl+l), you
will see the following error message:

x + 0 != x of type N

when checking that the expression refl has type x + 0 ≡ x

Agda is saying that it was trying to confirm that refl has type x + 0 ≡ x, which it does
not have. And if we look again at the definition of addition, we can see why:

_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

Our code here is doing pattern matching on the first argument. But in the theorem
we are trying to prove, we have a variable for the first argument to addition:

∀ (x : N) → x + 0 ≡ x

So Agda’s type checker has no chance to apply the first (or the second) defining
equation for addition to simplify this expression. It can only simplify 0 + x, not x +

0. This definition of +0 does not work.
So how do we solve this? The theorem is true, isn’t it? (This is a very important thing

to ask yourself when you get stuck trying to prove something, because if the theorem
is false, you could think as long and as hard as you like, and you will still never prove
it—assuming Agda is consistent!) Let’s try to understand how we would prove this
theorem, by considering some small examples (another good method to use when
you are stuck proving something). Suppose we have 3 + 0. This will be normalized
this way:

3 + 0 = (suc (suc (suc zero))) + zero

= suc ((suc (suc zero)) + zero)

= suc (suc ((suc zero) + zero))

= suc (suc (suc (zero+ zero)))

= suc (suc (suc zero))

= 3
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We are just repeatedly peeling off the suc from the first argument until we reach zero,
our base case, where we turn zero + zero into zero. This leaves us with the same
number of suc constructors in the output as we originally had in the input. Does this
help us see how to prove this?

Well, if we are trying to prove 3 + 0 ≡ 3, this is definitionally equal to proving

suc (2 + 0) ≡ suc 2

And that would follow easily, if only we knew that the argument to suc on the left-
hand side—namely, 2 + 0—were equal to 2. But that just exactly fits the pattern of this
theorem we are trying to prove! If only our proof could just call itself recursively, we
would be able to get a proof at this point that 2 + 0 ≡ 2, and then use that to complete
the proof for 3 + 0. Fortunately, our proofs are allowed to call themselves recursively,
since proofs are just programs. Let us see the code for +0, which does this:

nat-thms.agda+0 : ∀ (x : N) → x + 0 ≡ x

+0 zero = refl

+0 (suc x) rewrite +0 x = refl

We are case-splitting on the form of the input x of type N. Either it is zero (the first
equation), or else it looks like suc x for some other x of type N. In the first case, the
proof is easy. Just think about what the Agda type checker will do in this case. It is
checking the type

∀ (x : N) → x + 0 ≡ x

against the equation

+0 zero = refl

So it instantiates the variable x in the type to zero. Then Agda will check that the right-
hand side of the equation has type x + 0 ≡ x, with the instantiation of x to zero. In
other words, it is checking that refl has type

0 + 0 ≡ 0

which is definitionally equal (i.e., equal if you just run code, in this case the code for
addition) to 0 ≡ 0. And refl indeed has this type.

Now let us look at the second defining equation for the +0 proof:

+0 (suc x) rewrite +0 x = refl

We are instantiating the variable x in the type with suc x. As an aside: it is important
to realize that the x in the type is not the same as the x pattern variable in suc x. The
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scope of a variable in a dependent function type like

∀ (x : N) → x + 0 ≡ x

is the rest of the type following the declaration (x : N) →, namely, x + 0 ≡ x. The
scope of a pattern variable like the x on the left-hand side of the equation is just that
equation.

Returning to the second defining equation for +0: since the x in the type has been
instantiated tosuc x (for the pattern variablex, which we were just noting is different),
Agda is left trying to check that refl has type

(suc x) + 0 ≡ suc x

This is the goal formula (the thing we are trying to prove). Now what happens next?
Well, the goal formula can be simplified using the definition of addition. Let us look
at that definition again:

_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

The second defining equation makes our goal formula definitionally equal to

suc (x + 0) ≡ suc x

How? Well, if you instantiate m in the second defining equation for addition with
x, and n with 0, then the second defining equation becomes:

suc x + 0 = suc (x + 0)

So the left-hand side of the goal formula as it was written above can be simplified by
Agda, and the goal becomes

suc (x + 0) ≡ suc x

As noted in our previous informal discussion, if only we could make a recursive call
to +0 to obtain the fact that

x + 0 ≡ x

then we could rewrite with that fact to simplify our goal to a trivial statement

suc x ≡ suc x

And this is exactly what the second defining equation for +0 does:

+0 (suc x) rewrite +0 x = refl
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Recall from Section 2.4.4 that rewrite can be used with any proof of an equation
L ≡ R (for some left-hand side L and right-hand side R) to transform L into R anywhere
in the instantiated type we are checking for this clause. Here, we are using rewrite

with the proof

+0 x

What is the type of this proof? It is x + 0 ≡ x, based on the declared type for +0. So
following this rewrite directive, Agda will replace any occurrences of x + 0with just x
in the instantiated type against which we are checking the second defining equation.
So it will rewrite suc (x + 0) to just suc x in the goal formula, and then refl is all we
need to conclude the proof.

This is really quite amazing, so let us take another look at the complete proof:

nat-thms.agda+0 : ∀ (x : N) → x + 0 ≡ x

+0 zero = refl

+0 (suc x) rewrite +0 x = refl

Even though the explanation was a bit detailed, the final resulting proof is a marvel
of elegance and concision. This is largely due to the use of recursive equations with
pattern matching, and the rewrite directive.

Recursive proofs are called proofs by induction in mathematics. We must prove
our property for the base case of 0, and then show the step (or inductive) case: if the
property holds for x, then it also holds for x + 1. Here, the property in question is x +

0 ≡ x. The base case is the first defining equation, where we must prove this property
with x instantiated to zero. The second defining equation corresponds to the step
case of the induction. We must prove the property with x instantiated to suc x (for a
different x). This corresponds to proving the property for x + 1. But we are allowed to
assume that the property is true for x. This corresponds to making recursive calls like
+0 x. We are only allowed to use our property for x in the step case of the mathematical
induction, where we have to prove it for x + 1. Similarly, we can only make a recursive
call to +0 on x, which is structurally smaller than suc x, for which we have to prove
the property in the second defining equation. So proofs by mathematical induction
become (terminating) recursive programs, like +0. This is another important example
of the Curry-Howard isomorphism.

3.2.2 Associativity of Addition and Working with Holes
Let us prove now a more interesting theorem about addition, namely, associativity.
The proof is +assoc in nat-thms.agda. Associativity says that if we have three num-
bers to add, it does not matter if we add the first two and then the third, or else add
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nat-thms.agda+assoc : ∀ (x y z : N) → x + (y + z) ≡ (x + y) + z

+assoc zero y z = refl

+assoc (suc x) y z rewrite +assoc x y z = refl

Figure 3.1 Proof of associativity of addition.

the first to the sum of the second two: we will get the same answer. This is simpler to
express with a formula:

∀ (x y z : N) → x + (y + z) ≡ (x + y) + z

A constructive proof of this formula is a function which takes in arguments x,
y, and z and returns a proof of x + (y + z) ≡ (x + y) + z. This is certainly a more
impressive property than the fact that x + 0 ≡ x, which we proved in the last section.
Amazingly, the proof is almost exactly the same! The big question we have to answer
when we have multiple variables of type N like this in our theorem is, which variable
should we do induction on? The best rule of thumb is that you should do induction
on a variable that is used where a recursive function will perform pattern matching on
it; and if there are several such variables, prefer the one where such pattern matching
will happen more. The justification is that the more pattern matching will occur, the
more the goal will be simplified. Since addition as we have defined it does pattern
matching on the first argument, it is a good idea to consider doing induction on a
variable used as the first argument to addition. Here we have two options, x and y,
which are both used as first arguments to addition. But x is used twice this way, while
y is used only once. So we will try doing induction on x. This rule of thumb does not
always work, but it is a good place to start.

In this case, the rule of thumb works, resulting in the proof in Figure 3.1. Let us walk
through this in detail. We are case-splitting on x, and just using variables y and z for
the other two arguments to +assoc, in both defining equations. In the first defining
equation, since we have instantiated x to zero, the goal formula becomes

zero + (y + z) ≡ (zero + y) + z

Now, this should simplify, based on the definition of addition. We can actually get
Agda to show us the simplified goal. Try this out yourself. First replace the right-hand
side of the first defining equation with a question mark:

+assoc zero y z = ?
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This tells Agda that we have a hole in our proof, which we still need to fill in. Agda has
some very nice features for working with holes. If we load the file with Ctrl+c Ctrl+l,
we will see the following (where the { }0 is highlighted in green):

+assoc zero y z = { }0

Now if you position your cursor in the hole (i.e., between the curly braces), there
are some new Agda commands you can use:

Viewing the normalized goal and context. If you add the code in Appendix C to
your .emacs file, you can type Ctrl+c Ctrl+, (Control followed by the comma
character) to see the normalized goal. Agda normalizes the goal by running all
code in it, if possible. You will also see the assumptions (if any) that you have
to work with. The set of these is called the context. If you do not add that extra
EMACS code, you will see what Agda gives as the default, which is a “simplified”
goal. Unfortunately, there is no documentation about what this means exactly,
and I find the normalized goal more helpful generally.

Viewing the normalized goal, context, and the type of an expression. If you type a
proof—or any expression—into a hole (again, between the curly braces) and type
Ctrl+c Ctrl+. (i.e., Control and then a period), you will see the same things as with
Ctrl+c Ctrl+, as well as the type of the expression you entered in the hole. This
can be very useful if you think you have part of the proof worked out to fill the
hole, but you want to check the type of what you have so far. (Again, without the
additions to your .emacs file, you will see “simplified” rather than normalized
expressions.) In the rest of the book, I will use “simplification” synonymously
with “normalization,” and not in whatever special sense Agda uses the term.

Solving the hole. If you have a proof entered in the hole and want Agda to try
to use that proof in place of the hole, type Ctrl+c Ctrl+space (Ctrl+c Ctrl+r also
works, and is actually more general, as it will introduce new holes for missing
arguments or for question marks). This will fail if the expression in the hole
cannot be used to fill in the hole because the expression’s type does not match
the type of the hole.

If we type Ctrl+c Ctrl+, in the hole above for +assoc, we will see this:

Goal: y + z ≡ y + z

-------------------------------------------------

z : N

y : N
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Agda is printing the simplified goal, which is just

y + z ≡ y + z

It also prints the types of the pattern variables y and z. We can prove this goal with
refl, as usual.

Now let us look at the second defining equation for +assoc:

+assoc (suc x) y z rewrite +assoc x y z = refl

We are instantiating the variable x in the type with suc x, where as explained in detail
in Section 3.2.1, the x in suc x is different from the x in the type. If we put a hole on the
right-hand side of this second defining equation, we can see what the goal is with the
instantiation of x to suc x. Let us also remove the rewrite directive for a moment,
just to understand how this case of the proof works:

+assoc (suc x) y z = ?

If we load the file with Ctrl+c Ctrl+l, then this will turn into

+assoc (suc x) y z = { }0

Also, Agda will print out for us the type of hole 0, in a small buffer at the bottom of
the EMACS window:

?0 : suc x + (y + z) ≡ suc x + y + z

This is exactly what we would expect, with x instantiated to suc x. To see better how
to proceed with the proof, we should do Ctrl+c Ctrl+, with our cursor in hole 0. Agda
will show us this:

Goal: suc (x + (y + z)) ≡ suc (x + y + z)

--------------------------------------------------

z : N

y : N

x : N

Our context lists the variables x, y, and z of type N, with the simplified goal. Simplifi-
cation has pulled suc out of the addition expressions. We can clearly see here that if
only we had a proof of

(x + (y + z)) ≡ (x + y + z)

we could rewrite the left-hand side of the goal formula to be identical to the right-
hand side. And of course, by making a recursive call to +assoc (i.e., by applying our
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induction hypothesis), we can get such a proof. This is exactly what the second defining
equation for +assoc does. Here is the complete proof once again:

nat-thms.agda+assoc : ∀ (x y z : N) → x + (y + z) ≡ (x + y) + z

+assoc zero y z = refl

+assoc (suc x) y z rewrite +assoc x y z = refl

3.2.3 Commutativity of Addition and Helper Lemmas
In this section we will see the proof of the following theorem:

∀ (x y : N) → x + y ≡ y + x

This says that for any natural numbers x and y, you get the same answer if you add x

and y or if you add y and x. This is called commutativity of addition.
Let us see what happens if we try to prove this from scratch. We have the usual ques-

tion of which of our two natural-number variables x and y to do induction on. Here,
the rule of thumb mentioned in the previous section is inconclusive: each variable
occurs as the first argument to a call to addition. So let us just try pattern matching
on the first one, and then let us write some holes to get some more information:

+comm : ∀ (x y : N) → x + y ≡ y + x

+comm zero y = ?

+comm (suc x) y = ?

To try this out, just comment out the code for the existing +comm proof in nat-

thms.agda, and use this code instead (recall that you can comment out code by
placing it betwen {- and -}). If we load the file with Ctrl+c Ctrl+l, Agda will change
the code to this:

+comm : ∀ (x y : N) → x + y ≡ y + x

+comm zero y = { }0

+comm (suc x) y = { }1

It will also tell us the types of these two holes:

?0 : zero + y ≡ y + zero

?1 : suc x + y ≡ y + suc x

Let us work on hole 0 first. If you put your cursor in the hole and type Ctrl+c Ctrl+,
you will see this:

Goal: y ≡ y + 0

--------------------------------------------------

y : N
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This looks promising: we have simplified the left-hand side to just y, and we can
rewrite the right-hand side using +0, which we proved in Section 3.2.1. So we can
change our code so far for +comm to this (the number of the remaining hole will be
updated when you load the file again with Ctrl+c Ctrl+l):

+comm : ∀ (x y : N) → x + y ≡ y + x

+comm zero y rewrite +0 y = refl

+comm (suc x) y = { }0

We are using the rewrite directive in the first defining equation. As we have seen
before, to use this directive, you must put a proof of an equation immediately after
the rewrite keyword. Here, the equation in question is

y + 0 ≡ y

We do not write this equation itself after rewrite. Rather, we have to write a proof of
this equation. And +0 y is a proof of y + 0 ≡ y for any y we give to +0 as an argument.
Then the rewrite directive will simplify our goal to just y ≡ y, which is proved by
writing refl on the right-hand side of the equation.

Let us look now at the remaining hole (in the second defining equation) for our
definition of +comm. If we do Ctrl+c Ctrl+, in this hole, Agda will tell us the following:

Goal: suc (x + y) ≡ y + suc x

-----------------------------------------------------------

y : N

x : N

Now, this also looks pretty promising. We can certainly apply our induction hypothesis
to rewrite x + y on the left-hand side of the goal to y + x. To do this, we use a rewrite
directive. The proof is now

+comm : ∀ (x y : N) → x + y ≡ y + x

+comm zero y rewrite +0 y = refl

+comm (suc x) y rewrite +comm x y = { }0

If we reload this and ask Agda about hole 0, it will tell us

Goal: suc (y + x) ≡ y + suc x

-----------------------------------------------------------

y : N

x : N

Okay, this is looking pretty good. We would be done if we could just rewrite the right-
hand side using this equation:
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y + suc x ≡ suc (y + x)

How can we get a proof of this equation? Well, we actually have to prove this by a
separate inductive argument. The lemma +suc defined a little above +comm in nat-

thms.agda does this:

nat-thms.agda+suc : ∀ (x y : N) → x + (suc y) ≡ suc(x + y)

+suc zero y = refl

+suc (suc x) y rewrite +suc x y = refl

The proof is very similar to the proof of +0 which we considered in Section 3.2.1.
Both of these lemmas, +suc and +0, show what happens when you have a constructor
term (either zero or suc x) as the second argument of addition. We already know
what happens when such a term is the first argument of addition, because we defined
addition (in nat.agda) to use pattern matching on the first argument:

_+_ : N → N → N

zero + n = n

suc m + n = suc (m + n)

The final proof for +comm looks like this:

+comm : ∀ (x y : N) → x + y ≡ y + x

+comm zero y rewrite +0 y = refl

+comm (suc x) y rewrite +suc y x | +comm x y = refl

This demonstrates one feature of Agda which we did not use yet, namely, rewriting
with multiple equations. We just need to separate the proofs of those equations,
following the rewrite keyword, with vertical bars:

rewrite +suc y x | +comm x y

An intriguing alternative to this approach is suggested by Cockx et al., who describe
a modification to Agda which allows addition to be defined by equations that reduce
both 0 + x and x + 0 [Cockx et al. 2014]. With this modification, commutativity can
be proved without the helper lemmas +0 and +suc.

3.3 Multiplication
Let us return to nat.agda to see the definition of multiplication:

nat.agda_*_ : N → N → N

zero * n = zero

suc m * n = n + (m * n)
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This code follows the familiar pattern for defining functions in Agda. First, we choose
the name of our function, which in this case is _*_. The underscores indicate that the
arguments to this function will be written on its left and right sides. Then we have
the type, which is N → N → N, and then defining equations. This definition is case
splitting on the first argument to multiplication. If it iszero, we returnzerono matter
what the value of the second argument is. That is what the first defining equation says.
If it is suc m for some m, then we have this second defining equation:

suc m * n = n + (m * n)

We just have to add n to the result of making a recursive call to multiply m and n.
Notice that the recursive call is on the argument m, which is structurally smaller than
the argument suc m on the left-hand side of the equation. This guarantees that all calls
to multiplication will terminate.

Our definition is defining multiplication to be the same as iterated addition. To
multiply 3 and 4, you just add 4 to 0 three times:

3 ∗ 4 = (suc (suc (suc zero))) ∗ 4

= 4 + ((suc (suc zero)) ∗ 4)

= 4 + 4 + ((suc zero) ∗ 4)

= 4 + 4 + 4 + (zero ∗ 4)

= 4 + 4 + 4 + zero

= 12

Like addition, multiplication is associative and commutative, and nat-thms.agda

has proofs *assoc and *comm for these properties. Before we look at those proofs, let
us first see proofs of some distributivity properties of multiplication over addition.

3.3.1 Distributivity of Multiplication and Choosing the Induction Variable
Let us prove the following theorem relating multiplication and addition:

∀ (x y z : N) → (x + y) * z ≡ x * z + y * z

This is *distribr in nat-thms.agda in the IAL. Which of the three variables in
question should we try to induct on? Our rule of thumb asks us to see how many times
a variable is used as an argument on which pattern matching will be performed. The
tallies are as follows:
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Variable Count

x 2

y 1

z 0

This makes it pretty clear that the best choice for the variable on which to induct is
x. One rather nice feature of Agda we can introduce at this point is the EMACS command
to split pattern variables automatically. Say we start out our definition of *distribr
this way:

*distribr : ∀ (x y z : N) → (x + y) * z ≡ x * z + y * z

*distribr x y z = ?

We could again comment out the current definition ofdistribr innat-thms.agda

to try these steps. If we load the file with Ctrl+c Ctrl+l and then do Ctrl+c Ctrl+, we will
see

*distribr x y z = { }0

Now here is the new EMACS command: if you put your cursor in the hole (so in between
the curly braces) and type Ctrl+c Ctrl+c, Agda will ask for “pattern variables to case.”
We can enter one or more pattern variables, separated by spaces, and Agda will
automatically construct equations with right-hand sides covering all possibilities for
those variables. In this case, if we enter x as the sole pattern variable to split on, Agda
will automatically turn the above equation into the following two:

*distribr zero y z = { }0

*distribr (suc x) y z = { }1

The old equation with pattern variable x has been replaced by two new ones with the
two possible constructors for x, namely, zero and suc.

The goal in the first equation simplifies to

y * z ≡ y * z

which we prove with refl as usual. If we type Ctrl+c Ctrl+, with our cursor in the
second hole, we see this remaining goal:

z + (x + y) * z ≡ z + x * z + y * z

Inserting some extra parentheses to make the syntax more explicit, this is

z + ((x + y) * z) ≡ (z + x * z) + y * z



60 Chapter 3 Natural Numbers

nat-thms.agda*distribr : ∀ (x y z : N) → (x + y) * z ≡ x * z + y * z

*distribr zero y z = refl

*distribr (suc x) y z rewrite *distribr x y z =

+assoc z (x * z) (y * z)

Figure 3.2 Proof of right distributivity of multiplication over addition.

We see that the induction hypothesis can be applied here, to transform (x + y) *

z into (x * z) + (y * z). This is legal because we are using our induction hypothesis
with x to prove the case with suc x. So let us use a rewrite with a recursive call to
*distribr. The proof becomes

*distribr : ∀ (x y z : N) → (x + y) * z ≡ x * z + y * z

*distribr zero y z = { }0

*distribr (suc x) y z rewrite *distribr x y z = { }1

If we use Ctrl+c Ctrl+, in the hole labeled 1, we will see this goal to prove

z + (x * z + y * z) ≡ z + x * z + y * z

If we read through this carefully, on each side of the ≡ sign (for propositional equal-
ity), we have a sum of z, x * z, and y * z. The sums are just associated differently:
on the left-hand side the sum is right-associated, while on the right-hand side it is
left-associated (since _+_ is declared left-associative in nat.agda, Agda omits the
parentheses which would make that explicit). We can reassociate the sum on the left-
hand side by applying the +assoc proof we proved earlier. We just call this proof as
we would call any function. In fact, we can simply use a call to +assoc to complete
the proof, because the goal we have to prove is nothing more than an instance of
associativity of addition. In other words, we have to prove

A + (B + C) ≡ A + B + C

where A is z, B is x * z, and C is y * z. And this is exactly what is proved by calling
+assoc with those three expressions as inputs. So the completed proof of distribr
is the one shown in Figure 3.2.

3.3.2 Commutativity of Multiplication
This proof is very similar to the proof of commutativity of addition. As for addition,
our rule of thumb for induction determines no choice of which of the two variables to
induct on when proving
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∀ (x y : N) → x * y ≡ y * x

So let us try x. The proof becomes

*comm : ∀ (x y : N) → x * y ≡ y * x

*comm zero y = { }0

*comm (suc x) y = { }1

Looking at hole 0 (by placing our cursor in the hole and typing Ctrl+c Ctrl+,), we see
that the goal to prove is as follows:

Goal: 0 ≡ y * 0

-------------------------------------------------

y : N

This is similar to what happened when we proved commutativity for addition, and
the solution is similarly easy. We need a helper lemma with the following typing,
proved earlier in nat-thms.agda:

*0 : ∀ (x : N) → x * 0 ≡ 0

We can just rewrite with a call to this lemma, and then use refl to finish that case.
So the proof becomes

*comm : ∀ (x y : N) → x * y ≡ y * x

*comm zero y rewrite *0 y = refl

*comm (suc x) y = { }0

If we look at the goal for the new hole 0 (since Agda renumbers the holes when we
reload the file), we will see it is the following:

Goal: y + x * y ≡ y * suc x

-------------------------------------------------

y : N

x : N

Just as for commutativity of addition, we need a helper lemma to shift the suc off
the second argument to multiplication on the right-hand side of this goal equation.
The typing for this lemma, which can be found earlier in nat-thms.agda, is

*suc : ∀ (x y : N) → x * (suc y) ≡ x + x * y

If we rewrite with a call to this, our new goal becomes

y + x * y ≡ y + y * x
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nat-thms.agda*comm : ∀ (x y : N) → x * y ≡ y * x

*comm zero y rewrite *0 y = refl

*comm (suc x) y rewrite *suc y x | *comm x y = refl

Figure 3.3 Proof of commutativity of multiplication.

And now we just need to make a recursive call to *comm, to turn x * y on the left-hand
side of the equation into y * x. The complete proof of commutativity of multiplication
is then in Figure 3.3.

3.3.3 Associativity of Multiplication
Let us prove one more theorem about multiplication, namely, associativity:

∀ (x y z : N) → x * (y * z) ≡ (x * y) * z

Just as for associativity of addition, our rule of thumb provides us with a clear sug-
gestion for which variable might be most helpful to induct on. For x is used twice as
the first argument of multiplication (and multiplication as we have defined it does
pattern matching on that first argument), while y is used once like that, and z zero
times. So let us recurse on x. The proof starts out as

*assoc : ∀ (x y z : N) → x * (y * z) ≡ (x * y) * z

*assoc zero y z = ?

*assoc (suc x) y z = ?

The first case is trivial, because when x is instantiated to 0, the goal simplifies to
just 0 ≡ 0, which we prove with refl as usual. So let us look (using Ctrl+c Ctrl+, with
our cursor in the hole) at the second goal we have to prove:

Goal: y * z + x * (y * z) ≡ (y + x * y) * z

-------------------------------------------------

z : N

y : N

x : N

This one has gotten a bit more complicated. We can see a place where we could apply
our induction hypothesis (i.e., make a recursive call) on the left-hand side of the goal
equation. We might as well just do that now, since we will surely want to do it, and
it is not too clear yet what else we should do to this goal. If we do a rewrite with a
recursive call to *assoc, our proof becomes
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*assoc : ∀ (x y z : N) → x * (y * z) ≡ (x * y) * z

*assoc zero y z = refl

*assoc (suc x) y z rewrite *assoc x y z = { }0

The goal for hole 0 is now

y * z + x * y * z ≡ (y + x * y) * z

It is still not too clear what to do, but if we think about it a bit, we will hopefully notice
that on the right-hand side, there is an expression we could simplify by applying the
right-distributivity lemma we proved in Section 3.3.1. In fact, if we do this, the two
sides of our goal equation will become identical. This completes the proof, shown in
Figure 3.4.

3.4 Arithmetic Comparison
In nat.agda in the IAL, we have a definition of the usual less-than operation for
arithmetic comparison. This is shown in Figure 3.5. The code has four equations,
corresponding to the four basic possibilities for two natural-number inputs: either
both are zero, both are nonzero, or we have one of each. In three of these cases, the
boolean answer is determined with no further computation. Only if both numbers are
nonzero is something more required: for suc x to be less than suc y, we must have x
less than y.

Let us prove that _<_ is transitive: if x is less than y and y is less than z, then we
must have x less than z. This is a basic property of the less-than function. We will

nat-thms.agda*assoc : ∀ (x y z : N) → x * (y * z) ≡ (x * y) * z

*assoc zero y z = refl

*assoc (suc x) y z

rewrite *assoc x y z | *distribr y (x * y) z = refl

Figure 3.4 Proof of associativity of multiplication.

nat.agda_<_ : N → N → B

0 < 0 = ff

0 < (suc y) = tt

(suc x) < (suc y) = x < y

(suc x) < 0 = ff

Figure 3.5 A definition of the less-than function on natural numbers.
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nat-thms.agda<-trans : ∀ {x y z : N} →
x < y ≡ tt → y < z ≡ tt → x < z ≡ tt

<-trans {x} {0} p1 p2 rewrite <-0 x = B-contra p1

<-trans {0} {suc y} {0} p1 ()

<-trans {0} {suc y} {suc z} p1 p2 = refl

<-trans {suc x} {suc y} {0} p1 ()

<-trans {suc x} {suc y} {suc z} p1 p2 =

<-trans {x} {y} {z} p1 p2

Figure 3.6 Proof of transitivity of less-than.

see other examples involving transitive relations later in the book (for example, in
Section 5.2.1). The proof, from nat-thms.agda, is shown in Figure 3.6. This proof is
not difficult, but it does combine a lot of the proof techniques we have seen so far
for Agda. The theorem, called <-trans, takes in implicit natural-number inputs x, y,
and z. It then takes in two explicit arguments, which are proofs that x < y is equal to
tt and y < z is also equal to tt. It then returns a proof that x < z is equal to tt. You
might wonder why we do not just write the following for this theorem:

∀ {x y z : N} → x < y → y < z → x < z

This looks more elegant because we do not have the “≡ tt” everywhere we are using
_<_. But this expression will not type-check, because as defined in the IAL, _<_ returns
a boolean (B), and a boolean cannot be used as a type. Types have type Set in Agda,
and B is not the same as Set. One could alternatively define _<_ as a relation: it would
take in two natural numbers and return a Set. But then less-than could not be used
computationally in code. Expressions which have type Set describe code, but they are
not code themselves (one cannot pattern-match, for example, on expressions of type
Set, nor do anything else computational with them). The transitivity theorem we are
considering is making a statement about the behavior of a particular program we have
written, namely, _<_. If that program returns tt when given x and y as inputs, and if
it also returns tt when given y and z as inputs, then it will yet again return tt when
given x and z as inputs.

Turning to the actual proof in Figure 3.6: we are pattern matching on all three
implicit inputs (x, y, and z). There are several impossible cases, which are handled
with the absurd pattern (). For example, in the third defining clause, the absurd
pattern is used because the type of the second explicit input, namely, y < z ≡ tt, has
been instantiated with suc y for y (remember that these are two distinct variables
named y) and 0 for z. So that type is
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suc y < 0 ≡ tt

This type is equal to ff ≡ tt, by the definition of _<_ (the fourth equation in Fig-
ure 3.5 applies in this case, to simplify suc y < 0 to ff). And as we saw previously
(Section 2.4.1), we can use the absurd pattern () in such cases so that Agda knows
we will not define the value of the function in this case. The function could never be
called with a proof of an impossible formula like ff ≡ tt, so no definition is needed.

The first equation in Figure 3.6 is a little more interesting. Here we are again in an
impossible situation: we have a proof of x < y ≡ tt, where y has been instantiated to
0. So our first explicit argument is a proof of x < 0 ≡ tt, which is impossible. But in
this case, the impossibility is not obvious enough for us to be able to use the absurd
pattern. To use the absurd pattern for an equation A ≡ B, Agda requires that A and B

are definitionally equal to values starting with distinct constructors, like tt and ff or
zero and suc. What the proof in Figure 3.6 does in this case is to do a rewrite with
an application of the following easily proved lemma from nat-thms.agda:

<-0 : ∀ (x : N) → x < 0 ≡ ff

This changes the type of p1 from x < 0 ≡ tt to ff ≡ tt. But if we change the type
using rewrite, we cannot use the absurd pattern instead of p1. Agda does not allow
this. Instead, we are giving p1 as an input to the theorem B-contra, which we saw in
Section 2.6:

B-contra : ff ≡ tt → ∀ {P : Set} → P

In this case, Agda is able to figure out what the implicit typeP is that we want to inhabit.
So the proof closes this case with the call to B-contra.

The most interesting case is when x, y, and z are all nonzero numbers suc x, suc
y, and suc z (for different values for x, y, and z). In that case we have

. suc x < suc y ≡ tt

. suc y < suc z ≡ tt

By the third equation from the definition of _<_ (Figure 3.5), these types are defini-
tionally equal to

. x < y ≡ tt

. y < z ≡ tt

This is great, because we can then just use our induction hypothesis (i.e., make a
recursive call to <-trans). This is legal because each input is structurally less for
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this recursive call than the corresponding input to the call we are covering. And that
concludes this case.

There remains one trivial case, when x is 0 and y and z are both nonzero. The
goal equation becomes definitionally equal to tt ≡ tt and can thus be proved by
refl. That completes the proof of transitivity of _<_. In nat-thms.agda, you will find
several variations of this theorem, using a less-than-or-equal-to function _≤_, defined
in terms of _<_ and an equality test _=N_, which we will consider next.

nat.agda_≤_ : N → N → B

x ≤ y = (x < y) || x =N y

3.4.1 Dotted Variables
This is not a bad place to mention one feature of implicit arguments which we have
not yet seen. For our proof of <-trans, we matched on the implicit arguments in the
equations defining <-trans. But suppose we started out our proof without doing that:

<-trans : ∀ {x y z : N} →
x < y ≡ tt → y < z ≡ tt → x < z ≡ tt

<-trans p q = { }0

If we look at the context in the hole, we will see this:

Goal: .x < .z ≡ tt

-------------------------------------------------

q : .y < .z ≡ tt

p : .x < .y ≡ tt

.z : N

.y : N

.x : N

Agda has introduced variables whose names start with dots, for the implicit argu-
ments which we have not matched. Those variables cannot be used on the right-hand
side of the equation. They are just there to allow expression of the types for the explicit
variables, p and q in this case. If we find we do need to refer to those variables on the
right-hand side of the equation (as we did in the proof of <-trans), then the solution
is simply to match on the implicit arguments in the pattern on the left-hand side. So
if we instead have

<-trans : ∀ {x y z : N} →
x < y ≡ tt → y < z ≡ tt → x < z ≡ tt

<-trans{x}{y}{z} p q = { }0

then we will see the following context, which does not have dotted variables.
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Goal: x < z ≡ tt

-----------------------------------------------------------

q : y < z ≡ tt

p : x < y ≡ tt

z : N

y : N

x : N

It is worth noting that one can instruct Agda to do an automatic case split on dotted
variables using Ctrl+c Ctrl+c (as we saw for explicit variables in Section 3.3.1).

3.4.2 An Equality Test
So far in this book we have considered Agda’s built-in definitional equality (see Sec-
tion 2.1.2), and also the defined propositional equality _≡_. The former is used au-
tomatically by Agda during type checking to determine if expressions are equivalent,
while the latter is used to express, as a type, the proposition that two values are equal.
There are many more kinds of equality that we can consider in type theory. One that
is important for verified programming is a function for testing whether or not two
values are equal. We could call this computational equality, or an equality test. For
natural numbers, the code for this equality test is given in Figure 3.7. There are three
situations covered by the equations: either both numbers are zero, both are nonzero,
or we have one of each. If both numbers are zero, then they are of course equal and
we return tt. If we have suc x and suc y, we recursively test x and y for equality. And
in the other situation we return ff. Note that there we use the pattern _, which is just
like a variable except that its value cannot be referenced on the right-hand side of the
equation. So, as you can confirm using Ctrl+c Ctrl+n, 3 =N 3will return tt, and 3 =N 4

will return ff.
Now let us look at two theorems which show that this equality test we have defined

returns tt for its natural-number inputs if and only if those inputs are propositionally
equal. We could take this property as the definition of an equality test for a type A: a
function f of type A → A → B is defined to be an equality test when f x y returns tt if

nat.agda_=N_ : N → N → B

0 =N 0 = tt

suc x =N suc y = x =N y

_ =N _ = ff

Figure 3.7 A function testing natural numbers for equality.
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nat-thms.agda=N-refl : ∀ (x : N) → (x =N x) ≡ tt

=N-refl 0 = refl

=N-refl (suc x) = (=N-refl x)

=N-to-≡ : ∀ {x y : N} → x =N y ≡ tt → x ≡ y

=N-to-≡ {0} {0} u = refl

=N-to-≡ {suc x} {0} ()

=N-to-≡ {0} {suc y} ()

=N-to-≡ {suc x} {suc y} u

rewrite =N-to-≡ {x} {y} u = refl

=N-from-≡ : ∀ {x y : N} → x ≡ y → x =N y ≡ tt

=N-from-≡ {x} refl = =N-refl x

Figure 3.8 Proofs showing that the function we have defined is truly an equality test.

and only if x ≡ y is provable. Not every type A can have an equality test. For example,
it seems there is no way to define an equality test for the type N → N, because such
a test would have to be able to compare functions for definitional equality, and this
seems impossible within the language. There is no way to consider different cases for
what the functions could look like, for example. But for many inductive datatypes, it
is possible to define equality tests.

Figure 3.8 shows three proofs about this function _=N_. The first is an easy one
showing that _=N_ is reflexive: for any x of type N, calling _=N_ on x and x will always
return tt. This theorem will be used shortly. (_=N_ is also symmetric and transitive,
but we do not need those proofs here.) The proof =N-to-≡ shows one direction of the
property for _=N_ to be an equality test: if _=N_ says two numbers are equal, then they
really are. This is a soundness property: the things indicated to be true really are true.
The proof just considers the four basic cases for two natural-number inputs. There
is one trivial case when both are zero. There are two absurd cases when one is zero
and the other is nonzero (these are absurd cases because the instantiated type x =N y

≡ tt becomes definitionally equal to ff ≡ tt). And in the last equation, where both
inputs are nonzero, we do a rewrite with a recursive call, to turn the goal into the
trivial equation suc y ≡ suc y.

Finally, the third proof, =N-from-≡, is very easy. We just match on the equality
proof to force Agda to realize that x and y must be definitionally equal. Then our goal
becomes just

x =N x ≡ tt

which we prove using =N-refl.
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nat.agdais-even : N → B

is-odd : N → B

is-even 0 = tt

is-even (suc x) = is-odd x

is-odd 0 = ff

is-odd (suc x) = is-even x

Figure 3.9 Mutually recursive functions testing whether numbers are even or odd.

nat-thms.agdaeven~odd : ∀ (x : N) → is-even x ≡ ~ is-odd x

odd~even : ∀ (x : N) → is-odd x ≡ ~ is-even x

even~odd zero = refl

even~odd (suc x) = odd~even x

odd~even zero = refl

odd~even (suc x) = even~odd x

Figure 3.10 Mutually recursive proofs about is-even and is-odd.

3.5 Even/Odd and Mutually Recursive Definitions
As a final example of programming and proving with the natural numbers, let us look
at the definitions of functions testing whether a number is even or odd. This is a
standard basic example of mutually recursive functions. To test whether suc x is even,
we recursively test whether x is odd; and vice versa. The code from nat.agda is shown
in Figure 3.9. In Agda, we can define mutually recursive functions by declaring the
types of both functions first, and then writing the equations for both functions after
that. So the code in Figure 3.9 begins with declarations of the types of the is-even

and is-odd functions. Then the equations for both functions follow.
Now let us prove that if a number is even, then it is not odd:

even~odd : ∀ (x : N) → is-even x ≡ ~ is-odd x

The proof is at the end of nat-thms.agda. As often happens when writing proofs
about pure functional programs, the structure of the proof mirrors the structure of
the code. We find that when the number is suc x, the equation we are trying to prove
becomes definitionally equal to

is-odd x ≡ ~ is-even x

So we must write mutually recursive proofs, following the mutually recursive structure
of is-even and is-odd. The proofs are shown in Figure 3.10 and are set up exactly
the same way as the code: the mutually recursive functions (proofs) are declared first,
and then their defining equations are listed second.
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3.6 Conclusion
We have seen how to define the basic arithmetic functions addition and multiplica-
tion on unary (Peano) natural numbers, where a number like 2 is represented as suc
(suc zero). We also saw how to prove several basic theorems about addition and
multiplication, using induction. In Agda, a proof by induction is just a terminating
recursive function, so writing proofs of somewhat interesting properties like commu-
tativity of addition (x + y ≡ y + x) is just programming, albeit with fancier types. The
files nat.agda and nat-thms.agda define several more basic arithmetic functions,
with various lemmas and theorems about them. Among these are a comparison oper-
ator _<_, and an equality test _=N_, which we also considered. We also saw how to
write mutually recursive functions in Agda.

Exercises
3.1. As usual, pick some theorems in nat-thms.agda whose proofs do not look too
complicated, and reprove them yourself.

3.2. In nat.agda, greater-than and greater-than-or-equal-to orderings are defined in
terms of less-than and less-than-or-equal-to. Prove versions of theorems like <-trans
and <+, but modified to use _>_ instead of _<_. This is mostly for practice in writing
out formulas in Agda, since the proofs can be written just to invoke the theorems
dealing with _<_.

3.3. For each of the following functions, which one statement describes best what
the function f does? There is exactly one correct answer for each.

(a) f : (n : N) → N

f 0 = 1

f (suc x) = (suc x) * (f x)

(i) Reverses a list
(ii) Multiplies input n by itself
(iii) Computes nn

(iv) Computes factorial
(v) Factors n

(b) f’ : N → B

f : (n : N) → B

f 0 = tt

f (suc x) = f’ x

f’ 0 = ff

f’ (suc x) = f x
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(i) Returns tt (boolean true) if and only if n is even
(ii) Returns tt if and only if n is 0
(iii) Returns tt if and only if n is odd
(iv) Returns the length of n
(v) Computes primality of n





4Lists
So far, we have studied programming and proving with the booleans and the natural
numbers. These are important datatypes, certainly, but they are not data structures:
data designed for holding and organizing other data. Data structures are, of course,
fundamental to programming and Computer Science, so it is high time we looked at
programming and proving with some sort of data structure. In this chapter, we will
study programming and proving with lists in Agda. Lists are a basic data structure in
any programming language, but for functional programming languages—from LISP
to ML to Haskell—they are really a programming cornerstone. This may be because
they provide a simple way to aggregate a collection of elements (usually of the same
type) into a single structure. Lists as we will study them in Agda are essentially the
same as lists in OCaml, Haskell, and other functional programming languages.

4.1 The List Datatype and Type Parameters
The list datatype is declared in the file list.agda in the Iowa Agda Library:

list.agdadata L {�} (A : Set �) : Set � where

[] : L A

_::_ : (x : A) (xs : L A) → L A

This is our first example of a parametrized datatype, so let us look at it carefully. The
declaration is similar to that of B (booleans, Section 1.1) and N (natural numbers,
Section 3.1). We have the data keyword, indicating that this is a datatype declaration,
and then we have the name L of the type we are declaring. To type L with the additions
to the .emacs file proposed at the end of the book, one just types \bl. Next comes
something we did not have in our previous datatype declarations: parameters. This
datatype L is for lists of elements, where all elements have the same type. For example,
we could have a list of booleans, or a list of naturals. Whatever the type of the elements
is, we need to mention it in the type of the lists of such elements. So for a list of
booleans, we will use the type L B, and for a list of naturals, we will use L N. To do
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this, we will view L as a function which takes in a type and returns a type. It is a type-
level function. Actually, we will allow L to take in a type at any type level �. It will return
a type at that same level (this is required by Agda).

To express the idea that L is a function which takes a type A at level � as input and
then produces a type at that same level, we are writing some type parameters following
the name of the datatype:

data L {�} (A : Set �)

We are using curly braces for the type level � since Agda will be able to infer the level
when we write a type like L B. Then we use parentheses for type parameter A, since
this argument to L needs to be explicit (Agda will not generally be able to infer it).
Following these parameters, we list the type for L itself (assuming its parameters are
given), and then the where keyword:

data L {�} (A : Set �) : Set � where

One nice thing about using parameters in a datatype definition is that we can use
those parameters in the types for the constructors. So for the first constructor, [], we
just write this declaration:

[] : L A

This constructor [] is for the empty list, which contains no elements. All lists get built
from the empty list by applying the second constructor, which is called “cons” from
its ancestor operation in LISP:

_::_ : (x : A) (xs : L A) → L A

This infix operator takes in x of type A and then xs of type L A and it returns a L A. The
idea is that we construct a bigger list x :: xs from an element x of type A and then a
sublist xs which contains the other elements (if any) of the list. The element x is often
called the head of the new list, whilexs is its tail. A little later in the file there is a syntax
declaration making the _::_ operation right-associative. So with these definitions, we
can construct lists like:

1 :: 2 :: 3 :: []

tt :: tt :: ff :: ff :: []

The first list just conses the natural numbers 1, 2, and 3, in that order, onto the empty
list. It has type L N. The second list contains two copies of tt and then two of ff. It
has type L B. Again, the complete definition of the list datatype is:
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list.agdadata L {�} (A : Set �) : Set � where

[] : L A

_::_ : (x : A) (xs : L A) → L A

One small note: if you ever have occasion to look at the standard library for Agda (not
the Iowa Agda Library), be warned that the cons operator there is a single character
that looks like a double colon. You enter this in EMACS with \::.

4.2 Basic Operations on Lists
Let us look at how to implement some basic operations on lists. Remember that in
Agda, all datatypes are immutable, so we are here working with lists that cannot be
changed. If we want to insert an element into a list, for example, we will not do so by
destructively modifying that list. Rather, we will build a new (immutable!) list which
is just like the original one except that it has the inserted element at the desired
position. The code examples we are considering are all from list.agda in the Iowa
Agda Library.

4.2.1 Length of a List
To compute the length of a list, we have to recurse through the list, adding one for
each use of cons (::) we see:

list.agdalength : ∀{�}{A : Set �} → L A → N

length [] = 0

length (x :: xs) = suc (length xs)

If we examine the type given for length, we see that length takes in an implicit type-
level � and a type A, and then takes in one explicit argument, of type L A, which is
the list for which we should calculate the length. It will then return a natural number
(N) for the length of the list. The code is straightforward. We have one case for the
empty list, and one case for a nonempty list x :: xs with head x and tail xs. These
two cases are expressed as two equations. In the first case, we just return 0. In the
second, we are returning the successor of the length of the tail (xs). The length of the
tail is obtained by making a recursive call (length xs). In effect, this code is going to
translate a sequence of cons’s into a sequence of successors. For example, it will turn

10 :: 20 :: 9 :: 19 :: 8 :: []

into

suc (suc (suc (suc (suc zero))))

which Agda knows can also be written 5.
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4.2.2 Appending Two Lists
One basic operation is appending two lists. We want to take two lists, like

1 :: 2 :: 3 :: []

and

3 :: 4 :: 5 :: 6 :: []

and append them to get

1 :: 2 :: 3 :: 3 :: 4 :: 5 :: 6 :: []

We just create a new list with all the elements in order from the first and then the
second list. This is pure functional programming, as we were recalling previously, so
we do not destroy or modify either of the two input lists in the course of generating
the output list. We will use the notation l1 ++ l2 to append lists l1 and l2. The ++

operator is also used in Haskell for appending two lists. Here is the Agda code for this
append operator:

list.agda_++_ : ∀ {�} {A : Set �} → L A → L A → L A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

Append takes in an implicit type-level � and type A, and then takes in two explicit
arguments, which are the lists to append. Those lists have to hold the same type of
elements, and so the input and output lists all have type L A. The code then proceeds
by recursion on the first explicit argument. So we are pattern matching on the first list
being appended. Let us look at the first equation:

[] ++ ys = ys

This says that if the first list is empty (i.e., []), and the second list is ys, then we just
return ys. Here ys is just a pattern variable. Often in functional programming you will
see code use a variable name like xs or ys to refer to a list (with the idea that it is a
list “of x’s”). Hopefully this equation makes sense: if the first list we are appending is
empty, then we just return the second list, because there is nothing in the first list to
add to it.

Now let us look at the second equation:

(x :: xs) ++ ys = x :: (xs ++ ys)

This says that if we are appending a list x :: xs, with head x and tail xs, to some other
list ys, then the new list we create will have head x, and its tail will be whatever we
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get from the recursive call xs ++ ys. For an example of this code in action, let us step
through the following computation, where I am underlining the expression which is
simplifed next by applying one of the two defining equations for _++_:

(1 :: 2 :: 3 :: [])++(3 :: 4 :: 5 :: 6 :: [])

= 1 :: ((2 :: 3 :: [])++(3 :: 4 :: 5 :: 6 :: []))

= 1 :: 2 :: ((3 :: [])++(3 :: 4 :: 5 :: 6 :: []))

= 1 :: 2 :: 3 :: ([]++(3 :: 4 :: 5 :: 6 :: []))

= 1 :: 2 :: 3 :: 3 :: 4 :: 5 :: 6 :: []

4.2.3 Mapping a Function Over a List
A very commonly used function for immutable lists is the map function. The idea with
map is that we have some list of elements, and we want to create a new list by applying
some function f to those elements in order. Suppose our function is _+_ 10. Recall
from Section 3.2 in Chapter 3 that this is a partial application of the addition function
to the number 10. Its type is N → N; it is a function that is waiting for a second number,
and then will return the sum of 10 and that number. If we map this _+_ 10 function
over the list 1 :: 2 :: 3 :: [], we will get 11 :: 12 :: 13 :: []; in other words, the
list where 10 has been added to each of the elements of 1 :: 2 :: 3 :: []. This can be
tested in Agda by typing Ctrl+c Ctrl+n (to request normalization of a term), and then
the call to map, which is

map (_+_ 10) (1 :: 2 :: 3 :: [])

Here is the Agda code for map:

list.agdamap : ∀ {� �’} {A : Set �} {B : Set �’} → (A → B) →
L A → L B

map f [] = []

map f (x :: xs) = f x :: map f xs

This definition is following the practice (which we will not have much occasion to
capitalize on) of being generic in the type levels of A and B. So we first have implicit
arguments � and �’ for those levels. The type A is the type for the elements of the
first list, over which we want to map our function. The type B is the return type of the
function, and hence of the elements of the second list. In the introductory example, A
and B were the same, namely, N. But, in general, they could be different. These types
A and B are also implicit arguments. The first type of an explicit argument is A → B.
This corresponds to the first explicit argument to map, which we are having be the
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function that is being mapped over the list. Next is the type L A, for the input list. And
the return type of the function is L B, for the result of mapping the function.

The code itself for map is then quite straightforward. There are two defining equa-
tions for map. The first says that if we are calling map with a function f and the empty
list [], then the result is just the empty list:

map f [] = []

This makes sense: we want to apply the function f to every element of the list, but
there are no elements, so we just return the empty list.

The second defining equation is where the action is:

map f (x :: xs) = f x :: map f xs

The left-hand side applies when we are calling map with a function f and a nonempty
list with head x and tail xs. Intuitively, we know that we should apply f to x, since x is
one of the elements of the list. Then we should recursively keep mapping f over the
tail xs. This is exactly what the right-hand side of the equation does. Thanks to the
parsing precedence for _::_, the right-hand side parses as

(f x) :: (map f xs)

So this is saying to cons f x as the new head onto map f xs as the new tail of the list,
which is being returned as the output list in this case.

For an example of map in action, let us step through the computation which maps
~_ (boolean negation) over the list tt :: ff :: tt :: []:

map ~_ (tt :: ff :: tt :: [])

= (~ tt) :: (map ~_ (ff :: tt :: []))

= ff :: (map ~_ (ff :: tt :: []))

= ff :: (~ ff) :: (map ~_ (tt :: []))

= ff :: tt :: (map ~_ (tt :: [])))

= ff :: tt :: (~ tt) :: (map ~_ [])

= ff :: tt :: ff :: (map ~_ [])

= ff :: tt :: ff :: []
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4.2.4 Filtering a List
Suppose we want to filter out some elements of a list which do not pass a given test
p. If the elements of the list have type A, then this test p can be given as a function of
type A → B. Such a function is sometimes also called a predicate. If p returns tt for an
element x, that means we want to keep x (not filter it out), and if it returns ff, then we
do not want to keep x. Here is the definition of the filter function from list.agda

in the IAL:

list.agdafilter : ∀{�}{A : Set �} → (A → B) → L A → L A

filter p [] = []

filter p (x :: xs) = let r = filter p xs in

if p x then x :: r else r

There are two defining equations here. For the first, just as for map, if the input list
is empty ([]), then the filtered list has to be empty, too. The second defining equation
is more interesting. The input list is x :: xs. So the head (an element) is x, and the
tail (rest of the list) is xs. We want to check if the test p returns tt or ff for x. In the
former case, we are keeping x, and in the latter we are not. We do this check using
the if_then_else_ operator we defined in Section 1.6. There is one more feature to
note. The code is using a let-term to make a local definition, so that we can avoid
repeating the recursive call filter p xs in the two branches of the if_then_else_

expression. Agda supportslet-terms like this, to introduce a local variable (in this case
r) with a particular definition (filter p xs) in a particular local scope following the
in keyword. Here, the benefit is that we can write x :: r and r in the if_then_else_
term, instead of x :: (filter p xs) and filter p xs.

Suppose we have a function is-even of type N → B, which returns tt if the input
number is even, and ff otherwise. (Such a function is defined in nat.agda in the Iowa
Agda Library.) Then we can filter a list like

1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: []

using the term

filter is-even (1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: [])

The result is 2 :: 4 :: 6 :: [].

4.2.5 Removing an Element from a List, and Lambda Abstractions
Using the filter function we just defined, we can define a remove function which
removes all copies of an element a from a list. This is done just by filtering the list to
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retain only those elements which are different from a. The remove function must be
given another function eq to tell whether an element in the list is equal to a or not. So
the typing for the remove function is

remove : ∀{�}{A : Set �}

(eq : A → A → B)(a : A)(l : L A) → L A

How can we call a filter with a function which takes in x and returns tt if and only
if x does not equal a? A nice solution is to use an anonymous function . This is a
function which can be created right in the middle of other code. It does not have to
be declared at the top level of a file as functions in Agda usually must be. Since they
are anonymous, they cannot be recursive, and hence are less powerful than top-level
functions. Pattern matching is allowed, but it is probably best to use them just for
simple glue functions that do not need pattern matching. Anonymous functions are
introduced with λ (“lambda”, Greek lowercase “l”). This notation and the associated
theory of lambda calculus was introduced by the logician and proto computer scientist
Alonzo Church [Church 1941]. To declare an anonymous function for our needs here
with remove, we can write

λ x → ~ (eq a x)

This function is equivalent to anon a, if we have this top-level definition of a function
anon:

anon : ∀{�}{A : Set �} → A → A → B

anon a x = ~ (eq a x)

So the code for remove is then just:

list.agdaremove : ∀{�}{A : Set �}

(eq : A → A → B)(a : A)(l : L A) → L A

remove eq a l = filter (λ x → ~ (eq a x)) l

4.2.6 Selecting the nth Element from a List, and the maybe Type
Suppose we wish to select the nth element of a list, where the head of the list is
considered element 0. There is the issue that the list might not have n elements for
the particular value of n given. In other languages, we might raise an exception in this
case, or fail in some other way. In Agda, since every function must terminate on all
inputs and the language does not have exceptions, we have to handle this situation
differently. The standard approach for this in pure functional programming is to use a
maybe type (in OCaml it is called option instead of maybe). Instead of just returning a
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list.agdadata maybe {�}(A : Set �) : Set � where

just : A → maybe A

nothing : maybe A

Figure 4.1 The definition of the maybe type.

list.agdanth : ∀{�}{A : Set �} → N → L A → maybe A

nth _ [] = nothing

nth 0 (x :: xs) = just x

nth (suc n) (x :: xs) = nth n xs

Figure 4.2 Code for selecting the nth element of a list, if there is one.

value of type A for the nth element of a list of As, we will return a value of type maybe A.
The definition of the maybe type, from maybe.agda in the IAL, is shown in Figure 4.1.

An element of typemaybe A is eitherjust a, whereahas typeA; or else it isnothing.
For example, we have the following typings:

nothing : maybe N

nothing : maybe (L N)

just 3 : maybe N

just (3 :: []) : maybe (L N)

The nothing constructor, with its implicit level and type arguments, is of type maybe
A for any type A, and so we have the first two typings shown above. Putting values of
type A as arguments to the just constructor (with its implicit arguments) gives us the
second two typings shown.

Returning to the problem of selecting the nth element of a list: if the value of n

given to our selection function, which we will call nth, is too large, then we will return
nothing. Otherwise, if there is indeed an nth element a of the given list, then we will
return just a. The code for this is in Figure 4.2. The first equation says that if nth is
called on the empty list ([]), then the valuenothing is returned. If the list is nonempty,
then if the index given is 0, we return the head (this is the second equation); or else if
the index is suc n, we recurse with n on the tail of the list.

4.2.7 Reversing a List (Easy but Inefficient Way)
Let us look at two ways to implement reversing a list. The first way is straightforward
to code but has worse than necessary asymptotic complexity (and for this reason, I am
not including it in the Iowa Agda Library). The idea is to pull the head h off the front
of a nonempty list h :: t and append it to the end of the reversed tail t. This can be
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written as follows, where I am using a function [_], defined in list.agda in the IAL,
to create a list with just one element, when given that element as input:

sreverse : ∀{�}{A : Set �} → L A → L A

sreverse [] = []

sreverse (h :: t) = (sreverse t) ++ [ h ]

This implementation is simple, and it does correctly reverse input lists. Unfortu-
nately, it takes time quadratic in the size of the input list. The reason is that each call
to _++_ takes time linear in the length of the first list. So if we are reversing a list like

1 :: 2 :: 3 :: 4 :: 5 :: []

then using sreverse (“slow reverse”), we will need to compute

(((([] ++ [ 5 ]) ++ [ 4 ]) ++ [ 3 ]) ++ [ 2 ]) ++ [ 1 ]

The left-associated calls to _++_ will take time �n
i=1i, since each left-grouped call to

_++_ is computing a list of length i, where i ranges from 1 to n. And this summation
is well known to be O(n2). So while this version of reverse is easy to write (and also
relatively easy to reason about), it is inefficient.

4.2.8 Efficiently Reversing a List
There is a somewhat trickier way to reverse a list, that only requires time linear in the
size of the input list. The basic idea is to use a helper function that will accumulate
the reversed result as it recurses through the input list. One way to think about how
this works is to imagine that the input list is a tower of blocks, with the head at the
top. For example, the list 1 :: 2 :: 3 :: 4 :: [] can be viewed this way:

1

2

3

4

Now to reverse this list, just move blocks from the top (the head of the list) to the
top of a second list. So we move the head off the tower and obtain:

2

3

4 1

Continuing, we get:

3 2

4 1
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In the next step:

3

2

4 1

And finally:

4

3

2

1

This can be done with the following Agda function (in list.agda):

list.agdareverse-helper : ∀ {�}{A : Set �} → (L A) → (L A) → L A

reverse-helper h [] = h

reverse-helper h (x :: xs) = reverse-helper (x :: h) xs

Here, the list, which is accumulating the reversal, is the first explicit argument h
to reverse-helper. In the first defining equation we just return h. In the second, we
remove the head x from the nonempty input list x :: xs and place it at the head of h.
So in our recursive call we have reverse-helper (x :: h) xs; we have moved x from
being on xs to being on h. To reverse a list, we must just call this helper function with
the accumulator initialized to the empty list:

list.agdareverse : ∀ {�}{A : Set �} → L A → L A

reverse l = reverse-helper [] l

4.3 Reasoning about List Operations
The following theorems about the list operations we defined previously can be found
in list-thms.agda in the Iowa Agda Library.

4.3.1 Distributing Length over Append
Here is a simple theorem we can prove involving both the length function and list
append (_++_):

list-thms.agdalength-++ : ∀{�}{A : Set �}(l1 l2 : L A) →
length (l1 ++ l2) ≡ (length l1) + (length l2)

length-++ [] l2 = refl

length-++ (h :: t) l2 rewrite length-++ t l2 = refl

This theorem says that if you append two lists l1 and l2 and then get the length of
the result (l1 ++ l2), the number you obtain is the sum of the lengths of the two lists.
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We do have a choice of which list to split on. How do we know to case split on l1

instead of l2? We are using the basic rule of thumb (introduced in Section 3.2.2) for
choosing variables to induct on in proofs: choose the variable that will trigger the most
simplification using the defining equations for the operators involved, by choosing the
variable that is going to get matched on the most in the function calls in the theorem.
Here, both l1 and l2 are used in function calls that will pattern-match on them: l2 is
used as an argument to length, while l1 is used as an argument to length and also
the first argument to _++_. Since append (_++_) matches on its first argument, that
gives the edge to l1 over l2 for matching, since l1 is used in two such positions, while
l2 is used in only one.

In the first equation defining length-++, if you replace refl by a hole (?), you can
use Ctrl+c Ctrl+, in the hole (after loading the file with Ctrl+c Ctrl+l) to see that the
goal has normalized to just

length l2 ≡ length l2

This is because when l1 is [] (the empty list), the two sides of the equation we are
trying to prove both simplify to length l2. So we can fill in that hole with just refl.

If you replace the second defining equation with just

length-++ (h :: t) l2 = ?

and use Ctrl+c Ctrl+, (again, after loading the file with Ctrl+c Ctrl+l), you will see that
the normalized goal is

suc (length (t ++ l2)) ≡ suc (length t + length l2)

This looks promising. We just need to use our inductive hypothesis to transform
length (t ++ l2) into length t + length l2, and then the two sides of the equation
will be identical and we can conclude the case with refl. This is what the rewrite

directive in the defining equation as listed at the start of this subsection does:

length-++ (h :: t) l2 rewrite length-++ t l2 = refl

Recursively calling length-++ with arguments t and l2 gives us a term

length-++ t l2

of type

length (t ++ l2) ≡ length t + length l2

And then the rewrite directive tells Agda to replace any occurrences of

length (t ++ l2)
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in the goal with length t + length l2. This turns the goal into

suc (length t + length l2) ≡ suc (length t + length l2)

which can now be proved with refl.

4.3.2 Associativity of List Append
Let us prove a basic property of the ++ operation: associativity. We proved associativity
of addition in Section 3.2.2, and associativity of list append is quite similar. Here is
the proof, from list-thms.agda:

list-thms.agda++-assoc : ∀ �A : Set � (l1 l2 l3 : L A) →
(l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3)

++-assoc [] l2 l3 = refl

++-assoc (x :: xs) l2 l3 rewrite ++-assoc xs l2 l3 = refl

Let us first look carefully at the statement of the theorem:

∀ �A : Set � (l1 l2 l3 : L A) →
(l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3)

This is a bit of a mouthful. We are quantifying over three lists, l1, l2, and l3. Each list
has the same type, namely, L A. Our type cannot contain any undeclared variables, so
we also have to quantify over A of type Set �, and then also the �. This covers the first
line of the type. The second line is the meat of what we are trying to prove:

(l1 ++ l2) ++ l3 ≡ l1 ++ (l2 ++ l3)

The left-hand side describes the list you get if you first append l1 and l2, and then
append l3 to the result. The right-hand side describes the list you get if you append
l1 to what you get by appending l2 and l3. In other words, just like associativity of
addition, the order in which you apply the binary (two-argument) operator to combine
three arguments does not matter.

The proof of this theorem is very short and easy, consisting of these two defining
equations:

++-assoc [] l2 l3 = refl

++-assoc (x :: xs) l2 l3 rewrite ++-assoc xs l2 l3 = refl

The key point to note is that we are pattern-matching on the first list l1, and
considering two cases. Either this list is empty, in which case the pattern is [], the
constructor for the empty list. Or else the list is built with the :: (“cons”) operator. In
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this case, it has a head x and a tail xs. In the first case, simplification is enough to
reduce both sides of the equation to just l2 ++ l3. In the second case, simplification
gets us to a point where just rewriting with the induction hypothesis is enough to
finish the proof.

4.3.3 Length of Filtered Lists, and the with Construct
Here is another theorem from list-thms.agda, which will allow us to demonstrate a
useful feature of Agda that we have not encountered up until now: the with construct.
The theorem we will prove is

∀{�}{A : Set �}(p : A → B)(l : L A) →
length (filter p l) ≤ length l ≡ tt

Reading this through in English, it says that for any type A (of any type level �),
and any predicate p on A, and any list l of elements of type A; the length of the list
you get by filtering l with p is less than or equal to the length of l. Intuitively, this is
true, because filtering with p may discard some elements from the list, but it will not
add any new elements to the list. So the length of the list could stay the same (if the
predicate p returns tt for all elements of the list), but it might decrease (if there is even
one element of the list where p returns ff). The ≤ function is defined in nat.agda,
and a number of theorems about it can be found in nat-thms.agda. We will need a
couple of those theorems for our proof.

Let us look now at the proof of this theorem, which is called length-filter, from
list-thms.agda. The proof is in Figure 4.3. The proof is case-splitting on the form
of the input list l. If l is the empty list ([]), then the goal simplifies quite a bit. Let us
see this step by step:

length (filter p l) ≤ length l ≡ tt is instantiated to

length (filter p []) ≤ length [] ≡ tt is definitionally equal to

length [] ≤ length [] ≡ tt is definitionally equal to

0 ≤ 0 ≡ tt is definitionally equal to

tt ≡ tt

The definitional equalities all follow from the definitions of the functions involved
(filter, length, and ≤). So the simplified goal is tt ≡ tt (you can see this if you
replace the right-hand side of the first defining equation for length-filter with a
hole ?, load the file with Ctrl+c Ctrl+l, and then enter Ctrl+c Ctrl+, with your cursor in
the hole). And refl proves this.

Now let us look at the simplified goal in the other case, by asking Agda to process
this modified definition of length-filter:
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list-thms.agdalength-filter : ∀{�}{A : Set �}(p : A → B)(l : L A) →
length (filter p l) ≤ length l ≡ tt

length-filter p [] = refl

length-filter p (x :: l) with p x

length-filter p (x :: l) | tt = length-filter p l

length-filter p (x :: l) | ff =

≤-trans{length (filter p l)}

(length-filter p l) (≤-suc (length l))

Figure 4.3 The proof that filtering results in a list no longer than the original one.

length-filter : ∀{�}{A : Set �}(p : A → B)(l : L A) →
length (filter p l) ≤ length l ≡ tt

length-filter p [] = refl

length-filter p (x :: l) = ?

If you load the file containing this modified definition with Ctrl+c Ctrl+l, and then do
Ctrl+c Ctrl+, with your cursor in the hole on the right-hand side of the second equation,
you will see the following rather unwieldly goal from Agda:

length (if p x then x :: filter p l else filter p l) <

suc (length l)

||

length (if p x then x :: filter p l else filter p l) =N

suc (length l)

≡ tt

This actually looks worse than it needs to, because Agda has normalized the call
to _≤_, using this definition from nat.agda, which defines less than or equals (≤) in
terms of less than (_<_) and our computational equality on natural numbers (_=N_):

_≤_ : N → N → B

x ≤ y = (x < y) || x =N y

If we (mentally) reverse that normalization step, we will see that the goal is really

length (if p x then x :: filter p l else filter p l)

≤ suc (length l) ≡ tt

This is still a little intimidating, but not as bad as what Agda printed out for us.
How did this goal arise? Well, our starting goal for this case, when l is a nonempty

list x :: l (for some other list l), is

length (filter p (x :: l)) ≤ length (x :: l) ≡ tt
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Using definitional equality, Agda has normalized this goal to

length (if p x then x :: filter p l else filter p l)

≤ suc (length l) ≡ tt

This is because filter uses an if_then_else_ expression to decide whether or not
to include x in the list it is returning, based on whether p x returns tt or ff. And
length (x :: l) is defined to be suc (length l).

So how do we make progress on this goal? We would like to apply our induction
hypothesis (as this is usually the key to getting one of these proofs to go through), but
there is no obvious place to use that fact, which is

length (filter p l) ≤ length l ≡ tt

What we need to do is consider different cases, based on whether p x evaluates to tt

or to ff. This is because the expression

length (if p x then x :: filter p l else filter p l)

is going to simplify differently, depending on the value of p x.
How do we do a case split like this, on something which is not an input to the

function? That is where the with construct of Agda comes in. Agda provides a way for
us to extend the pattern we are using in the left-hand side of an equation, by pattern-
matching on an additional term. For length-filter (Figure 4.3), this is done like
this (where let us just put holes for the resulting two right-hand sides):

length-filter p (x :: l) with p x

length-filter p (x :: l) | tt = ?

length-filter p (x :: l) | ff = ?

We have extended the left-hand side of our equation by writing with p x, to tell Agda
that we wish to pattern-match on the value of p x. Then we write two new equations,
where we are separating our original pattern, which is

length-filter p (x :: l)

from the new patterns tt (in the first equation) and ff (in the second) with a bar.
If we ask Agda what the type is for the first hole, it will show us that the goal has

now normalized to

length (filter p l) ≤ length l ≡ tt

This is because

length (if tt then x :: filter p l else filter p l)

≤ suc (length l) ≡ tt



4.3 Reasoning about List Operations 89

is definitionally equal to

length (x :: filter p l) ≤ suc (length l) ≡ tt

which is, in turn, definitionally equal to

suc (length (filter p l)) ≤ suc (length l) ≡ tt

by the definition oflength. The definition of ≤ actually strips off the twosuc’s, leaving
us with

length (filter p l) ≤ length l ≡ tt

This is great, because that is exactly the induction hypothesis, which we obtain by
making a recursive call to length-filter. This is why the proof in Figure 4.3 has the
following for this equation:

length-filter p (x :: l) | tt = length-filter p l

Now let us look at the goal for the second equation, where p x is ff:

length (filter p l) ≤ suc (length l) ≡ tt

We can again use our induction hypothesis to obtain

length (filter p l) ≤ length l ≡ tt

And innat-thms.agda, we can find (with some looking!) that there is a theorem called
≤-suc proving that

length l ≤ suc (length l) ≡ tt

So these two facts really look like x ≤ y and y ≤ z, where

. x is length (filter p l),

. y is length l, and

. z is suc (length l).

Similar to the theorem <-trans we saw in Section 3.4, there is a theorem proving
transitivity of less-than-or-equal-to, in nat-thms.agda:

≤-trans : ∀ {x y z : N} →
x ≤ y ≡ tt →
y ≤ z ≡ tt →
x ≤ z ≡ tt
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The x, y, and z are implicit arguments, but unfortunately in this case, Agda has
trouble inferring the value of x. If we just give the two explicit arguments, Agda will
highlight the call to ≤-trans in yellow, to tell us it cannot figure out one of the implicit
arguments. As often seems to work in Agda, if we explicitly tell Agda the value of the
first implicit argument (x), the values of the others can be inferred automatically. This
is what we are doing in the last equation for length-filter, from Figure 4.3:

length-filter p (x :: l) | ff =

≤-trans{length (filter p l)}

(length-filter p l)

(≤-suc (length l))

We are specifying the value of x with {length (filter p l)}, and then passing the
two proofs of our two inequalities. This completes the proof length-filter.

4.3.4 Filter Is Idempotent, and the keep Idiom
Let us look at another theorem about the filter function:

∀{�}{A : Set �}(p : A → B)(l : L A) →
(filter p (filter p l)) ≡ (filter p l)

This says that filtering a list twice using a predicate p gives the same result as filtering
it once. In other words, the second call to filter has no effect after the first call.
Intuitively, this is because the first call has already completed the work of dropping
elements from the list that do not satisfy the predicate p. In a pure functional language
like Agda, where there are no implicit side effects, if an element of the list satisfied p

in the first call to filter, it must still do so in the second call, because calling p on
the same input must always produce the same output (this would not necessarily be
true if p could use some hidden state).

The proof of this theorem is in Figure 4.4, and it is worth looking at for its use of
a particular theorem-proving idiom in Agda which I call keep. In the Agda standard
library, this is called inspect. To see why this is needed, let us step through the case
when the input list is x :: l. If we look at the goal in that case (by doing Ctrl+c Ctrl+, in
a hole on the right-hand side of an equation with pattern filter-idem p (x :: l)),
we will see this:

filter p (if p x then x :: filter p l else filter p l) ≡
(if p x then x :: filter p l else filter p l)

This resembles what we saw in the proof about filter from the previous section.
We have some rather bulky expressions, with embedded if_then_else_ expressions,
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list-thms.agdafilter-idem : ∀{�}{A : Set �}(p : A → B)(l : L A) →
(filter p (filter p l)) ≡ (filter p l)

filter-idem p [] = refl

filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’

rewrite p’ | p’ | filter-idem p l = refl

filter-idem p (x :: l) | ff , p’ rewrite p’ = filter-idem p l

Figure 4.4 Proof that filtering is idempotent.

where the if part is p x. So, following the approach of our previous proof about
filter, we should case-split on p x using a with expression:

filter-idem p (x :: l) with p x

filter-idem p (x :: l) | tt = ?

filter-idem p (x :: l) | ff = ?

Now let us look at the goal for the equation where p x is tt. That goal is:

(if p x then x :: filter p (filter p l) else

filter p (filter p l)) ≡
x :: filter p l

This does not look good. We got rid of some of the if_then_else_ expressions
scrutinizing p x, but there is still one there! What happened? Let’s look at how Agda
has simplified the starting goal to get to this point. Instantiating p x with tt, the
goal is:

filter p (if tt then x :: filter p l else filter p l) ≡
(if tt then x :: filter p l else filter p l)

By the definition of if_then_else_, this can be simplified to

filter p (x :: filter p l) ≡
x :: filter p l

But now we may apply the definition of filter to simplify the left-hand side of this
equation further to

(if p x then x :: filter p (filter p l) else

filter p (filter p l)) ≡
x :: filter p l

This is really irritating! We are in a case where p x is tt, but Agda only applied that
fact to the goal the first time. It is not applying it again. This is actually due to the way
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that Agda implements with. All with gets to do is instantiate an expression once. If
subsequent normalization steps (using definitional equality) produce that expression
again, Agda will not instantiate it again.

The keep (or as more standardly known, inspect) idiom is a cute way around
this. Instead of doing a with on p x, we just do a with on keep (p x). Then in the
subsequent equations, we will have available an extra variable (here p’) saying that
the expression we are doing the keep on—here, p x—is equal to the pattern we have
written for it. In more detail, let us look at the type of p’ in the contexts Agda shows
us for each of the following two holes:

filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’ = ?

filter-idem p (x :: l) | ff , p’ = ?

In the context of the first hole, we have

p’ : p x ≡ tt

In the second, it is

p’ : p x ≡ ff

Agda will not actually instantiate p x in the goal when we do a keep. We have to
apply an explicit rewrite p’ to change p x into tt for the first hole, and into ff for
the second:

filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’ rewrite p’ = ?

filter-idem p (x :: l) | ff , p’ rewrite p’ = ?

If we look at the goal for the first hole now, we will see it is

(if p x then x :: filter p (filter p l) else

filter p (filter p l))

≡ x :: filter p l

This is the same normalized goal we had gotten previously. So it looks like we have
not made any progress over just using withwithout keep. But we have made progress,
because we still have p’ : p x ≡ tt in our context. We can do a second rewrite p’,
to eliminate this second occurrence of p x which has shown up after normalization.
To do multiple rewrites in Agda, one just separates them with a bar. The rewrites are
then performed sequentially. So we have:
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filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’ rewrite p’ | p’ = ?

filter-idem p (x :: l) | ff , p’ rewrite p’ = ?

And now Agda shows us that the first goal is

x :: filter p (filter p l) ≡ x :: filter p l

That is fantastic for us, because now we can just do a rewrite with the induction
hypothesis to get a trivial equation:

filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’

rewrite p’ | p’ | filter-idem p l = refl

filter-idem p (x :: l) | ff , p’ rewrite p’ = ?

The second case, where p x is ff, is handled more simply. In fact, it is just an
application of the induction hypothesis:

filter-idem p (x :: l) with keep (p x)

filter-idem p (x :: l) | tt , p’

rewrite p’ | p’ | filter-idem p l = refl

filter-idem p (x :: l) | ff , p’ rewrite p’ = filter-idem p l

This completes the proof of filter-idem. A last note about the keep idiom: in the
Iowa Agda Library, this is implemented using dependent pairs, which are explained
in Section 5.3.

4.3.5 Reverse Preserves List Length
Let us prove a theorem about our efficient list-reversal function (Section 4.2.8): the
length of the reverse of a list is the same as the length of the original list. In Agda, this
theorem is stated:

∀{�}{A : Set �}(l : L A) → length (reverse l) ≡ length l

The theorem uses an implicit quantification over � and A, as discussed earlier, and
then an explicit quantification for the list l that is being reversed.

Now, to prove anything interesting about reverse, we are going to have to reason
aboutreverse-helper, whichreverse calls. As discussed in Section 4.2.8, reverse-
helper takes two arguments: the first is the reverse of the list that reverse-helper
has already processed, and the second is the rest of the list still to be reversed. It can be
rather tricky to figure out what general property of reverse-helper we should prove
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in order to help us prove a particular theorem about reverse. Fortunately, here it is
not too hard to realize that the length of reverse-helper h l is going to be the sum
of the lengths of h and l. So we first will prove this lemma:

∀{�}{A : Set �}(h l : L A) →
length (reverse-helper h l) ≡ length h + length l

There are two arguments here which we might try pattern matching on: h and l.
Which should we choose? Using our basic rule of thumb (see Section 4.3.1), we should
choose l, because it is the argument on which reverse-helper pattern-matches (h
is not analyzed using pattern matching by reverse-helper). So we start our proof
this way:

length-reverse-helper :

∀{�}{A : Set �}(h l : L A) →
length (reverse-helper h l) ≡ length h + length l

length-reverse-helper h [] = ?

length-reverse-helper h (x :: xs) = ?

Let us try to fill in the first hole, for the case when l is [], first. In that case, the
normalized goal (which we see by typing Ctrl+c Ctrl+, with our cursor in the hole, after
first loading the file with Ctrl+c Ctrl+l) is

length h ≡ length h + 0

That looks pretty promising, and indeed, we can finish this case off if we rewrite
using the +0 lemma from nat-thms.agda, which says:

+0 : ∀ (x : N) → x + 0 ≡ x

So our proof of length-reverse-helper becomes:

length-reverse-helper :

∀{�}{A : Set �}(h l : L A) →
length (reverse-helper h l) ≡ length h + length l

length-reverse-helper h [] rewrite +0 (length h) = refl

length-reverse-helper h (x :: xs) = ?

Let us fill in the second hole, which we can see (with Ctrl+c Ctrl+, again) has type

length (reverse-helper (x :: h) xs) ≡ length h + suc (length xs)

We can apply our induction hypothesis to transform

length (reverse-helper (x :: h) xs)
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into

length (x :: h) + length xs

This would clearly be progress, so let us do it. The proof becomes

length-reverse-helper :

∀{�}{A : Set �}(h l : L A) →
length (reverse-helper h l) ≡ length h + length l

length-reverse-helper h [] rewrite +0 (length h) = refl

length-reverse-helper h (x :: xs)

rewrite length-reverse-helper (x :: h) xs = ?

The remaining hole has the following normalized type:

suc (length h + length xs) ≡ length h + suc (length xs)

This is looking very close, and indeed we have a lemma in nat-thms.agda that will
help us complete this case. The lemma is

+suc : ∀ (x y : N) → x + (suc y) ≡ suc(x + y)

This lets us pull out a suc from the right argument of a plus-term. In fact, if we flip a
suitable instantiation of this equation around using sym, we will get exactly what we
need to prove our goal. So the final proof is

list-thms.agdalength-reverse-helper :

∀{�}{A : Set �}(h l : L A) →
length (reverse-helper h l) ≡ length h + length l

length-reverse-helper h [] rewrite +0 (length h) = refl

length-reverse-helper h (x :: xs)

rewrite length-reverse-helper (x :: h) xs =

sym (+suc (length h) (length xs))

And using this helper lemma, we can then easily prove the theorem we desired about
the length of the reverse of a list:

list-thms.agdalength-reverse : ∀{�}{A : Set �}(l : L A) →
length (reverse l) ≡ length l

length-reverse l = length-reverse-helper [] l

4.4 Conclusion
We have seen the list datatype L, which is a central data structure in much functional
programming. We looked at basic operations like appending two lists (_++_); comput-
ing the length of a list; mapping a function over a list to create a new list consisting
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of the outputs of the function on the list elements; filtering a list to drop all elements
which are not accepted by some predicate (a function which returns a boolean when
given an element of the type stored in the list); selecting the nth element out of a
list; and efficiently reversing a list. We then saw a number of interesting basic theo-
rems about these operations. Some of these proofs were more involved than the ones
we considered in the previous chapter, for natural numbers. We saw several useful
theorem-proving features: the with construct, which allows us to case-split on the
value of some term which does not have to be an input to the function (unlike in pat-
tern matching without with); and the keep idiom (also known as inspect), where
not only can we perform a case-split on some intermediate term, but we get to keep
an equation in the context which reflects that case-split. Such equations can be neces-
sary, in order to perform subsequent reasoning based on the fact that the scrutinized
term is equal to the particular value for that case alternative.

Exercises
4.1. Which of the following formulas are theorems (i.e., they can be proved) about
the list operations we have considered in this chapter?

(a) ∀ {�}{A : Set �} (l1 l2 : L A) →
l1 ++ l2 ≡ l2 ++ l1

(b) ∀{� �’} {A : Set �} {B : Set �’}

(f : A → B)(l : L A) →
length (map f l) ≡ suc (length l)

(c) The repeat function takes a number n and an element a, and constructs a list
of length n where all elements are just a. So repeat 3 tt evaluates to tt :: tt

:: tt :: [].

∀{�}{A : Set �}{p : A → B}{a : A}(n : N) →
p a ≡ ff →
filter p (repeat n a) ≡ []

(d) The is-empty function returns tt if the list it is given is [] (empty list), and
ff otherwise.

∀{�}{A : Set �}(l : L A) →
is-empty l ≡ tt →
is-empty (reverse l) ≡ ff

(e) ∀{�}{A : Set �}(p : A → B)(l1 l2 : L A) →
filter p (l1 ++ l2) ≡ filter p l1 ++ filter p l2
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4.2. Indicate which of the typings listed for each test term would be accepted by
Agda (more than one typing could be accepted for the same term, due to implicit
arguments).

(a) test= []
(i) test : L N

(ii) test : L L

(iii) test : L B

(iv) test : L (L B)

(v) test : L Set

(b) test [] = 0

test (x :: xs) = suc (test xs)

(i) test : ∀{�}{A : Set �} → L A → N

(ii) test : L A → N

(iii) test : L B → N

(iv) test : ∀{�}{A : Set �} → (xs : L A) → length xs

(c) test f g x = map g (map f x)

(i) test : ∀{A B C : Set} → (A → B) → (B → C) →
L A → L C

(ii) test : ∀{�}{A : Set �} → (A → A) → (A → A) →
L A → L A

(iii) test : ∀{A B C : Set} → (B → C) → (A → B) →
L A → L C

(iv) test : ∀{�}{A B C : Set �} → (A → B → C) →
L A → L (B → C)

(v) test : ∀{B : Set}{A : L B} → (A → B) →
(B → B) → L A → L B

4.3. Define a polymorphic function takeWhile, which takes in a predicate on type A
(i.e., a function of type A → B), and a list of As, and returns the longest prefix of the
list that satisfies the predicate. (The name of this function, and several in subsequent
problems, comes from the Haskell Prelude.)

4.4. Prove that if value a satisfies predicate p, then takeWhile p (repeat n a) is
equal to repeat n a, where takeWhile is the function you defined in the previous
problem.
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4.5. Define a function take, which takes in a natural number n and a list l, and
returns a list of the first n elements of l (in order), or all the elements if n exceeds
the length of the list.

4.6. list.agda in the IAL already defines a similar function nthTail that returns
the part of the list after the first n elements, or the empty list if the list has fewer than
n elements. Prove that appending the result of take with the result of nthTail for any
n (the same value given to both functions) results in the list again.



5Internal Verification

Up to now, we have written programs and proved properties about them. We wrote op-
erations on booleans (Chapter 1), natural numbers (Chapter 3), and lists (Chapter 4),
and after our code was written, we wrote some proofs of properties of those oper-
ations. This style of verification in type theory is called external verification: proofs
are external to programs. That is, proofs are distinct artifacts one writes about some
pre-existing programs.

In this chapter, we will consider a few examples of an alternative style of type-
theoretic verification, called internal verification. Here, the idea is to write functions
with more semantically expressive types. Often, these arise from datatypes which
impose more restrictions on data than usual. A basic and commonly used example
of this is the type of vectors. A vector is like a list, but the vector type explicitly records
the length of the list. The type V A n is the type for vectors of As of length n. Including
the length of the list in the type allows us to express relationships between the lengths
of input and output vectors, in functions we write. The type of such a function tells
us an interesting semantic property about that function. This is different from first
writing a more simply typed function, and then writing a proof about it. Instead, we
are writing a richly typed function. Doing so may require us to embed proofs inside
our code, to show Agda that the constraints imposed by these rich types are satisfied.

We will see several examples of internal verification in this chapter. First is the
vector datatype just mentioned. Next is a datatype for binary search trees (BSTs), a
familiar and basic data structure in Computer Science for storing ordered data. We will
be able to enforce the binary tree property statically. We will then look at sigma types,
a simple generic way to add some internal verification with existing data structures.
Finally, we will consider Braun trees, a balanced tree data structure, where we can
statically enforce the balancing property.
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5.1 Vectors
Lists are ubiquitous in mainstream functional programming. In dependently typed
functional programming, as in Agda, some variations on lists are used which enable
more verification. One of these is the vector datatype. A vector is just like a list, except
that the type tells us how long the vector is. So instead of the type L A for lists of
elements of type A, we have a type V A n for vectors of length n of elements of type A.
Here, n is just a natural number. The vector type is said to be indexed by its length. By
making the length of the vector explicit in the type, we can define vector-manipulating
functions where the type of the function shows how the lengths of the vectors in
question are related. The most commonly used example (it is almost the “hello world”
of dependently typed programming) is vector append, which has type:

∀ {�} {A : Set �}{n m : N} → V A n → V A m → V A (n + m)

The explicit inputs are vectors of lengthnandm, respectively, and the output has length
n + m. We have expressed an interesting semantic property of the append function,
namely, how the length of the output vector is related to the input vectors, within
the type of the append function itself. This is different from the approach we were
following with previous datatypes and their operations. For list append, for example,
we can prove this theorem:

∀{�}{A : Set �}(l1 l2 : L A) →
length (l1 ++ l2) ≡ (length l1) + (length l2)

But this theorem is external to the actual code for append (++), and hence is an in-
stance of external verification. In contrast, with length-indexed vectors, the analogous
property is baked right into the type of the append function itself, and is an example
of internal verification.

5.1.1 The Vector Datatype
The vector datatype is declared in vector.agda in the Iowa Agda Library:

vector.agdadata V {�} (A : Set �) : N → Set � where

[] : V A 0

_::_ : {n : N} (x : A) (xs : V A n) → V A (suc n)

For comparison, recall the definition of the list datatype:

data L {�} (A : Set �) : Set � where

[] : L A

_::_ : (x : A) (xs : L A) → L A
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The definition of the vector datatype is very similar to this one for lists. We have
two constructors in each case, one for the empty list and one for a nonempty list.
Agda supports overloading of data constructors, so we are able to use [] and _::_ for
the constructors for vectors as well as lists. Agda does not directly support overload-
ing functions other than constructors, although there is an advanced feature called
instance arguments that allows one to adopt Haskell’s approach to operator overload-
ing using so-called type classes. We will not use this approach here, and so we will
be forced to choose different names to distinguish similar functions on lists and on
vectors, like vector append and list append. But we will take advantage of constructor
overloading to use the same names for vector constructors as for list constructors.

For a couple examples: in vector-test.agda you will see these definitions:

test-vector : V B 4

test-vector = ff :: tt :: ff :: ff :: []

test-vector2 : L (V B 2)

test-vector2 = (ff :: tt :: []) ::

(tt :: ff :: []) ::

(tt :: ff :: []) :: []

The first declares a vector of booleans of length 4 called test-vector. Agda knows
that the _::_ and [] constructors used here are for the vector (V) datatype, rather
than the list (L) datatype, because of the type we have declared test-vector to have.
If instead we declared test-vector to have type L B, Agda would again accept the
definition; but this time the constructors would be understood to be those for the list
datatype.

The second example, test-vector2, is a list of vectors of length 2. Again, Agda is
sorting out to which datatype the ambiguous uses of _::_ and [] belong, based on
the type we have declared for test-vector2. As a final example, test-vector3 is a
vector of vectors:

test-vector3 : V (V B 3) 2

test-vector3 = (tt :: tt :: tt :: []) ::

(ff :: ff :: ff :: []) :: []

Because the vector datatype, like the list datatype, requires each element of the data
structure to have the same type, we cannot (directly) create a vector whose elements
are vectors of different lengths. That is why this example has a vector (of length 2)
storing vectors all of the same length (namely, 3).
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5.1.2 Appending Vectors
To append two vectors, the code is essentially the same as for appending two lists,
except with a different type:

vector.agda_++V_ : ∀ {�} {A : Set �}{n m : N} →
V A n → V A m → V A (n + m)

[] ++V ys = ys

(x :: xs) ++V ys = x :: (xs ++V ys)

The function name is _++V_, to avoid a name conflict with list append (which is
_++_). As an aside: an alternative to using a different name would be to defer the
resolution of name conflicts to the user of the IAL. Agda’s module system provides
enough tools to allow library users to avoid such conflicts—but for the IAL we have
chosen not to burden the user with this concern. So we choose different names for
different, even if similar, functions. Returning to the code: other than the function’s
name and type, this really is exactly the same definition as for list append (from
list.agda), which is

_++_ : ∀ {�} {A : Set �} → L A → L A → L A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

The type for the vector append (_++V_) operation is more informative than the type
for list append:

∀ {�} {A : Set �}{n m : N} → V A n → V A m → V A (n + m)

This says that vector append takes in a vector of A’s of length n and a vector of A’s of
length m, and returns a vector of A’s of length n + m. The lengths n and m of the input
lists are implicit arguments; Agda can usually deduce them from the types of the input
vectors. We can see this in action in this example, from vector-test.agda:

test-vector-append : V B 8

test-vector-append = test-vector ++V test-vector

The type for test-vector was given earlier in the file; it is V B 4. So appending
that vector with itself produces a vector whose length is 4 + 4, which is definitionally
equal to 8.
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5.1.3 Head and Tail Operations on Vectors
Defining a function to return the head of a vector is more elegant than for lists. This
is because, for lists, we have to deal with the corner case that the input list is empty,
and does not have a head. But for vectors we can use types to express the requirement
that the vector must be nonempty if we are to get its head. Here is the definition, from
vector.agda:

vector.agdaheadV : ∀ {�} {A : Set �}{n : N} → V A (suc n) → A

headV (x :: _) = x

The type for the headV function says that it takes in a vector of A’s of length suc

n, for some implicit argument n. Since the length is a successor number, it cannot be
zero. Hence, the list cannot be empty, and Agda allows us just to write the equation
for that case. We do not have to write the equation for the empty list, and we do not
even need to write the absurd pattern. Agda’s type-checking algorithm infers that in
the case where the input vector is empty, the length would be zero, which cannot
possibly match the length suc n given in the type. Hence, the equation for the empty
vector ([]) does not need to be written. We can then call headV on any nonempty
vector, to get its head.

The definition of the tailV function to return the tail of the input vector also is
interesting. We do not need to restrict the input vector to be nonempty, if we accept
the convention that the tail of the empty vector is just the empty vector. But we can
still record some interesting information in the type

vector.agdatailV : ∀ {�} {A : Set �}{n : N} → V A n → V A (pred n)

tailV [] = []

tailV (_ :: xs) = xs

The type is saying that tailV takes in a vector of A’s of length n (where n is an implicit
argument), and returns a vector of A’s of length pred n. The pred function, defined in
nat.agda, returns n if called with input suc n; and it returns zero if called with input
zero. So in the equation for [] (the empty vector), the code for tailV returns [], and
Agda deduces that the length of this vector is indeed pred n, because when the input
vector is [], the length n must be zero, and pred zero is definitionally equal to zero.

5.1.4 Using Types To Express Properties of Other Vector Operations
In vector.agda in the Iowa Agda Library, we have other vector operations where
the types make use of the length index to V to express interesting properties of the
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operations. Agda is able to deduce that these properties hold just by type-checking;
no proofs are required from the programmer for these.

The mapV is just like the map function on lists (see Section 4.2.3), except that it
operates on vectors:

vector.agdamapV : ∀ {� �’} {A : Set �} {B : Set �’}{n : N} →
(A → B) → V A n → V B n

mapV f [] = []

mapV f (x :: xs) = f x :: mapV f xs

The code is essentially identical to that of map on lists. We take in a function f of type
A → B and recurse down the vector applying f to each element. But the type of mapV

records an interesting property: mapV takes in a vector of A’s of length n and returns
a vector of B’s of the same length (n). So mapV is a length-preserving function. For
lists, we had to prove this property separately, as the length-map theorem in list-

thms.agda:

length-map : ∀{� �’} {A : Set �} {B : Set �’}

(f : A → B)(l : L A) →
length (map f l) ≡ length l

Here, the statement of the property is elegantly folded into the function’s type, and its
proof is folded into the definition of the function. In fact, no additional code in the
definition of the function is required; Agda can see that this more informative type
holds of the existing code, without further assistance from the programmer.

Another interesting example of expressing a property of the lengths of vectors
through the type of a function is with concatV, shown in Figure 5.1. This function
takes a vector of vectors, and concatenates them all. More specifically, it takes a vector
of lengthm, where each element of that vector is itself a vector of lengthn. The resulting
vector then has length m * n. Amazingly, this code type-checks without any further
annotations from the programmer. The trick is in being careful about exactly how we
phrase the type. Because the length of the outer vector is m, the variables x and xs

will have types V A n and V (V A n) m, respectively, where m is the length of xs. So the

vector.agdaconcatV : ∀{�}{A : Set �}{n m : N} →
V (V A n) m → V A (m * n)

concatV [] = []

concatV (x :: xs) = x ++V (concatV xs)

Figure 5.1 Concatenation of a vector of vectors.
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entire input list has length suc m in this case. Making the recursive call on xswill then
result in a vector of length m * n. And now we are appending x and this vector. The type
(see Section 5.1.2) for _++V_ says that the resulting vector will have length n + (m *

n). And if we look again at the definition of _*_ (in nat.agda), we will see that this is
definitionally equal to (suc m) * n, which is the length that the type of concatV says
we should have for an input list of length suc m.

Let us look at a couple more examples of expressing properties of the lengths of
vectors in the types of vector operations. As we saw in Section 4.2.6, the nth function
for lists (in list.agda) attempts to return the nth element of input list l (where n

is also an input to the function). If the list’s length is less than n, then nth returns
nothing. Otherwise it returns just x, where x is the nth element of the list. We can
recall the code:

list.agdanth : ∀{�}{A : Set �} → N → L A → maybe A

nth _ [] = nothing

nth 0 (x :: xs) = just x

nth (suc n) (x :: xs) = nth n xs

With vectors, we can eliminate the need for this maybe type. We must just require
that the index n is less than the length of the vector. Here is the code, from vec-

tor.agda:

vector.agdanthV : ∀ {�} {A : Set �}{m : N} →
(n : N) → n < m ≡ tt → V A m → A

nthV 0 _ (x :: _) = x

nthV (suc n) p (_ :: xs) = nthV n p xs

nthV (suc n) () []

nthV 0 () []

Let us look at the type of nthV first:

∀ {�} {A : Set �}{m : N} →
(n : N) → n < m ≡ tt → V A m → A

This says that nthV takes three explicit arguments: a number n, a proof that n is less
than implicit argument m, and a vector of A’s of length m. It is then guaranteed to return
a result of type A, not maybe A as we had for nth on lists.

Now let us look at the first two equations defining nthV:

nthV 0 _ (x :: _) = x

nthV (suc n) p (_ :: xs) = nthV n p xs
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These correspond to the second and third equation defining nth, which we saw
previously. The first says that if element 0 is requested from nonempty list with head x,
then x is returned. The code uses underscores in the pattern for this equation (and the
next) to indicate that the matching values are not used on the right-hand side of the
equation. The tail of the list, for example, is not needed in this case, so we just put an
undescore in (x :: _). In the second equation, if the caller is requesting element suc
n from a list with tail xs, then we just recurse to get element n of xs. It is interesting
to see why the proof p can be reused in this recursive call. In this second equation
for nthV, p is a proof that the index is less than the length of the list. The index is
suc n, and the length of the list is suc m, for some implicit m (in fact, because we have
not introduced a name for m in the pattern, Agda will implicitly introduce the name
.m and consider the length to be suc .m). So p proves suc n < suc m ≡ tt. But this
type is definitionally equal to n < m ≡ tt, by the definition of _<_. So p in fact does
have the correct type to make the recursive call with n and xs as the other two explicit
arguments.

Finally, let us look at the last two defining equations for nthV:

nthV (suc n) () []

nthV 0 () []

We are using the absurd pattern for the proof in both cases, because the length of the
list is zero, and hence no index can be smaller than that length. We do have to case-
split on the index, though, for Agda to be able to see the absurdity. This is because the
definition of _<_ splits on both inputs, and returns ff separately for when the first
input is 0 and the second is 0, and for when the first input is suc n and the second
is 0.

Here is one last easy example:

vector.agdarepeatV : ∀ {�} {A : Set �} → (a : A)(n : N) → V A n

repeatV a 0 = []

repeatV a (suc n) = a :: (repeatV a n)

If we request to form a vector of length n containing the element a of type A repeatedly,
then the resulting vector indeed has length n. For lists, this property has to be stated
as an external theorem (in list-thms.agda):

length-repeat : ∀{�}{A : Set �} (n : N) (a : A) →
length (repeat n a) ≡ n
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Figure 5.2 An example binary search, where values are natural numbers under the usual ≤ ordering.

5.2 Binary Search Trees
While internal verification for the prior examples with vectors was very easy—almost
effortless!—internal verification of other data structures can require more invention
and more work. Let us turn now to one such example, namely, binary search trees.
Binary search trees are a basic data structure for storing ordered values. We assume
we have some type A and an ordering relation _≤A_ on A. The tree consists of leaves,
which do not hold any value, and nodes, which hold a value (of type A) and a left and
right subtree. For example, Figure 5.2 gives an example of a binary search tree storing
natural numbers under the usual less-than-or-equal ordering. The essential property
of binary search trees is that at any node N, the values in the left subtree are all less
than or equal to the value at node N; and the values in the right subtree are all greater
than or equal to the value at node N. We will enforce this as an invariant using an
internally verified data structure for binary search trees.

5.2.1 The bst Module, and bool-relations

The development of binary search trees is in bst.agda in the Iowa Agda Library. We
use Agda’s module system to make the type A and the ordering _≤A_ parameters of
all the code we will write. To use the bst module, we will have to instantiate these
parameters with a particular type and ordering, respectively. We actually also need a
couple properties of the ordering, for the code we have written to type-check. These
properties are also parameters of the module. So at the top of bst.agda, you will
see the code shown in Figure 5.3. The open import statement imports definitions of
transitivity and totality from the module bool-relations.agda.
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bst.agdaopen import bool-relations using (transitive ; total)

module bst (A : Set) (_≤A_ : A → A → B)

(≤A-trans : transitive _≤A_)
(≤A-total : total _≤A_) where

Figure 5.3 The parameter declarations for the bst module, and the import of bool-relations.

relations.agdamodule relations {� �’ : level}{A : Set �}

(_≥A_ : A → A → Set �’) where

reflexive : Set (� � �’)

reflexive = ∀ {a : A} → a ≥A a

transitive : Set (� � �’)

transitive = ∀ {a b c : A} → a ≥A b → b ≥A c → a ≥A c

Figure 5.4 Code from relations.agda.

The using keyword indicates that we are importing only those definitions, not any
others, from that module. We will look at those definitions in a moment. The module
bst statement declares a module named bst (similarly to what we have seen in all the
other Agda files we have studied), but with the following parameters.

. A is the type for the elements we will store.

. _≤A_ is the ordering, which takes two elements of type A and returns tt if and
only if the first element is less than or equal to the second.

. ≤A-trans is a proof of transitivity for the ordering.

. ≤A-total is a proof of totality of the ordering.

The IAL has separate files for relations (relations.agda) and boolean relations
(bool-relations.agda). The former models a binary relation onA as a function from
A to A to Set. The latter models them as functions from A to A to B. We cannot use the
former kind of relations to Set in code, because code cannot manipulate types. But
code can pattern-match on values of type B, of course, so the latter boolean relations
are more directly useful for programming. Sometimes we need the more general form
of relation; we will see some examples in Chapter 9.

If we pause for a moment and look at relations.agda, we will find the definitions
in Figure 5.4 for reflexivity and transitivity. The ordering is pointed the other way for
this file, so we have _≥A_ instead of _≤A_. Such a relation on type A is reflexive if and
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bool-relations.agdamodule bool-relations {� : level}{A : Set �}

(_≤A_ : A → A → B) where

open import relations (λ a a’ → a ≤A a’ ≡ tt) public

using (reflexive ; transitive)

total : Set �

total = ∀ {a b : A} → a ≤A b ≡ ff → b ≤A a ≡ tt

total-reflexive : total → reflexive

total-reflexive tot {a} with keep (a ≤A a)

total-reflexive tot {a} | tt , p = p

total-reflexive tot {a} | ff , p = tot p

_isoB_ : A → A → B

d isoB d’ = d ≤A d’ && d’ ≤A d

isoB-intro : ∀{x y : A} → x ≤A y ≡ tt → y ≤A x ≡ tt →
x isoB y ≡ tt

isoB-intro p1 p2 rewrite p1 | p2 = refl

Figure 5.5 Code from bool-relations.agda.

only if every element a is related by the relation to itself. It is transitive if and only if
whenever a is greater than or equal to b, which is in turn greater than or equal to c,
then a is greater than or equal to c. In Figure 5.5 code from bool-relations.agda

is shown. We do an open import on the relations module, to get the definitions of
reflexive and transitive, for the relation

λ a a’ → a ≤A a’ ≡ tt

This relation is defined using a lambda-abstraction (see Section 4.2.5), and is just the
Set relation that says that the boolean relation _≤A_ returns tt for the two inputs.
Figure 5.5 has a definition of totality for boolean relations, which we will need for our
implementation of binary search trees. A relation is total if and only if whenever a is
not less than or equal to b, then b must be less than or equal to a.

In mathematics, orderings satisfying transitivity and totality are called total pre-
orders. Familiar orderings like ≤ on natural numbers are total preorders, for example.
Being a total preorder is all that is required for the code that we will consider in
bst.agda (and both properties are used). A preorder is a reflexive and transitive binary
relation. For total preorders, reflexivity actually follows from totality. Thus, the code
shown in Figure 5.5 has a proof total-reflexive that totality implies reflexivity. Our
use of Agda’s module system has enabled the very concise statement of the theorem:
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since the type A and the ordering on it are parameters to the module, we do not have
to state them in the theorem. The intuition behind the proof is that we can split on
the boolean value of a ≤A a. If it is tt, we are done, since proving a ≤A a ≡ tt is the
goal. Note the use of the keep idiom, introduced in Section 4.3.4, to add a proof p to
the context that a ≤A a ≡ tt (in the first equation following the with). In the second
equation following the with, p is a proof of a ≤A a ≡ ff, to which we can apply our
posited proof of totality (tot). Totality says that if x ≤A y is ff, then x ≤A y must be
tt. Here, x and y are both a, giving us a ≤A a ≡ tt as required.

Let us consider the last two definitions shown in Figure 5.5. We define an infix
operator _isoB_, short for “isomorphic” to hold of d and d’ if and only if each is
related by the relation to the other. Isomorphism is a derived notion of equality, and
we can indeed prove that it is an equivalence relation (this is not shown). There follows
just a simple convenience lemma for proving isomorphism when we have separate
proofs for the required relations between the two elements in question. We will use
_isoB_ below for bst-search (Section 5.2.3).

One small note on the use of the module system: in bst.agda, we saw that there is
the following import directive:

open import bool-relations using (transitive ; total)

The module-attuned reader may have noticed that surprisingly, we did not instanti-
ate the parameters of the relation module here. It is allowed in Agda not to instantiate
all parameters of a module when importing it. In that case, all definitions in the
module are automatically extended to require the omitted parameters as additional
arguments. This is handy here, since it means we can apply transitive and total

to the parameters A and _≤A_ of the bst module. The using part of the import tells
Agda we only wish to use the listed symbols (transitive andtotal) from the module;
the other symbols in the module will not be brought into scope. Then, after we have
declared the bst module with its parameters, the bst.agda file continues by opening
thebool-relationsmodule with the required parameters. We hidetransitive and
total in this new opening, to avoid conflicting with the definitions of those names
we got with the first opening of bool-relations. We also open a module minmax,
which will come into play for bst-insert (Section 5.2.4). The import directives in
question are:

open import bool-relations _≤A_ hiding (transitive ; total)

open import minmax _≤A_ ≤A-trans ≤A-total
As a final note, an alternative to working with boolean-valued relations (as in bool-

relations.agda) is to work with Set-valued ones (as in relations.agda), together
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bst.agdadata bst : A → A → Set where

bst-leaf : ∀ {l u : A} → l ≤A u ≡ tt → bst l u

bst-node : ∀ {l l’ u’ u : A}(d : A) →
bst l’ d → bst d u’ →
l ≤A l’ ≡ tt → u’ ≤A u ≡ tt →
bst l u

Figure 5.6 The binary search tree datatype.

with a proof of decidability. Decidability of relation R says that for every two values x
and y of the type A over which the relation is defined, either we have a proof of R x y

or we have a proof of ¬ (R x y) (the negation of R x y).

5.2.2 The bst Datatype
Now let us move on to the definition of the bst datatype in Figure 5.6. The basic idea is
that the type for a binary search tree with values between a lower bound l and an upper
bound u will be bst l u. So we are making a lower bound and an upper bound on the
values in the binary search tree indices to the bst type. Just as we saw with vectors,
this will enable us to express properties relating these bounds to other values, which
will be sufficient to enforce the essential property of binary search trees. It turns out to
be convenient to give ourselves a little leeway with the bounds: they will not be tight.
So a tree with type bst 1 10 (with the usual ordering for natural numbers) might not
store a number as small as 1 or as big as 10. But all numbers in the tree will definitely
be between those bounds.

It is worth noting that there are other approaches to internal verification of binary
search trees in Agda; for a recent paper on one, see McBride [2014]. Another alternative
is not to expose the bounds in the types of functions intended for outside use, but use
them only to maintain the binary search tree property internal to the implementation
of the operations on bst’s.

5.2.3 Searching for an Element in a Binary Search Tree
Code for searching for an element in a binary search tree is given in Figure 5.7. Let us
look first at the type given for bst-search. It says that bst-search takes in a value d
and a binary search tree with values between l and u, and then either returns nothing
(a constructor of the maybe type, as considered in Section 4.2.6); or else just (d’ ,

p), where d’ is another value, and p is a proof that d’ is isomorphic to d, in the sense
explained in Section 5.2.1 (Figure 5.5). We are using a dependent product type (see
Section 5.3) to return both the value d’ and the proof that it is isomorphic to d.
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bst.agdabst-search : ∀{l u : A}(d : A) → bst l u →
maybe (� A (λ d’ → d isoB d’ ≡ tt))

bst-search d (bst-leaf _) = nothing

bst-search d (bst-node d’ L R _ _) with keep (d ≤A d’)

bst-search d (bst-node d’ L R _ _) | tt , p1

with keep (d’ ≤A d)

bst-search d (bst-node d’ L R _ _) | tt , p1 | tt , p2 =

just (d’ , isoB-intro p1 p2)

bst-search d (bst-node d’ L R _ _) | tt , p1 | ff , p2 =

bst-search d L

bst-search d (bst-node d’ L R _ _) | ff , p1 =

bst-search d R

Figure 5.7 Searching for an element in a binary search tree.

The code in Figure 5.7 is relatively straightforward. If the tree is a bst-leaf then
we return nothing, signalling that we have not found the value in the tree. Otherwise,
we compare the value d for which we are searching with the value stored in the given
bst-node. The code is checking whether or not these are isomorphic by checking first
d ≤A d’ (inside one keep), and then d’ ≤A d (within another). If both conditions are
true, we have found an isomorphic d’, and we return the value

just (d’ , isoB-intro p1 p2)

This has the required return type maybe (� A (λ d’ → d isoB d’ ≡ tt)), since it is
just (a constructor of maybe) of a pair of a value d’ of type A, and a proof, constructed
using the helper lemma isoB-intro from Figure 5.5, that this element is isomorphic
to the one we were searching for. In the other two cases, we search recursively in either
the left or right subtree, depending on whether d is less than or equal to d’, but not
vice versa, or whether d’ is less than or equal to d but not vice versa.

We are using internal verification in the definition of bst-search, to show that the
element returned by bst-search, if any, is isomorphic to the input element we were
seeking. There are certainly many more properties of bst-search we might wish to
prove. The most notable is probably that ifbst-search returnsnothing, then indeed,
the value really is not in the tree. One issue with proving that property is that we would
first have to formalize really not being in the tree. This could be done in several ways.
One idea would be to write a function that converts a bst to a list of As, and then state
that the element is not in the list.
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5.2.4 Inserting an Element into a Binary Search Tree
Inserting an element into a bst is somewhat more involved, because we have some
work to do to maintain the binary search tree property, as required by thebstdatatype.
The first question we have to think about is, what should the type for bst-insert be?
We will be give a valued (of typeA), and a tree of typebst l u, for some lower and upper
bounds l and u on the values in the tree. What should the return type of bst-insert
be? It is tempting to think maybe it should just be bst l u, but that is too simplistic:
what if d does not fall within the bounds of the tree? That is, what if d is less than l

or greater than u? Then we will not be able to insert d while keeping l and u as the
bounds on the values in the tree. One way to deal with this issue would be to require
that d is within those bounds. But this would be short-sighted, as then we could never
grow a tree beyond its current bounds. Instead, we will return a tree whose bounds
have been updated to account for the possibility that the element d that we inserted
was outside the bounds. So the return type we will take for bst-insert is bst (min

d l) (max d u). The complete typing for the function is then:

bst-insert : ∀{l u : A}(d : A) → bst l u →
bst (min d l) (max d u)

For this to make sense, we must first declare min and max functions based on
the ordering _≤A_, which is a parameter to this module. For this, the IAL has code
already in minmax.agda. The minmax module is parameterized by a type A together
with an ordering _≤A_, which is a total preorder. The definitions of min and max (from
bst.agda) are then given in Figure 5.8, using if_then_else_ and the ordering. Some
easily proved properties from minmax.agda are listed in Figure 5.9; these are used in
the code for bst-insert.

Before we look at the code for bst-insert, there are two helper functions in
bst.agda we should consider. These are functions for weakening the bounds on a
bst. If we have a value of type bst l u, and if we have a smaller lower bound l’ or
a larger upper bound u’, then the helper functions bst-dec-lb and bst-inc-ub,
shown in Figure 5.10, can be used to change, in effect, the type of the tree to bst l’

u or bst l u’. These helper functions are easily defined, making use of ≤A-trans
(transitivity of the ordering) in the cases where the tree is a bst-node.

Finally, we have everything we need to define bst-insert, in Figure 5.11. The heart
of the algorithm is exactly as expected: if the input tree is a leaf, we create a new node
holding the value d that is being inserted, where the two subtrees are just leaves (i.e.,
empty). If the tree into which we are inserting d is a node, then we recursively insert
into either the left or the right subtree, depending on whether or notd ≤A d’, whered’
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bst.agdamin : A → A → A

min = λ x y → if x ≤A y then x else y

max : A → A → A

max = λ x y → if x ≤A y then y else x

Figure 5.8 Definitions of min and max functions in terms of the posited ordering.

bst.agdamin-≤1 : ∀{x y : A} → min x y ≤A x ≡ tt

min-≤2 : ∀{x y : A} → min x y ≤A y ≡ tt

max-≤1 : ∀{x y : A} → x ≤A max x y ≡ tt

max-≤2 : ∀{x y : A} → y ≤A max x y ≡ tt

min2-mono : ∀{x y y’ : A} → y ≤A y’ ≡ tt →
min x y ≤A min x y’ ≡ tt

max2-mono : ∀{x y y’ : A} → y ≤A y’ ≡ tt →
max x y ≤A max x y’ ≡ tt

Figure 5.9 Some properties proved about min and max.

bst.agdabst-dec-lb : ∀ {l l’ u’ : A} → bst l’ u’ →
l ≤A l’ ≡ tt → bst l u’

bst-dec-lb (bst-leaf p) q = bst-leaf (≤A-trans q p)

bst-dec-lb (bst-node d L R p1 p2) q =

bst-node d L R (≤A-trans q p1) p2

bst-inc-ub : ∀ {l’ u’ u : A} → bst l’ u’ →
u’ ≤A u ≡ tt → bst l’ u

bst-inc-ub (bst-leaf p) q = bst-leaf (≤A-trans p q)

bst-inc-ub (bst-node d L R p1 p2) q =

bst-node d L R p1 (≤A-trans p2 q)

Figure 5.10 Helper functions to change the bounds of a bst.
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bst.agdabst-insert : ∀{l u : A}(d : A) → bst l u →
bst (min d l) (max d u)

bst-insert d (bst-leaf p) =

bst-node d (bst-leaf ≤A-refl) (bst-leaf ≤A-refl)
min-≤1 max-≤1

bst-insert d (bst-node d’ L R p1 p2) with keep (d ≤A d’)

bst-insert d (bst-node d’ L R p1 p2) | tt , p

with bst-insert d L

bst-insert d (bst-node d’ L R p1 p2) | tt , p | L’

rewrite p =

bst-node d’ L’

(bst-inc-ub R (≤A-trans p2 max2-≤A))
(min2-mono p1)

≤A-refl
bst-insert d (bst-node d’ L R p1 p2) | ff , p

with bst-insert d R

bst-insert d (bst-node d’ L R p1 p2) | ff , p | R’

rewrite p =

bst-node d’ (bst-dec-lb L p1)

R’ min2-≤A (max2-mono p2)

Figure 5.11 Inserting an element into a binary search tree.

is the value at the current node. The only difference here is that we are using bst-

dec-lb and bst-inc-ub to adjust the lower and upper bounds, respectively, for the
subtrees where we do not recursively insert d. This is needed to change their bounds
to use the min and max functions, to match the expected return type of the function.
For example, when d ≤A d’, the right subtree R has type bst d’ .u’, where .u’ is an
(implicit) upper bound. Using bst-inc-ub, we can adjust this upper bound to max d

u, as required. We omit further consideration of the details, but you can investigate
by temporarily replacing some terms with holes, to see what we have and what Agda
is expecting at various places in the code.

5.3 Sigma Types
As we have seen previously, it is possible to express invariant properties of data in
Agda using internally verified datatypes. Any data constructed using the constructors
of the datatype are guaranteed to satisfy the property, due to restrictions imposed
by the constructors. Declaring new datatypes to enforce new invariant properties is
a common, effective practice in dependently typed programming. There are some
situations, however, where one may prefer not to define a new datatype, but still have
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product.agdadata � {� �’} (A : Set �) (B : A → Set �’)

: Set (� � �’) where

_,_ : (a : A) → (b : B a) → � A B

Figure 5.12 Declaration of sigma types, from product.agda.

the ability to state that a property holds of some data. This can be done using so-
called �-types (“sigma”). A �-type is a generalization of the usual Cartesian product
type A × B, and is often referred to as a dependent product type, or sometimes as
a dependent pair type. The notation actually comes from sum types, as we will note
further in what follows. The elements of A × B are ordered pairs (a , b), where a is an
element of type A, and b of type B. The generalization with �-types is that the type
of the second element can depend on the type of the first. For a simple example, the
file nat-nonzero.agda in the IAL defines a type for nonzero natural numbers using
a �-type:

nat-nonzero.agdaN
+ : Set

N
+ = � N (λ n → iszero n ≡ ff)

An element of this type is a natural number n, together with a proof that iszero n

equals ff. To understand better how this type works, let us imagine trying to write it
as a Cartesian product:

N × (iszero n ≡ ff)

This shows the rough structure of the type: it is a pair of a number and an equality
proof. But there is an obvious problem: the variable n is free, but we want it to refer
to the value of the first component. This is what �-types enable. Figure 5.12 shows
the definition, from product.agda. Let us puzzle through this definition carefully.
The � type constructor is parametrized by a type A and then a function B that takes
in an element of type A and returns a type. The types in question can be at different
type levels � and �’. We use the operator _�_ to take the maximum of those two levels.
This operator is part of Agda’s primitive level system; you can see it imported from a
special Agda.Primitive module in level.agda in the IAL. The � type itself is then
at level � � �’.

The constructor for �-types is _,_, which is a very nice choice (adopted in the IAL
from the Agda standard library) because it lets us indeed write elements of �-types
as pairs. The first element of the pair is some a of type A, and the second is some
b of type B a. By using B a instead of just B, we express the dependence of the type
of the second component of the pair on the value of the first component. The file
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nat.agdasuc+ : N
+ → N

+
suc+ (x , p) = (suc x , refl)

_++_ : N
+ → N

+ → N
+

(x , p) ++ (y , q) = x + y , iszerosum2 x y p

_*+_ : N
+ → N

+ → N
+

(x , p) *+ (y , q) = (x * y , iszeromult x y p q)

Figure 5.13 Addition on nonzero natural numbers.

product.agda defines the usual Cartesian product _×_ as a special case of a �-type.
The type _∧_, denoting logical conjunction, is then just a synonym for _×_.

For an example of using �-types, we can look further at nat-nonzero.agda, where
successor, addition, and multiplication functions on nonzero natural numbers are
defined. The code for these is shown in Figure 5.13. Each function performs the
corresponding function on the underlying natural numbers, and returns the result
together with a proof of positivity. In the case of suc+, the proof is just by refl, since
Agda can easily see thatsuc x is nonzero:iszero (suc x) is definitionally equal toff.
For addition and multiplication, we just use theorems from nat-thms.agda, which
prove that a sum or a multiplication is nonzero if the arguments are nonzero (for
addition, it is enough that the first argument is nonzero).

A final use of �-types is to package up one value with another whose type is indexed
by the first. This can be useful if one wishes to hide the index (i.e., the first value),
and it is often necessary when returning indexed data from a function. For example,
in vector.agda, there is a function L-to-V which converts a list into a vector. The
typing is:

L-to-V : ∀ {�} {A : Set �} → L A → � N (λ n → V A n)

We see here that the function returns a value of type

� N (λ n → V A n)

It is returning the length of the vector, packaged up with the vector itself.

5.3.1 Why Sigma and Pi?
As an aside on notation: one might wonder why the notation � is used for the type
of dependent pairs. The answer is that �-types can be thought of as generalizing
disjoint unions. In mathematics, a disjoint union is a union of two sets where elements
are tagged to indicate from which set they have come. The cardinality of A � B, for
example, is the sum of the cardinalities of A and B, even if A and B have a nonempty
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intersection. This is where we get the notation for sum types in Figure 5.14. The
disjoint union can be defined mathematically as

({0} × A) ∪ ({1} × B)

In other words, each element of the union looks like (n, x), where if the tag n is 0
then x ∈ A, and if n is 1, then x ∈ B. What if one wants to have a disjoint union of an
infinite family of types:

B1 � B2 � . . .

In this case, the tags come from whatever the index set is for the infinite family. If
the index set is N as in the displayed union, then the disjoint union can be denoted
�n ∈ N. Bn. More generally, we can have any index set A, and then the set is �a ∈ A. Ba.
Elements are pairs (a , b), where a ∈ A and b ∈ Ba.

Incidentally, dependent function types, written (x : A) → B in Agda, are mathe-
matically denoted �x : A. B, and considered a (different!) generalization of Cartesian
products. For a Cartesian product of a finite number of sets, one just lists the elements
in a tuple:

(b1, b2, . . . , bn)

If the number of sets in the product is infinite, however, we need an infinite tuple:

(b1, b2, . . .)

One way to describe an infinite tuple is as a function from the position in the tuple to
the value. If the infinite family of sets in the product is indexed by natural numbers,
then the infinite tuple can be viewed as a function mapping n ∈ N to an element b ∈ Bn.
More generally, the function may map a ∈ A to b ∈ Ba, where A is the index set for the
infinite family of sets. This explains why the elements of types �x : A. B are viewed as
functions from x ∈ A to Bx.

5.4 Braun Trees
An elegant data structure for balanced binary heaps is the Braun tree. Braun trees are
either empty or else a node consisting of some data x (of type A, let us say), and a left
and a right subtree. There are two properties we want for Braun trees.

Ordering property. The data at each node is less than or equal to the data in the
left and right subtrees of that node.

Structural property. For each node in the tree, either the size of the left and right
subtrees of that node are the same, or else the size of the left is one bigger.
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The structural property ensures that the depth of the trees is less than or equal to
log2(N), where N is the number of nodes. We will see a nice trick for maintaining
this property while inserting data into a Braun tree. In our Agda implementation, we
will statically enforce the structural property using internal verification, but I have
opted not to enforce the ordering property. This is a pragmatic decision: the structural
property is more central to the data structure, and hence has some greater claim on our
verification efforts. Enforcing both properties is certainly possible, but would weight
the code down yet more with proofs. It is worth noting that not enforcing the ordering
property has a price, too: our code can be wrong, and indeed an earlier version of mine
was, for removing the minimum element from a Braun tree.

Before we look at the definition of Braun trees, it is convenient to use Agda’s module
system to make the type A and the ordering on that type parameters of the whole
development in the module. This is done this way, in braun-tree.agda from the
Iowa Agda Library:

braun-tree.agdamodule braun-tree{�} (A : Set �) (_<A_ : A → A → B)

where

To use this module later, we will need to supply values for these parameters; for
example, we might instantiate A with N and _<A_ with < (the usual strict ordering
on the natural numbers).

5.4.1 The braun-tree Datatype, and Sum Types
Here is he definition of the Braun tree datatype (from braun-tree.agda):

braun-tree.agdadata braun-tree : (n : N) → Set � where

bt-empty : braun-tree 0

bt-node : ∀ {n m : N} →
A → braun-tree n → braun-tree m →
n ≡ m ∨ n ≡ suc m →
braun-tree (suc (n + m))

We are defining the type braun-tree n for Braun trees storing n nodes; we will call
these Braun trees of size n. So the first line of the datatype declaration, similarly to
that for vectors, says that the braun-tree type is indexed by a natural number n. Then
there are two constructors. bt-empty creates a Braun tree of size 0. The interesting
case, naturally, is thebt-node constructor. Its type says that it takes in implicit natural
number n and m, and some data of type A. Then it takes in a left Braun tree of size n

and a right one of size m. Finally, it takes in a proof of the following formula:

n ≡ m ∨ n ≡ suc m

We are using the ∨ operator, defined in sum.agda, for a disjunction of two types.
Either we have a proof that n equals m (n ≡ m), or else that n equals suc m (n ≡ suc m).
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braun-tree.agdadata _�_ {� �’} (A : Set �) (B : Set �’)

: Set (� � �’) where

inj1 : (x : A) → A � B

inj2 : (y : B) → A � B

_∨_ : ∀ {� �’} (A : Set �) (B : Set �’) → Set (� � �’)

_∨_ = _�_
Figure 5.14 The sum type, and a definition.

This is the crucial property of Braun trees previously mentioned. Since bt-node re-
quires a proof of this property in order to build a node, we will know whenever we
have a Braun tree that the property is satisfied, for every node. The bt-node construc-
tor says that the size of the returned Braun tree is suc (n + m), accounting for the data
at the node and the data in the two subtrees.

Since we will need to use this sum type in the rest of the code for Braun trees, let
us pause to see the relevant parts of sum.agda, in Figure 5.14. Following the Agda
standard library, we define a type _�_, parametrized by two types A and B. These types
are possibly at different levels, which is accounted for by using the operation _�_
giving the maximum of the type levels, in the return type of _�_. This is similar to
what we saw for �-types in Section 5.3.

Returning to Figure 5.14, there are two constructors. If we have a value x of type A,
then inj1 x has type A � B. Similarly, if we have a value y of type B, then inj2 y has
type A � B. So you can create a value of type A � B from a value of type A, and also from
a value of type B. When we are using sum types in code we intend to run, let us use
_�_. But if we want to use a sum type to represent a logical proposition, as with the
crucial property of Braun trees, then we will instead use _∨_, which is just defined (in
Figure 5.14) to be _�_. This is another example of the Curry-Howard isomorphism,
as there is no semantic difference between these operators. The choice of one or the
other is purely to aid human comprehension of code and proofs.

5.4.2 Inserting into a Braun Tree
Insertion into a Braun tree is simple and quite elegant. To insert an element into an
empty Braun tree (bt-empty), we just create a node storing the element, with bt-

empty for the two subtrees. The Braun tree property is preserved when we do this,
because the sizes of the left and right subtree are equal (both 0). Suppose now that the
Braun tree into which we are inserting the element is a node (bt-node). Then this tree
has left subtree l and right subtree r satisfying the Braun tree property: either l and
r are the same size, or else the size of l is one bigger. Then the insertion algorithm
inserts the element recursively into r to obtain a resulting tree r’. The size of this r’



5.4 Braun Trees 121
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Figure 5.15 Insertion into a Braun tree node.

braun-tree.agdabt-insert : ∀ {n : N} → A → braun-tree n →
braun-tree (suc n)

bt-insert a bt-empty =

bt-node a bt-empty bt-empty (inj1 refl)

bt-insert a (bt-node{n}{m} a’ l r p)

rewrite +comm n m

with p | if a <A a’ then (a , a’) else (a’ , a)

bt-insert a (bt-node{n}{m} a’ l r _) | inj1 p | (a1 , a2)

rewrite p = (bt-node a1 (bt-insert a2 r) l (inj2 refl))

bt-insert a (bt-node{n}{m} a’ l r _) | inj2 p | (a1 , a2) =

(bt-node a1 (bt-insert a2 r) l (inj1 (sym p)))

Figure 5.16 Code to insert data into a Braun tree.

is now either equal to the size of l, if the size of l was one bigger than the size of the
original r; or else the size of r’ is one bigger than the size of l (if the size of l was the
same as that of r). In either case, the Braun tree property is preserved if we use r’ as
the new left subtree, and l as the new right subtree. This is depicted in Figure 5.15.
The figure does not show the data in the tree, only the structural changes to maintain
the Braun tree property. Part of the elegance of the Braun tree data structure is that
it is not necessary to take different actions depending on whether the first disjunct
of the Braun tree property holds (the subtrees have the same size) or the second (the
left is one bigger). We can preserve the invariant by always taking the same action in
either case, if we swap the subtrees.

Figure 5.16 shows the code from braun-tree.agda implementing the insertion
algorithm just described. The type for this bt-insert function is already interesting,
since it says that given a Braun tree of size n, bt-insertwill return a Braun tree of size
suc n. This reflects the fact that we really will add a new element to the data structure,
so the size is increased by one. Next, let us look at the equations defining bt-insert.
There are three cases that are being covered. The first case is for when we are inserting
into a bt-empty (this is the first equation in Figure 5.16):

bt-insert a bt-empty =

bt-node a bt-empty bt-empty (inj1 refl)
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This is an easy case, as we would expect. We just need to create a new bt-node

holding the element a. The new node has empty Braun trees (bt-empty) for its left
and right subtrees. The fourth argument to the bt-node constructor is supposed to
be a proof of the Braun tree property for the left and right subtrees. Here, since the
sizes are equal (both 0), we can just use refl as the proof, although we must wrap it
in the inj1 constructor for the ∨ type, to indicate that we are proving the first disjunct
of the disjunction that defines the Braun tree property. This is (see Section 5.4.1):

(n ≡ m) ∨ (n ≡ suc m)

where n is the size of the left subtree and m is the size of the right one.
The next clause in the definition of bt-insert is

bt-insert a (bt-node{n}{m} a’ l r p)

rewrite +comm n m

with p | if a <A a’ then (a , a’) else (a’ , a)

This is for when we are inserting data a into a bt-node with left subtree l of size
n and right subtree r of size m. The pattern variable p is the proof of the Braun tree
property for this node. In this case, Agda deduces that the type of the return value of
the function must be

braun-tree (suc (suc (n + m)))

This is because the type of the bt-node is braun-tree (suc (n + m)), and we are
incrementing the size when we do an insertion. The clause shown previously first
applies commutativity of addition to swap n and m in the return type. So now we must
produce an output value of type

braun-tree (suc (suc (m + n)))

The code applies this rewrite at this stage, because regardless of what happens next,
we are going to swap the left and right subtrees, so the summation of their sizes will
have m first. So we can factor out that rewrite, before we case split on which disjunct
of the Braun tree property holds: Is n equal to m or is it equal to suc m? This will not
change the structure of the tree, but it will change what proof we use for the Braun
tree property for the new node we will return. To do this case split, we do a with

on p. Normally one would just split on p directly as part of the pattern for the input
Braun tree. But this way, we only have to write the rewrite once. We also do a with

on an if_then_else_ term, which is just putting the minimum of a (the element
we are inserting) and a’ (the element currently at the root of the tree into which we
are inserting) as the first component a1 of a pair, and the maximum as the second
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component a2. Then we know we want a1 (smaller element) to be the data at the root
of the new bt-node we will return, and we want to insert a2 (bigger) recursively into
the right subtree r.

The next clause in the definition of bt-insert now considers the case where p is
inj1 p for some new pattern variable p:

bt-insert a (bt-node{n}{m} a’ l r _) | inj1 p | (a1 , a2)

rewrite p = (bt-node a1 (bt-insert a2 r) l (inj2 refl))

In fact, the code has an underscore where the old variable p was, because we will no
longer use it, now that we are considering the case where that original p is inj1 p.
So here, p has type n ≡ m. That is, we are considering the first case for the Braun tree
property, where the sizes of the left and right subtrees are the same. Here, the proof
we use for the Braun tree property for the new node we are constructing (which has
the smaller element a1 at the root and then has swapped the left and updated right
subtrees) is inj2 refl. The required property for this bt-node is

suc m ≡ n ∨ suc m ≡ suc n

This is because the size of the new left subtree is suc m, since it is the updated version
of the old right subtree. But we are in a case where we have a proof p that n equals m.
So the code does a rewrite with this p, which ends up changing that property to

suc m ≡ m ∨ suc m ≡ suc m

And then inj2 refl suffices to prove this, since we can prove the right disjunct using
refl.

The final clause from Figure 5.16 for the definition of bt-insert is even easier:

bt-insert a (bt-node{n}{m} a’ l r _) | inj2 p | (a1 , a2) =

(bt-node a1 (bt-insert a2 r) l (inj1 (sym p)))

Here, we have a proof p of n ≡ suc m. So what we have to prove for the fourth explicit
argument to bt-node for the return value is

suc m ≡ n ∨ suc m ≡ suc n

But this is very easy, just by applying sym to our proof p to obtain a proof of suc m ≡
n, and then using inj1 to prove the disjunction.

5.4.3 Removing the Minimum Element from a Braun Tree
Removing the minimum element from a Braun tree is somewhat trickier than insert-
ing an element. Indeed, Ulf Norell found a bad bug in the code I described in an
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earlier draft of this chapter! I have opted not to verify the ordering property of the
Braun trees statically using internal verification, and so bugs are certainly possible.
The corrected version is based on a very clear explanation in a blog post by Mat́ıas
Giovannini [Giovannini 2010].

The basis for the bt-remove-min function we are seeking to write in this section
is a pair of functions bt-replace-min and bt-delete-min. The former takes an ele-
ment a of type A and a nonempty Braun tree t, and replaces the minimum element of
t with a. To maintain the ordering property of the Braun tree, we may need to move
this element a down the tree, since it may not be smaller than the elements imme-
diately below the minimum in t. The function bt-delete-min erases the minimum
from a nonempty Braun tree, returning only the updated tree (not the minimum el-
ement). This function calls bt-replace-min in one case. Removing the minimum
from a nonempty tree, and returning both the minimum and the updated tree, is
then very easy:

braun-tree.agdabt-remove-min : ∀ {p : N} → braun-tree (suc p) →
A × braun-tree p

bt-remove-min (bt-node a l r u) =

a , bt-delete-min (bt-node a l r u)

The type of the input Braun tree is braun-tree (suc p), which shows us that it
is nonempty. Agda does not require us to consider the case where the input tree is a
bt-leaf, since Agda can determine that the size of such a tree, namely, zero, cannot
possibly match the stated size of the input tree, which is a successor number. So we
just have one equation, which pulls off the top element of the tree, and then calls
bt-delete-min to get the version of the tree with that element discarded.

5.4.3.1 Replacing the Minimum Element
To replace the minimum element of a nonempty Braun tree t with another element
a, there are several cases to consider. The main case is when t consists of a node with
data a’ and two nonempty subtrees L and R, with their own minimum elements x and
x’, respectively. This situation is depicted in Figure 5.17 If the new element a, with
which we are supposed to replace the minimum element a’, is less than both x and
x’, then we simply place a where a’ is shown in Figure 5.17, and return that updated
tree. But it can happen that a is not less than one of these. In that case, assuming the
ordering is total (as defined in Section 5.2.1), then whichever is the minimum of x
and x’ will be less than a. Suppose x is the minimum (of x and x’); the case for x’ is
symmetric. We make x the new root (minimum) element of the tree, and recursively
call bt-replace-min to replace the minimum element of L with a. This ensures that
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Figure 5.17 A Braun tree with nonempty subtrees, for which we will replace the minimum element a’.

a is indeed inserted into the tree as required, and a’ is erased from the tree (also as
required). The code for this is straightforward, because replacing the minimum does
not change the structure of the Braun tree, only the values stored in some of the nodes.
So we will not look at the somewhat repetitive code required to consider the various
relationships between a, x, and x’. Please see the definition in braun-tree.agda.

5.4.3.2 Deleting the Minimum from a Braun Tree
A more interesting, internally verified function is bt-delete-min, which uses bt-

replace-min. The code is in Figure 5.18. The type of this function is similar to the
type for bt-remove-min we saw in Section 5.4.3: the function takes a Braun tree of
size suc p and returns one of size p. The first equation is for the case where the input
Braun tree contains exactly one node, so the output Braun tree is just bt-empty (the
empty Braun tree). The second and third clauses of the definition have patterns for
when the input Braun tree has an empty left subtree but a nonempty right subtree.
This is actually statically prohibited by the Braun tree property, since in that case, the
size of the left subtree is not the same or one bigger than the size of the right subtree.
The patterns inj1 () and inj2 () show Agda that regardless of whether the proof of
the Braun tree property is proving its first (same size subtrees) or second disjunct (left
subtree one bigger), the situation described by the patterns is obviously impossible.
So we do not have to write equations in those cases. The fourth clause of the definition
is for another base case, where the right subtree is empty. This implies, by the Braun
tree property, that the left subtree must be of size one, though we do not need that
information here. We just return the left subtree, which is one smaller than the input
Braun tree.

The final case is the most complex, where the input Braun tree is a node with data
a, and nonempty left and right subtrees storing data x and x’, respectively. Again, we
can refer to the picture in Figure 5.17 for graphical intuition. We need to drop a from
the Braun tree, and somehow glue the left and right subtrees back together. If x is
smaller than x’ in our ordering, then the situation is straightforward: we promote x
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braun-tree.agdabt-delete-min : ∀ {p : N} → braun-tree (suc p) →
braun-tree p

bt-delete-min (bt-node a bt-empty bt-empty u) = bt-empty

bt-delete-min (bt-node a bt-empty (bt-node _ _ _ _)

(inj1 ()))

bt-delete-min (bt-node a bt-empty (bt-node _ _ _ _)

(inj2 ()))

bt-delete-min (bt-node a (bt-node{n’}{m’} a’ l’ r’ u’)

bt-empty u)

rewrite +0 (n’ + m’) = bt-node a’ l’ r’ u’

bt-delete-min (bt-node a (bt-node{n}{m} x l1 r1 u1)

(bt-node{n’}{m’} x’ l2 r2 u2) u)

rewrite +suc(n + m)(n’ + m’) | +suc n (m + (n’ + m’))

| +comm(n + m)(n’ + m’) =

if (x <A x’) then

(bt-node x (bt-node x’ l2 r2 u2)

(bt-delete-min (bt-node x l1 r1 u1))

(lem{n}{m}{n’}{m’} u))

else

(bt-node x’ (bt-replace-min x (bt-node x’ l2 r2 u2))

(bt-delete-min (bt-node x l1 r1 u1))

(lem{n}{m}{n’}{m’} u))

where lem : {n m n’ m’ : N} →
suc (n + m) ≡ suc (n’ + m’)

∨ suc (n + m) ≡ suc (suc (n’ + m’)) →
suc (n’ + m’) ≡ n + m

∨ suc (n’ + m’) ≡ suc (n + m)

lem{n}{m}{n’}{m’} (inj1 x) = inj2 (sym x)

lem (inj2 y) = inj1 (sym (suc-inj y))

Figure 5.18 Code for deleting the minimum element from a Braun tree.

to be the new root of the Braun tree, recursively calling bt-delete-min to remove it
from the left subtree. We then swap this updated left subtree with the right one. The
Braun tree property is maintained. Intuitively, this operation undoes the swap that
was performed when we inserted an element into the right subtree for bt-insert,
for the same reason. If the left subtree was the same size as the right then removing
an element makes it one smaller, and hence suitable to be the new right subtree.
Similarly, if the left subtree was one bigger, swapping the updated left and right
subtrees results in subtrees of the same size. In the code of Figure 5.18, this reasoning
is performed by the helper lemma lem, which is declared using a where clause. In
Agda, a where clause allows one to write definitions of recursive functions which are



5.5 Discussion: Internal vs. External Verification 127

local to a specific equation. So the name lem of this helper is not visible outside the
current equation, where it is defined.

The second case is where the root x of the left subtree is not less than the root x’ of
the right one. In this case, assuming a total order (an assumption not made explicit in
the code), x’ is less than x, and hence could be made the new root of the tree. But if
we just remove x from the right subtree, the subtrees of the new tree we are returning
would have sizes differing by 2, which is not allowed by the Braun tree property. Here
is where the bt-replace-min function comes into play. We will replace the minimum
x’ of the right subtree with the root x of the left subtree (using bt-replace-min), in
addition to removing x from the left subtree with a recursive call to bt-delete-min.
Again, we swap the trees, as the effect of what we are doing is to decrease the size of
the left subtree by one, while maintaining the size of the right subtree. We can again
prove the Braun tree property of the new tree using the lemma lem. All that remains is
some detailed reasoning to show that the size of the new tree is equal to the expected
size. This can be seen with the rewrites that are being performed for that equation, in
particular the call to +comm, to swap the quantity n + m from the size of the left subtree
and the quantity n’ + m’ from the size of the right.

5.5 Discussion: Internal vs. External Verification
When should one use internal verification—where datatypes are defined with invari-
ants, and functions take in proofs of preconditions—and when is external verifi-
cation—where theorems about functions are proved separately—more appropriate?
There is certainly an element of taste involved, and both approaches can make sense
in the same situation. But here are some general considerations that can hopefully
serve as a guide:

Algebraic properties are usually proved externally. Say one is proving that an
operator is associative (like addition on natural numbers, or append on lists).
There does not seem to be any natural way (or really any way at all that I know
of) to formulate this property as an internal property of the operator. We have to
define the operator, and then separately state and prove the algebraic property
of it. This is an example of external verification.

Internal verification can be applied for essential invariants of datatypes. Some
datatypes have essential invariants that no reasonable use of the datatype will
ever violate. We have seen two examples in this chapter: the balancing property
of Braun trees, and the data ordering property of binary search trees. Any use of
these data structures must respect those properties, or else it is a different data
structure that is really being used. It makes sense, therefore, to enforce those
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properties statically using internal verification, as we saw earlier. This certainly
takes additional effort, and so in some cases one may choose not to do this
for a data structure, even if it has an essential invariant. But essential datatype
invariants are good candidates for internal verification.

Internal verification can be easier to apply for complex programs. Because inter-
nal verification weaves proofs of properties through code and datatypes, it can
be easier to use it for complex programs, particularly when the property to be
verified is relatively simple compared to the program in question. For if we have
to prove a simple theorem externally about a complex program, we will likely not
avoid reasoning about some aspects of that complexity which are not relevant to
our property. At the very least, we will likely have to follow the patterns of case-
splitting and recursion that the program uses, and those could be complicated.
With internal verification, we just have to feed proofs through complex sections
of code, without necessarily reasoning about the behavior of those sections.

Internal verification will usually add extra code to programs, making them at
least somewhat harder to read. Since internal verification includes proofs of
invariants, pre-conditions, and post-conditions inside the code in question, it
has a tendency to obfuscate that code somewhat. This can be a price worth
paying, to verify that code without writing an external proof. But the extra types
and terms one has to write to verify a function internally do make that function’s
computational essence harder to discern. The problem is only exacerbated if one
wishes to verify several properties internally. This can be expected to encrust an
otherwise small and elegant functional program with lots of extra terms (proofs)
and types. So internal verification is probably best applied, in usual cases, to just
a single important property per function.

External verification is often needed for functions used in an internal verification’s
specification. When using internal verification for a program, one will typically
invoke some functions in the types of internally verified programs. An example
is the use of min and max in the type of the insertion function for binary search
trees (Section 5.2.4). These functions are being used specificationally, to help
describe the intended behavior of the internally verified function. One typically
finds that doing the internal verification will then require some externally proved
properties of these specificationally used functions. This was indeed true for
min and max in the case of the bst-insert function, where several properties
of these were needed in the course of writing the code for bst-insert.
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5.6 Conclusion
In this chapter, we saw several examples of what is known as internal verification:
invariants are expressed as part of the definition of a datatype and/or operations on
that datatype, and proofs are then interspersed through the code, to establish those
invariants. We considered vectors, where the type of the vector includes its length;
Braun trees, with the balancing property that the left subtree of each node has the
same size as the right, or is one greater; and binary search trees, where we statically
enforce the binary search tree property that all data in the left subtree of each node
are less than or equal to the data at the node, and all data in the right are greater than
or equal. Internal verification is often a lighter way to establish certain properties of
programs than proving theorems externally about them. It is one of the hallmarks of
dependently typed functional programming.

Exercises
5.1. Using the vector type V in a nested fashion, fill in the hole below to define a type
for matrices of natural numbers, where the type lists the dimensions of the matrix:

_by_matrix : N → N → Set

n by m matrix = ?

5.2. Define the following basic operations on matrices, using the definition you pro-
pose in the previous problem. You should first figure out the types of the operations,
of course, and then write code for them (possibly using helper functions).

(a) zero-matrix, which takes in the desired dimensions and produces a matrix
of those dimensions, where every value in the matrix is zero.

(b) matrix-elt, which takes in an n by m matrix and a row and column index
within those bounds, and returns the element stored at that position in the
matrix.

(c) diagonal-matrix, which takes in an element d and a dimension n, and re-
turns the n by n matrixwhich has zero everywhere except ddown the diagonal
of the matrix. Use this to define a function

identity-matrix

returning a diagonal matrix where the diagonal is 1.

(d) transpose, which turns an n by m matrix into a m by n matrix by switching
the rows and columns.

(e) _._, the dot product of two vectors.
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(f) _*matrix_, which multiplies an n by k matrix and a k by m matrix to obtain
a n by m matrix.

5.3. vector.agda contains functions V-to-L and L-to-V for converting between
vectors and lists. State and prove a theorem expressing the idea that converting a vector
to a list and then back to a vector results in the same vector.

5.4. Write a function which takes a vector of type V (A × B) n and returns a pair
of vectors, one of type V A n and another of type V B n. This is similar to the unzip

function in Haskell, only with vectors instead of lists.

5.5. Implement remove-min and remove-max functions for the bst type. Using
remove-min, you can then write a general remove function, that finds the first value
isomorphic to a given one, and returns the bst without that value. For this, following
the standard algorithm, it will be necessary, if the node holding the value has two
(non-leaf) nodes as the left and right subtrees, to replace the removed element with
its successor. This is the minimum value in the right subtree.

5.6. In list-merge-sort.agda in the IAL, there is an implementation of mergesort
using Braun trees. State and prove some theorems about this merge-sort function.
One that hopefully would not be too bad would be to prove that the length of the input
list and the length of the sorted list returned by merge-sort are the same.
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In previous chapters, we have seen how to write proofs about programs (external
verification) and program with proofs (internal verification). Certainly, the ability to
write proofs is one of the features which makes Agda very different from mainstream
programming languages like Python or Java. In this chapter, we will look at a second
such feature, which is the ability to compute types by pattern matching and recursion
on values. In some ways, this feature may be even more exotic than programming with
proofs, because it changes the kinds of programs we can write (while maintaining
static typing), rather than changing what we can prove statically about them. We will
look at three examples related to type-level computation. For the first, we will use
type-level computation as part of a datatype for the integers Z (Section 6.1). For the
second, we will give a type-safe version of formatted printing (C’s printf function),
following an idea of Augustsson’s [Augustsson 1998]. Finally, we will see an example
that, in full generality, often makes use of type-level computation (though here this
will not be needed). This is proof by reflection, which we will use to write a verified
simplifier for list expressions, which we could use instead of applying rewrite to
apply various lemmas about list operations. A more complicated example involving
type-level computation will be developed in Chapter 10.

6.1 Integers
How does one represent numbers beyond the naturals in a language like Agda? We are
thinking here of representing numbers for purposes of theorem-proving, since as we
have already noted (at the start of Chapter 3), efficient numeric representations would
take some further work in Agda, which we are not going to attempt. In this section, let
us look at how we might represent just the mathematical integers Z. The development
discussed here can be found in integer.agda in the Iowa Agda Library.

The basic initial question is, how should integers be represented as a datatype?
There are several natural possibilities. Here, we will try out a particular one that will
demonstrate the use of type-level computation. Roughly, we will view an integer as a
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natural number plus a sign bit; that is, a boolean telling whether the number is positive
or negative. So we could try using N × B as the definition of the Z type. But there is an
ugly little wrinkle: that definition would give us two representations of 0. We would
have a positive 0 and a negative 0, since every integer would have a sign bit. This may
seem like a small inconvenience, but it will complicate all our subsequent theorems.
The number 0 does not have a sign in traditional mathematics, and so working with
signed 0 will require constant little deviations from usual theorems and definitions.

We can do better than this, using type-level computation. We want to express the
idea that only nonzero numbers have a sign, while 0 is unsigned. Alternatively, we will
view nonzero numbers as having a sign of type B, while 0 has a sign of type �. This
type � is defined in unit.agda:

unit.agdadata � : Set where

triv : �
This type, also called the unit type, has a sole inhabitant, triv. So if you have

an element of type �, you have no information, as there is only one possibility for
what element this could be (and hence, having a particular element resolves no
uncertainty). We will define integers so that the sign bit for nonzero numbers is a
boolean, while the sign bit for 0 is an element of type � (in other words, there is no
sign for 0).

6.1.1 The Z Datatype
Delightfully, this idea of having no sign bit for integer 0 can be implemented in Agda.
The first step is to define a type-level function to compute the type for the sign bit:

integer.agdaZ-pos-t : N → Set

Z-pos-t 0 = �
Z-pos-t (suc _) = B

If the input natural number is 0, then we return the unit type �; if it is a successor
number, we return the boolean type B.

Now we can define the datatype of integers, as shown in Figure 6.1. The sole con-
structor mkZ for datatype Z takes in a natural number n and then a second argument
whose type is computed by the Z-pos-t function from n. The integer.agda file then
gives a couple useful representative examples, shown in Figure 6.2. 0Z, the integer 0,

integer.agdadata Z : Set where

mkZ : (n : N) → Z-pos-t n → Z

Figure 6.1 Declaration of the integers, using type-level computation for the sign-bit.
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integer.agda0Z : Z

0Z = mkZ 0 triv

1Z : Z

1Z = mkZ 1 tt

-1Z : Z

-1Z = mkZ 1 ff

Figure 6.2 Some integer constants.

data Z : Set where

zero : Z

nonzero : B → N → Z

Figure 6.3 An alternative datatype for the integers.

integer.agdaabs-val : Z → N

abs-val (mkZ n _) = n

is-evenZ : Z → B

is-evenZ (mkZ n _) = is-even n

is-oddZ : Z → B

is-oddZ (mkZ n _) = is-odd n

Figure 6.4 Some uniformly defined operations on integers.

is defined to be mkZ 0 triv. This is exactly as we intended, since triv is the sole (triv-
ial) constructor for the top type �, which is what the second argument to mkZ must
be when the first argument is the natural number 0. The examples 1Z and -1Z show
that the second argument is a boolean when the first argument is nonzero. Note that
we are intending tt to mean the integer is positive, and ff to mean it is negative.

There is an essential difference between this representation of integers and one
where zero and nonzero numbers have different constructors, such as the one shown
in Figure 6.3. Here we have one constructor for zero, and another for all nonzero
integers, both positive and negative (with the boolean indicating the sign). There is no
essential difference for operations which need to take different actions depending on
whether the number is zero or not. This alternative definition and the one of Figure 6.1
will both pattern-match on the integer input in an equivalent way. But some operations
can be defined uniformly, without considering zero specially. Some examples are given
in Figure 6.4. For functions like these, the code using the definition of Figure 6.3 will
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need an additional equation, for the zero case. Using the definition of Figure 6.1 is
thus more concise.

6.1.2 Addition on Integers
The integer.agda file in the IAL has a definition of addition, shown in Figure 6.5.
We pattern-match on the integer arguments. If either is zero, we return the other.
Otherwise, we can compare the sign bits to decide what to do next. The sign bits
are different if their exclusive or (xor) is tt, and they are the same if it is ff. In the
latter case, we just add the natural number parts and use the same sign bit. In the
former case, where the sign bits of the two numbers are different, we will subtract
one natural number part from the other, using a helper function diffZ, shown in
Figure 6.6. Which number we subtract from which is determined by p1 imp p2 (the
guard in the if_then_else term), which is tt if the first number is negative and the
second positive; and ff if it is the second which is negative with the first positive
(since the sign bits are different in this case, one of those two conditions must hold).
The diffZ function calls N-trichotomy from nat-thms.agda, to obtain a proof of
the following disjunction: either n < m, n =N m, or m < n is true (tt). There are then

integer.agda_+Z_ : Z → Z → Z

(mkZ 0 _) +Z x = x

x +Z (mkZ 0 _) = x

(mkZ (suc n) p1) +Z (mkZ (suc m) p2) with p1 xor p2

(mkZ (suc n) p1) +Z (mkZ (suc m) p2) | ff =

mkZ (suc n + suc m) p1

(mkZ (suc n) p1) +Z (mkZ (suc m) p2) | tt =

if p1 imp p2 then diffZ m n else diffZ n m

Figure 6.5 Integer addition.

integer.agdadiffZ : N → N → Z

diffZ n m with N-trichotomy n m

diffZ n m | inj1 p with < .−suc{m}{n} p

diffZ n m | inj1 p | x , _ = mkZ (suc x) ff

diffZ n m | inj2 (inj1 p) = mkZ 0 triv

diffZ n m | inj2 (inj2 p) with < .−suc{n}{m} p

diffZ n m | inj2 (inj2 p) | x , _ = mkZ (suc x) tt

Figure 6.6 Subtracting the second natural from the first to obtain an integer.
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different cases for these three conditions. The code for diffZ uses a second function
from nat-thms.agda, with this typing:

< .−suc : ∀ {x y : N} → (y < x ≡ tt) →
� N (λ n → x .− y ≡ suc n)

This takes in a proof that y < x (for implicit x and y), and returns a natural number
together with a proof that subtracting y from x gives you the successor of that natural
number. In other words, this function does the subtraction and also gives you a proof
that the result of the subtraction is nonzero. diffZ uses this in order to apply the mkZ

constructor to the result, as well as a boolean sign bit.

6.1.3 Antisymmetric Integer Comparison
The example of integer addition showed some of the work we have to do with our
representation based on computing the type for the sign bit. In this section, we will see
an example of the payoff for doing this work. We will define a comparison operation
on integers and prove it is antisymmetric. This would not have been possible, strictly
speaking, if all integers had a boolean sign bit. For then we would have had positive
and negative zero, which presumably would have had to be isomorphic (each less
than or equal to the other). But then antisymmetry would fail, since that is exactly the
property that isomorphic elements are equal.

The code for the integer comparison function is given in Figure 6.7. There are
some obvious cases if one of the integers being compared is the integer for 0. The
comparison if the other number is nonzero is then given by the sign bit of that other
number. For the cases where both integers are nonzero, we again use the xor and imp

operations on the signs, in the course of making the comparison. For this comparison

integer.agda_≤Z_ : Z → Z → B

(mkZ 0 triv) ≤Z (mkZ 0 triv) = tt

(mkZ 0 triv) ≤Z (mkZ (suc _) pos) = pos

(mkZ (suc _) pos) ≤Z (mkZ 0 triv) = ~ pos

(mkZ (suc x) pos1) ≤Z (mkZ (suc y) pos2)

with pos1 xor pos2

(mkZ (suc x) pos1) ≤Z (mkZ (suc y) pos2) | tt =

pos1 imp pos2

(mkZ (suc x) pos1) ≤Z (mkZ (suc y) pos2) | ff =

if pos1 then x ≤ y else y ≤ x

Figure 6.7 Integer comparison.
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function, integer.agda then has a proof of the following antisymmetry property:

integer.agda≤Z-antisymm : ∀(x y : Z) → x ≤Z y ≡ tt →
y ≤Z x ≡ tt → x ≡ y

The proof is somewhat lengthy, so we omit it here. The main point is that if we had
distinct representations of the same mathematical integer, this property would not
hold. So this is an example of the benefit of having a unique representation, like the
one we have achieved using type-level computation.

6.2 Formatted Printing
While the previous example may seem a bit technical, the one we will consider now
is concerned with very practical programming. The standard library for the C pro-
gramming language has, for decades, contained a function printf, which takes a
format string and some arguments, and prints the arguments according to that for-
mat string. The format string is just a string with special codes like %s (for strings)
or %d (for integers), instructing printf to expect an argument of a certain type, to be
printed a certain way. For example, printf("%d %ss", 25, cat) will print the string
"25 cats". More modern languages also include formatted printing; for example,
java.io.PrintStream also has a printf function which works in essentially the
same way.

Augustsson proposed static typing for printf, by computing the type of the argu-
ments from the format string [Augustsson 1998]. Let us consider code for this in Agda,
fromstring-format.agda in the IAL. We will define aformat function for formatted
printing (to strings, not actual output channels). The typing for this function is

format : (f : string) → format-t f

So format takes in a format string f, and then returns a value whose type is
computed, by the helper function format-t, from f. The type of this helper function
is thus string → Set. It will turn out that a direct definition of these functions
by pattern-matching on lists of characters runs into trouble. We will consider this
attempt first, before turning to a working solution.

6.2.1 An Unsuccessful Attempt
The code in this section can be found in string-format-issue.agda in the IAL.
First, we will want to work with lists of characters rather than strings. We will then
convert strings to these, using a function string-to-Lchar in string.agda (in the
IAL). So we will write helper functions forformat-tandformat, which operate on lists
of characters instead of strings. The first of these is shown in Figure 6.8. If the list of
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string-format-issue.agdaformat-th : L char → Set

format-th (’%’ :: ’n’ :: f) = N → format-th f

format-th (’%’ :: ’s’ :: f) = string → format-th f

format-th (c :: f) = format-th f

format-th [] = string

format-t : string → Set

format-t s = format-th (string-to-Lchar s)

Figure 6.8 Computing the type of the rest of the format function, from the format string.

characters begins with ’%’ and then ’n’, then that is the format specifier we are using
to indicate a natural-number argument. So the type we compute (on the right-hand
side of that first equation for format-th) is for a function taking in a natural-number
argument and then proceeding as specified by the recursive call to format-th on the
rest of the format string. Similarly, if the format string, as a list of characters, begins
with ’%’ and then ’s’, the type we compute says that the function should take in a
string argument. If the format string begins any other way, then there is no argument
to take in, and format-th just recurses on the rest of the format string. If the format
string is empty, then the type is just string; this is the ultimate return type of the
format function. As an example of how format-t works, if we ask Agda to evaluate
format-t "The %n% %s are %s." (using Ctrl+c Ctrl+n), we will get

N → string → string → string

This is what we would expect, because the format string "The %n% %s are %s." con-
tains a %n format specifier, and then two %s specifiers. So the format function should
take a natural-number argument, then two string arguments, and then return a string,
as the type displayed just above specifies.

Now let us try to write the format function. Code for this, with one hole which we
cannot fill in, is in Figure 6.9. Let us look first at the parts of this code that type-check.
First, the types of the functions in the figure show how the format-t and format-

th functions are used, just as we noted in the previous section. For format-h, we are
taking in the format string f as a list of characters, so the return type of the function is
computed fromfbyformat-th. The format string is the second argument toformat-
h. The first argument is an accumulator holding the string we have generated so far,
from the prefix of the format string, and any corresponding arguments, which we have
already processed. Let us look closely at the first defining equation for format-h:

format-h s (’%’ :: ’n’ :: f) =

λ n → format-h (s ++ (string-to-Lchar (N-to-string n))) f
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string-format-issue.agdaformat-h : L char → (f : L char) → format-th f

format-h s (’%’ :: ’n’ :: f) = λ n →
format-h (s ++ (string-to-Lchar (N-to-string n))) f

format-h s (’%’ :: ’s’ :: f) = λ s’ →
format-h (s ++ (string-to-Lchar s’)) f

format-h s (c :: f) = ?

format-h s [] = Lchar-to-string s

format : (f : string) → format-t f

format f = format-h [] (string-to-Lchar f)

Figure 6.9 Attempt at the format function, with a hole we cannot fill in.

We know that the type of the right-hand side is supposed to be

format-th (’%’ :: ’n’ :: f)

This is definitionally equal to N → format-th f, by the definition of format-th. So
indeed, the right-hand side takes in an argument n (implicitly of type N), and then
makes a recursive call with format string f. That recursive call has type format-th

f, as required. The accumulator argument is updated with the result of converting
the natural-number argument n to a string, and then a list of characters. The second
defining equation for format-h is typed similarly. The last (fourth) defining equation
is where we just convert the accumulator back to a string and return it.

So, surprisingly, the problem is arising in the third equation, when we do not have
a format specifier in the format string. If we look at the type of the hole (with Ctrl+c
Ctrl+,), we will see that it is format-th (c :: f). You might find this strange. Agda is
saying that it cannot simplify this expression any further. But surely, we might think,
this should simplify to just format-th f, because that is what the code for format-
th says to do in case the format string does not match the pattern in one of the first
two defining equations for format-th. Ah—we might imagine Agda replying—but
how do we know that c :: f does not match one of those patterns? Because—we
might indignantly respond—we are in a defining equation for format-h where those
patterns have already been checked in earlier equations. And that is where we get
stuck. Agda does not use the information that a particular term has failed to match some
patterns when doing partial evaluation.So just because, if we reach this point in the code
for format-h, c :: f will have failed to match the patterns ’%’ :: ’n’ :: f and ’%’

:: ’s’ :: f; that does not mean that Agda will use that information when trying to
reduce the type expression format-th (c :: f). As far as Agda is concerned, the fact
that the expression c :: f could, if we do not consider the context in which it appears,
match one of those patterns, is enough to prevent partial evaluation from simplifying
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format-th (c :: f). Agda needs to see explicitly that the input to format-th is not
of the form ’%’ :: ’n’ :: f nor ’%’ :: ’s’ :: f in order to consider subsequent
defining equations for format-th. And c :: f cannot, by itself, be seen not to match
those patterns. So partial evaluation gets stuck, and we cannot complete this code.
Another way to identify the problem is that format-th has a default case, where the
pattern alone is not sufficient to show that evaluation should go to that case.

The fact that Agda does not keep track of information on what patterns a term must
have failed to match is disappointing, though one can only imagine the complexity
that would be involved in adding such support, in conjunction with all of Agda’s other
features. Fortunately, we can work around this problem, as we will see next.

6.2.2 A Working Solution
The failure of the previous solution is due to the use of a default pattern in the defini-
tion of theformat-th function. We can get a working solution by rewritingformat-th
and format-h so there are no default patterns. To do this, we will introduce an aux-
iliary datatype which gives the same information as the format string, but with the
structure we wish to use in format-th and format-h. This auxiliary datatype is rem-
iniscent of the idea of a view, introduced for dependently typed programming by
McBride and McKinna [2004], though views are indexed by the data in question (here,
the format strings), while for us, an unindexed type is sufficient. The code may be
found in string-format.agda.

Figure 6.10 gives the definition of the auxiliary datatype format-d, and a function
format-cover, which converts a format string to an element of this type. The con-
structors of the format-d type represent the possibilities for format specifiers at the
current position in the format string. This is made clear by the format-cover code

string-format.agdadata format-d : Set where

format-nat : format-d → format-d

format-string : format-d → format-d

not-format : (c : char) → format-d → format-d

empty-format : format-d

format-cover : L char → format-d

format-cover (’%’ :: ’n’ :: s) = format-nat (format-cover s)

format-cover (’%’ :: ’s’ :: s) = format-string (format-cover s)

format-cover (c :: s) = not-format c (format-cover s)

format-cover [] = empty-format

Figure 6.10 Auxiliary data structure for representing format strings.
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string-format.agdaformat-th : format-d → Set

format-th (format-nat v) = N → format-th v

format-th (format-string v) = string → format-th v

format-th (not-format c v) = format-th v

format-th empty-format = string

format-t : string → Set

format-t s = format-th (format-cover (string-to-Lchar s))

Figure 6.11 Defining format-t using the format-d representation of format strings.

to convert a format string into a format-d value. The current position in the format
string might have a format specifier %n or %s, in which case we apply the format-nat
or format-string constructor, to the result of recursively converting the reset of the
format string. This is done in the first and second equations for format-cover. The
third equation is for the case where there is no format specifier. We need to record
the character c at that point in the format string, since this should be printed out by
format. The last equation is for when the end of the format string is reached.

Now we can revisit the definitions of format-t and format, using the format-

d representation of format strings. The code for format-t and its helper function
format-th is given in Figure 6.11. The code is very similar to that in Figure 6.8, except
that the helper function format-th recurses over a format-d value, rather than a
format string. The benefit of this change of representation is that now, format-thhas
no default cases: any input to the function matches exactly one equation. This was not
true for the definition in Figure 6.8, where a string beginning with%n could match both
the pattern for numeric format specifiers and the default case for nonempty strings.

The payoff for using format-d values instead of format strings comes in the defini-
tion of format (Figure 6.12) and particularly its helper function format-h, which can
now be completed (in contrast to the attempt in Figure 6.9). The first two defining
equations for format-h are similar to those from our earlier failed attempt (Fig-
ure 6.9): if the format specifier is for a numeric argument or a string argument, then
the type of format-h in those two cases, which is computed by format-th d from the
format-d value d, says that arguments of the appropriate types should be accepted.
So the equations use a λ-abstraction to take in a natural number n and a string s’,
respectively, in those two cases. The third case is the one that posed problems in the
code of Figure 6.9. But here, as Agda refines the return type format-th d by replacing
d with the pattern not-format c v, we obtain a return type format-th (not-format

c v) which, unlike in the earlier failed attempt case, is able to reduce, to format-

th v. That is exactly what is needed to type the recursive call to format-h, where the
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format.agdaformat-h : L char → (d : format-d) → format-th d

format-h s (format-nat v) =

λ n → format-h (s ++

(string-to-Lchar (N-to-string n))) v

format-h s (format-string v) =

λ s’ → format-h (s ++ (string-to-Lchar s’)) v

format-h s (not-format c v) = format-h (s ++ [ c ] ) v

format-h s empty-format = Lchar-to-string s

format : (f : string) → format-t f

format f = format-h [] (format-cover (string-to-Lchar f))

Figure 6.12 Formatted printing (to strings) using the format-d representation of format strings.

character c from the format string is appended to the string being accumulated in the
first argument to format-h.

Finally, we can see the fruits of our labors from some examples of using format.
First, if we ask Agda (with Ctrl+c Ctrl+d) what the type of a test like

format "%n% of the %ss are in the %s %s"

is, we get N → string → string → string → string. There are four format
specifiers in the format string, and our code for format-t computes this type for
a function taking in four arguments of the appropriate types, and then returning a
string. If we ask Agda to evaluate a call to format with all the required arguments, like

format "%n% of the %ss are in the %s %s"

25 "dog" "toasty" "doghouse"

we indeed get the expected result

"25% of the dogs are in the toasty doghouse"

Note the inclusion of a percent sign that is not part of a format specifier, to show that
we are handling such cases correctly.

6.3 Proof by Reflection
Agda does not have much support for automatic theorem-proving, where algorithms
are applied to try to prove formulas of certain relatively simple kinds. The general
theorem-proving problem is provably unsolvable (like the famous Halting Problem),
so restrictions on the kind of formulas to be proved are needed. But there are many
useful classes of formulas that can be tested for validity fully automatically. This could
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save a lot of effort for the human trying to verify properties of her/his code. The
research literature on automated theorem-proving has not neglected the question of
how to integrate automatic and human construction of proofs. There are approaches
which try to import or reconstruct proofs found by external solvers [Armand et al.
2011, Böhme and Nipkow 2010]. One can also implement automated theorem-proving
algorithms directly in the source code for the proof assistant [Hurd 2003]. And some
proof assistants like Coq and Isabelle have mechanisms to allow the programmer to
guide or augment automated theorem-proving implementations.

In this section, we will study a different approach, called proof by reflection. This
is a particularly elegant way to add automated reasoning to a proof assistant like
Agda. The starting point for proof by reflection is to reflect (hence the name) part
of the logical language of the proof assistant into a datatype within the language.
Values of this datatype are representations for expressions from the logical language.
A semantic function [[_]] maps those representations to their actual meaning in the
logical language of the tool. By representing a formula as a value of a datatype, we can
implement automated-reasoning algorithms by pattern matching and recursion over
representations (where pattern matching over formulas of the logic—i.e., elements of
type Set—is not supported by Agda or similar tools). For example, we will see how to
write a simplifier, that transforms one representation into another which is simpler
in some way. Finally, to make use of the simplifier for actual proofs in the logical
language, one proves a soundness result for the solver: transforming a representation
using the solver preserves the meaning of that representation. So anywhere we see an
expression that is equal to the semantics [[r]] of some representation, we have a proof
that this expression is equal to [[simplify r]].

For this abstract description of proof by reflection to make more sense, let us look
at an example, from list-simplifier.agda in the Iowa Agda Library, of automatic
simplification of certain expressions involving the list operators for append and map,
as well as the list constructors _::_ and []. We will develop a verified list-expression
simplifier, which will allow us to prove certain simple equational theorems about list
append, map, cons, and the empty list, fully automatically.

As noted at the start of this chapter, our list simplifier will not actually require type-
level computation. More complex examples of proof by reflection, however, typically
do, as one seeks to prove certain kinds of formulas (i.e., types) purely automatically.
In such cases, the semantic function [[_]] computes a type, not just a list. This is the
reason for including this topic in the current chapter.

It is worth noting that Agda does have some meta-programming facilites that allow
one to compute representations from actual goal types. The interested reader is re-
ferred to http://github.com/UlfNorell/agda-prelude/blob/master/src/Tactic/Nat.agda.

http://github.com/UlfNorell/agda-prelude/blob/master/src/Tactic/Nat.agda
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list-simplifier.agdadata L
r : Set → Set lone where

_r : {A : Set} → L A → L
r A

_++r_ : {A : Set} → L
r A → L

r A → L
r A

mapr : {A B : Set} → (A → B) → L
r A → L

r B

_::r_ : {A : Set} → A → L
r A → L

r A

[]r : {A : Set} → L
r A

Figure 6.13 Datatype for representations of certain list expressions.

list-simplifier.agdaL[[_]] : {A : Set} → L
r A → L A

L[[ l r ]] = l

L[[ t1 ++r t2 ]] = L[[ t1 ]] ++ L[[ t2 ]]

L[[ mapr f t ]] = map f L[[ t ]]

L[[ x ::r t ]] = x :: L[[ t ]]

L[[ []r ]] = []

Figure 6.14 The semantics for list representations.

6.3.1 The Datatype of Representations, and Its Semantics
The first step in proof by reflection is to define a datatype representing the expressions
we wish to simplify or solve. For our list simplifier, this is shown in Figure 6.13. A
datatype L

r is declared, for representations of list expressions. There are constructors
for representing the two operations and the list constructors; _++r_, for example, is
for representing an application of the append operator _++_. The first constructor, _
r , allows us to embed an actual list expression, of type L A, inside a list representation
of type L

r A. Note that we are keeping track of the types of the elements in our list
representations, so the type of a list representation is L

r A, indexed by the type A of
the elements, just like the type L A of list expressions. The quantifications over types
(values of type Set) in the types for the constructors forces us to bump the level of the
L

r datatype up, from Set level 0 to Set level 1 (lone, from level.agda).
The names of the constructors for the type L

r have been chosen to try to make it
clear which list operations or constructors they represent. But we can remove all doubt
by defining a semantics, mapping list representations to actual lists. This is given in
Figure 6.14. The definition of this L[[_]] function already makes clear the reason for
reflecting list expressions into a datatype: we can pattern-match and recurse on values
in this datatype. In contrast, we cannot use t1 ++ t2 as a pattern in Agda, as patterns
can only involve constructors, and _++_ is a recursively defined function, not a con-
structor. By creating a datatype of representations, we are introducing constructors
like _++r_ to correspond to the non-constructor operations on lists we are interested
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in. Like many semantic functions, L[[_]] is very straightforward, and exactly what you
would expect. The representations mean exactly what their syntax is chosen to suggest
they mean. So _++r_ represents _++_, mapr represents map, and so on. If we have an
embedded list under the _r constructor, then the first equation in Figure 6.14 says
that the meaning of this representation is just the embedded list.

The same list expression can be represented in different ways. For example, to
represent (1 :: []) ++ (2 :: []), we could use

(1 ::r []r) ++r (2 ::r []r)

This is the most complete representation possible for the given expression; there is
no way to use more L

r constructors to represent this expression. We can use fewer,
though. For example, here is the least complete representation:

((1 :: []) ++ (2 :: []))r

Both representations have type L
r

N, for representations of list expressions where
the elements are natural numbers. They both have the same meaning, as computed
by the L[[_]] function, namely, the expression (1 :: []) ++ (2 :: []), which is def-
initionally equal to the list value 1 :: 2 :: []. The representations, however, are not
definitionally equal to any other representation of this value. This is a consequence of
the main benefit of reflecting expressions into representations: the representations
are constructor terms, and hence are not definitionally equal to other representations.
What we lose in automatic definitional equality we more than gain in the ability to
write functions which manipulate representations by pattern matching and recur-
sion. As we have already noted, such manipulation is not possible directly on the list
expressions themselves.

6.3.2 The List Simplifier
To write our list simplifier, we will write one function to perform a single step of
simplification, and another to traverse the representation to perform single steps
wherever possible. The function for a single top-level simplification step is given
in Figure 6.15. L

r-simp-step matches on the form of a representation t. The first
equation re-associates left-nested append operations to the right. The second and
third equations implement the definitional equalities for append: uses of cons (_::_
) are pulled out of the first position in a use of append, and the empty list is dropped.
Next, we will drop the empty list if it is used in the second position of an append. This
is justified not by definitional equality, but by a lemma from list-thms.agda:

++[] : ∀{�}{A : Set �} → (l : L A) → l ++ [] ≡ l
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list-simplifier.agdaL
r-simp-step : {A : Set}(t : L

r A) → L
r A

L
r-simp-step ((t1a ++r t1b) ++r t2) = t1a ++r (t1b ++r t2)

L
r-simp-step ((x ::r t1) ++r t2) = x ::r (t1 ++r t2)

L
r-simp-step ([]r ++r t2) = t2

L
r-simp-step ((l r) ++r t2) =

if is-emptyr t2 then l r else ((l r) ++r t2)

L
r-simp-step ((mapr f t1) ++r t2) =

if is-emptyr t2 then mapr f t1 else ((mapr f t1) ++r t2)

L
r-simp-step (mapr f (t1 ++r t2)) =

(mapr f t1) ++r (mapr f t2)

L
r-simp-step (mapr f (l r)) = (map f l) r

L
r-simp-step (mapr f (mapr g t)) = mapr (f ◦ g) t

L
r-simp-step (mapr f (x ::r t)) = (f x) ::r (mapr f t)

L
r-simp-step (mapr f []r) = []r

L
r-simp-step (l r) = l r

L
r-simp-step (x ::r t) = (x ::r t)

L
r-simp-step []r = []r

Figure 6.15 Function for performing a single step of simplification.

L
r-simp-step applies the transformation implied by this lemma in two situations:

if the first argument to the append is l r , and if it is mapr f t1. If the first argument
to append is one of the other three possibilities allowed by the L

r A datatype, then the
situation has already been covered by the first three equations for L

r-simp-step. So
consider the following clause (from Figure 6.15):

L
r-simp-step ((l r) ++r t2) =

if is-emptyr t2 then l r else ((l r) ++r t2)

We are not pattern-matching on t2 to detect if it is []r . Rather, we call a small
helper function (not shown), which just returns tt or ff depending on whether the
input is []r or not. This lets us avoid having default cases here in the definition
of L

r-simp-step, which would cause similar problems as we encountered in the
Section 6.2.1 for formatted printing. If is-emptyr t2 returns tt, then we drop t2

from the append; otherwise, we retain it. We do a similar split on a call to is-emptyr

if the first argument of the append is mapr f t1. After this, we have the cases for when
the input represents a map expression. We can perform some simplification in all the
cases for the list to which map is being applied:

. mapr f (t1 ++r t2): push the mapr into the append to apply to t1 and t2 sepa-
rately;
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. mapr f (l r): push the mapr under the r constructor, changing it to a real map;

. mapr f (mapr g t): coalesce the two maps, using the composition f ◦ g of f
and g;

. finally there are equations implementing the definitional equalities for map.

The code for L
r-simp-step then concludes with a few trivial cases where no trans-

formation takes place. As an example, list-simplifier.agda defines a parame-
trized submodule test2, containing a value lhs:

mapr f (((l1 r) ++r (l2 r)) ++r (l3 r))

If we apply L
r-simp-step to this, as done to compute test2.one-step (this is the

fully qualified name for the value in the submodule), we will get this representation:

mapr f ((l1 r) ++r (l2 r)) ++r mapr f (l3 r)

Now we need a function that can apply L
r-simp-step multiple times. Following

standard terminology in rewriting, let us call any expression which will be transformed
to a distinct representation by applying L

r-simp-step a redex. Figure 6.16 shows the
code for functions L

r-simp-sdev and L
r-simp, which perform multiple simplifica-

tion steps. L
r-simp-sdev performs what is sometimes called a superdevelopment

in the rewriting literature: we recursively transform the immediate subterms of the
representation t, and then try to apply a single step of reduction to the result. This
has the effect of simplifying redexes that are created by recursive simplification. (In
contrast, a development transforms only redexes that occur in the original term.) The

list-simplifier.agdaL
r-simp-sdev : {A : Set}(t : L

r A) → L
r A

L
r-simp-sdev (l r) = (l r)

L
r-simp-sdev (t1 ++r t2) =

L
r-simp-step ((L

r-simp-sdev t1) ++r (L
r-simp-sdev t2))

L
r-simp-sdev (mapr f t1) =

L
r-simp-step (mapr f (L

r-simp-sdev t1))

L
r-simp-sdev (x ::r t1) =

L
r-simp-step (x ::r (L

r-simp-sdev t1))

L
r-simp-sdev []r = []r

L
r-simp : {A : Set}(t : L

r A) → N → L
r A

L
r-simp t 0 = t

L
r-simp t (suc n) = L

r-simp-sdev (L
r-simp t n)

Figure 6.16 Superdevelopments and iterated simplification.
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result of calling L
r-simp-sdev on test2.lhs, defined to be test2.sdev in list-

simplifier.agda, has value:

mapr f (l1 r) ++r mapr f ((l2 r) ++r (l3 r))

So what has happened to the original representation is that we have right-associated
the left-nested append, and then pushed the mapr in to the two lists being appended.
There is some more simplification that can happen, namely, to push mapr into (l2 r)

++r (l3 r), but this cannot happen in a single superdevelopment. The transforma-
tion which we are applying is terminating, but convincing Agda of that fact will take
more work than I wish to invest in the simplifier at this point. So we will fall back to
iterated superdevelopments: the user of the simplifier must specify a natural number,
for the number of times we will apply L

r-simp-sdev to the input representation. This
is how L

r-simp is defined. Three iterated superdevelopments are sufficient to reduce
test2.lhs to the following term, which cannot be further reduced:

(map f l1 r) ++r ((map f l2 r) ++r (map f l3 r))

6.3.3 Proving that the Simplifier Preserves the Semantics
The final step in developing our simplifier for list expressions is to prove that the
simplifier just defined preserves the semantics of list representations. That is, we want
to prove that the meaning of a simplified representation is the same as the original
representation. As stated in the main theorem of list-simplifier.agda:

L
r-simp-sound : {A : Set}(t : L

r A)(n : N) →
L[[ t ]] ≡ L[[ L

r-simp t n ]]

This theorem is the one we can use to simplify list expressions in our regular Agda
proofs. For example, test2.test proves the following theorem in one line, just by
calling L

r-simp-sound lhs 3:

map f ((l1 ++ l2) ++ l3) ≡ map f l1 ++ map f l2 ++ map f l3

To understand how this works, we have to consider the type of L
r-simp-sound,

instantiated with the particular representation test2.lhs and number of iterations
3. That type is then

L[[ lhs ]] ≡ L[[ L
r-simp lhs 3 ]]

So we are showing that the meaning of the representation is equal to the meaning
of the simplified representation. Now, the meaning of the representation (this is
test2.lhs)

mapr f (((l1 r) ++r (l2 r)) ++r (l3 r))
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is justmap f ((l1 ++ l2) ++ l3), our list expression of interest. So we are proving that
this is equal to the meaning of its simplified form. We already saw that the simplified
representation returned by L

r-simp with number of iterations 3 is

(map f l1 r) ++r ((map f l2 r) ++r (map f l3 r))

And the meaning of this is the desired resulting list expression

map f l1 ++ map f l2 ++ map f l3

The heart of proving L
r-simp-sound is proving the following helper lemma, which

states that L
r-simp-step (one-step simplification) preserves the semantics for list

representations:

L
r-simp-step-sound : {A : Set}(t : L

r A) →
L[[ t ]] ≡ L[[ L

r-simp-step t ]]

The proof is straightforward, if somewhat long, so the details are omitted here. A
typical case is the one showing that re-associating a left-nested append preserves the
semantics:

L
r-simp-step-sound ((t1a ++r t1b) ++r t2) =

++-assoc L[[ t1a ]] L[[ t1b ]] L[[ t2 ]]

This uses the theorem ++-assoc from list-thms.agda, which says that append is
associative. The other simplification steps performed by L

r-simp-step are justified
by similar uses of theorems from list-thms.agda.

6.4 Conclusion
In this chapter, we saw some of the amazing examples that are possible in Agda using
type-level computation. Types are generally giving us compile-time approximations to
the run-time behavior of programs. For example, if you know that an expression has
type int in Java, you know that if evaluation of that expression terminates normally
(it does not run forever, and it does not raise exceptions), then what you get back
will really be an int value like 12 or -121. By having more expressive types, Agda
enables more refined type approximations of the programs’ runtime behavior. The
ability to compute a type from a value is a rather astonishing example of this, enabling
typing of functions like formatted printing that one would likely have thought could
not be meaningfully statically typed (and certainly are not in languages like C or
Java). Computing types from values is arguably the essential feature that distinguishes
dependently typed programming from other forms of richly typed programming.
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Indexed types like V for vectors (Section 5.1) enable intriguingly expressive types for
programs, but programs like vector append can just as well be written without type
indices. Indeed, for the example of vectors, the programs just become operations on
lists, which can be typed without the fancy machinery of indexed types. In contrast,
programs like format (Section 6.2.2) cannot be written in a typed language without
type-level computation. There is no simply typed analog of format one can type in
OCaml or Haskell, though there are some remarkable approximations; see Danvy
[1998] and Web posts by Oleg Kiselyov [Kiselyov 2015].

Reflection is a deep idea, appearing in Logic and Computer Science in various
guises. For more on proof by reflection in Agda, see van der Walt and Swierstra [2013].
Reflection is also used heavily in the Coq theorem prover, particularly in the SSREFLECT

library [Gonthier et al. 2015]; for another example, see Contejean and Corbineau
[2005].

Exercises
6.1. Define some further operations on the type Z of Section 6.1, such as negation,
subtraction, and multiplication.

6.2. Prove commutativity of _+Z_. The proof will invoke commutativity of natural-
number addition for the case where that function is actually called.

6.3. Try out some examples of formatted printing using format from Section 6.2.

6.4. Try proving a sample list theorem using the list simplifier, as shown in Sec-
tion 6.3.3.





7Generating Agda Parsers
with gratr

In this chapter, we will see how to use the gratr tool, which I have developed together
with John Bodeen and Nao Hirokawa, for parsing textual input into Agda. While
the material presented here does not depend on any features specific to Agda, it is
included for several reasons. First, we will use gratr for the case study in Chapter 8.
Second, and more centrally, one of the main applications for functional languages is
writing language-processing tools, and parsing is a crucial step in any such tool. As
we will see, parsing uses trees as a central data structure, and trees are beautifully
supported by the inductive datatypes of Agda or functional programming languages
more generally. A third similarity between parsing and functional programming is that
both aspire to be declarative formalisms: we should be able to give a description (of
a program, or of a language) without worrying too much about how that description
will be achieved by a computer. And, in both cases, compromises tend to be struck
between the purity of a mathematical formalism, and the requirements of practical
implementation. So I find a strong connection between functional programming and
parsing.

The goal of parsing is to go from a linear sequence of characters (stored in a file, or
possibly streamed into the program), to a structured representation in memory, for
manipulation by the program. For example, we might like to go from textual input
such as 1 + 2 + 3 to a structured representation such as that shown in Figure 7.1.

Such a representation provides a good starting point for further processing, be-
cause it has made explicit the syntactic structure which is implicit in the linear textual
input. For example, if this is indeed how we choose to parse 1 + 2 + 3, we see from the
tree that Plus is a left-associative operator: the tree has grouped 1 and 2 more closely
under an inner Plus node, leaving 3 to be grouped additionally after that.
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Plus

Plus

Num

3Num

1

Num

2

Figure 7.1 An example syntax tree.

In this chapter, we will see how we can generate Agda parsers from context-free
grammars augmented with rewrite rules, using gratr. This gratr tool takes a gram-
mar as input, and produces Agda code which can parse strings in the language de-
scribed by the grammar. Context-free grammars are a formalism for describing the
syntax of languages. They have a rich and interesting theory, which is, however, beyond
the scope of the present book to study. Our focus here will be on writing grammars
and using gratr to generate parsers from them. For extensive information on the
many, many other methods that exist for parsing, see Grune and Jacobs [2007]. For an
introduction to context-free grammars and related formalisms from formal language
theory, see Kozen [1997].

The chapter first begins with a basic introduction to context-free grammars (Sec-
tion 7.1), and then discusses how to use the gratr parser generator to generate Agda
code for parsing input strings (Section 7.2.

7.1 A Primer on Grammars
A context-free grammar consists of a set of productions, which look like:

symbol → symbol1
. . . symboln

The right-hand side of a production is allowed to be empty (no symbols at all). The
symbol on the left-hand side of the production cannot be an input character (like ‘a’).
It is required to be a nonterminal, which is just a symbol introduced by the grammar
for purposes of describing some part of the syntax of the language. The symbols on
the right-hand side of the production can either be nonterminals or input characters,
which are also called terminals. A context-free grammar also must designate one of



7.1 A Primer on Grammars 153

prefix

Start

start

Syntactic

Prefix : start -> prefix maybe-nl.

Plus : prefix -> ’+’ prefix space prefix.

Num : prefix -> num.

Lexical

num -> ’0’.

num -> ’1’.

num -> ’2’.

maybe-nl => ’\n’.

maybe-nl => .

Figure 7.2 An example grammar in gratr format.

the nonterminals as the start symbol of the grammar. The strings we parse are then
required to be ones generated (as will be explained later) by this start symbol.

Any software tool working with grammars must, of course, choose some particular
syntax for grammars. An example of a grammar in gratr format is given in Figure 7.2.
This is a grammar describing a very simple language, of addition expressions in
prefix syntax. An example string in the language is +1 +1 2, which is prefix notation
for 1 + 1 + 2.

The grammar in Figure 7.2 begins with its name, which is prefix. Then we have
the Start keyword, followed by the nonterminal that is the start symbol. In this case,
I chose to call that nonterminal start, but any other name is allowed. Then there
is the Syntactic keyword, followed by some productions. A period (‘.’) is required
after every production. Also, each syntactic production may optionally have a name,
which comes before a colon and the rest of the production. So Prefix is the name of
the first syntactic production of Figure 7.2. Input characters or strings of characters
should be enclosed in single quotation marks. To indicate a single quotation mark
itself, you write quote. Similarly, to indicate a single space, you write space. Spaces
cannot otherwise be used in strings of characters.

The example grammar in Figure 7.2 contains some syntactic productions. The
parsers generated by gratr will build parse trees for those productions. Sometimes,
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however, one does not want to build a structured representation of the input text. For
a number like 123, usually we just want to remember the string that we recognized,
rather than build some explicit tree structure containing each of the characters of the
string separately. In such cases, you can use lexical productions, like the ones listed
beneath the Lexical keyword for the num nonterminal. Using a thin arrow (->) in a
lexical production means that we want to retain the string that we recognize as being
in the language of the given nonterminal. These are called reading lexical productions
in gratr. Using a thick arrow (=>) indicates that we just want to recognize the string,
but not retain it in our parse tree. This example grammar is using such recognizing
lexical productions for maybe-nl.

7.1.1 Derivations
How does a grammar like the one in Figure 7.2 describe a language? Mathematically,
the definition is very simple. The language is the set of input strings which can be
generated from the start symbol by applying the productions to replace symbols
with sequences of symbols. For example, the input string +1 +2 3 is in the language
described by the prefix grammar, as shown by the following derivation:

start

⇒ prefix maybe-nl

⇒ ’+’ prefix space prefix maybe-nl

⇒ ’+’ prefix space ’+’ prefix space prefix maybe-nl

⇒ ’+’ num space ’+’ prefix space prefix maybe-nl

⇒ ’+’ ’1’ space ’+’ prefix space prefix maybe-nl

⇒ ’+’ ’1’ space ’+’ num space prefix maybe-nl

⇒ ’+’ ’1’ space ’+’ ’2’ space prefix maybe-nl

⇒ ’+’ ’1’ space ’+’ ’2’ space num maybe-nl

⇒ ’+’ ’1’ space ’+’ ’2’ space ’3’ maybe-nl

⇒ ’+’ ’1’ space ’+’ ’2’ space ’3’

= ’+1 +2 3’

A derivation shows the step-by-step transformation of the start symbol into the string
in question. At each step, we are allowed to replace a single nonterminal N , with ss,
where there is a production N → ss in the grammar. So we are using the grammar to
transform nonterminals matching the left-hand sides of productions into the produc-
tion’s right-hand sides.

7.1.2 From Derivations to Syntax Trees
An alternative to using derivations is to use derivation trees. These are trees whose
root is the start symbol, and where each node is either a terminal symbol (i.e., input
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prefix

start

maybe-nl

prefix

num

'+'

'2'

num

'3'

prefix

num

'1'

space prefix

'+' space prefix

Figure 7.3 An example derivation tree.

character) or else is labeled with a nonterminal N and has children labeled s1, . . . , sn,
where there is a production N → s1, . . . , sn in the grammar. For example, Figure 7.3
shows the derivation tree corresponding to the derivation in the previous section. The
original input string +1 +2 3 can be found by reading the leaves of the tree from left to
right. Derivation trees are based on the same idea as derivations: replace nonterminals
with sequences of symbols, according to the productions of the grammar. The differ-
ence is that derivations show all the intermediate strings that result on the way from
transforming the start symbol to a particular string in the language of the grammar. In
contrast, derivation trees just show how the productions are applied, without showing
all the intermediate strings. This is a more compact representation, in general, and
makes the tree structure more explicit.

It is usually very helpful, when processing parsed input, to know exactly which
production was applied to create a given node of the tree. Derivation trees do not make
this information as explicit as they could: at every node labeled N with children labeled
s1, . . . , sn, we could determine which production was applied, but only by searching
through the list of productions for one of the form N → s1, . . . , sn. It is more efficient
just to store some identifying information for the production itself, at the node in
question. This is what is done in syntax trees. They are just like derivation trees, except
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Plus

Prefix

maybe-nl

Num

num

'+'

'2'

num

'3'

Num

num

'1'

space Num

'+' space Plus

Figure 7.4 An example syntax tree.

that nodes which would have been labeled with nonterminals in a derivation tree are
instead labeled with the name of the production that was applied to create the node.
An example is in Figure 7.4.

Finally, there is some information in the syntax tree that is redundant, in the sense
that it is completely determined by the production that was applied. This is the case
with ‘+’ in the tree in Figure 7.4, for example. Once we see that a node is a Plus node,
we know that the input string included the actual ‘+’ terminal. There is no need to store
that terminal as part of the syntax tree. Similarly, grammar designers often choose to
drop whitespace from their syntax trees. We can also remove the nodes that just give
the names of lexical nonterminals, as they are always followed in the tree by either
strings or nothing; and which lexical nonterminals they are is determined by the label
of the parent node. This kind of clean-up—whether done by special-purpose code or,
as in gratr, as part of parsing—results in an abstract syntax tree, or AST. For the sample
string+1 +2 3, the AST obtained using the grammar of Figure 7.2 is given in Figure 7.5.

7.1.3 Regular-Expression Operators for Grammars
gratr supports the use of certain extra operators, called regular-expression operators,
on the right-hand sides of productions. These operators may be applied to individual
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Plus

Num
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Figure 7.5 An example abstract syntax tree.

symbols (either input symbols or nonterminals), or to groups of symbols and operator
uses, enclosed in parentheses. These extra operators are:

Operator Use Meaning

N* zero or more copies of N

N+ one or more copies of N

N? zero or one copy of N (so N is optional)

N | M either N or M

Using these operators, it is easy to modify our example grammar so that numbers
are more than just’0’, ’1’, and’2’. We could just as well add additional productions
for num to accomplish this, but it is more convenient to use the regular-expression
operators. In fact, it is not hard to translate away any use of a regular-expression
operator, by introducing extra nonterminals. For example, if we have N?, we can
replace it by a new nonterminal M, adding these new productions:

M -> N .

M -> .

These say that an M can be an N or else nothing—exactly the meaning of N?. The
updated grammar is shown in Figure 7.6. This grammar is included with gratr in
this file with the top-level gratr directory grammars/expression/prefix.gr.

Currently, it is probably best to limit use of regular-expression operators to lexical
productions, because for syntactic productions, gratr has to generate names for the
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prefix

Start

start

Syntactic

Prefix : start -> prefix maybe-nl.

Plus : prefix -> ’+’ prefix space prefix.

Num : prefix -> num .

Lexical

num -> [’0’ - ’9’]+.

maybe-nl => ’\n’?.

Figure 7.6 An example grammar in gratr format, using regular-expression operators.

productions (like those shown earlier forN?), and it is usually best to avoid writing code
to process parse trees containing generated names. A better approach forgratrwould
be to generate lists of parse trees for strings matching N* and N+, a maybe type for N?,
and a disjoint sum type for N | M. But this is not implemented in gratr currently.

gratr also supports character ranges. You can write [’a’ - ’z’] for all the low-
ercase letters, and similarly [’A’ - ’Z’] for all the capitals, or [’0’ - ’9’] for the
decimal digits. These can also be combined, so [’a’ - ’c’ ’x’ - ’z’]matches char-
acters a, b, c, x, y, z. Unfortunately, while gratr does support Unicode characters as
terminal symbols, character ranges do not work with these.

7.2 Generating Parsers with gratr

The gratr tool may be downloaded using subversion from the following URL:
http://svn.divms.uiowa.edu/repos/clc/projects/gratr2

The username and password are both “guest” (without the quotation marks).gratr
is written in the OCaml functional programming language, which you will need to
install on your computer to compilegratr. See theREADME file in thegratr2directory
for instructions on compiling on Windows, Mac, and Linux. Once you have compiled
gratr, you can run it by just giving it the name of a file containing a grammar like the
one in Figure 7.6, as the sole command-line argument. If everything runs correctly,
then gratr will print nothing. Otherwise, it will print a short error message, with
possibly a lot of detailed explanation in a report file that gets generated. For a grammar
named prefix, the report file will be written to prefix_report.txt.

http://svn.divms.uiowa.edu/repos/clc/projects/gratr2
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When gratr runs successfully on a file like prefix.gr defining a grammar named
prefix, it will produce a number of different files.

prefix.agda. This Agda file contains the central code for parsing input text accord-
ing to the given grammar. You will not need to look at the contents of this file to
use gratr to parse inputs.

prefix-types.agda. This file contains datatype definitions derived from the gram-
mar, which you will likely wish to consult when writing programs to process
parse trees obtained by parsing textual input. For each nonterminal defined by
syntactic productions, gratr will declare an Agda datatype. The constructors of
this datatype are the names of the productions for that nonterminal. For exam-
ple, for the prefix grammar (of Figure 7.6), gratr will generate these datatype
definitions:

data start : Set where

Prefix : prefix → start

data prefix : Set where

Num : num → prefix

Plus : prefix → prefix → prefix

There is one datatype definition for each of the two syntactic nonterminals in the
grammar: start and prefix. There is one constructor for start, for the sole
production for that nonterminal. And there are two constructors for prefix,
for the two productions Num and Plus from the grammar for that nonterminal.
gratr looks at the right-hand sides of the productions to determine the argu-
ments to the constructors. For example, the Plus production looks like this:

Plus : prefix -> ’+’ prefix space prefix.

There are four symbols on the right-hand side, but the Agda datatype constructor
gratraccepts only two arguments, both of typeprefix. The reason is thatgratr
does not add arguments for input symbols to the datatype constructors. Here,
’+’ and space (denoting an actual space character ’ ’) are input symbols, and
hence are not included as arguments to the Plus constructor. Note that gratr
will also omit recognizing lexical nonterminals from the list of arguments to the
Agda datatype constructors.

prefix-main.agda. This defines the entry point to the actual executable program,
prefix-main, which can be used to parse input text. It contains a function called
process-X, where X is the start symbol for your grammar. If the parser is given
textual input that can indeed be parsed, then this function will be called with the
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parse tree associated with the start symbol. The function may then do whatever
you like with that parse tree. In the end, the function should return a string,
which the surrounding code in prefix-main.agda will print out before it exits.
This is just the basic default setup provided by gratr; one could replace the
boilerplate code in prefix-main.agda if one wished to do something else with
the output of process-X.

prefix_report.txt. This is a text file giving a rather large amount of information
about what gratr is doing. At the top of the file, you will find a modified version
of the grammar gratr has been asked to process (prefix.gr in this case), with
all the extra grammar operators (Section 7.1.3) removed.

7.2.1 Compiling the Emitted Parsers
To compile the emitted parser for a grammar like prefix.gr, you can call Agda from
a command shell (Windows) or terminal (Mac/Linux). Here is an example of what this
call to Agda has to look like:

agda -i PATH-TO-IAL -i PATH-TO-GRATR/agda -i . -c prefix-main.agda

There are several components here.

. The -i arguments are telling Agda where to search for Agda files which are
imported in the code being compiled. For -i PATH-TO-IAL, you should replace
PATH-TO-IAL with the path to your copy of the IAL, on your computer. Similarly,
replace PATH-TO-GRATR with the path to your copy of gratr. The directory for
gratr contains an agda subdirectory with some additional Agda code needed
for parsing.

. The -c directive tells Agda we want to compile the given Agda file—with a main

entry point—to an actual executable.

Compilation using the above command can take a while, depending on how big the
prefix.agda file is. Compilation will produce a prefix-main executable.

To check a file like prefix-main.agda using Agda within EMACS, you must either
copy into the same directory as your prefix-main.agda file all the .agda files from
the agda subdirectory of the gratr directory; or else (and this is a bit nicer), just add
the path to that agda subdirectory of the gratr directory to the list agda2-include-
dirs in your .emacs file (similarly to what is listed at the very end of the EMACS code
shown in Appendix C).
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Figure 7.7 An example syntax tree produced by gratr.

7.2.2 Running the Emitted Executable
To run the executable compiled as just described, you supply the name of a file as a
command-line argument. This is the file that the emitted parser will attempt to parse.
For example, if prefix-yes1.txt is a file containing a string like +1 +1 2, then you
can parse it with prefix-mainby executing the following command from a command
shell or terminal:

prefix-main prefix-yes1.txt

If parsing is successful (as it will be in this case), there will be no output from executing
this command. If you run with the --showParsed command-line option, then you will
see the actual parse tree; executing

prefix-main --showParsed prefix-yes1.txt

will produce this output:

(Prefix (Plus (Num (num 1)) (Plus (Num (num 1)) (Num (num 2)))))

This is the linear form of the parse tree shown in Figure 7.7.

7.2.3 Modifying the Emitted Code to Process Parse Trees
Once you have crafted a grammar and are correctly recognizing or rejecting certain
input strings, the next step is to be able to process those parse trees with your own
Agda code. The parsers emitted by gratr have a place where you can insert your own
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code to process parse trees that the parser constructs. This is the function process-

X, where X is the start symbol of the grammar. For the prefix grammar of Figure 7.6,
the function is process-start. If you look in prefix-main.agda, you will see the
current placeholder definition:

process-start : start → string

process-start s = ""

The type of process-start says that it takes in a parse tree of type start (declared
in prefix-types.agda based on the nonterminals and production names in the
grammar), and returns a string. This string is whatever we wish to report to the user
invoking the prefix-main executable, and will be printed out by the executable after
process-start returns.

To do something with parse trees recognized by the parser, we just need to modify
process-start. It is wisest first to copy the file, say to my-prefix-main.agda. This
is because gratr will overwrite prefix-main.agda every time gratr is run. So if
we make changes to our grammar and rerun gratr, we will regenerate prefix-

main.agda. If we have been working on this file and making modifications to it to
add our own form of processing for parse trees, our work will get wiped out—not
something we want! So just make a copy of the file, like my-prefix-main.agda,
change the module declaration at the very start of the file to name the module my-

prefix-main, and then make your changes to that file (which will not, of course, get
overwritten by gratr when gratr is rerun).

For an example, suppose we wish to print out the size of the parse tree. We already
saw (at the start of Section 7.2) the parse-tree datatypes that are generated by gratr
for prefix, in prefix-types.agda:

data start : Set where

Prefix : prefix → start

data prefix : Set where

Num : num → prefix

Plus : prefix → prefix → prefix

To compute the size of a Prefix value, we can write this function in Agda, in my-

prefix-main.agda:

size-prefix : prefix → N

size-prefix (Num _) = 1

size-prefix (Plus p1 p2) = 1 + (size-prefix p1) + (size-prefix p2)

Note that this is computing the size of the parse tree, not the numeric value of
the expression denoted by that parse tree. Then we just modify the process-start
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function so it uses pattern matching to extract the prefix parse tree p from under
the Prefix constructor (for the start datatype), get the size of p, convert that to a
string (with the library function N-to-string, defined in nat-to-string.agda in
the IAL), and concatenate that (using ^) to the end-of-line string "\n":

process-start : start → string

process-start (Prefix p) = (N-to-string (size-prefix p)) ^ "\n"

7.2.4 Reorganizing Rules to Resolve Ambiguity
There is one somewhat unique feature of gratr that we will consider now, called
reorganizing rules. To explain what these are and when they are useful, let us consider
the example grammar in Figure 7.9. This grammar describes a simple language of
arithmetic expressions, built from numeric literals using plus and times operators,
and parentheses. Optional whitespace (ows, defined with lexical rules) is allowed
throughout the expression. An example string in the language of this grammar is

1 + 2 * 3

If we ask gratr to process this grammar for us, it will print this error message:

The parsing rules have critical pairs that need additional

reorganizing rules to resolve (see expr_report.txt for details).

Looking at the bottom of the expr_report.txt file that gratr generates, we find
messages like the one shown in Figure 7.8. gratr is telling us that there are two
ways we could parse a string consisting of three exprs separated by plus symbols
(and optional whitespace). We could either parse it toPlus(Plus(x3,x0),x1), where
x3, x0, and x1 are the parse trees for the three exprs in order; or else we could
parse it to Plus(x3,Plus(x0,x1)). What we are encountering here is a classic case
of grammatical ambiguity: there are two distinct derivation trees for the string in
question. One tree is left-associated (Plus(Plus(x3,x0),x1)), and the other is right-
associated (Plus(x3,Plus(x0,x1))). Without further direction, gratr (and even the
mathmetically uninstructed reader) does not know whether sequences of additions
should be grouped to the left or right. Another way to state the issue: should we
parenthesize 1 + 2 + 3 as (1 + 2) + 3 or as 1 + (2 + 3)? Of course, addition is associative
(as we proved back in Section 3.2.2), so both groupings yield the same answer. But this
sort of semantic information is not available at the point where we are just describing
the syntax of the language.

Generally, grammar writers have to resolve ambiguities like this somehow. gratr
provides an interesting method to do this. We can add rules of a certain kind, to tell
gratrwhich syntax tree we prefer. The rules tell gratr to rewrite parse trees matching
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(We have two ways to rewrite the following term:

expr(x3) . ows . ’+’ . ows . expr(x0) . ows . ’+’ . ows . expr(x1) . x2

We could have this rewriting sequence

(

expr(x3) . ows . ’+’ . ows . expr(x0) . ows . ’+’ . ows . expr(x1) . x2

expr(Plus(x3, x0)) . ows . ’+’ . ows . expr(x1) . x2

expr(Plus(Plus(x3, x0), x1)) . x2

)

or this one:

(

expr(x3) . ows . ’+’ . ows . expr(x0) . ows . ’+’ . ows . expr(x1) . x2

expr(x3) . ows . ’+’ . ows . expr(Plus(x0, x1)) . x2

expr(Plus(x3, Plus(x0, x1))) . x2

)

The overlapping rules are:

Plus: expr(x3) . ows . ’+’ . ows . expr(x4) . x5 -> expr(Plus(x3, x4)) . x5

Plus: expr(x0) . ows . ’+’ . ows . expr(x1) . x2 -> expr(Plus(x0, x1)) . x2

)

Figure 7.8 Error message with a critical pair, produced by gratr for the grammar of Figure 7.9.

expr

Start

strt

Syntactic

Strt: strt -> ows expr ows.

Plus: expr -> expr ows ’+’ ows expr.

Times: expr -> expr ows ’*’ ows expr.

Parens: expr -> ’(’ ows expr ows ’)’ .

Num : expr -> num.

Lexical

aws => (’\n’ | ’\t’ | space ).

ws => aws+.

ows => aws* .

num -> [’0’-’9’]+.

Figure 7.9 Sample grammar for basic arithmetic expressions.
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Vars

x y z

Rules

Times(x,Plus(y,z)) -> Plus(Times(x,y),z)

Plus(x,Plus(y,z)) -> Plus(Plus(x,y),z)

Times(x,Times(y,z)) -> Times(Times(x,y),z)

Times(Plus(x,y),z) -> Plus(x,Times(y,z))

Figure 7.10 Addendum to the grammar in Figure 7.9, with reorganizing rules.

a pattern, to a certain result form. For example, to tell gratr that we want plus to be
left-associated, we will add this rule:

Plus(x,Plus(y,z)) -> Plus(Plus(x,y),z)

Any parse tree that matches that pattern on the left will be transformed to reorganize
a right-nested addition so that it becomes left-associated. Figure 7.10 shows the com-
plete set of reorganizing rules needed to make both plus and times left-associative,
and give times higher precedence than plus (so that 1 + 2 ∗ 3 is parsed as 1 + (2 ∗ 3)).
There is a VARS section to declare the variables x, y, and z used in the reorganizing
rules. Then there is a RULES section, to give the reorganizing rules. These two sections
come, optionally, at the end of .gr grammar files processed by gratr.

7.3 Conclusion
This chapter has given a brief introduction to context-free grammars, and shown how
to use the gratr parser generator to generate Agda parsers for grammars represented
in gratr’s grammar format. This format supports regular-expression operators, and
distinguishes between syntactic productions, reading lexical productions, and rec-
ognizing lexical productions. Parsing with syntactic productions will construct parse
trees. Reading lexical productions are for remembering the string parsed but not con-
structing a parse tree for it. Recognizing lexical productions are just for recording that
the input string matched, without storing any other information (neither the string
that matched nor a parse tree for it). These features make it reasonably convenient
to describe abstract syntax trees directly with the grammar used for parsing. Such
syntax trees may drop some of the information from the input string, for the sake
of simpler parse trees. A final note is that gratr is the subject of ongoing research,
and hence fuller explanation of its workings must be deferred to eventual papers or a
gratr reference manual.
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Exercises
7.1. Create a grammar called postfix.gr (the name of the grammar given at the
start of the file should be postfix) for the language of postfix addition expressions
and nonnegative integers (leading zeros are fine), possibly followed by a newline, and
with a single space just in between the arguments to addition (+).

7.2. Some functional languages like OCaml and Haskell allow one to write lists like
1 :: 2 :: 3 :: [] using the notation [1,2,3]. For this problem, create a grammar
called plll.gr (and the name in the file should be plll) describing what we can call
the pure language of list literals:

The empty list [] is a list literal.

If L is a comma-separated sequence of list literals like [],[],[] (for example),
then [ L ] is also a list literal.

Whitespace (spaces, tabs, and newlines) is allowed anywhere, except in [].

There are no other list literals (this is what I mean by “pure”).

7.3. Write a grammar called app.gr describing nested applications. Each of these is
either a variable (we will say these consist of just lowercase letters), an application of
one expression to another with whitespace in between, or a parenthesized expression.
Whitespace (spaces, tabs, newlines) is allowed everywhere, and application is left-
associative. For this problem, you should generate parse trees using constructors Var,
App, Parens. Use the constructor Term for the entire expression you parse. So the test
input string (f a b) should parse as follows, when you run your generated parser with
--showParsed:

(Term (Parens (App (App (Var (var f)) (Var (var a)))

(Var (var b)))))

7.4. Create a grammar called para.gr for describing strings that are sequences of
paragraphs. Each paragraph consists of a sequence of at least one sentence, where
a sentence begins with a capitalized word, followed by possibly zero other words,
which may or may not be capitalized. Sentences can also contain commas, colons,
and semi-colons. A sentence ends with a period or a question mark. Words are just
sequences of letters. We will allow words to contain capital letters in the middle of
the word, since this makes it easier to describe what words are. (We are not including
numbers, quotations, parentheses, and a few other things as parts of sentences.)
Words are separated by a single space or newline, although the various punctuation
marks should come right after the word, with no space or newline. Words within a
sentence which immediately follow a punctuation mark should be separated by a
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single space or newline from the punctuation mark. Sentences should be separated
by one or two spaces, or else a newline, and paragraphs should be separated by two
or more newlines. There should not be any whitespace before or after the sequence
of paragraphs, except that it is allowed to end the last paragraph with a final newline.
Your grammar should not try to enforce any other requirements (for example, subject-
verb agreement, proper uses of colons and semicolons, etc.).

Tip: I suggest starting small (words), and working your way up (then sentences, then
one paragraph, then multiple paragraphs). If you try to write the whole grammar at
once, it can be hard to debug.





8A Case Study: Huffman
Encoding and Decoding
In this chapter, we will consider a larger example of dependently typed programming
in Agda, namely, the implementation of a standalone tool for Huffman encoding and
decoding. The basic idea of the coding scheme invented by David A. Huffman when
he was still a doctoral student at MIT, is that words in the text which occur more
frequently will get assigned a shorter bitstring (sequence of 1’s and 0’s) as a code.
Also, no code is a prefix of any other, so there is no ambiguity when decoding. We will
apply Huffman coding at the level of English words, to encode simple unpunctuated
text. Consider this example input:

hi hi bye hello hi hi bye hello hi hi bye hello

Here, the word hi occurs twice as often as bye and hello, so it should get a shorter
code. We will encode this text as follows:

! bye <- 11

hello <- 10

hi <- 0

001110001110001110

There is a special ! at the start of the file to signal to our tool that this is encoded input.
Then comes a representation of the Huffman code (from the ! to just before the last
line). The more frequent word hi will be mapped to 0, which is half the length of the
codes 11 and 10 assigned for the less frequent words bye and hello. Using this code,
our program will be able to decode the bitstring in the last line (001110001110001110)
to get back the original text.

Huffman coding can be implemented elegantly using pure functional data struc-
tures and functions. We will make use of Braun trees (Section 5.4) to implement a
priority queue (a data structure storing ordered elements, which supports efficient
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removal of the smallest element). The central idea of the algorithm is to construct a
Huffman tree by first initializing the queue with leaf trees storing words to be encoded
with their frequencies (number of occurrences) in the input, and, second, repeatedly
combining the two smallest elements from the priority queue, where smaller elements
are those that occur less frequently in the input. The end result is a tree where words
that occur less frequently are deeper in the tree, and words that occur more frequently
are nearer the root. The paths in the tree then determine the codes. Higher-frequency
words are nearer the root, and hence have shorter paths. They get shorter codes, as
desired.

While there are many properties one could wish to verify about the implementation,
we will just use a little internal verification to rule out some simple errors. Even this
ends up requiring some theorem-proving. It would be nice to extend the example to
prove things like the fact that the code that is computed is prefix-free. But further
verification must remain to future work—or perhaps projects of interested readers!

The code for this example can be found in the huffman subdirectory of the IAL.
It requires gratr (Chapter 7) to compile (or generate) the parser for the tool. The
earlier example input and its encoded version are test1.txt and test1.huff in this
directory.

8.1 The Files
The huffman directory of the IAL contains the following source files:

File Description

huffman.gr the gratr grammar for the input files

main.agda entry point for the program, also contains encoding
and decoding functions

huffman-tree.agda data structure representing Huffman trees

huffman.agda parser generated by gratr

huffman-types.agda datatypes for the input files (also generated by
gratr)

Makefile for compiling everything using Linux make

huffman-main.agda the generated main file, which can be compiled just
to test parsing of the input files

In addition, there are these test files, where X is 1, 2, or 3:
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File Description

testX.txt a test input file to be encoded

testX-frequencies.txt output file showing the frequencies of words in the
input file to be encoded

testX-mapping.txt output file showing the Huffman code computed
for an input file

testX.gv an output file in Graphviz format showing the
computed Huffman tree

testX.huff the encoded output file

testX-decoded.txt the result of decoding the encoded output

8.2 The Input Formats
Figure 8.1 shows the gratr grammar used to generate several of the source files listed
previously, for the parser for the codec (encoder/decoder). Input files are either simple
textual inputs parsed aswords; or else encoded files that begin with a!, then listcodes
mapping words to bvlits, and then containing a bvlit representing the input text
encoded with the given code. A bvlit is a bit-vector literal, which is just a sequence
of 0 and 1 digits. We have already seen an example of input to be encoded and the
encoded result, at the start of the chapter.

8.3 Encoding Textual Input
Inmain.agda, we have code to process the two forms ofcmd that the previous grammar
allows: Encode and Decode commands. Most of the code in main.agda is devoted to
handling Encode commands, as for these we must compute the Huffman coding and
then apply it, while for Decode commands the Huffman coding is given as part of the
encoded input. Encoding is broken into the following steps, covered in the rest of this
section.

1. Compute frequencies of words in the input.

2. Build a priority queue (using a Braun tree) with leaves of Huffman trees storing
words and their frequencies. This priority queue is referred to as a pqueue in the
code in main.agda.

3. Process the pqueue as described at the start of the chapter: the two Huffman
trees in the pqueue with the smallest frequencies are removed and combined to
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huffman

Start

start

Syntactic

File : start -> ows cmd ows .

Encode : cmd -> words .

Decode : cmd -> ’!’ ws codes ws bvlit .

CodesStart : codes -> code .

CodesNext : codes -> code ws codes .

Code : code -> word ws ’<-’ ws bvlit.

WordsStart : words -> word.

WordsNext : words -> word ws words.

BvlitStart : bvlit -> digit .

BvlitCons : bvlit -> digit bvlit .

Zero : digit -> ’0’.

One : digit -> ’1’.

Lexical

word -> character .

word -> character word .

character -> [’a’ - ’z’] | [’A’ - ’Z’] | ’(’ | ’)’ | ’,’ | ’.’ .

aws => (’\n’ | ’\t’ | space ).

ws => aws+.

ows => aws* .

Figure 8.1 Grammar for files to encode and decode.

create a new Huffman tree, whose frequency is the sum of the frequeuncies of
its two subtrees. This new tree is inserted back into the pqueue.

4. When only one Huffman tree remains in the pqueue, this is the final tree that
determines the codes. Each path from the root of that tree to a leaf determines
the code for the word stored at the leaf. Each Huffman tree is either a leaf or
has two subtrees. A path into a left subtree is associated with digit 0, and into
a right subtree with digit 1. Since distinct leaves are reached by distinct paths
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where moreover, neither path can be a prefix of the other, the code is prefix-
free (no code is a prefix of any other code). This enables deterministic decoding
of an encoded text. Note that depending on the order the pqueue is processed,
different Huffman trees, and hence different codes, can be computed for the
same input text.

5. The resulting code is output to a .huff file, together with the result of encoding
the input text using that code.

We will not walk through the code inmain.agda, which puts these steps all together
to generate the encoded output. Instead, we will just focus on the implementations
of these steps.

8.3.1 Computing Word Frequencies Using Tries
Let us see first how we compute word frequencies from the input text. So for
test1.txt (the example input to be encoded, listed at the start of the chapter), the
frequencies are:

bye -> 3

hello -> 3

hi -> 6

Indeed, running the main executable on test1.txt will generate output file
test1-frequencies.txt with that data. Let us see now how the code in main.agda

is computing this.
To map strings efficiently to values, we are using a trie, a data structure devised

for that purpose. A trie is a tree where the root corresponds to the starting position
of the strings in the mapping. Each node maps characters for the next position in the
string to sub-tries. This scheme allows common prefixes of strings in the mapping
to be shared, saving space and making the operations of finding or inserting strings
efficient. Tries are defined in trie.agda in the IAL. For an example: suppose we have
the following mapping:

ant -> 1

antique -> 2

anger -> 3

hanger -> 4

The (unique) trie representing this mapping is shown in Figure 8.2. Only the prefixes
“an” and “ant” are shared across paths to nodes containing data values 1, 2, and 3.
The suffix “anger” shared by “hanger” and “anger” is not shared in a trie.
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Figure 8.2 An example trie.

The code in Figure 8.3 defines a function compute-frequencies to map words

(the parse tree for a sequence of words) to a trie mapping each distinct word to its
frequency in the input words. There is also a helper function inc-frequency. Since
we are using pure functional data structures, updating the trie is a nondestructive
operation that creates a new trie, which nevertheless shares as much of the old trie as
possible. compute-frequencies takes in the old trie—initially an empty-trie—and
updates it for each word in the input words. The grammar for words requires that
there is at least one word in the input, so the two cases for compute-frequencies
are for whether we are considering that last single word (WordsStart), or else a word
followed by more words (WordsNext). In each case, we use the helper function inc-

frequency to take in a word and a trie and produce a new trie which is just like the
old one except that the frequency for the word has been incremented if the word was
already in the trie; or else the frequency is set to 1 if the word was not yet in the trie.

Figure 8.4 gives two lemmas about the functions for computing the trie of frequen-
cies. Since the grammar requires that there is at least one input word, we can prove that
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inc-frequency : word → trie N → trie N

inc-frequency w t with trie-lookup t w

inc-frequency w t | nothing = trie-insert t w 1

inc-frequency w t | just c = trie-insert t w (suc c)

compute-frequencies : words → trie N → trie N

compute-frequencies (WordsStart w) t = inc-frequency w t

compute-frequencies (WordsNext w ww) t =

compute-frequencies ww (inc-frequency w t)

Figure 8.3 Computing the frequencies of words.

inc-frequency-nonempty :

∀(w : word)(t : trie N) →
trie-nonempty (inc-frequency w t) ≡ tt

compute-frequencies-nonempty :

∀(ws : words)(t : trie N) →
trie-nonempty (compute-frequencies ws t) ≡ tt

Figure 8.4 Lemmas about the computed trie of frequencies.

the frequency trie must be nonempty: there is at least one string mapped by the trie.
These lemmas rest on the following theorem, proved in trie-thms.agda in the IAL:

trie-insert-nonempty :

∀{A : Set}(t : trie A)(s : string)(a : A) →
trie-nonempty (trie-insert t s a) ≡ tt

This proves the intuitively obvious fact that if one inserts a mapping associating valuea
with string s into a trie t, then the resulting trie is nonempty. We will use this property
to show that we will always be able to compute a (nonempty) Huffman tree from the
frequency trie.

8.3.2 Initializing a Priority Queue with Huffman Leaves
Once we have computed the frequency trie as described in the previous section, the
next step is to initialize a pqueue with Huffman trees that are leaves. Let us first
look at the Huffman tree datatype, found in huffman-tree.agda in the huffman

subdirectory of the IAL, and shown in Figure 8.5. The ht-leaf constructor builds
a huffman-tree from a string, which will be a word from the input text; and a
natural number, which will be that word’s frequency in the input text. The ht-node

constructor builds a new huffman-tree from left and right subtrees, and a combined
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data huffman-tree : Set where

ht-leaf : string → N → huffman-tree

ht-node : N → huffman-tree → huffman-tree →
huffman-tree

ht-frequency : huffman-tree → N

ht-frequency (ht-leaf _ f) = f

ht-frequency (ht-node f _ _) = f

ht-compare : huffman-tree → huffman-tree → B

ht-compare h1 h2 = (ht-frequency h1) < (ht-frequency h2)

Figure 8.5 The Huffman tree datatype, and some helper functions.

frequency, which should be the sum of the frequencies of the subtrees. The helper
function ht-frequency returns the frequency (the natural number) from either an
ht-leaf or an ht-node. There is an opportunity for some further verification here,
since we could seek to enforce that a combined frequency stored in an ht-node really
is the sum of the frequencies of the left and right subtrees. We could do this by indexing
the huffman-tree type by its frequency. In this case, I opted not to do this. While it
would be reasonably simple to state and enforce this invariant, there is not too much
risk of an error here. There is only one place in the code where this combined frequency
is calculated and given to the ht-node constructor, and so it seems reasonable to rely
on visual inspection for that one location in the code, to ensure that the combined
frequency is being correctly calculated. Certainly, if one had a bigger “budget” (of time,
say) for verification for this code, it would be reasonable to use Agda’s type system to
ensure correctness of these combined frequencies.

Figure 8.5 also defines a function ht-compare, which we use to instantiate the
Braun tree module so that our priority queue can order Huffman trees by frequency.
This instantiation is done inmain.agda, near the top of the file. The code is as follows:

import braun-tree as bt

open bt huffman-tree ht-compare

The instantiation occurs where we supply huffman-tree and ht-compare as the
type A and ordering _<A_, respectively, that the braun-tree module (in braun-

tree.agda in the IAL) is expecting as module parameters. Here in the code from
main.agda, there is a little fiddling going on in the module instantiation. It should
work just as well to have

open import braun-tree huffman-tree ht-compare
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pqueue : N → Set

pqueue = braun-tree

pq-empty : pqueue 0

pq-empty = bt-empty

pq-insert : ∀ {n : N} → huffman-tree → pqueue n → pqueue (suc n)

pq-insert = bt-insert

pq-remove-min : ∀ {p : N} → pqueue (suc p) →
huffman-tree × pqueue p

pq-remove-min = bt-remove-min

Figure 8.6 Priority queue implemented with Braun trees.

For reasons I do not understand, however, if we do this, then Agda qualifies the
names of symbols from that module in a peculiar way.1 For example, if we ask Agda to
normalize bt-empty, which is the empty Braun tree, then we will see something like
this:

.#braun-tree-36725352.bt-empty

On the other hand, with the two-line instantiation listed earlier, where braun-tree

is first imported as bt (in other words, bt is being given as the name we wish to use
in main.agda to refer to the module), and then its instantiation is opened, we get the
following more readable normal form for bt-empty (and similarly for other symbols
from braun-tree.agda):

bt.bt-empty

Moving on from this minor point: main.agda then defines the type pqueue and
some operations on it, using the Braun tree type and corresponding operations. The
code is in Figure 8.6. The type of data in the priority queue has been specialized, by our
module instantiation, to huffman-tree. We have functions for inserting an element
into the pqueue, and removing the minimum element. The types for these operations
come from the types for the corresponding operations on the braun-tree type. In
particular, inserting increases the size of the braun-tree, and removing decreases
the size.

Finally, we can build our initial pqueue storing leaf Huffman trees. The code, from
main.agda in the huffman subdirectory of the IAL, is shown in Figure 8.7. This code

1. Thanks to reviewer Jesper Cockx for reporting this as a bug in Agda!



178 Chapter 8 A Case Study: Huffman Encoding and Decoding

build-huffman-pqueue : (l : L (string × N)) → pqueue (length l)

build-huffman-pqueue [] = pq-empty

build-huffman-pqueue ((s , f) :: l) =

pq-insert (ht-leaf s f) (build-huffman-pqueue l)

Figure 8.7 Code to build the initial pqueue, which will then be processed to compute the Huff-
man tree.

just builds ht-leaf trees for each pair of a word and a frequency, contained in the
input list. These leaf trees are then inserted, using pq-insert, into the pqueue. The
input list is derived from the frequency trie that we computed in the previous section,
using a function from trie.agda in the IAL with the following typing:

trie-mappings : ∀{A : Set} → trie A → L (string × A)

This function just returns a list of all the mappings represented by the given trie.

8.3.3 Processing the Priority Queue to Compute a Huffman Tree
Now that we have an initial pqueue, we can process it to compute a single Huffman
tree by combining all theht-leaf trees in thepqueue. By combining Huffman trees in
order from lowest to highest frequency, we create a Huffman tree where less frequently
used words are found at leaves that are deeper in the tree. Such leaves have longer
paths from the root, and will get longer codes, which is the central idea of Huffman
coding.

The code to process the pqueue is given in Figure 8.8. One interesting point here
is that the function requires a proof that the size n of the pqueue is not zero. If the
size were zero, then we could not return a huffman-tree, because the definition of
that type in Figure 8.5 does not allow for empty trees. We already saw in Figure 8.4
that we have a proof that the computed frequency trie is nonempty. We can then use
another theorem from trie-thms.agda in the IAL to prove that the list of mappings
we obtain with trie-mappings from that frequency trie must also be nonempty:

trie-mappings-nonempty :

∀ {A : Set}(t : trie A) →
trie-nonempty t ≡ tt → is-empty (trie-mappings t) ≡ ff

So we can satisfy the requirement of process-huffman-pqueue.
Returning to Figure 8.8, the code splits on the size of the pqueue. The size cannot

be zero, as just discussed, and we can use the absurd pattern in that case. If the size
is nonzero, we first remove the minimum element in a with expression. We can then
refine the pattern to consider two cases: if the size is one or at least two. If the size
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process-huffman-pqueue : ∀{n} → n =N 0 ≡ ff →
pqueue n → huffman-tree

process-huffman-pqueue{0} () b

process-huffman-pqueue{suc n} _ t with pq-remove-min t

process-huffman-pqueue{suc 0} _ t | h , _ = h

process-huffman-pqueue{suc (suc n)} _ _ | h , t with pq-remove-min t

process-huffman-pqueue{suc (suc n)} _ _ | h , _ | h’ , t =

process-huffman-pqueue{suc n} refl

(pq-insert (ht-node ((ht-frequency h) + (ht-frequency h’)) h h’)

t)

Figure 8.8 Code to compute a single Huffman tree by processing the initial pqueue.

is one (suc 0), then the algorithm completes and we just return the sole Huffman
tree contained in the pqueue. This happens in this equation from the definition in
Figure 8.8:

process-huffman-pqueue{suc 0} _ t | h , _ = h

If the size of the pqueue is at least two, then we can perform the basic step of
combining the two lowest-frequency Huffman trees into a new tree with the combined
frequency. So we call pq-remove-min again to get the second smallest element (of the
original pqueue). In the code in Figure 8.8, at this point we have the lowest-frequency
Huffman tree as h, the second lowest as h’, and the remaining pqueue (after removing
those two trees) as t. The last equation in the figure shows how we combine h and h’

with the ht-node constructor, with the sum of their frequencies as the new combined
frequency, and then insert this new Hufman tree back into the pqueue.

8.3.4 Computing the Code from the Huffman Tree
Given the Huffman tree computed in the previous section, we can build the actual
Huffman code. We will represent this code as a trie mapping words occurring in the
input text to strings of ones and zeros representing the associated codes. Figure 8.9
shows the code for the build-mapping function that computes this trie. The main
work is done in the helper function build-mappingh, which takes in a Huffman
subtree, a current coding (the second explicit argument to build-mappingh, of type
trie string), and a list of characters representing the (reversed) path to the Huffman
subtree. It returns the updated coding. If we encounter an ht-leaf, then we need to
map the string s stored in that leaf to the proper code, which is obtained from the
list of characters l representing the path. As noted, this list must first be reversed,
since we build it up from the root down, which makes the earlier characters in the
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build-mappingh : huffman-tree → trie string →
L char → trie string

build-mappingh (ht-leaf s _) m l =

trie-insert m s (Lchar-to-string (reverse l))

build-mappingh (ht-node _ h1 h2) m l =

build-mappingh h2 (build-mappingh h1 m (’0’ :: l)) (’1’ :: l)

build-mapping : huffman-tree → trie string

build-mapping h = build-mappingh h empty-trie []

Figure 8.9 The code to compute a mapping from input words to associated codes (represented as
strings of ones and zeros), from the computed Huffman tree.

encode-word : trie string → word → string

encode-word t w with trie-lookup t w

encode-word t w | nothing = "error"

encode-word t w | just s = s

encode-words : trie string → words → string

encode-words t (WordsNext w ww) =

encode-word t w ^ encode-words t ww

encode-words t (WordsStart w) = encode-word t w

Figure 8.10 Function to use a coding, represented as a trie, to transform the input words into an
encoded bitstring.

path appear later, while we need them to appear earlier. If the Huffman tree is an
ht-node, then we recursively process the left and right subtrees, where the path has
been extended with a ’0’ for the left subtree and a ’1’ for the right. By nesting the
recursive calls to build-mappingh, we combine the effects of these calls in building
the updated coding.

8.3.5 Encoding the Input Words Using the Computed Code
Finally, we can use the mapping we computed to encode a sequence of words, just by
concatenating (with the string concatenation operator _^_ from string.agda in the
IAL) the encodings of all the individual words. The code for this is in Figure 8.10. We
have not attempted to prove that the coding (the argument of type trie string to
encode-words) has mappings for all the input words. Doing so would likely be rather
involved, as we would need more reasoning about the effect of inserting mappings
into tries, and we would need to state and maintain an invariant relating the strings
mapped by the trie with the words in the input text. Since we are not doing such
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verification here, the code forencode-wordhas to deal with the a priori possibility that
the word to be encoded is not mapped by the coding—even though we have designed
our code so that this should never happen. Still, we have not proved this to Agda,
so encode-word has to consider the case where looking up the word in the coding
returns nothing. In that case, encode-word just returns "error". Again, this should
not happen, but we have not done the work necessary to rule it out statically.

This completes the implementation of the process-cmd function when it is called
with an Encode command, to encode textual input parsed by the gratr-generated
parser. In main.agda, process-cmd returns strings representing the contents of the
intermediate files described in Section 8.1 (like testX-mapping.txt). Other code in
main.agda then uses functions from io.agda in the IAL to print out those strings
to the various files. This io.agda file just imports a number of Haskell functions for
doing input/output. We will not consider further how these work, but the interested
reader can consult one of the many references or tutorials online about IO in Haskell,
as this is the same method used (on a very limited basis) in the IAL.

8.4 Decoding Encoded Text
As noted at the start of the chapter, decoding encoded text is simpler than the process
of encoding it, because we do not have to compute the code: the encoded file contains
it. Recalling the example given at the start of the chapter, we can see the code first,
followed by the encoded string:

! bye <- 11

hello <- 10

hi <- 0

001110001110001110

The approach used here is first to build a tree data structure here dubbed a code tree,
and then use the code tree to decode the encoded input. We build up the code tree by
inserting codes one at a time into an initially empty code tree.

8.4.1 Code Trees
The definition of the code-tree datatype is in Figure 8.11, along with a few helper
functions. A code tree can be empty (ct-empty), a leaf storing a word (ct-leaf), or else
a ct-nodewith left and right subtrees. The path through the code tree to a leaf storing
string s is the code to which s has been mapped in the encoding. So we can reverse
the encoding—and hence decode the input string—by following a path through the
code tree to a word, emitting that word, and then repeating the process by following
the path corresponding to the next code in the encoded input. The helper function
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data code-tree : Set where

ct-empty : code-tree

ct-leaf : string → code-tree

ct-node : code-tree → code-tree → code-tree

flip-digit : digit → digit

flip-digit Zero = One

flip-digit One = Zero

sub-ct : digit → code-tree → code-tree

sub-ct _ ct-empty = ct-empty

sub-ct _ (ct-leaf _) = ct-empty

sub-ct Zero (ct-node t1 t2) = t1

sub-ct One (ct-node t1 t2) = t2

ct-node-digit : digit → code-tree → code-tree → code-tree

ct-node-digit Zero t1 t2 = ct-node t1 t2

ct-node-digit One t1 t2 = ct-node t2 t1

Figure 8.11 The definition of code trees, and some helper functions for them.

flip-digit just swapsZeroandOne, the sole constructors for the typedigit, derived
from the grammar in Figure 8.1. The function sub-ct takes a digit and a code-tree,
and tries to return either the left or right subtree, depending on whether the digit is
Zero or One, respectively. For Leaves and empty code trees, sub-ct returns the empty
code tree. Finally, ct-node-digit behaves just like ct-node, except that it swaps the
subtrees if the digit given as the first argument is One.

8.4.2 Computing the Code Tree
Figure 8.12 shows code to make a code tree from an input of type codes, representing
the code as parsed in by the gratr-generated parser. The make-code-tree function
just repeatedly calls ct-insert to insert a code into the code tree. The interesting
work is done by ct-insert. The idea is that we are building up a modified version of
the input code tree, where we have added a path corresponding to the bitstring in the
given input code. If the bitstring is just the single ending digit (in the first equation,
with constructor BvlitStart), then we have a new ct-leaf to create. We make this
leaf the left or right subtree of the updated code tree, depending on whether the digit
is Zero or One (this is handled for us by ct-node-digit). For the other subtree of the
updated code tree, we use sub-ct to get the other subtree of the input code tree. So
if we are adding our ct-leaf as a new left subtree, we will use sub-ct to get the old
right subtree, and we will use that as the new right subtree. Similar reasoning is used
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ct-insert : code-tree → code → code-tree

ct-insert t (Code s (BvlitStart d)) =

ct-node-digit d (ct-leaf s)

(sub-ct (flip-digit d) t)

ct-insert t (Code s (BvlitCons d v)) =

ct-node-digit d (ct-insert (sub-ct d t) (Code s v))

(sub-ct (flip-digit d) t)

make-code-tree : code-tree → codes → code-tree

make-code-tree t (CodesNext c cs) =

make-code-tree (ct-insert t c) cs

make-code-tree t (CodesStart c) = ct-insert t c

Figure 8.12 Computing a code tree from input codes.

in the case where the code has a bitstring of length greater than one (in the second
equation, with constructor BvlitCons), except that instead of creating a ct-leaf, we
make a recursive call to ct-insert to create the new subtree.

8.4.3 Decoding the Input
To decode an encoded input string, we must traverse the code tree following the
sequence of 0s and 1s we see at the current point in the bitstring which constitutes
the encoded text. If we see a 0 in the bitstring we should go left in the code tree, and
if we see a 1 we should go right. When we reach a ct-leaf, we know we have reached
the end of the code for a single word, so we can emit that word. We must then restart
the process back at the root of the code tree, to follow the next sequence of 0s and 1s
in the bitstring.

Code implementing this algorithm is in Figure 8.13. The functiondecode-stringh

takes in the original complete code tree that we computed in the previous section, as
its first argument. For its second argument, it takes in the subtree of this code tree,
which we have reached by processing some bits from the bitstring for the encoded
input. The third argument is the remaining bits of that bitstring (bvlit, from the
grammar of Figure 8.1). There are two main cases considered by the code: if the bvlit
has length greater than one (the BvlitCons case), and if the bvlit has length equal
to one. In the former case, we use the sub-ct function defined in the previous section
to attempt to choose a subtree of the current subtree n of the code tree. The subtree is
determined by the current bit d in the bvlit. If the subtree is a ct-leaf with string s,
then we have reached the end of a code in the bitstring, and we can output s. We then
proceed by resetting the current subtree back to orig as we make a recursive call to
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decode-stringh : code-tree → code-tree → bvlit → string

decode-stringh orig n (BvlitCons d v) with sub-ct d n

decode-stringh orig n (BvlitCons d v) | ct-leaf s =

s ^ " " ^ (decode-stringh orig orig v)

decode-stringh orig n (BvlitCons d v) | ct-empty = "error\n"

decode-stringh orig n (BvlitCons d v) | n’ =

decode-stringh orig n’ v

decode-stringh orig n (BvlitStart d) with sub-ct d n

decode-stringh orig n (BvlitStart d) | ct-leaf s = s ^ "\n"

decode-stringh orig n (BvlitStart d) | _ = "error\n"

decode-string : code-tree → bvlit → string

decode-string t v = decode-stringh t t v

Figure 8.13 Decoding an encoded bitstring (the bvlit) using a code tree.

decode-stringh to continue the decoding. If the subtree returned by sub-ct is ct-
empty, then there is an error: the input bitstring is using a code not contained in the
code tree (or else conceivably there is a bug in our code). Otherwise, if the subtree is
some ct-node n’, we recurse with the rest of the bvlit and n’ as our new subtree.
The cases for when the bvlit is just length one (BvlitStart) are similar.

8.5 Conclusion
In this chapter, we saw an example of implementing a complete executable program
in Agda, for Huffman encoding and decoding. We used a gratr-generated parser (see
Chapter 7) to parse textual input, and a simple file format for encoded data. We saw
pure functional algorithms for computing Huffman trees for encoding, and code trees
for decoding. The executable produces intermediate outputs, including Graphviz files
to depict the Huffman trees (Graphviz is a graph-drawing program, which also has
several web interfaces you can use for rendering its .gv files). We used a number
of functional data structures like lists and Braun trees, for which we already proved
numerous theorems. We also did some verification specific to this example, to show
Agda that the initial priority queue we use in computing the Huffman tree is not empty.
This guarantees that we can indeed compute a Huffman tree from this priority queue.
The judicious use of verification is a delicate art: we wish to improve code quality
as much as possible, while expending as little effort on the often difficult work of
theorem-proving as we can. There are many avenues one could explore for further
work on this example, described in the exercises.
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Exercises
8.1. Build the main executable in the huffman subdirectory of the IAL, and run it on
the test files included in that directory.

8.2. A basic theorem about tries that is currently unproved in the IAL relates how
inserting into a trie with trie-insert effects the list of mappings returned by trie-
mappings. State and then prove this theorem. This will likely be somewhat involved.

8.3. Modify the huffman-tree datatype so that it is indexed by its associated fre-
quency, as discussed in Section 8.3.2, to ensure staticaally that frequencies are calcu-
lated correctly. Update the code in main.agda to work with the modified definition.

8.4. Prove some basic lemmas relating the helper functions in Figure 8.11. For exam-
ple, you could prove

∀(d : digit)(t1 t2 : code-tree) →
sub-ct d (ct-node d t1 t2) ≡ t1

and a similar lemma using flip-digit.





9Reasoning About
Termination
So far in our study of Agda, termination has been an implicit property of the programs
and proofs we have written. In every recursive call, some argument must be structurally
decreased (e.g., from suc x to x), ensuring termination of the function. We did not
need to express termination explicitly—up to now. In this chapter, we will see how to
define termination as a type in Agda, and how to use this type in writing programs
and proofs. We will start (Section 9.1) by considering how one may explicitly define
termination for binary relations in Agda, and several proof methods related to this
explicitly formulated termination property.

We will go on (Section 9.2) to see an example use of our termination type, which is
interesting in its own right: the language of SK combinators, a very minimal Turing-
complete programming language. Studying this language will require us to define its
operational semantics in Agda, which we will do using inductive types in a standard
way. This technique is of general interest, for using Agda to reason about deductive
systems formulated as sets of inference rules. We will prove termination of a class of
combinator programs, using the tools of Section 9.1.

Our definition of the semantics of SK combinators in Agda will prepare us for a more
advanced example of formalizing deductive systems in Agda, in Chapter 10, when we
formalize the Kripke semantics for a form of intuitionistic logic.

9.1 Termination Proofs
Termination is a property of binary relations. If we think of the relation as an ordering,
we are saying that one cannot decrease in the ordering forever. Eventually a point
will be reached from which no further descent is possible. This is closely related to
the mathematical idea of well-founded relations. For a basic mathematical example:
the > ordering on natural numbers is terminating. Every decreasing sequence of
natural numbers must stop eventually, at least at 0. Of course many orderings from
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Figure 9.1 Graphical depiction of an example relation that is terminating from some starting points
and not from others.

mathematics are not terminating. Just think about the usual > ordering on integers.
We can decrease forever with a chain like 3 > 2 > 1 > 0 > −1 > −2 > . . .. Or think about
the usual > ordering on the positive rationals. We can decrease forever with a positive
sequence like

1 >
1
2

>
1
4

>
1
8

>
1

16
>

1
32

> . . .

We can also speak of a relation’s being terminating from a given starting point: from
that starting point, one cannot descend forever in the relation, even if one could do so
from other starting points. Proving that a program cannot run forever can be viewed
as showing that a certain relation, namely, the one which shows step-by-step how the
program runs, is terminating from that program as a starting point. Mathematically,
one can view the problem of termination from a starting point as just the termination
problem for a version of the relation, restricted to the objects reachable from the
starting point. Figure 9.1 gives a graphical example (where an edge in the graph from x

to y means that x is bigger than y in the relation). The relation depicted is terminating
starting from g, because all paths from g eventually terminate in either f or b. But it is
not terminating starting from i, for example, because there is an infinite path starting
at i: we can move from i to d and then to h and back to d again and again forever.

9.1.1 Defining Termination in Agda
The file termination.agda in the IAL gives an Agda definition for what it means to
be a terminating relation. First of all, we need to model relations in Agda. This is done
by modeling a relation on a set A as a value R of type A → A → Set. Such an R takes
in two elements of type A, and returns a Set. Under the Curry-Howard isomorphism
on which Agda is based, a Set can just as well be viewed as a formula. So a binary
relation as modeled in Agda is a function which takes two elements of A and returns
a formula. Which formula is it? We should think of it as a formula that is provable if
and only if the two elements indeed stand in the relation to one another. This is more
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termination.agdadata ↓ {� �’} {A : Set �} (_>_ : A → A → Set �’)

: A → Set (� � �’) where

pf↓ : ∀ {x : A} → (∀ {y : A} → x > y → ↓ _>_ y) →
↓ _>_ x

Figure 9.2 The datatype representing termination of a given relation.

general than modeling a relation as a function of type A → A → B. To take a concrete
example, the function _<_ has type N → N → B. We can model this as the relation

λ (x y : N) → (x < y) ≡ tt

This has type N → N → Set, because it takes in arguments x and y of type N, and
then returns (x < y) ≡ tt, which is a Set. So any function of type A → A → B can
turned into one of type A → A → Set. The reverse is not possible in general in Agda,
however. So termination.agda uses the more general notion of relation as function
of type A → A → Set, though there is also a helper definition for the more specific
type of relation.

The first definition we find in termination.agda is the short but tricky one for
the type ↓, which we will use to express termination, in Figure 9.2. For yet greater
generality, we actually make this a level-generic definition, so that the type A and the
binary relation _>_ can be at different levels � and �’. Constraints on Agda’s infinite
hierarchy of type levels require the type ↓ to be at the level that is the maximum
of � and �’. This maximum is denoted � � �’. Disregarding this rather cluttering
generality, we see that the type ↓ takes in an explicit argument _>_, which is the
binary relation about which the ↓ type will express a termination property. ↓ also
takes in an element of type A. This is for a starting point, from which the ↓ statement
will express termination of the relation _>_. For convenience in the common case
that we are interested in termination of a function to B, termination.agda has the
following definition, which just wraps the boolean-valued function as a relation, as
we saw previously for _>_ on the natural numbers:

termination.agda↓B : ∀ {�}{A : Set �}

(_>_ : A → A → B) → A → Set �

↓B{�}{A} _>_ x = ↓{�}{lzero} (λ (x y : A) → (x > y) ≡ tt) x

For a simple, but important, example of termination, the type

∀ (n : N) → ↓B _>_ n

expresses the idea that for every natural number n, the greater-than relation is termi-
nating. This is, in fact, true, and will be proved in termination.agda.
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Returning to Figure 9.2: How do we express termination of _>_ from starting point
a? The sole constructor pf↓ of the inductive type ↓ shows how this is done. We can
prove that _>_ is terminating from starting point x if and only if we can show that for
any y such that x > y, we have ↓ _>_ y. We see this in the following part of the input
type of pf↓:

(∀ {y : A} → x > y → ↓ _>_ y)

The idea is that if the relation is terminating starting from any point y that can be
reached in one step of the _>_ relation from x, then it is also terminating from x.
We can justify this informally by hypothesizing that the relation were not terminat-
ing from x. In that case, there must be some infinite chain x > y > . . .. But we are
assuming that the relation is terminating from all y reachable from x in one step with
_>_. So any chain beginning with y where x > y must be finite. This contradicts the
assumption that x > y > . . . is infinite. So the relation is indeed terminating from x.

This type is an interesting example of an inductive type in Agda. The sole explicit
argument to the constructor pf↓ is a function of type

(∀ {y : A} → x > y → ↓ _>_ y)

The inductive definitions of the types for lists, natural numbers, and others we have
seen previously in the book have not had constructors which take functions as ar-
guments. Agda allows such constructors, but only so long as the type being defined
(here ↓) is only used as the return type for the function which is to be the construc-
tor’s input. In such cases, termination of functions and hence logical consistency is
preserved. One way to think of constructors with functional arguments like this is as
infinitely branching nodes in a tree. If a constructor has three arguments, then this
can be thought of as three subtrees. If one wishes to represent an infinite number of
subtrees, then the constructive way to do this is to have a function mapping some in-
dex values to those subtrees. In this case, the function can be thought of as mapping
pairs consisting of y of type A and a proof of x > y, to a subtree. When writing recursive
functions over such a datatype, there is then no problem with making recursive calls
on any of this infinite set of subtrees. Intuitively, one can understand the subtrees to
be smaller in all cases, even though there are infinitely many of them. We will see in
Section 9.1.3 that Agda indeed allows recursive calls to be made on any value returned
by a functional argument to a datatype constructor. This preserves termination and
logical consistency.

As an aside, it is interesting to see how allowing the datatype to be used as the
domain type for that functional argument causes problems. We will return to this in
Section 9.1.5.



9.1 Termination Proofs 191

termination.agda↓-> : ∀ (x : N) → ↓B _>_ x

↓-> x = pf↓ (h x)

where h : ∀ x → ∀ {y} → x > y ≡ tt → ↓B _>_ y

h 0 {0} ()

h 0 {suc y} ()

h (suc x) {y} p with <-drop {y} p

h (suc x) {y} p | inj1 u rewrite u = ↓-> x

h (suc x) {y} p | inj2 u = h x u

Figure 9.3 A proof that the greater-than relation on natural numbers in terminating.

9.1.2 Termination of Greater-Than on Natural-Numbers
Let us see an example of proving termination, just next in termination.agda. We
will see another, more computational example in Section 9.2.3. This is ↓->, shown in
Figure 9.3, which proves that the natural-number ordering _>_ (defined in nat.agda)
is terminating, starting from any x of type N. The proof is somewhat tricky. We use a
recursive helper function h, defined in a where clause. This helper recurses on x, to
show that for any smaller y, the ordering is terminating starting from y. This is the
property that the pf↓ function called in the equation for ↓-> requires of x. So how
does the h helper function work? If x is 0 we can derive obvious absurdities from the
assumption that x is strictly greater than y (once we case-split on y). So suppose x

is actually suc x, for some different x. This means that our ordering assumption is
actually suc x > y ≡ tt in this case. Now, nat.agda defines x > y to be just y < x, so
h gets an assumption p of the following fact:

y < suc x ≡ tt

In nat-thms.agda, we have the following theorem that h now uses to do a case-split
based on this assumption p:

<-drop : ∀ {x y : N} → (x < (suc y) ≡ tt) →
x ≡ y ∨ x < y ≡ tt

(Note that we are instantiating x with y and y with x in calling this theorem.) If y is
less than suc x, either y equals x, or else y is less than x. In the former case, h does a
rewrite to change y to x in the goal. This means we must just prove ↓B _>_ x in this
case, which is done with the outer recursive call ↓-> x. Otherwise, we can make an
inner recursive call h x u, since the type of u is definitionally equal to y > x ≡ tt, and
so we have decreased the first argument of h from suc x to just x.
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termination.agdamodule measure {� �’ �1 �2 : level}

{A : Set �}{B : Set �’}

(_>A_ : A → A → Set �1)

(_>B_ : B → B → Set �2)

(m : A → B)

(decreasem : ∀{a a’ : A} → a >A a’ →
m a >B m a’)

where

measure-↓ : ∀ {a : A} → ↓ _>B_ (m a) → ↓ _>A_ a

measure-↓{a} (pf↓ fM) = pf↓ h

where h : {y : A} → a >A y → ↓ _>A_ y

h{y} p = measure-↓ (fM (decreasem p))

Figure 9.4 Termination using a measure function.

9.1.3 Proving Termination Using a Measure Function
One classic way to prove termination of a relation _>A_ on some set A is using a
measure function. We will see an interesting use of this in Section 9.2.3. Suppose
there is some quantity we can compute from objects of type A, where that quantity
decreases in a terminating relation every time we take a step with _>A_. Then this
must mean that _>A_ is terminating as well. This is formally expressed in the Agda
code shown in Figure 9.4, from termination.agda. The code declares a module, so
that we can take in several parameters to be used in the theorem that comes next.
In this case, it is just a matter of taste to make these parameters of a module rather
than arguments to the function. One can prefer them as module parameters to avoid
cluttering the statement of the measure-↓ theorem. The module parameters are two
sets A and B with binary relations _>A_ and _>B_. We also have a measure function m

from A to B, and a proof decreasem saying that m preserves the ordering relationship:
whenever a >A a’, we have m a >B m a’. The theorem of interest is then that if _>B_
is terminating starting from m a, then _>A_ is terminating starting from a. The proof
of this is short, but again a bit tricky. We are assuming the _>B_ ordering terminates
starting from m a, for an arbitrary a. The proof of this termination assumption is pf↓
fM, for some function fM of type

{y : B} → m a >B y → ↓ _>B_ y

Now measure-↓ returns a proof of type ↓ _>A_ a, by applying the pf↓ constructor (for
the ↓ type) to a helper function h, declared in a where clause. This helper function
must show that _>A_ is terminating from any starting point y that is less than a. By
applying our module parameter decreasem to p, we get a proof of
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m a >B m y

We can apply fM to this, to obtain a proof of ↓ _>B_ (m y). Now something rather
remarkable happens. We make a recursive call to measure-↓ on the value returned
by fM. From a typing perspective, everything makes sense: the call to measure-↓ is
given a proof of ↓ _>B_ (m y), and it produces a proof of ↓ _>A_ y, which is exactly
what we need to finish this case for h. But what is surprising is that this recursive call
passes Agda’s termination checker. This is just what we considered in Section 9.1.1:
if a constructor contains an argument of functional type, Agda allows recursive calls
to values returned by that function. This does not violate termination of recursive
functions, as each such value can be viewed as smaller than the data value containing
that function.

9.1.4 Using Termination Proofs for Well-Founded Recursion
Some functions one might wish to define in Agda are not directly structurally termi-
nating. The classic example is division for Peano natural numbers. Given a dividend
x and nonzero divisor d, we want to divide x by d to compute the quotient q and re-
mainder r. We should then have q * d + r equal to x, and r less than d. We will call
this conjunctive property the division property. To do this on Peano numbers, the basic
algorithm is to subtract the divisor repeatedly from the dividend, until the divisor is
strictly less than the dividend. We keep track of how many times we have subtracted
the divisor. This count is the quotient, and the ending divisor (when we have found it
to be strictly less than the dividend) is the remainder.

The file nat-division-basic.agda in the IAL defines this basic algorithm, with-
out taking termination into account. The code is shown in Figure 9.5. We test if x is
less than d, stopping if so. Otherwise, we recursively divide x .− d by d, and then in-
crement the quotient for this division to get the quotient for dividing x by d. The code
requires a proof that the divisor d is nonzero, since it will certainly loop if given zero
as the divisor. This is because subtracting d from x in that case will not decrease the

nat-division-basic.agda{-# NO_TERMINATION_CHECK #-}

div : (x d : N) → d =N 0 ≡ ff → N × N

div 0 _ _ = 0 , 0

div x d p with (x < d)

div x d p | tt = 0 , x

div x d p | ff with div (x .− d) d p

div x d p | ff | q , r = suc q , r

Figure 9.5 Division of natural numbers, not accounting for termination.
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dividend, and so the recursive call to div will loop. Using this definition, we can nor-
malize an example term like div 17 3 refl (using Ctrl+c Ctrl+n) to 5 , 2. The code is
introduced with the Agda pragma NO_TERMINATION_CHECK, to tell Agda not to check
termination of div. Without this pragma, Agda will report that it cannot determine
thatdiv is terminating, because the recursive calldiv (x .− d) d p is not a structurally
decreasing call. The divisor ddoes not change, and Agda cannot automatically tell that
x .− d is structurally smaller than x.

We can use a termination proof to rectify this problem. For assuming a nonzero
divisor, the recursive call div (x .− d) d p does have an argument which is decreasing
in a terminating relation: x .− d is smaller than x in the natural-number ordering
(of Section 3.4). Figure 9.6 shows code from nat-division-wf.agda for defining
division by structural recursion on the proof of termination for _>_, which we saw
in Section 9.1.2. This form of recursion is known as well-founded recursion, since the
decrease is with an arbitrary terminating relation, not just a structural decrease. The
trick, of course, is to turn this decrease by an arbitrary terminating relation into a
structural recursion, and that is where the termination proof comes into play.

We are returning from div-helper not just a pair of the quotient q and remainder
r, but rather a tuple q , r , p , p’, where p , p’ proves the division property (the
quotient times the divisor plus the remainder equals the dividend, and the remainder
is less than the divisor). The div-result type packages up the quotient, remainder,
and those two proofs using a �-type (see Section 5.3). The div-helper function takes
in the dividend x and a proof of termination of the natural-number ordering _>_

starting from x. It then takes in the divisor d, and a proof that d is nonzero, before
returning a div-result for x and d.

The code for div-helper first pattern-matches on the divisor. It cannot be zero,
since we are assuming it is not, and so the first case is handled with the absurd pattern
(). The second case is for when the dividend is zero, in which case the quotient and
remainder are both zero, and the division property follows just by evaluating (with
Agda’s definitional equality) the expressions in question. For the third equation in
Figure 9.6, we have suc x and suc d for the dividend and divisor, respectively, and we
are splitting on whether or not x is less than d (which, by the definition of _<_, is the
same as splitting on whether suc x is less than suc d). If so, then we just return zero as
the quotient and suc x as the remainder. By using the keep idiom (Section 4.3.4), we
retain a proof p that x is less than d, which suffices for the proof of the second part of
the division property (that the remainder is less than the divisor). If x < d is ff, on the
other hand, then we make a recursive call to div-helper. Here, we use the function
fx, which we have extracted by pattern matching from the termination proof which
was given as input. The type of fx is this:
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nat-division-wf.agdadiv-result : N → N → Set

div-result x d = � N (λ q →
� N (λ r →

q * d + r ≡ x

∧ r < d ≡ tt))

div-helper : ∀ (x : N) → ↓B _>_ x →
(d : N) → d =N 0 ≡ ff → div-result x d

div-helper x ↓x 0 ()

div-helper 0 (pf↓ fx) (suc d) _ = 0 , 0 , refl , refl

div-helper (suc x) (pf↓ fx) (suc d) _ with keep (x < d)

div-helper (suc x) (pf↓ fx) (suc d) _ | tt , p =

0 , suc x , refl , p

div-helper (suc x) (pf↓ fx) (suc d) _ | ff , p

with div-helper (x .− d) (fx ( .−<1 {x} {d})) (suc d) refl

div-helper (suc x) (pf↓ fx) (suc d) _ | ff , p

| q , r , u , v =

suc q , r ,

lem{q * suc d}

( .−eq-swap{x}{d}{q * suc d + r} (<ff{x} p) u) , v

where lem : ∀ {a b c : N} → a + b + c ≡ x →
suc (c + a + b) ≡ suc x

lem{a}{b}{c} p’

rewrite +comm c a | sym (+assoc a c b)

| +comm c b | +assoc a b c | p’ = refl

_÷_!_ : (x d : N) → d =N 0 ≡ ff → div-result x d

x ÷ d ! p = div-helper x (↓-> x) d p

Figure 9.6 Natural-number division defined by recursion on a termination proof.

{y : N} → y < suc x ≡ tt → ↓ (λ x1 y1 → y1 < x1 ≡ tt) y

So for any y smaller than the dividend suc x, we can make a recursive call to div-

helper. We have a proof in nat-thms.agda that x .− d is smaller than suc x. The
typing for this proof is:

.−<1 : ∀ {x y : N} → x .− y < suc x ≡ tt

So, using this, we can make a structurally recursive call to div-helper. The call
is structurally recursive because we are recursing on an application of fx, and as we
considered in Section 9.1.1, such applications are considered structurally smaller than
the termination proof pf↓ fx from which we extracted fx. So this is the central place
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in this code where the termination proof is used. After this, the rest of div-helper
is straightforward, except for somewhat tedious arithmetic reasoning to establish the
first conjunct of the division property.

It remains only to define the actual division operation _÷_!_. The ! part of the no-
tation separates the divisor from a proof that the divisor is nonzero, which is required
by div-helper as we saw. For the termination proof which div-helper requires, the
_÷_!_ function supplies a proof obtained from ↓-> x, defined in Section 9.1.2 above.
This completes the use of a termination proof for a structurally recursive definition
of division.

9.1.5 Nontermination with Negative Datatypes
The file neg-datatype-nonterm.agda in the IAL shows what could happen if Agda
were to allow a functional argument to a datatype constructor, where the datatype
is used in the domain type of the type for that functional argument. Such positions
within the type are called negative, borrowing terminology from logic. In classical
logic, an implication A → B is equivalent to ¬A ∨ B. So A occurs negatively in the
implication.

The file begins with a compiler directive telling Agda not to enforce the requirement
that datatypes are used only positively. :

{-# OPTIONS --no-positivity-check #-}

In fact, Agda requires strict positivity: the datatype simply cannot be the left of any
arrow. Positivity would allow it to occur to the left of an even number of arrows (since
an even number of negations cancel out). Next, we find this datatype definition:

data Bad : Set where

bad : (Bad → ⊥) → Bad

The constructor bad takes in a function as an argument, and the datatype Bad in
question is used negatively: it is the domain type in Bad → ⊥. It is now very easy to
derive a contradiction, which we demonstrate by writing an expression of type ⊥. This
type, defined in empty.agda, is the empty datatype with no constructors. Under the
Curry-Howard isomorphism, it corresponds to falsity. Now consider this definition:

badFunc : Bad → ⊥
badFunc (bad f) = f (bad f)

The code for badFunc does something funny. It pattern-matches on the input of
type Bad. There is only one constructor for Bad, of course, namely, bad. So the pattern
variable f has type Bad → ⊥. We just need an input of type Bad and we can call this
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function f. Of course, we have such an input handy, namely, bad f itself, the input to
the badFunc function. Now it is very easy to write down an expression of type ⊥:

inconsistency : ⊥
inconsistency = badFunc (bad badFunc)

We just call badFunc on an input of type Bad, which we can construct from applying
bad to badFunc itself. If we ask Agda to normalize (with Ctrl+c Ctrl+n) this inconsis-
tency term, it will run forever:

badFunc (bad badFunc) = badFunc (bad badFunc) = ...

This is because what badFunc does when it is called with an argument matching
the pattern bad f is call f on bad f. Here, f is badFunc, so f (bad f) just becomes
badFunc (bad badFunc), and we are back where we started, in an infinite loop.

9.2 Operational Semantics for SK Combinators
As we have seen in earlier chapters, every function defined in Agda is required to ter-
minate on all inputs. While many, perhaps even most, useful programs consist of
terminating functions, there are notable exceptions. Interpreters for Turing-complete
languages constitute one. Given the proliferation of programming languages, partic-
ularly dynamically typed scripting languages, in the Web programming era, this is
not a class of examples that should be ignored. We will now look at one very minimal
untyped language, of so-called SK combinators. This language has important connec-
tions to the lambda calculus, which is at the heart of functional programming. We
will see more of these connections later.

9.2.1 Mathematical Syntax and Semantics for Combinators
First, let us define the syntax and operational semantics of this language mathemati-
cally. Then we will see how to formalize these definitions in Agda. The syntax is given
in Figure 9.7. The notation with the ::= indicates that we are defining the format
of abstract syntax trees for one or more syntactic categories. We will write these ab-
stract syntax trees in linear form, and so we will need to use parentheses to show the
structure of the tree. (We could also use parsing conventions, but we will just be fully
explicit about parentheses to avoid confusion.)

combinators a , b, c ::= S | K | c c′

Figure 9.7 Mathematical definition of the syntax for SK combinators.
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In this case, the sole syntactic category is that of combinators. By writing a , b, c

after this, we are indicating that we will denote combinators, when speaking about
them, with variables that look like a, b, or c. This includes a′ or a1 and a2, for example.
Often such variables are called metavariables, because they are the variables we are us-
ing in our mathematical meta-language to talk about some language we are studying.
This language of study is often called the object language. If it is a programming lan-
guage, it will almost always have its own notion of variables, and hence the distinction
between object-language variables and metavariables is useful. This language of com-
binators, however, is one of the few cases of a variable-free programming language.
The only expressions in the language of SK combinators are the special symbols S and
K, and the juxtaposition c c′of two combinators c and c′. Just as in functional program-
ming as we have seen it in Agda, the juxtaposition notation c c′ means that combinator
c is being called as a function with argument c′.

How does one program with combinators? They barely resemble any programming
language we have likely seen, not even Agda. We will see later how lambda calculus, the
basis of functional programming, can be implemented using only SK combinators.
First, we need to know what combinator programs mean. How do we execute them?
This is defined mathematically in Figure 9.8, which lists four rules explaining how
combinator programs execute step by step. These rules use metavariables like a, b,
and c, to indicate that the rules apply for any combinators one wishes, in place of the
metavariables.

The first rule says that in one step of execution, the program (K a) b will become
just a. So K a behaves as a constant-valued function that always returns a when called
with any argument b. The next rule says that in one step, ((S a) b) c becomes (a c) (b c). I
always remember this definition by thinking of the classic rock band AC-DC (although
here it is AC-BC). The S combinator is routing argument c to two combinators a and
b, and applying the results. It is not intuitively obvious how this is useful, but we will
see more later. The third rule says that if a � a′ is true, then a b � a′ b is also true.
The fourth rule makes a similar implicational statement. So these last two rules let
you apply the first two rules anywhere you want within nested applications.

Figure 9.9 shows what is called a derivation using the rules. This derivation is
proving the fact that

(K K) (K ((K S) K)) � (K K) (K S)

((K a) b) � a (((S a) b) c) � (a c) (b c)

a � a′

a b � a′ b
b � b′

a b � a b′

Figure 9.8 Mathematical definition of the operational semantics for SK combinators.
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(K S) K � S

K ((K S) K) � K S

(K K) (K ((K S) K)) � (K K) (K S)

Figure 9.9 Example derivation using the rules of Figure 9.8.

What is happening here is shown by underlining the term that is being reduced, and
what it reduces to:

(K K) (K ((K S) K)) � (K K) (K S)

We are really just applying the rule for K (the first one in Figure 9.8). But this is taking
place in the right parts of two applications. So we have two inferences with the fourth
rule of Figure 9.8.

Let us write a (very) simple example program using combinators, and see how it
executes on a sample input using the rules. The program is (S K) K . This program
cannot step at all using any of the rules, because S needs to be applied (in a left-nested
way) to three arguments before the second rule of Figure 9.8 can be applied. So let us
apply it to some argument a (just assumed to be any combinator term), and see what
happens.

((S K) K) a � (K a) (K a) � a

The first step is by the second rule of Figure 9.8. That rule says what you can do if you
see ((S a) b) c. Here, we have an expression matching that pattern, namely, ((S K)K) a.
The a, b, and c in the rule have been instantiated with K , K , and a respectively. The
second step is by the first rule, where we are instantiating the a and b from the rule
with a and (K a), respectively. So we can see that (S K) K behaves like an identity
function: when applied to a, in two steps it reduced to a again. Note that we did not,
in this particular case, have to apply the third or fourth rule of Figure 9.8.

9.2.2 Defining the Syntax and Semantics in Agda
The code in this section may be found in combinators.agda in the IAL. Defining the
syntax for combinators is very easy. We already saw in Chapter 7 how syntax trees can be
represented in Agda. The simple definition for SK combinators is given in Figure 9.10.
We must use some explicit operator for applications, instead of juxtaposition, so we
use a prefix app constructor. We could have taken this as an infix operator _app_ (or
perhaps some other symbol), but here I have chosen to leave it as a prefix operator. The
(S K) K combinator we saw before is then represented with this datatype in Agda as

app (app S K) K
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combinators.agdadata comb : Set where

S : comb

K : comb

app : comb → comb → comb

Figure 9.10 Combinators, declared as an Agda datatype.

combinators.agdadata _�_ : comb → comb → Set where

�K : (a b : comb) →
(app (app K a) b) � a

�S : (a b c : comb) →
(app (app (app S a) b) c) � (app (app a c) (app b c))

�Cong1 : {a a’ : comb} (b : comb) →
a � a’ →

(app a b) � (app a’ b)

�Cong2 : (a : comb) {b b’ : comb} →
b � b’ →
(app a b) � (app a b’)

Figure 9.11 Operational semantics of SK combinators, in Agda.

We can define operations on these syntax trees, just as for any other datatype.
One operation that we will rely on later is a size operation, to compute the size of
a combinator expression:

combinators.agdasize : comb → N

size S = 1

size K = 1

size (app a b) = suc (size a + size b)

Now we come to the more interesting point, which is how to represent the opera-
tional semantics we saw in Figure 9.8 in Agda. This is done by the datatype definition
in Figure 9.11. We are encoding the relation a � a′ using an indexed datatype, where
we use the Unicode symbol (which can be typed with “\leadsto”) matching the math-
ematical notation.

Remember that under the Curry-Howard isomorphism, an object of type Set can
be viewed both as a type for data, and as a formula. For example, 1 ≡ 1 has type Set,
and is viewed as expressing an idea, namely, that 1 equals 1. With the definition
in Figure 9.11, we are declaring that _�_ takes two values of type comb (so, two
combinators), and returns a formula. Then for each of the four rules of Figure 9.8,
we have one constructor for the _�_ datatype. These constructors are showing all
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the different ways to prove one of those _�_ formulas about two combinators, just
as the mathematical rules express all the possible reductions in the mathematical
semantics.

Now let us see how one represents mathematical derivations as values of type a �
b. For a very simple example, suppose we want to represent the following derivation:

(K S) (K S) � S

This is an inference using the K rule of Figure 9.8. It is represented as an application
of the �K constructor of the _�_ datatype:

�K S (app K S) : app (app K S) (app K S) � S

The constructor requires values to use for a and b, and then produces a value of type
app (app K a) b � a. Here, a is S and b is app K S, which represents K S.

For a slightly bigger derivation, consider the example from Figure 9.9. This is
represented with our Agda datatype as follows:

�Cong2 (app K K) (�Cong2 K (�K S K))

The �Cong2 constructor requires an explicit argument, which is the first part of the
application that we are trying to reduce by reducing the second part of the application.
That second part, and what it reduces to, are implicit arguments. We only have to
supply �Cong2 with the proof that the second part of the application steps, as the
last explicit argument. We can confirm (with Ctrl+c Ctrl+d in an EMACS buffer with
combinators.agda loaded) that the type of the above example term is the following
(broken across two lines just for spacing reasons):

app (app K K) (app K (app (app K S) K)) �
app (app K K) (app K S)

This indeed represents the statement (K K) (K ((K S) K)) � (K K) (K S), derived
in Figure 9.9.

9.2.3 Termination for S-free Combinators
Suppose a combinator c does not contain the S combinator. So it consists solely of
applications and the combinator K. Then we can prove that reduction is terminating
from c. The argument is actually quite straightforward, as we can see that the reduction
K a b � a reduces the size of the combinator term, wherever that reduction takes
place. To formalize this in Agda, we will use our implementation of termination via
measure functions (Section 9.1.3). It is very easy to express being S-free:
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combinators.agdaSfree : comb → B

Sfree S = ff

Sfree K = tt

Sfree (app a b) = Sfree a && Sfree b

To use size as a measure function for termination, we will use the measure-↓
theorem discussed in Section 9.1.3. We must specify a type A and an ordering _>A_ on
that type, and then give a measure function which maps A to B, for some additional
type with ordering _>B_. Here, our rough idea is to use:

. comb as A,

. _�_ as _>A_,

. N as B,

. _>_ as _>B_, and

. size as the measure function.

This is not quite correct, however, as size is only decreased for S-free combinators. We
will see how to rectify this in what follows.

9.2.3.1 Reduction of S-free Combinators Decreases the Size
It is not very hard to prove that if a is S-free and a reduces to b, then the size of b is
strictly less than the size of a. The proof of this fact is shown in Figure 9.12. There are
several things to consider here. First of all, the function Sfree-�-size> is defined
by recursion on the value of type a � b. After all, _�_ is an inductive datatype, so we
can recurse on its values. Those values represent derivations using the rules for the
operational sematics of combinators (Figure 9.8). So we are recursing on the structure
of derivations. This is a common technique in reasoning about operational semantics
and other deductive systems.

For the �K a b case, Agda will deduce for us that the a in the statement of the
theorem is app (app K a) b (the prefix representation of the mathematical expression
(K a) b), and the b in the statement of the theorem is b. The goal is then definitionally
equal to the following, because the size of app (app K a) b is actually three plus the
sum of the sizes of a and b (one for the K and one more for each of the app’s):

size a < suc (suc (suc (size a + size b))) ≡ tt

The code is using a lemma <+2 from nat-thms.agda, to prove

size a + size b < suc (suc (suc (size a + size b))) ≡ tt

The lemma’s typing is

<+2 : ∀ {x y : N} → x < (suc y) + x ≡ tt
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combinators.agdaSfree-�-size> : ∀{a b : comb} → Sfree a ≡ tt →
a � b → size a > size b ≡ tt

Sfree-�-size> p (�K a b) =

≤<-trans {size a} (≤+1 (size a) (size b))

(<+2 {size a + size b} {2})

Sfree-�-size> () (�S a b c)

Sfree-�-size> p (�Cong1{a}{a’} b u)

with &&-elim{Sfree a} p

Sfree-�-size> p (�Cong1{a}{a’} b u) | p1 , _ =

<+mono2 {size a’} (Sfree-�-size> p1 u)

Sfree-�-size> p (�Cong2 a u) with &&-elim{Sfree a} p

Sfree-�-size> p (�Cong2 a u) | _ , p2 =

<+mono1{size a} (Sfree-�-size> p2 u)

Figure 9.12 Proof that reduction of S-free combinators decreases the size.

This is getting combined by transitivity with a proof derived by the following helper
lemma, also from nat-thms.agda:

≤+1 : ∀(x y : N) → x ≤ x + y ≡ tt

The (�S a b c) case of Sfree-�-size> is for when the derivation of a � b is by
the second rule of Figure 9.8. But that case actually cannot arise, because then the a in
a � b is actually app (app (app S a) b) c, which is not S-free. The assumption that
this a is S-free reduces then to ff ≡ tt, which Agda can see is absurd if we write the
absurd pattern ().

Let us look at the case where the derivation is �Cong1{a}{a’} b u. In terms of the
mathematical operational semantics, this means that the derivation looks like the
following:

a � a′

a b � a′ b
By the induction hypothesis, we know that the size of a is greater than the size of
a’, since if app a b is S-free, so is a. The latter reasoning is formalized using the
boolean lemma &&-elim to turn a proof of Sfree a && Sfree b ≡ tt into a pair of
proofs of Sfree a ≡ tt and Sfree b ≡ tt, respectively (of which we only need the
first). Invoking the induction hypothesis is, of course, formalized in Agda by making
a recursive call: Sfree-�-size> p1 u. This gives us

size a’ < size a ≡ tt

From this, we can almost complete the proof of the goal, which is

size a’ + size b < size a + size b ≡ tt
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We just need to apply the following monotonicity lemma for the first argument to _+_

from nat-thms.agda, where x is instantiated with size a’, and then happily Agda
can deduce the needed instantiations of y and z:

<+mono2 : ∀ {x y z : N} → x < y ≡ tt →
x + z < y + z ≡ tt

The proof for the case where the derivation is by the other congruence rule is similar,
using a lemma for monotonicity of the second argument of _+_.

9.2.3.2 Reduction of an S-free Combinator Results in Another S-free Combinator
As noted at the start of Section 9.2.3, we need to show not only that reduction of S-free
combinators decreases the size of the combinator, but also that reduction preserves
the property of being S-free. The typing for this proof is:

�-preserves-Sfree : ∀{a b : comb} → Sfree a ≡ tt → a � b →
Sfree b ≡ tt

The proof is similar in structure to the one we just considered in the previous section,
so we omit the details. We will use this in the upcoming concluding proof.

9.2.3.3 Concluding Termination Using Size as a Measure Function
As explained previously, we are proving termination of reduction ofS-free combinators
using a measure function. Combinators containing S can certainly increase in size
under reduction. So actually, we will use our Sfree function to define a new type, for
the S-free combinators, using a dependent product type (see Section 5.3):

combinators.agdaSfree-comb : Set

Sfree-comb = � comb (λ a → Sfree a ≡ tt)

An element of the type Sfree-comb is a pair (c , p), where c is a combinator and p

is a proof that the combinator is S-free. Now we can use Sfree-comb as the type A for
measure-↓ from termination.agda (discussed in Section 9.1.3). The relation _>A_

cannot be just _�_, however, because that relation is just on comb, not Sfree-comb.
So we have to define a helper relation that is defined on Sfree-comb:

combinators.agda�-Sfree-comb : Sfree-comb → Sfree-comb → Set

�-Sfree-comb (a , _) (b , _) = a � b

We also need to define our measure function on Sfree-comb:

combinators.agdasize-Sfree-comb : Sfree-comb → N

size-Sfree-comb (a , _) = size a
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The proof that _�_ decreases size is easily used to show that the wrapper relation
�-Sfree-comb reduces the wrapper measure function size-Sfree-comb:

combinators.agdadecrease-size : ∀ {x y : Sfree-comb} →
�-Sfree-comb x y →

size-Sfree-comb x > size-Sfree-comb y ≡ tt

decrease-size{a , u}{b , _} p = Sfree-�-size> u p

The following statement from combinators.agda opens the module measure

(from termination.agda):

combinators.agdaopen measure{A = Sfree-comb} �-Sfree-comb

(λ x y → x > y ≡ tt) size-Sfree-comb

decrease-size

The module’s parameters are being instantiated as follows.

. A is Sfree-comb.

. _>A_ is �-Sfree-comb.

. B is N.

. _>B_ is _>_ (the natural-number greater-than relation, from nat.agda).

. m (the measure function, which should map A to B) is size-Sfree-comb.

. decreasem (the proof that the measure function is decreased by _>A_) is
decrease-size.

From this instantiation of measure, we get the following theorem, which shows
that the wrapper reduction relation _�-Sfree-comb_ is terminating for all elements
of the type Sfree-comb of S-free combinators:

combinators.agdameasure-decreases : ∀(a : Sfree-comb) →
↓ �-Sfree-comb a

measure-decreases a = measure-↓ (↓-> (size-Sfree-comb a))

Here we must use the proof ↓-> of termination of _>_, which we considered in
Section 9.1.2. From this, it is now easy to get the final desired theorem, whose proof
is shown in Figure 9.13. There is one small matter that has to be dealt with, which is
going from termination of the relation �-Sfree-combonSfree-comb to termination
of _�_ from starting point a where a is S-free. This is done in the helper lemma
Sfree-terminatesh. The key idea, which shows up in the definition of the subsidiary
function h, is that if a is S-free and reduces to y, then by the lemma �-preserves-

Sfree mentioned before, y must also be S-free. Hence, the pair (y , �-preserves-

Sfree p u) used in the body of h is an element of type Sfree-comb. This enables the



206 Chapter 9 Reasoning About Termination

combinators.agdaSfree-terminatesh : ∀{a : comb}{p : Sfree a ≡ tt} →
↓ �-Sfree-comb (a , p) → ↓ _�_ a

Sfree-terminatesh{a}{p} (pf↓ f) = pf↓ h

where h : {y : comb} → a � y → ↓ _�_ y

h{y} u = Sfree-terminatesh

(f {y , �-preserves-Sfree p u} u)

Sfree-terminates : ∀(a : comb) → Sfree a ≡ tt → ↓ _�_ a

Sfree-terminates a p =

Sfree-terminatesh (measure-decreases (a , p))

Figure 9.13 The concluding proof, that reduction of S-free combinators is terminating.

combinators.agdadata varcomb : Set where

S : varcomb

K : varcomb

app : varcomb → varcomb → varcomb

var : (s : string) → varcomb

Figure 9.14 Combinators containing variables.

proof that �-Sfree-comb terminates to be applied. The latter proof is supplied to
Sfree-terminatesh by a call to the measure-decreases function, which we defined
previously using measure-↓ from the measure module.

9.2.4 Defining Lambda Abstractions Using Combinators
Combinators seem like a pretty peculiar language, hardly recognizable as something
one could use for programming. In this section, we will see that at least in theory,
combinators are a fully computationally powerful language. This is because we can
translate anonymous functions, as declared with λ in Agda (see Section 4.2.5), into
combinators. To do this, we must first define a datatype of combinators augmented
with variables. It does not matter much what type we use for variables. Here we will
just use strings. The datatype varcomb defined in Figure 9.14 is just like the datatype
for combinators (Figure 9.10), except that it has a constructor var for representing
variables. So a term like S K x would be represented as the varcomb value app (app

S K) (var "x").
Now we will see how to translate lambda abstractions into combinators. More pre-

cisely, we are going to define a function that, given a variable x and a combinator c

possibly containing that variable (and possibly not containing it), returns a combina-
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combinators.agdaλ* : (s : string) → varcomb → varcomb

λ* s S = app K S

λ* s K = app K K

λ* s (app c1 c2) = app (app S (λ* s c1)) (λ* s c2)

λ* s (var s’) =

if (s =string s’) then (app (app S K) K)

else (app K (var s’))

Figure 9.15 The function for abstracting a variable from a combinator.

tor which will definitely not have the variable x in it, and will behave just like λx . c. An
algorithm with these properties is sometimes called a bracket abstraction algorithm.
We will just consider the simplest such algorithm; more complicated versions aim to
keep the size of the returned combinator smaller (the algorithm we are considering
more than doubles its size). Diller has a nice Web tutorial on more advanced bracket
abstraction algorithms [Diller 2014]. The code is shown in Figure 9.15. If we investi-
gate this carefully, we will start to understand better why combinators are based on
the primitive operations K and S. Let us look at the first defining equation. We are sup-
posed to return a combinator which behaves like λs . S. This is a function that, given
an argument for variable s, will just ignore that argument and return S. That function
can be described by app K S. To see this, consider what happens when we apply app K

S to an argument a. We have the following reduction, using the operational semantics
for combinators:

app (app K S) a � a

So indeed, app K S behaves just like λs . S. Something similar happens if the combi-
nator from which we are trying to abstract the variable is K or is a variable different
from s. If it is the variable s itself, then we return app (app S K) K, which we saw in
Section 9.2.1 is the identity combinator. This leaves the application case to consider.
The equation for this from Figure 9.15 is

λ* s (app c1 c2) = app (app S (λ* s c1)) (λ* s c2)

What happens when we apply the right-hand side of this equation to an argument
a? Remember, we are supposed to show that the right-hand side behaves exactly like
λs .c1 c2.

app (app (app S (λ* s c1)) (λ* s c2)) a �
app (app (λ* s c1) a) (app (λ* s c2) a)
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combinators.agdacontains-var : string → varcomb → B

contains-var s S = ff

contains-var s K = ff

contains-var s (app c1 c2) =

contains-var s c1 || contains-var s c2

contains-var s (var s’) = s =string s’

Figure 9.16 Function for checking whether or not a varcomb contains a variable.

combinators.agdaλ*-binds : ∀(s : string)(v : varcomb) →
contains-var s (λ* s v) ≡ ff

λ*-binds s S = refl

λ*-binds s K = refl

λ*-binds s (app c1 c2)

rewrite λ*-binds s c1 | λ*-binds s c2 = refl

λ*-binds s (var s’) with keep (s =string s’)

λ*-binds s (var s’) | tt , p rewrite p = refl

λ*-binds s (var s’) | ff , p rewrite p = p

Figure 9.17 The proof that the function we have defined eliminates the variable.

This is by the S reduction rule. We can see that S is routing the argument a to its first
and second arguments, and then applying the results. We will consider this in more
detail just below, as part of proving that the λ* operation satisfies its specification.

9.2.4.1 The Variable Is Eliminated
Figure 9.16 defines a function for checking whether or not a varcomb contains a
given variable. Using this definition, we can now state and prove the proposition that
applying the λ* to a variable s and a combinator v returns a combinator which does
not contain s. The proof, shown in Figure 9.17, is straightforward. For the app c1 c2

case, we must use our induction hypothesis for both c1 and c2, to simplify the goal,
which simplifies to

contains-var s (λ* s c1) || contains-var s (λ* s c2) ≡ ff

For the variable case, we have to case-split on whether the variable in question (s′)
equals the variable s we are abstracting with λ*. In either case, it is trivial to prove
that the resulting combinator does not contain s. The keep idiom is needed here (see
Section 4.3.4), to retain the knowledge about whether or not s equals s′, in the context.
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combinators.agdasubst : varcomb → string → varcomb → varcomb

subst c s S = S

subst c s K = K

subst c s (app c1 c2) = app (subst c s c1) (subst c s c2)

subst c s (var s’) = if (s =string s’) then c else var s’

Figure 9.18 Substitution function for combinators with variables.

9.2.4.2 The Returned Combinator Behaves Like the Corresponding
Lambda-Abstraction
Now we want to prove that if you take the combinator returned by λ* and apply it to
an argument, this will behave the same way as applying the corresponding lambda-
abstraction to an argument. Making this statement precise requires a little work. First
of all, when one applies a lambda abstraction λx .t to an argument t ′, the rules of
lambda calculus dictate that the argument should be substituted for the variable x

in the expression t . So we need to define a substitution function, in Figure 9.18. This
is very straightforward: to compute subst c s c’ for substitution of combinator c in
place of variable s in combinator c’, we just descend into applications and either
leave c’ unchanged or, if we encounter a use of the variable s, replace it with c.

In formalizing our idea that the result of λ* behaves just like a lambda-abstraction,
there are several more issues to attend to. First of all, to say that the result behaves a
certain way, we intend to talk about the reduction behavior. But the relation _�_ is
defined on combinators (the type comb), not combinators with variables (varcomb).
Now, we could have defined a single type of combinators that might or might not have
variables, by using an index to the comb type that would control this. But for simplicity,
we have two separate types. So we need to define another relation for reduction of
elements of the varcomb type. This is somewhat regrettable duplication, but I felt it
worthwhile here to avoid cluttering the previous development. The new type is named
_�vc_ in combinators.agda, and its definition is just the same as that of _�_

, except for the different name for the relation and the use of varcomb everywhere
instead of comb. So the definition is omitted here.

Even with this new relation _�vc_ for varcomb, there is still a further problem.
We will be able to show that (app (λ* s v1) v2) reduces (using _�vc_) to (subst

v2 s v1). But this reduction may require several steps, not just one. So to state the
theorem, we need to define a multi-step version of _�vc_. We will do this with help
from code in another file from the IAL, closures.agda. The definition we will use
fromclosures.agda is shown in Figure 9.19. There is a modulebasicsparametrized
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closures.agdamodule basics {� �’ : level}{A : Set �}

(_>A_ : A → A → Set �’) where

data tc : A → A → Set (� � �’) where

tc-step : ∀{a b : A} → a >A b → tc a b

tc-trans : ∀{a b c : A} → tc a b → tc b c →
tc a c

Figure 9.19 The definition of the transitive closure of a relation, from closures.agda.

by a type A and a binary relation _>A_ on A. Then the tc datatype is defined. The name
stands for “transitive closure” . The transitive closure of a relation R, as one may recall
from discrete math, is the smallest relation that relates all the same things as R does,
but is additionally transitive. A simple example is the transitive closure of the parent
relation. If A is a parent of B and B is a parent of C, then A is an ancestor of C. If we
visualize the relation R as a graph (as we did in Figure 9.1), then the transitive closure
of R will add an edge from x to y if there is a path of length at least 1 from x to y.
The definition in Figure 9.19 defines the transitive closure (tc) of the relation _>A_ by
first saying, with the type of tc-step, that if a >A b, then also tc a b. This expresses
the idea that the transitive closure of relation R posits all the same relationships as R.
Additionally, however, tc a c holds if tc a b and tc b c. This is expressed by the type
of tc-trans. This statement clearly makes tc a transitive relation, which is expressed
by this very short proof:

closures.agdatc-transitive : transitive tc

tc-transitive = tc-trans

Armed with tc, we can now define the multi-step version of _�vc_. We do this
by instantiating the module parameter _>A_ of closures.basics with _�vc_, and
then defining _�vc+_ to be tc. Because we have instantiated _>A_ with _�vc_, tc
is now the transitive closure of _�vc_, as desired:

combinators.agdaopen closures.basics _�vc_

_�vc+_ : varcomb → varcomb → Set

_�vc+_ = tc

Mathematically, if we have a relation �, then its transitive closure is standardly
denoted by �+. Finally, we are in a position to state the theorem we want to prove,
about the behavior of the combinator returned by λ*. This is λ*-�, a little further on
in combinators.agda:
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λ*-� : ∀ (v1 v2 : varcomb)(s : string) →
(app (λ* s v1) v2) �vc+ (subst v2 s v1)

This says that the combinator we get by applying (λ* s v1) (i.e., the combinator
returned by the λ* function) to v2 will reduce, after one or more steps, to (subst

v2 s v1). This is exactly the behavior of a lambda abstraction λs .v1. Let us look at this
proof mathematically first (though we will use Agda syntax). The proof is by induction
on v1. Suppose v1 is S. Then our goal is to prove

(app (λ* s S) v2) �vc+ (subst v2 s v1)

By the definition of λ*, the combinator returned by λ* for input s and S is app K S.
Also, since v1 does not contain the variable s (because v1 is just the combinator S),
if we substitute any value for s in v1, we just get v1 again. So (subst v2 s v1) is just
equal to v1, which is S. So, in the end, our goal is definitionally equal to just

(app (app K S) v2) �vc+ S

Now we have the following single-step reduction just by the �K axiom:

(app (app K S) v2) �vc S

And we can lift any single-step reduction to a multi-step reduction. So this case is
completed.

This same reasoning applies if the combinator v1 is K or a variable not equal to s. If
v1 is an application app c1 c2, we have already seen the first step of reasoning above.
We have the following definitional equality for λ* s v1:

λ* s (app c1 c2) = app (app S (λ* s c1)) (λ* s c2)

And then we have this reduction:

app (app (app S (λ* s c1)) (λ* s c2)) v2 �vc

app (app (λ* s c1) v2) (app (λ* s c2) v2)

Now our induction hypothesis gives us these two facts:

(app (λ* s c1) v2) �vc+ (subst v2 s c1)

(app (λ* s c2) v2) �vc+ (subst v2 s c2)

It seems that it should then be straightforward to get:

app (app (λ* s c1) v2) (app (λ* s c2) v2) �vc+

app (subst v2 s c1) (subst v2 s c2)
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That latter term is exactly the value of subst v2 s (app c1 c2), and so we would be
done (though we must connect all the reductions into a single multi-step reduction).
But there is a bit of a wrinkle. We have the following congruence rules for single-step
reduction (essentially those from Figure 9.8):

a �vc a′

a b �vc a′ b
b �vc b′

a b �vc a b′

We do not have such rules, however, if we replace �vc with �+
vc (its transitive

closure). Fortunately, those can be derived as we will see shortly. So we can indeed
connect up the reductions as proposed previously, completing this case of the proof.

The last case of the proof is to show

app (λ* s (var s)) v2 �vc+ (subst v2 s (var s))

The definition of λ* in this case returns app (app S K) K, which we argued earlier
behaves like the identity function. So indeed

app (app (app S K) K) v2 �vc+ v2

and since (subst v2 s (var s)) is definitionally equal to v2, that completes this case
of the proof.

The previous mathematical reasoning is formalized in Agda in the proof of Fig-
ure 9.20. The proofs for id�, trans-Cong1, and trans-Cong2 are given in Fig-
ure 9.21. We use tc-step in several cases to embed single steps into multi-step reduc-
tions. Theid� lemma just formalizes the argument thatapp (app S K) Kbehaves like
the identity function. For an intuitive explanation of trans-Cong1, suppose we have
a sequence of single steps, glued together (by tc-trans in Agda), showing c1 �+ cn:

c0 � c1 c1 � c2 . . . cn−1 � cn

Then we can get a proof of c0 b �+ cn b just by adding a congruence step below each
of the single steps:

c0 � c1

c0 b � c1 b

c1 � c2

c1 b � c2 b
. . . cn−1 � cn

cn−1 b � cn b

This reasoning is formalized in the proof of trans-Cong1; the proof of trans-Cong2
follows the same idea.
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combinators.agdaλ*-� : ∀ (v1 v2 : varcomb)(s : string) →
(app (λ* s v1) v2) �vc+ (subst v2 s v1)

λ*-� S v2 s = tc-step (�K S v2)

λ*-� K v2 s = tc-step (�K K v2)

λ*-� (app c1 c2) v2 s =

(tc-trans (tc-step (�S (λ* s c1) (λ* s c2) v2))

(tc-trans (trans-Cong1

(app (λ* s c2) v2) (λ*-� c1 v2 s))

(trans-Cong2 (subst v2 s c1) (λ*-� c2 v2 s))))

λ*-� (var s’) v2 s with s =string s’

λ*-� (var s’) v2 s | tt = id� v2

λ*-� (var s’) v2 s | ff = tc-step (�K (var s’) v2)

Figure 9.20 The proof that the returned combinator behaves like a lambda-abstraction.

combinators.agdaid� : ∀ (a : varcomb) →
app (app (app S K) K) a �vc+ a

id� a = (tc-trans

(tc-step (�S K K a))

(tc-step (�K a (app K a))))

trans-Cong1 : ∀{a a’ : varcomb} (b : varcomb) →
a �vc+ a’ → (app a b) �vc+ (app a’ b)

trans-Cong1 b (tc-trans d1 d2) =

tc-trans (trans-Cong1 b d1) (trans-Cong1 b d2)

trans-Cong1 b (tc-step d) = tc-step (�Cong1 b d)

trans-Cong2 : ∀(a : varcomb) {b b’ : varcomb} →
b �vc+ b’ → (app a b) �vc+ (app a b’)

trans-Cong2 a (tc-trans d1 d2) =

tc-trans (trans-Cong2 a d1) (trans-Cong2 a d2)

trans-Cong2 a (tc-step d) = tc-step (�Cong2 a d)

Figure 9.21 Proofs of some helper lemmas for the proof in Figure 9.20.

9.3 Conclusion
We saw how to define termination of a binary relation, from a starting point or gener-
ally, as an inductive type in Agda. We also saw examples of using this type for defining
division by well-founded recursion, and for stating and proving termination of a class
of programs in the language of SK combinators, a minimalistic variable-free program-
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ming language. We saw how to define the syntax and operational semantics of SK
combinators in Agda. The operational semantics is formalized in Agda as an indexed
datatype, where mathematical derivations showing that one combinator term reduces
to another are formalized as values of the datatype. Using our formalization of termi-
nation, we were rather easily able to prove that reduction starting from combinator
terms not containing the combinator S is terminating. We also defined the simplest
bracket abstraction algorithm, showing how programs in pure lambda calculus can
be translated to combinators, and proved that algorithm correct.

Exercises
9.1. Use the λ* function from combinators.agda (possibly in nested fashion) to
translate the following lambda terms to combinators:

(a) λx . λy . x

(b) λx . λy . y

(c) λs . λz. (s z)

(d) λx . (x x)

9.2. Write down the two possible Agda expressions of type c � c’, where c is app

(app K K) ((app K K) K), and c’ is up to you to determine.

9.3. Using the transitive closure operator defined in closures.agda, define a value
_�+_ of type

comb → comb → Set

and use it to prove that app (app K K) ((app K K) K) multi-step reduces to K.

9.4. Look up another bracket abstraction algorithm and implement it in Agda. You
will likely need to extend the definition of comb with new combinators, as these are
typically introduced for other bracket abstraction algorithms. Compare the sizes of the
combinator terms you get using the algorithm you implement with the ones obtained
with λ*.



10Intuitionistic Logic and
Kripke Semantics
As we have seen throughout this book, Agda is based on the Curry-Howard isomor-
phism: constructive proofs are identified with terminating functional programs. In
logic, the paradigmatic constructive logic is intuitionistic logic. It has this name be-
cause of its historical connection to L. E. J. Brower, a mathematician whose antirealist
philosophy of mathematics—he held that mathematical ideas are subjective, and
grounded in human construction rather than an independently existing mathemat-
ical universe—led him to oppose certain principles of logic, which are now known
as classical in contrast (as we considered also in Section 2.5). For example, P ∨ ¬P ,
called the law of excluded middle, is the paradigmatic non-intuitionistic validity of
classical logic. Does one of necessity have a construction for either P or ¬P , for any
proposition P ? Brower believed not, and certainly from both a psychological and a
foundational perspective, there is some plausibility to this view.

Philosophy aside, constructive logic has interesting properties that have made it
very useful for Computer Science, as we have seen with Agda. In this section, we will
study the theory of intuitionistic logic, as a topic in its own right, using Agda. We will
define the syntax for formulas of a particular fragment of intuitionistic logic, namely,
positive propositional intuitionistic logic. Next, we will specify which formulas are
valid using proof rules, and write an Agda datatype to represent proofs written with
those rules. This is straightforward, and similar to what we have done already for
operational semantics of combinators (Figure 9.8).

The next step is something new (for us in this book): we will give what is known
as a denotational semantics for formulas. We will explain what the meanings of
formulas are by explaining what kind of statements they are making about the world.
For this, naturally, we need to formalize some abstractions of “the world”, since the
actual world is outside our formalization within Agda. These abstractions are called
structures. For intuitionistic logic, the structures standardly used are called Kripke
structures, after their inventor, Saul Kripke. The basic idea is to capture the different
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possible evolutions of the world over time. Propositions that are known to be true at
one moment in time must remain true in the future. But Kripke structures allow for
the possibility that a proposition which is not currently known to be true can become
true in the future.

We will show that the proof rules for intuitionistic logic are sound with respect to
Kripke structures. This means that if the proof rules imply that a formula is valid, then
for any Kripke structure one could possibly have, the formula will be true also in that
structure. This is not a difficult theorem to prove—indeed, soundness theorems gener-
ally are not difficult in logic. More interestingly, we will be able to prove completeness:
if a formula is true in all Kripke structures, then you can also prove it with the proof
rules of intuitionistic logic. We will see an amazing twist on the Curry-Howard isomor-
phism related to this: the composition of our soundness proof with the completeness
proof yields a normalizer. This is a computational function for simplifying proofs to
a normal form. Since, under the Curry-Howard isomorphism, constructive proofs are
programs, we will find that we have obtained an interpreter that can, in effect, run
programs. We will see that this composition of soundness with completeness gives
us what is known as normalization by evaluation (NBE), a method for writing a nor-
malizer by making use of evaluation in the language in which the normalizer is being
written. Thus, the Curry-Howard connection between logic and programming thus
runs deeper than just identifying proofs and programs. We will see that certain met-
alogical proofs, namely, soundness and completeness, are strongly connected to a
certain metaprogram, namely, an interpreter. We will consider just positive logic, but
the research literature also has examples with full intuitionistic logic [Ilik 2010].

The code for this chapter can be found in kripke-semantics.agda in the IAL. I
would like to acknowledge my debt to tutorial notes of Danko Ilik [Ilik 2014]. His for-
mulation of NBE in Agda for a very similar logic is the basis for the Agda development
which follows (though I have departed from his treatment in some notations and in
the final conclusions drawn from the central lemmas).

10.1 Positive Propositional Intuitionistic Logic (PPIL)
Propositional logic generally has boolean operations and propositional variables. An
example is a formula like p → (p ∨ q), which says that if p (whatever state of affairs
this corresponds to) is true, then it is also true that either p or q is true. This is a pretty
trivial validity, but propositional logic is concerned with basic matters of implicational
truth, so nothing too deep should be expected. Indeed, since intuitionistic logic is a
subset of classical logic, we can expect to find even more trivial theorems than those
of Chapter 2! But the proofs of those theorems will be more interesting. Note that in
propositional logic, it is customary to consider formulas with free variables (like p
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variables p

formulas f ::= p | f ∧ f ′ | f → f ′ | True

Figure 10.1 Mathematical syntax of PPIL formulas.

kripke-semantics.agdadata formula : Set where

$ : string → formula

True : formula

Implies : formula → formula → formula

And : formula → formula → formula

Figure 10.2 Agda definition of the set of PPIL formulas.

� , f � f
Assume

� � f

� , f ′ � f
Weaken

� � True
TrueI

� � f1 � � f2

� � f1 ∧ f2
AndI

� � f1 ∧ f2

� � f1
AndE1

� � f1 ∧ f2

� � f2
AndE2

� , f1 � f2

� � f1 → f2
ImpliesI

� � f1 → f2 � � f1

� � f2
ImpliesE

Figure 10.3 Proof rules for PPIL.

and q), while in some more powerful logic, we might restrict our attention to closed
formulas (where any variables used must be declared in the formula).

For our formulation of positive propositional intuitionistic logic (PPIL), we will have
logical operations for truth, conjunction (“and”), and implication, as well as proposi-
tional variables. The mathematical syntax for these formulas is given in Figure 10.1.
We exclude disjunction, regarding it as a negative construct, since it significantly com-
plicates the upcoming NBE completeness proof. Negation, of course, is negative and
hence omitted. Figure 10.2 then gives the Agda definition of the set of formulas as a
datatype (in kripke-semantics.agda). We do not try to replicate the mathematical
infix syntax, as we are already making use of the mathematical operators in the IAL
for other operations. To represent a propositional variable p, we will use $ "p". So a
formula like p → (p ∧ p) (which we will see shortly is provable in PPIL) is denoted
with this value in Agda:

Implies ($ "p") (And ($ "p") ($ "p"))

Figure 10.3 gives the proof rules for PPIL. The rules derive statements of the form
� � f . The symbol � originates in the work of the 19th-century logician and philoso-
pher Gottlob Frege, where it was used to indicate a judgment that a proposition is
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true. Here, we are judging that f is true, assuming that the formulas in the list � are
true. If � is empty, we will just omit it. � is called a context. The notion of truth is
constructive, of course, as we previously discussed.

Let us walk through the proof rules of Figure 10.3. The Assume rule says that we
can judge f to be true assuming � , f . That is, if f is the rightmost assumption in
the list, then we can judge it to be true. The Weaken rule says that if you can judge
f to be true assuming �, then you are also allowed to judge it to be true using � , f ′.
That is, if you proved a fact with a smaller list of assumptions �, then you can just as
well prove it if you add some additional assumption f ′. This rule is called weakening
because by adding an assumption you are weakening your judgment (it is stronger
to prove f from a smaller than a bigger list of assumptions). TrueI says that we can
always judge True to be true, no matter what � is. AndI says that if we separately judge
f1 to be true assuming �, and also f2 to be true assuming �, then we can judge f1 ∧ f2

to be true assuming �. AndE1 and AndE2 say that if we judge a conjunction f1 ∧ f2 to
be true assuming �, then we can judge f1 to be true assuming �, and also (separately)
f2. ImpliesI says that if we can judge f2 to be true assuming � , f1—that is, assuming
all the formulas in the context � are true, and also assuming f1 is true—then we are
entitled to judge that the implication f1 → f2 is true assuming �. Finally, ImpliesE
says that if we can judge an impliciation f1 → f2 to be true assuming �, and we can
also judge f1 to be true assuming �, then we can judge f2 to be true assuming �. For
a simple example derivation using these rules, see Figure 10.4. If � � f can be proved
using the rules, we say that the judgment � � f is provably valid.

There are several different ways to write down rules that give this same notion of
(constructive) provable validity. The particular style used here is known as natural
deduction. There are some book-keeping rules, like the weakening rule we discussed
(which is also called a structural rule), and the Assume rule for using an assumption
from the context. The other rules are divided into introduction and elimination rules
for the different logical operators. An introduction rule for an operator introduces that
operator in the conclusion of the rule (the part below the line). So the introduction
rules from the figure are these:

� � f1 � � f2

� � f1 ∧ f2
AndI

� , f1 � f2

� � f1 → f2
ImpliesI

� � True
TrueI

An elimination rule has the operator in a premise (the parts above the line in the
rule), but not in the conclusion. So the elimination rules are these:

f1 ∧ f2

� � f1
AndE1

f1 ∧ f2

� � f2
AndE2

� � f1 → f2 � � f1

� � f2
ImpliesE
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p � p p � p

p � p ∧ p

� p → (p ∧ p)

Figure 10.4 A proof of p → (p ∧ p) with an empty context.

kripke-semantics.agdactxt : Set

ctxt = L formula

data _�_ : ctxt → formula → Set where

assume : ∀{� f} → (f :: �) � f

weaken : ∀{� f f’} → � � f → (f’ :: �) � f

ImpliesI : ∀{� f1 f2} → (f1 :: �) � f2 →
� � (Implies f1 f2)

ImpliesE : ∀{� f1 f2} → � � (Implies f1 f2) →
� � f1 → � � f2

TrueI : ∀ {�} → � � True

AndI : ∀{� f1 f2} → � � f1 → � � f2 → � � (And f1 f2)

AndE : ∀(b : B){� f1 f2} → � � (And f1 f2) →
� � (if b then f1 else f2)

Figure 10.5 Agda formalization of PPIL’s provable validity, as an inductive datatype.

The names for the rules are chosen to indicate whether they are introduction (I) or
elimination (E) rules.

For our Agda formalization of the provable validity relation of PPIL, we are using
an inductive datatype, just as we did for the operational semantics of combinators
(Figure 9.11). This is shown in Figure 10.5. To type �, you can use the following in
EMACS:

\|-

One slight mismatch between our mathematical definition and the Agda version is
that formulas are added to contexts on the right in Figure 10.3, while in our Agda
formulation, since we model contexts as lists of formulas (L formula), it is more con-
venient to add formulas on the left, using the _::_ operation on lists. Sometimes
functional programmers will introduce so-called snoc-lists (“snoc” is “cons” back-
ward), where cons has the tail on the left and head on the right, instead of head on
left, tail on right as it is with _::_. But we will not trouble ourselves with this.

One small optimization is that rather than having two elimination rules for con-
junction, for whether one wants to deduce the left or the right conjunct, we instead
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have a single rule that uses a boolean argument b to determine which conjunct should
be deduced. The example proof from Figure 10.4 is represented in Agda using this
datatype as follows, where we have supplied just enough implicit arguments so that
Agda can tell without further guidance that this proof proves [] � Implies ($ "p")

(And ($ "p") ($ "p")):

ImpliesI{$ "p"} (AndI (assume{[]}) (assume))

10.2 Kripke Structures
Next, we will consider a mathematical definition of Kripke semantics for PPIL, and
how this semantics is formalized in Agda. As introduced before, the basic idea of
Kripke semantics is to represent the world as evolving into different possible futures.
Indeed, Kripke structures will consist of a collection of worlds, connected by a binary
relation representing something like future possibility. In any given world, some of our
propositional variables may be designated as true. Variables which are true in a world
must remain true when we pass to future possible worlds. But variables which are not
designated as true can either remain so, or else become designated as true in a later
possible world. For example, Figure 10.6 shows an example Kripke structure where
there are three worlds, labeled 1, 2, and 3. In world 1, no variables are true. In world
2, p is true while in world 3, p remains untrue. Incidentally, for a full propositional
intuitionistic logic including negation, world 1 of this Kripke structure falsifies the
classical principle p ∨ ¬p. The meaning of p ∨ ¬p is that either p is true now, in
which case it must be true in all future worlds; or else p is false and remains false
in all future worlds (that is the semantics of negation). In world 1 of the structure in
Figure 10.6, however, p is not true, so the first disjunct of p ∨ ¬p is not validated. But
neither is the second disjunct validated, because p becomes true in world 2 (though
it remains false in world 3).

2
p

1

3

Figure 10.6 A simple Kripke structure.
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Now we must give a precise mathematical definition of Kripke semantics. A Kripke
structure consists of several mathematical objects. First, there is a set W of worlds.
These can be any mathematical objects one wishes, and the set may be finite or
infinite. Next, there is a binary relation R on W . This relation is required to be reflexive
and transitive, expressing, respectively, the ideas that the current world is trivially
a future possible world, and that a future world of a future world is a future world.
The definitions of reflexivity and transitivity may be found in relations.agda; we
considered them in some detail in Section 5.2.1. The next constituent part of a Kripke
structure is a relation V which holds for a world w and a propositional variable p just
in case p is designated as true in w. This V is required to be monotonic with respect
to the ordering on worlds: if p is designated (by V ) to be true in world w and if world
w′ is a future possible world of w, then p must also be designated to be true in w′. So,
as we said earlier, variables which are designated as true in a world must remain true
in all future possible worlds.

So for our example Kripke structure of Figure 10.6, the set W of worlds is just
{1, 2, 3}, and the relation is the one depicted, except that the figure has left off edges
from each node to itself. Such edges are required by reflexivity, but may be omitted in
drawing Kripke structures, since they must always be there. Set-theoretically, we can
describe the relation for this example as

{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3)}

The relation V in this case can be described set-theoretically as just {(2, p)}, since
2 is the only world where any variable is designated true. This relation is trivially
monotonic, as there are no future worlds for 2 in this structure.

Now let us see how to formalize Kripke structures in Agda. The definition comes
next in kripke-semantics.agda, and is shown in Figure 10.7. We are using Agda’s
record notation to represent a structure. A record in Agda is a type for values containing
named fields. Here, the fields are W for the set of worlds, R for the binary relation
expressing future possibility, preorderR for the proof that R is a preorder (a reflexive
and transitive relation), V for which variables are designated true in which worlds,
and monoV for the proof that V is monotonic with respect to R. Records in Agda can
also contain definitions, and here we just project out proofs reflR of reflexivity and
transR of transitivity, from preorderR. This is just for more convenient access later
on. Agda views fields of records as functions which take an element of the record type
and return the value of the field for that record. For example, the W field is viewed
as a function of type struct → Set. To use a member of a record—either a field or
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kripke-semantics.agdarecord struct : Set1 where

field W : Set

R : W → W → Set

preorderR : preorder R

V : W → string → Set

monoV : ∀ { w w’ } → R w w’ → ∀ { i } →
V w i → V w’ i

reflR : reflexive R

reflR = fst preorderR

transR : transitive R

transR = snd preorderR

Figure 10.7 The definition of Kripke structure in Agda.

1
p,q

0

2
p,q

Figure 10.8 Kripke structure for an example of the semantics.

a defined value—one uses member-selection syntax r .f , where r is the record type
and f is the member name. So struct.W is the function that, given a record of type
struct, returns the typeW for worlds in that record. A record in Agda can be opened (as
is done for struct a little further in kripke-semantics.agda), much like a module.
This makes the field names available without the “r .” prefix.

We are modeling the set of worlds as an Agda Set. Agda’s type theory is quite
different from standard set theories, despite the use of “Set” as the type for types.
But modeling the collection of worlds from the Kripke structure as a type in Agda
works out perfectly for our purposes here.

For an example, consider the structure shown in Figure 10.8. It is a little tedious
to define this as an element of type struct in Agda, but it can be done. The code,
from kripke-semantics.agda, may be seen in Figures 10.9 and 10.10. This is a
simple example of mathematical modeling in Agda. We declare a datatype world

to represent the structure’s set of worlds. We next represent the structure’s future
possibility relation by an indexed datatype rel. We just list the positive cases, where
one world is indeed related to another; negative cases are implicitly negative in virtue
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kripke-semantics.agdadata world : Set where

w0 : world

w1 : world

w2 : world

data rel : world → world → Set where

r00 : rel w0 w0

r11 : rel w1 w1

r22 : rel w2 w2

r01 : rel w0 w1

r02 : rel w0 w2

rel-refl : reflexive rel

rel-refl {w0} = r00

rel-refl {w1} = r11

rel-refl {w2} = r22

rel-trans : transitive rel

rel-trans r00 r00 = r00

rel-trans r00 r01 = r01

rel-trans r00 r02 = r02

rel-trans r11 r11 = r11

rel-trans r22 r22 = r22

rel-trans r01 r11 = r01

rel-trans r02 r22 = r02

Figure 10.9 Agda formalization of the Kripke structure of Figure 10.8, first part.

of not having a rel constructor. So for example, we have a constructor r00 expressing
the fact that world 0 is related to itself. We do not have a constructor of type rel

w2 w0; the absence of this constructor implicitly represents the negative fact that
world 2 is not related to world 0. It is easy to prove by pattern matching on the
world that this relation rel is reflexive (this is the rel-refl proof of Figure 10.9).
To prove transitivity, we are assuming we have world w related to world w′, which is
in turn related to w′′. Pattern matching on the proofs of these relations, as is done
in the definition of rel-trans (Figure 10.9), provides a concise and elegant way of
considering all the cases for the relation, without explicitly considering negative cases.

Figure 10.10 uses another inductive datatype val to express which variables are
true in which worlds of the structure. Again, we only have to list positive information.
It is easy to prove that val is monotonic, if we case split on the proof of rel w w’ (as
done in mono-val of Figure 10.10). This mono-val function is given a proof of rel
w w’, and a proof of val w i, where i is a variable (of type string), and required to
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kripke-semantics.agdadata val : world → string → Set where

v1p : val w1 "p"

v1q : val w1 "q"

v2p : val w2 "p"

v2q : val w2 "q"

mono-val : ∀{w w’} → rel w w’ →
∀{i} → val w i → val w’ i

mono-val r00 p = p

mono-val r11 p = p

mono-val r22 p = p

mono-val r01 ()

mono-val r02 ()

k : struct

k = record { W = world ;

R = rel ;

preorderR = (rel-refl , rel-trans) ;

V = val ;

monoV = mono-val }

Figure 10.10 Agda formalization of the Kripke structure of Figure 10.8, second part.

produce a proof of val w’ i. Since there are no variables true in world 0, we have two
absurd cases in the definition of mono-val. The other cases are trivial since w’ equals
w in those cases. Finally, we can define the actual structure of interest, as a value of
type struct. This uses Agda’s syntax for record literals: we have the record keyword,
and then in curly braces, semicolon-separated equations giving values for the fields.

10.3 Kripke Semantics for PPIL
Now that we have defined what Kripke structures are mathematically and in Agda, we
can proceed to give a semantics for PPIL formulas, in terms of these structures. We will
define what it means for a PPIL formula f to be true at a world w of a Kripke structure k.
We will just give the definition in Agda, in Figure 10.11; the mathematical definition
is so similar there is no need to write it out separately. We are defining a function
_,_|=_, which takes a struct (Kripke structure) k, an element of W k, and a formula,
and returns a type. So this is an example of type-level computation, as introduced in
Chapter 6. The element of W k is the world with respect to which we are expressing that
the formula is true. This W k notation is an example of the record member-selection
syntax mentioned in the previous section: W is a field of the record type struct, and
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kripke-semantics.agda_,_|=_ : ∀(k : struct) → W k → formula → Set

k , w |= ($ x) = V k w x

k , w |= True = �
k , w |= Implies f1 f2 = ∀ {w’ : W k} → R k w w’ →

k , w’ |= f1 → k , w’ |= f2

k , w |= And f1 f2 = k , w |= f1 ∧ k , w |= f2

Figure 10.11 Agda definition of the semantics of PPIL formulas with respect to a Kripke structure.

since we have opened struct just above in kripke-semantics.agda, we can apply it
(without having to write struct.W) to an element (i.e., a record) of the record type to
get the value of that field of the record. The type that is returned by _,_|=_ expresses
that the formula is true in the world. If this type is provable (i.e., there is something
which has that type), then the formula is considered true in that world of that structure;
and otherwise it is not.

Let us walk through the definition. If we have a propositional variable x, it is true in
world w just in case the V function of struct k says it is. Again, we are using member-
selection syntax V k to get the V function out of struct k; we can then apply that
function to its arguments w and x. The formula True is true, which we represent by
the type � (from unit.agda in the IAL), which can be proved by the value triv, which
is the sole constructor of the datatype �. The equation for the semantics of an im-
plication Implies f1 f2 is the most interesting part of the definition. It says that
Implies f1 f2 is true in world w if and only if for all future worlds w’, if f1 is true
in w’, then so is f2. This is the only part of the definition where the future possibility
relation R plays a role. The semantics is trying to capture the idea that for an implica-
tion to be true in the current world w, it must be necessarily true: in any future world,
whenever the first part of the implication is true, the second part has to be true. Re-
member that the relation R is required to be reflexive, so w is also included under this
quantification over future worlds w’. The semantics for conjunctions And f1 f2 then
just says that each conjunct is true separately.

As an example, we can prove, using this semantics, that the formula

Implies ($ "p") ($ "q")

is true in world w0 of the struct k, which we defined in the previous section (Fig-
ures 10.9 and 10.10). This proof, which comes next in kripke-semantics.agda is
shown in Figure 10.12. If we look at the depiction of this Kripke structure in Fig-
ure 10.8, it is easy to confirm that in every future possible world w of 0 (i.e., 0, 1, and 2),
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kripke-semantics.agdapf-test-sem : k , w0 |= Implies ($ "p") ($ "q")

pf-test-sem r00 ()

pf-test-sem r01 p = v1q

pf-test-sem r02 p = v2q

Figure 10.12 Agda proof that the sample formula p → q is true in world 0 of the structure from
Figure 10.8 (this structure is formalized in Figures 10.9 and 10.10).

if p is true in that world, then so is q. If w is world 0, neither p nor q are designated
true (by the V relation), so the statement in question is vacuously true. In w is world
1 or 2, p and q are both designated true, also validating the statement.

The first thing to understand about the Agda proof of Figure 10.12 is the type for
pf-test-sem. Let us load kripke-semantics.agda and then request normalization
(with Ctrl+c Ctrl+n) of the type of pf-test-sem:

k , w0 |= Implies ($ "p") ($ "q")

Agda will tell us this type normalizes to the following:

{w’ : world} → rel w0 w’ → val w’ "p" → val w’ "q"

(Agda will insert “|=-example.” throughout the above type since the definition is in-
side a module called |=-example, which we have not opened at the top level; checking
the type in a hole in the module will also hide that module prefix.) This is just the spe-
cialization of our general semantics for formulas from Figure 10.11, to the specific
formula Implies ($ "p") ($ "q"). To prove this, the code in Figure 10.12 is taking
in a proof that w0 is related to implicit argument w’, and then a proof that "p" is des-
ignated true in world w’. It must produce a proof that "q" is also designated true in
world w’. The code does a case split on the proof that w’ is related to world w0. So we
have cases for if this proof is r00, r01, or r02. The vacuity we just considered in our
informal confirmation shows up in the case for r00, as in that case, Agda can see that
provability of val w0 "p" is absurd. So we can use the absurd pattern (). In the other
two cases, we must just use the appropriate constructor, either v1q or v2q, to show
that "q" is designated true in either world w1 or w2, respectively.

In addition to the semantics of formulas, we need a simple and obvious extension
of the semantics to contexts. This is shown in Figure 10.13. A context � (which is just
a list of formulas) is true in a world w of a Kripke structure k if and only if each of the
formulas in that context is. The notation is k , w |=ctxt �. The code just recurses on
the context, constructing a conjunctive Agda formula (i.e., a type) by calling _,_|=_

for each formula in the context.
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kripke-semantics.agda_,_|=ctxt_ : ∀(k : struct) → W k → ctxt → Set

k , w |=ctxt [] = �
k , w |=ctxt (f :: �) = (k , w |= f) ∧ (k , w |=ctxt �)

Figure 10.13 Extending the semantics of PPIL formulas to contexts.

kripke-semantics.agdamono|= : ∀{k : struct}{w1 w2 : W k}{f : formula} →
R k w1 w2 →
k , w1 |= f →
k , w2 |= f

mono|={k} {f = $ x} r p = monoV k r p

mono|={k} {f = True} r p = triv

mono|={k} {f = Implies f1 f2} r p r’ p’ =

p (transR k r r’) p’

mono|={k} {f = And f1 f2} r (p1 , p2) =

mono|={f = f1} r p1 , mono|={f = f2} r p2

Figure 10.14 Monotonicity theorem for the PPIL semantics.

10.4 Soundness of PPIL
Now that we have defined the syntax and proof rules of PPIL (Section 10.1), formalized
Kripke structures (Section 10.2), and given a semantics of PPIL formulas in terms
of Kripke structures (Section 10.3), we are ready to study the relationship between
provability on the one hand, and truth in a Kripke structure on the other. The first
result is soundness: if � � f is provable in PPIL, then in any Kripke structure, in any
world of that structure where all the formulas in � are true, f will also be true. This
property is called soundness because it expresses the idea that whatever PPIL tells us
is valid really does hold in any world of any Kripke structure. Soundness generally is
the property that what is claimed to be true is, in fact, true. Soundness is usually not
a hard theorem to prove in logic, and that is the case here for PPIL. We do need one
helper lemma first, which is monotonicity: in any Kripke structure, if a formula is true
in world w1 and world w2 is a future possible world of w1, then the formula is also true
in w2. This extends monotonicity for propositional variables, which is required for all
Kripke structures, to arbitrary formulas.

10.4.1 Monotonicity Proof
The Agda proof of monotonicity is given in Figure 10.14. The proof is by induction
on the formula f in question. The Kripke structure k and its worlds w1 and w2 are
implicit arguments to mono|=. Let us walk through the cases. If f is just a use of a
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propositional variable x, then monotonicity holds by the monoV assumption that is
part of the Kripke structure (and accessed, as discussed before, by applying the monoV
field name to the record k). If f is True, then k , w2 |= f (which we are required to
prove) is definitionally equal to �, so we can just return triv, the sole constructor for
the � type. Now if f is Implies f1 f2, then our goal k , w2 |= f is definitionally equal
to the following, by the definition of _,_|=_:

∀ {w’ : W k} → R k w w’ → k , w’ |= f1 → k , w’ |= f2

Agda allows us to include patterns for these additional inputs in the equation for
mono|=. If we ask Agda for the types for all the local variables by putting a hole on
the right-hand side of that equation and then typing “Ctrl+c Ctrl+,”, we will see the
following:

p’ : k , .w’ |= f1

r’ : R k .w2 .w’

.w’ : W k

p : {w’ : W k} → R k .w1 w’ →
k , w’ |= f1 → k , w’ |= f2

r : R k .w1 .w2

f2 : formula

f1 : formula

.w2 : W k

.w1 : W k

k : struct

We see that the implicit w’ from the meaning of the Implies formula has been
introduced to the context (as a dotted variable, as we have seen in earlier examples
like in Section 3.4.1). We are trying to prove that f2 is true in world w’, and we have an
assumption p that for any world related (by R) to .w1, if f1 is true in that world, then
so is f2. We also have an assumption p’ saying that f1 is true in world .w’. So as long
as we can prove that .w’ is a future possible world of .w1, we can apply p. And the
latter can be done, sine we know from r that .w1 has .w2 as a future possible world,
and from r’ that .w2 has .w’ as a future possible world. So combining r and r’ with
transitivity (transR), which is part of the Kripke structure, we can conclude that case.
Notice that in this case of monotonicity, we do not make a recursive call to mono|=.
The semantics of Implies statements has already included monotonicity, in the very
meaning of an implicational formula.

Finally, if f is a conjunction And f1 f2, then the semantics of And formulas says
that k , w1 |= f is

k , w1 |= f1 ∧ k , w1 |= f2
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kripke-semantics.agdamono|=ctxt : ∀{k : struct}{� : ctxt}{w1 w2 : W k} →
R k w1 w2 →
k , w1 |=ctxt � →
k , w2 |=ctxt �

mono|=ctxt{k}{[]} _ _ = triv

mono|=ctxt{k}{f :: �} r (u , v) =

mono|={k}{f = f} r u , mono|=ctxt{k}{�} r v

Figure 10.15 Monotonicity for the truth of a context.

So the defining equation for mono|= for this case has the pattern (p1 , p2), since _∧_
in the IAL is the type for pairs. We then return a pair, constructed by making recursive
calls to mono|= to move the truth of f1 and f2 from world w1 to world w2, as required.
This concludes our walkthrough of the proof mono|=.

Where we need monotonicity in the proof of soundness that follows, we actually
need it for contexts, not just single formulas. But it is very easy to prove this now, as
shown in Figure 10.15. We just recurse through the context, applying mono|= for each
formula.

10.4.2 Soundness Proof
Monotonicity is an interesting property of the semantics in its own right, but our rea-
son for proving it is that it is needed in the proof of soundness, found in Figure 10.16.
To state the soundness property, it is convenient to introduce the definition of _�_
(also found in Figure 10.16):

_�_ : ctxt → formula → Set1

� � f = ∀{k : struct}{w : W k} →
k , w |=ctxt � → k , w |= f

� � f holds if and only if for each Kripke structure k and every world w of k, if the
context � is true in w, then the formula f is, too. In logic, this relation is standardly
called entailment: if all the formulas in � are true (in a certain world), then f is also.
With this definition, soundness of PPIL is easy to express:

Soundness : ∀{� : ctxt}{f : formula} → � � f → � � f

This says that assuming � � f is true—i.e., f is provable from assumptions � using
the PPIL rules of inference from Figure 10.3 (formalized in Agda in Figure 10.5)—then
� entails f.



230 Chapter 10 Intuitionistic Logic and Kripke Semantics

kripke-semantics.agda_�_ : ctxt → formula → Set1

� � f = ∀{k : struct}{w : W k} → k , w |=ctxt � → k , w |= f

Soundness : ∀{� : ctxt}{f : formula} → � � f → � � f

Soundness assume g = fst g

Soundness (weaken p) g = Soundness p (snd g)

Soundness (ImpliesI p) g r u’ =

Soundness p (u’ , mono|=ctxt r g)

Soundness (ImpliesE p p’) {k} g =

(Soundness p g) (reflR k) (Soundness p’ g)

Soundness TrueI g = triv

Soundness (AndI p p’) g = (Soundness p g , Soundness p’ g)

Soundness (AndE tt p) g = fst (Soundness p g)

Soundness (AndE ff p) g = snd (Soundness p g)

Figure 10.16 Soundness theorem for PPIL.

Now let us walk through the proof, looking at the goal with its context for each right-
hand side. We will omit some obvious typings from those contexts, to help focus our
attention on the essential aspects of the proof. For the assume case, the goal is

Goal: .k , .w |= .f

-----------------------------------------------------------

g : � (.k , .w |= .f) (λ x → .k , .w |=ctxt .�)

We have to prove that f is true in world .w. We have an assumption g saying that
k , w |=ctxt �, where � has been refined to .f :: .�, because the PPIL proof in this
case is an assume. The type of g is then equal, by the definition of _,_|=ctxt_ to

(.k , .w |= .f) ∧ (k , .w |=ctxt .�)

which has been obscured a bit in the listing of the context, due to the fact that simple
products (with _∧_) are defined in terms of dependent products (with �) in the IAL.
Just taking the first projection of the pair, with the fst function of product.agda, is
sufficient to prove the goal. The case for weaken similarly involves manipulating the
assumption g. The goal in this case is:

Goal: .k , .w |= .f

-----------------------------------------------------------

g : � (.k , .w |= .f’) (λ x → .k , .w |=ctxt .�)

.w : W .k

p : .� � .f
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We have a proof p of .� � .f, and we also can get a proof that .� is true in world .w,
just by applying snd to obtain the second component of the pair g. So we can now
make a recursive call to Soundness, to obtain the desired proof of .k , .w |= .f.

As for the proof of monotonicity, the trickiest cases concern Implies formulas.
Suppose the PPIL proof we are taking as input to Soundness is an ImpliesI proof.

Goal: k , .w’ |= .f2

-----------------------------------------------------------

u’ : k , .w’ |= .f1

r : R k .w .w’

g : k , .w |=ctxt �

p : (.f1 :: �) � .f2

We need to prove that .f2 is true in world w’. We have a PPIL proof p of

(.f1 :: �) � .f2

We will want to make a recursive call to Soundness on this proof, with w’ as the
world. This requires us to prove that (.f1 :: �) is true in w’. By the definition of _
,_|=ctxt_, that just means we need to prove that .f1 is true in w’, and also �. The
assumption u’ tells us that .f1 is true in world w’, so that requirement is met. The
assumption g tells us that � is true, but in world .w, not world .w’. So we seem to be
stuck. But this is where monotonicity (mono|=ctxt) comes in: we have an assumption
r that R k .w .w’. So applying monotonicity for contexts to r and g gives us a proof
of k , .w’ |=ctxt �. Then we can make our recursive call to Soundness to complete
the case.

For the ImpliesE case, the goal is:

Goal: k , .w |= .f

-----------------------------------------------------------

g : k , .w |=ctxt .�

p’ : .� � .f1

p : .� � Implies .f1 .f

To understand how the proof of Soundness is working in this case, let us ask Agda
what the type of Soundness p g is (by putting that expression in a hole on the right-
hand side of this equation, and typing “Ctrl+c Ctrl+.”):

{w’ : W k} → R k .w w’ → k , w’ |= .f1 → k , w’ |= .f

This says that for any future possible world w’ of w, if we can prove .f1 is true in w’, we
can conclude that .f is true in that world. This is good, because if we apply Soundness
to the assumption p’ (and also g), we will get a proof that .f1 is true in world .w. We
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just need to use reflexivity of R to get R k .w .w, and then we will have values for the
inputs to Soundness p g shown previously. This concludes the ImpliesE case. The
cases for TrueI, AndI, and AndE are easy applications of the semantics, so we skip
walking through the details.

10.5 Completeness
The soundness theorem we just proved says that if a formula f is provable in PPIL
from assumptions �, then f is true in any world where � is also true, for any Kripke
structure. Now we will prove the converse of this: if f is true in all worlds where � is,
for all Krikpe structures, then there is a PPIL proof of � � f. The method we will use
for this proof comes from normalization by evaluation (NBE), first explicitly used for a
proof of completeness of an intuitionistic logic by Catarina Coquand [Coquand 2002]
(see Dybjer and Filinski [2002] for a survey of related results). First we will look at the
completeness proof in detail, and then (Section 10.5.4) explore how the proof method
is related to normalization.

10.5.1 A Universal Structure
As just noted, our goal is to show that if f is true in all worlds where � is, for all
Krikpe structures, then there is a PPIL proof of � � f. The proof of completeness uses
a clever construction to prove a statement that appears stronger. We will construct a
single special structure U, and prove what we can call completeness for U: if f is true
in a world where � is, in the structure U, then there is a PPIL proof of � � f. In other
words, our general statement of completeness talks about truth in all structures, while
the seemingly stronger statement of completeness for U talks just about truth in U. We
will see that in fact, truth in U coincides with truth in all structures! So completeness
for U only appears stronger than completeness. In fact, they are equivalent. Following
Ilik, we will call U a universal structure [Ilik 2010]. In the study of modal logic, a similar
situation arises with what are called canonical structures.

This universal structure U we will construct has a strong connection to PPIL proofs
built in to the structure itself. The worlds of the structure are contexts �. Then �’ is
defined to be a future possible world for � if �’ extends �—denoted � � �′—in the
sense defined by the mathematical rules of Figure 10.17. These rules are formalized as
an Agda datatype in Figure 10.18, where we grow the context (in the type of �-cons) on
the left instead of on the right, as we did for the formalization of PPIL proofs earlier.
It is very easy to prove two simple properties of the _�_, which we will need shortly.
The properties are transitivity, and a form of weakening; see Figure 10.19.

We are now ready to define our universal structure U, in Figure 10.20. U is ascribed
the type struct (defined in Figure 10.7), and defined using Agda’s syntax for record
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� � �

� � �′

� � �′, f

Figure 10.17 The relation of context extension.

kripke-semantics.agdadata _�_ : L formula → L formula → Set where

�-refl : ∀ {�} → � � �

�-cons : ∀ {� �’ f} → � � �’ → � � (f :: �’)

Figure 10.18 Agda definition of context extension.

kripke-semantics.agda�-trans : ∀ {� �’ �’’} → � � �’ →
�’ � �’’ → � � �’’

�-trans u �-refl = u

�-trans u (�-cons u’) = �-cons (�-trans u u’)

weaken� : ∀ {� �’}{f : formula} → � � �’ →
� � f → �’ � f

weaken� �-refl p = p

weaken� (�-cons d) p = weaken (weaken� d p)

Figure 10.19 Transitivity of context extension, and weakening with context extension.

literals. The type W of worlds is the type of contexts (lists of formulas). The future
possibility relation R is the context extension relation _�_. We can prove that relation
is a preorder because it is reflexive by definition (�-refl), and we proved transitivity
already (�-trans). The next field of the record isV, which designates the propositional
variables that are true in a world. In U, a propositional variable is true in a world � if
and only if it is provable from assumptions �. The reason for this definition of V is that
it makes provability in PPIL and truth in the structure U coincide when the formula
in question is a propositional variable. This will form the base case for an inductive
proof that provability and truth in U coincide for any formula. Given that this is the

kripke-semantics.agdaU : struct

U = record { W = ctxt ;

R = _�_ ;

preorderR = �-refl , �-trans ;

V = λ � n → � � $ n ;

monoV = λ d p → weaken� d p }

Figure 10.20 The universal structure U.
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definition of V, we must now prove a monotonicity lemma, which becomes a special
case of weaken�which we proved in Figure 10.19. Agda is able to infer this specialized
type for the lambda abstraction of weaken� given as the definiion of monoV (but Agda
cannot infer the correct type if we just put weaken� as the definition for monoV).

10.5.2 Completeness and Soundness with Respect to U
We are now ready for the intricate definitions at the heart of the completeness proof,
shown in Figure 10.21. We are simultaneously proving a form of soundness and a
form of completeness, with respect to U. CompletenessU says that if f is true in world
� of U (remember that worlds in U are actually contexts �), then f is provable from
assumptions �. This is the property we were discussing earlier: we will prove truth
in U implies provability. But in order to prove this, it turns out, rather surprisingly,
that we must simultaneously prove a form of soundness. SoundnessU says that if f
is provable from assumptions �, then f is true in world � in U. These properties are
proved by a mutual induction on the formula f, which decreases in each (mutually)
recursive call in the code for SoundnessU and CompletenessU.

kripke-semantics.agdaCompletenessU : ∀{f : formula}{� : W U} →
U , � |= f → � � f

SoundnessU : ∀{f : formula}{� : W U} →
� � f → U , � |= f

CompletenessU {$ x} u = u

CompletenessU {True} u = TrueI

CompletenessU {And f f’} u =

AndI (CompletenessU{f} (fst u))

(CompletenessU{f’} (snd u))

CompletenessU {Implies f f’}{�} u =

ImpliesI

(CompletenessU {f’}

(u (�-cons �-refl) (SoundnessU {f} (assume {�}))))

SoundnessU {$ x} p = p

SoundnessU {True} p = triv

SoundnessU {And f f’} p =

SoundnessU{f} (AndE tt p) , SoundnessU{f’} (AndE ff p)

SoundnessU {Implies f f’} p r u =

SoundnessU (ImpliesE (weaken� r p) (CompletenessU {f} u))

Figure 10.21 Soundness and completeness with respect to the structure U.
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It is important to notice how SoundnessU differs from the property we proved in
Section 10.4.2. The form of soundness proved there is the following, where we are
expanding the definition of _,_|=ctxt_:

Soundness : ∀{� : ctxt}{f : formula} → � � f →
∀{k : struct}{w : W k} → k , w |=ctxt � →

k , w |= f

If we specialized that to our structure U and � as the particular world w, this would say:

Soundness : ∀{� : ctxt}{f : formula} → � � f →
U , � |=ctxt � →
U , � |= f

Contrast this with SoundnessU (Figure 10.21):

SoundnessU : ∀{f : formula}{� : W U} → � � f → U , � |= f

The specialized Soundness theorem is similar to SoundnessU, but with one critical
difference: to imply SoundnessU, Soundness would require a proof of

U , � |=ctxt �

We will, in fact, prove this as a lemma ctxt-id. But that lemma will rely on Sound-

nessU. It turns out to be quite simple, if subtle, to define SoundnessU directly.
Let us now walk through the proofs of CompletenessU and SoundnessU in detail.

One of the most important aspects of these proofs is that they proceed by induction
on the structure of the formula in both cases. So we have cases for variables $ x,
True, conjunctions And f f’, and implications Implies f f’. This is different from
the proof of Soundness of Section 10.4, which was by induction on the structure of
the proof of � � f. For CompletenessU, the only reasonable target for induction is the
formula f, because the type U , � |= f is computed by type-level computation from f.
We will consider the significance of this structure for the induction in Section 10.5.4.

Let us look at the base cases for CompletenessU and SoundnessU first together. As
noted previously, the definition for theV component ofU, stating when a propositional
variable is true in a world, has been tailored exactly to make both base cases trivial. If
f is a propositional variable $ p, then U , � |= f is definitionally equal to � � $ p. For
CompletenessU we have an input of type U , � |= $ p and must produce an output
� � $ p, whereas for SoundnessU it is the other way around. In either case, the output
is just equal to the input, because of this fact that U , � |= $ p is definitionally equal
to � � $ p.

The cases for when f is True are trivial for both CompletenessU and SoundnessU.
In the former case we are required to prove � � True, which is done just with TrueI
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(Figure 10.5). In the latter, we have to proveU , � |= True, which is definitionally equal
to �, and hence proved with the sole constructor triv for that type.

The cases for when f is a conjunction And f f’ are also easy. For CompletenessU,
the type U , � |= (And f f’) of input u is definitionally equal (by the definition of
_|=_) to

(U , � |= f) ∧ (U , � |= f’)

So, to obtain a proof of � � And f f’, the CompletenessUproof just makes a recursive
call on fst u, of type U , � |= f, and snd u, of type U , � |= f’; and glues the resulting
proofs of � � f and � � f’ together with the AndI proof rule (Figure 10.5). The recur-
sive calls are legal, because the type has decreased from And f f’ to f in the first call
and f’ in the second. The case for conjunction in the SoundnessU proof is similar.
Here, our input p is a proof of � � And f f’. By applying AndE tt and AndE ff to this
p, we obtain proofs of � � f and � � f’, respectively. Since the types have decreased,
as they did for CompletenessU, we can make recursive calls to get proofs of U , � |= f

and U , � |= f’. These can be glued together with a comma (the constructor for _∧_),
to produce a proof of

(U , � |= f) ∧ (U , � |= f’)

which, as noted earlier, is definitionally equal to U , � |= And f f’, the type of the
result we are supposed to generate.

All these cases have been pretty straightforward. We now come to the two tricky
cases, which are for implications Implies f f’ for both CompletenessU and Sound-

nessU. If we look carefully at those cases in Figure 10.21, we can notice that each case
makes a recursive call to CompletenessU and to SoundnessU. This explains why the
two proofs must be defined by mutual recursion: they cannot be separated, because
each must call the other, though this happens only in the case for implications.

Let us look first at the case for implications Implies f f’ for CompletenessU. We
have an input u of type U , � |= Implies f f’, which by the definitions of both U and
_|=_ is equal to

∀ {�’ : ctxt} → � � �’ → U , �’ |= f → U , �’ |= f’

The code for the right-hand side makes the following call to this u, as part of what it
is doing to return an output of the required type � � Implies f f’:

(u (�-cons �-refl) (SoundnessU {f} (assume {�})))

There is an implicit instantiation of �’ to f :: � here. So the two arguments being
given to u must have these two types, respectively:



10.5 Completeness 237

. � � (f :: �)

. U , (f :: �) |= f

The first type is easily proved by �-cons �-refl (see Figure 10.18). For the second,
we can easily obtain a proof of U , (f :: �) � f using the assume proof rule for PPIL.
Calling SoundnessU translates this from a PPIL proof (with _�_) to truth in U (with _,_

|=_), as required here. Note that the call is legal, because the formula f has decreased
from Implies f f’ to just f here. The call to u has thus produced a result of type

U , (f :: �) |= f’

By recursively applying CompletenessU, we obtain a proof of

(f :: �) � f’

The recursive call is legal, because the formula in question has decreased from Im-

plies f f’ to f’. Finally, we just apply the ImpliesI proof rule to turn our derivation
of (f :: �) � f’ into one for the required � � Implies f f’.

Now let us look at the case for implications Implies f f’ for SoundnessU. We take
in a proof of � � (Implies f f’), and we must produce a proof of U , � |= (Implies

f f’). By the definitions of _|=_ and U, this means we must produce a function of the
following type:

∀ {w’ : ctxt} → � � w’ → U , w’ |= f → U , w’ |= f’

Agda lets us bring those extra explicit arguments into the left-hand side (but not, it
seems, the implicit argument if we wish to give a different name to the context w’).
That is why the pattern for this case ofSoundnessUhas additional explicit inputsr and
u. If we replace the right-hand side of that equation with a hole and use “Ctrl+c Ctrl+,”
to see the current goal, Agda will print the information in Figure 10.22 (plus omitted
typings for some of the variables, including implicit .� and .w’). The big record literal
is just U. So we see we must prove U , .w’ |= f’ from these assumptions:

. u : U , .w’ |= f

. r : .� � .w’

. p : .� � Implies f f’

We have some powerful tools we can apply to these assumptions, in the form of
recursive calls to SoundnessU and CompletenessU. Using CompletenessU on u, we
can get a proof of .w’ � f. This is allowed, because the type has decreased from
Implies f f’ to f. We should now be able to combine this, using the ImpliesE
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Goal: record

{ W = L formula

; R = _�_
; preorderR = �-refl , �-trans
; V = λ � n → � � $ n

; monoV = λ {.w} {.w’} d {.i} → weaken� d

}

, .w’ |= f’

-----------------------------------------------------------

u : record

{ W = L formula

; R = _�_
; preorderR = �-refl , �-trans
; V = λ � n → � � $ n

; monoV = λ {.w} {.w’} d {.i} → weaken� d

}

, .w’ |= f

r : .� � .w’

p : .� � Implies f f’

Figure 10.22 The goal for the case for implications of SoundnessU.

proof rule, with our proof of .� � Implies f f’. The only issue is that the context
is different: in one case we have .w’, and in the other .�. But because we have a proof
that .w’ extends .� (i.e., a proof of .� � .w’), we can apply weaken� to transport
our proof p in context .� to the context .w’. That is why on the right-hand side of
the equation for SoundnessU for this case (Implies f f’), we are applying ImpliesE
to (weaken� r p) and then to (CompletenessU {f} u). This gives us a proof of .w �
f’. We need only call SoundnessU recursively on this to obtain the desired conclusion
U , .w’ |= f’. This recursive call is legal, because we have decreased the formula on
which we are recursing from Implies f f’ to f’. This completes the walk-through of
the proofs in Figure 10.21

10.5.3 Concluding Completeness and Universality
The proofs in Figure 10.21 are the heart of the proof of completeness of PPIL inspired
by normalization by evaluation. The final proof ofCompleteness is in Figure 10.23, us-
ing the entailment relation _�_ we defined in Figure 10.16. The proof is very easy. We
first must prove the easy lemma ctxt-idwe mentioned earlier, saying that in the uni-
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kripke-semantics.agdactxt-id : ∀{� : ctxt} → U , � |=ctxt �

ctxt-id{[]} = triv

ctxt-id{f :: �} =

SoundnessU{f} assume ,

mono|=ctxt (�-cons �-refl) (ctxt-id {�})

Completeness : ∀{� : ctxt}{f : formula} →
� � f → � � f

Completeness{�} p = CompletenessU (p{U}{�} (ctxt-id{�}))

Universality1 : ∀{� : ctxt}{f : formula} →
� � f → U , � |= f

Universality1{�}{f} p = SoundnessU (Completeness{�}{f} p)

Universality2 : ∀{� : ctxt}{f : formula} →
U , � |= f → � � f

Universality2{�}{f} p = Soundness (CompletenessU{f}{�} p)

Figure 10.23 Proofs of completeness and universality.

versal structure U, � is true in world �. This is shown in Figure 10.23. Completeness
takes in a proof p of � � f. This expression is definitionally equivalent to

∀{k : struct}{w : W k} → k , w |=ctxt � → k , w |= f

The proof of Completeness instantiates k with U and w with �, which gives us a
value of type

U , � |=ctxt � → U , � |= f

This is applied to a proof of U , � |=ctxt �, which we obtain from our helper lemma
ctxt-id. So we get, from this application of p, a proof of

U , � |= f

We apply CompletenessU to this, to obtain � � f, as required.
Figure 10.23 also includes proofs Universality1 and Universality2, which

express the idea that U is a universal structure. Universality1 says if � entails f (� �
f), thenf is true in world � ofU. This is easily proved by first applyingCompleteness to
get a proof of � � f, and then applying SoundnessU. Universality2 is the converse:
f is true in world � of U, then � entails f. This is proved by first using CompletenessU
to get a proof of � � f, and then Soundness to turn this into a proof of � � f.
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kripke-semantics.agdanbe : ∀ {� f} → � � f → � � f

nbe {�} p = Completeness (Soundness p)

Figure 10.24 The definition of the nbe function.

10.5.4 Composing Soundness and Completeness
Consider the rather shocking definition in Figure 10.24. It seems both pointless and
daring. Pointless because, unlike the proofs we have been studying in this chapter, the
type is trivial from a logical perspective. It just says that if f is provable from assump-
tions �, then so it is. The definition seems daring, because it is not treating the proofs
of Soundness and Completeness as existing simply to establish theorems. Here we
are calling them as functions to perform some operation that must be of only compu-
tational significance (as the type is logically trivial). So we are really computing with
the soundness and completeness proofs. What is it, exactly, that we are computing?
The answer is surprising: the function nbe is a normalizer for PPIL proofs. It takes in a
PPIL proof as input, and returns one that has been simplified in certain natural ways.
Let us walk through a few examples in detail. Doing so will help us understand better
how composing soundness and completeness results in normalization by evaluation.

10.5.4.1 Example A
It is easy to prove True in PPIL: one just uses TrueI. But there are other ways to prove
True, involving unnecessary detours in reasoning. For example, consider a defined in
the tests module at the end of kripke-semantics.agda:

a : [] � True

a = AndE tt (AndI TrueI TrueI)

a’ = nbe a

The mathematical version of this proof is:

� True � True
� True ∧ True

� True

This is clearly an unnecessarily complex proof. There is no need to introduce a con-
junction and then eliminate it. If we ask Agda what the value of a’ is (which is defined,
as we saw above, as the result of calling nbe on a), we will get just TrueI. So nbe has
taken the proof with the detour, and removed that detour to give the simplified proof
TrueI of � True.
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10.5.4.2 Example B
Another example of a detour in proving � True is b just below that place in kripke-

semantics.agda:

b : [] � True

b = ImpliesE (ImpliesE (ImpliesI (ImpliesI (assume)))

TrueI)

TrueI

b’ = nbe b

The mathematical proof corresponding to this is:

True, True � True
True � True → True

� True → (True → True) � True
� True → True � True

� True

Like our example a, this proof is unnecessarily complicated. We introduce two
implications only to immediately eliminate them. The nbe function again returns just
TrueI for this case. In fact, if we look more carefully at what nbe is doing in these
two cases, we will see that for any proof of True, nbe will just return TrueI. This is
because nbe calls Completeness, which in turn calls CompletenessU with True for
the formula f. In this case, CompletenessUdoes not even look at the proof u it is given
of U , � |= True. It always just returns TrueI.

10.5.4.3 Example C
Since nbe always returns TrueI given any proof of True (with any set of assumptions
�), let us look at a different example. Suppose we prove p → p via the following
roundabout mathematical proof:

p, p � p

p � p → p p � p

p � p

� p → p

This is quite flabby reasoning, as we do not need to introduce and eliminate the
implication p → p in the middle of the proof. The direct mathematical proof is simply:

p � p

� p → p
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For example, c toward the bottom of kripke-semantics.agda, we give the Agda
form of the flabby proof, and then call nbe on it:

c : [] � (Implies ($ "p") ($ "p"))

c = ImpliesI (ImpliesE (ImpliesI assume) assume)

c’ = nbe c

If we ask Agda for the value of c’ (with Ctrl+c Ctrl+n), we get

ImpliesI assume

This is the Agda version of the direct proof! Remarkable. How did nbeproduce this?
The application of Soundness in nbe turns the ImpliesI inferences into Agda func-
tions. This can be seen in the code for Soundness (Figure 10.16), in the equation for
if the proof is an ImpliesI proof. The Soundness proof takes in two extra arguments
in this case:

Soundness (ImpliesI p) g r u’ =

Soundness p (u’ , mono|=ctxt r g)

We could just as well have written this in Agda as

Soundness (ImpliesI p) g =

λ r u’ → Soundness p (u’ , mono|=ctxt r g)

The latter makes it explicit that an ImpliesI proof is being turned into an Agda
lambda-abstraction. And in the clause of Soundness for ImpliesE, we can see that
ImpliesE inferences are being turned into Agda applications:

Soundness (ImpliesE p p’) {k} g =

(Soundness p g) (reflR k) (Soundness p’ g)

We apply (Soundness p g) to (Soundness p’ g) (with a proof about the future
possibility relation interposed). So the PPIL proof c is being translated to an Agda
expression that looks roughly like

λ.((λ.assume) assume)

There is a function call ((λ.assume)assume), where we apply an Agda λ-abstraction to
an argument. In fact, the uses of assume are translated into variables by Soundness.
(If you are interested, you can look up de Bruijn indices, and you will see that where
we use assume this is like de Bruijn index 0, and where we apply weaken it is like
adding one to the de Bruijn index.) So the Agda lambda term will be roughly (ignoring
additional arguments for the future possibility relation)

λx .((λy .y) x)
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Here we see one crucial ingredient of normalization by evaluation. We have turned
a proof with a detour into an Agda expression that can simplify by running Agda
code. Indeed, it will simplify to just λx .x. Now how does the rest of the code for nbe
convert this back to ImpliesI assume? Well, the next thing that happens in the code
for nbe is that we call Completeness. The context in this case is empty, so we are
just calling CompletenessU on what is essentially λx .x, with the type (Implies ($

"p") ($ "p")). Soundness recurses on the proof, but CompletenessU recurses on
the formula. So the case for Implies formulas will be used:

CompletenessU {Implies f f’}{�} u =

ImpliesI

(CompletenessU {f’}

(u (�-cons �-refl) (SoundnessU {f} (assume {�}))))

We see that an ImpliesI proof will be returned. Its subproof will be one generated
by a sequence of calls. We first call SoundnessU on assume, with formula $ "p".
Looking at the code for SoundnessU, we can see that if the formula is a propositional
variable like this, then the proof that is input to SoundnessU will be the one which is
returned as output. So (SoundnessU {f} (assume {�})) just returns assume. Next
u is applied to this (and an argument for the future possibility relation), but u is
essentially just the identity function λx .x, as we discussed earlier. So this application
of u produces just assume. Finally, CompletenessU is called on that, with the formula
being $ "p". This is because Implies f f’ for this call to CompletenessU that we are
considering is instantiated to

Implies ($ "p") ($ "p")

so f’ is $ "p". And CompletenessU returns the given proof if the formula is a propo-
sitional variable, just as SoundnessU does. So we get ImpliesI assume from nbe for
the example proof c.

10.5.4.4 Example D
Suppose our proof is making use of an assumption in the context. Our example d

demonstrates this, for the following mathematical proof:

q , p, p � q

q , p � p → q q , p � p

q , p � q

q � p → q
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d : [ $ "q" ] � (Implies ($ "p") ($ "q"))

d = ImpliesI (ImpliesE (ImpliesI (weaken (weaken assume)))

assume)

d’ = nbe d

Figure 10.25 Example d for normalization by evaluation.

This is again quite unnecessarily complex. The direct proof is:

q , p � q

q � p → q

Once again, nbe can simplify the complicated proof to the simpler one. With
the definitions in Figure 10.25, d’ returns ImpliesI (weaken assume). The proof
weaken assume has type ($ "p") :: ($ "q") :: [] � ($ "q"), since the weaken

skips over the ($ "p") in the context.

10.5.4.5 Example E
The nbe function will not always shorten PPIL proofs. Let us see an example:

e : [] � (Implies (And ($ "p") ($ "q"))

(And ($ "p") ($ "q")))

e = ImpliesI assume

e’ = nbe e

This corresponds to the following mathematical proof:

(p ∧ q) � (p ∧ q)

� (p ∧ q) → (p ∧ q)

If we ask Agda to normalize e’ for us, we will see it is

ImpliesI (AndI (AndE tt assume) (AndE ff assume))

This is longer than ImpliesI assume, which we gave for e. It corresponds to this
mathematical proof:

(p ∧ q) � (p ∧ q)

(p ∧ q) � p

(p ∧ q) � (p ∧ q)

(p ∧ q) � p

(p ∧ q) � (p ∧ q)

� (p ∧ q) → (p ∧ q)
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Now surely this proof exhibits more meandering reasoning than the one we gave
for e. What is going on? The answer is that due to the way SoundnessU works, nbe
puts PPIL proofs into a normal form where assumptions of compound formulas (i.e.,
formulas which are not just propositional variables) are expanded out in a certain
way, into more complex proofs. SoundnessU is always called on assume to start with.
For conjunctions, it applies AndE both ways to the assumption, and pairs up (with
an Agda pair) the two results. For implications, it builds an Agda lambda-abstraction
whose body applies ImpliesE to the assumption. So SoundnessU decorates assume
with possibly several nested eliminations, following the structure of the formula.
This decorated version of assume is then passed, where SoundnessU is called in
the code for CompletenessU, to a function (something of type U , � |= (Implies

f f’)). For this example e, the function is just the identity function, since that is
the lambda-abstraction that Soundness returns for the PPIL proof ImpliesI assume,
which we have given for e. Then CompletenessU is called on the result. In this case,
CompletenessU is just building aAndIproof from the two components of the pair that
SoundnessU produced. So we get an introduction (AndI) with eliminations (AndE) for
the subproofs. The reader familiar with the theory of lambda calculus will recognize
this process as type-directed η-expansion (“eta”).

10.5.4.6 Example F
f : [] � (Implies (Implies ($ "p") ($ "q"))

(Implies ($ "p") ($ "q")))

f = ImpliesI assume

f’ = nbe f

Here we try the same example as e, but with implications instead of conjunctions. The
nbe function returns a proof with similarly expanded uses ofassume (here, theassume
in question is modified with weaken because of the intervening second ImpliesI):

ImpliesI (ImpliesI (ImpliesE (weaken assume) assume))

Again, this can be seen as an η-expansion.

10.6 Conclusion
In this chapter, we saw an extended example of mathematical modeling in Agda. We
defined positive propositional intuitionistic logic (PPIL), and gave its standard Kripke
semantics. Kripke semantics envisions the mathematical universe as an unfolding
evolution, where different future possible worlds are connected formally by a preorder
to past worlds. We proved soundness and completeness for PPIL proofs with respect
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to this semantics. Every formula which is provable using the PPIL proof rules is true in
all worlds of all Kripke structures (soundness), and vice versa (completeness). Aston-
ishingly, composing the proofs of soundness and completeness gives a normalizer,
which can put PPIL proofs into a certain canonical form. This method is known as
normalization by evaluation. PPIL proofs can, by the Curry-Howard isomorphism, be
seen as functional programs. So the normalizer is not just of interest for simplifying
proofs. It is essentially an interpreter for lambda calculus. And this seems a fitting
point to end the main material for this book.

Exercises
10.1. Write out proofs of some simple example PPIL theorems like

(p ∧ (q ∧ r)) → ((p ∧ q) ∧ r)

Write mathematical proofs first, and then translate these to Agda using the datatype
of Figure 10.5.

10.2. Call the nbe function on the example proofs you wrote for the previous exercise.
Make sure you can see how the results resemble the ones we saw in Section 10.5.4.

10.3. Find a Kripke structure where the following formula is not true. First draw
the Kripke structure, and then define it as a record of type struct, as defined in
Figure 10.7.

((p → q) → p) → p

This formula is known as Peirce’s law. It is classically valid but not intuitionistically
valid. It is an interesting example of such a formula, because it uses only implication
(as opposed to formulas like p ∨ ¬p).
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Quick Guide to Symbols
The next page has a list of some Unicode symbols we encountered in this book,
together with key sequences to type them in EMACS. The table also tells which .agda

file to find them in, and their meaning, in the library we have studied (or in Agda itself).
For a few of these, you need to follow the directions given in Appendix C to configure
EMACS to accept the key sequences. In some cases, you may need to hit the space bar to
force the selection of the particular default symbol from a list of possibilities. EMACS

will display this list at the very bottom of the window, and you can also use numbers
to select a symbol in the list. Note that if you select a number, that choice becomes
the new default, until you restart EMACS (just choose a different number to change the
default again). For many characters c, the sequence \_c will print a subscripted c.
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Sequence Symbol File Meaning

\r → built-in for function types

\all ∀ built-in for all (universal quantification)

\Gl λ built-in for anonymous functions

\ell � symbol usually used for type levels

\_1 1 subscript used in symbols

\_2 2 subscript used in symbols

\bb B bool type for booleans

\bn N nat type for natural numbers

=\bn = N nat equality test for N

\eq ≡ eq equality type

\.- .− nat subtraction for N

\le ≤ nat less-than or equal to for N

\div ÷ nat-division division for N

\bl L list type constructor for lists

[] [] list constructor for empty list

:: :: list cons constructor for lists

++ ++ list append two lists

\top � unit top type

\bv V vector vector type

\bot ⊥ empty empty type

\GS � product dependent product type

\and ∧ product nondependent product type

\x × product nondependent product type

\uplus � sum sum type

\or ∨ sum sum type

\d ↓ termination termination of a relation

\vdash � kripke-semantics logical provability
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Commonly Used Emacs
Control Commands
Table B.1 shows some commonly used control commands for working with Agda in
EMACS. These are specific to Agda files. Table B.2 shows some general EMACS com-
mands which are very useful for editing any text, including Agda code, in EMACS. Files
are viewed in EMACS in buffers. Many of the commands reference the cursor, which is
the single square character marking your current position in the current buffer.

Table B.1 Agda-specific emacs control commands

Command Action

Ctrl+c Ctrl+l Check the current .agda file

Ctrl+c Ctrl+d Enter an expression, then Agda will type-check it

Ctrl+c Ctrl+n Enter an expression, then Agda will normalize it

Ctrl+c Ctrl+, In a hole, see the simplified goal and context

Ctrl+c Ctrl+. Like Ctrl+c Ctrl+, but also check an expression in the hole

Ctrl+c Ctrl+r Try to solve a hole with an expression in the hole

Ctrl+c Ctrl+c In a hole, case-split on a variable (or several separated by
spaces like x y z)

Ctrl+c Ctrl+k See information on the character at the cursor (requires
the extra EMACS code in the next section)
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Table B.2 General emacs control commands

Command Action

Ctrl+x Ctrl+f Enter the name of a file, which EMACS will then open

Ctrl+x Ctrl+s Save the current buffer

Ctrl+x 2 Split the view of the current EMACS frame

Ctrl+x 1 Make the current frame fill the whole window

Ctrl+x o Move your cursor to the next visible frame

Ctrl+x b View another open buffer in the current frame

Ctrl+g Cancel whatever EMACS is currently doing

Ctrl+p Move up a line

Ctrl+n Move down a line

Ctrl+f Move right one character

Ctrl+b Move left one character

Alt+f Move right one word

Alt+b Move left one word

Ctrl+a Move to the start of the line

Ctrl+e Move to the end of the line

Ctrl+l Recenter around the cursor

Ctrl+k Cut from the cursor to the end of the line

Ctrl+y Paste the most recently cut text

Ctrl+space Set the “point” (an implicit mark in the file)

Ctrl+w Cut the text between the cursor and the point

Alt+w Copy the text between the cursor and the point

Ctrl+o Insert a newline
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Some Extra Emacs
Definitions

Here is some EMACS Lisp (elisp) code I have found useful for programming in Agda in
EMACS. You can copy and paste this (with modifications as noted) into your .emacs
file. You can open your .emacs file by typing Ctrl+x Ctrl+f in EMACS, and then typing
~/.emacs.

The command at the very end of the code below is there to add additional directories
for Agda to search for imported files, in this case the IAL. It seems the way Agda handles
its library path may be changing, so it is probably best instead to set the library location
through the EMACS interface for customizing Agda. If you open an Agda file, then type
Alt+x customize-group, and then type agda2, you will find customization options
for Agda, which can be set and then saved for future use.

; This defines backslash commands for some extra symbols.

(eval-after-load "quail/latin-ltx"

’(mapc (lambda (pair)

(quail-defrule (car pair) (cadr pair) "TeX"))

’( ("\\bb" "B") ("\\bl" "L") ("\\bs" "S")

("\\bt" "T") ("\\bv" "V") ("\\cv" "�")
("\\comp" "◦") ("\\m" " �→") ("\\om" "ω"))))

; This sets the Ctrl+c Ctrl+k shortcut to

; describe the character under your cursor.

(global-set-key "\C-c\C-k" ’describe-char)

; Change Ctrl+c Ctrl+, and Ctrl+c Ctrl+.

; in Agda mode so they show the normalized rather

; than the "simplified" goals

(defun agda2-normalized-goal-and-context ()

(interactive)

(agda2-goal-and-context ’(3)))
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(defun agda2-normalized-goal-and-context-and-inferred ()

(interactive)

(agda2-goal-and-context-and-inferred ’(3)))

(eval-after-load "agda2-mode"

’(progn

(define-key agda2-mode-map (kbd "C-c C-,")

’agda2-normalized-goal-and-context)

(define-key agda2-mode-map (kbd "C-c C-.")

’agda2-normalized-goal-and-context-and-inferred)))

; This sets the Agda include path.

; Change YOUR-PATH to the path on your computer

; to the Iowa Agda Library directory. Use forward

; slashes to separate subdirectories.

(custom-set-variables

’(agda2-include-dirs

(quote ("." "YOUR-PATH/ial")))

)
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