

The Continuing Arms Race

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a new series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, German Research Center for Artificial Intelligence (DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

The Continuing Arms Race
Code-Reuse Attacks and Defenses

Per Larsen
Immunant, Inc.

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ACM Books #18

Copyright © 2018 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

The Continuing Arms Race

Per Larsen, Ahmad-Reza Sadeghi, editors

books.acm.org
www.morganclaypoolpublishers.com

ISBN: 978-1-97000-183-9 hardcover
ISBN: 978-1-97000-180-8 paperback
ISBN: 978-1-97000-181-5 eBook
ISBN: 978-1-97000-182-2 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3129743 Book 10.1145/3129743.3129749 Chapter 5
10.1145/3129743.3129744 Preface 10.1145/3129743.3129750 Chapter 6
10.1145/3129743.3129745 Chapter 1 10.1145/3129743.3129751 Chapter 7
10.1145/3129743.3129746 Chapter 2 10.1145/3129743.3129752 Chapter 8
10.1145/3129743.3129747 Chapter 3 10.1145/3129743.3129753 References
10.1145/3129743.3129748 Chapter 4

A publication in the ACM Books series, #18
Editor in Chief: M. Tamer Özsu, University of Waterloo

First Edition

10 9 8 7 6 5 4 3 2 1

http://dx.doi.org/10.1145/3129743
http://dx.doi.org/10.1145/3129743.3129749
http://dx.doi.org/10.1145/3129743.3129744
http://dx.doi.org/10.1145/3129743.3129750
http://dx.doi.org/10.1145/3129743.3129745
http://dx.doi.org/10.1145/3129743.3129751
http://dx.doi.org/10.1145/3129743.3129746
http://dx.doi.org/10.1145/3129743.3129752
http://dx.doi.org/10.1145/3129743.3129747
http://dx.doi.org/10.1145/3129743.3129753
http://dx.doi.org/10.1145/3129743.3129748

Contents

Preface xi

Chapter 1 How Memory Safety Violations Enable Exploitation of Programs 1

Mathias Payer

1.1 Memory Safety 4
1.2 Data Integrity 8
1.3 Confidentiality 10
1.4 Data-Flow and Control-Flow Integrity 11
1.5 Policy Enforcement 15
1.6 An Adversary’s Toolkit 16
1.7 Conclusion 22

Chapter 2 Protecting Dynamic Code 25

Gang Tan, Ben Niu

2.1 Overview of Challenges and Solutions 26
2.2 Type-Based CFG Generation 28
2.3 Handling Dynamically Linked Libraries 39
2.4 Handling Just-In-Time Compiled Code 48
2.5 Related Work 58
2.6 Conclusion 60

Chapter 3 Diversity and Information Leaks 61

Stephen Crane, Andrei Homescu, Per Larsen, Hamed Okhravi,
Michael Franz

3.1 Software Diversity 62
3.2 Information Leakage 63

viii Contents

3.3 Mitigating Information Leakage 64
3.4 Address Oblivious Code Reuse 69
3.5 Countering Address-Oblivious Code Reuse 70
3.6 Evaluation of Code-Pointer Authentication 74
3.7 Conclusion 78

Chapter 4 Code-Pointer Integrity 81

Volodymyr Kuznetzov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, Dawn Song

4.1 Introduction 81
4.2 Related Work 84
4.3 Threat Model 87
4.4 Design 87
4.5 The Formal Model of CPI 97
4.6 Implementation 102
4.7 Evaluation 109
4.8 Conclusion 116

Chapter 5 Evaluating Control-Flow Restricting Defenses 117

Enes Gökta̧s, Elias Athanasopoulos, Herbert Bos,
Georgios Portokalidis

5.1 Introduction 117
5.2 Control-Flow Restricting Defenses 119
5.3 Security Analysis 122
5.4 Quantifying Gadget Availability in CFR 127
5.5 Proof-of-Concept Exploit against CFR 131
5.6 Summary 135

Chapter 6 Attacking Dynamic Code 139

Felix Schuster, Thorsten Holz

6.1 Goals and Attacker Model 140
6.2 Counterfeit Object-Oriented Programming 142
6.3 Loopless Counterfeit Object-Oriented Programming 157
6.4 A Framework for Counterfeit Object-Oriented Programming 160
6.5 Proof-of-Concept Exploits 162
6.6 Discussion 168
6.7 Security Assessment of Existing Defenses 173
6.8 Conclusion 179

Contents ix

Chapter 7 Hardware Control Flow Integrity 181

Yier Jin, Dean Sullivan, Orlando Arias, Ahmad-Reza Sadeghi,
Lucas Davi

7.1 Introduction 181
7.2 Threat Model and Assumptions 184
7.3 Requirements 185
7.4 Modeling CFI 186
7.5 Constructing a Precise Stateful CFI Policy 190
7.6 Hardware-Enhanced CFI: Design and Implementation 192
7.7 Security Evaluation 200
7.8 Performance Evaluation 205
7.9 Related Work 208
7.10 Conclusion 210

Chapter 8 Multi-Variant Execution Environments 211

Bart Coppens, Bjorn De Sutter, Stijn Volckaert

8.1 General Design of an MVEE 212
8.2 Implementation of GHUMVEE 217
8.3 Inconsistencies and False Positive Detections 220
8.4 Comprehensive Protection against Code-Reuse Attacks 233
8.5 Relaxed Monitoring 241
8.6 Evaluation 250
8.7 Conclusion 259

References 261

Contributor Biographies 283

Preface

Our societies are becoming increasingly dependent on emerging technologies and
connected computer systems that are increasingly trusted to store, process, and
transmit sensitive data. While generally beneficial, this shift also raises many secu-
rity and privacy challenges. The growing complexity and connectivity offers adver-
saries a large attack surface. In particular, the connection to the Internet facilitates
remote attacks without the need for physical access to the targeted computing
platforms. Attackers exploit security vulnerabilities in modern software with the
ultimate goal of taking control over the underlying computing platforms. There are
various causes of these vulnerabilities, the foremost being that the majority of soft-
ware (including operating systems) is written in unsafe programming languages
(mainly C and C++) and by developers who are by-and-large not security experts.

Memory errors are a prominent vulnerability class in modern software: they
persist for decades and still are used as the entry point for today’s state-of-the-
art attacks. The canonical example of a memory error is the stack-based buffer
overflow vulnerability, where the adversary overflows a local buffer on the stack,
and overwrites a function’s return address. While modern defenses protect against
this attack strategy, many other avenues for exploitation exist, including those that
leverage heap, format string, or integer overflow vulnerabilities.

Given a memory vulnerability in the program, the adversary typically provides a
malicious input that exploits this vulnerability to trigger malicious program actions
not intended by the benign program. This class of exploits aims to hijack the control
flow of the program and differs from conventional malware, which encapsulates
the malicious code inside a dedicated executable that needs to be executed on the
target system and typically requires no exploitation of a program bug.

As mentioned above, the continued success of these attacks is mainly attributed
to the fact that large portions of software programs are implemented in type-unsafe
languages (C, C++, or Objective-C) that do not guard against malicious program in-
puts using bounds checking, automatic memory management, etc. However, even

xii Preface

type-safe languages like Java rely on virtual machines and complex runtimes that
are in turn implemented in type-unsafe languages out of performance concerns.
Unfortunately, as modern applications grow more complex, memory errors and
vulnerabilities will likely continue to exist, with no end in sight.

Regardless of the attacker’s method of choice, exploiting a vulnerability and
gaining control over an application’s control flow is only the first step of an attack.
The second step is to change the behavior of the compromised application to per-
form malicious actions. Traditionally, this has been realized by injecting malicious
code into the application’s address space, and later executing the injected code.
However, with the widespread enforcement of data execution prevention (DEP),
such attacks are more difficult to launch today. Unfortunately, the long-held as-
sumption that only code injection posed a risk was shattered with the introduction
of code-reuse attacks, such as return-into-libc and return-oriented programming
(ROP). As the name implies, code-reuse attacks do not require any code injection
and instead repurpose benign code already resident in memory.

Code-reuse techniques are applicable to a wide range of computing platforms:
x86-based platforms, embedded systems running on an Atmel AVR processor, mo-
bile devices based on ARM, PowerPC-based Cisco routers, and voting machines de-
ploying a z80 processor. Moreover, the powerful ROP technique is Turing-complete,
i.e., it allows an attacker to execute arbitrary malicious code.

In fact, the majority of state-of-the-art run-time exploits leverage code-reuse
attack techniques, e.g., against Internet Explorer, Apple QuickTime, Adobe Reader,
Microsoft Word, or the GnuTLS library. Even large-scale cyberattacks such as the
popular Stuxnet worm, which damaged Iranian centrifuge rotors, incorporated
code-reuse attack techniques.

Indeed, even after more than three decades, memory corruption exploits remain
a clear and present danger to the security of modern software and hardware plat-
forms. This is why the research community both in academia and industry have
invested major efforts in the recent past to mitigate the threat. Various defenses
have been proposed and even deployed by Google, Microsoft, Intel, etc. The most
prominent defenses are based on enforcement (e.g., Control-Flow Integrity [CFI])
or randomization (also known as software diversity) of certain program aspects.
Both types of defenses have distinct advantages and disadvantages. Randomiza-
tion makes it hard for attackers to chain together their attack gadgets, is efficient,
and can be applied to complex software such as web browsers. It can have different
levels of granularity, from a simple Address Space Layout Randomization (ASLR)
to fine-grained randomization at function or even instruction level. However, ran-
domization requires high entropy and all randomization schemes are inherently

Preface xiii

vulnerable to information leakage. CFI, on the other hand, provides guarantees
that the application does not deviate from the intended program flow, yet it re-
quires a security and efficiency tradeoff: i.e., coarse-grained CFI have been shown
to be vulnerable, and fine-grained CFI can be inefficient without hardware support.
Researchers have been working on improving these schemes with novel ideas in
both software and hardware design. Many proposed defenses have been bypassed
by other attacks, generating a large body of literature on this topic.

It seems that the arms race between attackers and defenders continues. Al-
though researchers have raised the bar for adversaries, there are still a number of
challenges to tackle against sophisticated attacks. Despite all the recent proposals
on various defenses, we cannot claim that the problem is entirely solved. However,
our community has gained much insight through recent results on how and to what
extent we need to employ certain design principles to significantly reduce the effect
of code-reuse attacks.

The main purpose of this book is to provide readers with some of the most
influential works on run-time exploits and defenses. We hope that this material
will inspire readers and generate new ideas and paradigms.

Per Larsen
Ahmad-Reza Sadeghi
February 2018

1How Memory Safety
Violations Enable
Exploitation of Programs
Mathias Payer

Our programs, runtime systems, operating systems, and hypervisors are, to a large
extent, written in low-level languages like C or C++. These systems languages were
initially designed more than 30 years ago when performance was the key metric
and security was, at best, a side note. Our systems languages do not enforce mem-
ory safety and force the programmer to include necessary safety checks. Coding
guidelines and code quality continuously improved over time due to an increased
awareness of security. Along with this awareness, language standards and compil-
ers evolved as well and became more powerful, especially compilers that now offer
(optional) safety checks. Yet, despite these improvements some attack surface re-
mains. Adversaries can abuse bugs that cause memory safety violations to change
the semantics of the program, executing the adversary’s desired behavior. Memory
safety issues are a problem not just for legacy software that was developed decades
ago but also for new software, such as Google Chrome or Microsoft Edge, both
large software projects that started just a couple of years ago under strict coding
and testing guidelines.

Missing checks in source code are the root cause of different forms of memory
safety issues. Examples of such safety issues are (i) buffer overflows or arbitrary
memory corruption if a pointer dereferences memory outside the bounds of the
underlying memory object, (ii) use-after-free conditions if a reference to a previously
freed memory object is dereferenced, and (iii) type confusion if a base object
is cast down to a subtype. Invalid pointers are easily created by mistake: sloppy
pointer arithmetic, off-by-N mistakes in loop bounds, or integer errors (e.g., an

2 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

integer value is incremented past its maximum and flips into a negative value
or a truncated type is used in a comparison, especially when used with memory
allocation functions). Adversaries can leverage these bugs to change the semantics
of the executing program by, e.g., modifying variables that are used in comparisons
outside of regular control flow, overwriting code pointers (references in the data
region that point to a code segment) to redirect execution, or leaking information
by copying sensitive data to an output stream.

There is a fundamental disparity in difficulty between defending software and
attacking it. While a programmer must fix all possible bugs and defenses must cover
all possible attack vectors to secure a system, an adversary only needs to find one
exploitable bug to gain control of the system. This disparity makes defense chal-
lenging. Finding and fixing through formal methods, static bug-finding techniques,
or fuzz testing is important. However, due to the large state space of programs, it
is unlikely that all bugs will ever be found. Systems therefore must rely on defense
mechanisms to protect themselves against attacks. Each defense mechanism en-
forces some security policy. Runtime monitors observe the state of the program
according to the underlying security policy and terminate the process if a violation
is detected. When designing defenses, researchers must consider if the defense will
fundamentally stop an attack vector and provide a real solution or if it will merely
“raise the bar.” Arguing how much a defense raises the bar is challenging and may
be questionable. For example, adversaries tend to invent and develop automated
tools that bypass defenses. A fundamental problem when evaluating defenses is
the lack of quantitative metrics and benchmarks to assess security qualities and
measuring how much and how effectively a defense raises the bar. Another interest-
ing design decision is where or when the attack is detected. Memory safety stops
the process before the adversary writes a single illegal byte to the address space
while other mechanisms such as stack canaries allow modification of the memory
but detect corruption later, when the data is used. Security is an arms race between
defenders slowly improving defenses while ensuring availability and compatibility
while adversaries continue to probe for new weaknesses.

We discuss the attack surface through memory safety errors for applications
and runtime systems written in low level languages. In the Eternal War in Memory
survey [Szekeres et al. 2013, Szekeres et al. 2014], the authors discuss defenses
along four attack vectors: code injection, control-flow hijacking, data-only attacks,
and information leaks. Attacks follow the path of least resistance, subject to the
adversary’s constraints. From a high-level perspective, an adversary wants to (i)
inject, change, or modify code, (ii) hijack the control flow of the application to

Chapter 1 How Memory Safety Violations Enable Exploitation of Programs 3

Memory safety

Integrity

Confidentiality

Flow integrity

Attack goals
Code
injection

Control-flow
hijacking

Data-only
attack

Memory corruption

C *C D

&C &D

*&C *&D

*D

Figure 1.1 Attack surface, showing attack paths from the initial memory safety violation to code
injection, control-flow hijacking, and data-only attacks. In the figure, C shows code, D
shows data, asterisk (*) marks pointers, ampersand (&) marks addresses, and *& marks
a dereference operation, e.g., *&C tells us that a code pointer is being dereferenced.

locations that are outside the valid control flow, or (iii) modify data in some way
to either leak information or set up non-control-data attacks.

Figure 1.1 shows the attack surface reachable through memory safety errors.
An adversary may leverage memory safety errors to execute any of the pictured at-
tack paths. Defenses can stop the attack at any layer before the attack successfully
completes. Note that defenses at any layer always allow the adversary to launch a de-
nial of service attack as the underlying bug is still in the program and defenses are
(usually) restricted to terminating the offending thread or process. Recovery from
memory safety violations without program-specific recovery code is hard due to
the semantic gap between execution, source code, and programmer intention. The
root cause of the violation could be manifold, e.g., an invalid pointer computation,
a memory object that was freed too early, or a mishap in an integer computation.
Defenses therefore opt to terminate the offending thread or process, potentially
causing denial of service but protecting the integrity of the system and the confi-
dentiality of data.

Starting from a defender’s perspective, we follow Figure 1.1 and discuss different
security policies, beginning with memory safety at a high level in Section 1.1,
followed by data integrity in Section 1.2, confidentiality in Section 1.3, and data-
flow integrity in Section 1.4. Security policies running on a system can be enforced

4 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

through different mechanisms, which are introduced in Section 1.5. Moving to the
adversary’s point of view, we introduce techniques and practices that achieve the
desired level of control in Section 1.6. These techniques allow understanding of
fundamental attack vectors used to compromise systems through memory safety
vulnerabilities. We then finish with concluding remarks in Section 1.7.

1.1 Memory Safety
Memory corruption, the absence of memory safety, is the root cause of current high-
profile attacks and the foundation of a plethora of different attack vectors. Memory
safety is a program property that guarantees memory objects can only be accessed
with the corresponding capabilities. At an abstract level, a pointer is a capability to
access a certain memory object or memory region [Hicks 2014, Nagarakatte et al.
2009]. A pointer receives capabilities whenever it is assigned and is then allowed to
access the pointed-to memory object. The capabilities of a memory object describe
the size or area, validity, and type of the underlying object. Capabilities are assigned
to a memory object when it is created. The initial pointer returned from the memory
allocator receives these capabilities and can then pass them, through assignment,
to other pointers. Memory objects can be created explicitly by calling the allocator,
implicitly for global data by starting the program, or implicitly for the creation of a
stack frame by calling a function. The capabilities are valid as long as that memory
object remains alive. Pointers that are created from this initial pointer receive the
same capability and may only access the object inside the bounds of that object, and
only as long as that object has not been deallocated. Deallocation, either through
an explicit call to the memory allocator or through removal of the stack frame by
returning to the caller, destroys the memory object and invalidates all capabilities.

Pointer capabilities cover three areas: bounds, validity, and type. The bounds of
a memory object encode spatial information of the memory object. Spatial memory
safety ensures that pointer dereferences are restricted to data inside the memory
object. Memory objects are only valid as long as they are allocated. Temporal safety
ensures that a pointer can only be dereferenced as long as the underlying object
stays allocated. Memory objects can only be accessed if the pointer has the correct
type. Type safety ensures that the object’s type matches one of the compatible types
according to type inheritance. The C/C++ family of programming languages allows
invalid pointers to exist, i.e., a pointer may point to an invalid memory region that
is out of bounds or no longer valid. A memory safety violation only triggers when
such an invalid pointer is dereferenced.

1.1 Memory Safety 5

Memory safety can be enforced at different layers. Language-based memory
safety makes it impossible for the programmer to violate memory safety by, e.g.,
checking each memory access and type cast (Java, C#, or Python) or enforcing a
strict static type system (Rust). Systems that retrofit memory safety to C/C++ are
commonly implemented at the compiler level due to the availability of pointer and
type information. Techniques that retrofit memory safety for C/C++ must track each
pointer and its associated bounds for spatial memory safety, validity for temporal
memory safety, and associated type for type safety.

1.1.1 Spatial Memory Safety
Spatial memory safety ensures that a pointer can only dereference data that is
within the bounds of the assigned object. If an out-of-bounds pointer is deref-
erenced, a spatial memory safety violation is signaled, terminating the process.
Language-based solutions like CCured [Necula et al. 2005] and Cylcone [Jim et al.
2002] enforce a stricter type system on top of the loose typing that C/C++ offer
and make memory safety constraints explicit. Compiler-based solutions like Soft-
Bound [Nagarakatte et al. 2009] allocate a disjoint metadata store to track all point-
ers and their associated bounds. In addition, both language-based and compiler-
based solutions instrument pointer assignment and pointer arithmetic to prop-
agate the underlying bounds information and prepend every dereference with an
explicit check of whether the pointer is still valid. SoftBound favors a disjoint meta-
data storage where the address of the pointer is used to look up metadata infor-
mation. Disjoint metadata eases portability and enables seamless integration of
memory safety solutions [Nagarakatte et al. 2015].

Spatial memory safety violations happen if a pointer is incremented past the
bounds of the object, e.g., in a loop or through pointer arithmetic:

char *c = (char*)malloc(16);

for (int i = 0; i <= 16; i++) {

// buffer overflow for i == 16

*c = i;

}

// violation through a direct write

c[16] = 42;

1.1.2 Temporal Memory Safety
Temporal memory safety ensures that the pointer can only reference live memory
objects. If the underlying memory object is no longer valid, e.g., because it is freed
(for heap objects) or the function returned (for stack objects), dereferencing a

6 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

stale pointer results in undefined behavior. CETS [Nagarakatte et al. 2010] retrofits
temporal memory safety on top of C/C++. In addition to metadata for each pointer,
CETS also allocates metadata for each object. Both pointer and object receive an
associated identifier, and only if the identifiers match is the object valid and the
dereference operation allowed.

Temporal memory safety violations happen if the underlying memory object was
freed:

char *c = malloc(16);

char *d = c;

free(d);

// violation as c no longer points to a valid object

c[12] = 23;

1.1.3 Type Safety
Type safety is a programming language concept that assigns each allocated mem-
ory object an associated type. Typed memory objects may only be used at program
locations that expect the corresponding type. Casting operations allow an object
to be interpreted under a different type. Casting is allowed along the inheritance
chain. Upward casts (upcasts) move the type closer to that of the root object so
that the type becomes more generic, while downward casts (downcasts) special-
ize the object to a subtype. For example, consider an inheritance chain from the
root object Animal over Mammal to the specialized type Ape. If we have a ref-
erence of type Mammal, an upcast could cast a Mammal into an Animal and a
downcast could cast a Mammal into an Ape. The type hierarchy is specified by the
programmer according to the semantics of the source programming language. In
low-level languages like C or C++, type safety is not explicit and a memory object
can be reinterpreted in arbitrary ways. C++ provides a vast set of type cast opera-
tions. Static casts are only checked at compile time to ensure that the two types
are compatible. Dynamic casts execute a slow runtime check, which is only possi-
ble for polymorphic classes with virtual functions; otherwise, no vtable pointer—
to identify the object’s type—is available in the memory object layout. Reinter-
pret casts allow reclassification of a memory object under a different type. Static
casts have the advantage that they do not incur any runtime overhead but are
purely checked at compile time. Static casts lack any runtime guarantees, and ob-
jects of the wrong type may be used at runtime. For example, Listing 1.1 shows
a type violation where an object of the base type can be used as a subtype after
an illegal downcast. Reinterpretation of casts allows the programmer to explic-

1.1 Memory Safety 7

class B {

int b;

};

class D: B {

int c;

virtual void d() {}

};
.
.
.

B *Bptr = new B;

// Type violation:

D *Dptr = static_cast<D*>B;

Dptr->c = 0x43; // Type confusion!

Dptr->d(); // Type confusion!

Listing 1.1 Type violation after illegal downcast.

itly break the underlying type assumptions and reassign a different type to the
pointer or underlying memory object. Due to the low-level nature of C++, a pro-
grammer may write to the raw memory object and change the underlying object
directly.

Ideally, a program can statically be proven type safe. Unfortunately, this is not
possible for C/C++ and defenses have to resort to runtime checks. If we make all
casts in the program explicit and check them for correctness, then we can ensure
that the runtime type conforms to the statically assumed type at compile time.
UBSan [Project 2013] follows this approach. Unfortunately, enforcing dynamic
casts results in prohibitive performance overhead and compatibility issues. UBSan
requires manual blacklisting for non-polymorphic classes. In addition, the existing
type-checking infrastructure in C++ was optimized under the assumption that only
few runtime checks would be executed and is therefore inherently slow. CaVer [Lee
et al. 2015] vastly extends the coverage of UBSan by using a disjoint metadata
table (similar to other memory safety techniques) to allow explicit type checks
on non-polymorphic objects as well. Unfortunately, the instrumentation results
in prohibitively high performance overhead. Also, CaVer only supports objects on
the heap allocated through the new operator; stack objects (alloca) and other
heap objects (malloc) are not supported. TypeSan [Haller et al. 2016] extends
coverage over CaVer and reduces performance overhead, enabling an always-on
type-checking solution.

8 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

1.2 Data Integrity
Data integrity is a policy that ensures integrity of data in the process’s address space.
For efficiency reasons, individual data integrity policies only protect a subset of
data. The protected data may depend on the underling type, location, or when it
was allocated. Defense mechanisms often rely on integrity as a basis, i.e., protecting
code regions or data regions against modification. For example, any defense that
relies on some form of runtime check relies on code integrity as the adversary could
otherwise simply rewrite the underlying code, removing the checks. Data integrity
is often implemented through hardware extension, e.g., virtual memory allows set-
ting data on a per-page basis as readable, writable, and/or executable. Each virtual
memory page may have different permissions, and the memory management unit
issues a page fault if the permissions do not match, e.g., a read-only page is writ-
ten, an unmapped page is read, or control is transferred to a non-executable page.
Software techniques can increase the flexibility and granularity but usually result in
higher overhead. Write-Integrity Testing (WIT) [Akritidis et al. 2008] is a software
integrity approach. WIT uses points-to analysis at compile time to assign a label
to each object and to each memory write. At runtime, the label of each object is
recorded and write instructions verify that the labels match. The effectiveness of
WIT is limited by the completeness and over-approximation of the points-to analy-
sis when individual labels are merged due to imprecision. Software-based Fault
Isolation (SFI) [Wahbe et al. 1993, Hiser et al. 2006, Kiriansky et al. 2002, Ford and
Cox 2008, Payer and Gross 2011, Payer 2012, Yee et al. 2009] allows a fine-grained
separation and protection of code and data through instrumentation (and verifica-
tion) of the code. Software masking, a form of SFI, can protect a certain memory
area from adversary access by masking each pointer before it is dereferenced. Such
a masking scheme can be implemented by prepending each dereference with a
logical AND instruction of the memory address.

Most systems enforce data integrity for code and a subset of data. Code is gen-
erally marked executable and immutable. For data, the subset of immutable data,
such as const objects, is generally marked read-only, as are support data structures
used by the dynamic loader, such as symbol tables, linkage tables between different
libraries, or the kernel export table.

1.2.1 Code Integrity
Code integrity enforces that existing code in a process is immutable. Combining
non-executable data (e.g., through virtual memory) and code integrity results in
W ⊕ X—writable xor executable data [de Raadt 2005, PaX Team 2004b]. Data Execu-

1.2 Data Integrity 9

tion Protection (DEP) [Andersen and Abella 2004] can be implemented in two ways:
through non-executable data or by instruction set randomization. Non-executable
data ensures that only well-marked regions that contain code can be executed.
Before the introduction of the no-execute flag on commodity hardware by AMD
and Intel around 2006, protection against code injection relied on a combination
of segmentation and software techniques [van de Ven 2004], similar to software-
based fault isolation [Wahbe et al. 1993, Hiser et al. 2006, Kiriansky et al. 2002,
Ford and Cox 2008, Payer and Gross 2011]. Code integrity works well for static
programs but is inherently incompatible with just-in-time compilation, dynamic
library loading, and binary translation. These features require changing code at
runtime, making the enforcement of code integrity policies challenging. For ex-
ample, an adversary may have a small window of opportunity to compromise code
while it is writable. Also, protection of just-in-time compiled code remains an open
problem, with some defenses trying to contain control flow to the area where code
is dynamically generated [Niu and Tan 2014b].

1.2.2 Code-Pointer Integrity
Ideally, full memory safety would stop all forms of memory corruption, but it is cur-
rently prohibitively expensive. Code-Pointer Integrity (CPI) [Kuznetsov et al. 2014a]
is an integrity policy that enforces full safety for a subset of data (code pointers).
CPI separates control data structures from non-control data structures and en-
forces that only program code that is supposed to change control data structures
is allowed to do so. Code that handles data is not allowed to change code point-
ers, i.e., a data pointer is forbidden to modify a code pointer. The CPI mechanism
uses a type-based analysis to identify sensitive pointers that must be protected. The
compiler analysis classifies each pointer as a sensitive pointer or as a data pointer.
Sensitive pointers are code pointers and the transitive closure of any pointer point-
ing to sensitive pointers. The set of sensitive pointers is then protected through
memory safety checks, carving out a subset of protected data that includes all code
pointers and any data that may be used to modify code pointers. Protecting only
a subset of all data allows CPI to drastically reduce the overhead while protecting
against any control-flow hijack attack or modification of a code pointer through a
memory safety violation. Note that CPI also relies on code integrity, and the mech-
anism works well for code pointers on the heap or in global data.

1.2.3 Stack Integrity
A thread’s stack is a data structure where buffers and code pointers are frequently
allocated in close proximity to each other. Protecting code pointers against targeted

10 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

overwrites and buffer overflows is challenging due to the volatility and frequent
changes. Stack-based protections also face the challenge of frequent allocations
and deallocations of stack frames; the individual overhead must therefore be min-
imal. Stack integrity ensures that data on the stack remains integrity protected
against illegal modifications.

Strong protections for function returns enforce stack integrity by leveraging the
relationship between function calls and returns. A mechanism that enforces stack
integrity ensures that any backward-edge transfers can only return to the most re-
cent prior caller. This property can be enforced by storing the prior call sites in
a shadow stack or guaranteeing memory safety on the stack, i.e., if the return in-
struction pointers are immutable, then stack integrity trivially holds. Control-flow
enforcement for function returns is “easier” than for indirect function calls because
function calls and returns form a symbiotic relationship that can be leveraged in
the design of the defense, i.e., a function return always returns to the location of
the previous call. Such a relationship does not exist for indirect function calls. De-
pending on the mechanism, at least return pointers are protected by shadow stacks
[Payer et al. 2015c, Dang et al. 2015] and at best the majority of data for safe stacks
[Kuznetsov et al. 2014a].

1.3 Confidentiality
Defenses based on confidentiality are probabilistic: if a data value is unknown, the
adversary is restricted to guessing the correct value. For defenses that hide memory
addresses, randomization results in a search space of 1

232 for 32-bit systems or 1
264 for

64-bit systems and is highly unlikely to succeed. While practical implementations
cannot leverage the full virtual memory space, it remains large enough in practice.
Randomization-based defenses hide locations of sensitive data, e.g., code pointers,
flags, or privileged data, from an adversary. Through the use of virtual memory,
data can be spaced out in a vast address space where the majority of pages remain
unmapped. Without knowing the precise address, an adversary will likely trigger a
segmentation fault when trying to guess the correct location. All modern systems
use Address Space Layout Randomization (ASLR) [Durden 2002, Bhatkar et al. 2003,
Bhatkar et al. 2005] to randomize and hide the location of the base addresses of
individual segments, e.g., data regions, code regions, and loader data structures
of individual shared libraries, the heap, dynamically allocated memory areas, and
the stacks of individual threads. Knowing neither the absolute addresses nor the
offsets between individual regions, adversaries must rely on either just-in-time
exploit construction [Snow et al. 2013] or some form of information leak or side
channel to infer the addresses.

1.4 Data-Flow and Control-Flow Integrity 11

For code, randomization of the base address of the code region is often not
enough, as adversaries can recover the locations of all functions with a single leaked
code pointer if they know the relative offset to the desired function. For a single
distribution or operating system, all installations generally share the same files,
which allows adversaries to learn such offsets. Fine-grained code randomization
schemes [Kil et al. 2006, Hiser et al. 2012, Wartell et al. 2012, Bigelow et al. 2015,
Crane et al. 2015, Crane et al. 2015, Larsen et al. 2014] address the problem of well-
known intra-file offsets by diversifying files on a per-system or per-process basis
by permuting functions and basic blocks to increase the randomness inside single
code regions. These systems introduce fine-grained diversity between individual
instances of the program and may dynamically rediversify at specific intervals. Data
Space Randomization (DSR) [Bhatkar and Sekar 2008, Cowan et al. 2003] increases
diversity for data, changing the data or pointer representation dynamically by either
encrypting the pointer or introducing an additional layer of indirection to hide the
actual data regions from the adversary.

Stack canaries [Hiroaki and Kunikazu 2001] are an early attempt at stack in-
tegrity that relies on confidentiality of the canary. Random values are placed before
return addresses on the stack. Stack canaries are integrity checked before the func-
tion returns to the caller. If an adversary uses a stack-based continuous buffer
overflow [One 1996] to hijack control flow, then the canary is corrupted and the
check before the return will fail. Unfortunately, it does not protect against direct
targeted overwrites of the return address.

All randomization-based defenses are prone to information leaks; if an adver-
sary can leak and infer the location or value of the protected data, then the defense
can be bypassed. Randomization-based defenses are usually an additional step
the adversary needs to compromise, making the attack harder and less likely to
succeed. Recently, several attacks have shown that information hiding only gives
limited security and adversaries can often recover the target addresses if a larger
piece of data (such as a stack or metadata table) is hidden in the virtual address
space [Göktaş et al. 2016, Oikonomopoulos et al. 2016, Evans et al. 2015a].

1.4 Data-Flow and Control-Flow Integrity
Data-flow and control-flow integrity both ensure that data values are valid. Com-
pared to integrity, flow integrity ensures the security property not when data is
written but when data is read. Every time a data value is used, a flow integrity check
ensures that the value is benign.

Instead of preventing data corruption, Data-Flow Integrity (DFI) [Castro et al.
2006] detects corruption by checking read instructions. This prohibits corrupted

12 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

data from being used in computations but allows data in the process to be
corrupted through memory safety violations. An adversary can use a corrupted
pointer to modify a data value, but the corrupted value cannot be used in a later
computation. DFI enforces reaching definitions for data values. Only program lo-
cations that are supposed to write a data value pass the check whenever data is
read. DFI records the location for each memory write. For each read operation, DFI
encodes the set of benign write locations and, at runtime, checks if the last write to
that location came from such a benign location. In program terms, when reading
the isAdmin flag, the read check ensures that the value was last written from a code
location that is allowed to write to that address. By delaying the check until the read
instruction, DFI can achieve lower overhead than memory safety. Compared to WIT,
DFI protects read instructions instead of write instructions. DFI shares the same
limitations due to a similar points-to analysis and over-approximation of merged
labels.

Control-Flow Integrity (CFI) detects control-flow hijacking attacks by limiting
the targets of control-flow transfers. Since the initial idea for the CFI defense mech-
anism [Abadi et al. 2005a] and the first (closed source) prototype were presented
in 2005, a plethora of alternate CFI-style defenses have been proposed and imple-
mented (see Burow et al. [2016], Burow et al. [2017] for a survey). Any CFI mech-
anism consists of two abstract components: the often static analysis component
that recovers the Control-Flow Graph (CFG) of the application with different levels
of precision and the dynamic enforcement mechanism that restricts control flows
according to the generated CFG (see Figure 1.2).

Listing 1.2 shows a simple program with five functions. The foo function uses a
function pointer, and the CFI mechanism injects both a forward-edge (e.g., indirect
function call) and a backward-edge (function return) check. The function pointer
points to either bar or baz. Depending on the forward-edge analysis, different sets
of targets are allowed at runtime.

CHECK _ RET();
return 7

CHECK(fn);
(*fn)(x);

Figure 1.2 A CFI mechanism restricts control-flow hijacking to targets that are valid according to
a pre-determined control-flow graph (black arrows). All other targets are rejected (red
arrows).

1.4 Data-Flow and Control-Flow Integrity 13

void aa();

void ab();

void ac();

void ad(int, int);

void foo(int usr) {

void (*func)();

// func points to either bar or baz

if (usr == MAGIC)

func = aa;

else

func = ac;

// forward-edge CFI check

// depending on the precision of CFI:

// a) all functions {aa, ab, ac, ad, foo} are valid

// b) functions with prototype "void (*)()" are valid

// i.e., {aa, ab, ac}

// c) only address-taken functions are valid, i.e., {aa, ac}

CHECK_CFI_FORWARD(func);

func();

// backward-edge CFI check

CHECK_CFI_BACKWARD();

}

Listing 1.2 Simple program that showcases different granularities of precision for CFI
mechanisms. Depending on the precision of the static analysis, only a subset of
targets is valid.

For forward edges, the CFG generation enumerates all possible targets, often
based on information from the source language such as symbol information, func-
tion prototypes, or class inheritance information. Switch statements in C/C++ are a
good example as the different targets are statically known and the compiler can gen-
erate a fixed jump table and emit an indirect jump with a bound check to guarantee
that the target used at runtime is one of the valid targets in the switch statement.
For indirect function calls through a function pointer, the analysis becomes more
complicated as the target may not be known a priori. Common source-based analy-
ses use a type-based approach and, looking at the function prototype of the function
pointer that is used, enumerate all matching functions. Different CFI mechanisms
use different forms of type equality and use, e.g., any defined function, functions
with the same arity (number of arguments), or functions with the same signature

14 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

(arity and equivalence of argument types) to distinguish valid call targets. At run-
time, any function with matching signature is allowed.

Just looking at function prototypes likely yields several collisions where func-
tions are defined that may never be called in practice. The analysis therefore over-
approximates the valid set of targets. In practice, the compiler can check which
functions are address taken, i.e., there is a source line that generates the address of
the function and stores it. The CFI mechanism may reduce the number of allowed
targets by intersecting the sets of equal function prototypes and the set of address-
taken functions. For virtual calls, i.e., indirect calls in C++ that depend on the type
of the object and the class relationship, the analysis can further leverage the type of
the object to restrict the valid functions, e.g., the default constructors of all classes
have the same signature but only the constructors of the subset of related classes
are feasible.

The constructed CFG for the forward edge is stateless, i.e., the context of the
execution is not considered and each control-flow transfer is independent of all
others. On one hand, at runtime only one target is allowed for any possible transfer,
namely, the target address currently stored at the memory location of the code
pointer. CFG construction, on the other hand, over-approximates the number of
valid targets with different granularities, depending on the precision of the analysis.
Some mechanisms take path constraints into consideration [Niu and Tan 2015,
van der Veen et al. 2015] and check (for a limited depth) if the path taken through
the application is feasible by using a dynamic analysis approach that validates the
current execution [van der Veen et al. 2015]. So far, only a few mechanisms look at
the path context as this incurs dynamic tracking costs at runtime.

CFI can be enforced at different levels. Sometimes the analysis phase (CFG
construction) and enforcement phase even overlap [van der Veen et al. 2015, Payer
et al. 2015c], for instance, when considering path constraints. Most techniques
have two fundamental mechanisms, one for forward-edge transfers and one for
backward-edge transfers. Figure 1.2 shows how CFI restricts the set of possible
target locations by executing a runtime monitor that validates the target according
to the constructed set of allowed targets. If the observed target is not in that set,
the program terminates. For forward-edge transfers, the code is often instrumented
with some form of equivalence check. The check ensures that the target observed
at runtime is in the set of valid targets. This can be done through a full set check or
a simple type comparison that, e.g., hashes function prototypes and checks if the
hash for the current target equals the expected hash at the call site. The hash for
the function can be embedded inline in the function, before the function, or in an
orthogonal metadata table.

1.5 Policy Enforcement 15

Most mechanisms for the forward edge are stateless and allow an attacker to
redirect control flow to any valid location as identified by the CFG analysis. Limiting
the size of the target sets constrains the attacker on the forward edge. Future exten-
sions of CFI should become context sensitive to increase the protection guarantees
for the forward edge. If implemented correctly (i.e., considering language-specific
information to increase precision [Schuster et al. 2015] and building the analysis on
high-level data available at compile time), CFI is an efficient mitigation that con-
strains the control flow of the process, protecting against control-flow hijacking.
Adversaries may still corrupt memory and data-only attacks are still in scope. For
the forward edge, a strong mechanism must consider language-specific semantics
to restrict the set of valid targets as much as possible.

Backward-edge transfers are harder to protect than forward-edge transfers as
they require context sensitivity to be effective. When using a stateless, context-
insensitive approach, the attacker may redirect the control flow to any valid call site
when returning from a function [Carlini and Wagner 2014, Davi et al. 2014, Göktas
et al. 2014a, Carlini et al. 2015e]. This imprecision often leaves enough targets for an
attacker. The backward edge should therefore be protected through a stack integrity
mechanism like a shadow stack or safe stack.

1.5 Policy Enforcement
Security defenses rely on a set of assumptions about the generated code and the
runtime system. Most assumptions are only encoded indirectly (if at all) and not en-
forced throughout the software stack. Due to the complexity of the overall software
stack, formal verification of components is restricted to high assurance domains
with notable exceptions, including the CompCert verified compiler and the seL4
verified kernel, efforts that cannot be repeated for all software.

Many defenses rely on immutable code and non-executable memory regions.
These two constraints can be enforced by hardware at the page table level but do not
always hold due to exceptions. Another constraint that many code-reuse defenses
depend on are immutability of vtables, jump tables, and other sensitive data. Even
if the defense ensured that the assumption held at the compiler level where the
initial transformation/instrumentation was carried out, there are no guarantees
that the assumption remains enforced at runtime. Any software along the stack,
compiler optimizations, assembler, linker, runtime loader, or operating system,
may break the assumption. For example, the dynamic loader may copy read-only
data into a writable section at runtime that then remains writable [Ge et al. 2017],
favoring compatibility and performance over security. If a vtable of a class is defined

16 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

in a library but the executable implements the constructor, the loader relocates
the vtable to a writable data section in the executable at runtime. An attacker may
then freely modify the actual vtable code pointers while defense mechanisms like
CFI will verify the correctness of the underlying vtable pointer. Another example
is a compiler optimization that removes an inserted security check based on the
assumption of certain language semantics or a certain memory model. While the
compiler is free to do so according to the programming language, an attacker need
not adhere to the semantics of the programming language [D’Silva et al. 2015].

Due to compatibility and performance trade-offs, full memory safety is rarely
used in practical systems. As other defenses are not complete, allowing either
remaining attack vectors or partial attacks, secondary defenses are needed. In ad-
dition, layering defenses can decrease the trust needed in a defense mechanism.
Secondary defenses like intrusion detection, logging, auditing, or system call mon-
itors allow a second line of defense to detect if a program is compromised.

System call monitors [Provos 2003, Goldberg et al. 1996, Alexandrov et al. 1999,
Cowan et al. 2000, Acharya and Raje 2000, Bauer 2006, Fetzer and Suesskraut
2008, Watson et al. 2010] enforce a per-application policy that limits the damage a
compromised process can do to the system, e.g., limiting the commands that can
be executed and files that can be accessed. Such monitors can be implemented
through various enforcement mechanisms, from in-kernel solutions [Wright et al.
2002] to ptrace-based solutions.

1.6 An Adversary’s Toolkit
Adversaries have a clear target in mind when designing attacks. The attack usually
follows the simplest path that achieves the desired target under the constraints of
the adversary. The goals of the adversary are either to leak information or to gain
certain privileges on a system.

Ideally, memory safety (Section 1.1) stops all attacks by detecting or protecting
against the initial memory safety violation. As a first step, the adversary needs to
modify the process state, leveraging the memory safety violation to corrupt code,
code pointers, data, or data pointers. At the level of memory safety, the adversary
does not have any capabilities to compromise the process state because the attack is
detected when an invalid pointer is dereferenced for reading or writing. Defenses
that target the integrity of code or data (Section 1.2) stop the attack at this level.
Having privileges to read or write arbitrary data is not enough; due to the large
virtual address space, defenses can “hide” sensitive or confidential data by shuffling
and randomizing their locations and values (Section 1.3). Defenses that protect

1.6 An Adversary’s Toolkit 17

data-flow integrity can still stop an attack despite a powerful adversary that has the
ability to change data and knows the addresses of the targets. Data-flow integrity
stops the attack whenever the modified data is used. For example, a defense may
stop the process whenever a modified code pointer is dereferenced and used to
transfer control (Section 1.4). If the attack is not stopped by a defense, then the
adversary may execute arbitrary computation in the compromised process. Security
policies at all these levels may be enforced through different techniques, relying on
either modified hardware, a compiler, or binary rewriting (Section 1.5). To make
permanent changes and to interact with the environment, the adversary must rely
on system calls or memory-mapped files. Auxiliary or high-level defenses evaluate
the state of a process externally to detect anomalies. For example, a defense may
check system calls and arguments used by the process to decide, for each system
call, if it is in the set of allowed system calls that this program may execute.

1.6.1 Code Corruption
Code corruption allows an adversary to control what code is executed. An adversary
may inject new code or modify existing code to change the computation of the
program to an arbitrary adversary-controlled computation. Code corruption and
code injection were the most common attack vector due to its relative simplicity
until the enforcement of code integrity. If the adversary has access to an executable
code region and control over the instruction pointer, code corruption is the most
straightforward attack vector. Code corruption allows the adversary to gain full
control over all memory in the process and to execute arbitrary system calls on
behalf of the process [One 1996, Durden 2002, Butler and Anonymous 2004]. See
Figure 1.3 for an example of a stack smashing attack that redirects control flow
to injected code in a stack-based buffer. Note that this attack assumes either that
no stack-based defenses or code injection defenses are present or that they can be
circumvented.

Modern systems enforce a separation between code and data regions through
an executable bit on a per-page basis. Code corruption modifies memory that is
mapped as executable, thereby changing existing instructions or inserting new
instructions into the executing program. Code injection adds new code to the
process memory by either remapping a data region as executable, writing data to an
executable region, or forcing a just-in-time code generator to emit specific code in
an executable area. For a successful code corruption attack, the adversary must both
circumvent code integrity and recover certain addresses, e.g., the location where
code should be emitted.

18 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

L
en

gt
h

 o
f u

se
r

in
p

u
t

tmp

0xffe0 0xffe0

0xffff

Injected code

(Don’t care)

Return address

1st argument: usr*

Next stack frame

Saved base pointer

Return address

1st argument: usr*

Next stack frame

Figure 1.3 Straightforward stack-based code injection and control-flow hijacking through the
stored return instruction pointer.

1.6.2 Control-Flow Hijacking
Control-flow hijacking happens whenever an adversary manages to redirect con-
trol flow of the program from expected locations (i.e., following control flow as
defined through the program’s control-flow graph) to an adversary-controlled lo-
cation. Common architectures like ARM, x86, x86-64, or MIPS allow two different
ways to transfer control (branch) from one location in memory to another location.
On the instruction level, control-flow transfers are encoded either direct or indi-
rect. For direct branches, the target is usually a relative distance from the current
instruction pointer, and the distance is encoded as an immediate offset in the in-
struction itself (e.g., 0x75 0x02 encodes a jne instruction–jump if the zero bit in
the flags is 0—which transfers control two bytes forward in execution flow for x86).
Under the assumption of code integrity, i.e., code remains immutable throughout
the execution of the program, an adversary cannot modify the target of these in-
structions as the immediate offset is encoded as part of the immutable instruction
itself. While the target of the branch is immutable, an adversary may control the
data that is used in the comparison to set the flags and thereby influence whether
or not the branch is taken for conditional branches.

Indirect branches allow transfer of control flow to an arbitrary location in mem-
ory. The target is usually encoded as an absolute address to a code location, and the
indirect control-flow transfer instruction dereferences a memory location or uses
the value in a register (e.g., 0xff 0xd0 encodes an indirect call through the eax/rax

1.6 An Adversary’s Toolkit 19

register on x86/x86-64). An adversary with knowledge of the location of the code
pointer may modify the target through an arbitrary memory write. Many platforms
have several types of indirect control-flow transfers for different use cases. For ex-
ample, function returns (ret on x86) transfer control indirectly to the address that
is at the top of the stack, indirect jumps (jmp on x86) transfer control to the speci-
fied address in a register or memory location, and indirect calls (call on x86) push
the current instruction pointer (after the call) to the stack and execute an indirect
jump. Indirect control-flow transfers are further divided into forward-edge control-
flow transfers and backward-edge control-flow transfers. Forward-edge control-flow
transfers direct control flow forward to a new location and are used in indirect jump
and indirect call instructions, which are mapped at the source code level to switch
statements, indirect calls, or virtual calls. The backward edge is used to return to a
location that was used in a forward-edge transfer earlier, i.e., when returning from
a function call. For simplicity, we do not discuss interrupts, interrupt returns, and
exceptions in detail.

Memory corruption allows the adversary to modify data outside of the program
semantics defined by the programmer. In programs, code pointers, data pointers,
sensitive data, and other data are not separated and they are all accessible through
the same address space. By changing program semantics, an adversary can use
any memory write to change a code pointer. The only isolation between different
data types is enforced by the semantics defined through the programmer. If the
program is buggy, these semantics may break down and allow arbitrary changes in
semantics, leading to so-called weird machines [Bratus et al. 2011]. For example,
the programmer may have intended to change a data value on the stack, but due
to a miscalculation through an offset that is under the adversary’s control, the
memory write ends up corrupting a code pointer on the process’s heap. In control-
flow hijack attacks, adversaries compromise a pointer, make it point to a memory
location that contains a code pointer, and corrupt the original code pointer with a
target address. When the program follows the corrupted code pointer, the control
flow is redirected from a benign intended program location to a location under the
adversary’s control and the control-flow hijack attack is complete.

1.6.3 Code Reuse
Adversaries use control-flow hijacking to redirect the control flow of the program
to alternate executable locations. With the widespread use of defenses enforc-
ing data execution prevention [Andersen and Abella 2004], adversaries had to
adjust attacks to achieve code execution. Whenever code injection is infeasible,

20 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

the attacker must resort to code reuse. In a code-reuse attack, the adversary re-
purposes existing code in alternate ways. The existing code of the application
is analyzed and broken into small components called gadgets. Gadgets usually
end in an indirect control-flow transfer (e.g., a return, indirect call, or indirect
jump instruction) to allow the adversary to redirect execution to the next gad-
get. Gadgets can be stitched together in arbitrary ways, allowing adversaries to
inject Turing-complete programs by modifying code pointers and supplemen-
tal data.

Over time, different flavors of code reuse have been developed. Starting with
return to libc [Wojtczuk 1998], privileged functions like mmap or mprotect were
reused to remap injected data as executable. Return-Oriented Programming (ROP)
[Roemer et al. 2012] generalized return to libc attacks to Turing-complete ROP pay-
loads, and Jump-Oriented Programming (JOP) [Checkoway et al. 2010, Bletsch et al.
2011] finally moved from return instructions to indirect jump or call instructions
to transfer control between individual gadgets. In response to advances in defense
techniques, attacks have been refined over the last couple of years [Schuster et al.
2015, Evans et al. 2015, Carlini et al. 2015e, Snow et al. 2013], becoming increas-
ingly powerful. Figure 1.4 shows a stack-based ROP attack. Note that the simplified
example assumes that no stack-based defenses are in place but code integrity pro-
tects against code injection in a stack-based buffer. In addition, the attacker needs
to know or learn the locations of the desired gadgets.

L
en

gt
h

 o
f u

se
r

in
p

u
t

tmp

0xffe0 0xffe0

0xffff 0xffff

(Don’t care)

(Don’t care)

Return address

insns … … ret

Gadget catalog (at static addrs)

insns … … ret

insns … … ret

insns … … ret

(Data)

Return address

(Data)

Return address

(Data)

Saved base pointer

Return address

1st argument: usr*

Next stack frame

Figure 1.4 Stack-based ROP attack, redirecting control flow to a set of gadgets. This example
assumes x86 calling conventions where all parameters are passed on the stack.

1.6 An Adversary’s Toolkit 21

1.6.4 Data-Only Attacks
Data-only attacks exclusively modify data that is never loaded into the program
counter of the CPU, excluding all code pointers. Data-only attacks may write to
data that is used in comparisons or control-flow decisions, but the modified data
never encodes a target address for the program counter. Data-only attacks can be
realistic threats [Chen et al. 2005] and allow adversaries to compromise systems
without hijacking the control flow, simply bending it along the valid control-flow
graph of the program [Carlini et al. 2015e, Evans et al. 2015, Hu et al. 2015]. By
modifying data, an adversary may still influence the control flow of the application.
For example, redirecting control flow to an if-branch instead of an else-branch
by modifying the tested condition through a memory corruption causes a trace
through the code that is not intended by the programmer.

Data-only attacks can be grouped into two different classes of increasing com-
plexity: non-control-data attacks and control-flow bending attacks. Non-control-
data attacks modify a sensitive data area like a flag or string. For example, an attack
could compromise the string that is passed to an exec() system call, enabling priv-
ileged mode for a JavaScript interpreter that allows unprivileged code from the web
to execute with local privileges, or change the user id of a process in the kernel to
0 (root). These are realistic threats that exploit a program that enforces different
privileges for individual components or restricts privileges inside the program it-
self. Control-flow bending attacks increase the sophistication of data-only attacks
by “bending” the control flow along valid edges in the control-flow graph across
multiple basic blocks. In the short C example below, assuming that no benign ex-
ecution would allow usr to point to the third argument a, a control-flow bending
attack could force, through the memory error in line 6, both of the if-branches to
execute.

1 void vulnerable(int *usr, int usr2, int a)

2 if (a) {

3
.
.
.

4 }

5 // memory corruption

6 *usr = usr2;

7 if (!a) {

8
.
.
.

9 }

10 }

22 Chapter 1 How Memory Safety Violations Enable Exploitation of Programs

In control-flow bending attacks, the adversary uses the side effects of the exe-
cuted basic blocks to modify the program state. The memory safety violation allows
an initial setup of the program state that in turn allows steering the control flow
along the path that executes the desired computations as side effects. For example,
targets for modification could be interwoven data structures and pointers.

1.7 Conclusion
Memory safety violations continue to pose an important threat despite a long
history of research. Existing solutions offer either complete protection but result
in prohibitive performance overhead and compatibility issues, or partial protection
with low overhead and high compatibility. Attacks can be stopped at several levels of
abstraction, offering different trade-offs between defense compatibility, strength,
and performance. Table 1.1 shows a summary of different defense mechanisms
and their overhead, strength, and compatibility.

Current systems leverage only code integrity, ASLR, and stack canaries. The
status quo protects against code injection attacks but lacks in protection against
code-reuse or data-only attacks. These advanced attack vectors are still possible
by circumventing probabilistic defenses like ASLR. In the near future, CFI and
stack integrity will likely be deployed, building on code integrity and increasing the
protection against code-reuse attacks. Going forward, we encourage the research
community to develop more principled defenses against memory corruption that
stop code-reuse attacks as well as data-only attacks.

1.7 Conclusion 23

Table 1.1 Summary of Defense Mechanisms and Corresponding Policies

Performance
Policy Technique Strength a Overhead b Compatibility b Weakness c

Spatial Memory
Safety

SoftBound,
CCured, Cyclone

Targeted 80% High Overhead

Temporal Memory
Safety

CETS Targeted > 100% High Overhead

Type Safety TypeSan, CaVer Targeted 5–50% High Overhead

Data Integrity Write Integrity
Testing

High 10–25% Composition Over-approximation,
unprotected reads,
field protection

Code Integrity Page flags Partial < 1% High Dynamically generated
code

Return Integrity Stack canaries Low < 5% High Information leaks,
direct writes

Data Space
Randomization

Data Space
Randomization
(DSR)

Partial 15–25% Composition Over-approximation,
information leaks

Address Space
Randomization

Address
Space Layout
Randomization

High < 10% High Information leaks

Data-Flow Integrity Data-Flow Integrity Partial 100–200% Composition Over-approximation

Control-Flow
Integrity

Control-Flow
Integrity

Targeted < 10% Composition Over-approximation

a. Strength lists the power of a mechanism: Targeted (completely stopping a type of memory corruption), High
(mostly covering an issue), Partial (partially covering an issue), Low (somewhat hindering the adversary).

b. Performance overhead and compatibility list reported performance impact and potential compatibility issues:
High (works for most software), Composition (does not work with shared libraries).

c. Weakness lists potential drawbacks of a policy.

2Protecting Dynamic Code
Gang Tan, Ben Niu

One important aspect of making Control-Flow Integrity (CFI) practical is to support
modularity. In the context of CFI, modularity refers to the ability to perform in-
strumentation of modules of an application separately, without considering other
modules, and to link instrumented modules into an executable on demand. Modu-
larity support is of crucial importance for accommodating dynamic linking, which
loads libraries at runtime and is frequently used in modern software systems since
it allows different software vendors to work on or update modules independently.
Just-In-Time (JIT) compilation also requires modularity support because a piece of
newly generated code by a JIT compiler can be considered a module, which is to be
“linked” with the JIT compiler.

In both dynamic linking and JIT compilation, not all code is available statically.
The code of a dynamically linked library is available only after the library has been
loaded at runtime, which may happen during the middle of a program execution;
in JIT compilation, the binary code of a function is available only after the function
has been compiled on the fly. We call this kind of code dynamic code since it is
available only after a runtime event.

Unfortunately, many CFI systems require all modules of an application, includ-
ing libraries, to be available at the static instrumentation time. They perform a
global analysis on all code to construct a global Control-Flow Graph (CFG). Instru-
mentation schemes in many CFI systems also assume global code properties. For
instance, instrumentation in the classic CFI [Abadi et al. 2005a] inserts identifiers
(representing a class of indirect branches and targets) before branch targets and
inserts checks before indirect branches to make sure the right identifiers accord-
ing to the CFG are at the targets. The identifiers are embedded as instructions in
code and cannot appear in the rest of the code. However, this property cannot be

26 Chapter 2 Protecting Dynamic Code

guaranteed without inspecting the whole program. Many other CFI instrumenta-
tion techniques also do not support modularity; the reasons for this are discussed
in Section 2.5.

In this chapter, we present a modular CFI system that extends CFI to support
dynamic code. We start with an overview of the main challenges and solutions when
dealing with dynamic code in Section 2.1. In Section 2.2, we present a compiler-
assisted, type-based scheme that allows efficient CFG construction in the presence
of dynamic code. In Section 2.3, we present a modular CFI system that supports
dynamic libraries by adopting the type-based CFG construction process and a
technique for supporting multi-threading. In Section 2.4, we show that, with some
adjustments, the modular CFI system can support JIT compilation. We discuss
related work in Section 2.5 and conclude in Section 2.6.

The main results of this chapter were published in previous conference pa-
pers [Niu and Tan 2014a, Niu and Tan 2014b] and in a Ph.D. dissertation [Niu 2015].
In this chapter, we streamline the presentation by integrating the previous papers
and by highlighting the most important ideas and messages that are of interest to
future CFI research. Certain details are omitted and interested readers are referred
to the previous papers. Furthermore, experimental results included in this chapter
may be different from those in the conference publications because we have made
improvements since their publication.

2.1 Overview of Challenges and Solutions
When designing a system that enforces CFI on programs that can load or generate
new code dynamically, there are a number of challenges the system needs to ad-
dress. We next highlight the main challenges and briefly discuss the solutions in
our modular CFI system.

2.1.1 Challenges of Supporting Modularity
In CFI, the enforced Control-Flow Graph (CFG) is the security policy, telling what
targets that an indirect branch can transfer its control to. We use an indirect branch
to refer to either an indirect call (a call via a register or memory operand), an indirect
jump (a jump via a register or memory operand), or a return instruction.

A traditional CFI system builds a static CFG for a program ahead of time. How-
ever, it is extremely difficult to build a static CFG when a program incorporates
dynamic code, simply because it is hard to predict what dynamic libraries will be
loaded or what binary code will be dynamically generated during JIT compilation.
Since a modular approach (which does not rely on global analysis or instrumen-

2.1 Overview of Challenges and Solutions 27

tation) is preferred, CFG construction should be deferred to the runtime, in an
incremental way. That is, whenever a new piece of dynamic code is incorporated
into the main program, we should construct a new CFG for the program with the
new code. It is worth mentioning that the control-flow edges for the code in the
main program may also change after new code is added. For example, suppose a
function named f in the program P contains a return instruction. The program’s
internal CFG allows the return instruction to return to any caller of f in P. After P is
linked with a library M, the return instruction can also return to any caller of f in M.

Therefore, the CFG has to be updated after a piece of dynamic code is incor-
porated. The dynamic nature of the CFG when dealing with dynamic code poses
multiple challenges:

. How to efficiently generate a new CFG with high precision when dynamic
code is incorporated. There are clearly a wide range of design choices for
generating the new CFG. Since an online algorithm is necessary, a good
choice has to balance efficiency and CFG precision.

. How to update the CFG safely and efficiently at runtime in the presence of
multithreading. When there are multiple threads, one thread may use the
current CFG to decide whether an indirect branch control transfer is legal,
while another thread may load a library and trigger an update of the CFG.
Therefore, we have to avoid the well-known read/write race problem when
dynamically updating the CFG.

. How to ensure that dynamic code is instrumented to respect the current
and future CFGs. Since we cannot trust dynamic code, a mechanism must
be there to check for its trustworthiness so that its indirect branch control
transfers respect the current CFG. Furthermore, since the CFG evolves during
program execution because of future dynamic code, the instrumentation
must be designed to accommodate future CFGs.

2.1.2 MCFI Solutions
We have designed a system called Modular CFI (MCFI [Niu and Tan 2014a]), which
accommodates dynamic code including dynamically linked libraries and Just-In-
Time (JIT) compiled code. Before delving into details, we outline how MCFI solves
the aforementioned challenges.

For runtime CFG generation, MCFI adopts a compiler-assisted, type-based
scheme. When compiling a module, MCFI takes the module’s source code and
propagates type information from source code to binary code. For library code
whose source code is available, the compilation is performed by a modified LLVM

28 Chapter 2 Protecting Dynamic Code

compiler. In the case of JIT compilation, a modified JIT compiler generates type
information for the JITTed code. As a result, an MCFI executable module contains
both binary code and type information, which will be used for CFG generation.
When MCFI modules are linked either statically or dynamically, their type infor-
mation is combined and used to generate a CFG. The CFG generation process is
type based; for instance, an indirect call through a function pointer is allowed
to target all functions whose types are compatible with the type of the function
pointer. Our experience suggests that the type-based process is efficient and gen-
erates higher-precision CFGs when compared to other CFI systems. Drawbacks
are that it requires source code and sometimes requires modest effort to adapt
type-unsafe source code.

For thread-safe CFG operations, MCFI wraps look up and update operations
into transactions, inspired by Software Transactional Memory (STM [Shavit and
Touitou 1995]). A CFG lookup transaction performs speculative reads (assuming no
CFG update transactions are running) and is extremely efficient. We have adapted
generic STM algorithms and designed a lightweight STM implementation that
performs transactions efficiently in MCFI’s context.

For ensuring the trustworthiness of dynamic code, MCFI has a verifier com-
ponent, which verifies that instrumentation is inserted into the dynamic code at
the right places. MCFI’s instrumentation scheme is designed so that when CFG
changes there is no need to patch the instrumentation. For that, MCFI represents
the CFG in separate tables outside the code region. When CFG changes, only those
tables need to be updated and the instrumentation in the code stays the same.

Overall, these ideas make MCFI efficient (with less than 5% overhead on aver-
age), support modularity, and generate high-precision CFGs. A CFI survey [Burow
et al. 2016] has independently verified these claims. Specifically, they found MCFI
generates the highest-precision CFGs among all current CFI systems, and its effi-
ciency is on par with other state-of-the-art systems (even though most other systems
lack the support of JIT compilation and dynamic libraries).

2.2 Type-Based CFG Generation
Generating CFGs for C/C++ applications is a seemingly easy task. However, it is
quite difficult to statically approximate control flows of many C/C++ features, in-
cluding calls through function pointers and virtual method calls, because their
control flows depend on runtime data. The matter is worse when dealing with dy-
namic code because not all code is available at once—only one module is available
at a time.

2.2 Type-Based CFG Generation 29

For a modular CFG generation approach, an MCFI module contains auxiliary
information for CFG generation, in addition to code and data. A module can be
the main application, a library, or a piece of code generated on the fly. When MCFI
modules are statically or dynamically linked, not only are their code and data linked
but their auxiliary information is also merged into the combined module. This
design allows modules to be independently instrumented and linked statically
or dynamically. The combined module can enforce a CFG that is built using a
combination of the individual modules’ CFGs.

There is a range of choices for what kind of auxiliary information MCFI can
attach to a module for CFG generation. The richer the auxiliary information is, the
better it can enable the generation of a precise CFG. On the other hand, richer
auxiliary information implies more analysis time is needed for generating and
merging the information and for producing a CFG from the information. Since
MCFI cannot afford long analysis time, there is a trade-off between CFG precision
and CFG generation efficiency.

MCFI attaches type information to modules and uses type matching for efficient
online CFG generation. Specifically, an MCFI module comes with the types of
its functions and its function pointers. The benefit of this design is that it can
efficiently generate a relatively precise CFG. Moreover, the type information for
an individual module can be generated by an augmented compilation toolchain.
Finally, combining type information of multiple modules during linking is a simple
union operation.

We next describe the type-based CFG generation scheme. We start by discussing
how types are used to compute control-flow edges out of indirect branches com-
piled from features in C. We then discuss CFG generation for C++ features, in-
cluding virtual method calls and exceptions. We finish by presenting under what
conditions our CFG generation process is sound, along with experimental results.
In the discussion, we present how control-flow edges are computed only for indirect
branches because control flows for direct branches and non-branching instructions
can be precisely computed and checked before code execution (and therefore do
not need instrumentation).

2.2.1 CFG Generation for C
The C language has many programming constructs that may be compiled to code
containing indirect branches. We next enumerate those and discuss how MCFI
handles them.

C Function Pointers. A function pointer in C points to some global function. A
function call through a function pointer at the C source-code level is typically

30 Chapter 2 Protecting Dynamic Code

implemented through an indirect call at the machine-code level, but the compiler
may implement it through an indirect jump if it is a tail call. For an indirect branch
(either an indirect call or an indirect jump) through a function pointer that points to
a function of type τ , MCFI allows it to call any function as long as (1) the function’s
address is taken in the code, and (2) the function’s type is some τ ′ that is equivalent
to type τ .

Taking a function’s address means that the function’s address is assigned to
a function pointer somewhere in the code. Note that function addresses can also
be taken at runtime by the libc function dlsym. Therefore, we changed dlsym’s
implementation so that before dlsym returns a valid function address, an MCFI
runtime trampoline is called to mark the function’s address as taken and update
the CFG so that function pointers with the equivalent type can legitimately call the
function. In a follow-up work [Niu and Tan 2015], we show that by carefully handling
address-taken events, we can further refine the CFG.

Returns. To compute control-flow edges out of return instructions, we construct a
call graph, which tells how functions get called by direct or indirect calls. Using the
call graph, control-flow edges out of return instructions can be computed: if there
exists an edge from a call node to a function, return instructions in the function
can return to the return address following the call node.

In addition, modern compilers perform tail-call elimination to save stack space.
If a return instruction immediately follows a call instruction during code emission,
the return is eliminated and the call is replaced with a jump. We handle this case
in the following way: if in function f , there is a call node calling g, and g calls h

through a series of tail jumps, then an edge from the call node in f to h is added
to the call graph. As a result, the return instructions in h can return to the return
address following the call node in f .

Signal Handlers. In Linux, signal handlers are usually not called by application
code1, so their return instructions do not return to the application code. Instead,
signal handlers return to a user-space code stub set up by the OS kernel and the code
stub invokes the sigreturn system call. MCFI provides new function attributes
for developers to annotate signal handlers in the source code, and the compiler
inlines the code stub into every signal handler during code generation. Each signal
handler is associated with a special type signature to ensure it never becomes an
indirect call target. This design helps mitigate SigReturn-Oriented Programming

1. If a signal handler is invoked by application code, we can change the code to duplicate the
handler so that the copy is never invoked by application code.

2.2 Type-Based CFG Generation 31

memcpy:
.
.
. instructions omitted

__mcfi_return_memcpy:

mcfi-ret # MCFI-instrumented return

.section MCFIMetadata,"",progbits

.ascii "memcpy : void* (*)(void*, void*, size_t)"

Figure 2.1 Metadata annotation for the assembly code of memcpy.

(SROP) attacks [Bosman and Bos 2014]. SROP attacks modify the signal-handling
stack (which stores the context information, including the program counter when
a signal is raised) in user space so that the execution of sigreturn may jump to
attacker-controlled locations. By inlining the code stub that contains sigreturn
in signal handlers, MCFI makes sigreturn system calls unreachable from other
application code. As a result, attackers need to trigger real signals to execute a si-
greturn system call; without the inlining, attackers could just transfer the control
to the code stub for executing a sigreturn.

Assembly Code. Some C programs may contain assembly code for performance
and for architecture-specific code. MCFI requires developers to manually anno-
tate the instructions in assembly code with type information and branch targets.
For example, some libc functions, such as memcpy, are implemented using man-
ually written assembly code for performance. Figure 2.1 shows part of memcpy’s
assembly-code implementation. The return instruction is changed to MCFI’s in-
strumented return instruction called mcfi-ret (the instrumentation will be ex-
plained later). To generate the CFG, type information needs to be added to the
assembly instructions of memcpy. Moreover, its instrumented return instruction
should be annotated so that the MCFI runtime knows which indirect branch per-
forms the function return operation for memcpy. To achieve these results, we insert
an MCFI-specific label __mcfi_return_memcpy for identifying memcpy’s instru-
mented return and add a string (enclosed in double quotes) in a newly created
section called MCFIMetadata to identify the type information.

Other Control-Flow Features in C. A longjmp in C returns (implemented through an
indirect-jump instruction) to the address set up by a setjmp call. MCFI connects
the longjmp’s indirect jump to the return addresses of all setjmp calls. Other
functions, such as setcontext and getcontext, are handled in a similar way.

32 Chapter 2 Protecting Dynamic Code

Switch and indirect goto statements are typically compiled to direct jumps or
jump-table-based indirect jumps; their targets are statically computed and embed-
ded in read-only code or jump tables, so they do not need instrumentation.

2.2.2 CFG Generation for C++
In addition to the cases we discussed for C, the C++ language has many more
programming features that may be compiled to code containing indirect branches.
We next enumerate those additional cases in C++.

Virtual Method Calls. C++ supports multiple inheritance and virtual methods. A
virtual method call through an object is usually compiled to an indirect call (or
an indirect jump with tail call optimization). A virtual call on an object is resolved
during runtime through dynamic dispatch. Which method it invokes depends on
the actual class of the object. Similar to SafeDispatch [Jang et al. 2014], MCFI
performs Class Hierarchy Analysis (CHA) [Dean et al. 1995] on C++ code. This
analysis tracks the class hierarchy of a C++ program and determines, for each class
C and each virtual method of C, the set of methods that can be invoked when calling
the virtual method through an object of class C; these methods might be defined in
C’s subclasses. MCFI allows a virtual method call to target all methods determined
by CHA. Also, note that to support C++ multiple inheritance, the compiler may
generate thunks [Itanium C++ ABI 2017], which are simple trampolines that first
adjust the this pointer and then jump to the corresponding virtual method. The
thunks may be used to fill virtual tables instead of their corresponding virtual
methods and therefore can be called by virtual method invocation as well. We
associate each thunk with the same meta-information as its corresponding virtual
method and add it to the class hierarchy as well for CFG generation.

Next we use a toy C++ example in Figure 2.2 to demonstrate the basic idea. We
define a class A and its subclass B as well as their virtual methods. In function fx,
virtual method foo is invoked with respect to a class A object pointer; in function
fy, foo is invoked with a class B object pointer. According to the class hierarchy,
a->foo() at line 16 possibly targets A::foo and B::foo, while b->foo() at line 19
can target B::foo. Note that a->foo() should not reach A::foo const at line 3 or
B::foo const at line 10, because their type qualifiers do not match: a->foo() calls
a non-constant virtual method, but A::foo const and B::foo const are constant
methods.

It should be pointed out that CHA is a whole-program analysis. To support
modularity, MCFI emits a class hierarchy for each module and combines modules’
class hierarchies at link time.

2.2 Type-Based CFG Generation 33

1 class A {

2 public:

3 virtual void foo() const {}

4 virtual void foo() {}

5 virtual void bar() const {}

6 virtual void bar() {}

7 };

8 class B : public A {

9 public:

10 virtual void foo() const {}

11 virtual void foo() {}

12 virtual void bar() {}

13 };

14
.
.
.

15 void fx(A *a) {

16 a->foo();

17 }

18 void fy(B *b) {

19 b->foo();

20 }

Figure 2.2 A C++ example of virtual method calls.

C++ Function Pointers. C++ supports two kinds of function pointers: (1) those that
point to global functions (similar to C) or static member methods of classes and
(2) those that point to non-static member methods. Function pointers of these
two kinds have different static types. Their target sets are disjoint and they are
handled differently by compilers. Figure 2.3 shows a code example of the two kinds
of function pointers.

Function pointer fp is of the first kind. It is assigned to the address of a global
function getpagesize at line 2. At line 3, the function pointer is invoked via an
indirect call (or indirect jump if it is a tail call). To identify its targets, MCFI adopts
a type-matching method (similar to how calls through functions pointers in C are
handled): an indirect branch via a function pointer that points a function of type
τ can target any global function or static member method whose static type is
equivalent to τ and whose address is taken in the code.

Function pointer memfp at line 9 is of the second kind, which is also called a
method pointer. The code reuses the class definitions in Figure 2.2. According to
the C++ semantics, we allow an indirect branch through such a method pointer

34 Chapter 2 Protecting Dynamic Code

1 typedef int (*Fp)();

2 Fp fp = &getpagesize;

3 std::cout << (*fp)();

4
.
.
.

5 typedef void (A::*memFp)() const;

6
.
.
.

7 void fz(const A *a) {

8 memFp memfp = &A::foo;

9 (a->*memfp)();

10 }

Figure 2.3 An example of C++ function pointers.

that points to methods of type τ to target any virtual or non-virtual member method
defined in the same class whose type is equivalent to τ , whose address is taken, and
whose type qualifiers such as const match the method pointer’s. (LLVM IR does
not support function type qualifiers, so we changed Clang and LLVM to propagate
C++ member method type qualifiers to the LLVM IR as metadata.) Moreover, for
each matched virtual member method, we search the class hierarchy to find in
derived classes all virtual methods whose types and qualifiers match and add those
functions to the target set, because, for example, if a B object pointer is passed at
line 7, B::foo const will be called. Consequently, the method pointer dereference
(a->*memfp)() at line 9 can possibly reach A::foo const, A::bar const, or
B::foo const in Figure 2.2 at line 3, 5, or 10, respectively.

Exception Handling. C++ exceptions are handled by compilers and libraries that
implement the Itanium C++ ABI. In this ABI, C++ exception handling is the joint
work of the compiler, a C++-specific exception handling library such as libc++abi,
and a C++-agnostic stack-unwinding library such aslibunwind. We next give a sum-
mary about how MCFI handles indirect branches involved in exception handling;
interested readers can refer to a previous publication [Niu and Tan 2014b] for de-
tails.

By analyzing carefully how the Itanium C++ ABI handles exceptions, all indi-
rect branch instructions involved in exception handling can be handled using the
strategies we have discussed (CHA and the type-matching method), except for one
indirect branch. During stack unwinding, if the current stack frame has a catch
clause that matches the type of the thrown exception, control is transferred to the

2.2 Type-Based CFG Generation 35

catch clause via an indirect branch; we call this indirect branch CatchBranch. If a
type-matching catch is not found, the stack unwinding should be continued. How-
ever, if there is a cleanup routine that is used to destroy objects constructed in try

statements, the cleanup routine needs to run before the unwinding continues. It
turns out that the same indirect branch (CatchBranch) is used to transfer the con-
trol to the cleanup routine, but with a different target address. For simplicity, our
implementation connects CatchBranch to all catch clauses and cleanup routines.
To support separate compilation, MCFI modifies the LLVM compiler to emit a table
recording addresses of all catch clauses and cleanup routines in each module, and
these tables are combined during linking.

If an exception object is caught but not rethrown, libc++abi invokes the ob-
ject’s destructor, which is registered when calling __cxa_throw. The invocation
is through an indirect call. Possible targets of this call in a module can be stati-
cally computed by tracking __cxa_throw invocations. As a result, MCFI’s compiler
emits these target addresses for each module and the runtime combines them at
link time.

Global Constructors and Destructors. The constructors of global and local static ob-
jects are invoked before the main function of a C++ program, and their destructors
are called after the main function returns. LLVM generates stub code for each such
object. The stub code directly invokes the constructor and registers the destructor
using either __cxa_atexit or atexit defined in libc. The addresses of the stub
code are arranged in the binary and iterated by an indirect call (called CtorCall)
in libc before main. After main, another libc indirect call (called DtorCall) iter-
ates the registered destructors to destroy objects. Both CtorCall and DtorCall’s
targets are statically computable by analyzing the compiler-generated stub code.

Lambda Functions. C++11 provides lambda functions, whose related control-flow
edges (returns) are also supported by our CFG generation. Compilers automatically
convert lambda functions to functors, which are classes with operator()methods
that are called by direct branches. The return edges of the operator() methods
can be handled in the same way as those of other functions.

2.2.3 CFG Soundness
Our method for CFG generation is type based. An indirect call through a function
pointer to a global function is allowed to call any global function whose type
matches the function pointer’s type. The class hierarchy analysis, which is used
to resolve virtual method calls, is also based on static types. As a result, if a C or

36 Chapter 2 Protecting Dynamic Code

C++ program misuses types using features such as arbitrary type casts, then our
CFG generation method may construct a CFG whose edges do not cover all dynamic
control flow of the program; enforcement of such a CFG would break the program’s
execution. We call such a CFG unsound.

We believe that MCFI can generate a sound CFG for a memory-safe C/C++ pro-
gram (for memory safety, see [Nagarakatte et al. 2009]) if the program satisfies a
compatibility condition: it has no bad type casts from or to types that contain func-
tion pointer types. Next we define this condition using the following simplified C
types:

τ := int | void | τ∗ | (τ1 → τ2) fptr | struct {τ1 f1; . . . ; τn fn}
We use τ∗ for regular C pointer types and “(τ1 → τ2) fptr” for types of pointers to

functions that take τ1 values and return τ2 values. The C standard routinely distin-
guishes pointers to functions from pointers to data; so we have different syntaxes
for them to avoid confusion. In C, “(τ1 → τ2) fptr” is written as “(τ2)(∗)(τ1)”. Type
“struct {τ1 f1; . . . ; τn fn}” is for a struct type with n fields and the ith field has name
fi and is of type τi.

We define a function has fptr(τ), which returns true if and only if τ contains a
function pointer type:

has fptr(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true if τ = (τ1 → τ2) fptr

false if τ = int or void

has fptr(τ1) if τ = τ1∗
has fptr(τ1) ∨ . . . ∨ has fptr(τn) if τ = struct {τ1 f1; . . . ; τn fn}

Then the compatibility condition is stated as follows: a type cast from a τ1

value to a τ2 value is compatible if ¬ has fptr(τ1) and ¬ has fptr(τ2). The condition
essentially enforces that values of function pointer types cannot be forged.

For C++, has fptr(τ) should be extended to cover the case when τ is a class:
it returns true if the class contains a virtual method because the implementation
of classes uses a virtual table pointer that points to a table with virtual method
pointers.2

Not every C/C++ program satisfies the above compatibility condition, so they first
need to be retrofitted to meet the condition. We built a Clang-based static checker

2. MCFI allows each virtual method call to reach any virtual method implementation according
to the class hierarchy; so the condition can be relaxed to allow type casts between two classes (or
class pointers) as long as there exists an inheritance path in the class hierarchy between the two
classes.

2.2 Type-Based CFG Generation 37

that can report incompatible type casts to facilitate the retrofitting process. The
checker is executed after Clang generates the Abstract Syntax Tree (AST), which
explicitly represents type casts.

We investigated how much effort it takes to make SPEC CPU2006 C/C++ pro-
grams and Google V8 comply with the compatibility condition. A detailed experi-
ence report can be found in a Ph.D. dissertation [Niu 2015]. In summary, we found
programs require little or no changes to make them compatible with MCFI’s CFG
generation mechanism. For Google V8, which has over 555,000 lines of code, we
modified only 10 lines using a wrapper approach. For the C programs in SPEC
CPU2006, we made 6 lines of code changes for perlbench, about 30 lines for gcc,
and 1 line for libquantum. We also tried our approach on the seven C++ programs
in SPEC CPU2006 as well as libc++, libc++abi, and libunwind for a total over
620,000 lines of code, only 35 lines of code (all in povray) needed to be changed to
generate sound CFGs. In addition, all the generated CFGs were tested on data sets
that come with those benchmarks.

2.2.4 CFG Precision
We measured the precision of the CFGs generated by MCFI. Table 2.1 shows
the numbers. The “IBs” column lists the total number of instrumented indirect
branches, with the number of those indirect branches that have targets shown in
parentheses. Some indirect branches may not have targets; for example, the libc
function aio_cancel is never called by any of the benchmarks, so its return in-
struction has nowhere to target. The “IBTs” column presents the number of all
indirect branch targets; the “EQCs” column presents the number of equivalence
classes of the indirect branch targets. Moreover, the “Avg IBTs / IB” column lists
how many targets an indirect branch has on average, and the “Avg IBs / IBT” col-
umn shows the number of indirect branches that could reach the same target on
average. As can be seen, MCFI supports fine-grained CFGs. The average targets per
indirect branch and average indirect branches per target are much less than coarse-
grained CFI, which could be as many as the number of indirect branch targets and
indirect branches, respectively. Further, indirect branches can reach more targets
in some programs (e.g., 403.gcc) than others, and it is because those programs
have function pointers that could point to many functions or have functions that
are called in many places. For example, 403.gcc defines many functions for emit-
ting instructions, and those functions are all indirectly callable and share the same
type signature.

38 Chapter 2 Protecting Dynamic Code

Table 2.1 CFG Statistics for SPEC CPU2006 C/C++ Benchmarks

Average

SPEC CPU2006 IBs (with matching targets) IBTs EQCs IBTs / IB IBs / IBT

400.perlbench 3,327 (2,399) 18,379 1,039 722 95

401.bzip2 1,711 (943) 4,065 505 33 8

403.gcc 6,108 (5,039) 50,413 2,321 1,244 125

429.mcf 1,625 (875) 3,852 493 34 8

433.milc 1,825 (1,030) 5,880 625 36 7

444.namd 4,796 (3,042) 17,620 1,314 154 27

445.gobmk 3,908 (3,119) 14,557 944 949 204

447.dealII 13,624 (8,361) 61,464 3,225 1,035 141

450.soplex 6,305 (4,407) 22,418 1,847 175 35

453.povray 6,275 (4,355) 28,738 2,027 374 57

456.hmmer 2,038 (1,136) 7,907 682 93 14

458.sjeng 1,777 (1,010) 4,827 560 32 7

462.libquantum 1,688 (917) 4,170 514 35 8

464.h264ref 2,455 (1,616) 7,047 793 41 10

470.lbm 1,612 (867) 3,840 485 35 8

471.omnetpp 7,791 (5,526) 35,772 2,203 456 71

473.astar 4,770 (2,994) 16,763 1,325 159 29

482.sphinx3 1,893 (1,071) 6,432 652 39 7

483.xalancbmk 31,167 (27,117) 97,265 7,970 1,103 308

Compared to coarse-grained CFI techniques with several equivalence classes
supported, MCFI’s CFGs can generate two to three orders of magnitude more equiv-
alence classes. For instance, CCFIR [Zhang et al. 2013] and binCFI [Zhang and Sekar
2013] allow an indirect call to target any function whose address is taken; therefore,
all such functions are included in one equivalence class. CCFIR and binCFI also
allow any return instruction to target any instruction following a call, combining
all return sites in one equivalence class. The classic CFI’s instrumentation [Abadi
et al. 2005a] can support a fine-grained CFG, but for implementation convenience
its CFG generation also allows all indirect calls to target any function whose address

2.3 Handling Dynamically Linked Libraries 39

is taken. NaCl [Yee et al. 2009] and MIP [Niu and Tan 2013] enforce chunk-based
CFI in which an indirect branch can target any chunk beginning; it enforces even
less-precise CFGs.

A Ph.D. dissertation [Niu 2015] presents other statistics about the generated
CFGs, including edge distribution among indirect branches and how precision can
be improved by disabling tail-call elimination.

2.3 Handling Dynamically Linked Libraries
The type-matching method generates a fine-grained CFG for an application in the
presence of dynamic code. The CFG is then enforced on the application. Next we
detail the major components in MCFI for the CFG enforcement, using dynamically
linked libraries as the motivating application; later on we show that the same com-
ponents can also accommodate JIT compilation. We start, however, with a discus-
sion about the threat model. MCFI adopts CFI’s concurrent attacker model [Abadi
et al. 2005a]. The model allows a strong adversary, which is treated as a separate
thread running in parallel with user threads. The attacker thread can read and write
any memory (subject to memory page protection). Consequently, the attacker can
corrupt writable memory between any two instructions in the user program. How-
ever, it is assumed that machine registers of a thread cannot be directly modified by
the attacker thread. The attacker can still affect registers indirectly by corrupting
memory. As an example, if the program reads from a region of writable memory
to a register, then the register’s value is under the attacker’s control because the
attacker can write any value to that region of memory.

In addition, to prevent arbitrary code execution, a trusted MCFI runtime en-
forces the invariant that no memory regions are both writable and executable at
the same time. The invariant is enforced when an application is initially loaded by
the runtime. The runtime sets up a separate code and data region. Code is loaded
into the code region, which is executable and readable but not writable. Note that
the code region can include some read-only data, such as jump tables. The data re-
gion is readable and certain parts are writable but not executable. The invariant also
holds when dynamically linking libraries. New libraries are loaded into unoccupied
parts in the code and data regions.

2.3.1 CFG Encoding: ID Tables
Following the classic CFI [Abadi et al. 2005a], MCFI encodes a CFG by first parti-
tioning indirect branch targets into equivalence classes and associates each with an
Equivalence Class Number (ECN). To remove the global ID uniqueness requirement

40 Chapter 2 Protecting Dynamic Code

in the classic CFI, ECNs are pulled out of the code section and stored in a runtime
data structure consisting of two separate tables. These tables are conceptually maps
from addresses to IDs, each of which contains an ECN and other components.

Encoding a CFG as separate ID tables has several benefits. First, IDs in the
tables can overlap with the numbers in the code section, eliminating the global
ID uniqueness assumption in the classic CFI. Second, the instrumentation code
before indirect branches is parameterized over the ID tables and remains the same
after loading libraries. Therefore, code pages for applications and libraries can
be shared among processes, saving memory and application launch time. Third,
centralized ID tables enable favorable memory cache effect and fast table updates
using parallel memory-copy mechanisms of the CPU.

MCFI maintains two ID tables that encode the CFG. The branch ID table, called
the Bary table, maps from an indirect branch location to the location’s branch
ID, which contains the ECN of the equivalence class of addresses the branch is
allowed to jump to in the CFG. The target ID table, called the Tary table, maps from
an address to an ID showing the equivalence class to which the address belongs.
With the ID tables, instrumenting an indirect branch is straightforward. Take the
example of a return instruction located at address l. The instrumentation can first
use the Bary table to look up the branch ID for address l, use the Tary table to look
up the target ID for the actual return address, and check whether the branch ID is
the same as the target ID.

We briefly discuss how an ID is encoded and how the two tables are represented
in memory. It is machine dependent and we discuss only the case for x86; more
details can be found in a previous publication [Niu and Tan 2014a]. An MCFI ID
is 8 bytes long and is stored at an 8-byte aligned memory address so that a single
x64 memory-access instruction can atomically access it. An ID contains a 28-bit
ECN in the higher four bytes, a 28-bit version number in the lower four bytes,
and eight reserved bits (which are those least significant bits of the eight bytes).
It allows 228 different equivalence classes in programs. The version number in
an ID supports table-access transactions and is used to detect whether a check
transaction should be aborted and retried. The ID-encoding scheme allows 228

different version numbers. MCFI inserts extra nop instructions into the program
to force indirect branch targets to be eight-byte aligned so that addresses that are
not eight-byte aligned cannot be possible indirect branch targets; consequently,
the tables have entries only for eight-byte aligned code addresses and the size of
a table is the same as the code size. Furthermore, the eight reserved bits in an ID
have fixed bit values “0, 0, 0, 0, 0, 0, 0, 1” and are there to prevent programs from
using indirect branch targets that are not eight-byte aligned. In particular, if an

2.3 Handling Dynamically Linked Libraries 41

indirect branch uses an address that is not eight-byte aligned, the eight-byte target
ID loaded from the Tary table will be invalid (i.e., it will not have the special bit
values in the least significant bits). Instrumentation before an indirect branch will
then be able to detect this and abort the indirect branch.

The Tary table is represented as an array of IDs indexed by code addresses. If a
code address is not a possible indirect branch target, the corresponding array entry
contains all zeros; otherwise, it contains the ID of the code address. This design
enables efficient lookups and updates. Recall that the Bary table conceptually
maps indirect branch locations to branch IDs. One observation is that instruction
addresses are known once they are loaded in memory. Therefore, when a module is
loaded into the code region, MCFI’s loader patches the code to embed constant Bary
table indexes that correspond to correct branch IDs in branch-ID read instructions.
In this design, the Bary table does not need entries for code addresses that do
not hold indirect branches (in contrast, the Tary table has all-zero entries even
for addresses that are illegal indirect branch targets). Furthermore, all branch IDs
loaded from the Bary table are valid IDs as long as the loader embeds the correct
table indexes in branch-ID read instructions.

2.3.2 Memory Layout and Table Protection
The Bary and Tary tables need to be protected at runtime so that application code
cannot directly change them. Figure 2.4 shows the memory layout of an applica-
tion protected with MCFI. The application should have been compiled and instru-
mented by MCFI’s compilation toolchain. The application and all its instrumented
libraries are loaded into a sandbox created by the MCFI runtime. The sandbox
can be realized using Software-based Fault Isolation (SFI [Wahbe et al. 1993]) or
hardware support (e.g., segmentation on x86-32). We use the scheme described
in ISboxing [Deng et al. 2015] to create the SFI sandbox. In detail, the sandbox
for running applications is within [0, 4 GB)3, and the MCFI compiler instruments
each indirect memory write instruction by adding a 0x67 prefix, which is the 32-
bit address-override prefix. The prefix forces the CPU to clear all upper 32 bits after
computing the target address. As a result, code in the sandbox cannot arbitrarily
execute or write memory pages outside the sandbox, but has to invoke trampo-
lines provided by the MCFI runtime; these trampolines allow the untrusted code to

3. The maximum sandbox size can be extended to 64 TB on x64 if the sandboxing technique in
PittSFIeld [McCamant and Morrisett 2006] is used or if the MCFI runtime is implemented as a
kernel module.

42 Chapter 2 Protecting Dynamic Code

Virtual address space

Code (RX)

RO-data (R)

Data (RW)

Shadow RO-data (W)

MCFI runtime

CFG (ID tables)%gs

Physical pages

SFI sandbox

Unmapped region
Page mapping

Figure 2.4 Memory layout of MCFI. “R,” “W,” and “X” appearing in parentheses denote the
Readable, Writable, and eXecutable memory page permissions, respectively. The “RO-”
prefix means Read-Only.

escape the sandbox safely. The runtime also maintains the invariant that no mem-
ory pages in the sandbox are writable and executable simultaneously. In addition,
the runtime guarantees that read-only data, such as jump tables, are not writable.
Consequently, those system calls that might subvert the invariant are replaced with
runtime trampolines. For instance, themmap, munmap, andmprotect system calls in
libc are all rewritten to invoke the relevant runtime trampolines that are checked.
The MCFI runtime and the encoded CFG, i.e., Bary and Tary tables, are stored out-
side the sandbox. The ID tables are read-only from the application’s perspective,
but writable by the runtime.

MCFI uses the %gs segment register to index both the Bary and Tary tables.
Inside the sandbox, MCFI always loads the code in [4MB, 4GB) to comply with
the x64 Linux ABI, and the region [0, 4MB) is always unmapped. MCFI allocates
[%gs+68KB, %gs+4MB) for the Bary table, and [%gs+4MB, %gs+4GB) for the Tary
table. MCFI unmaps [%gs, %gs+64KB) for trapping calls to the NULL pointer and
uses the page [%gs+64KB, %gs+68KB) for storing trampolines, which are pointers
to MCFI runtime services. Applications can be modified to jump to the trampolines

2.3 Handling Dynamically Linked Libraries 43

to safely escape the sandbox. For example, jmpq %gs:65536 would transfer the
control to the first trampoline MCFI installs.

Figure 2.4 also shows parallel mapping of some read-only data, which include
the GOT.PLT data in Linux. The PLT (Procedure Linkage Table) has a list of entries
that contain glue code emitted by the compiler to support dynamic linking. Code in
the PLT entries uses target addresses stored in the GOT.PLT table (GOT is short for
Global Offset Table). The GOT.PLT table is adjusted during runtime by the linker to
dynamically link modules. However, security weakness results from the GOT.PLT
table’s writability, as demonstrated by a recent attack [Davi et al. 2014].

To address this security concern, MCFI sets the GOT.PLT table to be read-only
inside the sandbox and creates outside the sandbox a shadow GOT.PLT table, which
is mapped to the same physical pages as the in-sandbox GOT.PLT table. All changes
to the GOT.PLT table are therefore performed by the MCFI runtime, which ensures
that each entry’s value is the address of either the dynamic linker or a function
whose name is the same as the corresponding PLT entry’s name. The parallel-
mapping scheme takes advantage of the virtual memory mechanism available to
user-space programs and can be achieved by shared memory mechanisms provided
by OSes (e.g., shm_open, ftruncate, and mmap libc calls in Linux). As we will later
see, the same parallel-mapping idea is used to support JIT compiled code.

2.3.3 CFG Enforcement: Transactions and Code Instrumentation
Since concurrent ID table reads and writes are possible, a synchronization mech-
anism must be designed for maintaining the consistency of the tables. Otherwise,
the tables may reach some intermediate state that allows for illegal control-flow
transfers. A simple lock-based scheme for accessing tables could be adopted, but it
would incur a large performance penalty due to MCFI’s table-read-dominant work-
loads: dynamic linking is a rare event compared to the use of indirect branches;
even in a JIT environment, such as Google’s V8 JavaScript engine, the number of
indirect branch executions is roughly 108 times the CFG updates triggered by dy-
namic code installation.

Our solution is to wrap table operations into transactions and use a custom form
of Software Transactional Memory (STM) to achieve safety and efficiency. We use
two kinds of transactions:

Check transaction (TxCheck). This transaction is executed before an indirect
branch. Given the address where the indirect branch is located and the
address that the indirect branch targets, the transaction reads the branch ID

44 Chapter 2 Protecting Dynamic Code

and the target ID from the tables, compares the two IDs, and takes actions
if the IDs do not match. This transaction performs only table reads.

Update transaction (TxUpdate). This transaction is executed during dynamic
linking. Given the new IDs generated from the new CFG after linking a library,
this transaction updates the Bary and Tary tables.

The reason why a transaction-based approach is more efficient is that the check
transaction performs speculative table reads, assuming there are no other threads
performing concurrent writes; if the assumption is wrong, it aborts and retries.
This technique suits our context well and provides needed efficiency.

The details of how transactions are implemented is in a previous publica-
tion [Niu and Tan 2014a]. We mention only that MCFI uses a transaction algorithm
that is customized for MCFI’s compact representation of IDs. MCFI could adopt
standard STM algorithms to implement the transactions. However, those algo-
rithms are generic and separate metadata (e.g., the version numbers) from real
data (the ECNs). As a result, they require multiple instructions for retrieving meta-
data and real data, and multiple instructions for comparing metadata and real
data to check for transaction failure and CFI violation. We micro-benchmarked the
TML [Dalessandro et al. 2010] algorithm, a state-of-the-art sequence-lock-based
STM algorithm particularly optimized for read-dominant workloads, and found it is
substantially slower than MCFI’s custom transaction algorithm, which puts meta-
data and real data in a single word. The compact representation enables MCFI
to use a single instruction to retrieve both real data and metadata and a single
instruction to check for transaction failure.

MCFI’s ID-encoding scheme supports 228 versions, and it might encounter the
ABA problem [Dechev 2011]. For example, an attacker may load over 228 modules
and exhaust the MCFI’s version number space. This is unlikely in practice, even
for JIT compiled code. Security is violated only if the program has at least 228 code
updates during a check transaction. To avoid the ABA problem, MCFI maintains a
counter of executed update transactions and makes sure it does not hit 228. After
the completion of an update transaction, if every thread is observed to have finished
using old-version IDs (when it invokes a system call or a runtime trampoline), the
counter is reset to zero.

2.3.4 Code Verification
We mentioned before that it is necessary to verify a piece of dynamic code such as a
library before it is incorporated into the main application. The verification process

2.3 Handling Dynamically Linked Libraries 45

ensures that the code is instrumented in the right way to respect the CFG and the
instrumentation cannot be bypassed.

The verifier maintains three sets of code addresses in the code:

Pseudo-instruction start addresses (PSA). This address set remembers the
start addresses of all pseudo instructions. A pseudo instruction is an instruc-
tion preceded by necessary instrumentation code. An indirect branch must
be checked to consult the ID tables to determine whether the branch is legal.
Before a memory write, the memory address should be masked so that the
write cannot corrupt ID tables. Specifically, we define a pseudo instruction as
(1) a checked indirect branch, which is MCFI’s check-transaction instruction
sequence for checking a register r followed by an indirect branch through r ;
(2) a masked memory write, which is a memory write through r preceded by
the 32-bit address-override prefix; or (3) an instruction that is neither an
indirect branch nor an indirect memory write.

Indirect branch targets (IBT). This address set remembers all possible indirect
branch targets.

Direct branch targets (DBT). This address set remembers all direct branch
targets.

The critical invariant of the three sets is IBT ∪ DBT ⊆ PSA. That is, all indirect
and direct branch targets must be start addresses of pseudo instructions. With this
invariant, it is impossible to jump to the middle of an instruction. Furthermore, it is
impossible to transfer the control to an indirect branch or a memory write without
executing its preceded MCFI check, which is necessary for CFI and SFI.

The three address sets are built incrementally with the installation of new code.
The initial sets are built using information in the main application module, which
contains code, data, and meta-information. In particular, the initial PSA and DBT
are built with information in disassembled code with the help of the CFG, which
tells where to start disassembling; no full disassembly is actually necessary because
PSA requires identifying only instruction boundaries and DBT requires identifying
only direct branch targets. The initial IBT is built once a CFG is built because the
CFG tells where indirect branches can target. When a new piece of dynamic code
(e.g., a library) in the form of an MCFI module is installed, the verifier updates the
three address sets; that is, it computes PSA′, IBT′, and DBT′ after taking the new
module into consideration. The new sets are computed using a similar process to
how the initial sets are computed.

46 Chapter 2 Protecting Dynamic Code

With the new address sets, the verifier checks IBT′ ∪ DBT′ ⊆ PSA′ and makes
sure that indirect branches and memory-write instructions are appropriately in-
strumented; in particular, only checked indirect branches and masked memory
writes are allowed.

2.3.5 Dynamic Library Loading and Unloading
We have discussed the major components for supporting dynamic libraries, includ-
ing CFG generation, encoding, and enforcement. Next we describe the steps when
a library is loaded and unloaded.

MCFI allows a multi-threaded program to load new libraries dynamically and
transfer the control to the libraries’ code. The dynamic linking is jointly performed
by MCFI’s dynamic linker, CFG generator, and runtime. The dynamic linker itself
is instrumented by MCFI and runs within the sandbox, just like other program
modules. Before any program module is loaded, the dynamic linker is first loaded
in memory. The program modules’ GOT entries are set to the dynamic linker’s entry
point. In detail, dynamically linking a library is performed in the following steps:

1. Module preparation. A running program invokes MCFI’s dynamic linker
(by jumping to a PLT entry or invoking dlopen) to load a new library. The
dynamic linker loads the library in the sandbox and sets the library code
to be writable but not executable. Then the linker analyzes the library and
generates new PLT target addresses.

2. New CFG generation. The linker invokes the CFG generator to generate a new
CFG for the original program with the new library. PLT entries are connected
to functions with matching names. New IDs are generated for the Bary and
Tary tables. Further, the runtime patches the in-sandbox library so that the
library’s code has the Bary table indexes embedded in instructions that read
branch IDs. Next, the code pages are set to read-only and statically verified
(as discussed in Section 2.3.4). Then the code pages of the library are set to
be executable but not writable.

3. ID table updates. The linker passes the new PLT target addresses to the
runtime and executes an update transaction, adjusting the IDs in the tables
as well as modifying entries in the GOT to use the new PLT target addresses.

In addition to dynamic library loading, MCFI supports dynamic library unload-
ing. When a library is unloaded, all indirect branch targets inside the library’s code
are marked invalid, achieved by changing the validity bits of relevant IDs in the
Tary table to be all zeros. This prevents all threads from entering the library’s code

2.3 Handling Dynamically Linked Libraries 47

since checks before indirect branches that target the library code would fail (as rel-
evant IDs have been set to zeros) and there cannot be direct branches that target
the library. However, there might be threads currently running or sleeping in the
library’s code. Hence, it is unsafe to reclaim the library’s code pages immediately;
otherwise, those pages could be refilled with code of a newly loaded library and
the sleeping threads would resume and execute unintended instructions. To safely
handle this situation, MCFI asynchronously waits until it observes that all threads
have executed at least one system call or runtime trampoline call; we instrument
eachsyscall instruction in libc to increment a per-thread counter when asyscall
instruction is executed. Then the runtime can safely reclaim the memory allocated
for the library after every counter has been incremented.

2.3.6 Implementation and Performance Evaluation
The MCFI toolchain has two tools: an LLVM-based C/C++ compiler, which performs
code instrumentation and generation of CFG-related metadata; and a runtime that
loads instrumented modules and monitors their execution.

The MCFI compiler is modified from Clang/LLVM-3.5, with a diff result of
about 4,500 lines of changes. In summary, the changes to LLVM propagate meta-
data such as class hierarchies and type information, which are used for CFG gen-
eration. The metadata is inserted into the compiled ELF (embeddable and link-
able format) as new sections. In addition, each MCFI-protected application runs
with instrumented libraries. Therefore, we also modified and instrumented stan-
dard C/C++ libraries, including the musl libc, libc++, libc++abi, and libunwind.
Moreover, since signal handlers are sandboxed in the same way as regular appli-
cation code, the signal-handling stack for each thread should be in the sandbox.
Therefore, after a new thread is created, the libc code is changed to allocate a
memory region inside the sandbox and execute sigaltstack to switch the stack
to the in-sandbox region, which is released when the thread exits.

The MCFI runtime consists of around 11,000 lines of C/assembly code. The
runtime is position independent and is injected to an application’s ELF executable
as its interpreter. When the application is launched, the Linux kernel loads and
executes the runtime first. The runtime then loads the instrumented modules into
the sandbox region, creates shadow regions, and patches the code accordingly. The
CFG is generated using the metadata in the code modules.

Execution-Time Overhead. We ran SPEC CPU2006 benchmarks over the reference
data sets for three times and calculated the average running time. Then we com-
pared the running time of MCFI-protected programs (including the CFG generation

48 Chapter 2 Protecting Dynamic Code

400.p
erlb

ench

401.b
zip

2

403.gcc

429.m
cf

433.m
ilc

444.n
am

d

445.gobm
k

447.d
ealII

450.soplex

453.p
ovra

y

456.h
m

m
er

458.sjeng

462.li
bquantu

m

464.h
264re

f

470.lb
m

471.om
netp

p

473.asta
r

482.sphin
x3

483.xala
ncbm

k

GeoM
ean (I

NT)

GeoM
ean (F

P)

GeoM
ean (C

)

GeoM
ean (C

++)

GeoM
ean (A

ll)

MCFI
12%

9%

6%

3%

0%

–3%

Figure 2.5 MCFI runtime overhead on SPEC CPU2006 C/C++ benchmarks.

time) with that of native programs and calculated the overhead, shown as percent-
ages in Figure 2.5. On average, MCFI slows down program execution by 2.9%.

Two points are worth mentioning. First, notice that several benchmarks (e.g.,
450.soplex) run faster with MCFI’s instrumentation. We replaced the MCFI in-
strumentation with nops and still observed the acceleration (e.g., 0.6% faster for
450.soplex); therefore, we believe it is because of the extra alignments that MCFI
requires for indirect branch targets. Second, MCFI’s overhead is correlated with
the execution frequency of indirect branches. We calculated the correlation using
the Pearson correlation coefficient and got a result of 0.74, which indicates strong
correlation.

2.4 Handling Just-In-Time Compiled Code
With some adjustments the same MCFI design can accommodate Just-In-Time
(JIT) compilation. JIT compilers dynamically emit native code to writable memory
pages and then execute the native code. In what follows, we use the term JITted code
for the native code generated by a JIT compiler on the fly.

In the setting of ahead-of-time compilers, programs generated by compilers are
targets of attacks, but compilers themselves are not since the compilers’ code is
not part of the executable. In contrast, JIT compilers take untrusted programs as
input and are themselves targets of attacks. Memory errors in JIT compilers can

2.4 Handling Just-In-Time Compiled Code 49

allow attackers to inject new code or reuse JITted code in unexpected ways (e.g.,
[Song et al. 2015, Snow et al. 2013]). As a result, accommodating JIT compilation
in MCFI brings the following new challenges:

. Our goal is to enforce CFI for a JIT compiler as well as JITted code generated
by the JIT compiler, so we need to compute a single CFG for both parts. The
CFG for the JIT compiler can be generated from source-level information
acquired using the trusted MCFI compilation toolchain, but JITted code
cannot use this process, as its compilation through the JIT compiler is not
trusted. Therefore, one challenge is how to securely and efficiently generate
a CFG for JITted code and merge it with the JIT compiler’s CFG (even when
we cannot trust the JIT compiler).

. Since JIT compilers emit code on the fly and the code might be corrupted
by attackers, another challenge is how to securely install, modify, and delete
JITted code.

RockJIT, a general system that is built on top of MCFI, addresses these chal-
lenges. RockJIT hardens both the JIT compiler and JITted code, but by enforcing
different levels of CFG precision on the JIT compiler and JITted code, its overhead
is much smaller than previous work on protecting JIT compilation and its secu-
rity is stronger. Our evaluation of Google’s V8 engine shows that RockJIT-hardened
V8 can remove over 99.97% of functionality-irrelevant indirect branch edges from
NaCl-JIT-hardened V8, and it is only 11.7% slower than the vanilla V8.

2.4.1 JIT Compiler Architecture and Threat Model
We first review the typical architecture of JIT compilers and use it to motivate the
threat model of RockJIT.

Common JIT Architecture. We investigated a range of JIT compilers, including
Google V8 (JavaScript), Mozilla TraceMonkey (JavaScript), Oracle HotSpot (Java),
Facebook HHVM (PHP), and LuaJIT (Lua). We found that their architectures share
many commonalities and can all be represented by the diagram in Figure 2.6. A
JIT compiler emits JITted code in the code heap and executes it. The code heap is
readable (R), writable (W), and executable (X). A typical JIT compiler contains the
following major components:

Baseline executor. When a program starts running, its execution is the job of
the baseline executor. Oftentimes, the baseline executor is an interpreter,
which is easy to implement but slow. For instance, HotSpot has an interpreter

50 Chapter 2 Protecting Dynamic Code

JIT compiler

Baseline
executor

Optimizing
compiler

Garbage
collector

Basic
services

JE
n

tr
ie

s
C

E
n

tr
ie

s

Code heap (RWX)

Function f1

Function f2

Function f3

Code emission Control-flow transfer

Figure 2.6 The common architecture of modern JIT compilers.

that interprets Java bytecode. The baseline executor may have a different
implementation from an interpreter. For example, the baseline executor of
V8 compiles JavaScript source code directly to unoptimized native code.

Optimizing compiler. During the execution of a program by the baseline execu-
tor, the JIT compiler performs runtime profiling to identify hot code and to
infer types in the case of dynamically typed languages. Based on the runtime
profile, the optimizing compiler generates optimized native code. JIT com-
pilers can have quite different designs for their optimizers. For example, V8
profiles method execution and optimizes a whole method at a time. In con-
trast, TraceMonkey profiles execution paths (e.g., a hot loop) and performs
trace-based optimization [Gal et al. 2009].

Garbage collector. Managed languages provide automatic memory manage-
ment, which is supported by a garbage collector. Most garbage collectors
implement common algorithms such as concurrent mark and sweep.

Basic services. A JIT compiler also provides runtime services, including sup-
port for debugging, access to internal states for performance tuning, and
foreign function interfaces for enabling interoperation between managed
code and native code.

For performance, all JIT compilers we inspected are developed in C/C++. Since
the calling convention of C/C++ is different from that of JITted code, which is
JIT-compiler specific, JIT compilers introduce interfaces to allow context switches
between the code of the compiler and JITted code. In Figure 2.6, the interfaces are
shown as JEntries and CEntries; both are implemented by indirect branches.

2.4 Handling Just-In-Time Compiled Code 51

JEntries transfer control to JITted code and CEntries transfer control to the
JIT compiler. As an example of JEntries in V8, the initial control transfer from
the JIT compiler to the code heap is through an indirect call (JEntry) in a code
stub called JSEntryStub. As an example of CEntries, V8 provides services (or
functions) such as JavaScript object creation and object property access. When
JITted code invokes these services, the control is first transferred to a stub called
CEntryStub with a register containing the address of the target service function.
Within CEntryStub, an indirect call (CEntry) through the register is executed to
transfer the control to the service function. Moreover, it should be noted that both
CEntries andJEntries could be dynamically generated (e.g., the JIT compiler can
emit JITted functions that directly invoke CEntries to efficiently call a JIT-engine
service).

Threat Model. On top of MCFI’s concurrent attacker threat model, RockJIT’s threat
model makes further assumptions about a JIT compiler. It assumes the JIT com-
piler’s code is benign but may contain vulnerabilities. The JITted code can contain
malicious logic since it is compiled from source code that might be provided by the
attacker. The malicious logic aims to launch attacks such as code injection and JIT
spraying.

We further make two assumptions about the JIT compiler. First, we assume that
context switches between the JIT compiler and JITted code occur through a set of
interface functions; that is, only through one of those JEntries and CEntries in
Figure 2.6 can the control transfer between the JIT compiler and JITted code. This
assumption enables different CFG precision on the JIT compiler and JITted code.
Second, we assume JITted code, when executed normally (i.e., no jumps to the mid-
dle of instructions), does not contain direct system call invocations and privileged
instructions. The JITted code can, however, invoke one of the CEntries to request
services such as OS system calls from the JIT compiler (after appropriate security
checking by the compiler). These two assumptions hold in all the JIT compilers we
have inspected. Even if a certain JIT compiler violates these assumptions, it should
be easy to modify it to make the assumptions hold.

2.4.2 RockJIT Architecture
RockJIT’s architecture is visualized in Figure 2.7. It provides services to a JIT com-
piler and monitors its security. An existing JIT compiler, such as V8, is modified
slightly to cooperate with RockJIT. It is then compiled and instrumented by MCFI’s
compilation toolchain to generate an MCFI module. The module is loaded by Rock-
JIT into a sandbox. After loading, RockJIT generates a control-flow graph for the JIT

52 Chapter 2 Protecting Dynamic Code

JIT compiler

Sandbox

Baseline
executor

Optimizing
compiler

Garbage
collector

Basic
services

JE
n

tr
ie

s
C

E
n

tr
ie

s

Code heap (RX)

Function f1

OK

Function f2

Function f3

Verifier

MCFI tables

RockJIT

JITted code
installer and

modifier

Shadow code heap (RW)

Function f1

Function f2

Function f3

Code emission Control-flow transfer

Update

M
ap

p
ed

 to
 th

e
sa

m
e

ph
ys

ic
al

 p
ag

es

Figure 2.7 The architecture of RockJIT.

compiler based on the auxiliary type information in the module, constructs MCFI
tables that encode the control-flow graph, and starts execution of the JIT compiler.

The sandbox around the JIT compiler and JITted code restricts their control flow
according to the tables and also restricts their memory access to inside the sandbox.
The JIT compiler can request services provided by RockJIT via a set of well-defined
interface functions. For example, to prevent code in the sandbox from changing
memory protection arbitrarily, all direct system calls for changing memory map-
ping and memory pages’ protection bits are forbidden; instead, the code can invoke
services provided by RockJIT to issue such system calls in a managed way.

To rule out code injection attacks, RockJIT guarantees that no memory pages
are writable and executable at the same time, similar to Data Execution Protection
(DEP). One thorny issue we mentioned before is that the code heap (i.e., memory
pages that hold JITted code) is made both writable and executable in typical JIT
compilers.

2.4 Handling Just-In-Time Compiled Code 53

To address this issue, RockJIT uses a parallel mapping scheme in which a
shadow code heap is added outside the sandbox. This is similar to what NaCl-JIT
does [Ansel 2014]; the same parallel mapping scheme was presented earlier (in
Section 2.3.2) to mitigate the security weakness of GOT.PLT tables. The shadow code
heap is in RockJIT’s private memory; it is mapped to the same physical pages as the
code heap in the sandbox but with different permissions. In particular, the code heap
in the sandbox is made readable and executable but not writable. The shadow code
heap is made readable and writable but not executable.4 Because the JIT compiler
is restricted to access memory inside the sandbox, the JIT compiler cannot directly
modify the shadow code heap for runtime code manipulation. Instead, it invokes
the services of RockJIT to install new native code or modify existing native code.
RockJIT performs verification on the native code to check a set of properties for
security. If the verification succeeds, RockJIT installs the new code in the shadow
code heap and updates MCFI tables using a new control-flow graph that takes the
new code into account. Since the shadow code heap maps to the same physical
pages as the in-sandbox code heap, the code heap is filled with the same code,
which can then be invoked by the JIT compiler.

RockJIT CFG Generation. RockJIT enforces control-flow integrity on both the JIT
compiler and JITted code, but it applies different levels of precision on each. For the
JIT compiler, RockJIT applies a C++ CFG generation strategy detailed in Section 2.2
to produce a fine-grained CFG offline; it takes into consideration C++ semantics,
such as virtual method calls. In contrast, the CFG for JITted code is coarse grained
in the sense that all its indirect branches share a common set of targets. The
JIT compiler is modified to emit not only native code but also information about
indirect branch targets. RockJIT then constructs the coarse-grained CFG for the
new code and combines it with the old CFG.

The approach of hybrid CFI precision in RockJIT is the result of a careful balance
between security and performance. First, the JIT compiler’s code is where the
majority of the code is, and it contains dangerous system call invocations. Since
its code is statically available, constructing a fine-grained CFG offline for the JIT
compiler increases security substantially as recent work has shown that coarse-
grained CFI can suffer from ROP attacks [Göktas et al. 2014a, Davi et al. 2014, Carlini
and Wagner 2014]. On the other hand, JITted code is frequently generated on the
fly, and for performance it is important that verification and new CFG generation do

4. Since the shadow code heap is controlled by trusted RockJIT, whether it is executable or not
does not affect security; we make it not executable, following the principle of least privilege.

54 Chapter 2 Protecting Dynamic Code

not have high performance overhead. Verification and CFG generation algorithms
for coarse-grained CFI run much faster. Some readers may wonder whether coarse-
grained CFI for JITted code might jeopardize security. We do not believe that is the
case because one of our assumptions is that JITted code cannot contain dangerous
instructions such as system calls, a property that is enforced by RockJIT’s verifier;
such instructions are required in an attack. JITted code can still request system
call services from the JIT compiler, but the JIT compiler is hardened through fine-
grained CFI: security is maintained as long as sufficient checks are placed before
system calls for the set of control-flow paths in a fine-grained CFG, which is a much
smaller set than the one in a coarse-grained CFG.

One point worth mentioning is that, thanks to the verifier, the JIT compiler is
not in the Trusted Computing Base (TCB) even though it performs runtime code
generation. Native code generated by the JIT compiler is first checked to obey a set
of safety properties before it is installed. The verifier is in the TCB, but it is much
smaller than the JIT compiler.

2.4.3 JITted Code Manipulation
The code heap maintained by a JIT compiler is where code is dynamically managed.
It consists of multiple regions of code such as functions. A JIT compiler dynami-
cally installs, deletes, and modifies code regions. New code regions are frequently
generated by the compiler and installed in the code heap. When a code region is
no longer needed, the JIT compiler can delete it from the code heap and reuse its
memory for future code installation. Runtime code modification is mostly used
in performance-critical optimizations. As an example, inline caching [Deutsch and
Schiffman 1984, Hölzle et al. 1991] is a technique that is used in JIT compilers to
speed up access to object properties. In this technique, a JIT compiler modifies
native code to embed an object property, such as a member offset after the prop-
erty has been accessed for the first time, avoiding expensive object-property access
operations in the future. Another example of runtime code modification happens
in V8 during code optimization. V8 profiles function and loop execution to identify
hot functions and loops. It performs optimization on the hot code to generate an
optimized version. Afterward, runtime code patching is performed on the unopti-
mized code to transfer its control to the optimized version through a process called
on-stack replacement [Hölzle et al. 1992].

Since RockJIT enforces CFI, it is necessary to check security for each step of
runtime code installation, deletion, and modification. In RockJIT, a JIT compiler
cannot directly manipulate the code heap, which does not have the writable permis-
sion. Instead, RockJIT provides services to the JIT compiler for code installation,

2.4 Handling Just-In-Time Compiled Code 55

deletion, and modification. One worry for runtime code manipulation is thread
safety: one thread is manipulating code, while another thread may see partially
manipulated code. We next discuss the detailed steps involved in RockJIT’s code
manipulation and how thread safety is achieved.

Code Installation. For code installation, the JIT compiler invokes RockJIT’s code
installation service and sends a piece of native code, the target address where the
native code should be installed, and meta-information about the code for construct-
ing new address sets used in the verification process. The code installation service
then performs the following steps:

1. Verification is performed on the new piece of code following the process in
Section 2.3.4: the verifier performs verification on the code and updates the
address sets to PSA′, IBT′, and DBT′. In addition, the RockJIT verifier checks
the following properties:

(a) The code contains only instructions that are used for a particular
JIT compiler. This set of instructions is usually a small subset of
the native instruction set and can be easily derived by inspecting
the code-emission logic of a JIT compiler. Importantly, this subset
cannot contain system calls and privileged instructions—one of our
assumptions.

(b) There are no direct branches from the JITted code region to the JIT
compiler region (and vice versa). Recall one of the assumptions in
the threat model is that control can be transferred between the two
regions only through a set of well-defined interface functions.

2. If the verification succeeds, the code is copied to the shadow code heap at an
address computed from the start address where the code should be installed.

3. The runtime ID tables used by MCFI are updated to take into account the new
code. Since coarse-grained CFI is enforced on JITted code, only information
in IBT′ is needed to update the tables.

There are a few notes worth mentioning about the above steps. First, the veri-
fication of benign programs is expected to succeed if there are no bugs in the JIT
compiler. A verification failure indicates a bug that should be fixed. Second, it is
important that the MCFI tables are updated after copying the code, not before.
During the copying process, the code becomes partially visible to the JIT compiler
as the code heap is mapped to the same physical pages as the shadow code heap.
However, since the MCFI tables have not been updated yet, no branches can jump

56 Chapter 2 Protecting Dynamic Code

to the new code, avoiding the situation in which one thread is installing some new
code and another thread branches to partially installed code.

Code Deletion. Deletion of JITted code is similar to library unloading discussed
in Section 2.3.5, with the only difference being that before deactivating all targets
in the code being deleted, RockJIT should make sure there are no direct branches
targeting the code that is to be deleted.

Code Modification. If the new code region has the same internal pseudo instruction
boundaries and native instruction boundaries as the old code region, and only the
native instructions are modified, and the new code passes verification, RockJIT fol-
lows NaCl-JIT’s approach to replace the old code with the new code. Otherwise, code
modification is implemented as a code deletion followed by a code installation.

2.4.4 Modification to a JIT Compiler
Existing JIT compilers need to be modified to work with RockJIT, and our experi-
ence involved adapting Google’s V8 JavaScript engine (3.29.88.19). To adapt V8’s
x64 source, we modified 1,934 lines of its source code: 1,914 lines were changed to
make it generate MCFI-compatible code and invoke RockJIT’s services for runtime
code manipulation; 20 lines were added for fixing bad type casts (detailed in Sec-
tion 2.2) that prevent sound CFG generation. This experience demonstrates that
modifying an existing JIT compiler to work with RockJIT requires modest effort.
Most of the changes to V8 were in its code-emission logic to make the generated
code compatible with MCFI:

. Code-emission functions that generate indirect branches were modified to
generate checked indirect branches. We could directly use MCFI’s instru-
mentation (i.e., the transactions) to rewrite the JITted code, but for coarse-
grained CFG enforcement, we use a simplified CFI-check implementation
(detailed in [Niu 2015]).

. Code-emission functions for indirect memory writes were modified to gen-
erate masked memory writes. The sandbox resides in the [0, 4GB) memory.
Therefore, an indirect memory write is prefixed with0x67 (the 32-bit address-
override prefix) to clear the first 32 bits of a 64-bit address.

Another part we modified was to accommodate online code patching. When
V8 emits certain optimized native code, it reserves some bytes in the code in
anticipation of future code patching (for a process called deoptimization). The

2.4 Handling Just-In-Time Compiled Code 57

Table 2.2 CFG Statistics of the Google V8 JavaScript Compiler

Average

SPEC CPU2006 IBs (with matching targets) IBTs EQCs IBTs / IB IBs / IBT

V8 35,775 (29,609) 116,919 9,696 808 205

original V8 reserves 13 bytes for this purpose. RockJIT needs more bytes because
of extra MCFI checks; we had to reserve 24 bytes instead. Next, changes were made
to V8 to invoke code installation, deletion, and modification services provided by
RockJIT at appropriate places. Finally, since V8 emits JEntries and CEntries on
the fly, RockJIT provides services for V8 to securely install those JEntries and
CEntries as well as their type signatures to enable CFG generation. Therefore,
changes were made to V8 to invoke those services.

Compared to related work, RockJIT changes around 60% less code than NaCl-
JIT, which changed over 5,000 lines of code for the x64 version of V8. NaCl-JIT
requires more changes because (1) it disallows the mix of code and data in the
JIT-compiled code and V8 has to be changed to separate code and data, whereas
RockJIT’s CFI allows the mixture of code and data as long as data cannot be reached
from code with legal control flow; and (2) NaCl-JIT uses the ILP32 programming
model on x64, while the native V8 uses the LP64 model; therefore, it has to change
nearly the entire code-emission logic.

2.4.5 Evaluation
We compiled the modified Google V8 JavaScript compiler to a stand-alone exe-
cutable using the MCFI toolchain and measured the generated CFG and perfor-
mance overhead.

CFG Statistics. RockJIT supports fine-grained CFGs for the JIT compiler. Table
2.2 presents the details of the CFG constructed for V8. Similar to SPEC CPU2006
C++ benchmarks, thousands of equivalence classes are supported, and the average
number of targets of indirect branches and average number of indirect branches
targeting an address are much less than coarse-grained CFI, which could be the
number of indirect branch targets and the number of indirect branches, respec-
tively. Compared to NaCl-JIT, which enforces a form of coarse-grained CFI on V8’s
code, RockJIT’s CFG removes about 99.7% of indirect branch edges from NaCl-
JIT’s CFG.

58 Chapter 2 Protecting Dynamic Code

Execution-Time Overhead. We measured the slowdown of RockJIT-instrumented
V8 over Octane 2 benchmarks. On average, 11.7% runtime overhead is incurred by
RockJIT.

Also, we separately calculated runtime-overhead results for the subset of bench-
marks that were included in Octane 1 (the predecessor of Octane 2) since related
systems use Octane 1 for evaluation. RockJIT incurs only 3.1% overhead on average.
Compared to other JIT-compiler hardening systems, such as NaCl-JIT [Ansel et al.
2011], librando [Homescu et al. 2013], and SDCG [Song et al. 2015], MCFI incurs
less overhead and provides better security.

2.5 Related Work
Most fine-grained CFI systems do not support modularity [Erlingsson et al. 2006,
Wang and Jiang 2010, Akritidis et al. 2008, Zeng et al. 2011, Zeng et al. 2013a,
Davi et al. 2012, Pewny and Holz 2013, Criswell et al. 2014]. For instance, Hyper-
Safe [Wang and Jiang 2010] statically constructs a table for each indirect branch,
and the table contains all target addresses that the indirect branch can jump to. The
program is changed so that table indexes, not target addresses, are used. Before
an indirect branch, an index is converted into a target address using informa-
tion in the table. HyperSafe’s CFI precision is higher than the classic CFI’s, which
uses the notion of equivalence classes for efficiency at the expense of precision.
However, HyperSafe does not support separate compilation because it requires a
whole-program analysis to build the tables and those tables cannot be changed at
runtime. As another example, WIT’s CFI enforcement [Akritidis et al. 2008] uses a
color table. The color table is built by static analysis on the compiler IR code. Each
indirect call is statically assigned a color, and functions that the call can target are
assigned the same color. The color table is represented during runtime, and dy-
namic checks consult the table before an indirect call. WIT’s color table is similar
to MCFI’s tables. But WIT relies on a whole-program analysis to construct its table
and does not support dynamically linked libraries.

A few CFI systems have modularity support. However, the modularity support of
ForwardCFI [Tice et al. 2014] introduces time windows for attacks during dynamic
module linking. MCFI [Niu and Tan 2014a] is the first fine-grained CFI technique
that supports dynamic code linking, and RockJIT extends MCFI to cover JIT compi-
lation. MCFI requires source code, and a couple of CFI systems aim to enforce CFI at
the binary-code level, including Lockdown [Payer et al. 2015c] and vfGuard [Prakash
et al. 2015]. They can work with programs without source code, at the expense of
performance and CFG precision.

2.5 Related Work 59

Our follow-up work πCFI [Niu and Tan 2015] enforces per-input CFGs. In MCFI,
CFG generation is performed at runtime, and as a result it cannot afford advanced
static analysis; this can cause CFG precision loss. However, πCFI shows that CFG
precision can be significantly improved using dynamic information. Specifically, it
enforces a per-input CFG and is more precise than an all-input CFG, which has to
consider all possible inputs. Recent attacks such as Control-Flow Bending [Carlini
et al. 2015e] and Control Jujutsu [Evans et al. 2015] show methods of attacking
conventional fine-grained CFI systems, but fortunately πCFI can mitigate those
attacks.

Code-Pointer Integrity (CPI [Kuznetsov et al. 2014a]) is a recent system that
isolates all data related to code pointers into a protected safe memory region
and thus can mitigate control-flow hijacking attacks. It is also a compiler-based
framework and has low execution overhead. However, it incurs high memory over-
head. Furthermore, CPI does not directly enforce a control-flow graph. The control-
flow graph provided by CFI methods such as MCFI and πCFI is valuable to other
software-protection mechanisms because they can use it to perform static-analysis-
based optimization and verification [Zeng et al. 2011].

Work Related to the Security of JIT Compilers. RockJIT’s goal of improving the se-
curity of JIT compilation is shared by several other systems. Perhaps the closest
work is NaCl-JIT [Ansel et al. 2011], which applies SFI to constraining both a JIT
compiler and JITted code. To prevent SFI checks from being bypassed, NaCl-JIT
enforces aligned-chunk CFI similar to PittSFIeld [McCamant and Morrisett 2006],
which enforces coarse-grained CFGs. In contrast, RockJIT applies fine-grained CFI
on the JIT compiler and therefore provides stronger security. NaCl-JIT also has high
performance overhead. Its aligned-chunk CFI requires insertion of many nop in-
structions to make indirect branch targets aligned at chunk boundaries. NaCl-JIT
reports nops account for half of the sandboxing cost. Largely because of this, its
performance overhead is around 51%, while RockJIT’s overhead is only 11.7%.

In addition, software diversification has been used to harden JIT compilation.
The librando system [Homescu et al. 2013] inserts a random amount of nops in
the JITted code. In addition, it uses a technique called constant blinding, which re-
places instructions that have constant operands with other equivalent instruction
sequences to mitigate JIT spraying [Blazakis 2010]. Due to its black-box imple-
mentation, librando has to disassemble the JITted code, modify the code, and
re-assemble the new code. It incurs a significant overhead (265.8%). Other sys-
tems, including INSeRT [Wei et al. 2011], JITSafe [Chen et al. 2013], and RIM
[Wu et al. 2012], also employ diversification techniques similar to librando’s.

60 Chapter 2 Protecting Dynamic Code

Readactor [Crane et al. 2015] leverages execute-only pages supported by virtualiza-
tion and runs randomized JIT engine and JITted code inside those pages. Most of
these diversification-based systems protect only JITted code, not the JIT compiler.
Even Readactor needs to temporarily allow writable code during JITted code in-
stallation. In comparison, RockJIT can eliminate JIT spraying attacks and enforces
CFI on both the JIT compiler and JITted code. On the other hand, since software
diversification techniques are orthogonal to CFI, it is perhaps beneficial to deploy
both defenses in a JIT compiler, following the principle of defense in depth.

Another mitigation mechanism for JIT is to separate the write permission from
the execution permission for the code heap. For instance, SDCG [Song et al. 2015]
stores the shadow code heap in another process and emits code to the process
through inter-process communication. However, the process-based separation in-
curs higher overhead than RockJIT’s SFI-based separation. JITDefender [Chen et al.
2011] and JITSafe [Chen et al. 2013] drop the write permission of the code heap
whenever it is not needed. However, before dropping the permission, those code
pages may have already been modified by the attacker for arbitrary code execution.
More importantly, they cannot prevent JIT spraying attacks, which do not require
modifying the code heap.

2.6 Conclusion
MCFI is the first efficient CFI instrumentation that supports separate compilation.
It addresses the challenge of how to support dynamically linked libraries for CFI
in the presence of multi-threaded code, using a novel approach based on transac-
tions. It is also extended to cover JIT compilation in RockJIT. In a previous publica-
tion [Niu 2015], we also show how it can be extended to support the interoperation
between MCFI-instrumented modules and non-instrumented modules.

In evaluating MCFI and RockJIT, we have implemented a compilation toolchain,
which instruments C and C++ programs. Our experiments on SPEC CPU2006
benchmarks and other programs show that MCFI imposes about 5% execution-time
overhead on average. The MCFI toolchain has been open sourced and is available
for download at the following URL: http://github.com/mcfi.

http://github.com/mcfi

3Diversity and
Information Leaks
Stephen Crane, Andrei Homescu, Per Larsen,
Hamed Okhravi, Michael Franz

Almost three decades ago, the Morris Worm infected thousands of UNIX work-
stations by, among other things, exploiting a buffer-overflow error in the fingerd
daemon [Spafford 1989]. Buffer overflows are just one example of a larger class of
memory (corruption) errors [Szekeres et al. 2013, van der Veen et al. 2012]. The
root of the issue is that systems programming languages—C and its derivatives—
expect programmers to access memory correctly and eschew runtime safety checks
to maximize performance. There are three possible ways to address the security is-
sues associated with memory corruption. One is to migrate away from these legacy
languages that were designed four decades ago, long before computers were net-
worked and thus exposed to remote adversaries. Another is to retrofit the legacy
code with runtime safety checks. This is a great option whenever the, often sub-
stantial, cost of runtime checking is acceptable. In cases where legacy code must
run at approximately the same speed, however, we must fall back to targeted mit-
igations, which, unlike the other remedies, do not prevent memory corruption.
Instead, mitigations make it harder, i.e., more labor intensive, to turn errors into
exploits.

Since stack-based buffer overwrites were the basis of the first exploits, the first
mitigations were focused on preventing the corresponding stack smashing ex-
ploits [Levy 1996]. The first mitigations worked by placing a canary, i.e., a ran-
dom value checked before function returns, between the return address and any
buffers that could overflow [Cowan et al. 1998]. Another countermeasure that is

62 Chapter 3 Diversity and Information Leaks

now ubiquitous makes the stack non-executable. Since then, numerous other coun-
termeasures have appeared and the most efficient of those have made it into prac-
tice [Meer 2010]. While the common goal of countermeasures is to stop exploita-
tion of memory corruption, their mechanisms differ widely. Generally speaking,
countermeasures rely on randomization, enforcement, isolation, or a combination
thereof. Address space layout randomization is the canonical example of a purely
randomization-based technique. Control-Flow Integrity (CFI [Abadi et al. 2005a,
Burow et al. 2016]) is a good example of an enforcement technique. Software-fault
isolation, as the name implies, is a good example of an isolation scheme. Code-
Pointer Integrity (CPI [Kuznetsov et al. 2014a]) is an isolation scheme focused on
code pointers. While the rest of this chapter focuses on randomization-based mit-
igations, we stress that the best way to mitigate memory corruption vulnerabilities
is to deploy multiple different mitigation techniques, as opposed to being overly
reliant on any single defense.

3.1 Software Diversity
Randomization, or software diversity [Cohen 1993, Larsen et al. 2014], essentially
hides implementation details, such as the memory layout, from adversaries. This
means that adversaries cannot rely on code, variables, or other program artifacts
residing at a known location. This idea has similarities with biodiversity wherein
some fraction of animals in a herd will have immunity against environmental
hazards due to random differences in their immune systems. One can also draw
parallels to kinetic warfare insofar that belligerents seek to conceal their locations
to avoid becoming an easy target.

Because adversaries in the digital domain seek to exploit implementation flaws
that trigger invalid memory accesses, the inputs that cause the unintended behavior
are highly implementation dependent. This is why randomization of the code
layout has a destabilizing effect on code-reuse attacks that depend on code snippets
(gadgets in ROP parlance [Shacham 2007]) residing at known addresses.

Adversaries generally have two ways to bypass diversified binaries: guessing or
reconnoitering their target. Repeatedly mounting an attack that crashes the victim
program [Bittau et al. 2014, Shacham et al. 2004, Evans et al. 2015a] has visible side
effects that often facilitate detection. Information leakage, on the other hand, is
often silent and leaves few traces, if any, on the victim system. In the rest of this
chapter, we focus on bypasses of diversity relying on information leakage, particu-
larly code layout disclosure, and the countermeasures available to defenders.

3.2 Information Leakage 63

3.2 Information Leakage
In their seminal paper on stack guards, Cowan et al. mention that their techniques
are not impossible to bypass, but to do so would require the attacker to examine the
entire memory image of the program [Cowan et al. 1998 (p. 4)]. The tacit assumption
is that the attacker cannot easily leak the memory contents of a running program.
Their follow-up work focusing on pointers also cites the difficulty of accessing pro-
cess memory in their security argument: “To obtain the key, the attacker would
either have to already have permission to manipulate the process with debugging
tools (e.g., ptrace) or would have to have already successfully perpetrated a buffer
overflow attack against the process” [Cowan et al. 2003]. Strackx et al. [2009] were
the first to examine what they termed the “Memory Secrecy Assumption” underpin-
ning randomizing defenses at the time. The gist of their argument is that memory
secrecy relies on the absence of memory corruption vulnerabilities, an assumption
that, if valid, would also obviate the need for memory corruption mitigations, such
as ASLR, stack canaries, and other diversity techniques. Information leakage can
arise from format string vulnerabilities that cause the defective program to print
out internal data or code rather than the intended output. Strackx et al. point out
that buffer over-reads are a more common source of information leakage and de-
monstrate a concrete attack in which ASLR and ProPolice [Etoh and Yoda 2000] can
be bypassed thanks to such over-reads.

Serna [2012] highlighted that type confusion and use-after-free vulnerabilities
as well as application-specific vulnerabilities also facilitate information leakage.
The presentation also highlighted that the widespread deployment of ASLR and
stack canaries in all modern operating systems had made information leakage
a requirement to write reliable exploits. Most importantly, Serna noted that the
combination of attacker-controlled scripting and memory corruption errors put
adversaries in a powerful position.

Snow et al. [2013] translated Serna’s observation into practice by using an over-
flowed buffer object to systematically scan the memory of the process running a
malicious script. Just-in-time code-reuse, JIT-ROP, attacks generalize previous at-
tacks and are worth summarizing here. The general goal of JIT-ROP is to find as
many mapped code pages as possible by starting from a small root set of known
pages. The discovery of additional code pages happens by recursively scanning each
page for references to other pages and adding these pages to a working set. In
context of browsers, the JIT-ROP technique is used to break out of a sandboxed
scripting environment, such as a JavaScript VM hosted by a browser. This lets the ad-
versary execute arbitrary code with all permissions granted to the operating system
process. To do so, the adversary tricks an unsuspecting user into visiting a web page

64 Chapter 3 Diversity and Information Leaks

serving a malicious script. The script constructs a write-what-where primitive out of
a memory corruption vulnerability such that the adversary can access any mapped
location within the virtual address space of the process. Since the code layout is not
known to the adversary a priori, the exploit fails if it touches unmapped memory
and the resulting segmentation fault is not handled by the program. Segmentation
faults are avoided by scanning for pointers to code in the data memory surrounding
the overflowed object (using a priori knowledge of the heap layout). Next, the ex-
ploit scans the code page identified by the code pointer. Since the virtual-to-physical
memory mapping happens at the page granularity, it is always safe to scan an entire
page, which is usually 4KiB in size. Snow et al. realized that they could implement
a disassembler in JavaScript to recover references between code pages and use the
recovered references to discover additional code pages recursively. The recursive
disassembly step terminates when the script has discovered enough code snippets
to mount a traditional code-reuse attack.

3.3 Mitigating Information Leakage
Backes and Nürnberger [2014] were first out of the gate with a response to JIT-
ROP attacks. Their technique, Oxymoron, splits the code segment into 4KiB pages.
Furthermore, any code reference to another page is indirected through a lookup
table. The base of the lookup table is hidden using the vestiges of x86 segmentation.
This prevents the recursive disassembly step in the JIT-ROP attack. An interesting
aspect of Oxymoron is that the scheme was designed to allow code pages to be
shared among processes. This is an important optimization for shared libraries
and one that is overlooked by most of the academic literature although it is crucial
in practice.

Davi et al. [2015] presented a different response to JIT-ROP attacks—Isomeron—
motivated by their finding that the original JIT-ROP technique could be modified
slightly to bypass Oxymoron. The key to the Oxymoron bypass was the finding that
data memory contains enough pointers to discover enough code pages to mount
an attack, even if it is not possible to discover additional pages through inter-page
references thanks to Oxymoron. Virtual method tables for the C++ dispatch mech-
anism, for example, enable pointer harvesting and lessen the need for recursive
disassembly. The Isomeron defense [Davi et al. 2015] frustrates return-oriented
programming techniques by cloning each program function and randomly picking
between original and function clones during execution. Code-reuse exploits need

3.3 Mitigating Information Leakage 65

not use returns to chain gadgets, so the Isomeron technique has shortcomings of
its own.

Backes et al. [2014] advocated for a more principled way to counter information
leakage: preventing read accesses to code pages. Their implementation—eXecute-
no-Read or just XnR—presented a work-around for all x86 processors whose mem-
ory management units lack native support for executable, non-readable pages. To
work around this limitation, XnR prevents reads by clearing the present bit for
nearly all code pages. Normally, the CPU uses the present bit to track which pages
are present in RAM and or paged out to disk. Accesses to a page with the present
bit cleared, causes the CPU to generate a page fault which the operating system
handles by reading the missing page from the pagefile. XnR modifies the operat-
ing system’s page fault handler to mark XnR pages present (without evicting their
contents) if and only if the present bit was cleared to prevent read accesses and
if the page fault was triggered by an instruction fetch, i.e., an attempt to execute
the page was made. If, on the other hand, the fault was generated by a read ac-
cess to an executable page, the XnR page fault handler terminates the program
before any memory contents can be leaked. The number of page faults to handle
determines the overhead of the XnR approach. To avoid excessive slowdowns, XnR
keeps a small window of recently executed pages readable and executable—and
thus exposed to information leaks. However, XnR uses a sliding window of two
to eight pages to limit the amount of code that can be leaked at any point in the
execution.

Gionta et al. [2015] developed a system—HideM—that similarly made code
pages unreadable but does so by using the Translation Look-aside Buffer (TLB) in a
special way known as TLB-desynchronization. On processors that use separate TLBs
for data and code, the two TLBs are usually kept in sync, which gives an executing
process the same view of its address space regardless of the type of access. HideM
configures the memory management unit such that accesses to the same virtual
address translate to different physical addresses depending on the access type.
This way, instruction fetches proceed as intended whereas read accesses—whether
malicious or not—go to a different physical copy of the text section. To ensure that
legitimate reads to constant data stored on code pages function correctly, HideM
zeros out all instructions in the readable copy of the text section while preserving
all embedded constant data. This is a point in favor of HideM since XnR does
not explicitly address the problem of reading embedded constants. On the other
hand, most modern processors have unified TLBs and thus do not support TLB-
desynchronization as required by HideM.

66 Chapter 3 Diversity and Information Leaks

JMP label

CALL Func_A

Code page 1

Readable-writable

Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect
disclosure

Data pages

Function pointer 1

Code pages

Figure 3.1 Direct and indirect memory disclosure. (Based on Crane et al. [2015])

While XnR and HideM goes a long way toward preventing direct leakage through
adversarial reads, adversaries can also make inferences about the code layout by
inspecting code pointers stored in the data segments of a running process. The
difference between these two types of leakage is illustrated in Figure 3.1. The
defenses we’ve discussed so far have protected the code pages and references
between them (top half of figure) but not references from data pages to code pages
(bottom half of figure). The utility of leaking a function pointer or return address
when code pages cannot be read directly depends on the granularity of the code
layout diversity. If each individual instruction is placed at a random location [Hiser
et al. 2012], such leaks mainly facilitate whole-function reuse. However, the most
granular diversity techniques tend to have high overheads [Larsen et al. 2014] and
may prevent page sharing between processes [Backes and Nürnberger 2014, Crane
et al. 2016].

Crane et al. [2015] built a system—Readactor—that explicitly seeks to prevent
both direct and indirect leakage of code layout. Rather than emulating execute-no-

3.3 Mitigating Information Leakage 67

read permissions, Readactor leverages the extended page translation mechanisms
found in modern processors (circa 2008 and onward) to accelerate hypervisors.
Memory accesses inside virtual machines undergo two levels of address transla-
tion: (i) guest virtual to guest physical translation and (ii) guest physical to host
physical translation. The effective permission of an access to host physical mem-
ory is the intersection of the permissions used in the two translation steps. Unlike
the first translation step, which forces read permissions on executable pages, the
second translation step can represent true execute-only memory permissions. The
Readactor system used a lightweight hypervisor to activate the extended page tables
on a per-process basis to protect individual applications running on a traditional
host system, i.e., outside a traditional hypervisor. Rather than allowing accesses to
constant data on code pages, Redactor used a modified compiler to eliminate all
such reads. The major open source C/C++ compilers later stopped emitting con-
stants on code pages for performance reasons, which also benefits execute-only
techniques.

Readactor tackles indirect leakage by introducing a pointer indirection layer so
no pointer stored in a readable memory region points directly to its target. All that
adversaries can observe are pointers into a special execute-only area containing
trampolines (direct jumps) to the actual functions. Because the trampolines are
stored on pages with execute-only memory, they cannot be dereferenced by an ex-
ploit. Adversaries therefore cannot learn the locations of functions in the absence of
hardware-level side channels [Gras et al. 2017] or implementation errors. Readactor
also demonstrated that just-in-time compiled code can be made compatible with
execute-only memory with modest effort; the need to also protect JITed code from
indirect disclosure was highlighted but not implemented. The necessity of avoiding
indirect disclosure of JITed code was reiterated by Maisuradze et al. [2017].

A few variations of and extensions to the basic ideas behind XnR, HideM, and
Readactor are worth mentioning. Schuster et al. [2015] demonstrated a new type of
code-reuse attack called Counterfeit Object Oriented Programming (COOP), which
is capable of bypassing control-flow integrity defenses that are not C++ aware. C++
awareness, in this context, simply means using information about class hierarchies
to further constrain the set of outgoing control-flow edges at a C++ virtual method
call site. C++-aware CFI is straightforward to implement when program source code
is available, whereas techniques to recover class hierarchies via binary analysis took
a while to appear [Pawlowski et al. 2017]. Since COOP attacks execute entire C++
methods without regard for the actual code layout, such attacks can also bypass
defenses such as Readactor. COOP attacks are not entirely layout agnostic, however;
they require knowledge of the layout of C++ objects and the layout of C++ virtual

68 Chapter 3 Diversity and Information Leaks

method tables. Since objects must be stored in RW memory, their layouts are
difficult to hide. Vtables, on the other hand, contain a mix of data and pointers
to code, the latter part of which can be hidden and randomized along the lines
of the Readactor system. Crane et al. [2015] presented a counter to COOP attacks
called Readactor++ that splits virtual method tables into two parts: one containing
data and another containing code (direct jump trampolines to virtual methods).
The code part, called the xvtable, is protected by execute-only permissions, and
randomized. To prevent brute force attacks, dummy entries that are never activated
during normal program execution are added to each xvtable [Crane et al. 2013].

Supporting execute-only memory is not always straightforward and most ap-
proaches rely on using the memory management unit in unconventional ways.
For systems where MMU “tricks” are infeasible, such as systems having a sim-
pler memory protection unit, execute-only permissions can be enforced in soft-
ware [Braden et al. 2016] using techniques conceptually similar to software-fault
isolation [Wahbe et al. 1993, McCamant and Morrisett 2006].

Lu et al. [2015] demonstrated that it is possible to use a pointer indirection
layer to prevent indirect leakage without using execute-only memory to protect
against direct leakage. Their proposed solution, ASLR-Guard, uses the vestiges of
x86 segmentation support to hide the location of a table that translates between
code locators (visible to adversaries) and actual code addresses (hidden). Lu et al.
argue that without a way to disclose code addresses, there is no need to prevent
against direct leakage since a 64-bit virtual address space is large enough to resist
brute force attempts at finding an ASLR’ed code segment. Later research on crash
resistance and allocation oracles have undermined that assumption [Gawlik et al.
2016, Oikonomopoulos et al. 2016, Göktaş et al. 2016]. On a practical level, the
ASLR-Guard implementation does not bound the growth of code locators and thus
its memory overhead.

Chen et al. [2017] demonstrated support for execute-only memory for sourceless
binaries. Specifically, their NORAX system is able to protect 64-bit ARM (AArch64)
binaries. Notably, the AArch64 platform offers native support for execute-only
memory, unlike current x86 CPUs. A general challenge of binary analysis and as-
sembly is to accurately separate code and data. Code misclassified as data (data
misclassified as code) can lead to page faults when using DEP (execute-only mem-
ory) to mitigate exploits. NORAX addresses this challenge using a combination
of offline binary rewriting and online load/runtime monitoring. The offline step
conservatively estimates code regions and moves data bytes embedded in these
regions to a new data section. The original data bytes are overridden with unique
magic numbers that are recognized by the NORAX loader and runtime monitor.

3.4 Address Oblivious Code Reuse 69

This lets the NORAX loader adjust any references to the original data bytes, which
are now inaccessible since all code is mapped with execute-only permissions. If
an attempt to read a code page happens at runtime, the NORAX runtime monitor
determines whether the associated access violation was generated by a legitimate
access (missed by the offline analysis) or whether it is a malicious access, which
should cause program termination.

3.4 Address Oblivious Code Reuse
Rudd et al. [2017] explored the security properties of an ideal version of leakage-
resilient code diversity, i.e., one that is not weakened by implementation-level flaws.
Their finding was that even an ideal implementation does not stop all types of code
reuse. The reason is that code-hiding mechanisms, such as execute-only memory,
only apply to code pages, not code locators (e.g., function pointers and return
addresses or pointers to Readactor trampolines). Code locators must be readable
and writable for the program to function properly. Even with defenses such as
Readactor and ASLR-Guard in place, adversaries can manipulate code locators used
in place of traditional code pointers.

Rudd et al. used a data memory disclosure vulnerability to observe the state
of a protected program as it executes. The fact that programs execute in a way
that inherently leaks information about the state of execution enables profiling
of the code indirection layer. Adversaries can correlate the execution state of their
own unprotected program instance to that of a remote, protected instance at the
time of the memory disclosure. Therefore, profiling can inform adversaries that a
code identifier points to a function F in the protected program (without revealing
the address of F). Adversaries can use this mapping from code identifiers to the
underlying functions to construct a position-independent, whole-function code-
reuse attack. Rudd et al. called this Address-Oblivious Code Reuse (AOCR) since the
attack executes all code through code identifiers without any knowledge of the
actual code layout.

Although AOCR attacks are possible, they require more effort to construct than
their position-dependent equivalent. First of all, the state of the system changes
rapidly, which makes it challenging to correctly time memory disclosures of code
identifiers. If the target application is multi-threaded, however, memory corrup-
tion allows an adversary to manipulate the variables controlling entry to a critical
section. Mutexes, for instance, are usually set by a thread as it enters the mutex
such that other threads wanting to enter will suspend until the first thread has
exited the critical section protected by the mutex. For instance, an adversary may

70 Chapter 3 Diversity and Information Leaks

use one thread TA to manipulate the mutex in a way that causes another thread TB

to block. This gives the adversary a chance to inspect memory without the timing
unpredictability resulting from the execution of TB.

Once the adversary has discovered a mapping from code locators to functions,
he must find a way to (i) hijack the control flow, (ii) pass proper arguments to
functions used in the exploit, and (iii) chain function calls. The control flow can be
hijacked by using memory corruption to swap a code locator with the code locator
corresponding to the first function in the malicious call chain. Rudd et al. solved
the second challenge by reusing functions that read all their arguments from global
variables. This requires knowledge of how global variables are laid out, but that too
can be profiled and, in contrast to code, global variables must be readable. The third
challenge, chaining calls through code locators, was solved using Malicious Loop
Redirection (MLR). This technique requires the vulnerable application to contain
a loop whose body contains an indirect call site. Specifically, the loop must (1) have
a loop condition that is attacker controllable and (2) call functions through code
pointers/locators An ideal loop looks like this:

while (task) { task->fptr(task->arg); task = task->next; }

where task points to a linked list of (fptr, arg) pairs in attacker-controlled mem-
ory. Note that register randomization is not an effective defense because the se-
mantics of the call dictates that the first argument is taken from task->arg and
moved to rdi to conform to the x86_64 ABI. Note that MLR is conceptually similar
to the loop-gadget concept in COOP and Subversive-C code-reuse attacks [Lettner
et al. 2016, Schuster et al. 2015].

Using these techniques, Rudd et al. demonstrated working AOCR attacks against
two popular web servers protected by Readactor: Nginx and the Apache HTTP
Server. Readactor served as a stand-in for leakage-resilient diversity techniques in
general since it is the most comprehensive implementation of leakage-resilient di-
versity available. Note that approaches based on destructive code reads [Tang et al.
2015, Werner et al. 2016] are also vulnerable to AOCR since these attacks never
attempt to read the actual code. Snow et al demonstrated additional attacks specif-
ically targeting destructive-code-read techniques [Snow et al. 2016].

3.5 Countering Address-Oblivious Code Reuse
Recall that code-pointer hiding via trampolines already limits the set of addresses
that are reachable from an attacker-controlled indirect branch. Even if an attacker
discloses all trampoline pointers, only function entries, return sites, and individual

3.5 Countering Address-Oblivious Code Reuse 71

instructions inside trampolines are exposed. We therefore implemented an exten-
sion to the Readactor code-pointer hiding mechanism, which we call Code-Pointer
Authentication (CPA). CPA adds authentication after direct calls and before indi-
rect calls to prevent the control-flow hijacking step as explained in Section 3.4 and
thus mitigate AOCR attacks. One of the benefits of randomization-based defenses
is that they do not rely on static program analysis, an advantage which helps them
scale to complex code bases. To avoid relying on static program analysis, we must
use different techniques to authenticate direct and indirect calls since we do not
know the set of callees in advance.

3.5.1 Authenticating Direct Calls and Returns
Our general approach to authenticate direct calls uses cookies. A cookie is simply
a randomly chosen value that is loaded into a register by the caller and read out
and checked against an expected value by the callee. For returns, the callee loads
another cookie into a register before returning, and the register is checked for the
expected value directly after the return. Each function has two unique, random
cookies: one to authenticate direct calls to the function (forward cookie, FC) and
another to authenticate returns (return cookie, RC). Because the instructions that
set and check cookies are stored in execute-only memory and the register storing
the cookie is cleared directly after the check, attackers cannot leak or forge the
cookies.

Our prototype implementation chooses cookie values at compile time and in-
serts these values into the execute-only code. A full-featured implementation could
randomize the cookie values at load time so they vary between executions. This
could easily be accomplished by marking all cookie locations during compilation,
iterating over these locations during program initialization, and writing new cook-
ies into the code before re-protecting the memory with execute-only permission.

The left side of Figure 3.2 shows how we authenticate an example direct function
call from foo to bar. Dark gray labels indicate how we extend the Readactor code-
pointer hiding technique with authentication cookies. Before transferring control
to the direct call trampoline t_bar along control-flow edge ©1 , we load bar’s for-
ward cookie into a scratch register. Edge ©2 transfers control from t_bar to bar.
The prologue of bar checks that the register contents match the expected forward
cookie value and clears the register to prevent spilling its contents to memory. Be-
fore the bar function returns along edge ©3 , we load the backward cookie for bar
into the same scratch register. At the return site in foo, we check that the register
contains the backward cookie identifying bar as the callee. The return site then
clears the register.

72 Chapter 3 Diversity and Information Leaks

foo:

jump t_bar
r_foo:

t_bar: call bar
jump r_foo

bar:
…

ret

3

41

2

set r9 ← RC

check r9 = RC

check r9 = FC

set r9 ← FC

foo:
rax = t_base[idx]

jump t_foo
r_foo:

t_foo: call *rax
jump r_foo

bar:
…

ret

8

95

6

check r9 = 32RC

check HMAC

t_base: jump …
jump bar + Δ

7

idx

HMAC idx

addr' idx'HMAC'

addr

hidden by X-only

observable

authenticating
direct calls and returns

authenticating indirect calls and returns

RW dataXO code and trampolinesXO code and trampolines

SipHash(addr|idx,key) = HMAC?

set r9 ← RC

check r9 = FC

Figure 3.2 Code-pointer authentication. Direct calls and returns are illustrated in the leftmost
third of the figure; indirect calls and returns are shown in the rightmost two-thirds.
Light gray boxes contain execute-only code and white boxes contain data. Dark gray
labels show where we insert additional instructions to prevent address harvesting
attacks. The =32 operator in the check after edge 9 indicates that we only check the
lower 32 bits of the return cookie.

The return address pushed on the stack by the call instruction in t_bar leaks
the location of the following jump instruction as well as the direct call itself. If the
adversary manipulates an indirect branch to execute control-flow edge ©2 , the check
at the target address will cause the forward cookie check to fail and thus the attack
to fail. Analogously, redirecting control to flow along edge ©4 will cause the check
at r_foo to fail.

3.5.2 Securing Indirect Calls and Returns
Without static program analysis, we don’t know the target of an indirect call at
compile time and thus enforce bounds on the program control flow. Cookies, as
used in the direct call case, are therefore not applicable to indirect calls. However,
we can still authenticate that the function pointer used in an indirect call was
correctly stored and not maliciously forged without requiring any static analysis.

All function pointers in a program protected by Readactor are actually pointers
to trampolines that obscure the true target address. Inspired by the techniques of
CCFI [Mashtizadeh et al. 2015], we change the representation of trampoline point-
ers (which are stored in attacker-observable memory) to allow for authentication.

3.5 Countering Address-Oblivious Code Reuse 73

In Readactor’s code-pointer hiding mechanism, a trampoline pointer is simply the
address of the forward trampoline. With CPA, the trampoline pointer representa-
tion is composed of a 16-bit index (idx) into a table of trampolines (starting at
t_base) and a 48-bit Hash-based Message Authentication Code (HMAC). We show
two such pointers on the right side of Figure 3.2. Using a trampoline index prevents
leakage of the forward trampoline pointer address since the base address of the ar-
ray of forward trampolines t_base can be hidden in execute-only code. We found
that programs need less than 216 forward pointers in practice, so it suffices to use
the lower 16 bits of a 64-bit word for the index (this can be adjusted as needed for
larger applications). We compute the HMAC by hashing the index along with the
least significant 48 bits of its virtual memory address. With this HMAC we can de-
tect if the adversary tries to replace a code pointer with another pointer harvested
from a different memory location. We find that SipHash [Aumasson and Bernstein
2012], which is optimized for short messages, is a good choice of HMAC for our
approach.

The middle third of Figure 3.2 illustrates the case where the function foo calls
bar indirectly through a function pointer. Again, dark gray labels highlight our ex-
tensions to Readactor’s code pointer hiding technique. The indirect call site in foo

loads the (HMAC, index) pair from memory, recomputes the HMAC using the (ad-
dress, index, key) tuple, and compares the two (see rightmost third of Figure 3.2). If
HMACs match, the index is used to lookup the address of the forward pointer which
is subsequently used to execute control-flow edge ©6 . Note that the forward trampo-
line that creates edge ©7 does not target the first instruction in bar; instead, we add
a delta to the address of bar to skip the forward cookie check that authenticates
direct calls to bar (e.g., edge ©2).

As explained in Section 3.4, AOCR attacks swap two pointers to hijack the
program control flow. Because the address of the pointer is used to compute the
HMAC, moving the pointer without re-computing the HMAC will cause the HMAC
check before all indirect calls to fail unless the two (address, index) pairs collide
in the hash. Attackers can still harvest and swap (HMAC, index) pairs stored to the
same address at different times. See Section 3.6.1 for a more complete security
analysis.

Returns from indirect calls make up the fourth and final class of control flows
that we must authenticate. The callee sets a return cookie before the callee returns
and checks the cookie at the return site; see edges ©8 and ©9 in Figure 3.2. We
again clear the cookie register directly after the check to prevent leaks. The cookie
check at the end of arrow ©9 must pass for all potential callees. Therefore, we set
the lower 32 bits of all backward cookies to the same global random value and only

74 Chapter 3 Diversity and Information Leaks

check the lower halfword of the backward cookie at the return site. This ensures
that returns only target return sites; however, any return instruction can target
indirect-call-preceded gadgets under this scheme. We did not reuse any indirect
call-preceded gadgets in our harvesting attack since these are also protected by
register randomization and callee-saved stack slot randomization. It is possible to
further restrict returns from indirect calls by taking function types into account.
Rather than setting the lower 32 bits of return cookies to the same random value,
we can use different random values for different types of functions.

3.6 Evaluation of Code-Pointer Authentication

3.6.1 Security
Code-pointer authentication prevents reuse of the remaining exposed trampoline
pointers, even if the attacker has harvested all available trampoline locations. This
authentication mitigates AOCR attacks. To show how, we systematically consider
each possibly exposed indirect branch target in turn.

Direct call trampoline entry (edge ©1 in Figure 3.2). An attacker can harvest the
location of the backward jump (jump r_foo) in the call trampoline from the
return address on the stack. In the original Readactor defense, it is possible
to compute the address of the previous instruction from this pointer and
invoke t_bar.

With direct call authentication, each direct callee function checks that its
specific, per-function cookie is set prior to calling it. If the attacker cannot
forge the callee function’s cookie, this check will fail. We store the cookie
as an immediate value in execute-only memory and pass it to the callee in
a register. After performing the cookie check, the callee clears the register.
Thus, direct call cookies cannot leak to an adversary, and the attacker has a
2−64 chance of successfully guessing the correct 64-bit random cookie value.
Since the attacker cannot forge a correct cookie before an indirect branch
to a direct call cookie, direct call trampoline entry points are unavailable as
destinations for an attack.

Direct call trampoline return (edge ©3 in Figure 3.2). Harvesting a return address
corresponding to a direct call trampoline gives the attacker the location of the
backward jump in a call trampoline. In Readactor, this destination allows the
attacker to invoke a call-preceded gadget beginning at r_foo in the example.

We also protect these destinations with an analogous, function-specific
return cookie. Directly before a callee function returns, it sets its function-

3.6 Evaluation of Code-Pointer Authentication 75

specific return cookie. The return site verifies that the expected callee’s re-
turn cookie was set before continuing execution. This prevents the attacker
from reusing this destination unless the control-flow edge would be allowed
during normal program execution.

Indirect call trampoline entry (edge ©5 in Figure 3.2). Similarly, an attacker can
harvest indirect call trampoline locations from the stack and dispatch to the
beginning of an indirect call trampoline. However, this destination is trivial
to attackers, since they must set another valid, useful destination for the in-
direct call before invoking the trampoline. The attack could always dispatch
straight to this final destination instead of to the indirect call trampoline.
Thus, we do not need to protect indirect call trampoline entry points from
reuse.

Indirect call trampoline return (edge ©8 in Figure 3.2). Analogous to the direct
call case, the attacker can dispatch to the backward edge of an indirect
call trampoline to invoke an indirect-call-preceded gadget. This is a more
challenging edge to protect without static analysis, since the indirect call
site cannot know which function-specific return cookie to check.

Since the caller does not know the precise callee, we enforce a weaker
authentication check on indirect call return destinations. By splitting re-
turn cookies into a global part and function-specific part, we can still ensure
that the return site must be invoked by a return, not an indirect call. We be-
lieve that the fine-grained register randomization implemented in Readactor
largely mitigates the threat of indirect-call-preceded gadget reuse, since the
attacker cannot be sure of the semantics of the gadget due to execute-only
memory.

Function trampolines (edge ©6 in Figure 3.2). Function trampoline harvesting
and reuse is the easiest attack vector against code-pointer hiding schemes. In
Readactor, after harvesting function trampolines, the attacker can overwrite
any return address or function pointer with a valid function trampoline
destination and perform whole-function reuse.

We prevent reuse of function trampolines by changing the function-
pointer format to include an HMAC tying the function pointer to a specific
memory address. This prevents reuse of function pointers from returns as
well as most swaps of function pointers in memory.

Since function pointers are no longer memory addresses in our authenti-
cation scheme, the attacker cannot use a function pointer as a return address

76 Chapter 3 Diversity and Information Leaks

at all. The return would interpret the address as an HMAC-Idx pair and fail
to verify the HMAC, crashing the program.

Function pointers cannot be swapped arbitrarily under this defense, since
the pointer is tied to its address in memory by the HMAC. If a pointer P at
address A is moved to address B, the HMAC check will fail when loaded
from address B. Thus the attacker must either forge a valid HMAC or have
harvested P from the targeted location in memory at a previous point in
execution.

HMAC Forgery. We first address the possibility of forging a valid HMAC for a
function and pointer address pair without ever having seen a valid HMAC for that
pair. SipHash is designed to be forgery resistant, thus the probability of correctly
forging a valid HMAC for a pointer at an address not previously HMACed is expected
to be 2−48, based on the size of the HMAC tag. Additionally, since we can store the
HMAC key in execute-only memory, an attacker cannot disclose the 128-bit key and
thus is limited to brute-forcing this key.

Replay Attacks. As in other pointer encryption schemes [Mashtizadeh et al. 2015,
Cowan et al. 2003], HMACs do not provide temporal safety against replay attacks
on function pointers. That is, a function pointer can be harvested at one point in
program execution and later rewritten to the same address.

3.6.2 Performance
To evaluate the performance of our code-pointer authentication, we applied the
protections on top of the Readactor++ system. We measured the performance
overhead of both direct call authentication and function-pointer authentication on
the SPEC CPU2006 benchmark suite. These results are summarized in Figure 3.3.
All benchmarks were measured on a system with two Intel Xeon E5-2660 processors
clocked at 2 Ghz running Ubuntu 14.04.

With all protections enabled, we measured a geometric mean performance over-
head of 9.7%. This overhead includes the overhead from basic Readactor call and
jump trampolines and compares favorably with the 6.4% average overhead reported
by Crane et al. [2015]. We also measured the impact of direct call authentication
and indirect call authentication individually (labeled DCA and ICA in the figure,
respectively). We found that indirect code-pointer authentication generally adds
more overhead (6.7% average) than direct code-pointer authentication (5.9% aver-
age), although this is strongly influenced by the program workload, specifically the
percentage of calls using function pointers.

3.6 Evaluation of Code-Pointer Authentication 77

50

40

30

20

10

0

perlb
ench

bzip
2

gcc
m

cf

gobm
k

hm
m

er
sjeng

lib
quantu

m

h264re
f

asta
r

xala
ncbm

k
m

ilc

nam
d

dealII

sople
x

lb
m

sphin
x3

Geo M
ean

P
er

fo
rm

an
ce

 s
lo

w
d

ow
n

 (%
) DCA

ICA
Full CPA

Figure 3.3 Performance overhead of code-pointer authentication on SPEC CPU2006. All measure-
ments include the overhead of the Readactor++ transformations [Crane et al. 2015].

We observed that h264ref stands out as an interesting outlier for indirect
call authentication. This benchmark repeatedly makes a call through a function
pointer in a hot loop. To make matters worse, the target function is a one-line
getter, thus our instrumentation dominates the time spent in the callee. This
benchmark in particular benefits greatly from inlining the HMAC verification to
avoid the extra call overhead. To speed up HMAC verification, especially in this
edge case, we implemented a small (128 byte), direct-mapped, hidden cache of
valid HMAC entries. This hidden cache is only accessed via offsets embedded in
execute-only memory and is thus tamper resistant. Before recomputing an HMAC,
the verification routine checks the cache to see if the HMAC is present.

We found three corner cases in SPEC where we could not automatically compute
a new HMAC when a function pointer was moved. This is because the program first
casts away the function-pointer type and then copies the pointer inside a struct. We
had to insert a single manual HMAC in gcc and another in povray to handle these
edge cases. perlbench stores function pointers in a growable list, which is moved
during reallocation. Since our prototype does not yet instrument the libc realloc
function, we had to manually instrument these operations. The CCFI [Mashtizadeh
et al. 2015] HMAC scheme requires similar modifications. Finally, Readactor is not
fully compatible with C++ exception handling, so we were not able to run omnetpp

and povray, which require exception handling.

78 Chapter 3 Diversity and Information Leaks

3.7 Conclusion
There are three ways to bypass diversity-type mitigations. The first is to target
unprotected areas, the second is to employ brute force guessing, and the third
relies on information leakage. The first two ways are relatively straightforward to
counter through good engineering. The third option, however, remains the most
challenging to fully address. Although it is possible to prevent leakage (perhaps
modulo hardware side channels) of the code layout, address-oblivious attacks,
though technically complex, are feasible. It is possible to mitigate address-oblivious
code reuse, too, although the solution we designed and evaluated adds overhead
and complexity to what was initially a fairly simple defense strategy.

If history is any guide, retrofitting security into fundamentally insecure lan-
guages without hampering performance will remain an open research challenge
in the foreseeable future. The specific strand of research presented here is not the
“one true answer” to all security problems; just as is the case with mitigation alter-
natives, such as CFI and CPI. Instead, we describe our broader expectations for the
short, medium, and long term based on recent industry developments:

. In the short term, deploying better mitigations is the best option. This is
not a particular insight of ours; one simply has to look at the direction in
which major software developers are headed. At the time of writing, work is
under way to improve the granularity of code randomization schemes, and
hardware support for execute-only memory is forthcoming for Intel and al-
ready available for ARM. Although deployment of leakage-resilient diversity,
as enabled by these techniques, is unlikely to stop all exploits, it does con-
siderably raise the bar on attackers. At the same time, control-flow integrity
techniques are supported by all major compilers, and hardware support is
similarly forthcoming from both Intel and ARM. Diversity and CFI are not
mutually exclusive techniques, and either will stop a sufficiently determined
adversary on its own. Rather, we believe a combination of disparate exploit
mitigations will offer the best return on investment.

. Unlike the short-term options, medium-term options will require some
source code changes. Access control mechanisms, such as SELinux, when
correctly implemented, help implement the principle of least privilege such
that vulnerabilities in unprivileged code cannot be used to carry out privi-
leged operations. Legacy applications are unlikely to be broken into indepen-
dent submodules based on the privileges they require, however. Therefore,
manual refactoring may be required to realize the full potential of access
control mechanisms. Similarly, techniques that retrofit type and memory

3.7 Conclusion 79

safety into legacy C/C++ code require that bad casts and invalid memory ac-
cesses are removed from the application before a protected version can be
released.

. Whereas medium-term options may require minor changes and fixes to
existing source code, the best long-term option is likely to very gradually
retire C/C++ code. This will take multiple decades, and some code bases
may simply be abandoned as the software landscape changes anyway. The
reason we mention language mitigation, however long it may take, is that it
brings with it several important secondary benefits. Reduction of technical
debt and the resulting productivity benefits are chief among these. C and
its derivatives reflect the age in which they were designed. For instance,
C programmers must declare variables and functions defined outside the
current translation unit such that the compiler can emit code in a single
pass over the input files. Modern programming languages reflect the current
reality that computing cycles are cheap and programmer attention scarce.
Moreover, Balasubramanian et al. [2017] show that the features of the Rust
systems programming language can support security capabilities, such as
zero-copy software fault isolation, that cannot be implemented efficiently in
traditional languages. Only by abandoning the languages in the C family,
which have been spectacularly successful at any rate, can we make systems
programming more productive, safe, and accessible.

Acknowledgments
This material is based upon work partially supported by the Department of Defense
under Defense Advanced Research Projects Agency (DARPA) contract FA8750-15-
C-0124, Air Force contracts FA8721-05-C-0002 and FA8702-15-D-0001, and by the
National Science Foundation under awards CNS-1513837 and CNS-1619211.

Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA), its Contracting Agents,
the Air Force, the National Science Foundation, or any other agency of the U.S.
Government.

4Code-Pointer Integrity
Volodymyr Kuznetzov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, Dawn Song

In this chapter, we describe code-pointer integrity (CPI), a new design point that
guarantees the integrity of all code pointers in a program (e.g., function pointers,
saved return addresses) and thereby prevents all control-flow hijack attacks that ex-
ploit memory corruption errors, including attacks that bypass control-flow integrity
mechanisms, such as control-flow bending [Carlini et al. 2015e]. We also describe
code-pointer separation (CPS), a relaxation of CPI with better performance prop-
erties. CPI and CPS offer substantially better security-to-overhead ratios than the
state of the art, and they are practical (CPI and CPS were used to protect a complete
FreeBSD system and over 100 packages like apache and postgresql), effective
(prevented all attacks in the RIPE benchmark), and efficient: on SPEC CPU2006,
CPS averages 1.2% overhead for C and 1.9% for C/C++, while CPI’s overhead is 2.9%
for C and 8.4% for C/C++.

This chapter is organized as follows: we introduce the motivation and key ideas
behind CPI and CPS (Section 4.1), describe related work (Section 4.2), introduce our
threat model (Section 4.3), describe CPI and CPS design (Section 4.4), present the
formal model of CPI (Section 4.5), describe an implementation of CPI (Section 4.6)
and the experimental results (Section 4.7), and then conclude (Section 4.8).

4.1 Introduction
System code is often written in memory-unsafe languages. This makes it prone
to memory errors that are the primary attack vector to subvert systems. Attackers
exploit bugs, such as buffer overflows and use-after-free errors, to cause memory
corruption that enables them to steal sensitive data or execute code that gives them
control over a remote system [Wojtczuk 1998, Nergal 2001, Checkoway et al. 2010,
Bletsch et al. 2011].

82 Chapter 4 Code-Pointer Integrity

The goal of CPI is to secure system code against all control-flow hijack attacks,
which is how attackers gain remote control of victim systems. Low-level languages
like C/C++ offer many benefits to system programmers, and CPI makes these lan-
guages safe to use while preserving their benefits, not the least of which is perfor-
mance. Before expecting any security guarantees from systems, we must first secure
their building blocks.

There exist a few protection mechanisms that can reduce the risk of control-
flow hijack attacks without imposing undue overhead. Data Execution Prevention
(DEP) and W ⊕ X [van de Ven 2004] use memory page protection to prevent the
introduction of new executable code into a running application. Unfortunately,
DEP is defeated by code-reuse attacks, such as return-to-libc [Nergal 2001] and
return-oriented programming (ROP) [Wojtczuk 1998, Bletsch et al. 2011], which can
construct arbitrary Turing-complete computations by chaining together existing
code fragments of the original application. Address Space Layout Randomization
(ASLR) [PaX Team 2004a] places code and data segments at random addresses,
making it harder for attackers to reuse existing code for execution. Alas, ASLR is
defeated by pointer leaks, side-channel attacks [Hund et al. 2013], and just-in-
time code-reuse attacks [Snow et al. 2013]. Finally, stack cookies [Cowan et al.
1998] protect return addresses on the stack but only against continuous buffer
overflows.

Many defenses can improve upon these shortcomings but have not seen wide
adoption because of the overheads they impose. According to a recent survey
[Szekeres et al. 2013], these solutions are incomplete and bypassable via sophisti-
cated attacks and/or require source code modifications and/or incur high perfor-
mance overhead. These approaches typically employ language modifications [Jim
et al. 2002, Necula et al. 2005], compiler modifications [Cowan et al. 2003, Akritidis
et al. 2008, Dhurjati et al. 2006, Nagarakatte et al. 2009, Serebryany et al. 2012], or
rewrite machine code binaries [Niu and Tan 2013, Zhang and Sekar 2013, Zhang
et al. 2013].

Control-flow integrity (CFI) protection [Abadi et al. 2005a, Burow et al. 2016, Li
et al. 2011, Zhang et al. 2013, Zhang and Sekar 2013, Niu and Tan 2014a], a widely
studied technique for practical protection against control-flow hijack attacks, was
recently demonstrated to be ineffective [Carlini et al. 2015e, Evans et al. 2015,
Göktas et al. 2014a, Davi et al. 2014, Carlini and Wagner 2014] against attacks that
are adjusted to the constraints of the underlying defense.

Existing techniques cannot both guarantee protection against control-flow hi-
jacks and impose low overhead and no changes to how the programmer writes code.
For example, memory-safe languages guarantee that a memory object can only be

4.1 Introduction 83

accessed using pointers properly based on that specific object, which in turn makes
control-flow hijacks impossible. But this approach requires runtime checks to ver-
ify the temporal and spatial correctness of pointer computations, which inevitably
induces undue overhead, especially when retrofitted to memory-unsafe languages.
For example, state-of-the-art memory safety implementations for C/C++ incur ≥ 2×
overhead [Nagarakatte et al. 2010]. We observe that, in order to render control-flow
hijacks impossible, it is sufficient to guarantee the integrity of code pointers, i.e.,
those that are used to determine the targets of indirect control-flow transfers (in-
direct calls, indirect jumps, or returns).

This chapter describes code-pointer integrity (CPI), a way to enforce precise,
deterministic memory safety for all code pointers in a program. The key idea is to
split process memory into a safe region and a regular region. CPI uses static analysis
to identify the set of memory objects that must be protected in order to guarantee
memory safety for code pointers. This set includes all memory objects that contain
code pointers and all data pointers used to access code pointers indirectly. All
objects in the set are then stored in the safe region, and the region is isolated
from the rest of the address space (e.g., via hardware protection). The safe region
can only be accessed via memory operations that are proven at compile time to be
safe or that are safety-checked at runtime. The regular region is just like normal
process memory: it can be accessed without runtime checks and, thus, with no
overhead. In typical programs, the accesses to the safe region represent only a small
fraction of all memory accesses (6.5% of all pointer operations in SPEC CPU2006
need protection). Existing memory safety techniques cannot efficiently protect only
a subset of memory objects in a program; rather, they require instrumenting all
potentially dangerous pointer operations.

CPI fully protects the program against all control-flow hijack attacks that exploit
program memory bugs. CPI requires no changes to how programmers write code
since it automatically instruments pointer accesses at compile time. CPI achieves
low overhead by selectively instrumenting only those pointer accesses that are
necessary and sufficient to formally guarantee the integrity of all code pointers.
The CPI approach can also be used for data, e.g., to selectively protect sensitive
information like the process UIDs in a kernel.

We also describe code-pointer separation (CPS), a relaxed variant of CPI that
is better suited for code with abundant virtual function pointers. In CPS, all code
pointers are placed in the safe region, but pointers used to access code pointers
indirectly are left in the regular region (such as pointers to C++ objects that contain
virtual functions). Unlike CPI, CPS may allow certain control-flow hijack attacks,
but it still offers strong guarantees and incurs negligible overhead.

84 Chapter 4 Code-Pointer Integrity

Finally, we describe SafeStack, a component of both CPI and CPS that protects
code pointers on the stack. SafeStack is integrated into the Clang compiler starting
with version 3.7.0.

The experimental evaluation of CPI and CPS shows that these techniques im-
pose sufficiently low overhead to be deployable in production. For example, CPS
incurs an average overhead of 1.2% on the C programs in SPEC CPU2006 and 1.9%
for all C/C++ programs. CPI incurs on average 2.9% overhead for the C programs and
8.4% across all C/C++ SPEC CPU2006 programs. CPI and CPS are effective: they pre-
vented 100% of the attacks in the RIPE benchmark and the recent attacks [Göktas
et al. 2014a, Davi et al. 2014, Carlini and Wagner 2014] that bypass CFI, ASLR, DEP,
and all other Microsoft Windows protections. We compile and run with CPI/CPS a
complete FreeBSD distribution along with over 100 widely used packages, demon-
strating that the approach is practical.

4.2 Related Work
A variety of defense mechanisms have been proposed to date to answer the increas-
ing challenge of control-flow hijack attacks, some of them described in Chapter 1.
Figure 4.1 compares the design of the different protection approaches to our ap-
proach.

Enforcing memory safety ensures that no dangling or out-of-bounds pointers
can be read or written by the application, thus preventing the attack in its first
step. Cyclone [Jim et al. 2002] and CCured [Necula et al. 2005] extend C with a safe
type system to enforce memory safety features. These approaches face the prob-
lem that there is a large (unported) legacy code base. In contrast, CPI and CPS
both work for unmodified C/C++ code. SoftBound [Nagarakatte et al. 2009] with
its CETS [Nagarakatte et al. 2010] extension enforces complete memory safety at
the cost of 2–4× slowdown. Tools with less overhead, like BBC [Akritidis et al.
2009], only approximate memory safety. LBC [Hasabnis et al. 2012] and Address
Sanitizer [Serebryany et al. 2012] detect continuous buffer overflows and (proba-
bilistically) indexing errors, but can be bypassed by an attacker who avoids the red
zones placed around objects. Write Integrity Testing (WIT) [Akritidis et al. 2008]
provides spatial memory safety by restricting pointer writes according to points-
to sets obtained by an over-approximate static analysis (and is therefore limited by
the static analysis). Other techniques [Dhurjati et al. 2006, Akritidis 2010] enforce
type-safe memory reuse to mitigate attacks that exploit temporal errors (use-after-
frees).

4.2 Related Work 85

Corrupt
data

pointer

Attack step Property

Memory safety

Code-pointer
integrity

Control-flow
integrity

Non-executable
data

High-level
policies

Randomization

Mechanism

SoftBound+CETS [34, 35]
BBC [4],
LBC [20], ASAN [43].
WIT [3]

Mechanism

Yes
No: sub-objects, reads not protected
No: protects red zones only
No: over-approximate valid sets

Average
overhead

116%
110%

23%
7%

Yes
No: valid code ptrs. interchangeable
No: precise return protection only

8.4%
1.9%
~0%

No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks
No: vulnerable to information leaks

~10%
10%
20%

2%

No: probabilistic return protection only
No: over-approximate valid sets
No: over-approximate valid sets
No: over-approximate valid sets

~2%
20%

7%
104%

No: code-reuse attacks
No: code-reuse attacks

0%
few %

Isolation only
Isolation only
Isolation only

varies
varies
varies

CPI
CPS
SafeStack

Stack cookies
CFI [1]
WIT (CFI part) [3]
DFI [10]

HW (NX bit)
SW (Exec Shield, PaX)

Sandboxing (SFI)
ACLs
Capabilities

ASLR [40], ASLP [26]
PointGuard [13]
DSR [6]
NOP insertion [21]

1

Control-flow
hijack

Modify
a code

pointer …

… to address
of gadget/
shellcode

Use pointer
by return

instruction

Exec. available
gadgets/
func.-s

Execute
injected

shellcode

Use pointer
by indirect
call/jump

2

3

4

5

6

Figure 4.1 Summary of control-flow hijack defense mechanisms aligned with individual steps that
are necessary for a successful attack. The diagram on the left is a simplified version of
the complete memory corruption diagram in [Szekeres et al. 2013].

CPI by design enforces spatial and temporal memory safety for a subset of data
(code pointers) in step 2 of Figure 4.1. Our Levee prototype currently enforces spatial
memory safety and may be extended to enforce temporal memory safety as well (e.g.,
how CETS extends SoftBound). We believe CPI is the first to stop all control-flow
hijack attacks at this step.

Randomization-based confidentiality techniques, like ASLR [PaX Team 2004a]
and ASLP [Kil et al. 2006], mitigate attacks by restricting the attacker’s knowledge of
the memory layout of the application in step 3. PointGuard [Cowan et al. 2003] and
DSR [Bhatkar and Sekar 2008] (which is similar to probabilistic WIT) randomize the
data representation by encrypting pointer values but face compatibility problems.
Software diversity [Homescu et al. 2013] allows fine-grained, per-instance code ran-
domization. Randomization techniques are defeated by information leaks through,

86 Chapter 4 Code-Pointer Integrity

e.g., memory corruption bugs [Snow et al. 2013] or side-channel attacks [Hund et al.
2013].

Control-flow integrity [Abadi et al. 2005a] ensures that the targets of all indirect
control-flow transfers point to valid code locations in step 4. All CFI solutions
rely on statically pre-computed context-insensitive sets of valid control-flow target
locations. Many practical CFI solutions simply include every function in a program
in the set of valid targets [Zhang et al. 2013, Zhang and Sekar 2013, Li et al. 2011, Tice
et al. 2014]. Even if precise static analysis would be feasible, CFI could not guarantee
protection against all control-flow hijack attacks, but rather merely restrict the
sets of potential hijack targets. Indeed, recent results [Göktas et al. 2014a, Davi
et al. 2014, Carlini and Wagner 2014] show that many existing CFI solutions can be
bypassed in a principled way. CFI+SFI [Zeng et al. 2011], Strato [Zeng et al. 2013a],
and MIPS [Niu and Tan 2013] enforce an even more relaxed, statically defined CFI
property in order to enforce software-based fault isolation. CCFI [Mashtizadeh et al.
2014] encrypts code pointers in memory and provides security guarantees close
to CPS. Data-flow-based techniques, like Data-Flow Integrity (DFI) [Castro et al.
2006] or Dynamic Taint Analysis (DTA) [Schwartz et al. 2010], can enforce that the
used code pointer was not set by an unrelated instruction or to untrusted data,
respectively. These techniques may miss some attacks or cause false positives, and
have higher performance costs than CPI and CPS. Stack cookies, CFI, DFI, and DTA
protect control-transfer instructions by detecting illegal modification of the code
pointer whenever it is used, while CPI protects the load and store of a code pointer,
thus preventing the corruption in the first place. CPI provides precise and provable
security guarantees.

In step 5, the execution of injected code is prevented by enforcing the non-
executable (NX) data policy, but code-reuse attacks remain possible.

High-level policies, e.g., restricting the allowed system calls of an application,
limit the power of the attacker even in the presence of a successful control-flow
hijack attack in step 6. Software Fault Isolation (SFI) techniques [McCamant and
Morrisett 2006, Erlingsson et al. 2006, Castro et al. 2009, Yee et al. 2009, Zeng et al.
2011] restrict indirect control-flow transfers and memory accesses to part of the
address space, enforcing a sandbox that contains the attack. SFI prevents an attack
from escaping the sandbox and allows the enforcement of a high-level policy, while
CPI enforces the control flow inside the application.

CPI and CPS rely on an instruction-level isolation mechanism to enforce the sep-
aration of code pointers from the rest of the data in program memory (Section 4.4).
This book describes multiple implementations of such mechanisms (Section 4.6.3),
including implementations that provide precise isolation guarantees (based on

4.4 Design 87

hardware- or software-enforced isolation) as well as probabilistic guarantees (based
on randomization and information hiding). Evans et al. [2015a] demonstrated that
one of the implementations with probabilistic guarantees can be bypassed in prac-
tical settings. Their attack cannot subvert the other implementation alternatives
presented in this book (see Section 4.6.3 and [Kuznetsov et al. 2015]).

4.3 Threat Model
This chapter is concerned solely with control-flow hijack attacks, namely, ones that
give the attacker control of the instruction pointer. The purpose of this type of
attack is to divert control flow to a location that would not otherwise be reachable
in that same context, had the program not been compromised. Examples of such
attacks include forcing a program to jump (i) to a location where the attacker
injected shellcode, (ii) to the start of a chain of return-oriented program fragments
(“gadgets”), or (iii) to a function that performs an undesirable action in the given
context, such as calling system() with attacker-supplied arguments. Data-only
attacks, i.e., those that modify or leak unprotected non-control data, are outside
the scope of our discussion.

We assume powerful yet realistic attacker capabilities: full control over process
memory but no ability to modify the code segment. Attackers can carry out arbitrary
memory reads and writes by exploiting input-controlled memory corruption errors
in the program. They cannot modify the code segment because the corresponding
pages are marked read-executable and not writable, and they cannot control the
program-loading process. These assumptions ensure the integrity of the original
program code instrumented at compile time, and enable the program loader to
safely set up the isolation between the safe and regular memory regions. Our
assumptions are consistent with prior work in this area.

4.4 Design
We now present the terminology used to describe our design, then define the code-
pointer integrity property (Section 4.4.1), describe the corresponding enforcement
mechanism (Section 4.4.2), and define a relaxed version that trades some security
guarantees for performance (Section 4.4.4). We further formalize the CPI enforce-
ment mechanism and sketch its correctness proof (Section 4.5).

We say a pointer dereference is safe iff the memory it accesses lies within the
target object on which the dereferenced pointer is based. A target object can either
be a memory object or a control-flow destination. By pointer dereference we mean
accessing the memory targeted by the pointer, either to read/write it (for data

88 Chapter 4 Code-Pointer Integrity

pointers) or to transfer control flow to its location (for code pointers). A memory
object is a language-specific unit of memory allocation, such as a global or local
variable, a dynamically allocated memory block, or a sub-object of a larger memory
object (e.g., a field in a struct). Memory objects can also be program specific, e.g.,
when using custom memory allocators. A control-flow destination is a location in
the code, such as the start of a function or a return location. A target object always
has a well-defined lifetime; for example, freeing an array and allocating a new one
with the same address creates a different object.

We say a pointer is based on a target object X iff the pointer is obtained at runtime
by (i) allocating X on the heap; (ii) explicitly taking the address of X if X is allocated
statically, such as a local or global variable, or is a control-flow target (including
return locations, whose addresses are implicitly taken and stored on the stack when
calling a function); (iii) taking the address of a sub-object y of X (e.g., a field in the
X struct); or (iv) computing a pointer expression (e.g., pointer arithmetic, array
indexing, or simply copying a pointer) involving operands that either are themselves
based on object X or are not pointers. This is a slightly stricter version of C99’s
“based-on” definition: we ensure that each pointer is based on at most one object.

The execution of a program is memory safe iff all pointer dereferences in the
execution are safe. A program is memory safe iff all its possible executions (for all
inputs) are memory safe. This definition is consistent with the state of the art for
C/C++, such as SoftBounds+CETS [Nagarakatte et al. 2009, Nagarakatte et al. 2010].
Precise memory safety enforcement [Nagarakatte et al. 2009, Necula et al. 2005,
Jim et al. 2002] tracks the based-on information for each pointer in a program to
check the safety of each pointer dereference according to the definition above; the
detection of an unsafe dereference aborts the program.

4.4.1 The Code-Pointer Integrity (CPI) Property
A program execution satisfies the code-pointer integrity property iff all its derefer-
ences that either dereference or access sensitive pointers are safe. Sensitive pointers
are code pointers and pointers that may later be used to access sensitive pointers.
Note that the sensitive pointer definition is recursive, as illustrated in Figure 4.2.
According to case (iv) of the based-on definition above, dereferencing a pointer to a
pointer will correspondingly propagate the based-on information; e.g., an expres-
sion *p = &q copies the result of &q, which is a pointer based on q, to a location
pointed to by p, and associates the based-on metadata with that location. Hence,
the integrity of the based-on metadata associated with sensitive pointers requires
that pointers used to update sensitive pointers be sensitive as well (we discuss impli-
cations of relaxing this definition in Section 4.4.4). The notion of a sensitive pointer

4.4 Design 89

Data:

1

2

int 5 4

3

struct A

FunctionA

FunctionBstruct B

Code:

Figure 4.2 CPI protects code pointers 3 and 4 and pointers 1 and 2 (which may access pointers
3 and 4 indirectly). Pointer 2 of type void* may point to different objects at different
times. The int* pointer 5 and non-pointer data locations are not protected.

is dynamic. For example, a void* pointer 2 in Figure 4.2 is sensitive when it points
at another sensitive pointer at runtime, but it is not sensitive when it points to an
integer.

A memory-safe program execution trivially satisfies the CPI property, but
memory safety instrumentation typically has high runtime overhead, e.g., ≥ 2× in
state-of-the-art implementations [Nagarakatte et al. 2010]. Our observation is that
only a small subset of all pointers is responsible for making control-flow transfers,
and so, by enforcing memory safety only for control-sensitive data (and thus incur-
ring no overhead for all other data), we obtain important security guarantees while
keeping the cost of enforcement low. This is analogous to the control-plane/data-
plane separation in network routers and modern servers [Altekar and Stoica 2010],
with CPI ensuring the safety of data that influences, directly or indirectly, the con-
trol plane.

Determining precisely the set of pointers that are sensitive can only be done at
runtime. However, the CPI property can still be enforced using any over-approxima-
tion of this set, and such over-approximations can be obtained at compile time,
using static analysis.

4.4.2 The CPI Enforcement Mechanism
We now describe a way to retrofit the CPI property into a program P using a com-
bination of static instrumentation and runtime support. Our approach consists of
a static analysis pass that identifies all sensitive pointers in P and all instructions
that operate on them (Section 4.4.2.1), an instrumentation pass that rewrites P to
“protect” all sensitive pointers, i.e., store them in a separate, safe memory region
and associate, propagate, and check their based-on metadata (Section 4.4.2.2), and

90 Chapter 4 Code-Pointer Integrity

an instruction-level isolation mechanism that prevents non-protected memory op-
erations from accessing the safe region (Section 4.4.2.3). For performance reasons,
we handle return addresses stored on the stack separately from the rest of the code
pointers using a safe stack mechanism (Section 4.4.3).

4.4.2.1 CPI Static Analysis
We determine the set of sensitive pointers using type-based static analysis: a pointer
is sensitive if its type is sensitive. Sensitive types are pointers to functions, point-
ers to sensitive types, pointers to composite types (such as struct or array) that
contain one or more members of sensitive types, or universal pointers (i.e., void*,
char*, and opaque pointers to forward-declared structs or classes). A program-
mer could additionally indicate, if desired, other types to be considered sensitive,
such as struct ucred used in the FreeBSD kernel to store process UIDs and jail
information. All code pointers that a compiler or runtime creates implicitly (such
as return addresses, C++ virtual table pointers, and setjmp buffers) are sensitive
as well.

Once the set of sensitive pointers is determined, we use static analysis to find all
program instructions that manipulate these pointers. These instructions include
pointer dereferences, pointer arithmetic, and memory (de-)allocation operations
that call either (i) corresponding standard library functions, (ii) C++ new/delete
operators, or (iii) manually annotated custom allocators.

The derived set of sensitive pointers is over-approximate: it may include uni-
versal pointers that never end up pointing to sensitive values at runtime. For in-
stance, the C/C++ standard allows char* pointers to point to objects of any type,
but such pointers are also used for C strings. As a heuristic, we assume that char*
pointers that are passed to the standard libc string manipulation functions or
that are assigned to point to string constants are not universal. Neither the over-
approximation nor the char* heuristic affect the security guarantees provided by
CPI: over-approximation merely introduces extra overhead, while heuristic errors
may result in false violation reports (though we never observed any in practice).

Memory manipulation functions from libc, such as memset or memcpy, could
introduce a lot of overhead in CPI: they take void* arguments, so a libc compiled
with CPI would instrument all accesses inside the functions, regardless of whether
they are operating on sensitive data or not. CPI’s static analysis instead detects such
cases by analyzing the real types of the arguments prior to being cast to void*, and
the subsequent instrumentation pass handles them separately using type-specific
versions of the corresponding memory manipulation functions.

4.4 Design 91

We augmented type-based static analysis with a data-flow analysis that handles
most practical cases of unsafe pointer casts and casts between pointers and inte-
gers. If a value v is ever cast to a sensitive pointer type within the function being
analyzed, or is passed as an argument or returned to another function where it
is cast to a sensitive pointer, the analysis considers v to be sensitive as well. This
analysis may fail when the data flow between v and its cast to a sensitive pointer
type cannot be fully recovered statically, which might cause false violation reports
(we have not observed any during our evaluation). Such casts are a common prob-
lem for all pointer-based memory safety mechanisms for C/C++ that do not require
source code modifications [Nagarakatte et al. 2009].

A key benefit of CPI is its selectivity: the number of pointer operations deemed
to be sensitive is a small fraction of all pointer operations in a program. As we
show in Section 4.7, for SPEC CPU2006, the CPI type-based analysis identifies for
instrumentation 6.5% of all pointer accesses; this translates into a reduction of
performance overhead of 16–44× relative to full memory safety.

Nevertheless, we still think CPI can benefit from more sophisticated analyses.
CPI can leverage any kind of points-to static analysis, as long as it provides an over-
approximate set of sensitive pointers. For instance, when extending CPI to also
protect select non-code-pointer data, we think DSA [Lattner and Adve 2005, Lattner
et al. 2007] could prove more effective.

4.4.2.2 CPI Instrumentation
CPI instruments a program in order to (i) ensure that all sensitive pointers are
stored in a safe region, (ii) create and propagate metadata for such pointers at
runtime, and (iii) check the metadata on dereferences of such pointers.

In terms of memory layout, CPI introduces a safe region in addition to the
regular memory region (Figure 4.3). Storage space for sensitive pointers is allocated
in both the safe region (the safe pointer store) and the regular region (as usual); one
of the two copies always remains unused. This is necessary for universal pointers
(e.g., void*), which could be stored in either region depending on whether they are
sensitive at runtime or not, and also helps to avoid some compatibility issues that
arise from the change in memory layout. The address in regular memory is used as
an offset to look up the value of a sensitive pointer in the safe pointer store.

The safe pointer store maps the address &p of sensitive pointer p, as allocated in
the regular region, to the value of p and associated metadata. The metadata for p
describes the target object on which p is based: lower and upper address bounds
of the object and a temporal id (see Figure 4.3). The layout of the safe pointer
store is similar to metadata storage in SoftBounds+CETS [Nagarakatte et al. 2010],

92 Chapter 4 Code-Pointer Integrity

struct A

Heap (RW)

T1′

Unsafe stacks (RW)

T2′ T3′ T1

Safe stacks (RW)

T2 T3

Code (RX) Safe pointer store (RW)

Regular Region

value upper

Safe Region

lower id

Figure 4.3 CPI memory layout: The safe region contains the safe pointer store and the safe stacks.
The location of a sensitive pointer on the left (shaded) remains unused, while the value
of this pointer and its metadata are stored in the safe pointer store. The safe stacks
T1, T2, T3 have corresponding stacks T ′

1, T ′
2, T ′

3 in regular memory to allocate unsafe
stack objects.

except that CPI also stores the value of p in the safe pointer store. Combined with
the isolation of the safe region (Section 4.4.2.3), this allows CPI to guarantee full
memory safety of all sensitive pointers without having to instrument all pointer
operations.

The instrumentation step changes instructions that operate on sensitive point-
ers, as found by CPI’s static analysis, to create and propagate the metadata directly
following the based-on definition in Section 4.4.1. Instructions that explicitly take
addresses of a statically allocated memory object or a function, allocate a new object
on the heap, or take an address of a sub-object are instrumented to create metadata
that describes the corresponding object. Instructions that compute pointer expres-
sions are instrumented to propagate the metadata accordingly. Instructions that
load or store sensitive pointers to memory are replaced with CPI intrinsic instruc-
tions (Section 4.4.2.3) that load or store both the pointer values and their metadata
from/to the safe pointer store. In principle, call and return instructions also store
and load code pointer, and so would need to be instrumented, but we instead pro-
tect return addresses using a safe stack (Section 4.4.3).

Every dereference of a sensitive pointer is instrumented to check at runtime
whether it is safe, using the metadata associated with the pointer being derefer-
enced. Together with the restricted access to the safe region, this results in precise
memory safety for all sensitive pointers.

Universal pointers (void* and char*) are stored in either the safe pointer store
or the regular region, depending on whether they are sensitive at runtime or not. CPI
instruments instructions that cast from non-sensitive to universal pointer types to
assign special “invalid” metadata (e.g., with the lower bound greater than the upper
bound) for the resulting universal pointers. These pointers, as a result, would never
be allowed to access the safe region. CPI intrinsics for universal pointers would only

4.4 Design 93

store a pointer in the safe pointer store if it had valid metadata, and only load it from
the safe pointer store if it contained valid metadata for that pointer; otherwise, they
would store/load from the regular region.

CPI can be configured to simultaneously store protected pointers in both the
safe pointer store and regular regions, and check whether they match when loading
them. In this debug mode, CPI detects all attempts to hijack control flow using non-
protected pointer errors; in the default mode, such attempts are silently prevented.
This debug mode also provides better compatibility with non-instrumented code
that may read protected pointers (e.g., callback addresses) but not write them.

Modern compilers contain powerful static analysis passes that can often prove
statically that certain memory accesses are always safe. The CPI instrumentation
pass precedes compiler optimizations, thus allowing them to potentially optimize
away some of the inserted checks while preserving the security guarantees.

4.4.2.3 Isolating the Safe Region
The safe region can only be accessed via CPI intrinsic instructions, and they prop-
erly handle pointer metadata and the safe stack (Section 4.4.3). The mechanism for
achieving this isolation is architecture dependent.

On x86-32, we rely on hardware segment protection. We make the safe region
accessible through a dedicated segment register, which is otherwise unused, and
configure limits for all other segment registers to make the region inaccessible
through them. The CPI intrinsics are then turned into code that uses the dedicated
register and ensures that no other instructions in the program use that register.
The segment registers are configured by the program loader, whose integrity we
assume in our threat model; we also prevent the program from reconfiguring the
segment registers via system calls. None of the programs we evaluated use the
segment registers.

Certain architectures provide other hardware-enforced isolation mechanisms
that can be used to protect the safe region. For instance, Intel recently introduced
the memory protection keys extension and the MPX extension [Intel 2013] for the
x86-64 architecture. These extensions could be used to isolate the safe region with
low overhead, as discussed in Section 4.6.4.

On other architectures, CPI can protect the safe region using precise Software
Fault Isolation (SFI) [Castro et al. 2009]. SFI requires that all memory operations
in a program are instrumented, but the instrumentation is lightweight: it could
be as small as a single and operation if the safe region occupies the entire upper
half of the address space of a process. In our experiments, the additional overhead
introduced by SFI was less than 5%.

94 Chapter 4 Code-Pointer Integrity

On 64-bit architectures, CPI could also protect the safe region using random-
ization and information hiding. The fact that no addresses pointing into the safe
region are ever stored in the regular region is what makes perfect information hid-
ing possible. For example, the x86-64 architecture no longer enforces the segment
limits; however, it still provides two segment registers with configurable base ad-
dresses. Similar to x86-32, we use one of these registers to point to the safe region;
however, we choose the base address of the safe region at random and rely on pre-
venting access to it through information hiding. Unlike classic ASLR, though, our
hiding is leak-proof: since the objects in the safe region are indexed by addresses
allocated for them in the regular region, no addresses pointing into the safe re-
gion are ever stored in regular memory at any time during execution. Hiding large
regions through randomization is not secure [Oikonomopoulos et al. 2016]; how-
ever, when the size of the safe region is small (e.g., when the region is implemented
as a hash table, as discussed in Section 4.6), the 48-bit address space of modern x86-
64 CPUs makes guessing the safe region address impractical at least in some usage
scenarios.

We further analyze the security and performance implications of the safe region
protection mechanisms described above in Section 4.6.

Since sensitive pointers form a small fraction of all data stored in memory,
the safe pointer store is highly sparse. To save memory, it can be organized as
a hash table, a multi-level lookup table, or a simple array relying on the sparse
address space support of the underlying OS. We implemented and evaluated all
three versions, and we discuss the fastest choice in Section 4.6.

4.4.3 The Safe Stack
CPI treats the stack specially, in order to reduce performance overhead and com-
plexity. This is primarily because the stack hosts values that are accessed frequently,
such as return addresses that are code pointers accessed on every function call, as
well as spilled registers (temporary values that do not fit in registers and compilers
store on the stack). Furthermore, tracking which of these values will end up at run-
time in memory (and thus need to be protected) vs. in registers is difficult, as the
compiler decides which registers to spill only during late stages of code generation,
long after CPI’s instrumentation pass.

A key observation is that the safety of most accesses to stack objects can be
checked statically during compilation, hence such accesses require no runtime
checks or metadata. Most stack frames contain only memory objects that are ac-
cessed exclusively within the corresponding function and only through the stack
pointer register with a constant offset. We therefore place all such proven-safe ob-

4.4 Design 95

jects onto a safe stack located in the safe region. The safe stack can be accessed
without any checks. For functions that have memory objects on their stack that do
require checks (e.g., arrays or objects whose address is passed to other functions),
we allocate separate stack frames in the regular memory region. In our experi-
ence, less than 25% of functions need such additional stack frames (see Table 4.4).
Furthermore, this fraction is much smaller among short functions, for which the
overhead of setting up the extra stack frame is non-negligible.

The safe stack mechanism consists of a static analysis pass, an instrumentation
pass, and runtime support library. The analysis pass identifies, for every function,
which objects in its stack frame are guaranteed to be accessed safely and can thus
be placed on the safe stack; return addresses and spilled registers always satisfy this
criterion. For the objects that do not satisfy this criterion, the instrumentation pass
inserts code that allocates a stack frame for these objects on the regular stack. The
runtime support allocates regular stacks for each thread and can be implemented
either as part of the threading library, as we did on FreeBSD, or by intercepting
thread create/destroy, as we did on Linux. CPI stores the regular stack pointer inside
the thread control block, which is pointed to by one of the segment registers and
can thus be accessed with a single memory read or write.

Our safe stack layout is similar to double stack approaches in ASR [Bhatkar et al.
2005] and XFI [Erlingsson et al. 2006], which maintain a separate stack for arrays
and variables whose addresses are taken. However, we use the safe stack to enforce
the CPI property instead of implementing software fault isolation. The safe stack
is also comparable to language-based approaches like Cyclone [Jim et al. 2002] or
CCured [Necula et al. 2005] that simply allocate these objects on the heap, but our
approach has significantly lower performance overhead.

Compared to a shadow stack like in CFI [Abadi et al. 2005a], which duplicates
return instruction pointers outside of the attacker’s access, the CPI safe stack
presents several advantages: (i) all return instruction pointers and most local vari-
ables are protected, whereas a shadow stack only protects return instruction point-
ers; (ii) the safe stack is compatible with uninstrumented code that uses just the
regular stack, and it directly supports exceptions, tail calls, and signal handlers; and
(iii) the safe stack has near-zero performance overhead (Section 4.7.2), because only
a handful of functions require extra stack frames, while a shadow stack allocates a
shadow frame for every function call.

The safe stack can be employed independently from CPI, and we believe it can
replace stack cookies [Cowan et al. 1998] in modern compilers. By providing precise
protection of all return addresses (which are the target of ROP attacks today), spilled
registers, and some local variables, the safe stack provides substantially stronger

96 Chapter 4 Code-Pointer Integrity

security than stack cookies, while incurring equal or lower performance overhead
and deployment complexity.

4.4.4 Code-Pointer Separation (CPS)
The code-pointer separation property trades some of CPI’s security guarantees for
reduced runtime overhead. This is particularly relevant to C++ programs with many
virtual functions, where the fraction of sensitive pointers instrumented by CPI can
become high since every pointer to an object that contains virtual functions is
sensitive. We found that, on average, CPS reduces overhead by 4.3× (from 8.4% for
CPI down to 1.9% for CPS), and in some cases by as much as an order of magnitude.

CPS further restricts the set of protected pointers to code pointers only, leaving
pointers that point to code pointers uninstrumented. We additionally restrict the
definition of based-on by requiring that a code pointer be based only on a control-
flow destination. This restriction prevents attackers from “forging” a code pointer
from a value of another type, but still allows them to trick the program into reading
or updating wrong code pointers.

CPS is enforced similarly to CPI, except (i) for the criteria used to identify sen-
sitive pointers during static analysis and (ii) that CPS does not need any metadata.
Control-flow destinations (pointed to by code pointers) do not have bounds be-
cause the pointer value must always match the destination exactly, hence no need
for bounds metadata. Furthermore, they are typically static and hence do not need
temporal metadata either (there are a few rare exceptions, like unloading a shared
library, which are handled separately). This reduces the size of the safe region and
the number of memory accesses when loading or storing code pointers. If the safe
region is organized as a simple array, a CPS-instrumented program performs essen-
tially the same number of memory accesses when loading or storing code pointers
as a non-instrumented one; the only difference is that the pointers are being loaded
or stored from the safe pointer store instead of their original location (universal
pointer load or store instructions still introduce one extra memory access per such
instruction). As a result, CPS can be enforced with low performance overhead.

CPS guarantees that (1) code pointers can only be stored to or modified in
memory by code-pointer store instructions, and (2) code pointers can only be
loaded by code-pointer load instructions from memory locations to which a code-
pointer store instruction previously stored a value. Guarantee (1) restricts the attack
surface, while guarantee (2) restricts the attacker’s flexibility by limiting the set
of locations to which the control can be redirected—the set includes only entry
points of functions whose addresses were explicitly taken by the program during its
execution. Combined with the safe stack, CPS precisely protects return addresses.

4.5 The Formal Model of CPI 97

In contrast, CFI [Abadi et al. 2005a] allows any vulnerable instruction in a pro-
gram to modify any code pointer; it only checks that the value of a code pointer,
when used in an indirect control transfer, is within the set of allowed destinations,
as defined by a specific implementation of CFI. For instance, coarse-grained CFI
implementations [Zhang and Sekar 2013, Zhang et al. 2013] define allowed desti-
nations as any function defined in a program (for function pointers) or that directly
follows a call instruction (for return addresses). To illustrate this difference, con-
sider the case of the Perl interpreter, which implements its opcode dispatch by
representing internally a Perl program as a sequence of function pointers to opcode
handlers and then calling in its main execution loop these function pointers one
by one. Fine-grained CFI statically approximates the set of legitimate control-flow
targets, which in this case would include all possible Perl opcodes. CPS, however,
permits only calls through function pointers that are actually assigned. This means
that a memory bug in a CFI-protected Perl interpreter may permit an attacker to
divert control flow and execute any Perl opcode, whereas in a CPS-protected Perl
interpreter the attacker could at most execute an opcode that exists in the running
Perl program.

For C++ programs, CPS protects not only code pointers but also virtual table
pointers. The abundance of virtual table pointers in most C++ programs gives an
attacker sufficient freedom to induce malicious program behavior by only chaining
existing virtual functions through corresponding existing call sites [Schuster et al.
2015]. Including virtual table pointers in the set of sensitive pointers protected by
CPS prevents such attacks.

CPS provides strong control-flow integrity guarantees and incurs low overhead
(Section 4.7). We found that it prevents all recent attacks designed to bypass
CFI [Göktas et al. 2014a, Davi et al. 2014, Carlini and Wagner 2014, Carlini et al.
2015e, Evans et al. 2015]. We consider CPS to be a solid alternative to CPI in those
cases when CPI’s (already low) overhead seems too high.

4.5 The Formal Model of CPI
This section presents a formal model and operational semantics of the CPI property
and a sketch of its correctness proof. Due to the size and complexity of C/C++ specifi-
cations, we focus on a small subset of C that illustrates the most important features
of CPI. Due to space limitations we focus on spatial memory safety. We build upon
the formalization of spatial memory safety in SoftBound [Nagarakatte et al. 2009],
reuse the same notation, and extend it to support applying spatial memory safety
to a subset of memory locations. The formalism can be easily extended to provide

98 Chapter 4 Code-Pointer Integrity

Atomic types a ::= int | p*

Pointer types p ::= a | s | f | void
Struct types s ::= struct{. . .; ai: idi;. . .}

LHS expressions lhs ::= x | *lhs | lhs.id | lhs->id

RHS expressions rhs ::= i | &f | rhs + rhs | lhs | &lhs
| (a)rhs | sizeof(p) | malloc(rhs)

Commands c ::= c; c | lhs = rhs | f () | (* lhs)()

Figure 4.4 The subset of C. x denotes local statically typed variables; id denotes structure fields; i

denotes integers; and f denotes functions from a pre-defined set.

sensitive int ::= false

sensitive void ::= true

sensitive f ::= true

sensitive p* ::= sensitive p

sensitive s ::= ∨
i ∈ fields of s sensitive ai

Figure 4.5 The sensitive criterion for protecting types in CPI.

temporal memory safety, directly applying the CETS mechanism [Nagarakatte et al.
2010] to the safe memory region of the model. Figure 4.4 gives the syntax rules of
the C subset we consider in this section. All valid programs must also pass type
checking as specified by the C standard.

We define the runtime environment E of a program as a triple (S , Mu, Ms), where
S maps variable identifiers to their respective atomic types and addresses, a regular
memory Mu maps addresses to values (denoted v and called regular values), and a
safe memory Ms maps addresses to values with bounds information (denoted v(b,e)

and called safe values) or a special marker none. The bounds information specifies
the lowest (b) and the highest (e) address of the corresponding memory object. Mu

and Ms use the same addressing but might contain distinct values for the same
address. Some locations (e.g., of void∗ type) can store either safe or regular value
and are resolved to either Ms or Mu at runtime.

The runtime provides the usual set of memory operations for Mu and Ms, as
summarized in Table 4.1. Mu models standard memory, whereas Ms stores values

4.5 The Formal Model of CPI 99

Table 4.1 Memory Operations in CPI

Operation Semantics

readu Mu l return Mu[l]

writeu Mu l v set Mu[l] = v

reads Ms l return Ms[l] if l is allocated; return none otherwise

writes Ms l v(b,e) set Ms[l] = v(b,e) if l is allocated; do nothing otherwise

writes Ms l none set Ms[l] = none if l is allocated; do nothing otherwise

mallocE i allocate a memory object of size i in both E.Mu and
E.Ms (at the same address); fail when out of memory

with bounds and has a special marker for “absent” locations, similarly to the
memory in SoftBound’s [Nagarakatte et al. 2009] formalization. We assume the
memory operations follow the standard behavior of read/write/malloc operations
in all other respects, e.g., read returns the value previously written to the same
location and malloc allocates a region of memory that is disjoint with any other
allocated region.

Enforcing the CPI property with low performance overhead requires placing
most variables in Mu, while still ensuring that all pointers that require protection
at runtime according to the CPI property are placed in Ms. In this formalization, we
rely on type-based static analysis as defined by the sensitive criterion, shown in
Figure 4.5. We say a type p is sensitive iff sensitive p = true. Setting sensitive to
true for all types would make the CPI operational semantics equivalent to the one
provided by SoftBound and would ensure full spatial memory safety of all memory
operations in a program.

The classification provided by the sensitive criterion is static and only deter-
mines which operations in a program to instrument. Expressions of sensitive types
could evaluate to both safe or regular values at runtime, whereas expressions of reg-
ular types always evaluate to regular values. In particular, according to Figure 4.5,
void∗ is sensitive and, hence, in agreement with the C specification, values of that
type can hold any pointer value at runtime, either safe or regular.

We extend the SoftBound definition of the result of an operation to differentiate
between safe and regular values and left-hand-side locations:

Results r ::= v(b,e) | v | ls | lu | OK | OutOfMem | Abort

100 Chapter 4 Code-Pointer Integrity

where v(b,e) and v are the safe (with bounds information) and, respectively, regular
values that result from a right-hand-side expression, lu and ls are locations that re-
sult from a safe and regular left-hand-side expression, OK is a result of a successful
command, and OutOfMem and Abort are error codes. We assume that all opera-
tional semantics rules of the language propagate these error codes unchanged up
to the end of the program.

Using the above definitions, we now formalize the operational semantics of
CPI through three classes of rules. The (E , lhs) ⇒l ls : a and (E , lhs) ⇒l lu : a rules
specify how left-hand-side expressions are evaluated to safe or regular locations,
respectively. The (E , rhs) ⇒r (v(b,e), E′) and (E , rhs) ⇒r (v , E′) rules specify how
right-hand-side expressions are evaluated to safe values with bounds or regular val-
ues, respectively, possibly modifying the environment through memory allocation
(turning it from E to E′). Finally, the (E , c) ⇒c (r , E′) rules specify how commands
are executed, possibly modifying the environment, where r can be either OK or an
error code. We only present the rules that are most important for the CPI semantics,
omitting rules that simply represent the standard semantics of the C language.

Bounds information is initially assigned when allocating a memory object or
when taking a function’s address (both operations always return safe values):

address(f) = l

(E , &f) ⇒r (l(l , l))

(E , rhs) = i

mallocE i = (l , E′)
(E , malloc(i)) ⇒r (l(l , l+i), E′)

Taking the address of a variable from S if its type is sensitive is analogous. Structure
field access operations either narrow bounds information accordingly or strip it if
the type of the accessed field is regular.

Type casting results in a safe value iff a safe value is cast to a sensitive type:

sensitive a′

(E , rhs) ⇒l v(b,e) : a

(E , (a′)rhs) ⇒r (v(b,e), E)

¬sensitive a′

(E , rhs) ⇒l v(b,e) : a

(E , (a′)rhs) ⇒r (v , E)

(E , rhs) ⇒l v : a

(E , (a′)rhs) ⇒r (v , E)

The next set of rules describes memory operations (pointer dereference and
assignment) on sensitive types and safe values:

sensitive a

(E , lhs) ⇒l ls : a∗
reads(E.Ms)ls = some l′

(b,e)

l′ ∈ [b, e − sizeof(a)]

(E , ∗lhs) ⇒l l′
s

: a

sensitive a

(E , lhs) ⇒l ls : a∗
reads(E.Ms)ls = some l′

(b,e)

l′ ∈ [b, e − sizeof(a)]

(E , ∗lhs) ⇒l Abort

sensitive a

(E , lhs) ⇒l ls : a

(E , rhs) ⇒r v(b,e) : a

E′.Ms = writes(E.Ms)ls v(b,e)

(E , lhs = rhs) ⇒c (OK, E′)

4.5 The Formal Model of CPI 101

These rules are identical to the corresponding rules of SoftBound [Nagarakatte
et al. 2009] and ensure full spatial memory safety of all memory objects in the safe
memory. Only operations matching those rules are allowed to access safe memory
Ms. In particular, any attempts to access values of sensitive types through regular
lvalues cause aborts:

sensitive a

(E , lhs) ⇒l lu : a∗
(E , ∗lhs) ⇒l Abort

sensitive a

(E , lhs) ⇒l lu : a

(E , lhs = rhs) ⇒c (Abort, E)

Note that these rules can only be invoked if the value of the sensitive type was
obtained by casting from a regular type using a corresponding type-casting rule.
Levee relaxes the casting rules to allow propagation of bounds information through
certain right-hand-side expressions of regular types. This relaxation handles most
common cases of unsafe type casting; it affects performance (inducing more in-
strumentation) but not correctness.

Some sensitive types (only void∗ in our simplified version of C) can hold regular
values at runtime. For example, a variable of void∗ type can first be used to store
a function pointer and subsequently reused to store an int∗ value. The following
rules handle such cases:

sensitive a

(E , lhs) ⇒l ls : a∗
reads(E.Ms)l = none

readu(E.Mu)l = l′

(E , ∗lhs) ⇒l l′
u

: a

sensitive a

(E , lhs) ⇒l ls : a

(E , rhs) ⇒r v : a

E′.Mu = writeu(E.Mu) l v

E′.Ms = writes(E.Ms) l none

(E , lhs = rhs) ⇒c (OK, E′)

Memory operations on regular types always access regular memory, without any
additional runtime checks, following the unsafe memory semantics of C.

¬sensitive a

(E , lhs) ⇒l l : a∗
readu(E.Mu)l = l′

(E , ∗lhs) ⇒l l′
u

: a

¬sensitive a

(E , lhs) ⇒l l : a

(E , rhs) ⇒r v : a

E′.Mu = writeu(E.Mu) l v

(E , lhs = rhs) ⇒c (OK, E′)

These accesses to regular memory can go out of bounds, but given that readu and
writeu operations can only modify regular memory Mu, they do not violate memory
safety of the safe memory.

102 Chapter 4 Code-Pointer Integrity

Finally, indirect calls abort if the function pointer being called is not safe:

(E , lhs) ⇒r ls : f ∗
(E , (∗lhs)()) ⇒c (OK, E′)

(E , lhs) ⇒r lu : f ∗
(E , (∗lhs)()) ⇒c (Abort, E)

Note that the operational rules for values that are safe at runtime are fully equiv-
alent to the corresponding SoftBound rules [Nagarakatte et al. 2009]: the rules
expressions are equal assuming sensitive a is true and, depending on the rule,
either reads is not none or the right-hand-side value is sensitive. Therefore, un-
der these conditions, these rules satisfy the SoftBound safety invariant, which, as
proven in Nagarakatte et al. [2009], ensures memory safety for such values. Ac-
cording to the sensitive criterion and the safe location dereference and indirect
function call rules above, all dereferences of pointers that require protection ac-
cording to the CPI property are always safe at runtime, or the program aborts.
Therefore, the operational semantics defined above indeed ensure the CPI prop-
erty as defined in Section 4.4.1.

4.6 Implementation
We describe a CPI/CPS enforcement tool for C/C++, called Levee, that was imple-
mented on top of the LLVM 3.3 compiler infrastructure [LLUM 2017], with mod-
ifications to LLVM libraries, the clang compiler, and the compiler-rt runtime.
To use Levee, one just needs to pass additional flags to the compiler to enable CPI
(-fcpi), CPS (-fcps), or safe stack protection (-fstack-protector-safe). Levee
works on unmodified programs and supports Linux, FreeBSD, and Mac OS X in
both 32-bit and 64-bit modes.

Levee can be downloaded from the project homepage http://levee.epfl.ch. The
SafeStack component of Levee is already integrated upstream into the Clang com-
piler [SafeStack 2017], and there is an ongoing effort to upstream the rest of
CPI/CPS in the future as well.

4.6.1 Analysis and Instrumentation Passes
CPI and CPS Instrumentation Passes. We implemented the static analysis and in-
strumentation for CPI as two LLVM passes, directly following the design from Sec-
tion 4.4.4. The LLVM passes operate on the LLVM intermediate representation (IR),
which is a low-level, strongly typed, language-independent program representation
tailored for static analyses and optimization purposes. The LLVM IR is generated
from the C/C++ source code by clang, which preserves most of the type informa-
tion that is required by our analysis, with a few corner cases. For example, in certain
cases, clang does not preserve the original types of pointers that are cast to void*

http://levee.epfl.ch

4.6 Implementation 103

when passing them as an argument to memset or similar functions, which is re-
quired for the memset-related optimizations discussed in Section 4.4.4. The IR also
does not distinguish between void* and char* (it represents both as i8*), but this
information is required for our string pointers detection heuristic. We augmented
clang to always preserve such type information as LLVM metadata.

Safe Stack Instrumentation Pass. The safe stack instrumentation targets functions
that contain on-stack memory objects that cannot be put on the safe stack. For such
functions, it allocates a stack frame on the unsafe stack and relocates correspond-
ing variables to that frame.

Given that most of the functions do not need an unsafe stack, Levee uses the
usual stack pointer (rsp register on x86-64) as the safe stack pointer, and stores
the unsafe stack pointer in the thread control block, which is accessible directly
through one of the segment registers. When needed, the unsafe stack pointer is
loaded into an IR local value, and Levee relies on the LLVM register allocator to
pick the register for the unsafe stack pointer. Levee explicitly encodes unsafe stack
operations as IR instructions that manipulate an unsafe stack pointer; it leaves all
operations that use a safe stack intact, letting the LLVM code generator manage
them. Levee performs these changes as a last step before code generation (directly
replacing LLVM’s stack-cookie protection pass), thus ensuring that it operates on
the final stack layout.

Certain low-level functions modify the stack pointer directly. These functions
include setjmp/longjmp and exception-handling functions, which store/load the
stack pointer, and thread create/destroy functions, which allocate/free stacks for
threads. On FreeBSD we provide full-system CPI, so we directly modified these
functions to support the dual stacks. On Linux, our instrumentation pass finds
setjmp/longjmp and exception-handling functions in the program and inserts
required instrumentation at their call sites, while thread create/destroy functions
are intercepted and handled by the Levee runtime.

4.6.2 Runtime support library
Most of the instrumentation by the passes discussed in Section 4.6.1 are added as
intrinsic function calls, such ascpi_ptr_store()orcpi_memcpy(), which are im-
plemented by Levee’s runtime support library (a part of compiler-rt). This design
cleanly separates the safe pointer store implementation from the instrumentation
pass. In order to avoid the overhead associated with extra function calls, we en-
sure that some of the runtime support functions are always inlined. We compile
these functions into LLVM bitcode and instruct clang to link this bitcode into

104 Chapter 4 Code-Pointer Integrity

Table 4.2 Security Guarantees and Performance Overhead of Various
Implementations of CPI/CPS

Security a Overhead b

CPI CPS CPI CPS

Hardware segmentation precise 8.4% 1.9%

Software fault isolation precise 13.8% 7.0%

Information hiding

hash table 16.6 20.7 9.7% 2.2%

lookup table 15 17 8.9% 2.0%

simple table 5 7 8.4% 1.9%

a. Either precise or number of entropy bits.

b. Average on SPEC2006.

every object file it compiles. Functions that are called rarely (e.g., cpi_abort(),
called when a CPI violation is detected) are never inlined, in order to reduce the
instruction cache footprint of the instrumentation.

We implemented and benchmarked several versions of the safe pointer store
map in our runtime support library: a simple array, a two-level lookup table, and a
hash table. The array implementation relies on the sparse address space support
of the underlying OS. Initially, we found it to perform poorly on Linux due to many
page faults (especially at start-up) and additional TLB pressure. Switching to su-
perpages (2 MB on Linux) made this simple table the fastest implementation of
the three. Note that due to the large virtual size of the simple table, the implemen-
tation based on it cannot be used in conjunction with randomization-based safe
region isolation.

4.6.3 Safe Region Isolation
We implemented multiple mechanisms that efficiently enforce instruction-level
isolation as required to protect the safe memory region: using hardware-enforced
segmentation, software fault isolation, or randomization and information hiding.
The security guarantees and performance implications of these mechanisms are
summarized in Table 4.2; we discuss them in detail below. We focus on design
choices behind each mechanism and ignore potential non-design bugs in the
prototypes we released.

4.6 Implementation 105

Hardware-Enforced Segmentation-Based Implementation. On architectures that
support hardware-enforced segmentation (e.g., x86-32 and some x86-64), CPI uses
this feature directly to enforce instruction-level isolation. In such implementations,
CPI dedicates a segment register to point to the safe memory region, and it enforces,
at compile time, that only instructions instrumented with memory safety checks
use this segment register. CPI configures all other segment registers, which are
used by non-instrumented instructions, to prevent all accesses to the safe region
through these segment registers on the hardware level.

Hardware-enforced segmentation is supported on x86-32 CPUs but also on some
x86-64 CPUs (see the Long Mode Segment Limit Enable flag), which demonstrates
that adding segmentation to x86-64 CPUs is feasible, provided the techniques that
could benefit from it indeed prove to be valuable.

This implementation of CPI is precise and imposes zero performance overhead
on instructions that do not access sensitive pointers.

Software Fault Isolation–Based Implementation. On architectures where hardware-
enforced segmentation is not available (e.g., ARM and most of the x86-64 CPUs),
the instruction-level isolation can be enforced using lightweight software fault iso-
lation (SFI). In our implementation, we align the safe region in memory so that
enforcing a pointer not to alias with it can be done with a single bitmask oper-
ation (unlike more heavyweight SFI solutions, which typically add extra memory
accesses and/or branches for each memory access in a program). Furthermore, ac-
cesses to the safe stack need not be instrumented, as they are guaranteed to be
safe [Kuznetsov et al. 2014a].

Our SFI-based implementation of CPI is precise, and SFI increases the overhead
by less than 5% relative to hardware-enforced segmentation.

Information-Hiding-Based Implementation. Another way to implement instruction-
level isolation is based on randomization and information hiding. Such implemen-
tations exploit the guarantee of the CPI instrumentation that, in a CPI-instrument-
ed program, no pointers into the safe region are ever stored outside the safe region
itself. When the base location of the safe region is randomized, the above guaran-
tee implies that the attacker has to resort to random guessing in order to find the
safe region, even in the presence of an arbitrary memory read vulnerability. On 64-
bit architectures, most of the address space is unmapped and so most of the failed
guesses result in a crash. Such crashes, if frequent enough, can be detected by other
means.

106 Chapter 4 Code-Pointer Integrity

The actual expected number of crashes required to find the location of the safe
region by random guessing is determined by the size of the safe region and the size
of the address space. Today’s mainstream x86-64 CPUs provide 248 bytes of address
space (while the architecture itself envisions future extensions up to 264 bytes). Half
of the address space is usually occupied by the OS kernel, which leaves 247 bytes for
applications.

As explained above, the safe region stores a map that, for each sensitive pointer,
maps the location that the pointer would occupy in the memory of a non-instru-
mented program to a tuple of the pointer value and its metadata. On 64-bit CPUs,
each entry of this map occupies 32 bytes and, due to pointer alignment require-
ments, represents 8 bytes of program memory. The expected number of entries
depends on the program memory usage, the fraction of sensitive pointers, and the
data structure that is used to store this map.

We released three versions of our information-hiding-based CPI implementa-
tion that use either a hash table, a two-level lookup table, or a simple table to orga-
nize the safe region [Kuznetsov et al. 2014a]. Although all these safe region organi-
zations are compatible with hardware-enforced segmentation and software-based
fault isolation implementations, the choice of the organization has the highest im-
pact on the information-hiding-based implementation. We analyze this impact. We
estimate the size of the safe region and the expected number of crashes required to
find its location for each of the versions below. For the purpose of this estimation,
we assume a program uses 1GB of memory, 8% of which stores sensitive pointers
(consistent with the experimental evaluation in [Kuznetsov et al. 2014a]), which
amounts to 1 GB × 8%/8 bytes ≈ 223.4 sensitive pointers in total.

Hash table. This implementation is based on a linearly probed lookup table
with a bitmask-and-shift-based hash function, which, due to sparsity of sen-
sitive pointers in program memory, performs well with load factors of up
to 0.5. Conservatively assuming a load factor of 0.25, the hash table would
occupy 223.4/0.25 × 32 = 230.4 bytes of memory. Randomizing the hash table
location can provide up to 47 − 30.4 = 16.6 bits of entropy, requiring 215.6 ≈
51,000 crashes on average to guess it. In most systems, that many crashes
can be detected externally, making the attack infeasible.

Two-level lookup table. This implementation organizes the safe region simi-
lar to page tables, using the higher 23 bits of the address as an index in the
directory and the lower 22 bits as an index in a subtable (the lowest 3 bits are
zero due to alignment). Each subtable takes 32 × 222 bytes and describes an
8 × 222-byte region of the address space. Assuming sensitive pointers are uni-

4.6 Implementation 107

formly distributed across the 1GB of continuous program memory, CPI will
allocate 1 GB/(8 × 222) × 32 × 222 = 232 bytes for the subtables. Randomiz-
ing the subtable locations gives 47 − 32 = 15 bits of entropy, requiring 214

crashes on average to guess. Note that the attacker will find a random one
among multiple subtables, and finding usable code pointers in it requires
further guessing. This attack is thus also infeasible in many practical cases.

Simple table. This simple implementation allocates a fixed-size region of 242

bytes for the safe region that maps addresses linearly. This implementation
would give only 47 − 42 = 5 bits of entropy. The location of the simple table
in this implementation can be guessed while causing only 16 crashes on
average. This level of protection is not sufficient for most practical cases.

Code-Pointer Separation, unlike full CPI, does not require any metadata and has
fewer sensitive pointers (by 8.5× on average [Kuznetsov et al. 2014a]). This increases
the number of expected crashes by 17× for the hash table-based implementation,
and by 4× for the other two implementations.

The information-hiding-based implementation of CPI that uses a hash table to
organize the safe region provides probabilistic security guarantees with 216.6 bits
of entropy (or 220.7 for CPS). We believe that, in certain practical use cases, this
number of crashes, especially given the uniform pattern of these crashes, can be
detected automatically by external means.

In our evaluations, all three versions of information-hiding-based implementa-
tion have performance overhead comparable to the hardware-enforced segmenta-
tion.

4.6.4 Discussion
Binary-Level Functionality. Some code pointers in binaries are generated by the
compiler and/or linker, and cannot be protected on the IR level. Such pointers in-
clude the ones in jump tables, exception handler tables, and the global offset table.
Bounds checks for the jump tables and the exception handler tables are already gen-
erated by LLVM anyway, and the tables themselves are placed in read-only memory,
hence cannot be overwritten. We rely on the standard loader’s support for read-only
global offset tables, using the existing RTLD_NOW flag.

Limitations. The CPI design described in Section 4.4 includes both spatial and
temporal memory safety enforcement for sensitive pointers; however, our current

108 Chapter 4 Code-Pointer Integrity

prototype implements spatial memory safety only. It can be easily extended to en-
force temporal safety by directly applying the technique described in [Nagarakatte
et al. 2010] for sensitive pointers.

Levee currently supports Linux, FreeBSD, and Mac OS user-space applications.
We believe Levee can be ported to protect OS kernels as well. Related technical
challenges include integration with the kernel memory management subsystem
and handling of inline assembly.

CPI and CPS require instrumenting all code that manipulates sensitive point-
ers; non-instrumented code can cause unnecessary aborts. Non-instrumented
code could come from external libraries compiled without Levee, inline assem-
bly, or dynamically generated code. Levee can be configured to simultaneously
store sensitive pointers in both the safe and the regular regions, in which case non-
instrumented code works fine as long as it only reads sensitive pointers but doesn’t
write them.

Inline assembly and dynamically generated code can still update sensitive point-
ers if instrumented with appropriate calls to the Levee runtime, either manually by
a programmer or directly by the code generator.

Dynamically generated code (e.g., for JIT compilation) poses an additional prob-
lem: running the generated code requires making writable pages executable, which
violates our threat model (this is a common problem for most control-flow integrity
mechanisms). One solution is to use hardware or software isolation mechanisms
to isolate the code generator from the code it generates.

Sensitive Data Protection. Even though the main focus of CPI is control-flow hijack
protection, the same technique can be applied to protect other types of sensitive
data. Levee can treat programmer-annotated data types as sensitive and protect
them just like code pointers. CPI could also selectively protect individual program
variables (as opposed to types), however, it would require replacing the type-based
static analysis described in Section 4.4.2 with data-based points-to analysis, such
as DSA [Lattner and Adve 2005, Lattner et al. 2007].

Future MPX-Based Implementation. Intel recently introduced a hardware extension,
Intel MPX, to be used for hardware-enforced memory safety [Intel 2013].

We believe MPX (or similar) hardware can be re-purposed to enforce CPI with
lower performance overhead than our existing software-only implementation. MPX
provides special registers to store bounds along with instructions to check them,
and a hardware-based implementation of a pointer metadata store (analogous to

4.7 Evaluation 109

the safe pointer store in our design), organized as a two-level lookup table. Our
implementation can be adapted to use these facilities once MPX-enabled hard-
ware becomes available. We believe that a hardware-based CPI implementation
can reduce the overhead of a software-only CPI in much the same way as Hard-
Bound [Devietti et al. 2008] or Watchdog [Nagarakatte et al. 2012] reduced the
overhead of SoftBound.

Adopting MPX for CPI might require implementing metadata loading logic in
software. Like CPI, MPX also stores the pointer value together with the metadata.
However, being a testing tool, MPX chooses compatibility with non-instrumented
code over security guarantees: it uses the stored pointer value to check whether
the original pointer was modified by non-instrumented code and, if yes, resets the
bounds to [0, ∞]. In contrast, CPI’s guarantees depend on preventing any non-
instrumented code from ever modifying sensitive pointer values.

4.7 Evaluation
In this section we evaluate Levee’s effectiveness, efficiency, and practicality. We
experimentally show that both CPI and CPS are 100% effective on RIPE, the most
recent attack benchmark we are aware of (Section 4.7.1). We evaluate the efficiency
of CPI, CPS, and the safe stack on SPEC CPU2006 and find average overheads of
8.4%, 1.9%, and 0%, respectively (Section 4.7.2). To demonstrate practicality, we
recompile with CPI/CPS/safe stack the base FreeBSD plus over 100 packages and
report results on several benchmarks (Section 4.7.3).

We ran our experiments on an Intel Xeon E5-2697 with 24 cores running at
2.7 GHz in 64-bit mode with 512 GB RAM. The SPEC benchmarks ran on an Ubuntu
Precise Pangolin (12.04 LTS) and the FreeBSD benchmarks in a KVM-based VM on
this same system.

4.7.1 Effectiveness on the RIPE Benchmark
We described in Section 4.4 the security guarantees provided by CPI, CPS, and the
safe stack based on their design; to experimentally evaluate their effectiveness,
we use the RIPE [Wilander et al. 2011] benchmark. This is a program with many
different security vulnerabilities and a set of 850 exploits that attempt to perform
control-flow hijack attacks on the program using various techniques.

Levee deterministically prevents all attacks, both in CPS and CPI mode; when
using only the safe stack, it prevents all stack-based attacks. On vanilla Ubuntu
6.06, which has no built-in defense mechanisms, 833–848 exploits succeed when

110 Chapter 4 Code-Pointer Integrity

Levee is not used (some succeed probabilistically, hence the range). On newer
systems, fewer exploits succeed, due to built-in protection mechanisms, changes in
the runtime layout, and compatibility issues with the RIPE benchmark. On vanilla
Ubuntu 13.10, with all protections (DEP, ASLR, stack cookies) disabled, 197–205
exploits succeed. With all protections enabled, 43–49 succeed. With CPS or CPI,
none do.

The RIPE benchmark only evaluates the effectiveness of preventing existing at-
tacks; as we argued in Section 4.4 and according to the proof outlined in Section 4.5,
CPI renders all (known and unknown) memory corruption-based control-flow hi-
jack attacks impossible.

4.7.2 Efficiency on SPEC CPU2006 Benchmarks
In this section we evaluate the runtime overhead of CPI, CPS, and the safe stack.
We report numbers on all SPEC CPU2006 benchmarks written in C and C++ (our
prototype does not handle Fortran). The results are summarized in Table 4.3 and
presented in detail in Figure 4.6. We also compare Levee to two related approaches,
SoftBound [Nagarakatte et al. 2009] and control-flow integrity [Abadi et al. 2005a,
Zhang and Sekar 2013, Zhang et al. 2013, Niu and Tan 2014a].

CPI performs well for most C benchmarks; however, it can incur higher overhead
for programs written in C++. This overhead is caused by an abundant use of pointers
to C++ objects that contain virtual function tables—such pointers are sensitive for
CPI, so all operations on them are instrumented. The same reason holds for gcc:
it embeds function pointers in some of its data structures and then uses pointers
to these structures frequently.

The next most important sources of overhead are libc memory manipulation
functions, like memset and memcpy. When our static analysis cannot prove that a

Table 4.3 Summary of SPEC CPU2006 Performance Overheads

Safe Stack CPS CPI

Average (C/C++) 0.0% 1.9% 8.4%

Median (C/C++) 0.0% 0.4% 0.4%

Maximum (C/C++) 4.1% 17.2% 44.2%

Average (C only) −0.4% 1.2% 2.9%

Median (C only) −0.3% 0.5% 0.7%

Maximum (C only) 4.1% 13.3% 16.3%

4.7 Evaluation 111

–5%

400_perlbench (C)

401_bzip2 (C)

403_gcc (C)

429_mcf (C)

433_milc (C)

444_namd (C++)

445_gobmk (C)

447_dealII (C++)

450_soplex (C++)

453_povray (C++)

456_hmmer (C)

458_sjeng (C)

462_libquantum (C)

464_h264ref (C)

470_lbm (C)

471_omnetpp (C++)

473_astar (C++)

482_sphinx3 (C)

483_xalancbmk (C++)

Average

Median

Average (C)

Median (C)

Safe stack
CPS
CPI

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Figure 4.6 Levee performance for SPEC CPU2006, under three configurations: full CPI, CPS only,
and safe stack only.

call to such a function uses as arguments only pointers to non-sensitive data, Levee
replaces the call with one to a custom version of an equivalent function that checks
the safe pointer store for each updated/copied word, which introduces overhead.
We expect to remove some of this overhead using improved static analysis and
heuristics.

CPS averages 1.2–1.8% overhead, and exceeds 5% on only two benchmarks,
omnetpp and perlbench. The former is due to the large number of virtual function
calls occurring at runtime, while the latter is caused by a specific way in which perl

112 Chapter 4 Code-Pointer Integrity

implements its opcode dispatch: it internally represents a program as a sequence
of function pointers to opcode handlers, and its main execution loop calls these
function pointers one after the other. Most other interpreters use a switch for
opcode dispatch.

Safe stack provided a surprise: in 9 cases (out of 19), it improves performance
instead of hurting it; in one case (namd), the improvement is as high as 4.2%, more
than the overhead incurred by CPI and CPS. This is because objects that end up
being moved to the regular (unsafe) stack are usually large arrays or variables that
are used through multiple stack frames. Moving such objects away from the safe
stack increases the locality of frequently accessed values on the stack, such as CPU
register values temporarily stored on the stack, return addresses, and small local
variables.

The safe stack overhead exceeds 1% in only three cases: perlbench, xalancbmk,
and povray. We studied the disassembly of the most frequently executed functions
that use unsafe stack frames in these programs and found that some of the overhead
is caused by inefficient handling of the unsafe stack pointer by LLVM’s register
allocator. Instead of keeping this pointer in a single register and using it as a base
for all unsafe stack accesses, the program keeps moving the unsafe stack pointer
between different registers and often spills it to the (safe) stack. We believe this can
be resolved by making the register allocator algorithm aware of the unsafe stack
pointer.

In contrast to the safe stack, stack cookies deployed today have an overhead of
up to 5% and offer strictly weaker protection than our safe stack implementation.

The data structures used for the safe stack and the safe memory region result
in memory overhead compared to a program without protection. We measure the
memory overhead when using either a simple array or a hash table. For SPEC
CPU2006 the median memory overhead for the safe stack is 0.1%; for CPS the
overhead is 2.1% for the hash table and 5.6% for the array; and for CPI the overhead
is 13.9% for the hash table and 105% for the array. We did not optimize the memory
overhead and believe it can be improved in future prototypes.

In Table 4.4 we show compilation statistics for Levee. The first column shows
that only a small fraction of all functions require an unsafe stack frame, confirming
our hypothesis from Section 4.4.3. The other two columns confirm the key premises
behind our approach, namely, that CPI requires much less instrumentation than
full memory safety and CPS needs much less instrumentation than CPI. The num-
bers also correlate with Figure 4.6.

Comparison to SoftBound. We compare with SoftBound [Nagarakatte et al. 2009] on
the SPEC benchmarks. We cannot fairly reuse the numbers from that paper because

4.7 Evaluation 113

Table 4.4 Compilation Statistics for Levee

Benchmark FNUStack
a MOCPS

b MOCPI
b

400_perlbench 15.0% 1.0% 13.8%

401_bzip2 27.2% 1.3% 1.9%

403_gcc 19.9% 0.3% 6.0%

429_mcf 50.0% 0.5% 0.7%

433_milc 50.9% 0.1% 0.7%

444_namd 75.8% 0.6% 1.1%

445_gobmk 10.3% 0.1% 0.4%

447_dealII 12.3% 6.6% 13.3%

450_soplex 9.5% 4.0% 2.5%

453_povray 26.8% 0.8% 4.7%

456_hmmer 13.6% 0.2% 2.0%

458_sjeng 50.0% 0.1% 0.1%

462_libquantum 28.5% 0.4% 2.3%

464_h264ref 20.5% 1.5% 2.8%

470_lbm 16.6% 0.6% 1.5%

471_omnetpp 6.9% 10.5% 36.6%

473_astar 9.0% 0.1% 3.2%

482_sphinx3 19.7% 0.1% 4.6%

483_xalancbmk 17.5% 17.5% 27.1%

a. FNUStack lists what fraction of functions need an unsafe stack frame.

b. MOCPS and MOCPI show the fraction of memory operations instrumented
for CPS and CPI, respectively.

they are based on an older version of SPEC. In Table 4.5 we report numbers for the
four C/C++ SPEC benchmarks that can compile with the current version of Soft-
Bound. This comparison confirms our hypothesis that CPI requires significantly
lower overhead compared to full memory safety.

Theoretically, CPI suffers from the same compatibility issues (e.g., handling
unsafe pointer casts) as pointer-based memory safety. In practice, such issues
arise much less frequently for CPI because CPI instruments far fewer pointers.
Many of the SPEC benchmarks either do not compile or terminate with an error
when instrumented by SoftBound, which illustrates the practical impact of this
difference.

114 Chapter 4 Code-Pointer Integrity

Table 4.5 Overhead of Levee and SoftBound on SPEC Programs That
Compile and Run Free of Errors with SoftBound

Benchmark Safe Stack CPS CPI SoftBound

401_bzip2 0.3% 1.2% 2.8% 90.2%

447_dealII 0.8% −0.2% 3.7% 60.2%

458_sjeng 0.3% 1.8% 2.6% 79.0%

464_h264ref 0.9% 5.5% 5.8% 249.4%

Comparison to Control-Flow Integrity (CFI). The average overhead for compiler-
enforced CFI is 21% for a subset of the SPEC CPU2000 benchmarks [Abadi et al.
2005a] and 5–6% for MCFI [Niu and Tan 2014a] (without stack pointer integrity).
CCFIR [Zhang et al. 2013] reports an overhead of 3.6%, and binCFI [Zhang and
Sekar 2013] reports 8.54% for SPEC CPU2006 to enforce a weak CFI property with
globally merged target sets. WIT [Akritidis et al. 2008], a source-based mechanism
that enforces both CFI and write integrity protection, has 10% overhead.

At less than 2%, CPS has the lowest overhead among all existing CFI solutions,
while providing stronger protection guarantees. Also, CPI’s overhead is bested only
by CCFIR. However, unlike any CFI mechanism, CPI guarantees the impossibility
of any control-flow hijack attack based on memory corruptions. In contrast, there
exist successful attacks against CFI [Göktas et al. 2014a, Davi et al. 2014, Carlini and
Wagner 2014]. While neither of these attacks are possible against CPI by construc-
tion, we found that, in practice, neither of them would work against CPS either. We
further discuss conceptual differences between CFI and CPI in Section 4.2.

4.7.3 Case Study: A Safe FreeBSD Distribution
Having shown that Levee is both effective and efficient, we now evaluate the fea-
sibility of using Levee to protect an entire operating system distribution, namely,
FreeBSD 10. We rebuilt the base system—base libraries, development tools, and
services like bind and openssh—plus more than 100 packages (including apache,
postgresql, php, and python) in four configurations: CPI, CPS, Safe Stack, and
vanilla. FreeBSD 10 uses LLVM/clang as its default compiler, while some core com-
ponents of Linux (e.g., glibc) cannot be built with clang yet. We integrated the CPI
runtime directly into the C library and the threading library. We have not yet ported
the runtime to kernel space, so the OS kernel remained uninstrumented.

We evaluated the performance of the system using the Phoronix test suite
[Phoronix 2017], a widely used comprehensive benchmarking platform for operat-

4.7 Evaluation 115

pgbench

openssl

encode-mp3

graphics-magick 1

graphics-magick 2

graphics-magick 3

graphics-magick 4

graphics-magick 5

hmmer

postmark

sqlite

pybench

dcraw

crafty

compress-lzma

compress-pbzip2

c-ray

Average

Median

Safe stack
CPS
CPI

0% 10% 20% 30% 40% 50% 60% 70% 80%–10%

Figure 4.7 Performance overhead on FreeBSD (Phoronix).

ing systems. We chose the “server” setting and excluded benchmarks marked as
unsupported or that do not compile or run on recent FreeBSD versions. All bench-
marks that compiled and worked on vanilla FreeBSD also compiled and worked in
the CPI, CPS, and Safe Stack versions.

Figure 4.7 shows the overhead of CPI, CPS, and the safe stack versions compared
to the vanilla version. The results are consistent with the SPEC results presented
in Section 4.7.2. The Phoronix benchmarks exercise large parts of the system and
some of them are multi-threaded, which introduces significant variance in the
results, especially when run on modern hardware. As Figure 4.7 shows, for many
benchmarks the overhead of CPS and the safe stack are within the measurement
error.

We also evaluated a realistic usage model of the FreeBSD system as a web server.
We installed Mezzanine, a content management system based on Django, which

116 Chapter 4 Code-Pointer Integrity

Table 4.6 Throughput Benchmark for Web Server Stack (FreeBSD +
Apache + SQLite + mod_wsgi + Python + Django)

Benchmark Safe Stack CPS CPI

Static page 1.7% 8.9% 16.9%

Wsgi test page 1.0% 4.0% 15.3%

Dynamic page 1.4% 15.9% 138.8%

uses Python, SQLite, Apache, and mod_wsgi. We used the Apache ab tool to bench-
mark the throughput of the web server. The results are summarized in Table 4.6.

The CPI overhead for a dynamic page generated by Python code is much larger
than we expected but consistent with suspiciously high overhead of the pybench

benchmark in Figure 4.7. We think it might be caused by the use of some C con-
structs in the Python interpreter that are not yet handled well by our optimization
heuristics, e.g., emulating C++ inheritance in C. We believe the performance might
be improved in this case by extending the heuristics to recognize such C constructs.

4.8 Conclusion
This chapter describes code-pointer integrity (CPI), a way to protect systems against
all control-flow hijacks that exploit memory bugs, and code-pointer separation (CPS),
a relaxed form of CPI that still provides strong guarantees. The key idea is to
selectively provide full memory safety for just a subset of a program’s pointers,
namely, code pointers. The CPI/CPS implementation and evaluation shows that it is
effective, efficient, and practical. Given its advantageous security-to-overhead ratio,
the authors believe this approach marks a step toward deterministically secure
systems that are fully immune to control-flow hijack attacks.

5Evaluating Control-Flow
Restricting Defenses
Enes Gökta̧s, Elias Athanasopoulos, Herbert Bos,
Georgios Portokalidis

5.1 Introduction
Control-flow hijacking and arbitrary code-execution attacks remain a significant
problem for software written in memory-unsafe languages like C and C++ [Joly 2013,
Serna 2012, Evans 2013], as sophisticated exploits are able to bypass existing se-
curity mechanisms, such as address space layout randomization, stack smashing
protection, and data execution protection. This is accomplished through infor-
mation leakage and guessing attacks [Snow et al. 2013, Strackx et al. 2009], and
code-reuse techniques, such as Return-Oriented Programming (ROP) [Roemer et al.
2012, Dai Zovi 2010], Jump-Oriented Programming (JOP) [Checkoway et al. 2010,
Bletsch et al. 2011], and return-to-libc [Tran et al. 2011].

The rise of code-reuse attacks, as the next step in the arms race between attack-
ers and defenders, has renewed the interest of the academic community in defenses
based on restricting the control flow of a program. Such defenses attempt to limit
the execution paths that are available to attackers after they manage to perform
a control-flow hijacking attack. Of particular interest are approaches that exhibit
low overhead and protect unmodified binaries, as they could be immediately ap-
plied to current production systems. One such group of approaches is based on
Control-Flow Integrity (CFI) [Abadi et al. 2005a]. Specifically, recent work on prac-
tical CFI [Zhang and Sekar 2013, Zhang et al. 2013] is applicable on binaries, but it
enforces a looser notion of control-flow integrity. Another group [Cheng et al. 2014,
Pappas et al. 2013] focuses on characteristics of popular code-reuse attacks, such
as the ones using ROP. Particularly, this group builds on the observation that ROP

118 Chapter 5 Evaluating Control-Flow Restricting Defenses

exploits use long sequences of small gadgets to implement their functionality, and
it defines heuristics to efficiently detect and prevent such gadget sequences.

Both of these groups of control-flow restricting defenses have to make compro-
mises because of the limited information available within binaries and for achiev-
ing low overhead. But what are the implications to security of such concessions? Can
these defenses still prevent code-reuse attacks? If not, how is that possible? The
security evaluation of these defenses, in the past, included existing ROP-based ex-
ploits to demonstrate their ability to stop attacks. Is this the right strategy?

We attempt to provide an answer to these questions by evaluating both coarse-
grained CFI solutions and heuristics-based code-reuse defenses. We examine two
modern versions of CFI, CCFIR by Zhang et al. [2013] and binCFI by Zhang and
Sekar [2013], and two heuristics-based approaches, kBouncer [Pappas et al. 2013]
and ROPecker [Cheng et al. 2014]. These heuristic approaches utilize a novel hard-
ware feature, known as the Last Branch Record (LBR), which is available in modern
Intel CPUs. LBR introduces Machine-Specific Registers (MSR) that can be used to
record the last 16 indirect branches taken by a program. kBouncer and ROPecker
use the LBR to check the validity of the last 16 indirect branches. We identify the
control-flow restrictions they impose and compose a conservative model combining
their most restrictive aspects, which we coin CFR.

We then proceed to develop a methodology for constructing code-reuse attacks
under this most restrictive model. We follow the approach that an attacker would
take against systems protected with these technologies. First, we identify what kind
of control-flow transitions are permissible and collect the corresponding gadgets
that could be executed through them. Then we identify the different ways with
which we can chain these gadgets and, finally, produce a proof-of-concept exploit
(PoC) using well-known memory corruption bugs and the gadgets we have iden-
tified. We show that despite the huge reduction in the number of available gadgets,
the quality of the remaining gadgets enables the creation of powerful code-reuse
payloads. This highlights the importance of correctly evaluating the security of pro-
posed defenses to avoid misconceptions on the offered guarantees.

The remainder of this chapter is organized as follows. Section 5.2 presents
some background information on the control-flow restricting defenses we model
and evaluate. Section 5.3 presents our analysis of the defenses and discusses their
weaknesses. In Section 5.4, we perform a quantitative analysis of popular software,
scanning them for types of gadgets that remain usable even when applying the
evaluated defenses. We show that their number is not insignificant. We present the
process of creating a PoC exploit that can circumvent loose control-flow restricting
defenses in Section 5.5. We close in Section 5.6 by summarizing our findings.

5.2 Control-Flow Restricting Defenses 119

Table 5.1 Allowable Transfers in Evaluated Defenses

Indirect Transfer CCFIR bin-CFI kBouncer ROPecker CFR
Instruction (3-ID CFI) (2-ID CFI) (heuristics) (heuristics) (3-ID CFI)

Return calls: in non-
sensitive
functions

calls: all;
functions: address
taken, exception
handlers

instructions:
any call
preceded

instructions:
only valid

calls: in non-
sensitive
functions

Return in
sensitive
function

calls: all calls: all;
functions: address
taken, exception
handlers

instructions:
any call
preceded

instructions:
only valid

calls: all

Indirect jump functions:
address taken,
exported a

functions: address
taken, exception
handlers; calls: all

instructions:
any

instructions:
only valid

functions:
address taken

Indirect call functions:
address taken,
exported a

functions: address
taken, exported a

instructions:
any

instructions:
only valid

functions:
address taken,
exported a

a. Exported by shared libraries (or imported to Windows).

5.2 Control-Flow Restricting Defenses
Here we explain in detail the control-flow restricting defenses that we will evaluate.
First, we look at CFI approaches CCFIR [Zhang et al. 2013] and bin-CFI [Zhang
and Sekar 2013] and then at kBouncer [Pappas et al. 2013] and ROPecker [Cheng
et al. 2014], which employ heuristics. All the defenses we explore are applicable
on commercial-off-the-shelf (COTS) binaries. See Table 5.1 for an overview of the
characteristics of the defenses.

5.2.1 CCFIR
CCFIR [Zhang et al. 2013] applies CFI on Windows binaries through binary rewrit-
ing enabled by symbol relocation information in the targeted binaries. It disas-
sembles binaries to identify indirect control-flow transfer instructions and code
locations that could be targeted by these instructions. Control-flow instructions in-
clude forward-edge instructions, like indirect calls and jumps, and backward-edge
instructions, like function returns. Possible targets include functions (function en-
try points), which either have their address taken or are imported by a binary, and
instructions following a call (call sites).

To enforce control flow, CCFIR generates a set of trampolines that are as-
sociated with indirect control-flow instructions and their targets. There are two
classes of trampolines: one associated with indirect calls and jumps to function

120 Chapter 5 Evaluating Control-Flow Restricting Defenses

EPs and one associated with returns to call sites. The latter class is further sepa-
rated to distinguish between call sites in sensitive functions (e.g., process-creating
and memory-permission-modifying functions) and in other functions. These three
types of trampolines are aligned differently and stored in a memory region called
the Springboard. Control-flow checks are performed by rewriting indirect forward-
and backward-edge instructions to go through the trampolines and introducing
alignment checks. Essentially, CCFIR enforces CFI through the following checks:

. Forward-edge instructions can target only function entry-point trampolines.

. Backward-edge instructions in sensitive functions can target any call-site
trampoline.

. Backward-edge instructions in non-sensitive functions can target only tram-
polines for call sites in non-sensitive functions.

5.2.2 bin-CFI
bin-CFI applies CFI on Linux binaries and also relies on disassembly and binary
rewriting. Control flow is restricted with similar rules to CCFIR with the following
differences:

. There is no notion of sensitive functions, so return instructions can target
any call site.

. Indirect jumps are allowed to target call sites because the compiler some-
times replaces returns with the instruction sequence pop; jmp.

. Returns can target address-taken functions because they are sometimes used
for function dispatching in Linux.

. Indirect jumps and returns are allowed to target exception handlers, which
can be called during exception-related stack unwinding.

Enforcement is performed by duplicating application code and modifying one
of the copies. In the modified copy, which is the one actually executing, indirect
control-flow instructions are rewritten to target a check-and-translate trampoline.
This trampoline receives a code pointer to the original code segment as an argu-
ment, checks that it points to an allowable target, and translates it to a pointer in
the executing copy.

5.2.3 kBouncer
kBouncer also restricts the control flow of a program, focusing on code-reuse
attacks (CRAs) that employ ROP. Unlike the previous approaches, kBouncer does

5.2 Control-Flow Restricting Defenses 121

not require complete and correct disassembly of the protected binary. Because of
this, it only checks that returns target instructions that are call preceded, that is, the
preceding instruction is a call. This includes targets that may not correspond to
an actual instruction emitted by the compiler but the preceding bytes still translate
to a valid call instruction. However, in the core of kBouncer is a heuristic for
identifying and preventing CRAs. CRA exploits usually consist of short sequences
of instructions that end in an indirect control-flow transfer, called gadgets, which
are chained together to perform arbitrary computations. A common characteristic
of such gadget chains is that they involve the execution of many small gadgets.
kBouncer builds on this observation to detect and prevent such attacks. It monitors
the execution of a program at runtime, classifying any sequence of TC or more
of gadget-like code sequences, containing TG or less instructions, as an attack. A
depiction of kBouncer’s operation is shown in Figure 5.1.

To achieve low overhead, kBouncer builds on an Intel CPU feature, the Last
Branch Record (LBR), which can store the outcomes of the last 16 indirect branches.
kBouncer checks the LBR every time there is a system call due to a security-sensitive
function, such as the ones used for changing memory permissions and launching
a new process. The values in the LBR are checked, first to ensure that returns
transfer control to a valid target and, second, to ensure that there is no gadget chain
with TC = 8 or more gadgets of at most TG = 20 instructions. These thresholds are
experimentally determined.

5.2.4 ROPecker
Like kBouncer, ROPecker protects from CRAs by preventing long sequences of
short gadgets utilizing the LBR to achieve low overhead. The main difference from
kBouncer lies in how frequently the LBR is checked. Like kBouncer, ROPecker per-
forms checks when risky system calls, e.g., like memory management or process
creation system calls, are performed. However, in addition to those checks, checks
are also performed during execution through the use of an execution sliding win-
dow, which is used to trigger interrupts. Briefly, all code except a small number
of pages (a recommended two to four pages) are marked as non-executable. Every
time a code page outside this window is executed, a page fault is generated, which is
intercepted by ROPecker to check the LBR and slide the window of executable code.
Because checks are performed continuously, ROPecker needs to set the thresholds
TC and TG to more permissive values than kBouncer, in particular, TC = 11 gadgets
and TG = 6 instructions. As an additional heuristic, ROPecker also looks at the gad-
gets that will execute in the future, e.g., by examining the frames in the stack, and
uses them to apply the detection heuristic.

122 Chapter 5 Evaluating Control-Flow Restricting Defenses

…
pop | mov | add | or | …
ret | jmp *(ptr) | call *(ptr)

Sequences of TG or less
instructions ending with

an indirect branch are
considered gadgets.

A gadget chain of
TC or more gadgets

constitutes an attack.

…
pop | mov | add | or | …
ret | jmp *(ptr) | call *(ptr)

…
pop | mov | add | or | …
ret | jmp *(ptr) | call *(ptr)

…
…
pop | mov | add | or | …
ret | jmp *(ptr) | call *(ptr)

…
…
…
pop | mov | add | or | …
ret | jmp *(ptr) | call *(ptr)

G
ad

ge
t-

ch
ai

n
 le

n
gt

h

CHECK

Figure 5.1 Example of a gadget chaining pattern used to identify code-reuse attacks. (From Göktaş
et al. [2014b])

5.3 Security Analysis
In “traditional” CRAs, attackers have a large arsenal of gadgets available to choose
from since every location in the code can be targeted by indirect control-flow
transfer instructions. By applying control-flow restricting defenses, the locations
that can be targeted are significantly reduced, which reduces the number of gadgets
that can be used. As a result, attackers are left with fewer and more complex gadgets,
e.g., gadgets with side effects including conditional branches.

5.3 Security Analysis 123

Table 5.2 Gadget Definitions and Detection Thresholds in Heuristic-Based Defenses

Characteristic kBouncer ROPecker CFR

Gadgets terminate with ret, icall, ijmp

Direct jumps in gadgets
supported

Yes No Yes

Max gadget length (TG) 20 6 20

Detection threshold (TC) 8 11 8

Check frequency System calls System calls,
pseudo-continuous

Continuous

However, this fact alone does not imply that attacks are not possible. To deter-
mine if they are, we consider an ideal Control-Flow Restricting (CFR) defense that
combines the strictest aspects from all the evaluated approaches. Table 5.1 com-
pares the indirect control-flow transfer restrictions imposed by the various defenses
that we examine in this chapter and an ideal CFR defense combining all of them.
CFR also assumes a runtime heuristic, similar to the one applied by kBouncer and
ROPecker, is in place. We compare its properties with kBouncer and ROPecker in
Table 5.2.

Note that CFR may actually not be viable in real systems, as it can be too
restrictive, but it presents a good higher bound, which we use here to do a security
analysis of control-flow restricting defenses.

5.3.1 Remaining Gadgets
With CFR in place, the types of gadgets available in code-reuse attacks changes
from any potential code sequence that terminates in an indirect transfer, such
as in Fig 5.2a, to a smaller set of gadgets that adhere to CFR’s policy. We classify
these into two major groups: function Entry-Point (EP) gadgets and Call-Site (CS)
gadgets, which are depicted in Figure 5.2b. CS gadgets can start right after call
instructions, while EP gadgets can start at the first instruction of an address-
taken or imported (exported on Linux) function. Both types of gadgets end with an
indirect control-flow instruction. Moreover, based on the allowed transfers listed
in Table 5.1, CS gadgets can be split into two subclasses: the ones that are part of a
sensitive function, which we denote by CS′, and the ones that are not, denoted by
CS. Similarly, EP gadgets can be categorized as those that correspond to an address-
taken function, denoted by EP, and those that correspond to imported/exported
functions, denoted by EP ′.

124 Chapter 5 Evaluating Control-Flow Restricting Defenses

mov | add | or | …
 jmp *(ptr)

some_function:

(a) Traditional gadgets (b) Gadgets under CFR

call | call *

Jump-oriented gadget

Return-oriented gadget

pop
pop
mov | add | or | …
ret

CS gadget

call * | jmp * | ret

allowable_function:

EP – entry-point gadget

call * | jmp * | ret

Figure 5.2 Types of gadgets used in code-reuse attacks. (Based on Göktas et al. [2014a])

5.3.2 Chaining Gadgets
CRAs execute multiple gadgets in a chain to perform the desired computation/
attack. With CFR, not only are less gadgets available but arbitrary chains of gadgets
are also forbidden. Here we describe the various ways attackers could chain these
gadgets under CFR.

In ROP attacks, chaining occurs by controlling a return instruction (e.g., through
corrupting the return address in the stack) and placing the addresses of the gadgets
in the chain in the stack. This type of chaining, shown in Figure 5.3a, is also possible
under CFR by using CS gadgets, with the additional limitation that a CS gadget
cannot transfer control to a CS′ gadget.

In recent exploits [Pelletier 2012, Joly 2013], the attacker initially receives control
of the operand of an indirect call or jump. For example, this includes exploits that
hijack C++ virtual calls. In such cases, EP gadgets can be chained using indirect
jumps, while both EP and EP ′ gadgets can be chained using indirect calls, like in
Figure 5.3b. Note that, generally, chaining EP gadgets is much harder than chaining
CS gadgets, as calls push data into the stack instead of popping data like in the case
of returns.

Exactly because EP-gadget chaining is hard, switching from EP to CS-gadget
chaining is an important capability for attackers. To achieve this, an EP gadget

5.3 Security Analysis 125

(a) CS-gadget linking

(b) EP-gadget linking

Memory corruption

Stack corruption

CS gadget

ret

ret

call *(ptr)

CS gadget

ret

CS gadget

ret

(d) Moving from CS- to EP-gadget linking

Stack corruption

CS gadget

ret

ret

CS gadget

jmp *(ptr)

EP gadget

call *(ptr)

EP or EP′ gadget

function_A:

function_A:

function_B:

function_B:

function_C:

function_C:

function_F() should only be
called by certain functions,
not function_A(), otherwise it
results in a stack corruption.

jmp *(ptr) EP gadget

call *(ptr)

EP or EP′ gadget

jmp *(ptr)

(c) Moving from EP- to CS-gadget linking

Memory corruption

jmp *(ptr)

EP gadget

call *(ptr)

EP or EP′ gadget

ret

call *(ptr)

CS gadget

ret

Figure 5.3 Different ways of linking gadgets. (Based on Göktas et al. [2014a])

126 Chapter 5 Evaluating Control-Flow Restricting Defenses

needs to be able to corrupt the return address stored in the stack and receive control
of the return instruction that will use it. This is the only way for control not to return
to the caller (i.e., the previous EP gadget). An example of this is shown in Figure 5.3c.
The corruption of the stack does not need to be caused by a program bug; it is
sufficient to call a function that performs a memory write and control that write.
For example, one can call the memcpy() function using the stack as the destination
buffer and the desired CS gadget address as source data.

In rare cases, it may be desirable to use a particular EP gadget or gadgets even
when doing ROP, for instance, because EP gadgets are more prevalent or an EP
gadget performs some rare functionality. Switching from CS- to EP-gadget chaining
is possible by using a CS gadget that terminates with an indirect call, which we can
control (e.g., its operand is not set within the gadget). Such an example is shown in
Figure 5.3d.

Avoiding Heuristic-Based Detection
Table 5.2 shows the runtime restrictions that apply in chaining gadgets. In par-
ticular, there are restrictions in the length of a gadget chain that is allowed to
execute. CFR adopts the strictest parameters for this, considering any sequence
of 20 or more instructions ending in an indirect control-flow transfer a gadget and
forbidding the execution of 8 or more consecutive gadgets. We also assume that
these thresholds are checked continuously, so a gadget chain can at no point ex-
ceed them.

An approach for circumventing these checks and using longer gadget chains
involves interleaving longer gadgets within the chain. Gadgets longer than 20 in-
structions are not considered gadgets by the heuristics, breaking the chain into
smaller chains that do not trigger the heuristic, as shown in Figure 5.4. These longer
gadgets could be null gadgets, that is, they may not perform any useful computation,

Chain length less than TC

Attacker
hijacks

control flow

… … …

Chain length less than TC

Undetectable gadgets longer than TG

TG

Figure 5.4 Mixing shorter and longer gadgets to avoid detection. Gadgets larger than TG instruc-
tions are not considered gadgets by both kBouncer and ROPecker. The latter also
ignores gadgets that contain direct branch instructions. (Based on Göktas et al. [2014a])

5.4 Quantifying Gadget Availability in CFR 127

or “productive” gadgets that are carefully inserted in the chain. Of course, using
longer gadgets is not necessarily straightforward, as they may include instructions
with side effects, e.g., accessing memory or conditional control flow.

5.3.3 Invoking System Calls and Functions
Chaining gadgets to perform arbitrary computations is not enough; attackers also
need to be able to execute system calls to change memory permissions, spawn
other processes, perform networking operations, etc. CRAs perform system calls
by first preparing their arguments in the stack (e.g., on 32-bit architectures) or
chaining gadgets to prepare them in registers (e.g., on 64-bit architectures). Subse-
quently, control is diverted either to a gadget that includes a system call instruction
(i.e., int 0x80 or syscall) or by calling a wrapper function (e.g., Linux’s read()
function) that will perform the system call. Here we discuss how the invocation of
function and system calls is affected by CFR.

The preparation of arguments for performing a call is only affected by the
availability of gadgets and the chaining considerations we have already presented.
Using gadgets that include system call instructions becomes significantly harder,
though. That is because most such instructions are within wrapper functions,
which are deemed sensitive and cannot be targeted by returns in non-sensitive
functions. The best avenue for performing system calls when CFR is in play is calling
a wrapper function by chaining a gadget that includes a call instruction. Both CS
and EP gadgets can be utilized for this purpose; they need to either include a direct
call or terminate in an indirect call instruction.

5.4 Quantifying Gadget Availability in CFR
Previous works [Zhang et al. 2013, Zhang and Sekar 2013, Pappas et al. 2013,
Cheng et al. 2014] attempted to evaluate the effectiveness of CFR by calculating
the reduction in possible control-flow edges. By blocking transfers to arbitrary
bytes, the reduction is significant, reaching 98%; however, as we highlighted in
Section 5.3, some gadgets remain. In this section, we present the results of our
measurements that count the number of gadgets that remain under CFR defenses
in various popular Windows applications. We also present statistics on gadget size,
which affects heuristic-based detection.

5.4.1 Number of Available Gadgets
We analyze seven popular 32-bit applications on Windows 7 to identify and count
the gadgets that can still be used by attackers. Table 5.3 describes the naming

128 Chapter 5 Evaluating Control-Flow Restricting Defenses

Table 5.3 Gadget Names: Based on Type, Function-Calling Capability, and Exit Instruction

Type Naming Exit Instruction Performs Function Call

Call-site gadgets CS-R return —
CS-IJ indirect jump —
CS-IC indirect call —

CS-IC-R return indirectly
CS-C-R return directly

Entry-point gadgets EP-R return —
EP-IJ indirect jump —
EP-IC indirect call —

EP-IC-R return indirectly
EP-C-R return directly

scheme we use for different types of gadgets, and Table 5.4 lists the results of
our analysis. For each application, we count the number of gadgets contained in
the entire application image in memory, including the main binary and all loaded
libraries, as well as in selected popular libraries (DLLs) separately. The last row
corresponds to the number of gadgets in the subset of libraries that are shared by
all seven applications. We focus on CS and EP gadgets, ignoring CS′ and EP ′, for
brevity and because the former are by far easier to chain.

The gadgets were collected by first launching the binaries to collect the set of
libraries each one uses at runtime. Then, for each application binary and library,
we used the popular disassembler IDA Pro [Hex-Rays 2017] to disassemble and
identify the gadgets available under CFR. We assume that attackers favor smaller
and less complex gadgets, so we limit our gadget collection to gadgets that do not
include conditional branches or more than 30 instructions. We notice that complex
applications include a significant number of gadgets that can be used even under CFR.

Let us use an example to explain the gadget collection process in more detail.
While disassembling a function within a binary and locating a call instruction, we
define a CS gadget starting directly after that instruction, unless we are at the end
of the function, which may happen in the case of never-returning function calls like
exit(). We keep disassembling until we reach a direct call to a function that has
a resolved function name, or an indirect transfer, such as a return, or indirect call
or jump. If we have stopped at an indirect transfer, we classify that gadget as CS-R,
CS-IC, or CS-IJ. In the special case, where we have stopped at a call instruction, we

5.4 Quantifying Gadget Availability in CFR 129

Ta
bl

e
5.

4
N

um
be

ro
fD

if
fe

re
nt

Ty
pe

s
of

G
ad

ge
ts

Fo
un

d
in

Va
ri

ou
s

32
-b

it
Ap

pl
ic

at
io

ns
on

W
in

do
w

s
7a

E
n

tr
y-

Po
in

t
G

ad
ge

ts
C

al
l-

Si
te

G
ad

ge
ts

P
E

Fi
le

A
p

p
li

ca
ti

on
N

am
e

E
P

-R
E

P
-I

C
-R

E
P

-C
-R

E
P

-I
J

E
P

-I
C

C
S-

R
C

S-
IC

-R
C

S-
C

-R
C

S-
IJ

C
S-

IC

In
te

rn
et

al
l

7,
04

3
2,

35
3

4,
49

8
1,

18
3

2,
83

8
17

9,
09

8
12

,4
00

44
,7

28
45

6
59

,2
52

E
xp

lo
re

r
9

m
sh

tm
l.d

ll
1,

74
8

65
2

12
6

91
2

75
9

38
,5

59
5,

91
7

4,
86

5
52

8,
63

8
ie

fr
am

e.
d

ll
65

4
20

1
36

3
6

12
7

18
,2

52
1,

32
6

5,
33

3
31

5,
68

4

A
d

ob
e

al
l

18
,3

03
1,

77
2

8,
44

7
1,

08
2

2,
08

5
16

6,
17

5
5,

64
1

62
,5

00
1,

48
0

40
,0

91
R

ea
d

er
X

I
A

cr
oR

d
32

.d
ll

13
,1

06
65

0
3,

09
9

77
8

37
2

58
,0

27
1,

15
6

25
,2

76
1,

21
3

12
,5

87

Fi
re

fo
x

24
al

l
9,

77
3

2,
61

1
6,

31
6

63
5

2,
78

5
23

3,
18

3
8,

95
1

52
,8

83
46

5
45

,9
49

xu
l.d

ll
3,

28
1

1,
34

9
1,

78
1

17
2

90
0

10
1,

47
5

4,
81

2
16

,6
17

97
23

,1
81

W
or

d
20

13
al

l
13

,9
55

3,
76

4
9,

56
3

78
0

3,
79

8
35

2,
17

0
11

,7
49

74
,4

98
83

9
12

9,
67

1
W

W
LI

B
.d

ll
96

2
41

3
69

0
33

28
4

60
,2

89
1,

66
5

3,
42

6
34

31
,9

13

Po
w

er
Po

in
t

al
l

15
,4

25
3,

92
2

10
,2

14
89

3
3,

83
5

35
1,

96
9

10
,9

42
90

,8
26

98
7

11
4,

90
9

20
13

P
P

C
or

e.
d

ll
1,

84
2

46
0

1,
14

4
11

1
23

6
50

,6
25

70
4

16
,7

58
16

1
12

,3
09

E
xc

el
20

13
al

l
14

,0
26

3,
52

6
9,

24
9

83
7

3,
63

8
34

0,
51

1
11

,3
20

74
,2

26
85

9
11

9,
01

6
E

xc
el

.e
xe

1,
31

3
21

4
35

7
10

2
19

8
54

,4
14

1,
27

4
4,

00
5

60
21

,6
98

M
ic

ro
so

ft
M

SO
.d

ll
4,

37
6

93
4

2,
85

8
12

4
52

0
82

,0
06

2,
20

0
14

,6
12

16
9

24
,8

19
O

ffi
ce

20
13

Sh
ar

ed
al

l
2,

27
1

73
1

2,
68

2
17

1
1,

39
5

67
,2

09
2,

50
6

23
,2

03
20

4
15

,5
21

sh
el

l3
2.

d
ll

67
1

30
3

69
0

7
37

0
21

,8
64

1,
23

7
10

,1
92

54
9,

12
7

a.
W

e
co

u
n

t
on

ly
ga

d
ge

ts
w

it
h

ou
t

co
n

d
it

io
n

al
b

ra
n

ch
es

an
d

w
it

h
30

in
st

ru
ct

io
n

s
or

le
ss

.

(F
ro

m
G

ök
ta

s
et

al
.[

20
14

a]
)

130 Chapter 5 Evaluating Control-Flow Restricting Defenses

resume scanning until we find a return or other control-flow instruction. If we find
a return, we count the gadget as a CS-IC-R or CS-C-R.

5.4.2 Gadget Size
Figure 5.5 shows the frequency of gadget sizes in Internet Explorer 9. We take a sep-
arate count of the gadgets that contain conditional branches and the ones that do
not. We make two major observations. First, we see that there is a significant num-
ber of smaller gadgets, indicating that CRAs under CFR may be no more complex
than conventional attacks. Second, we notice that there is also a non-negligible
number of long gadgets, especially if we look at gadgets that contain branches,
which can be used to break long gadget chains that would be detected by the gadget-

105

104

103

102

10

0

0.1
0 3 6 9 12 15

Gadget length

18 21 24 27 30

CS wob
CS wb

EP wob
EP wb

(#
) C

ou
n

t

Figure 5.5 Frequency of gadgets in IE9 based on their length (instruction count). CS and EP wob
refers to gadgets without branches and wb refers to gadgets with branches.

5.5 Proof-of-Concept Exploit against CFR 131

chain length heuristic of CFR. Of course, we cannot make any assumptions on how
usable all these gadgets are; however, their number is a strong indication that there
is a significant pool of gadgets to choose from. Another interesting observation is
that there is a peak for gadgets with 21 instructions, which, after investigating, we
determined occurs due to a block in the ole32.dll library that has 1,021 pointers
(JMPs) pointing to it.

5.5 Proof-of-Concept Exploit against CFR
To determine the security of CFR, we take an offensive security approach and at-
tempt to create a proof-of-concept (PoC) exploit that is effective despite the de-
ployed defenses. Our PoC exploit is based on a well-known heap overflow-based
exploit against 32-bit Internet Explorer 8 [Pelletier 2012] on Windows 7. This ex-
ploit has the interesting property that it can be used to both launch an information
disclosure attack to defeat ASLR and perform a control-flow hijacking attack by
taking control of the target address used in an indirect jump instruction.

Our goal is to use the security analysis and gadget collection described in the
previous sections to guide us in modifying the original exploit so that it can be
effective against the CFR model, which combines the most restrictive aspects of
CCFIR, bin-CFI, kBouncer, and ROPecker. We follow a common practice of known
code-reuse attacks, where the end goal is to inject arbitrary executable code within
the vulnerable process.

Based on our security analysis, the requirements for the PoC exploit are the
following:

Use and chain only gadgets that are available under CFR. Because of the re-
strictions on control-flow transitions, we need to restrict ourselves to only
use available gadgets, as described in Sections 5.3.1 and 5.3.2.

The payload must evade heuristic-based defenses. Our gadget chain cannot
include seven or more gadgets of 20 or fewer instructions in a row. For this,
we need to include heuristic breaker (HB) gadgets that are longer than 20
instructions, whenever we are close to using seven shorter gadgets. This way
our payload “flies below the radar” at run time.

The injected code must be placed on an allowable address. Past exploits per-
formed arbitrary code injection and execution by using a ROP payload to
execute VirtualProtect() on Windows or mmap() on Linux to make an
attacker-controlled buffer executable and then transfer control to it. How-
ever, with CFR, control can only be transferred to particular addresses, the

132 Chapter 5 Evaluating Control-Flow Restricting Defenses

ones that host CS and EP gadgets. To inject code now, we need to make ex-
isting code writable, use code-reuse to inject our code at the address of a CS
or EP gadget in the now writable area, and, finally, chain the injected code.

In the remainder of this section, we describe how we construct a PoC exploit in
more detail.

5.5.1 Exploit Preparation
The exploit consists of two parts: the first part deals with disclosing information
to bypass ASLR and reveal the addresses of the gadgets, while the second part take
controls of the target address of an indirect jump instruction. While in reality we
begin from the second phase, by first constructing a code-reuse payload and then
creating the part of the exploit for leaking the locations of the libraries containing
those gadgets that we use, we describe the exploit in the same order the phases
execute. As such, we start by describing how we locate two libraries used by Internet
Explorer 8: mshtml.dll and ieframe.dll, which include all the gadgets required
for our payload as well as the user-controlled buffer that contains our code-reuse
and code-injection payloads.

Breaking ASLR
We trigger the vulnerability by accessing the span and width attributes of an HTML
table’s column through JavaScript (JS). We use it to overwrite the size attribute
of a string object, which consequently allows the substring() method of the
string class to read data beyond the boundary of the string object, as long as we
know the relative offset of that data from the string object. A great feature of the
vulnerability is that it can be triggered repeatedly from JS to leak memory from
different locations, hence serving as a memory disclosure interface.

To use this memory leak to locate the two DLLs containing our gadgets, we
first use heap Feng Shui [Sotirov 2007] to position the vulnerable buffer and the
string and button objects in the right order, so that we can overflow in the string
object without concurrently hijacking the control flow (i.e., receiving control of the
indirect jump). By means of the exploited string object, we can read the pointer from
the button object to the mshtml.dll library. Because the target of this pointer is at
a fixed offset within the library, it reveals its base address.

Next we need to discover the base address of ieframe.dll. Fortunately,
mshtml.dll has pointers to it in its Delayed Import Address Table, but to read
them, we first need to compute the offset from the string object to mshtml.dll

because we can only read memory by knowing this offset. If we learn the address

5.5 Proof-of-Concept Exploit against CFR 133

of the string object itself, we can infer the offset to any location in the memory. To
learn this address, we use a pointer in the button object to a buffer at a constant
distance from the string object.

Finally, we need to determine the location of the buffer we control, which
contains our payloads. We use heap spraying [DarkReading 2009] to create many
copies of our buffer in the process’s memory, which has the effect of placing one
of the copies at an address that can be reliably determined. Note that while heap
spraying is not a foolproof method, it works consistently in this particular case.

Control-Flow Hijacking
After breaking ASLR, we use JS to patch the learned addresses in our payload and
finally trigger the overflow again to overwrite the virtual function table (VFT) pointer
within a button object. Later, when we access the button object from within our
carefully prepared JS code, the program will operate on the overwritten data and
will eventually grant us control over an indirect jump instruction, which we direct
to the first gadget of our code-reuse payload.

5.5.2 Payload Execution
The first part of the payload will execute a chain of gadgets to inject shellcode in
the executable and transfer control to it. Since this is only a PoC, the shellcode will
do no more than launch a third program, such as the calculator. An attacker, on
the other hand, could perform arbitrary actions, like downloading and executing a
malicious binary.

Our code-reuse payload consists of the gadget chain depicted in Figure 5.6. To
ensure that the chain is not detected by defenses such as kBouncer and ROPecker,
we use as many HB gadgets as possible, which results in a gadget chain where 6 out
of 11 gadgets are longer HB gadgets. This is even more important if we consider
that program execution before we receive control already includes code sequences
that are treated as gadgets, as shown in the figure. In detail, our chain performs the
following steps:

1. Go from EP to CS gadgets. The vulnerability gives us control of an indirect
jump instruction, which due to CFR only allows us to transfer control to
address-taken EP ′ gadgets. Because CS gadgets are significantly easier to
use, we decided to immediately switch from EP to CS-gadget chaining. As we
describe in Section 5.3.2, to perform this switch we need our chain to corrupt
the stack so the next ret instruction that executes is under our control.
This whole process is accomplished by using four gadgets. We use two EP

134 Chapter 5 Evaluating Control-Flow Restricting Defenses

5
Gadget size

7

34

21

28

50

H
B

 g
ad

ge
t

R
eg

u
la

r
ga

d
ge

t

26

29

18

32

2

8

2

Initially controlled
indirect jump

*-JMP *

EP-IC

EP-IC

EP-R

CS-R

CS-R

CS-R

CS-R
call

call

CS-R

VirtualProtect()

memcpy()

Make
writable

Copy
shellcode

CS-R

CS-R

CS-R

CODE
AREA

11 12 34 9

Gadgets executed before we take control

15 10 19

Figure 5.6 Overview of PoC exploit that bypasses the stricter CFR model. All the gadgets used are
intended call-site (CS) or entry-point (EP) gadgets. (From Göktas et al. [2014a])

5.6 Summary 135

gadgets with 34 and 21 instructions, respectively, to prepare for the code
that will corrupt the stack. An EP gadget of 32 instructions is the one actually
corrupting the stack so that we control the next return instruction, which is
located in a short two-instruction long CS gadget.

2. Perform a stack pivot. To continue executing CS gadgets, the stack pointer
has to point to the fake stack in the buffer we control. The process of chang-
ing the stack pointer for this purpose is called stack pivoting. As shown In
Figure 5.6, we use two CS gadgets with 2 and 28 instructions, respectively,
to perform the stack pivoting. The first gadget loads the address of the fake
stack in the frame pointer, the EBP register, and the second gadget moves the
value from the frame pointer to the stack pointer, the ESP register, through
the leave instruction.

3. Make existing code writable. Because we eventually want a ret instruction to
direct control flow to our shellcode, we must inject it at a valid CS location.
Hence, we need to invoke VirtualProtect() to make a selected CS location
writable first. We locate and chain a CS gadget with 50 instructions that we
use to prepare the necessary registers for calling VirtualProtect() and
another one for making a direct call to the function.

4. Copy over shellcode. To copy the shellcode, we invoke memcpy(). To achieve
this, we use another CS gadget with 29 instructions to prepare the necessary
registers and call the function through another CS gadget with a direct call
to it.

5. Transfer control flow to shellcode. Finally, we use the CS gadget executed
after memcpy() to legitimately redirect execution to the shellcode we just
copied.

This PoC exploit manages to inject arbitrary code into a process that is protected
by CFR, hence demonstrating that attacks are still possible under such defenses. To
summarize, the code-reuse payload we constructed consists of EP and CS gadgets
alone that are available under CFR. It also consists of 11 gadgets, 6 of which are
longer than 20 instructions, so the longest gadget chain detected by heuristics has
a length of 4 and, in fact, that chain is part of the program’s regular control flow.

5.6 Summary
With increasing dependency on indirect control transfers (ICT) on the one hand,
and ever more sophisticated code-reuse attacks on the other, the need for new and
better defenses is more urgent than ever. However, what is “better”? Without a

136 Chapter 5 Evaluating Control-Flow Restricting Defenses

meaningful metric to measure the strength of a defense, it is often impossible to
determine how much additional security it provides.

Control-flow restricting defenses in particular are both promising and problem-
atic: Promising because in a program that cannot easily stray from its intended
control-flow graph, attackers can only use the set of legitimate targets of indirect
control transfers to construct a code-reuse payload; the tighter the set, the fewer the
options for attackers. Problematic because as long as we do not know how many
and what kind of options are left, we do not know whether it is difficult or easy to
construct such payloads.

All previous attempts to define suitable metrics proved insufficient. For in-
stance, a well-known metric is to estimate the reduction in the number of available
gadgets after applying control-flow restrictions [Zhang and Sekar 2013], but this
is not very helpful if the remaining gadgets trivially allow for the construction of
malicious payloads [Göktas et al. 2014a]. An alternative approach to evaluate de-
fense mechanisms is to measure how many useful gadgets are left after applying
the control-flow restrictions [Salwan 2011, Schwartz et al. 2011, Corelan 2011]. Un-
fortunately, determining what is useful and what is not is difficult and goes well
beyond defining a small set of simple templates a priori. Finally, research papers
frequently evaluate a new defense by testing it against a small number of existing
real attacks [Zhang and Sekar 2013, Zhang et al. 2013]. Again, such evaluations do
not necessarily say much about how the security mechanism fares against targeted
exploits, tailored explicitly to bypass it.

Evaluation of new work on control-flow restriction comprises two aspects: the
optimality of the target set reduction and the usefulness of the target set. The op-
timality of the target set reduction measures to what extent it is possible to further
minimize the set of possible targets for indirect control transfers. For instance, a
CFI solution may reduce the number of possible targets of an indirect call from
tens of thousands to just ten, but this is not the optimal set if the indirect call has
only two possible targets. The usefulness of the target set assesses what an attacker
can still do with the remaining targets.

Some research has been successful in achieving optimality of the target set
reduction. For instance, ShrinkWrap [Haller et al. 2015] protects virtual function
calls in C++ programs by limiting their targets to appropriate methods in the class
hierarchy. By exhaustively creating all possible inheritance and call-site scenarios,
the researchers prove that the target sets that their solution generates do not break
any C++ semantics while also not including unneeded targets. Such exhaustive
testing to assess the optimality of the target set may be possible for (some) other
defenses also. Unfortunately, as discussed above, the community has been less

5.6 Summary 137

successful in determining the usefulness of the remaining target sets, and currently
no best practices exist.

In fact, the community’s track record in developing suitable control-flow restric-
tions appears to be less than stellar: all practical defenses to date are vulnerable
to one clever new bypass or another. At the same time, we keep raising the bar
for attackers. There is no doubt that restricting the target sets of indirect control
transfers complicates the construction of malicious payloads out of the remaining
gadgets—we are just struggling to determine exactly how much.

A tentative conjecture that we draw out of the plethora of research on control-
flow restrictions in recent years is that while static approaches are relatively weak
[Göktas et al. 2014a, Carlini and Wagner 2014, Evans et al. 2015], adding context
sensitivity significantly raises the bar [van der Veen et al. 2015, Dang et al. 2015].
While some research applies context sensitivity on the forward edge also [van der
Veen et al. 2015], a simpler but still very powerful addition to static techniques to
restrict a program’s control flow is to add a shadow stack [Carlini et al. 2015e].

Unfortunately, the inability to assess the security of new defenses and the strong
claims often found in research papers have led to a perverse cat-and-mouse game
between researchers, whereby a defense introduced at one conference is bypassed
at the next. As the net result is not always positive, we believe that developing better
ways to evaluate security mechanisms based on control-flow restriction is an urgent
(albeit challenging) research topic.

6Attacking Dynamic Code
Felix Schuster, Thorsten Holz

Typically, code-reuse attacks exhibit unique characteristics in the control flow (and
the data flow) that allow for generic protections, regardless of the language an ap-
plication was programmed in. For example, if one can afford to monitor all return
instructions in an application while maintaining a full shadow call stack, even ad-
vanced ROP-based attacks [Göktas et al. 2014a, Carlini and Wagner 2014, Davi et al.
2014, Göktaş et al. 2014b, Schuster et al. 2014] cannot be mounted [Frantzen and
Shuey 2001, Abadi et al. 2005a, Davi et al. 2011]. In this chapter, we present a form
of code-reuse attack we call Counterfeit Object-Oriented Programming (COOP) that
is different: COOP exploits the fact that each C++ virtual function is address taken,
which means that a static code pointer exists to it. Accordingly, C++ applications
usually contain a high ratio of address-taken functions, typically a significantly
higher one compared to C applications. If, for example, an imprecise CFI solution
does not consider C++ semantics, then these functions are all likely valid indirect
call targets [Abadi et al. 2005a] and can thus be abused.

COOP exclusively relies on C++ virtual functions that are invoked through corre-
sponding calling sites as gadgets. Hence, without deeper knowledge of the seman-
tics of an application developed in C++, COOP’s control flow cannot reasonably be
distinguished from a benign one. Another important difference to existing code-
reuse attacks is that in COOP conceptually no code pointers (e.g., return addresses
or function pointers) are injected or manipulated. As such, COOP is immune to
defenses that protect the integrity and authenticity of code pointers. Moreover, in
COOP, gadgets do not work relative to the stack pointer. Instead, gadgets are in-
voked relative to the this-ptr on a set of adversary-defined counterfeit objects. Note
that in C++ the this-ptr allows an object to access its own address. Addressing rela-
tive to the this-ptr implies that COOP cannot be mitigated by defenses that prevent
the stack pointer to point to the program’s heap [Fratric 2012], which is typically

140 Chapter 6 Attacking Dynamic Code

the case for ROP-based attacks launched through a heap-based memory corruption
vulnerability.

The counterfeit objects used in a COOP attack typically overlap such that data
can be passed from one gadget to another. Even in a simple COOP program, posi-
tioning counterfeit objects manually can become complicated. Hence, we imple-
mented a programming framework that leverages the Z3 SMT solver [de Moura and
Bjørner 2008] to derive the object layout of a COOP program automatically.

The main results of this chapter were published in a previous conference
paper [Schuster et al. 2015] and in a Ph.D. dissertation [Schuster 2015]. In this chap-
ter, we streamline the presentation and highlight the challenges when attempting
to protect against COOP-like attacks. Certain details are omitted and interested
readers are referred to closely related publications on this topic.

6.1 Goals and Attacker Model
COOP is a code-reuse attack approach targeting applications developed in C++ or
possibly other object-oriented languages. We note that many of today’s notoriously
attacked applications are written in C++ (or contain major parts written in C++);
examples include Microsoft Internet Explorer, Google Chromium, Adobe Reader,
Microsoft Office, LibreOffice, and OpenJDK.

In the following, we state our design goals and our attacker model for COOP
before we describe the actual building blocks of a COOP attack in the next section.
For brevity, the rest of this chapter mainly focuses on Microsoft Windows and the
x86-64 architecture as the runtime environment. The COOP concept is generally
applicable to C++ applications running on any operating system; it also extends
to other programming languages such as Objective-C [Lettner et al. 2016] and to
other instruction set architectures. Interestingly, mounting a COOP attack on a
RISC architecture can be even simpler than one mounted on a CISC architecture
because calling conventions that pass function arguments through registers rather
than over the stack facilitate COOP (further discussed in Section 6.2.7).

6.1.1 Goals
With COOP, we aim to demonstrate powerful code-reuse attacks that do not exhibit
the revealing characteristics of existing attack approaches. Even advanced existing
variants of return-into-libc, ROP, JOP, or COP [Göktas et al. 2014a, Carlini and
Wagner 2014, Davi et al. 2014, Göktaş et al. 2014b, Schuster et al. 2014, Bittau et al.
2014, Bosman and Bos 2014, Tran et al. 2011] rely on control-flow and data-flow

6.1 Goals and Attacker Model 141

patterns that are rarely or never encountered for regular code; among these are
typically one or more of the following:

C-1. Indirect calls/jumps to non-address-taken locations

C-2. Returns not in compliance with the call stack

C-3. Excessive use of indirect branches

C-4. Pivoting of the stack pointer (possibly temporarily)

C-5. Injection of new code pointers or manipulation of existing ones

These characteristics still allow for the implementation of effective, low-level,
and programming-language-agnostic protections. For instance, maintaining a full
shadow call stack [Frantzen and Shuey 2001, Abadi et al. 2005a, Davi et al. 2011]
suffices to fend off many types of ROP-based attacks.

With COOP we demonstrate that it is not sufficient to generally rely on the
characteristics C-1 to C-5 for the design of code-reuse defenses; we define the
following goals for COOP accordingly:

G-1. Do not expose the characteristics C-1–C-5.

G-2. Exhibit control flow and data flow similar to those of benign C++ code
execution.

G-3. Be widely applicable to C++ applications.

G-4. Achieve Turing-completeness under realistic conditions.

6.1.2 Attacker Model
In general, code-reuse attacks against C++ applications oftentimes start by hijack-
ing a C++ object and its vptr. Attackers achieve this by exploiting a spatial or tem-
poral memory corruption vulnerability, such as an overflow in a buffer adjacent
to a C++ object or a use-after-free condition. When the application subsequently
invokes a virtual function on the hijacked object, the attacker-controlled vptr is
dereferenced and a vfptr is loaded from a memory location of the attacker’s choice.
At this point, the attacker effectively controls the program counter (rip in x86-64)
of the corresponding thread in the target application. Generally, for code-reuse at-
tacks, controlling the program counter is one of the two basic requirements. The
other one is gaining (partial) knowledge of the layout of the target application’s
address space. Depending on the context, there may exist different techniques to
achieve this [Snow et al. 2013, Hund et al. 2013, Bittau et al. 2014, Seibert et al.
2014].

142 Chapter 6 Attacking Dynamic Code

For COOP we assume that attackers control a C++ object with a vptr and that they
can infer the base address of this object or another auxiliary buffer of sufficient size
under their control. Further, they need to be able to infer the base addresses of a
set of C++ modules whose binary layouts are (partly) known to them. For instance,
in practice, knowledge on the base address of a single publicly available C++ library
in the target address space can be sufficient.

These assumptions conform to the attacker settings of most defenses against
code-reuse attacks. In fact, many of these defenses assume far more powerful
adversaries that are, e.g., able to read and write large (or all) parts of an application’s
address space with respect to page permissions. As such, our attack is applicable
to many defenses; we discuss the implications of COOP in Section 6.6.

6.2 Counterfeit Object-Oriented Programming
Every COOP attack starts by hijacking one of the target application’s C++ objects.
We call this the initial object. Up to the point where the attacker controls the
program counter, a COOP attack does not deviate much from other code-reuse
attacks: in a conventional ROP attack, the attackers typically exploit their control
over the program counter to first manipulate the stack pointer and to subsequently
execute a chain of short, return-terminated gadgets. In contrast, in COOP, virtual
functions existing in an application are repeatedly invoked on counterfeit C++
objects carefully arranged by the attackers.

6.2.1 Counterfeit Objects
Typically, a counterfeit object carries an attacker-chosen vptr and a few attacker-
chosen data fields. Counterfeit objects are not created by the target application, but
are injected in bulk by the attacker. Whereas the payload in a ROP-based attack is
typically composed of fake return addresses interleaved with additional data, in a
COOP attack, the payload consists of counterfeit objects and possibly additional
data. Similar to a conventional ROP payload, the COOP payload containing all
counterfeit objects is typically written as one coherent chunk to a single attacker-
controlled memory location.

6.2.2 Vfgadgets
We call the virtual functions used in a COOP attack vfgadgets. As for other code-
reuse attacks, the attacker identifies useful vfgadgets in an application prior to the
actual attack through source code analysis or reverse engineering of binary code.
Even when source code is available, it is necessary to determine the actual object

6.2 Counterfeit Object-Oriented Programming 143

Table 6.1 Overview of COOP vfgadget Types That Operate on Object Fields or Arguments

vfgadget Type Purpose

General-Purpose Types

ML-G The main loop; iterate over container of pointers to counterfeit
object and invoke a virtual function on each such object.

ARITH-G Perform arithmetic or logical operation.

W-G Write to chosen address.

R-G Read from chosen address.

INV-G Invoke C-style function pointer.

W-COND-G Conditionally write to chosen address. Used to implement
conditional branching.

Auxiliary Types

ML-ARG-G Execute vfgadgets in a loop and pass a field of the initial object
to each as an argument.

W-SA-G Write to address pointed to by first argument. Used to write to
scratch area.

MOVE-SP-G Decrease/increase stack pointer.

LOAD-R64-G Load x86-64 argument register rdx, r8, or r9 with value.

layout of a vfgadget’s class on binary level as the compiler may remove or pad certain
fields. Only then is the attacker able to inject compatible counterfeit objects.

We identified a set of vfgadget types that allows implementation of expressive
(and Turing-complete) COOP attacks in x86-32 and x86-64 environments. These
types are listed in Table 6.1. In the following, we gradually motivate our choice
of vfgadget types based on typical code examples. These examples revolve around
the simple C++ classes Student, Course, and Exam shown in Figure 6.1, which
reflect some common code patterns that we found to induce useful vfgadgets; in
practice, there are many other ways that C++ code can produce vfgadgets. We first
walk through the creation of a COOP attack code that writes to a dynamically
calculated address; along the way, we introduce COOP’s integral concepts of the
main loop, counterfeit vptrs, and overlapping counterfeit objects. Afterward, we
explain extended concepts in COOP for passing arguments to vfgadgets, calling
api functions, and implementing conditional branches and loops.

The reader might be surprised to find more C++ code listings than actual assem-
bly code in the following. This is owed to the fact that most of our vfgadget types

144 Chapter 6 Attacking Dynamic Code

class Student {
public:
 virtual void incCourseCount() = 0;
 virtual void decCourseCount() = 0;
};

class Course {
private:
 Student **students;
 size_t nStudents;
public:
 /* ... */
 virtual ~Course() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->decCourseCount();
 delete students;
 }
};

ML-G

Figure 6.1 Example for ML-G: the virtual destructor of the class Course invokes a virtual function
on each object pointer in the array students.

are solely defined by their high-level C++ semantics rather than by the side effects
of their low-level assembly code. These types of vfgadgets are thus likely to survive
compiler changes or even the transition to a different operating system or archi-
tecture. In the cases where assembly code is given, it is the output of the Microsoft
Visual C++ compiler (MSVC) version 18.00.30501 that is shipped with Microsoft
Visual Studio 2013.

6.2.3 The Main Loop
To repeatedly invoke virtual functions without violating goals G-1 and G-2, every
COOP program essentially relies on a special main loop vfgadget (ML-G). The defi-
nition of an ML-G is as follows:

Definition 6.1 A virtual function that iterates over a container (e.g., a C-style array or a vector) of
pointers to C++ objects and invokes a virtual function on each of these objects.

Virtual functions that qualify as ML-G are common in C++ applications. Con-
sider, for example, the code in Figure 6.1: the class Course has a field students

that points to a C-style array of pointers to objects of the abstract base class Stu-

6.2 Counterfeit Object-Oriented Programming 145

dent. When a Course object is destroyed (e.g., via delete), the virtual destructor
Course::~Course is executed and each Student object is informed via its virtual
function decCourseCount() that one of the courses it was subscribed to does not
exist anymore. Note that it is common practice to declare a virtual destructor when
a C++ class has virtual functions.

6.2.4 Layout of the Initial Object
The attacker shapes the initial object to resemble an object of the class of the ML-G.
For our example ML-GCourse::~Course, the initial object should look as depicted
in Figure 6.2: its vptr is set to point into an existing vtable that contains a reference
to the ML-G such that the first vcall under attacker control leads to the ML-G. In
contrast, in a ROP-based attack, this first vcall under attacker control typically leads
to a gadget moving the stack pointer to attacker-controlled memory. The initial

vptr

vptr

vptr

Student **students

Course::vtable

ClassA::vtable

ClassB::vtable

.rdata

Student *object0

Student *object1

object1

object0

…

…

size_t nStudents

Attacker-controlled memory

First entry

Second entry

First entry

Second entry

Third entry

Fourth entry

Figure 6.2 Basic layout of attacker-controlled memory (left) in a COOP attack using the example
ML-G Course::~Course. The initial object (dark gray, top left) contains two fields from
the class Course. Arrows indicate a points-to relation.

146 Chapter 6 Attacking Dynamic Code

Initial attacker-
controlled vcall

…

vfgadget 1

vfgadget 0

Main loop
(ML-G)

0 3
52, 4, 6, …

Figure 6.3 Schematic control flow in a COOP attack; transitions are labeled according to the order
they are executed.

object contains a subset of the fields of the class of the ML-G; i.e., all data fields
required to make the ML-G work as intended. For our example ML-G, the initial
object contains the fields students and nStudents of the class Course; the field
students is set to point to a C-style array of pointers to counterfeit objects (object0
and object1 in Figure 6.2), and nStudents is set to the total number of counterfeit
objects. This makes the Course::~CourseML-G invoke a vfgadget of the attacker’s
choice for each counterfeit object. Note how the attacker controls the vptr of each
counterfeit object. Figure 6.3 schematically depicts the control-flow transitions in
a COOP attack.

6.2.5 Counterfeit Vptrs
The control flow and data flow in a COOP attack should resemble those of a regular
C++ program. Hence, we avoid introducing fake vtables and reuse existing ones
instead. Ideally, the vptrs of all counterfeit objects should point to the beginning
of existing vtables. Depending on the target application, though, it can be difficult
to find vtables with a useful entry at the offset that is fixed for a given vcall site.
Consider, for example, our ML-G from Figure 6.1: counterfeit objects are treated
as instances of the abstract class Student. For each counterfeit object, the second
entry—corresponding to decCourseCount()—in the supplied vtable is invoked.
(The first entry corresponds to incCourseCount().) Here, a COOP attack would
ideally only use vfgadgets that are the second entry in an existing vtable. Naturally,
this significantly shrinks the set of available vfgadgets.

This constraint can be sidestepped by relaxing goal G-2 and letting vptrs of
counterfeit objects point not necessarily to the exact beginning of existing vtables
but to certain positive or negative offsets, as shown for object1 in Figure 6.2. When
such counterfeit vptrs are used, any available virtual function can be invoked from
a given ML-G. For example, to invoke the fourth entry in a certain vtable under the
given ML-G, the attacker makes a counterfeit object’s vptr point to the third entry

6.2 Counterfeit Object-Oriented Programming 147

of that vtable, as Figure 6.2 depicts for object1 and ClassA::vtable. The vcall in
the ML-G then interprets the fourth entry of that vtable as the second entry of a
Student vtable.

6.2.6 Overlapping Counterfeit Objects
So far we have shown how, given an ML-G, an arbitrary number of virtual functions
(vfgadgets) can be invoked while control flow and data flow resemble that of the
execution of benign C++ code.

Two exemplary vfgadgets of types ARITH-G (arithmetic) and W-G (writing to
memory) are given in Figure 6.4: in Exam::updateAbsoluteScore() the field
score is set to the sum of three other fields; in SimpleString::set() the field
buffer is used as a destination pointer in a write operation. In conjunction, these

class Exam {
private:
 size_t scoreA, scoreB, scoreC;
public:
 /* ... */
 char *topic;
 size_t score;

 virtual void updateAbsoluteScore() {
 score = scoreA + scoreB + scoreC;
 }

 virtual float getWeightedScore() {
 return (float)(scoreA*5+scoreB*3+scoreC*2) / 10;
 }
};

struct SimpleString {
 char* buffer;
 size_t len;
 /* ... */

 virtual void set(char* s) {
 strncpy(buffer, s, len);
 }
};

ARITH-G

LOAD-R64-G

W-G

Figure 6.4 Examples for ARITH-G, LOAD-R64-G, and W-G; for simplification, the native integer
type size_t is used.

148 Chapter 6 Attacking Dynamic Code

vptr

vptr

size_t scoreA

size_t scoreB

size_t scoreC

d
a
t
a
-
f
l
o
w
:

E
x
a
m
:
:
g
e
t
A
b
s
o
l
u
t
e
S
c
o
r
e
(
)

object0
(Exam)

object1
(SimpleString)

size_t len

char *topic

size_t score char* buffer

...

+

Figure 6.5 Overlapping counterfeit objects of types Exam and SimpleString

two vfgadgets can be used to write attacker-chosen data to a dynamically calculated
memory address. For this, two overlapping counterfeit objects are needed, and their
alignment is shown in Figure 6.5.

The key idea here is that the fields score in object0 and buffer in object1 share
the same memory. This way, the result of the summation of the fields of object0 in
Exam::updateAbsoluteScore() is written to the field buffer of object1. For ex-
ample, object0.scoreA could hold a previously determined base pointer (base-ptr) to
a memory region, object0.scoreB could hold a fixed offset into that region, and ob-
ject0.scoreC would simply be set to 0. The write operation inSimpleString::set()

would then use

object0.scoreA + object0.scoreB + object0.scoreC = base-ptr + offset

as the destination pointer in strncpy(). Note how here, technically, also ob-
ject0.topic and object1.vptr overlap. As the attackers do not use object0.topic, this is
not a problem and they can simply make the shared field carry object1.vptr.

Of course, in our example, the attackers would likely wish to control not only
the destination address of the write operation through object1.buffer but also the
source address. For this, they need to be able to set the argument for the vfgadget
SimpleString::set(). How this can be achieved in COOP is described next.

6.2 Counterfeit Object-Oriented Programming 149

6.2.7 Passing Arguments to Vfgadgets
The overlapping of counterfeit objects is an important concept in COOP. It allows
for data to flow between vfgadgets through object fields regardless of compiler
settings or calling conventions. Unfortunately, we found that useful vfgadgets that
operate exclusively on object fields are rare in practice. In fact, most vfgadgets we
use in our real-world exploits (see Section 6.5) operate on both fields and arguments
as is the case for SimpleString::set().

Due to divergent default calling conventions, we describe different techniques
for passing arguments to vfgadgets for x86-64 and x86-32 in the following. We begin
with x86-64 and not with x86-32 as the technique for the former is simpler.

Approach for Windows x86-64. In the default x86-64 calling convention on Win-
dows, the first four (non-floating-point) arguments to a function are passed through
the registersrcx, rdx, r8, andr9 [Microsoft Developer Network 2017]. In case there
are more than four arguments, the additional arguments are passed over the stack.
For C++ code, the this-ptr is passed through rcx as the first argument. All four ar-
gument registers are defined to be caller saved, regardless of the actual number
of arguments a callee takes. Accordingly, virtual functions often use rdx, r8, and
r9 as scratch registers and do not restore or clear them on returning. This circum-
stance makes passing arguments to vfgadgets simple on x86-64: first, a vfgadget is
executed that loads one of the corresponding counterfeit object’s fields into rdx,
r8, or r9. Next, a vfgadget is executed that interprets the contents of these registers
as arguments.

We refer to vfgadgets that can be used to load argument registers as LOAD-
R64-G. For the x86-64 argument passing concept to work, an ML-G is required
that itself does not pass arguments to the invoked virtual functions/vfgadgets. Of
course, the ML-G must also not modify the registers rdx, r8, and r9 between such
invocations. In our example, the attackers can control the source pointer s of the
write operation (namely, strncpy()) by invoking a LOAD-R64-G that loads rdx

before SimpleString::set().
As an example for a LOAD-R64-G, consider Exam::getWeightedScore() from

Figure 6.4; MSVC compiles this function to the assembly code shown in Listing 6.1.
In condensed form, this LOAD-R64-G provides the following useful semantics

to the attackers:

rdx ← 3 . [this + 10h]

r8← [this + 18h]

r9← 3 . [this + 18h] + 2 . [this + 10h]

150 Chapter 6 Attacking Dynamic Code

mov rax, qword ptr [rcx+10h]

mov r8, qword ptr [rcx+18h]

xorps xmm0, xmm0

lea rdx, [rax+rax*2]

mov rax, qword ptr [rcx+8]

lea rcx, [rax+rax*4]

lea r9, [rdx+r8*2]

add r9, rcx

cvtsi2ss xmm0, r9

addss xmm0, dword ptr [__real0]

divss xmm0, dword ptr [__real1]

ret

Listing 6.1 x86-64 assembly code produced by MSVC for Exam::getWeightedScore() (example
for a LOAD-R64-G).

Thus, by carefully choosing the fields at offsets 10h and 18h from the this-ptr of
the corresponding counterfeit object, the attackers can write arbitrary values to the
registers rdx, r8, and r9. Note that the attackers here also control the registers rax
and rcx. However, this is of no value to them as rax is not an argument register
and is thus virtually never read without having been initialized before in a function;
and rcx is necessarily always updated by the ML-G to point to the next counterfeit
object when a vfgadget returns.

In summary, to control the source pointer in the writing operation in
SimpleString::set(), the attackers would first invoke Exam::getWeighted

Score() for a counterfeit object carrying the desired source address divided by
3 at offset 10h. This would load the desired source address to rdx, which would
next be interpreted as the argument s in the vfgadget SimpleString::set().

Other 64-bit Platforms. In the default x86-64 C++ calling convention used by
GCC [Matz et al. 2013], e.g., on Linux, the first six arguments to a function are
passed through registers, instead of only the first four arguments. In theory, this
should make COOP attacks simpler to create on Linux x86-64 than on Windows
x86-64, as two additional registers can be used to pass data between vfgadgets. In
practice, during the creation of our example exploits (see Section 6.5), we did not
experience big differences between the two platforms.

Although we did not conduct experiments on RISC platforms, such as ARM or
MIPS, we expect that our x86-64 approach directly extends to these because in RISC
calling convention arguments are also primarily passed through registers.

6.2 Counterfeit Object-Oriented Programming 151

class Student2 {
private:
 std::list<Exam> exams;
public:
 /* ... */
 virtual void subscribeCourse(int id) { /* ... */ }
 virtual void unsubscribeCourse(int id) { /* ... */ }

 virtual bool getLatestExam(Exam &e) {
 if (exams.empty()) return false;
 e = exams.back();
 return true;
 }
};

class Course2 {
private:
 Student2 **students;
 size_t nStudents;
 int id;
public:
 /* ... */

 virtual ~Course2() {
 for (size_t i = 0; i < nStudents; i++)
 students[i]->unsubscribeCourse(id);
 delete students;
 }
};

W-SA-G

W-COND-G

ML-ARG-G

Figure 6.6 Examples for W-SA-G, W-COND-G, and ML-ARG-G.

Approach for Windows x86-32. The standard x86-32 C++ calling convention on
Windows is thiscall [Microsoft Developer Network 2017]: all regular arguments are
passed over the stack whereas the this-ptr is passed in the register ecx; the callee is
responsible for removing arguments from the stack. Thus, the described approach
for x86-64 does not work for x86-32. In our approach for Windows x86-32, contrary
to x86-64, we rely on a main loop (ML-G) that passes arguments to vfgadgets. More
precisely, a 32-bit ML-G should pass one field of the initial object as an argument to
each vfgadget. In practice, any number of arguments may work; for brevity reasons,
we only discuss the simplest case of one argument here. We call this field the
argument field and refer to this variant of ML-G as ML-ARG-G. For an example of an
ML-ARG-G, consider the virtual destructor of the class Course2 in Figure 6.6: the
field id is passed as an argument to each invoked virtual function.

152 Chapter 6 Attacking Dynamic Code

1 push ebp

2 mov ebp, esp

3 cmp dword ptr [ecx+8], 0

4 jne copyExam

5 xor al, al

6 pop ebp

7 ret 4

8 copyExam:

9 mov eax, dword ptr [ecx+4]

10 mov ecx, dword ptr [ebp+8]

11 mov edx, dword ptr [eax+4]

12 mov eax, dword ptr [edx+0Ch]

13 mov dword ptr [ecx+4], eax

14 mov eax, dword ptr [edx+10h]

15 mov dword ptr [ecx+8], eax

16 mov eax, dword ptr [edx+14h]

17 mov dword ptr [ecx+0Ch], eax

18 mov eax, dword ptr [edx+18h]

19 mov dword ptr [ecx+10h], eax

20 mov al, 1

21 pop ebp

22 retn 4

Listing 6.2 Optimized x86-32 assembly code produced by MSVC for
Student2::getLatestExam().

Given such an ML-ARG-G, the attacker can employ one of the following two
approaches to pass chosen arguments to vfgadgets:

1. Fix the argument field to point to a writable scratch area.

2. Dynamically rewrite the argument field.

In approach 1, the attacker relies on vfgadgets that interpret their first argument
not as an immediate value but as a pointer to data. Consider, for example, the
virtual functionStudent2::getLatestExam() from Figure 6.6 that copies anExam

object; MSVC produces the optimized x86-32 assembly code shown in Listing 6.2
for the function.

In condensed form, lines 9–22 of the assembly code provide the following se-
mantics:

6.2 Counterfeit Object-Oriented Programming 153

[arg0 + 4] ← [[[this + 4] + 4] + Ch]

← [[[this + 4] + 4] + 10h]

← [[[this + 4] + 4] + 14h]

← [[[this + 4] + 4] + 18h]

Note that for approach 1, arg0 always points to the scratch area. Accordingly,
this vfgadget allows the attacker to copy 16 bytes (corresponding to the four 32-
bit fields of Exam) from the attacker-chosen address [[this + 4] + 4+] + Ch to the
scratch area. We refer to this type of vfgadget that writes attacker-controlled fields
to the scratch area as W-SA-G. Using Student2::getLatestExam() as W-SA-G in
conjunction with an ML-ARG-G allows the attacker, for example, to pass a string of
up to 16 characters as the first argument to the vfgadget SimpleString::set().

In approach 2, the argument field of the initial object is not fixed as in ap-
proach 1. Instead, it is dynamically rewritten during the execution of a COOP attack.
This allows the attacker to pass arbitrary arguments to vfgadgets, as opposed to a
pointer to arbitrary data for approach 1. For this approach, naturally, a usable W-
G is required. As stated above, we found vfgadgets working solely with fields to be
rare. Hence, the attacker would typically initially follow approach 1 and implement
2-style argument writing on top of that when required.

Passing Multiple Arguments and Balancing the Stack. So far, we have described how
a single argument can be passed to each vfgadget using an ML-ARG-G main loop
gadget on Windows x86-32. Naturally, it can be desirable or necessary to pass more
than one argument to a vfgadget. Doing so is simple: the ML-ARG-G pushes one
argument to each vfgadget. In case a vfgadget does not expect any arguments, the
pushed argument remains on the top of the stack even after the vfgadget returned.
This effectively moves the stack pointer permanently one slot up, as depicted in
Figure 6.7(c). This technique allows the attacker to gradually “pile up” arguments
on the stack as shown in Figure 6.7(d) before invoking a vfgadget that expects
multiple arguments. This technique only works for ML-ARG-Gs that use ebp and
not esp to access local variables on the stack (i.e., no frame-pointer omission) as
otherwise the stack frame of the ML-ARG-G is destroyed.

Analogously to how vfgadgets without arguments can be used to move the stack
pointer up under an ML-ARG-G, vfgadgets with more than one argument can be
used to move the stack pointer down, as shown in Figure 6.7(b). This may be used
to compensate for vfgadgets without arguments or to manipulate the stack. We
refer to vfgadgets with little or no functionality that expect less or more than one

154 Chapter 6 Attacking Dynamic Code

ML-ARG-G
stack frame

vfgadget(x)

arg.
esp

before

(a) (b)

(c) (d)

esp
after

ML-ARG-G
stack frame

vfgadget() vfgadget()
vfgadget()

esp
before

esp
after

ML-ARG-G
stack frame

ML-ARG-G
stack frame

vfgadget(x,x)

esp
before

esp
before

esp
after

esp
after

arg.

arg. arg.

arg.

Figure 6.7 Examples for stack layouts before and after invoking vfgadgets under an ML-ARG-G
(thiscall calling convention). The stack grows upward. (a) vfgadget with one argument:
the stack is balanced. (b) vfgadget with two arguments: esp is moved down. (c) vfgadget
without arguments: esp is moved up. (d) Two vfgadgets without arguments: two
arguments are piled up.

argument as MOVE-SP-Gs. Ideally, a MOVE-SP-G is an empty virtual function that
just adjusts the stack pointer.

Note that the described technique for passing multiple arguments to vfgadgets
in 32-bit environments can also be used to pass more than three arguments to
vfgadgets in 64-bit environments. (Remember that only the first three arguments
to a virtual function are passed through registers on x86-64.) For this, the attacker
would typically invoke an ML-ARG-G from the main ML-G to write arguments to the
stack and invoke the vfgadget in question.

Other 32-bit Platforms. The default x86-32 C++ calling convention used by GCC,
e.g., on Linux, is not thiscall but cdecl [Microsoft Developer Network 2017]: all
arguments including the this-ptr are passed over the stack; instead of the callee, the
caller is responsible for cleaning the stack. The described technique of “piling up”
arguments thus does not apply to GCC-compiled (and compatible) C++ applications
on Linux x86-32 and other POSIX x86-32 platforms. Instead, for these platforms,
we propose using ML-ARG-Gs that pass not one but many controllable arguments

6.2 Counterfeit Object-Oriented Programming 155

to vfgadgets. Conceptually, passing too many arguments to a function does not
corrupt the stack in the cdecl calling convention. Alternatively, ML-ARG-Gs could
be switched during an attack, depending on which arguments to a vfgadget need
to be controlled.

6.2.8 Calling API Functions
The ultimate goal of code-reuse attacks is typically to pass attacker-chosen ar-
guments to critical API functions or system calls, e.g., WinAPI functions such
as WinExec() or VirtualProtect(). We identified the following ways to call a
WinAPI function in a COOP attack:

1. Use a vfgadget that legitimately calls the WinAPI function of interest.

2. Invoke the WinAPI function like a virtual function from the COOP main loop.

3. Use a vfgadget that calls a C-style function pointer.

While approach 1 may be practical in certain scenarios and for certain WinAPI
functions, it is unlikely to be feasible in the majority of cases. For example, virtual
functions that call WinExec() should be close to non-existent.

Approach 2 is simple to implement: a counterfeit object can be crafted whose
vptr does not point to an actual vtable but to the import table (IAT) or the export
table (EAT) [Russinovich et al. 2012] of a loaded module such that the ML-G in-
vokes the WinAPI function as a virtual function. Note that IATs, EATs, and vtables
are all arrays of function pointers typically lying in read-only memory; they are thus
in principle compatible data structures. As simple as it is, the approach has two im-
portant drawbacks: (i) it goes counter to our goal G-2, as a C function is called at a
vcall site without a legitimate vtable being referenced; and (ii) for x86-64, the this-ptr
of the corresponding counterfeit object is always passed as the first argument to the
WinAPI function due to the given C++ calling convention. This circumstance, for
example, effectively prevents the passing of a useful command line to WinExec():
the function WinExec() expects the pointer to an ASCII command line to be the
first argument. In case a this-ptr is passed as the first argument, the corresponding
vptr is interpreted as a command line, which is likely not useful. However, this can
be different for other WinAPI functions. For example, calling VirtualProtect()

with a this-ptr as the first argument still allows the attacker to mark the memory of
the corresponding counterfeit object as executable. Note that VirtualProtect()
changes the memory access rights for a memory region pointed to by the first argu-
ment. Arguments other than the first one can be passed as described in Section 6.2.7

156 Chapter 6 Attacking Dynamic Code

class GuiButton {
private:
 int id;
 void(*callbackClick)(int, int, int);
public:
 void registerCbClick(void(*cb)(int, int, int)) {
 callbackClick = cb;
 }

 virtual void clicked(int posX, int posY) {
 callbackClick(id, posX, posY);
 }
};

INV-G

Figure 6.8 Example for an INV-G: clicked invokes a field of GuiButton as a C-style function
pointer.

for x86-64. For x86-32, all arguments can be passed using the technique from Sec-
tion 6.2.7.

For approach 3, a special type of vfgadget is required: a virtual function that
calls a C-style function pointer with non-constant arguments. We refer to this type
of vfgagdet as an INV-G. An example is given in Figure 6.8: the virtual function
GuiButton::clicked() invokes the field GuiButton::callbackClick as a C-
style function pointer. This particular vfgadget allows for the invocation of arbitrary
WinAPI functions with at least three attacker-chosen arguments. Note that, de-
pending on the actual assembly code of the INV-G, a fourth argument could possibly
be passed through r9 for x86-64. Additional stack-bound arguments for x86-32 and
x86-64 may also be controllable depending on the actual layout of the stack.

Calling WinAPI functions through INV-Gs should generally be the technique of
choice, as this is more flexible than approach 1 and stealthier than 2. An INV-G also
enables seemingly legit transfers from C++ to C code (e.g., to libc) in general. On the
downside, we found INV-Gs to be relatively rare overall. For our real-world example
exploits discussed in Section 6.5, though, we could always select from multiple
suitable ones.

6.2.9 Implementing Conditional Branches and Loops
Up to this point, we have described all the building blocks required to practically
mount COOP code-reuse attacks. Since we aim for COOP not only to be stealthy but

6.3 Loopless Counterfeit Object-Oriented Programming 157

also to be Turing-complete under realistic conditions (goal G-4), we now describe the
implementation of conditional branches and loops in COOP.

In COOP, the program counter is the index into the container of counterfeit ob-
ject pointers. The program counter is incremented for each iteration in the ML-G’s
main loop. The program counter may be a plain integer index, as in our exemplary
ML-G Course::~Course, or a more complex data structure, such as an iterator
object for a C++ linked list. Implementing a conditional branch in COOP is gen-
erally possible in two ways: through (i) a conditional increment/decrement of the
program counter or (ii) a conditional manipulation of the next-in-line counterfeit
object pointers in the container. Both can be implemented given a conditional write
vfgadget, which we refer to as W-COND-G. An example for this vfgadget type is again
Student2::getLatestExam() from Figure 6.6. As can be seen in lines 3–7 of the
function’s assembly code in Listing 6.2, the controllable write operation is only ex-
ecuted in case [this − ptr + 8] = 0. With these semantics, the attacker can rewrite
the COOP program counter or upcoming pointers to counterfeit objects under the
condition that a certain value is not null. In case the program counter is stored on
the stack (e.g., in the stack frame of the ML-G) and the address of the stack is un-
known, the technique for moving the stack pointer described in Section 6.2.7 can
be used to rewrite it.

Given the ability to conditionally rewrite the program counter, implementing
loops with an exit condition also becomes possible.

6.3 Loopless Counterfeit Object-Oriented Programming
The basic COOP code-reuse attack technique described in Section 6.2 inherently
relies on a main loop vfgadget (ML-G). Accordingly, one can think of different pos-
sible (partial) defenses against COOP that make ML-Gs unavailable to an attacker
or at least complicated to misuse. Yet our observation is that the COOP concept is
not necessarily bound to ML-Gs. In the following, we describe two refined versions
of COOP that do not require ML-Gs and emulate the original main loop through
recursion and loop unrolling. For brevity, we only discuss the x86-64 platform.

Generally, all semantics that can be expressed programmatically through loops
can also be expressed through recursive functions. This naturally also applies to
COOP’s main loop. We identified a certain code pattern that is commonly found
in virtual functions and is especially common within virtual destructors. This code
pattern can be misused to emulate an ML-G by means of recursion. We refer to a
virtual function that exhibits this pattern as a REC-G (short for recursion vfgadget).

158 Chapter 6 Attacking Dynamic Code

Invocation of virtual function on object
pointer B; B is a member of this; B ≠ A.

Must not overwrite (all) argument registers.

Epilogue: no constraints

Invocation of virtual function on object
pointer A; A is a member of this.

Prologue: must not overwrite (all)
argument registers.

struct X {
 virtual ~X(); };

struct Y {
 virtual void unref(); };

struct Z {
 X *objA;
 Y *objB;

virtual ~Z() {

} };

 /*...*/

 /*...*/

 /*...*/

 delete objA

 objB->unref();

Structure of a COOP recursion vfgadget
(REC-G)

part

1

2

3

4

5

Figure 6.9 Example code (left) and general structure (right) of a REC-G

For an example of a REC-G, consider the C++ code in Figure 6.9: Z::~Z() is a
typical (virtual) destructor. It deletes the object objA and removes a reference to
objB. Consequently, a virtual function is invoked on both objA and objB. In case
Z::~Z() is invoked on an adversary-controlled counterfeit object, the adversary
effectively controls the pointers *objA and *objB. The adversary can make these
pointers point to injected counterfeit objects.

Accordingly, Z::~Z() can be misused by an adversary to make two consecutive
COOP-style vfgadget invocations. This, in turn, effectively enables the adversary to
invoke an arbitrary number of vfgadgets, if the counterfeit object objB is shaped
such that Z::~Z() is recursively invoked. The left side of Figure 6.10 schematically
depicts the counterfeit object layouts that are required for this: for each regular
counterfeit object, one additional auxiliary counterfeit object is required that resem-
bles an object of class Z. Each auxiliary counterfeit object’s *objB points to the next
auxiliary counterfeit object (pointers.2 and.4 in Figure 6.10), whereas each *objA

points to a regular counterfeit object that corresponds to a certain vfgadget (point-

6.3 Loopless Counterfeit Object-Oriented Programming 159

Auxiliary counterfeit object

Initial attacker-
controlled virtual

function call

Z::~Z()

vptr (Z::vtable)

Auxiliary counterfeit object

Adversary-controlled memory Induced control flow

X *objA

X *objB

vptr (Z::vtable)

X *objA

X *objB

Counterfeit object #2

Counterfeit object #1

0

0

2

2 4

1

1

5

33

4

vfgadget #2

…

vfgadget #1

Figure 6.10 Schematic layout of adversary-controlled memory with pointers (left) and control-flow
transitions (right) in a recursion-based COOP attack using Z::~Z() as a REC-G.

ers.1 and.3). The right side of Figure 6.10 shows the resulting adversary-induced
control flow.

We note that not only destructors but any virtual function may qualify as a
REC-G. The required abstract structure of a REC-G is shown on the right side of
Figure 6.9: as discussed, at least two invocations of virtual functions on distinct
and adversary-controlled object pointers are required (parts ©2 and ©4); the code
before these invocations (parts ©1 and ©3) must not write to registers that are
required for passing arguments to vfgadgets. As per definition, C++ destructors
do not receive any explicit arguments, parts ©1 and ©3 are particularly likely not to
write to argument registers if parts ©2 and ©4 both comprise a delete statement.

Unrolled COOP. Given a virtual function with not only two consecutive virtual func-
tion invocations (like a REC-G) but many, it is also possible to mount an unrolled
COOP attack that does not rely on a loop or recursion. This COOP variant is detailed
in a paper by Crane et al. [2015].

160 Chapter 6 Attacking Dynamic Code

6.4 A Framework for Counterfeit Object-Oriented Programming
Implementing a COOP attack against a given application is a three-step process:
(i) identification of vfgadgets, (ii) implementation of attack semantics using the
identified vfgadgets, and (iii) arrangement of possibly overlapping counterfeit ob-
jects in a buffer. Since the individual steps are cumbersome and hard to perform
by hand, we created a framework in the Python scripting language that automates
steps (i) and (iii). This framework greatly facilitated the development of our exam-
ple exploits for Internet Explorer and Chromium (see Section 6.5). In the following,
we provide an overview of our implementation.

6.4.1 Finding Vfgadgets Using Basic Symbolic Execution
For the identification of useful vfgadgets in an application, our vfgadget searcher
relies on binary code only and optionally debug symbols. Binary x86-32 C++ mod-
ules are disassembled using the popular Interactive Disassembler (IDA). Each virtual
function in a C++ module is considered a potential vfgadget. The searcher statically
identifies all vtables in a C++ module using debug symbols or, if these are not avail-
able, a set of simple but effective heuristics is applied. Akin to other work [Prakash
et al. 2015, Zhang et al. 2015], our heuristics consider each address-taken array
of function pointers a potential vtable. The searcher examines all identified virtual
functions whose number of basic blocks does not exceed a certain limit. In practice,
we found it sufficient and convenient to generally only consider virtual functions
with one or three basic blocks as potential vfgadgets; the only exception being ML-
Gs and ML-ARG-Gs, which due to the required loop often consist of more basic
blocks. Using short vfgadgets is favorable as their semantics are easier to evaluate
automatically and they typically exhibit fewer unwanted side effects. Including long
vfgadgets can, however, be necessary to fool heuristics-based code-reuse attack de-
tection approaches (see Section 6.6).

The searcher summarizes the semantics of each basic block in a vfgadget in
single static assignment (SSA) form. These summaries reflect the I/O behavior of
a basic block in a compact and easy-to-analyze form. The searcher relies on the
backtracking feature of the METASM binary code analysis toolkit [Guillot and Gazet
2010], which performs symbolic execution on the basic-block level. An example of
a basic-block summary as used by our searcher is provided in the listed semantics
for the second basic block of Exam::getWeightedScore() in Section 6.2.7. To
identify useful vfgadgets, the searcher applies filters on the SSA representation of
the potential vfgadgets’ basic blocks. For example, the filter “left side of assignment
must dereference any argument register; right side must dereference the this-ptr” is

6.4 A Framework for Counterfeit Object-Oriented Programming 161

useful for identifying 64-bit W-Gs; the filter “indirect call independent of [this] ” is
useful for finding INV-Gs; and the filter “looped basic block with an indirect call
dependent on [this] and a non-constant write to [esp-4] ” can in turn be used to find
32-bit ML-ARG-Gs.

6.4.2 Aligning Overlapping Objects Using an SMT Solver
Each COOP “program” is defined by the order and positioning of its counterfeit
objects, each of which corresponds to a certain vfgadget. As described in Sec-
tion 6.2.6, the overlapping of counterfeit objects is an integral concept of COOP;
it enables immediate data flows between vfgadgets through fields of counterfeit
objects. Manually obtaining the alignment of overlapping counterfeit objects right
on the binary level is a time-consuming and error-prone task. Hence, we created a
COOP programming environment that automatically, if possible, correctly aligns all
given counterfeit objects in a fixed-size buffer. In our programming environment,
the “programmer” defines counterfeit objects and labels. A label may be assigned
to any byte within a counterfeit object. When bytes within different objects are as-
signed the same label, the programming environment takes care that these bytes
are mapped to the same location in the final buffer, while assuring that bytes with
different labels are mapped to distinct locations. Fields without labels are in turn
guaranteed never to overlap. These constraints are often satisfiable, as actual data
within counterfeit objects is typically sparse.

For example, the counterfeit object A may only contain its vptr (at relative offset
+0), an integer at the relative offset +16, and have the label X for its relative offset
+136; the counterfeit object B may only contain its vptr and have the same label
X for its relative offset +8. Here, the object B fits comfortably and without conflict
inside A such that B +8 maps to the same byte as A +136.

Our programming environment relies on the Z3 SMT solver [de Moura and
Bjørner 2008] to determine the alignment of all counterfeit objects within the fixed-
size buffer such that, if possible, all label-related constraints are satisfied. At the
baseline, we model the fixed-size buffer as an array mapping integer indexes to
integers in Z3. To prevent unwanted overlap, for each byte in each field, we add a
select constraint [de Moura and Bjørner 2009] in Z3 of the form

select(offset-obj + reloffset-byte) = id-field

where offset-obj is an integer variable to be determined by Z3 and reloffset-byte and
id-field are constant integers that together uniquely identify each byte. For each
desired overlap (e.g., between objects A and B using label X), we add a constraint

162 Chapter 6 Attacking Dynamic Code

of the form

offset-objA + reloffset(A, X) = offset-objB + reloffset(B , X)

where offset-objA and offset-objB are integers to be determined by Z3 and
reloffset(A, X) = 136 and reloffset(B , X) = 8 are constants.

In the programming environment, for convenience, symbolic pointers to labels
can be added to counterfeit objects. Symbolic pointers are automatically replaced
with concrete values once the offsets of all labels are determined by Z3. This way,
multiple levels of indirection can be implemented conveniently.

An example of a vfgadget that reads attacker-controlled data through multiple
levels of indirection was provided in the W-SA-G Student2::getLatestExam()

whose semantics are given in Section 6.2.7. The programming environment also
contains templates for common object-pointer container formats used in ML-Gs.
For these common formats, the counterfeit object-pointer container can be created
automatically. The programming environment outputs a buffer that contains all
counterfeit objects and is ready to be injected in a COOP attack.

6.5 Proof-of-Concept Exploits
To demonstrate the practical viability of our approach, we implemented exemplary
COOP attacks for Microsoft Internet Explorer 10 (32-bit and 64-bit) and Google
Chromium 41 for Linux x86-64. In the following, we discuss different aspects of our
attack codes that we find interesting. We used our framework for the development
of all three attack codes. Each of them fits into 1,024 bytes or less.

For our Internet Explorer 10 examples, we used a publicly documented vulner-
ability related to an integer signedness error in Internet Explorer 10 [Joly 2013] as
our foundation. The vulnerability allows a malicious website to perform arbitrary
reads at any address and arbitrary writes within a range of approximately 64 pages
on the respective heap using JavaScript code. This gives the attackers many options
for hijacking C++ objects residing on the heap and injecting their own buffer of
counterfeit objects; it also enables the attackers to gain extensive knowledge on the
respective address space layout. We successfully tested our COOP-based exploits for
Internet Explorer 10 32-bit and 64-bit on Windows 7. Note that our choice of Win-
dows 7 as the target platform is only for practical reasons; the described techniques
also apply to Windows 8. To demonstrate the flexibility of COOP, we implemented
different attack codes for 32-bit and 64-bit. Both attack codes could be ported to
the respective other environment without restrictions.

6.5 Proof-of-Concept Exploits 163

6.5.1 Internet Explorer 10 64-Bit
Our COOP attack code for 64-bit only relies on vfgadgets contained in mshtml.dll
that can be found in every Internet Explorer process; it implements the following
functionality:

. Read pointer to kernel32.dll from IAT.

. Calculate pointer to WinExec() in kernel32.dll.

. Read the current tick count from the KUSER_SHARED_DATA data structure.

. If tick count is odd, launch calc.exe using WinExec(); otherwise, execute
alternate execution path and launch mspaint.exe.

The attack code consists of 17 counterfeit objects with counterfeit vptrs and 4
counterfeit objects that are pure data containers. Overall, eight different vfgadgets
are used, including one LOAD-R64-G for loading rdx through the dereferencing
of a field that is used five times. The attack code is based on an ML-G similar to
our exemplary one given in Figure 6.1 that iterates over a plain array of object
pointers. With four basic blocks, the ML-G is the largest of the eight vfgadgets.
The conditional branch depending on the current tick count is implemented by
overwriting the next-in-line object pointer such that the ML-G is recursively invoked
for an alternate array of counterfeit object pointers. In summary, the attack code
contains eight overlapping counterfeit objects, and we used 15 different labels to
create it in our programming environment. All vfgadgets used in this attack code
are listed in Table 6.2.

Attack Variant Using Only Vptrs Pointing to the Beginning of Vtables. The described
64-bit attack code relies on counterfeit vptrs that do not necessarily point to the
beginning of existing vtables but to positive or negative offsets from them. As a
proof of concept, we developed a stealthier variant of the attack code above that
only uses vptrs that point to the beginning of existing vtables. Accordingly, at
each vcall site, we were restricted to the set of virtual functions compatible with
the respective fixed vtable index. Under this constraint, our exploit for the given
vulnerability is still able to launch calc.exe through an invocation of WinExec().
The attack code consists of only five counterfeit objects, corresponding to four
different vfgadgets (including the main ML-G) from mshtml.dll. Corresponding to
the given vulnerability, the used main ML-G can be found as the fourth entry in an
existing vtable, whereas, corresponding to the vcall site of the ML-G, the other three
vfgadgets can be found as third entries in existing vtables. The task of calculating
the address of WinExec is done in JavaScript code beforehand. All vfgadgets used
in this attack code are listed in Table 6.3.

164 Chapter 6 Attacking Dynamic Code

Table 6.2 Vfgadgets in mshtml.dll 10.0.9200.16521 Used in Internet Explorer 10 64-Bit Exploita

Symbol Name of vfgadget Number Type Purpose

CExtendedTagNamespace::

Passivate

1, 9b ML-G array-based main
loop

CCircularPositionFormat

FieldIterator::Next

2, 5, 7, 9a, 10b LOAD-R64-G load rdx from
dereferenced field

XHDC::SetHighQualityScaling

Allowed

3 ARITH-G store rdx&1

CWigglyShape::OffsetShape 4 LOAD-R64-G load r9 from field

CStyleSheetArrayVarEnumerator::

MoveNextInternal

6 LOAD-R64-G load r8 from field

CDataCache<class CBoxShadow>::

InitData

8 W-COND-G write r8 to [rdx] if
r9 is not zero

CRectShape::OffsetShape 10a, 11b ARITH-G add [rdx] to field

Ptls6::CLsBlockObject::Display 11a, 12b INV-G invoke field as
function pointer

a. Execution splits into paths a and b after index 8.

Table 6.3 Vfgadgets in mshtml.dll 10.0.9200.16521 Used in Exemplary Internet Explorer 10
64-Bit Exploita

Symbol Name of vfgadget Number Type Purpose

CExtendedTagNamespace::

Passivate

1 ML-G array-based main
loop

CMarkupPageLayout::

IsTopLayoutDirty

2, 4 LOAD-R64-G load edx from field

HtmlLayout::GridBoxTrack

Collection::GetRangeTrackNumber

3 ARITH-G r8= 2 . rdx

CAnimatedCacheEntryTyped<float>::

UpdateValue

4 INV-G invoke field from
argument as
function pointer

a. Only uses vptrs pointing to the beginning of existing vtables.

6.5 Proof-of-Concept Exploits 165

6.5.2 Internet Explorer 10 32-Bit
Our 32-bit attack code implements the following functionality: (1) read pointer to
kernel32.dll from IAT; (2) calculate pointer to WinExec() in kernel32.dll; (3) enter
loop that launches calc.exe using WinExec() n times; (4) finally, enter an infinite
waiting loop such that the browser does not crash.

The attack code does not rely on an array-based ML-ARG-G (recall that in 32-
bit ML-ARG-Gs are used instead of ML-Gs); instead, it uses a more complex ML-
ARG-G that traverses a linked list of object pointers using a C++ iterator. We dis-
covered this ML-ARG-G in jscript9.dll that is available in every Internet Explorer
process. The ML-ARG-G consists of four basic blocks and invokes the function
SListBase::Iterator::Next() to get the next object pointer from a linked list
in a loop. The assembly code of the ML-ARG-G is given in Listing 6.3.

Figure 6.11 depicts the layout of the linked list: each item in the linked list
consists of one pointer to the next item and another pointer to the actual object.
This layout allows for the low-overhead implementation of conditional branches
and loops. For example, to implement the loop in our attack code, we simply made
parts of the linked list circular, as shown in Figure 6.11. Inside the loop in our attack
code, a counter within a counterfeit object is incremented for each iteration. Once
the counter overflows, a W-COND-G rewrites the backward pointer such that the
loop is left and execution proceeds along another linked list.

Our attack code consists of 11 counterfeit objects, and 11 linked-list items of
which two point to the same counterfeit object. Four counterfeit objects overlap and
one counterfeit object overlaps with a linked-list item to implement the conditional
rewriting of a next pointer. The actual vfgadgets used in our attack code are listed
in Table 6.4. This example highlights how powerful linked-list-based ML-Gs/ML-
ARG-Gs are in general.

6.5.3 Chromium 41 for Linux x86-64
To demonstrate the wide applicability of COOP, we also created an attack code
for a modified version of Chromium 41 for Linux x86-64. This specific version was
compiled with LLVM and was altered to contain the critical vulnerability CVE-2014-
3176, which had been identified and patched in an earlier version of Chromium.
Our COOP attack code here reads a pointer to libc.so from the global offset table
(GOT) and calculates the address of system() from that in order to finally invoke
system("/bin/sh").

mov edi, edi

push ebp

mov ebp, esp

push ecx

push ecx

push esi

mov esi, ecx

lea eax, [esi+3ACh]

; -- inlined constructor of iterator --

mov [ebp+iterator.end], eax

mov [ebp+iterator.current], eax

; --

loop:

lea ecx, [ebp+iterator]

call SListBase::Iterator::Next()

test al, al

jnz end

mov eax, [ebp+iterator.current]

push [esi+140h] ; push argument field

mov ecx, [eax+4] ; read object pointer from iterator

mov eax, [ecx]

call [eax+4] ; call second virtual function

jmp loop

end:

pop esi

mov esp, ebp

pop ebp

ret

Listing 6.3 Assembly code of ML-ARG-G in jscript9.dll version 10.0.9200.16521 used in exemplary
Internet Explorer 10 32-bit exploit: A linked list of object pointers is traversed; a virtual
function with one argument is invoked on each object.

*next

*obj

obj0

*next

*obj

obj1

*next

*obj

obj2

Loop

…

…

Figure 6.11 Schematic layout of the linked list of object pointers the ML-ARG-G traverses in the
Internet Explorer 10 32-bit exploit; dashed arrows are examples of dynamic pointer
rewrites for the implementation of conditional branches.

6.5 Proof-of-Concept Exploits 167

Table 6.4 Vfgadgets Used in Internet Explorer 10 32-Bit Exploita

Symbol Name of vfgadget Number Type Purpose

jscript9!ThreadContext::Resolve

ExternalWeakReferencedObjects

1 ML-ARG-G linked-list-based main
loop

CDataTransfer::Proxy 2 W-SA-G write dereference field
to scratch area

CDCompSwapChainLayer::

SetDesiredSize

3 R-G load field from scratch
area

CDCompSurfaceTargetSurface::

GetOrigin

4 ARITH-G /
W-SA-G

write summation of
two fields to scratch
area

CDCompLayerManager::

SetAnimationCurveToken

5 R-G load field from scratch
area

HtmlLayout::SvgBoxBuilder::

PrepareBoxForDisplay

loop_entry:
6, 11

W-G rewrite argument field

CDXTargetSurface::OnEndDraw 7, 8 MOVE-
SP-G

move stack pointer up

ieframe!Microsoft::WRL::

Callback::ComObject::Invoke

9 INV-G invoke function
pointer with two
arguments

CMarkupPageLayout::

AddLayoutTaskOwnerRef

10 ARITH-G increment field

Ptls6::CLsDnodeNonTextObject::

SetDurFmtCore

12 W-COND-G conditionally write
argument to field;
rewrites linked list;
resumes at loop_entry
or loop_exit

CDispRecalcContext::OnBefore

DestroyInitialIntersectionEntry

loop_exit NOP nop; loops to self

a. vfgadgets taken from mshtml.dll (if not marked differently), jscript9.dll, or ieframe.dll version 10.0.9200.16521.

The attack code comprises six counterfeit objects (of which two overlap) cor-
responding to six different vfgadgets from Chromium’s main executable module.
The vfgadgets are listed in detail in Table 6.5.

We also created a loopless variant of this COOP attack code that, instead of an
ML-G, uses a REC-G from Chromium 41, which is depicted in Listing 6.4.

In this REC-G, fShaderA->contextSize() constitutes part ©2 andfShaderB->
contextSize() part ©4 , as depicted earlier in Figure 6.9.

168 Chapter 6 Attacking Dynamic Code

Table 6.5 Vfgadgets Used in Chromium 41 64-Bit Linux Exploit

Symbol Name of vfgadget Number Type Purpose

icu_52::PatternMap::~PatternMap 1 ML-G array-based main loop

SkBlockMemoryStream::rewind 2 R-G/W-G read pointer to libc and
write it to field

TraceBufferRingBuffer::

ClonedTraceBuffer::NextChunk

3 LOAD-R64-G load rsi with offset of
system()

net::AeadBaseEncrypter::

GetCiphertextSize

4 ARITH-G add field to rsi

TtsControllerImpl::

SetPlatformImpl

5 W-G store rsi

browser_sync::AddDBThread

ObserverTask::RunOnDBThread

6 INV-G invoke function pointer
from field and pass field
as argument

size_t SkComposeShader::contextSize() const {

return sizeof(ComposeShaderContext)

+ fShaderA->contextSize() + fShaderB->contextSize();

}

Listing 6.4 Example of a REC-G in Chromium 41 (C++).

6.6 Discussion
We now analyze the properties of COOP, discuss different defense concepts against
it, and review our design goals G-1–G-4 from Section 6.1.1. The effectiveness against
COOP of several existing defenses is discussed in Section 6.7.

6.6.1 Preventing COOP
We observe that characteristics C-1–C-5 of existing code-reuse-attack approach-
es cannot be relied on to defend against COOP (goal G-1): in COOP, control flow
is only dispatched to existing and address-taken functions within an application
through existing indirect calls. In addition, COOP neither injects new nor alters ex-
isting return addresses or other code pointers directly. Instead, only existing vptrs
(i.e., pointers to code pointers) are manipulated or injected. Technically, however,
depending on the choice of vfgadgets, a COOP attack may execute a high ratio of in-
direct branches and thus exhibit characteristic C-3. But we note that ML-Gs (which
are used in each COOP attack as central dispatchers) are legitimate C++ virtual

6.6 Discussion 169

functions whose original purpose is to invoke many (different) virtual functions
in a loop. Any heuristics attempting to detect COOP based on the frequency of
indirect calls will thus inevitably face the problem of high numbers of false pos-
itive detections. Furthermore, similar to existing attacks against behavioral-based
heuristics [Göktaş et al. 2014b, Davi et al. 2014], it is straightforward to mix-in long
“dummy” vfgadgets to decrease the ratio of indirect branches.

As a result, COOP cannot be effectively prevented by (i) CFI that does not con-
sider C++ semantics or (ii) detection heuristics relying on the frequency of executed
indirect branches and is unaffected by (iii) shadow call stacks that prevent rogue
returns and (iv) the plain protection of code pointers.

On the other hand, a COOP attack can only be mounted under the preconditions
given in Section 6.1.2. Accordingly, COOP is conceptually thwarted by defense tech-
niques that prevent the hijacking or injection of C++ objects or conceal necessary
information from the attacker, e.g., by applying ASLR and preventing information
leaks.

6.6.2 Generic Defense Techniques
We now discuss the effectiveness of several other possible defensive approaches
against COOP that do not require knowledge of precise C++ semantics and can
thus likely be deployed without analyzing or recompiling an application’s source
code.

Restricting the Set of Legitimate API Invocation Sites. A straightforward approach
to tame COOP attacks is to restrict the set of code locations that may invoke
certain sensitive library functions. For example, by means of binary rewriting it
is possible to ensure that certain WinAPI functions may only be invoked through
constant indirect branches that read from a module’s IAT (see CCFIR [Zhang et al.
2013]). In the best case, this approach could effectively prevent the API calling
techniques 2 and 3 described in Section 6.2.8. However, it is also common for
benign code to invoke repeatedly used or dynamically resolved WinAPI functions
through non-constant indirect branches like call rsi. Accordingly, in practice, it
can be difficult to precisely identify the set of a module’s legitimate invocation sites
for a given WinAPI function. We also remark that even without immediate access
to WinAPI functions or system calls, COOP is still potentially dangerous because,
for example, it could be used to manipulate or leak critical data.

Monitoring of the Stack Pointer. In 64-bit COOP, the stack pointer is virtually never
moved in an irregular or unusual manner. For the 32-bit thiscall calling convention,

170 Chapter 6 Attacking Dynamic Code

though, this can be hard to avoid when calling a series of vfgadgets each taking a
fixed, but different, number of arguments. This is a potential weakness that can
reveal a COOP attack on Windows x86-32 to a C++-unaware defender that closely
observes the stack pointer. However, we note that it may be difficult to always
distinguish this behavior from the benign invocation of functions in the cdecl
calling convention.

6.6.3 Fine-Grained Code Randomization
COOP is conceptually resilient against the fine-grained randomization of locations
of binary code, e.g., on function, basic-block, or instruction level. This is because
in a COOP attack (as opposed to, for example, a ROP attack), knowing the exact
locations of certain instruction sequences is not necessary but rather only the
locations of certain vtables. Moreover, in COOP, the attacker mostly misuses the
actual high-level semantics of existing code. Most vfgadget types, other than ROP
gadgets, are thus likely to be unaffected by semantics-preserving rewriting of binary
code. Only LOAD-R64-Gs that are used to load x86-64 argument registers can be
broken by such means. However, the attacker could probably oftentimes fall back
to x86-32-style ML-ARG-G-based COOP in such a case.

C++ Semantics-Aware Defense Techniques
We observe that the control flow and data flow in a COOP attack are similar to
those of benign C++ code (goal G-2). However, there are certain deviations that
can be observed by C++-aware defenders. We now discuss several corresponding
defenses.

Verification of Vptrs. In basic COOP, vptrs of counterfeit objects point to existing
vtables but not necessarily to their beginning. This allows for the implementation
of viable defenses against COOP when all legitimate vcall sites and vtables in an
application are known and, accordingly, each vptr access can be augmented with
sanity checks. Such a defense can be implemented without access to source code
by means of static binary code rewriting as shown by Prakash et al. [2015]. While
such a defense significantly shrinks the available vfgadget space, our exploit code
from Section 6.5.1 demonstrates that COOP-based attacks are still possible, at least
for large C++ target applications.

Ultimately, a defender needs to know the set of allowed vtables for each vcall
site in an application to reliably prevent malicious COOP control flow (or at least
needs to arrive at an approximation that sufficiently shrinks the vfgadget space).

6.6 Discussion 171

For this, the defender needs (i) to infer the global hierarchy of C++ classes with
virtual functions and (ii) to determine the C++ class (within that hierarchy) that
corresponds to each vcall site. Both can easily be achieved when source code is
available. Without source code, given only binary code and possibly debug symbols
or Runtime Type Information (RTTI) metadata, the former can be achieved with
reasonable precision while, to the best of our knowledge, the latter is generally
considered to be hard for larger applications by means of static analysis [Dewey
and Giffin 2012, Gawlik and Holz 2014, Fokin et al. 2011, Prakash et al. 2015]. Note
that RTTI metadata is often linked to C++ applications for various purposes and
includes the literal names of classes and the precise class hierarchy.

Monitoring of Data Flow. COOP also exhibits a range of data-flow patterns that
can be revealing when C++ semantics are considered. Probably foremost, in basic
COOP, vfgadgets with varying numbers of arguments are invoked from the same
vcall site. This can be detected when the number of arguments expected by each
virtual function in an application is known. While trivial with source code, deriving
this information from binary code can be challenging [Prakash et al. 2015]. An even
stronger (but also likely costlier) protection could be created by considering the
actual types of arguments.

In a COOP attack, counterfeit objects are not created and initialized by legiti-
mate C++ constructors, but are injected by the attacker. Further, the concept of over-
lapping objects creates unusual data flows. To detect this, the defender needs to be
aware of the life cycle of C++ objects in an application. This requires knowledge of
the whereabouts of (possibly inlined) constructors and destructors of classes with
virtual functions.

Fine-Grained Randomization of C++ Data Structures. In COOP, the layout of each
counterfeit object needs to be byte-compatible with the semantics of its vfgadget.
Accordingly, randomizing C++ object layouts on application start-up, e.g., by insert-
ing randomly sized paddings between the fields of C++ objects, can hamper COOP.
Also, the fine-grained randomization of the positions or structures of vtables is a
viable defense against COOP. In fact, this approach is presented in detail in a paper
by Crane et al. [2015].

We conclude that COOP can be mitigated by a range of means that do not require
knowledge of C++ semantics. But we regard it as vital to consider and to enforce
C++ semantics to reliably prevent COOP. Doing so by means of static binary analysis
and rewriting only is challenging, as the compilation of C++ code is in most cases

172 Chapter 6 Attacking Dynamic Code

a lossy process. For example, in binary code, distinguishing the invocation of a
virtual function from the invocation of a C-style function pointer that happens to
be stored in a read-only table can be difficult. Hence, unambiguously recovering
essential high-level C++ semantics afterward can be hard or even impossible. In
fact, as we discuss in more detail in Section 6.7, we are not aware of any binary-only
CFI solution that considers C++ semantics precisely enough to fully protect against
COOP.

6.6.4 Applicability and Turing Completeness
We have shown that COOP is applicable to popular C++ applications on different
operating systems and hardware architectures (goal G-3). Naturally, a COOP attack
can only be mounted in case at least a minimum set of vfgadgets is available. We
did not conduct a quantitative analysis on the general frequency of usable vfgadgets
in C++ applications: determining the actual usefulness of potential vfgadgets in
an automated way is challenging, and we leave this for future work. In general,
we could choose from many useful vfgadgets in the libraries mshtml.dll (around
20 MB) and libxul.so (around 60 MB), and the basic vfgadget types ARITH-G, W-G,
R-G, LOAD-R64-G, and W-SA-G are common even in smaller binaries.

The availability of central dispatcher vfgadgets, such as ML-Gs/ML-ARG-Gs
or REC-Gs, is vital to every COOP attack. While ML-Gs/ML-ARG-Gs are generally
sparser than the more basic types, we found usable dispatcher vfgadgets, e.g.,
in Microsoft’s standard C/C++ runtime libraries msvcr120.dll and msvcp120.dll
(both smaller than 1 MB; dynamically linked to many C and C++ applications on
Windows): the virtual function SchedulerBase::CancelAllContexts()with five
basic blocks in msvcr120.dll is a linked-list-based ML-G. In msvcr120.dll, we also
found the INV-G CancellationTokenRegistration_TaskProc::_Exec() that
consists of one basic block and is suitable for x86-32 and x86-64 COOP.

The virtual function propagator_block::unlink_sources()with eight basic
blocks in msvcp120.dll is an array-based ML-ARG-G. Interestingly, this particu-
lar ML-ARG-G is also defined in Visual Studio’s standard header file agents.h.
The virtual destructor of the class Concurrency::_Order_node_base<enum

Concurrency::agent_status> with seven basic blocks in msvcp120.dll is a
REC-G.

Given the vfgadget types defined in Table 6.1, COOP has the same expressiveness
as unrestricted ROP [Shacham 2007]. Hence, it allows for the implementation of a
Turing machine (goal G-4) based on memory load/store, arithmetic, and branches.
In particular, the COOP examples in Section 6.5 show that complex semantics, like
loops, can be implemented under realistic conditions.

6.7 Security Assessment of Existing Defenses 173

6.7 Security Assessment of Existing Defenses
Based on the discussions in the previous section, we now assess a selection of
contemporary defenses against code-reuse attacks and discuss whether they are
vulnerable to COOP in our adversary model. A summary of our assessment is given
in Table 6.6.

Table 6.6 Overview of the Effectiveness of a Selection of Code-Reuse Defenses and Memory
Safety Techniques against COOP

Category Scheme Realization Effective? a

Generic CFI Original CFI + shadow call stack [Abadi et al.
2005a]

Binary + debug symbols ✗

Lockdown [Payer et al. 2015c] Binary + debug symbols ✗

CFI for COT [Zhang and Sekar 2013] Binary ✗

CCFIR [Zhang et al. 2013] Binary ✗

O-CFI [Mohan et al. 2015] Binary ✗

MIP [Niu and Tan 2013] Source code ✗

SW-HW Co-Design [Davi et al. 2014] Source code + CPU features ✗

Windows 10 CFG Source code ✗

LLVM IFCC [Tice et al. 2014] Source code ???

C++-aware CFI various [Tice et al. 2014, Jang et al. 2014,
Akritidis et al. 2008]

Source code ✓✓✓

T-VIP [Gawlik and Holz 2014] Binary ✗

VTint [Zhang et al. 2015] Binary ✗

vfGuard [Prakash et al. 2015] Binary ???

Heuristics-based
detection

various [Pappas et al. 2013, Cheng et al. 2014,
Xia et al. 2012, Zhou et al. 2014]

Binary + CPU features ✗✗✗

Microsoft EMET 5 [Microsoft Corp 2014,
Fratric 2012]

Binary ✗

Code hiding, shuffling,
or rewriting

STIR [Wartell et al. 2012] Binary ✗

G-Free [Onarlioglu et al. 2010] Source code ✗

Readactor [Crane et al. 2015] Source code + CPU features ✗

XnR [Backes et al. 2014] Binary/source code + CPU
features

???

Readactor++ [Crane et al. 2015] Source code + CPU features ✓

Memory safety various [Akritidis et al. 2009, Nagarakatte
et al. 2010, Akritidis et al. 2008, Akritidis
2010, Serebryany et al. 2012, Chen et al. 2015]

Mostly source code ✓✓✓

CPI/CPS [Kuznetsov et al. 2014a] Source code ✓/✗

a. ✓ indicates effective protection and ✗ indicates vulnerability; ??? indicates at least partial protection.

174 Chapter 6 Attacking Dynamic Code

6.7.1 Generic CFI
We first discuss CFI approaches that do not consider C++ semantics for the deriva-
tion of the CFG that should be enforced. We observe that all of them are vulnerable
to COOP.

The basic implementation of the original CFI work by Abadi et al. [2005a] instru-
ments binary code such that indirect calls may only go to address-taken functions
(imprecise CFI). This scheme and a closely related one [Zhang and Sekar 2013] have
recently been shown to be vulnerable to advanced ROP-based attacks [Göktas et al.
2014a, Davi et al. 2014]. Abadi et al. also proposed to combine their basic implemen-
tation with a shadow call stack that prevents call/return mismatches. This extension
effectively mitigates these advanced ROP-based attacks while, as discussed in Sec-
tion 6.6, it does not prevent COOP. The same also applies in general to the recently
proposed Lockdown system [Payer et al. 2015c]. However, besides a shadow call
stack and standard imprecise CFI policies, Lockdown additionally enforces that
across modules only mutually imported/exported functions may be invoked indi-
rectly. Accordingly, a COOP attack would, for instance, be limited to those functions
from kernel32.dll or libc that are actually used by the target application. We remark
that this import/export policy probably cannot generally be applied to C++ virtual
functions without the risk of high rates of false positives. This is because it is not
uncommon for a C++ module to unknowingly access a vtable defined in another
module when dynamically dispatching a virtual function call. In such a case, a vir-
tual function that is neither exported nor imported is legitimately invoked across
module boundaries.

Davi et al. [2014] described a hardware-assisted CFI solution for embedded sys-
tems that incorporates a shadow call stack and a certain set of runtime heuristics.
However, the indirect call policy only validates whether an indirect call targets
a valid function start. As COOP only invokes entire functions, it can bypass this
hardware-based CFI mechanism.

CCFIR [Zhang et al. 2013], a CFI approach for Windows x86-32 binaries, uses
a randomly arranged “springboard” to dispatch all indirect branches within a
code module. On the baseline, CCFIR allows indirect calls and jumps to target all
address-taken locations in a binary and restricts returns to certain call-preceded lo-
cations. One of CCFIR’s core assumptions is that the attackers are unable to “selec-
tively reveal springboard stub addresses of their choice” [Zhang et al. 2013]. Göktaş
et al. recently showed that ROP-based bypasses for CCFIR are possible given an
up-front information leak from the springboard [Göktas et al. 2014a]. In contrast,
COOP breaks CCFIR without violating its assumptions: the springboard technique
is ineffective against COOP as we do not inject code pointers but only vptrs (point-

6.7 Security Assessment of Existing Defenses 175

ers to code pointers). CCFIR, though, also ensures that sensitive WinAPI functions
(e.g., CreateFile() or WinExec()) can only be invoked through constant indirect
branches. However, as examined in Section 6.6.2, this measure does not prevent
dangerous attacks and can probably also be sidestepped in practice. In any case,
COOP can be used in the first stage of an attack to selectively read out the spring-
board.

In Monitor Integrity Protection (MIP) [Niu and Tan 2013], applications are com-
piled such that they are composed of variable-sized chunks: single instructions, ba-
sic blocks, or functions that do not include calls (leaf functions). Indirect branches
are instrumented in such a way that they can only lead to the beginning of chunks.
It is claimed that MIP can “prevent arbitrary code execution” by an attacker who
is able to read/write arbitrary data in an application’s address space but is unable
to directly write to the processor’s registers. Since COOP only invokes legitimate
virtual functions, it will never trigger an alarm in MIP.

Many system modules in Microsoft Windows 10 are compiled with Control
Flow Guard (CFG), a simple form of CFI. In summary, Microsoft CFG ensures that
protected indirect calls may only go to a certain set of targets. This set is specified in
a module’s PE header [Russinovich et al. 2012]. If multiple CFG-enabled modules
reside in a process, their sets are merged. At least all functions contained in a DLL’s
EAT are contained in the set. For C++ modules like mshtml.dll, additionally, all
virtual functions are contained in the set and can thus be invoked from any indirect
call site. Accordingly, Microsoft CFG in its current form does not prevent COOP and
is also unlikely to stop advanced ROP-based attacks like the one by Göktas et al.
[2014a].

Tice et al. [2014] recently described two variants of Forward-Edge CFI for the GCC
and LLVM compiler suites that solely aim at constraining indirect calls and jumps
but not returns. As such, taken for itself, forward-edge CFI does not prevent ROP
in any way. One of the proposed variants is the C++-aware Virtual Table Verification
(VTV) technique for GCC. It tightly restricts the targets of each vcall site according
to the C++ class hierarchy and thus prevents COOP. VTV is available in mainline
GCC since version 4.9.0. However, the variant for LLVM called Indirect Function-Call
Checks (IFCC) “does not depend on the details of C++ or other high-level languages”
[Tice et al. 2014]. Instead, each indirect call site is associated with a set of valid
target functions. A target is valid if (i) it is address taken and (ii) its signature is
compatible with the call site. Tice et al. discuss two definitions for the compatibility
of function signatures for IFCC: (i) all signatures are compatible or (ii) signatures
with the same number of arguments are compatible. We observe that the former
configuration does not prevent COOP, whereas the latter can still allow for powerful
COOP-based attacks in practice, as discussed in Section 6.6.3.

176 Chapter 6 Attacking Dynamic Code

6.7.2 C++-Aware CFI
As discussed in Section 6.6, COOP’s control flow can be reliably prevented when pre-
cise C++ semantics are considered from source code. Accordingly, various source-
code-based CFI solutions exist that prevent COOP, e.g., GCC VTV as described
above, SafeDispatch [Jang et al. 2014], and WIT [Akritidis et al. 2008].

Recently, three C++-aware CFI approaches for legacy binary code were proposed:
T-VIP [Gawlik and Holz 2014], vfGuard [Prakash et al. 2015], and VTint [Zhang et al.
2015]. They follow a similar basic approach:

. Identification of vcall sites and vtables (only vfGuard and VTint) using heuris-
tics and static data-flow analysis

. Instrumentation of vcall sites to restrict the set of allowed vtables

T-VIP ensures at each instrumented vcall site that the vptr points to read-only
memory. Optionally, it also checks if a random entry in the respective vtable points
to read-only memory. Similarly, VTint copies all identified vtables into a new read-
only section and instruments each vcall site to check if the vptr points into that
section. Both effectively prevent attacks based on the injection of fake vtables, but
since a COOP attack only references actual vtables, they do not prevent COOP.
VfGuard instruments vcall sites to check if the vptr points to the beginning of
any known vtable. As discussed in Section 6.6.3, such a policy restricts the set of
available vfgadgets significantly but still cannot reliably prevent COOP. VfGuard
also checks the compatibility of calling conventions and consistency of the this-
ptr at vcall sites, but this does not affect COOP. Nonetheless, we consider vfGuard
to be one of the strongest available binary-only defenses against COOP. VfGuard
significantly constrains attackers, and we expect it to be a reliable defense in at
least some attack scenarios, e.g., for small- to medium-sized x86-32 applications
that are considerably smaller than Internet Explorer.

6.7.3 Heuristics-Based Detection
Microsoft EMET [Microsoft Corp 2014] is probably the most widely deployed exploit
mitigation tool. Among others, it implements different heuristics-based strategies
for the detection of ROP [Fratric 2012]. Additionally, several related heuristics-
based defenses have been proposed that utilize certain debugging features avail-
able in modern x86-64 processors [Pappas et al. 2013, Cheng et al. 2014, Xia et al.
2012]. All of these defenses have recently been shown to be unable to detect more
advanced ROP-based attacks [Carlini and Wagner 2014, Davi et al. 2014, Göktaş

6.7 Security Assessment of Existing Defenses 177

et al. 2014b, Schuster et al. 2014]. Similarly, the HDROP [Zhou et al. 2014] defense
utilizes the performance monitoring counters of modern x86-64 processors to detect
ROP-based attacks. The approach relies on the observation that a processor’s in-
ternal branch prediction typically fails in abnormal ways during the execution of
common code-reuse attacks.

As discussed in Section 6.6.1, such heuristics are unlikely to be practically
applicable to COOP, and we can in fact confirm that our Internet Explorer exploits
are not detected by EMET version 5.

6.7.4 Code Hiding, Shuffling, or Rewriting
STIR [Wartell et al. 2012] is a binary-only defense approach that randomly reorders
basic blocks in an application on each start-up to make the whereabouts of gad-
gets unknown to attackers—even if they have access to the exact same binary.
As discussed in Section 6.6.2, approaches like this do not conceptually affect our
attack, as COOP only uses entire functions as vfgadgets and only knowledge on
the whereabouts of vtables is required. This applies also to the recently proposed
O-CFI approach [Mohan et al. 2015] that combines the STIR concept with coarse-
grained CFI.

G-Free [Onarlioglu et al. 2010] is an extension to the GCC compiler. G-Free
produces x86-32 native code that (largely) does not contain unaligned indirect
branches. Additionally, it aims to prevent attackers from misusing aligned indirect
branches: return addresses on the stack are encrypted/decrypted on a function’s
entry/exit, and a “cookie” mechanism is used to ensure that indirect jump/call in-
structions may only be reached through their respective function’s entry. While
effective even against many advanced ROP-based attacks [Göktas et al. 2014a,
Carlini and Wagner 2014, Davi et al. 2014, Göktaş et al. 2014b, Schuster et al. 2014],
G-Free does not affect COOP.

The Execute-no-Read (XnR) concept [Backes et al. 2014] prevents an applica-
tion’s code pages from being read at runtime in order to hamper so-called JIT-ROP
attacks [Snow et al. 2013]. We note that, depending on the concrete scenario, a cor-
responding JIT-COOP attack could not always be thwarted by such measures, as
an adversary can read out vtables and possibly RTTI metadata (which contains the
literal names of classes) from data sections and apply pattern matching to identify
the addresses of the vtables of interest. XnR is meant to be implemented in hard-
ware as a complementary feature to the execute-disable/NX bit already available in
modern processors.

178 Chapter 6 Attacking Dynamic Code

The Readactor system [Crane et al. 2015] leverages the Extended Page Tables
(EPT) [Intel Corp 2013] feature of modern x86-64 processors to place an applica-
tion’s code in execute-only memory1 at runtime. In Readactor, a C/C++ application is
compiled such that (i) all its actual code pointers are hard-coded inside trampolines
in execute-only memory, (ii) only pointers to those trampolines but no actual code
pointers—including return addresses—are stored in readable memory at runtime,
and (iii) the binary code layout is randomized in a fine-grained manner. Conse-
quently, the whereabouts of all an application’s code—except for trampolines—are
concealed at runtime even from attackers that can read the entire address space
with respect to page permissions. Crane et al. claim that Readactor “provides pro-
tection against all known variants of ROP attacks” [Crane et al. 2015]. However, we
observe that the Readactor concept does not conceptually hinder COOP because
Readactor neither hides vtables in any special way nor randomizes their layouts.
Vptrs also receive no special treatment from Readactor.

Finally, Readactor++ [Crane et al. 2015] is an extension of the Readactor concept
that was specifically designed to tackle COOP and RILC. Readactor++ applies all the
defensive measures of Readactor and also pseudo-randomly changes the structure
layout of vtables (and other function pointer tables) as outlined in Section 6.6.3.
In order to exacerbate attempts at guessing useful vtable entries, Readactor++
also adds so-called “booby trap” entries to randomized vtables that on execution
terminate the protected application. It is argued that a minimal COOP attack, which
requires at least the execution of three vfgadgets from distinct vtables, would be
hindered by Readactor++ with a chance of at least 99.97%. Readactor++’s average
overhead is low, and it can be considered one of the most cost-effective strong
defenses against COOP.

6.7.5 Memory Safety
Systems that provide forms of memory safety for C/C++ applications [Serebryany
et al. 2012, Akritidis et al. 2009, Nagarakatte et al. 2010, Akritidis et al. 2008,
Kuznetsov et al. 2014a, Akritidis 2010, Chen et al. 2015] can constitute strong de-
fenses against control-flow hijacking attacks in general. As our adversary model
explicitly foresees an initial memory corruption and information leak (see Sec-

1. Across different contemporary processor architectures, if memory is executable, then typically
it is implicitly also readable.

6.8 Conclusion 179

tion 6.1.2), we do not explore the defensive strengths of these systems in detail.
Instead, we exemplarily discuss two recent approaches.

Kuznetsov et al. [2014a] proposed Code-Pointer Integrity (CPI) as a low-overhead
control-flow hijacking protection for C/C++. On the baseline, CPI guarantees the
spatial and temporal integrity of code pointers and, recursively, that of pointers to
code pointers. Since C++ applications typically have many code pointers (essentially
each object’s vptr), CPI can impose significant overhead there. As a consequence,
Kuznetsov et al. also proposed Code-Pointer Separation (CPS) as a less expensive vari-
ant of CPI that specifically targets C++. In CPS, sensitive pointers are not protected
recursively, but it is still enforced that “(i) code pointers can only be stored to or
modified in memory by code pointer store instructions, and (ii) code pointers can
only be loaded by code pointer load instructions from memory locations to which
previously a code pointer store instruction stored a value” [Kuznetsov et al. 2014a],
where code pointer load/store instructions are fixed at compile time. Kuznetsov et al.
argue that the protection offered by CPS could be sufficient in practice as it concep-
tually prevents recent advanced ROP-based attacks [Carlini and Wagner 2014, Davi
et al. 2014, Göktaş et al. 2014b]. We observe that CPS does not prevent our attack be-
cause COOP does not require the injection or manipulation of code pointers. In the
presence of CPS, thougn, it is likely hard to invoke library functions not imported by
an application. But we note that almost all applications import critical functions.
The invocation of library functions through an INV-G could also be complicated or
impossible in the presence of CPS. However, this is not a hurdle because, as CPS
does not consider C++ semantics, imported library functions can always easily be
called without taking the detour through an INV-G, as described in Section 6.2.8 in
approach 2.

CPS can straightforwardly be made resilient to COOP by extending the protec-
tion of immediate code pointers to C++ vptrs. In fact, recent implementations of
CPS incorporate this tweak [Kuznetsov et al. 2014b].

6.8 Conclusion
In this chapter, we discussed counterfeit object-oriented programming (COOP),
a novel code-reuse attack technique to bypass almost all CFI solutions and many
other defenses that do not consider object-oriented C++ semantics. We explained
the specifics of object-oriented programming and the technical details behind
COOP. We believe that our results contribute to the ongoing research on designing

180 Chapter 6 Attacking Dynamic Code

practical and secure defenses against control-flow hijacking attacks, a severe threat
that has been around for more than two decades. Our basic insight that higher-
level programming-language-specific semantics need to be taken into account is a
valuable guide for the design and implementation of future defenses. In particular,
our results demand a rethinking of the assessment of defenses that rely solely on
binary code.

7Hardware Control Flow
Integrity
Yier Jin, Dean Sullivan, Orlando Arias, Ahmad-Reza Sadeghi,
Lucas Davi

Control-Flow Integrity (CFI) is a promising and general defense against control-flow
hijacking with formal underpinnings. A key insight from the extensive research
on CFI is that its effectiveness depends on the precision and coverage of a pro-
gram’s Control-Flow Graph (CFG). Since precise CFG generation is highly challeng-
ing and often difficult, many CFI schemes rely on brittle heuristics and imprecise,
coarse-grained CFGs. Furthermore, comprehensive, fine-grained CFI defenses im-
plemented purely in software incur overheads that are unacceptably high.

In this chapter, we first specify a CFI model that captures many known CFI
techniques, including stateless and stateful approaches as well as fine-grained
and coarse-grained CFI policies. We then design and implement a novel hardware-
enhanced CFI. Key to this approach is a set of dedicated CFI instructions that can
losslessly enforce any CFG and diverse CFI policies within our model. Moreover,
we fully support multi-tasking and shared libraries, prevent various forms of code-
reuse attacks, and allow code protected with CFI to interoperate with unprotected
legacy code. Our prototype implementation on the SPARC LEON3 is highly effi-
cient with a performance overhead of 1.75% on average when applied to several
SPECInt2006 benchmarks and 0.5% when applied to EEMBC’s CoreMark bench-
mark.

7.1 Introduction
Control-flow integrity has been proposed as a general defense technique against
control-flow hijacking attacks [Abadi et al. 2005a, Abadi et al. 2009]. In particular,
it defends against modern code-reuse attacks, such as Return-Oriented Program-
ming (ROP) [Roemer et al. 2012]. These attacks are prevalent, Turing-complete,

182 Chapter 7 Hardware Control Flow Integrity

and are repeatedly leveraged to compromise commonly used applications such
as web browsers [Marschalek 2014] and document viewers [jduck 2010]. CFI miti-
gates these attacks by ensuring that an application follows a legitimate control-flow
path. The legitimate paths are manifested in the application’s control-flow graph
derived during an offline static analysis phase. Whenever an attacker attempts to
subvert the execution to follow an illegal control-flow path, CFI detects this ma-
licious control flow and immediately terminates the process. In addition, CFI is
not vulnerable to memory disclosure and side channel attacks [Snow et al. 2013,
Bittau et al. 2014, Seibert et al. 2014], and allows verifiable security [Abadi et al.
2005b].

A number of CFI schemes have been proposed that aim at introducing practical
CFI enforcement incurring almost no overhead [Zhang and Sekar 2013, Zhang et al.
2013, Pappas et al. 2013, Cheng et al. 2014]. On the other hand, these schemes
enforce coarse-grained CFI policies that an attacker can bypass [Göktas et al. 2014a,
Davi et al. 2014, Carlini and Wagner 2014, Göktaş et al. 2014b, Schuster et al. 2014].
In parallel to the development of practical CFI schemes, a number of defenses
have been proposed that focus on a CFI subclass, i.e., only protecting indirect
virtual calls to C++ virtual methods [Gawlik and Holz 2014, Zhang et al. 2015,
Prakash et al. 2015]. However, Schuster et al. [2015] recently demonstrated that
modern programs offer a large number of valid virtual methods. Hence, an attacker
can exploit the available virtual methods to launch a code-reuse attack. Further,
Google recently released a CFI compiler extension for virtual calls [Tice et al. 2014]
that resists the latest attacks on virtual method exploitation [Schuster et al. 2015],
but can be circumvented by means of stack attacks [Liebchen et al. 2015]. Last,
Carlini et al. [2015e] question the overall benefit of CFI, since even fine-grained
CFI protection still offers a large code base of valid CFG nodes and edges that an
attacker can exploit.

The continued success of code-reuse attacks has several reasons. First, many
CFI defenses evaluate their effectiveness based on existing exploits, which naturally
do not align to any given CFI policy. These exploits are typically more sophisticated
and can be rewritten to align to the CFI-enforced CFG [Carlini et al. 2015e, Liebchen
et al. 2015, Carlini and Wagner 2014, Davi et al. 2014, Göktas et al. 2014a]. Second,
CFI defenses leverage unreliable metrics, such as gadget reduction, gadget length,
or average indirect branch reduction (AIR), to measure CFI precision [Zhang and
Sekar 2013, Kayaalp et al. 2012, Niu and Tan 2014a, Mohan et al. 2015, Arias et al.
2015, Tice et al. 2014]. These metrics have frequently over-estimated the provided
security and have been shown to be bypassable [Carlini et al. 2015e, Göktas et al.
2014a, Davi et al. 2014, Carlini and Wagner 2014].

7.1 Introduction 183

In this chapter, we first address the mismatch between a sound CFI policy and
various insecure implementations by revisiting CFI to provide a comprehensive
model covering many CFI policies proposed today. We then develop a precise,
stateful CFI policy that enables us to address the granularity of a given CFI scheme
and make informed design decisions regarding protection and cost of coverage. We
then introduce a general-purpose, hardware-enhanced CFI platform that scales to
the coverage provided by any CFG, enables highly efficient enforcement of diverse
CFI policies, and losslessly enforces any provided CFG.

We also evaluate runtime attacks and CFI vulnerabilities using hardware-
enhanced CFI by first evaluating its effectiveness based on the most current code-
reuse attacks [Carlini et al. 2015e, Schuster et al. 2015, Carlini and Wagner 2014,
Göktas et al. 2014a, Davi et al. 2014, Checkoway et al. 2010, Tran et al. 2011,
Liebchen et al. 2015]. These attacks are able to perform malicious actions while
adhering to the restrictions imposed by a CFI-protected system. We additionally
address attacks targeting both C and C++ applications as well as JIT-compiled
programs. Our evaluation focuses on fundamental attacks that manipulate or oth-
erwise violate our CFI policy, assuming we are provided with a precise CFG.

We take a hardware-based approach for several reasons. First, as we will show,
CFI in hardware along with dedicated CFI instructions scales for any CFG and var-
ious CFI policies from very coarse-grained to highly precise control-flow checks.
Second, a hardware-based approach allows us to instantiate a CFI processor mod-
ule that highly improves the efficiency of CFI while offering strong, precise CFI
protection. Third, hardware-based CFI enables precise stateful CFI policy enforce-
ment. Fourth, a CFI processor module can be associated to an on-chip, dedicated
memory that securely isolates CFI data (e.g., CFG information).

We conducted a performance evaluation of our approach using SPEC2006
benchmarks and CoreMark micro-benchmarks on the SPARC LEON3 processor
[Gaisler Research 2017]. Our system is highly efficient, incurring almost no per-
formance overhead; on average only 1.75% for SPEC and 0.5% for CoreMark. Our
hardware-enhanced CFI area overhead is negligible and can be clocked up to 3 GHz
using a 32/28 nm process.

In summary, our core contributions of this chapter are as follows.

CFI model. We revisit CFI to reason about the protection offered by various
CFI implementations and policies that have been presented thus far, and
present precise, stateful CFI.

Scalable, precise CFI enforcement. We present a design that scales to any CFG
provided and losslessly enforces the provided CFG.

184 Chapter 7 Hardware Control Flow Integrity

Comprehensive prevention. Our CFI hardware platform prevents many known
code-reuse attacks: traditional ROP [Shacham 2007], ROP without returns
[Checkoway et al. 2010, Davi et al. 2014, Carlini and Wagner 2014] dy-
namic ROP [Snow et al. 2013], JOP [Checkoway et al. 2010], and full-function
reuse [Schuster et al. 2015, Tran et al. 2011].

CFI hardware platform. We present the design, implementation, and evalua-
tion of a scalable and highly efficient hardware-enhanced CFI implementa-
tion for the open source SPARC LEON3 hardware platform. Our hardware
platform features new CFI instructions that support precise enforcement at
diverse CFG granularities.

We stress that the goal of this chapter is the introduction and design of a hard-
ware CFI framework that can enforce CFI policies of different precision, including
coarse- and fine-grained variants. Our work is explicitly not about sophisticated
static analysis of source code or advanced binary analysis to extract fine-grained
control-flow graphs. Generation of CFGs for real-world software remains an open
research problem. However, issues in CFG generation are orthogonal to the chal-
lenges we address: making CFI enforcement efficient by adding dedicated instruc-
tions and supporting hardware.

7.2 Threat Model and Assumptions
Our threat model follows the traditional CFI threat model. We assume an adversary
who has arbitrary read and write access to data memory, and read access to code
memory. As a consequence, the CFI threat model tolerates memory disclosure
attacks, i.e., it allows information leakage but still protects applications against
memory corruption attacks. The attacker can be either a local or remote attacker.
However, the attacker only has access to user applications, as kernel exploits can
undermine any security mechanism implemented for user-space applications.

CFI aims at defending against runtime exploits that violate the integrity of the
program’s control flow to perform malicious actions. That said, we target benign
applications that an attacker attempts to compromise, but do not protect against
applications that are inherently malicious. This includes cases where the attacker
modifies the binary either in disk or memory. Further, we focus on code-reuse
attacks but not code injection attacks, whichtoday are prevented by means of Data
Execution Prevention (DEP) [Andersen and Abella 2004].

It is important to note that CFI does not defend against the so-called non-
control-data attacks [Chen et al. 2005]. These attacks do not modify any code

7.3 Requirements 185

pointer but non-control data, such as an authentication variable. Recently proposed
hybrid attacks, called Control-Flow Bending (CFB), include both exploitation of
non-control data and control data [Carlini et al. 2015e]. Our threat model focuses
on the control-data part of the attack.

Return-oriented programming is a generic attack instantiation of code-reuse at-
tacks: it combines short instruction sequences (gadgets) from various functions
to generate a new malicious program [Roemer et al. 2012]. Typically, these se-
quences end with a return instruction to transfer control to the subsequent se-
quence [Shacham 2007]. That said, these attacks exploit backward edges (returns) of
a program’s control-flow graph. However, an attacker can also leverage sequences
that terminate with an indirect call or jump instruction [Checkoway et al. 2010],
that is, code-reuse attacks that exploit forward edges in the CFG. Sometimes these at-
tacks are referred to as Jump-Oriented Programming (JOP) [Checkoway et al. 2010].
Both attack variants, ROP and JOP, have been shown to be Turing-complete, mean-
ing that the identified code sequences form a Turing-complete language. We aim
at defending against these attacks based on control-flow integrity in hardware.

Another code-reuse attack variant is a function-reuse attack that only invokes a
chain of library functions [Nergal 2001, Schuster et al. 2015, Tran et al. 2011]. Exist-
ing CFI schemes rarely provide protection against these attacks. In fact, preventing
these attacks is highly challenging: Consider a program that legitimately invokes
a critical function, e.g., open(), via an indirect call. As a consequence, the critical
function is considered a legitimate control-flow target in CFI. Protection of these
code-reuse attacks are within the scope of our threat model.

7.3 Requirements
The requirements that satisfy the goals of a lossless, scalable, and highly efficient
hardware-enhanced CFI framework are given below.

Precision. We must losslessly enforce any CFG with which we are provided. In
general, it may be impossible to resolve a precise CFG either because source
code is unavailable or the analysis is imprecise. In any case we must strictly
enforce what we are given.

Scalability. The effectiveness of any CFI approach depends on the CFG pre-
cision. Hence, we require that our CFI scheme scales to any level of CFG
precision. Given a CFG, we should be capable of enforcing precise CFI. Our
system should also be capable of enforcing coarse-grained CFI if no precise
CFG is available.

186 Chapter 7 Hardware Control Flow Integrity

Efficiency. One of the main limitations of software-based CFI approaches are
their significant performance overhead. As a consequence, we require negli-
gible performance overhead for our CFI scheme.

Stateful. We require stateful CFI since stateless CFI is vulnerable to stitch-
ing gadgets [Göktas et al. 2014a, Davi et al. 2014, Carlini and Wagner
2014, Göktaş et al. 2014b, Schuster et al. 2014] and control-flow bending
attacks [Carlini et al. 2015e].

Compatibility. A CFI scheme needs to co-exist with legacy programs that are
not instrumented with CFI.

Security. Based on a precise CFG, we require the CFI scheme to cover all of the
existing code-reuse attacks including traditional return-oriented program-
ming [Shacham 2007], jump-oriented programming [Checkoway et al. 2010],
just-in-time code-reuse attacks [Snow et al. 2013], and whole
function-reuse attacks [Schuster et al. 2015].

7.4 Modeling CFI
It has been more than a decade since Abadi et al. [2005a] introduced the idea
of control-flow integrity. Since then, various CFI implementations have been pro-
posed, each with different performance and security metrics. We have noticed that
there is a division in the community regarding what encompasses a “fine-grained”
or “coarse-grained” policy and the kind of security each provides. In the remainder
of this section, we present an abstract description of CFI and then use it to state
the requirements of a theoretical CFI policy that can provide as much protection
as possible. We start by defining a control-flow graph. Subsequently, we extend this
mechanism to include the notion of execution state in a process. Using these def-
initions, we develop a CFI policy that can yield the maximum protection possible
under the framework of what is computable and decidable. Our definitions can be
shown to be equivalent to those presented in Abadi et al. [2005b], while presenting
extensions to incorporate missing elements when needed.

7.4.1 Control-Flow Graph
To introduce our definition of a control-flow graph, we need to define its com-
ponents. Let C be the set of control-flow instructions and I be the set of non-
control-flow instructions. Then we say that a node Ni consists of a sequential set
of non-control-flow instructions. That is, Ni = {I1, I2, I3, . . . , Iz}, I1, . . . ,z ∈ I. An edge
Ej is given by an instruction IC ∈ C, which transfers control (→) to a new node Ni

7.4 Modeling CFI 187

(e.g., a call to a new function or jump to a case statement within the same function)
or to the same node Ni−1 (e.g., a for loop). That is, Ej : Ni−1 → (Ni ∨ Ni−1). Using
these definitions, a precise control-flow graph for an arbitrary program P is char-
acterized by the set of 2-tuples CFG = {CFG(0, 0), CFG(0, 1), . . . , CFG(m,n)}, where
CFG(i ,j) = (Ni , Ej). We should note that not all combinations (i , j) need to exist
in a CFG. Furthermore, if a program has no dead code (unreachable code), it can
be shown that the CFG is connected.

7.4.2 Control-Flow Integrity Policy
A control flow integrity policy must ensure that a program follows the intended
execution path given by its CFG. Accordingly, a CFI policy defines a model for pro-
gram execution such that whenever a control-flow instruction executes, it targets a
valid destination in its CFG. An ideal control-flow graph will provide all valid target
destinations for an arbitrary program.

CFI policies are therefore constrained to enforcing all possible benign paths in
an arbitrary CFG. Any CFI policy can be evaluated by its ability to completely enforce
the intended execution path of a program or the extent to which it completely
reflects a program’s CFG. Therefore, a CFI policy’s precision is a fundamental
metric of its coverage and/or protection. The CFI policy must losslessly enforce
only valid CFG paths. The precision with which a CFI policy completely reflects a
CFG is given by granularity. The granularity G of a CFI policy K is determined by
how closely it reflects the precise CFG of a process P .

7.4.2.1 Precise Static CFI
We consider the granularity G of a CFI policy to be either precise or coarse. Consider
the portion of a CFG for a process shown in Figure 7.1. The set of 2-tuples CFG =
{(N1, E1), (N2, E3), (N4, E5), (N5, E2), (N5, E4), (N5, E6)} represent the static CFG.
A precise static CFI approach contains a representation and enforcement of only
these node-edge 2-tuples.

Definition 7.1 Precise static CFI. The precise static CFI policy K for a process P is given by strict
enforcement of its CFG, that is, K : CFIP → CFG.

Figure 7.1 reflects a portion of a static CFG for a particular process, where shaded
areas represent functions. Edges E1, E3, and E5 represent function calls and edges
E2, E4, and E6 function returns. Although the CFG in Figure 7.1 depicts control
flow for the process, there is insufficient information to determine the proper
behavior of a return path, or backward edge. Although the CFG depicts the path
N4 → N5 → N3 through edges E5 and E4 as viable, it is logically incorrect, as the

188 Chapter 7 Hardware Control Flow Integrity

�1

�4 �6

�2

�5

�3

E1

E5 E6

E4

E2 E3

Figure 7.1 Portion of a CFG.

return target should be N6. As such, a CFI policy that enforces this CFG without any
extra information is inherently incomplete, as backward edges are loosely handled.
This is exactly the point of weakness that has been exploited in recent CFI [Göktas
et al. 2014a, Davi et al. 2014, Carlini and Wagner 2014, Göktaş et al. 2014b, Schuster
et al. 2014] and control-flow bending attacks [Carlini et al. 2015e].

7.4.2.2 Precise, Stateful CFI
Given this limitation of the CFG, it is crucial to introduce the concept of state and
add it to the CFG.

Definition 7.2 CFG state. A CFG state is a set Sk = {E0, E1, E2, . . . , Ep} of valid non-jump forward
edges on a CFG for a process P .

We do not include jump edges in our CFG state definition because there is no
state to be recovered by the transition, i.e., they do not store a return address on
the stack. Furthermore, we allow backward edges to remove elements from the
state set in an orderly fashion. We combine this concept of state with the CFG
to make a precise, stateful CFG. We define a stateful CFG to be a set of 3-tuples,
CFGS = {CFG(0, 0, 0), CFG(0, 1, 1), . . . CFG(m,n,o)}, where CFG(i ,j ,k) = (Ni , Ej , Sk).

Figure 7.2 reflects the CFG with states added. Here, backward-edge paths are
only taken if the proper state is preserved. As such, execution path N4 → N5 → N3

through edges E5 and E4 is now illegal because the state is not correctly preserved in
execution, i.e., S3 = S2 in the stateful CFG. We call a CFI policy capable of enforcing
a stateful CFG a precise, stateful CFI policy.

7.4 Modeling CFI 189

Definition 7.3 Precise, stateful CFI. The precise, stateful CFI policy K for a process P is given by
strict enforcement of its stateful CFGS, that is, K : CFIP → CFGS.

7.4.2.3 Coarse-Grained CFI
A coarse-grained CFI policy is any policy that does not meet the requirements of
precise, stateful CFI. Consider again the execution path N4 → N5 → N3 through
edges E5 and E4 shown in Figure 7.2. This execution path is illegal as it does not
maintain the execution state imposed by the stateful CFG. As such, a CFI policy that
allows for this execution path to exist contains erroneous edges. We define E to be
the set of erroneous edges included in the CFI policy enforcement and consider
this policy to be coarse-grained.

Definition 7.4 Coarse-grained CFI. The coarse-grained CFI policy K for a process P is given by
K : CFIP → CFG′ = CFGs ∪ E, where E is the set of unintended edges.

Corollary 7.1 Granularity of a policy. The granularity G of the policy K is said to increase as |E|
increases.

At this point, it is noteworthy to mention that all CFI schemes known to the
authors add some factor E. Even the original CFI implementation for x86 considers
two destinations as equivalent when the CFG contains edges from the same set of
sources [Abadi et al. 2009].

�1

�4 �6

�2

�5

�3

E1, �1

E5, �3 E6, �3

E4, �2

E2, �1 E3, �2

Figure 7.2 Portion of a stateful CFG.

190 Chapter 7 Hardware Control Flow Integrity

7.5 Constructing a Precise Stateful CFI Policy
We use Figure 7.2 throughout this section to define both a precise forward-edge
and backward-edge stateful CFI policy.

7.5.1 Precise Forward-Edge Stateful CFI Considerations
A precise forward-edge stateful CFI policy must be capable of strictly enforcing the
intended execution path of a process according to its stateful CFG. That is, it must
reflect forward-edge transitions and it must not introduce granularity by allowing
erroneous edges in an execution path.

Consider the stateful CFG depicted in Figure 7.2. We define ≯(Ni) to be the set of
valid targets {Ni+1, Ni+2, . . .} for node Ni. For example, ≯(N5) = {N2, N3, N6}. Since
this node has multiple branch targets (| ≯(N5)| ≥ 2), we call it a divergent node. If the
edges leaving a divergent node are caused by indirect jumps, such as those in a jump
table, or an indirect call targeting multiple functions, the stateful CFG is unable
to fully predict the behavior of the branches as this requires taking into account
user input. Full computation of a process behavior under these circumstances
reduces to the halting problem. This results in a lower bound in the coarseness
of a forward-edge stateful CFI policy. For divergent nodes, the most precision that
can be obtained in a forward-edge CFI policy is by checking the branch target of a
node against the members of its ≯-function.

Consider again the CFG depicted in Figure 7.2. We define �(Ni) to be the set
of valid nodes {Ni−1, Ni−2, . . .} that can target node Ni. For example, �(N5) =
{N1, N2, N4}. Since this node has multiple branch sources (| �(N5)| ≥ 2), we call it
a convergent node. Function entries that are targeted from multiple indirect call
instructions exhibit this behavior. A stateful CFG must then be able to encode
transition information in such a way that the source of the transition can be differ-
entiated and validated. For example, the CFI policy must reflect that N5 is targeted
by N1 along edge E1, as opposed to N4 along edge E5. Failure to do so results in a
coarse-grained CFI policy.

7.5.2 Constructing a Precise Forward-Edge Stateful CFI Policy
Eliminating the granularity due to divergent and convergent nodes is therefore
necessary to ensure that a forward-edge CFI policy is precise. We separate our
precise forward-edge stateful CFI policy into two categories: (1) indirect jumps and
(2) indirect calls and indirect tail call jumps.

7.5 Constructing a Precise Stateful CFI Policy 191

7.5.2.1 Indirect Jumps
An indirect jump is constrained to targeting a valid destination, as given by the
stateful CFG. In compiled code, indirect jumps, with the exception of indirect tail
call jumps, will always target constructs within function bounds. We require that
indirect jumps may only target a member of the source node’s ≯-function as given
by the stateful CFG.

7.5.2.2 Indirect Calls and Indirect Tail Call Jumps
Indirect calls and tail call jumps are constrained to targeting valid destinations,
as given by the stateful CFG. In portable, standards-compliant code, these destina-
tions are function entries. We require that indirect calls and tail call jumps may only
target a member of the source node’s ≯-function as given by the stateful CFG. Fur-
thermore, any additional state information about this transition must be recorded
by the policy.

7.5.3 Precise Backward-Edge Stateful CFI Considerations
A precise backward-edge CFI policy must be capable of exactly enforcing the in-
tended execution path of a process according to its stateful CFG. It must not intro-
duce granularity by allowing erroneous edges in an execution path.

Consider the ≯-function for node N5 in Figure 7.2, where ≯(N5) = {N2, N3, N6}
and the corresponding �-function �(N5) = {N1, N2, N4}. In the case that node N5

is the epilogue of a function, the precise stateful CFI policy must be able to use
state information to identify the valid return path. It must be able to utilize state
information given by the forward-edge transition from a member of �(N5) to vali-
date the backward-edge transition into a member of ≯(N5). For example, if the path
is given by N4 → N5, then the state information provided is S3. Only a member of
≯(N5) with state S3 may be targeted, in this case N6.

7.5.4 Constructing a Precise Backward-Edge Stateful CFI Policy
Eliminating erroneous backward edges caused by divergent nodes in a CFG is
therefore necessary for any precise backward-edge stateful CFI policy. We can en-
force this policy by accurately depicting the execution path based on a program’s
forward-edge behavior. Resolving a valid transition for a backward edge is only a
matter of restoring to the previous state in the execution path. More precisely, a
precise backward-edge stateful CFI policy must only allow returns to the most re-
cent forward-edge transition. As such, a precise backward-edge stateful CFI policy
maintains a representation of these transitions.

192 Chapter 7 Hardware Control Flow Integrity

7.5.4.1 Return Instructions
Return instructions are constrained to follow only the edges with a matching state
as described in the stateful CFG, i.e., the code location following the call instruction
that resulted in the execution of the returning function. For example, in Figure 7.2
the CFI policy must enforce the backward edge E6 if node N5 was accessed using
the forward edge E5, as this maintains the state S3.

7.6 Hardware-Enhanced CFI: Design and Implementation

7.6.1 Overview
To restrain the execution of a program to its stateful CFG, a precise stateful CFI
policy must enforce the policies outlined in Sections 7.5.2 and 7.5.4. However, a
general challenge in designing a system capable of enforcing a precise, stateful
CFI policy is how to encode and record the backward- and forward-edge state of a
process and how to ensure efficient enforcement.

To solve these problems, we extend the instruction set of an architecure and
add dedicated hardware. The Instruction Set Architecture (ISA) extensions enable
dynamic creation of a stateful CFG, which in turn allows us to encode, record, and
enforce precise, stateful CFI. The execution-path behavior of the program is en-
coded in our ISA extensions, where dedicated hardware is instructed to validate
the forward- and backward-edge state of the program. In particular, we track both
forward and backward edges by means of CFI instructions each processing a la-
bel: cfiins lbl. Forward-edge state is encoded by a CFI instruction, where the
label (lbl) is a valid target determined by the CFG and recorded in a label state
register. Backward-edge state is encoded by the execution path’s forward-edge be-
havior as an cfiins lbl, where the label (lbl) is recorded in a label state stack.

A Label State Stack (LSS) is used to record backward edges to tightly couple
caller/callee pairs and ensure only the most recently executed forward edge is
returned to. A Label State Register (LSR) is used to record forward edges because
there are inherent program semantics that prevent it from being coupled with the
label state stack, such as fall-through in a case statement (see Section 7.6.4). We
enforce precise, stateful CFI using a simple state machine supervising execution. If
a violation of the stateful CFI policy is detected, a fault is triggered, resulting in the
termination of the process.

The ensuing subsections describe the semantics of the ISA extensions and their
interaction with the hardware subsystem. Figure 7.3 illustrates a stateful CFG for
a snippet of code and accompanies Figure 7.4, which depicts the code snippet
beginning at a function entry.

7.6 Hardware-Enhanced CFI: Design and Implementation 193

�1

�6 �7

�2

�5

�3 �4

E2, �1 E3, �1 E7, �2E5, �2

E4

E6

Figure 7.3 Stateful control-flow graph.

fn_a:
cfichk A
...

cfibr A1
cfiprc B
call *reg
cfiret A1
...

cfiprj C
jmp *reg
...

cfichk C
...

cfichk C
...

cfichk C
...

cfibr A2
cfiprc D
call *reg
cfiret A2
...

ret

A

...

...

...

...

...

B

A1
...
...
...
...

B

...

...

...

...

...

C

...

...

...

...

...

D

A2
...
...
...
...

D

A2
...
...
...
...

D

...

...

...

...

...

LSR

Compare chk lbl with LSR

Compare chk lbl with LSRCompare chk lbl with LSR

Push lbl A1 to top of LSS
Store lbl B in LSR

Pop lbl from LSS and compare

Store lbl C in LSR

Compare chk lbl with LSR

Push lbl A2 to top of LSS
Store lbl D in LSR

Pop lbl from LSS and compare

LSS

fn_b:
cfichk B
...
...
...

ret

fn_q:
cfichk Q
insn
...
...
...

ret

_tr_a_q:
cfichk D
jmp fnD + 4

①

①

②

②

③

③

④

④

⑤

⑤

⑥

⑥

⑦

⑦

Figure 7.4 Stateful dynamic control-flow graph creation.

7.6.2 CFI Instruction Semantics and Instrumentation
Alongside Figure 7.3, we use Figure 7.4 as an example to highlight the stateful
CFI instruction semantics and their interaction with the LSR and LSS. In the code
snippet, the process begins execution at the prologue of fn_a, labeled ©1 . Control

194 Chapter 7 Hardware Control Flow Integrity

Table 7.1 Additions to the Instruction Set Architecture

Instruction Syntax Semantics

cfibr cfibr lbl Push lbl to top of LSS, flagging a call site as
currently active. Unique cfibr lbl issued per
call.

cfiret cfiret lbl Pop and compare lbl with label at the top of the
LSS (returns only). Must be issued on valid return
sites.

cfiprj cfiprj lbl Store lbl in LSR, flagging intended jump target
for subsequent check. Must precede indirect
jump instruction.

cfiprc cfiprc lbl Store lbl in LSR, flagging intended call target for
subsequent check. Must precede call instructions
and indirect tail call jump instructions.

cfichk cfichk lbl Compare lbl with value stored in LSR. A
mismatch results in a control-flow violation,
triggering a fault. Must be issued in targets of
indirect jumps or function entries.

flow is transferred to fn_b along ©2 and returns to fn_a along ©3 . An indirect jump
into a jump table is then made in fn_a along ©4 . Control flow is then transferred to
fn_q through a trampoline along ©5 and ©6 , which returns to fn_a through ©7 . Aside
from the trampoline, the execution path is one that may be normally encountered
in an arbitrary program.

Both forward and backward edges on a stateful CFG must be checked by the CFI
policy during code execution. To aid this process while reducing execution over-
head, we introduce five instructions extending the ISA. Table 7.1 lists our newly
added instructions. Integral to the functionality of the system are the placement
and semantics of the CFI instructions, as these aid in the construction and encod-
ing of the stateful CFG.

cfibr Instruction. The cfibr instruction is issued before every call. Predicated
with a label, the instruction pushes its label to the top of the LSS, thereby flagging
the call site as active and adding a new state in execution to the stateful CFG.
For instance, in Figure 7.4, the cfibr instructions in function fn_a push their
accompanying labels onto the LSS. This is illustrated prior to calling fn_b, where
cfibr A1 pushes the label A1 onto the stack. In the program’s CFG shown in
Figure 7.3, this is equivalent to encoding state S1. On any call, a new label is added

7.6 Hardware-Enhanced CFI: Design and Implementation 195

into the LSS, flagging a new call site as active and setting the new execution state.
For a recursive function, if the last pushed label matches the label of the currently
executing cfibr, a per label counter is incremented instead of pushing a new label
into the LSS. This aids with reducing hardware overhead in the LSS memory.

cfiret Instruction. The cfiret instruction is issued after every call site and is
predicated with a label. This label matches the label given by the cfibr preced-
ing the indirect call instruction. In Figure 7.4, the call to fn_b is instrumented with
a cfibr A1/cfiret A1, which encodes state S1 in Figure 7.3. When a cfiret in-
struction is executed, the accompanying label is checked against the value on the
top of the LSS. This evaluates the backward edge of the function, ensuring that the
state of execution has been maintained during the return.

Instrumenting each instruction after every call site with a unique label elim-
inates granularity by removing erroneous edges E. For instance, the state S2 in
Figure 7.3 is not a valid state for N5, or equivalently, cfiret A2 is not a valid re-
turn target for fn_b. Furthermore, the hardware CFI subsystem enforces that a
backward edge must target a cfiret instruction. Our design allows us to limit the
number of return targets to only the last active call site. After a return target label
has been validated, it is popped from the top of the LSS.

The functions setjmp() and longjmp() are cases using non-local gotos and
would raise a false positive if instrumented using cfibr lbl/cfiret lbl instruc-
tion pairs. We did not include specific support for these functions; however, we
could easily design two separate CFI instructions and simply introduce a new CFI
register. One of these instructions would store the current LSS pointer into the
newly added CFI register. This instruction would be issued as part of the setjmp()
function. During execution of the longjmp() instruction, the register would be
written to the LSS pointer using the other instruction, thus unwinding the LSS.

cfiprc and cfiprj Instructions. The cfiprc and cfiprj instructions are issued
before any call or indirect jump instruction, including tail call jumps. The instruc-
tion is predicated with a label representing the valid branch target. This label is
stored in the LSR and subsequently checked after branching to a cfichk instruc-
tion. This ensures that only valid members of the node’s ≯(Ni) can be targeted.
Only valid targets as determined by the CFG are encoded with matching labels.
Following the example in Figure 7.4, prior to calling function fn_b, the cfiprc B

instruction stores label B in the LSR. A check is performed once the branch exe-
cutes and reaches the cfichk B instruction. The jump table in fn_a is validated in
a similar fashion, with the cfiprj C saving the label in the LSR and subsequent

196 Chapter 7 Hardware Control Flow Integrity

jump targets containing the corresponding cfichk C instruction. A mismatch in
labels or the presence of any instruction other than cfichk results in a violation of
control flow, and a fault is triggered.

cfichk Instruction. The cfichk instruction is issued at every function entry or
indirect jump target. Predicated with a label, it checks the value stored in the
LSR and performs a comparison with its predicate. This validates forward edges,
which are restricted to targeting cfichk instructions. For instance, in Figure 7.4,
when function fn_a calls fn_b, its forward-edge state is encoded as label B and
captured by the LSR. The cfichk B encoding maps fn_b as a valid target for N1,
where ≯(N1) = N5. Upon executing the cfichk B instruction, its label is matched
against the current label stored in the LSR. Subsequent cfichk instructions are
similarly handled.

Trampolines. A challenge with cfiprc and cfichk instructions is differenti-
ating edges in divergent nodes that point to a convergent node. Consider the
case where two divergent nodes resulting from indirect calls Na and Nb with
different ≯-functions target one common converging node Nc. That is to say,
Nc ∈ ≯(Na) ∩ ≯(Nb) and ≯(Na) = ≯(Nb). Instrumenting code alone with matching
labels incfiprc/cfichk to verify the edge would necessarily require instrumenting
all target nodes in ≯(Na) ∪ ≯(Nb) to share the same label. This results in breaking
the inequality between both ≯-functions, effectively introducing erroneous edges
in the CFG and therefore granularity. To preserve precision in the stateful CFG,
trampolines are added to serve as unique bridges between these converging edges.
Trampolines are instrumented with a cfichk instruction and a direct jump into
the target function’s body, bypassing the function’s cfichk instruction. This in-
strumentation is illustrated in Figure 7.4, where function fn_q is assumed to be
the target of multiple indirect calls. A trampoline _tr_a_q is added to serve as the
indirect call target, thus precisely validating the function call.

7.6.3 Runtime Environment
A modified runtime envinronment is needed to support both CFI-instrumented and
non-CFI-instrumented software. As such, a mechanism is needed to track all CFI-
instrumented processes and inform the hardware. Figure 7.5 shows a high-level
overview of the software stack.

As the figure illustrates, the operating system kernel is capable of handling
both CFI and non-CFI processes. This is accomplished by modifying the process
control block in the operating system kernel to track CFI processes and signal

7.6 Hardware-Enhanced CFI: Design and Implementation 197

LSS
LSR

CFI
unit

CFI-aware CPU

Operating system

CFI
loader

Legacy
loader

CFI
program

CFI
compiler

Developer Legacy
program

Figure 7.5 Software stack.

the underlying hardware when a CFI process is scheduled. A custom CFI loader is
added and utilized by CFI-instrumented software, which utilizes the kernel’s syscall
interface to activate CFI protection for the software in question.

7.6.4 CFI Hardware Infrastructure
As depicted in Figure 7.4, when the CFI-instrumented program executes, the newly
added instructions control read/write operations on the LSR and LSS. However, to
check that the CFI semantics are being precisely followed, we must supervise their
execution. We propose a CFI finite-state machine (FSM) that supervises execution
using the CFI instructions as input.

The primary design requirement for our dedicated CFI hardware infrastructure
is to losslessly enforce any CFG with which we are provided and to efficiently enforce
diverse CFI policies. Our platform does not constrict execution to a particular CFG
or CFI policy. Instead, we propose a scalable, transparent subsystem capable of
enforcing various CFG granularities, from precise to coarse. In this way, the vendor
may choose the level of protection as determined by the security requirements of
the application. Our hardware performs the necessary checks regardless of CFG
coverage. The hardware will build a stateful CFG dynamically and enforce it based
on the information provided during execution. It does so by recording the valid
members for forward edges on the label state register and the valid backward edges
on the label state stack.

It is necessary to maintain an LSS to tightly couple caller/callee pairs in order
to ensure only the most recently executed forward edge is returned to. The LSR
records forward edges separate from the label state stack to handle false positives.

198 Chapter 7 Hardware Control Flow Integrity

For example, consider the jump table instrumented with precise, stateful CFI
instructions in Figure 7.4, where the indirect jump stores its label C on the top
of the label state stack. Upon reaching a valid cfichk C instruction, the label at
the top of the LSS would be popped and matched. However, if fall-through were to
occur, the next cfichk C instruction executed would similarly pop the label stored
on the top of the LSS to be checked. This would of course trigger an error in our
system, as the labels being checked would not match. It is therefore necessary to
maintain separate forward- and backward-edge label state storage elements.

Label State Register. The LSR is a dedicated n-bit register accessible only by
cfiprc/j and cfichk instructions. A cfiprc/j lbl triggers a write to the LSR.
A cfichk lbl triggers a read from the LSR. The instruction label encodes valid tar-
gets as determined by the CFG for forward edges. Depicted in Figure 7.3, the valid
forward-edge members are ≯(N1) = N5, ≯(N2) = N3, ≯(N3) = N6, and ≯(N6) = N7.
These correspond to transitions ©2 , ©4 , ©5 , and ©6 , respectively, in Figure 7.4.

Label State Stack. The LSS is a dedicated n × m last-in-first-out buffer accessi-
ble only by cfibr and cfiret instructions. A cfibr lbl pushes the label to
the top of the LSS. A cfiret lbl pops the label from the top of the LSS. The
cfibr lbl/cfiret lbl pair encodes and checks stateful backward-edge targets.
Backward edges are restricted to targeting valid members of the ≯(Ni) function
based on the state obtained from a member of the �(Nj) function. Depicted in
Figure 7.3, these states are S1 and S2. These correspond to transitions ©3 and ©7 ,
respectively, in Figure 7.4. The depth of the LSS should be chosen to limit the
occurence of overflowing the LSS when encountering nested functions. If an LSS
overflow is detected, the contents may be written to a protected region of memory.

CFI Finite-State Machine. The CFI finite-state machine (FSM) is shown in Figure 7.6
and executes in parallel to the instruction commit stage of the processor. Placement
in the pipeline at the commit stage ensures that the FSM follows the precise CPU
state, i.e., all earlier exceptions/interrupts have been handled before performing
CFI operations. Each transition in the FSM requires a single cycle, so the FSM state
is synchronized with in-order program execution.

The initial state of the FSM assumes an arbitrary point in program execution. If
the program is CFI enabled, then transitions in the FSM will occur upon encounter-
ing CFI instructions only after being notified by the OS if the process is CFI enabled.
Otherwise, the FSM will remain in the initial state for the process’s lifetime. Non-
CFI instructions return the current FSM state to its initial state. If either cfibr
or cfiprc/j are executed, then the FSM transitions to state LSS or state LSR, re-
spectively. This is functionally equivalent to a write because the semantics of both

7.6 Hardware-Enhanced CFI: Design and Implementation 199

LSS LSRExecution

insn

cfibr

chk=1

chk=0

cfiret/chk

insn

cfiprc/j

insn

CFI check

Exception

Figure 7.6 CFI FSM.

cfibr and cfiprc/j are to update the current label state. The state transitions to
CFI check if either cfiret and cfichk instructions are executed. This is function-
ally equivalent to a read and compare because the semantics of both cfiret and
cfichk is to check the current label state. If the label state check is validated, then
the FSM state returns to the execution state; otherwise an exception is triggered.

Note that if the vendor provides any CFG then we losslessly enforce it. If in
Figure 7.4 all cfibr labels match, or the labels at cfichk for fn_b and fn_q are
grouped into an equivalence class, then the CFI FSM will not trigger an exception
because the label state check will pass.

The CFI FSM generates control signals for reading from and writing to the LSS
or LSR. It also monitors valid CFI transitions as determined by the stateful CFI se-
mantics at runtime against the dynamically built CFG. Violations are detected if the
intended execution flow, as given by the CFG, is not precisely executed. We group
these violations into execution-flow and logic-flow violations. Any invalid transition
in the FSM is considered a violation of execution flow. If a call/jump is executed,

200 Chapter 7 Hardware Control Flow Integrity

then a cfichk must be targeted. Similarly, a return must target a cfiret. In addi-
tion, every call/jump instruction must be prefixed with a cfiprc/j instruction, and
every call with cfibr. Logic-flow violations occur when an invalid label is encoun-
tered in either the LSS or LSR. For example, in Figure 7.4, if transition ©2 targets
cfichk Q rather than cfichk B, then a logic-flow violation will be triggered.

7.7 Security Evaluation

7.7.1 Security Objectives and Requirements
The main goal of our hardware-enhanced CFI platform is to prevent code-reuse
attacks. We must prevent runtime exploits that leverage either invalid backward
edges, forward edges, or full functions. These include attacks that corrupt return
addresses [Shacham 2007, Davi et al. 2014, Göktas et al. 2014a], corrupt code point-
ers used in indirect calls/jumps [Checkoway et al. 2010, Checkoway and Shacham
2010, Carlini and Wagner 2014], or reuse entire functions [Schuster et al. 2015,
Tran et al. 2011]. Finally, we must prevent runtime attacks that bypass CFI while
adhering to its policies [Carlini et al. 2015e].

For our security discussion, we consider the adversary model and assumptions
mentioned in Section 7.2. In particular, we assume that the application under
protection has been provided with a precise CFG, and that the application has been
instrumented with precise, stateful CFI instructions, as described in Section 7.6.2.
We do not address the security of our hardware-enhanced CFI if given a coarse CFG.

7.7.2 Backward-Edge Code-Reuse Attacks
Conventional return-oriented programming attacks use backward edges (returns)
to combine code sequences (gadgets) residing in the executable address space
of an application to perform malicious actions. Traditionally, a memory write
vulnerability is exploited allowing the attacker to inject a ROP payload, which is
typically a number of return addresses each pointing to a gadget terminating in a
return instruction [Shacham 2007]. Gadgets can be located at any arbitrary location
in the application’s program space. Recent ROP attacks [Davi et al. 2014, Göktas
et al. 2014a] target only call-preceded code sequences, where a call-preceded code
sequence is any instruction following a call.

Our hardware-enhanced CFI prevents backward-edge runtime attacks as de-
scribed above, and in general, because they require redirection to invalid call-
preceded instructions or arbitrary code locations. This is in direct violation of pre-
cise state preservation. Each call instruction is instrumented with a unique label
that encodes the execution path’s state information with a cfibr lbl/cfiret lbl

7.7 Security Evaluation 201

fn_a:
...

cfibr A1
cfichk B1
call fn_vul
cfiret A1
...
...

cfibr A2
cfichk B1
call fn_vul
cfiret A2
...

fn_vul:
cfichk B1
...
...

ret

B1

A1
...

LSR

Valid
Invalid

LSS

① B1

...

...

② B1

A2
...

③ B1

...

...

④ B1

...

...

⑤

①

②

③

④

⑤

Figure 7.7 Illustrative backward-edge code-reuse attack.

instruction pair. A return instruction is only allowed to target a cfiret instruction
if it is the most recent in the execution path history, i.e., it is a valid state. This is
determined by checking the label at the top of the LSS against the cfiret lbl at
the return target. Only cfiret instructions may be targeted by returns.

We use Figure 7.7 to discuss how our security requirements are fulfilled for run-
time exploits that leverage these invalid backward edges. In Figure 7.7 we depict
a function fn_a that consists of two direct function calls to fn_vul. The function
fn_vul suffers from a memory corruption vulnerability that an attacker can exploit
to corrupt a return address. Without CFI enforcement, the attacker can manipulate
the return address to target any other instruction inside the program memory. How-
ever, in our CFI model, the return instruction must target the original caller. Our
CFI state model also prevents an attacker from redirecting the control flow to a
valid but currently inactive return place for fn_vul. As an example, assume an at-
tacker attempts to redirect the control flow on edge ©5 . Since the valid return target,
transition ©4 , is given by the precise state of control flow, an attacker is unable to
exploit this backward edge. As described in Section 7.5.4, a return needs to target
the most recent forward-edge transition. In our hardware-enhanced CFI, we encode
the most recent forward-edge transition as a cfibr A2/cfiret A2 instruction pair.
We enforce precise, stateful CFI by pushing the label A2 to the top of the LSS prior
to any call and constraining the callee to returning to a cfiret instruction with a
matching label.

202 Chapter 7 Hardware Control Flow Integrity

7.7.3 Forward-Edge Code-Reuse Attacks
There are several variants of forward-edge runtime attacks, which typically use
a corrupted code pointer to redirect control flow when dereferenced by an indi-
rect call/jump. Jump-oriented programming attacks [Checkoway et al. 2010] use a
dispatcher gadget, which acts as a virtual program counter (PC), to advance con-
trol flow through a dispatch table containing attacker-controlled addresses point-
ing to gadgets. These gadgets, rather than terminating with a return instruction,
terminate with either an indirect call or jump instruction. Control is redirected
back into the dispatcher to branch to the next gadget. ROP-without-return at-
tacks [Checkoway and Shacham 2010] require a trampoline gadget that acts as a
virtual PC to redirect control flow into gadgets terminating in an indirect call/jump.
(Note that “trampoline” in Checkoway and Shacham [2010] has a different meaning
than our usage.) Each terminating indirect call/jump instruction is used to point
back into a trampoline wherein control flow can again be maliciously redirected.
Variants of forward-edge runtime attacks exclusively target function entries [Göktas
et al. 2014a, Carlini and Wagner 2014]. Typically, these are code sequences begin-
ning at a function entry and terminating with an indirect call/jump.

Our hardware-enhanced CFI prevents forward-edge runtime attacks as de-
scribed above, and in general, because they rely on either redirecting control flow
to an invalid member or an arbitrary code location. Only valid indirect call/jump
targets are allowed as given by their CFG members, per Section 7.5.2. This prevents
the attacker from redirecting control flow to arbitrary locations in the applica-
tion’s progam space. Each benign call/jump target is instrumented with a cfipr*

lbl/cfichk lbl pair that encodes its intended, benign target members. Redirec-
tion to an invalid member is prevented because its cfichk lbl state label encoding
will not match the cfipr* lbl label in the LSR. Redirection to an arbitrary location
in the application’s code space will not target cfichk instructions.

We use Figure 7.8 to discuss how our security requirements are fulfilled for
runtime exploits that leverage invalid forward edges. Within Figure 7.8 we depict
a vulnerable function fn_vuln attempting to exploit a corrupted code pointer to
redirect control flow, ©3 and ©4 . The vulnerable function suffers from a memory
vulnerability that allows the attacker to exploit a corrupted code pointer. Without
CFI enforcement, the attacker can manipulate the code pointer to target either fn_
d or an arbitrary location in fn_e. Our hardware-enhanced CFI prevents attackers
from targeting invalid code locations via indirect calls/jumps. In our system, the
valid targets for the indirect call/jump instructions are given by its valid members
≯(Ni) per its precise CFG. For example, valid members for the indirect call in the
vulnerable function are encoded with the cfiprc B1/cfichk B1 instruction pair.

7.7 Security Evaluation 203

fn_vuln:
...

cfibr A1
cfiprc B1
call *reg
cfiret A1
...

fn_c:
cfichk B1
...

call *reg

fn_d:
cfichk C1
...
...

fn_e:
insn
...
...

fn_b:
cfichk B1
...

ret

B1

A1
...

LSR

Valid
Invalid

LSS

① B1

A1
...

② B1

A1
...

③ B1

A1
...

④

①

②

③

④

Figure 7.8 Illustrative forward-edge code-reuse attack.

We enforce precise, stateful CFI by storing the label B1 to the LSR prior to executing
the indirect call and checking that its target cfichk B1 label matches. Only valid
members, as given by the CFG, are encoded with matching labels.

Note that our hardware-enhanced CFI architecture also includes protection
against dynamic code-reuse attacks, i.e., attacks such as JIT-ROP that dynamically
determine gadgets on executable memory pages [Snow et al. 2013]. These attacks
exploit backward and forward edges that we instrument with CFI checks based on
the program’s CFG.

7.7.4 Full-Function Code-Reuse Attacks
Conventional full-function reuse attacks use corrupted code pointers, along with
attacker-controlled function arguments, to redirect control flow through a chain
of existing libc functions [Solar Designer 1997a, Wojtczuk 1998, Solar Designer
1997b, Nergal 2001].

204 Chapter 7 Hardware Control Flow Integrity

In a recent paper, Tran et al. [2011] were able to extend conventional Return-
into-Libc (RILC) by demonstrating Turing-Complete RILC. Variants of full-function
reuse attacks create counterfeit objects and fake virtual table pointers to redirect
control flow to existing virtual methods in C++ programs [Schuster et al. 2015].

Our hardware-enhanced CFI prevents full-function reuse attacks because they
rely on redirecting control flow to invalid indirect call/jump targets. Valid branch
targets are instrumented with cfipr* lbl/cfichk lbl pairs. Only benign control-
flow targets are encoded with matching labels. Redirection to an invalid control-
flow target is prevented by checking that the label currently in the LSR matches the
cfichk lbl label.

We use Figure 7.8 again to discuss how our security requirements are fulfilled
for runtime exploits that leverage full functions. Within Figure 7.8 we depict a
vulnerable function where the attacker may corrupt a code pointer and use it to
redirect control flow to a function entry fn_d, ©3 . Without CFI enforcement, the
attacker can freely manipulate the code pointer vulnerability to target any function
entry in the executable address space of the application. Our hardware-enhanced
CFI prevents attackers from targeting invalid functions. Valid functions are given by
the precise CFG as a set of valid members ≯(Ni). For example, valid members for the
indirect call in fn_vuln are encoded with the cfiprc B1/cfichk B1 instruction
pair. We enforce precise, stateful CFI by storing the label B1 to the LSR prior to
executing the indirect call. We check that its targeted cfichk lbl label matches
what is currently stored in the LSR. Only valid members, as given by the CFG, are
encoded with matching labels.

Note that COOP attacks can be prevented in our design if the class hierarchy is
correctly and precisely covered in the CFG. For instance, Google compiler exten-
sions can be leveraged to extract such precise CFG information [Tice et al. 2014].

7.7.5 Control-Flow Bending
A recent attack [Carlini et al. 2015e], called Control-Flow Bending (CFB), demon-
strates code-reuse attacks are possible while adhering to fully precise static CFI.
In a CFB attack, attackers may corrupt a code pointer to call a valid function en-
try where a vulnerability exists, allowing it to corrupt a return address. They then
may use the corrupted return address to return to any call-preceded site. In particu-
lar, CFB exploits any function with a vulnerability that can overwrite its own return
address and adheres to CFI by returning to any location where this function was
called.

Our hardware-enhanced CFI prevents CFB attacks because it requires redi-
rection to any call-preceded slot in a stateless CFI-protected system. We offer

7.8 Performance Evaluation 205

precise, stateful CFI so that only the most recently executed forward-edge tran-
sition may be returned to. As described above, this is ensured with a unique
cfibr lbl/cfiret lbl instruction pair. A return instruction is only allowed to
target a call-preceded slot if it is the most recent in the execution path history.
Using Figure 7.7, the invalid return ©5 is prevented from returning to cfiret A1

because it is not the most recent call-preceded slot.

7.7.6 Security of Label State Stack/Register
Even though it is not a strict security requirement, our design only allows CFI
instructions to access the LSS and LSR and avoids CFI data being loaded to main
memory. Recall the recent CFI attack that corrupts offset pointers referencing a
CFI jump table spilled to the program’s stack for efficiency reasons [Liebchen et al.
2015]. We prevent this attack, and similar attacks that corrupt or disclose CFI data,
by storing CFI-related data, such as labels, in a dedicated memory, LSS, and LSR.

7.8 Performance Evaluation
To evaluate the support of our hardware-enhanced CFI protection, we generated
custom build tools, a custom runtime environment, and custom hardware infras-
tructure. This enabled us to (i) issue newly added CFI instructions in proper code
locations, (ii) create unique CFI labels for any arbitrary application, and (iii) support
CFI services within a rich OS environment on a hardware platform.

7.8.1 Build Tools
A set of modified build tools are needed in order to issue the necessary CFI instruc-
tions in the proper places. As such, in order to test the performance of our system,
we developed an instrumented toolchain based on the GNU Compiler Collection
(gcc) version 4.9.2, the GNU Binary Utilities (binutils) version 2.23 and μClibc
(uClibc) version 0.9.33.2.

The compiler, gcc, was made to issue the cfibr and cfiprc instructions before
any function call, with a corresponding cfiret instruction at the return site. Simi-
larly, a cfiprj was issued before indirect jumps with a cfichk at function entries
and at indirect jump targets. The assembler, gas, was modified to recognize these
new instructions and emit the necessary machine code. As the C library, uClibc, is
built by the compiler, only those routines written in assembly need to be manually
instrumented; the others can be directly compiled without issue.

For testing and CFG instrumentation purposes, we wrote an IDA Pro plugin that
extends the SPARC processor module bundled with the program. This enabled us to

206 Chapter 7 Hardware Control Flow Integrity

automatically instrument backward edges in our binary. Forward edges for indirect
jumps were instrumented by manually extracting jump table information from the
binary and feeding this information to the plugin. For indirect calls, a new section
with trampolines was added to the binary at compile time using a custom linker
script. The trampoline was instrumented with the proper check instruction and an
indirect jump to the target function. Using the plugin, indirect calls were rewritten
as direct calls to the proper trampoline. As this instrumentation is equivalent to the
one presented in section 7.6.2, it is sufficient for performance-testing purposes. We
should stress, however, that this chapter does not present a general solution to CFG
generation and limits itself to providing a mechanism that can be used with manual
analysis to generate an estimate of the CFG of a program.

7.8.2 Hardware Platform
To evaluate the overhead of our CFI implementation on a real system, we inte-
grated it into the open-source LEON3 processor distributed by the European Space
Research and Technology Centre [Gaisler Research 2017]. The LEON3 is a 32-bit
processor that implements the SPARC V8 ISA [SPARC 2017]. The synthesizable
LEON3 core is equipped with a 7-stage pipeline, separate instruction and data
caches, memory management unit, hardware floating-point units, AMBA 2.0 AHB
bus, and on-chip debug support.

Modifications were made to the processor pipeline to incorporate the CFI FSM,
LSR, and LSS in the iu3.vhd module. The modified processor is implemented on
the Xilinx Spartan-6 FPGA evaluation board. The FSM, LSR, and LSS are placed in
parallel to the write-back stage of the LEON3 pipeline. Their operations include
read/write access to the LSS/LSR and FSM operations, which are synchronized with
the write-back stage so that they do not stall the pipeline. Our CFI instructions are
decoded as nop instructions on the pipeline, which ensures single-cycle latency as
determined by the SPARC V8 ISA [SPARC 2017].

7.8.3 Hardware-Enhanced CFI Evaluation Results
7.8.3.1 Performance

For the evaluation of our hardware-enhanced CFI, we used the industrial stan-
dard EEMBC’s CoreMark benchmark suite [EEMBC 2017]. This benchmark suite
is designed to test a processor core’s functionality, namely, its pipeline, memory
access, and functional unit operations. It is made up of small C programs con-
taining read/write, integer, and control operations whose workload models several
commonly used algorithms, e.g., matrix manipulation, linked-list manipulation,
state-machine operation, and cycle redundancy check [EEMBC 2017]. This suite

7.8 Performance Evaluation 207

covers usage of code pointers and frequent conditional/unconditional branching,
which provides a representative class of CFI-instrumented code coverage and per-
formance overhead comparison.

CoreMark programs are instrumented with precise, stateful CFI instructions.
We follow the instrumentation described in Section 7.6.2 using our build tools.

We also evaluated several SPECInt2006 benchmarks, namely, bzip2, libquan-
tum, and h264ref. These are representative example programs from the group of
business, scientific, and problem-solving workloads. We did not evaluate full SPEC
because of resource constraints on the FPGA evaluation board. The FPGA board
provides 128 MiB of main memory, whereas full SPEC requires at least 1 GiB. Each
of the programs evaluated could be run within the memory constraints imposed by
the FPGA platform. Additionally, porting full SPEC2006 would require significant
engineering effort in resolving all dependencies. The benchmarks we evaluated
offered a reasonable trade-off in build time and coverage.

SPEC benchmarks are also instrumented with precise, stateful CFI instructions.
We again follow the instrumentation described in Section 7.6.2 using our build
tools.

The results are shown in Figure 7.9, where the performance overhead on aver-
age is 1.75%, with a worst-case overhead of 3.5% for SPEC benchmarks and 0.5%
for CoreMark. The average code size overhead is 13.5% across both SPEC and Core-
Mark. We should note that this overhead is directly related to the number of calls
and indirect jumps in the binaries. As more calls and indirect jumps are contained
in the program, more CFI instructions need to be issued.

Base

1.2

1.1

1.0

0.9

0.8

CFI performance

CoreMark
bzip2

lib
quantum

h264ref

Binary size ratio

Figure 7.9 Normalized benchmark results.

208 Chapter 7 Hardware Control Flow Integrity

Table 7.2 Evaluation of Area Overhead with CFI Implemented on a LEON3 Processor

LEON3 LEON3 CFI Percent Change

Combinational 8,759.073 8,996.952 2.72

Sequential 16,921.416 17,143.284 1.31

Total 25,680.589 26,140.236 1.78

7.8.3.2 Area and Timing Overhead
We integrated the micro-architectural features to support our hardware-enhanced
CFI design elements, as outlined in Section 7.6.4 into the 7-stage pipeline of the
LEON3 processor. Our hardware-enhanced CFI LEON3 core was synthesized with
Design Compiler H-2013.03-SP5-3 using the Synopsys 32/28 nm generic library,
a teaching library created for micro-electronic design education. We evaluated
both area overhead and maximum clock rate. In general, smaller area ensures
better resource usage and lower cost requirements. A faster clock ensures our
hardware will not be on the critical path or violate existing timing constraints.
Table 7.2 displays the area overhead caused by extending the pipeline with full CFI
protection. The total area overhead seen is negligible at 1.78%. We also evaluated
the maximum frequency at which our CFI FSM, LSS, and LSR implementation could
be clocked. Our hardware-enhanced CFI could be clocked up to 3 GHz without
incurring timing violations.

7.9 Related Work
CFI defenses have been proposed to prevent code-reuse attacks [Abadi et al. 2009,
Budiu et al. 2006, Wang and Jiang 2010, Davi et al. 2012, Zhang and Sekar 2013,
Zhang et al. 2013, Bletsch et al. 2011, Tice et al. 2014, Arias et al. 2015]. In their
seminal work on CFI, Abadi et al. [2009] propose a label-based mechanism. In par-
ticular, indirect branch targets are marked with unique labels. Before an indirect
branch, CFI validates whether the branch targets a pre-defined label. Whereas the
original CFI proposal targeted applications running on an x86-based desktop PC,
CFI has been also adapted to mobile applications [Davi et al. 2012] and hypervi-
sor code [Wang and Jiang 2010]. Unfortunately, software-based instrumentation
induces too high performance penalties. Even a recent implementation utilizing
an optimized shadow stack [Dang et al. 2015] adds significantly more performance
overhead than our hardware-based CFI implementation and still leaves the shadow
stack unprotected in main memory.

7.9 Related Work 209

A number of coarse-grained CFI approaches aim at tackling the performance
overhead. Several solutions build on behavioral-based heuristics to detect (i) the
execution of short instruction sequences [Pappas et al. 2013, Cheng et al. 2014] or
(ii) indirect branch counters [Yao et al. 2013, Kayaalp et al. 2013]. Other CFI schemes
relax the CFI policies, most notably, they force returns to target any call site [Zhang
and Sekar 2013, Zhang et al. 2013, Bletsch et al. 2011, Pappas et al. 2013]. However,
a number of recent attacks against CFI demonstrate that neither behavioral-based
heuristics nor relaxed CFI policies withstand advanced code-reuse attacks [Göktaş
et al. 2014b, Davi et al. 2014, Carlini and Wagner 2014, Schuster et al. 2014]. In
contrast, our hardware-based CFI scheme allows for finer-grained policies that
resist these latest attacks, while being highly efficient.

Architectural fine-grained CFI support, as proposed by Budiu et al. [2006], in-
troduced hardware support for fine-grained CFI protection via integrity checking
of control-flow graph encoding. For forward-edge protection, Budiu et al. [2006]
leverage a CFI label register similar to our LSR. However, for backward-edge pro-
tection, they assume a shadow stack, which incurs more performance overhead
compared to our LSS. Similarly, Davi et al. [Davi et al. 2014, Arias et al. 2015] in-
troduce hardware-assisted CFI instructions but focus only on CFI backward edges
and bare metal code. In contrast to previous work on hardware-assisted CFI [Budiu
et al. 2006, Davi et al. 2014, Arias et al. 2015], we support highly efficient CFI for
shared libraries, multitasking, and support of legacy code [Sullivan et al. 2016].

Control-Flow Locking (CFL), as proposed by Bletsch et al. [2011], prevents CRAs
by asserting a lock value before executing each indirect control-flow instruction,
and de-asserting it upon entry into a valid destination. However, CFL checking is
on the critical path, and applications with a larger number of control-flow instruc-
tions, such as XML parsers and interpreters, will suffer significant performance
degradation. Compared with our approach, we can offer the same protection but
in a very efficient way.

Branch regulation [Kayaalp et al. 2012] is a hardware-assisted CFI approach that
restrains control-flow behavior dynamically. Indirect branches are forced to target
function entries or function bounds, and a return should target a call-preceded in-
struction. A Secure Call Stack (SCS) is implemented to restrict backward-edge CFI,
and each stack entry is augmented with function bounds to support forward-edge
CFI. This approach shares many similarities with ours but fails to handle dynam-
ically linked libraries, stack unwinding, tail call optimization, and compatibility
with non-CFI-instrumented programs. In contrast, our approach does not need
knowledge of function bounds to enforce a policy, as this is determined via the

210 Chapter 7 Hardware Control Flow Integrity

CFI label. Branch regulation requires the storage of bounds data to be included in
the program executable.

Onarlioglu et al. [2010] eliminate unaligned indirect control-flow instructions
from a program with the insertion of nop sleds. The remaining indirect control-
flow instructions are then secured by enforcing that they can only be executed by
means of an aligned entry. Return address encryption is implemented to prevent
backward-edge CRAs. In addition, per-function cookies are used to constrain indi-
rect jumps to the function’s bounds. This approach reports a large increase in both
binary file size and performance overhead.

7.10 Conclusion
Within this chapter we present the formal underpinnings of a precise stateful CFI
policy, which enabled the design and implementation of a lossless, scalable, and
highly efficient hardware-enhanced CFI platform. The new framework leverages
dedicated CFI instructions to losslessly enforce any CFG and diverse CFI policies
within our model. Our hardware-enhanced CFI significantly lowers the perfor-
mance overhead when applied to several SPECInt2006 and CoreMark benchmarks.
Further, if provided with a precise CFG we show comprehensive protection from
many traditional and recently proposed code-reuse attacks. The goal of our work is
the design and implementation of a hardware-enhanced CFI framework that can
losslessly support CFI policies with varying precision. Generation of precise CFGs
for real-world applications remains an open challenge.

Acknowledgments
This work was partially supported by the U.S. Department of Energy (DE-FOA-
0001386), the German Science Foundation (project S2, CRC 1119 CROSSING), the
European Union Seventh Framework Programme (609611, PRACTICE), and the
German Federal Ministry of Education and Research within CRISP. Orlando Arias is
also supported by the National Science Foundation through the Graduate Research
Fellowship Program. Any opinions, findings, conclusions, and recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the U.S. Department of Energy or the National Science Foundation.

8Multi-Variant Execution
Environments
Bart Coppens, Bjorn De Sutter, Stijn Volckaert

Memory corruption vulnerabilities are a common problem in software imple-
mented in C/C++. Attackers can exploit these vulnerabilities to steal sensitive data
and to seize or disrupt the system on which the software is executed. Memory safety
techniques can, in principle, eliminate these vulnerabilities [Nagarakatte et al.
2009, Nagarakatte et al. 2010] but are prohibitively expensive in terms of runtime
overhead [Szekeres et al. 2013].

Instead, modern operating systems and compilers deploy exploit mitigations
such as Address Space Layout Randomization (ASLR) [PaX Team 2004a], Data Exe-
cution Prevention (DEP, a.k.a. W⊕X) [PaX Team 2004b], and stack canaries [Cowan
et al. 1998]. These exploit mitigations incur minimal performance overhead, but are
limited in scope—often only defending against one particular type of exploit—and
can be bypassed with only modest effort.

Up-and-coming exploit mitigations, such as control-flow integrity [Abadi et al.
2005a, Tice et al. 2014], require more effort to bypass [Göktas et al. 2014a, Davi et al.
2014, Carlini et al. 2015e, Evans et al. 2015, Schuster et al. 2015], but, similar to the
aforementioned defenses, they defend only against attacks of one particular type:
code reuse.

The ubiquity of multi-core processors has made Multi-Variant Execution En-
vironments (MVEEs) an increasingly attractive option to provide strong, com-
prehensive protection against memory corruption exploits, while still incurring
only a fraction of the runtime overhead of full memory safety. MVEEs have been
shown to successfully defend against several types of attacks, including code
reuse [Volckaert et al. 2015], information leakage [Koning et al. 2016], stack buffer
overflows [Salamat et al. 2009], and code injection [Cox et al. 2006].

212 Chapter 8 Multi-Variant Execution Environments

The underlying idea is to run several diversified instances of the same program,
often referred to as variants or replicas, side by side on equivalent program inputs.
The MVEE’s main component, the monitor, feeds all variants these equivalent in-
puts and monitors the variants’ behavior. The diversity techniques used to generate
the variants ensure that the variants respond differently to malicious inputs, while
leaving the behavior under normal operating conditions unaffected. The MVEE
monitor detects the diverging behavior and halts the execution of the variants be-
fore they can harm the system. This implies that the variants must, to some extent,
be executed in lockstep: potentially harmful operations in a variant are only exe-
cuted when the consistency with the other variants has been validated.

In recent years, over half a dozen systems have been proposed that match the
above description. While most of them show many similarities, some authors have
made radically different design choices. In this chapter, we discuss the design
of MVEEs and provide implementation details about our own MVEE, the Ghent
University Multi-Variant Execution Environment, or GHUMVEE, and its extensions.
GHUMVEE has been open sourced and can be downloaded from http://github.com/
stijn-volckaert/ReMon/.

8.1 General Design of an MVEE
Broadly speaking, there are two key factors that distinguish the high-level designs
of existing MVEEs: monitoring granularity and placement in the software stack. In
this section, we review these factors, point out their implications, and justify the
design choices we made for GHUMVEE.

8.1.1 Monitoring Granularity
Monitoring the variants’ behavior can be done at many granularities, ranging from
monitoring only explicit I/O operations to system calls, function calls, or even
individual instructions. In practice, however, existing MVEEs either monitor at I/O-
operation granularity or at system call granularity. Among the MVEEs that monitor
at system call granularity, there are some that monitor all system calls, while the
others monitor only “sensitive” calls. There is some debate over what the ideal
monitoring granularity is. Coarse-grained monitoring yields better performance
but might not guarantee the integrity of the system.

Most MVEEs monitor at system call granularity. On modern operating systems
that offer page-level memory protection, each application is confined to its own
address space. An application must therefore use system calls to interact with the

http://github.com/stijn-volckaert/ReMon/

8.1 General Design of an MVEE 213

system in any meaningful way. The same holds for exploits. If the ultimate goal of
an attack is to compromise the target system, then the attack’s payload must invoke
system calls to interact with the system.

It makes little sense to monitor at finer granularity levels for the sole purpose
of comparing variants’ behavior. The premise of multi-variant execution is that the
variants are constructed such that they react differently to malicious input. While
a given malicious input might be sufficient to seize control of one specific variant,
it will not have the desired effect on other variants. These other variants will either
crash or behave differently. As several authors have argued in the literature, both
of these outcomes are visible at the system call level [Salamat et al. 2009, Cox et al.
2006].

8.1.2 Placement in the Software Stack
The placement of the MVEE within the software stack has far-reaching conse-
quences for the MVEE’s security and performance properties. This placement is
motivated by the conflicting goals of ensuring maximum security and maximum
performance. To maximize performance, it is of vital importance to minimize the
overhead on the interaction between the variants and the monitor. Since most
monitors intervene in each system call invocation, such interactions can occur fre-
quently.

All existing monitors interact synchronously with the variants. When a variant
instigates an interaction with the monitor, it must wait until the monitor returns
the control flow to the variant before it may resume its execution. To achieve
maximum performance, it therefore is of vital importance to minimize this waiting
time, which is dominated by the latency on the monitor-variant interaction. If the
monitor runs as a separate process (Cross-Process, or CP), then the interaction
latency is high because the kernel must perform a context switch to transfer the
control from the variant to the monitor. Context switches are notoriously slow as
they require a page table and a Translation Lookaside Buffer (TLB) flush [Belay et al.
2012]. CP monitors can therefore be detrimental for the variants’ performance.

The advantage of CP monitors is that they are portable and easy to implement
because they rely solely on the operating system’s standardized debugging inter-
faces, and they are strongly isolated from the variants, since address spaces form a
hardware-enforced boundary between processes. Placing the monitor outside the
variants’ address spaces therefore protects it from misbehaving variants. Table 8.1
illustrates that most authors recognize the importance of such a hardware-enforced
boundary. Almost all the existing monitors prioritize security over performance

214 Chapter 8 Multi-Variant Execution Environments

Table 8.1 Classification of Existing MVEEs Based on Their Position in the Software Stack

Unprivileged Level (UL) Privileged Level (PL)

In-Process (IP) VARAN [Hosek and Cadar 2015] N-Variant Systems [Cox et al. 2006]
RAVEN [Co et al. 2016]
MvArmor [Koning et al. 2016]

Cross-Process
(CP)

DieHard [Berger and Zorn 2006]
Cavallaro [Cavallaro 2007]
Orchestra [Salamat et al. 2009]
Tachyon [Maurer and Brumley 2012]
Mx [Hosek and Cadar 2013]
GHUMVEE [Volckaert et al. 2013]

IP+CP ReMon [Volckaert et al. 2016]

and run cross-process. These monitors correspond with the label “CP/UL” (Cross-
Process/Unprivileged Level) in Figure 8.1.

N-Variant Systems [Cox et al. 2006], RAVEN [Co et al. 2016], and MvArmor
[Koning et al. 2016] are notable exceptions. These monitors run within the same
address space as the variants (In-Process, or IP) but are protected from misbe-
having variants because the monitors operate at a higher privilege level (kernel
level for N-Variant Systems and RAVEN, supervisor level for MvArmor). This de-
sign is represented by “IP/PL” (In-Process/Privileged Level) in Figure 8.1. This is,
at least in principle, the ideal approach. However, it does have the downside of
enlarging the Trusted Computing Base (TCB). This is undesirable from a secu-
rity standpoint [Rushby 1981]. An additional disadvantage is that the program-
ming interfaces that are available at the privileged level are non-standardized and

Shared mem

CP/UL

Variant 1 Variant 2

IP/ULIP/UL

Kernel/supervisorIP/PL

Monitor

Figure 8.1 Possible placements of an MVEE in the software stack.

8.1 General Design of an MVEE 215

architecture-specific. IP/PL monitors are therefore significantly harder to port to
other platforms than CP monitors.

VARAN finally implements a third design that is represented by “IP/UL” in
Figure 8.1 [Hosek and Cadar 2015]. VARAN is a reliability-oriented IP monitor,
embedded into the variants. It consists of several components, each of which can
communicate directly with the variant in which it is embedded. VARAN primarily
intends to increase the reliability of software, e.g., by running two variants, one
with and one without a new patch applied to them, to test that the patch does
not introduce unintended side effects. It therefore uses a less secure design than
the aforementioned “CP/UL” and “IP/PL” MVEEs. VARAN’s authors also recognize
this fact.

GHUMVEE is a security-oriented MVEE and is therefore implemented as
a CP/UL MVEE. In Section 8.5 we also describe a hybrid design called ReMon
[Volckaert et al. 2016]. ReMon is based on GHUMVEE, but it also includes an in-
process component and a small kernel component, which makes ReMon a hybrid
CP+IP/UL+PL MVEE.

8.1.3 Monitor-Variant and Monitor-Monitor Interaction
The MVEE’s monitor and the variants interact whenever the variants trigger an
event that is subject to monitoring. These events typically include executing a
system call and raising a processor exception (e.g., by executing a privileged in-
struction or causing a segmentation fault). Each interaction requires transferring
the control flow from the variant to the monitor and back, and may require copy-
ing the register context or memory contents of the variant to the monitor. Several
mechanisms exist to fulfill each of these tasks. The placement of the monitor in
the software stack defines which mechanisms are available.

8.1.3.1 Control-Flow Transfer
The most trivial way to transfer control from the variant to the monitor and back
is to invoke the monitor directly using a branch instruction. This is only possible
for IP/UL monitors, which operate in the same address space and at the same
privilege level as the variants. This control-flow transfer method is efficient but not
very secure, as the variants typically invoke the monitor at their own discretion.
Compromised variants could, for example, easily execute a system call without
invoking the monitor first.

IP/PL monitors, which operate in the same address space but at a higher priv-
ilege level than the variants, cannot be invoked directly. Instead, these monitors

216 Chapter 8 Multi-Variant Execution Environments

must be invoked by the kernel or supervisor’s system call and trap handlers, ei-
ther by patching these handlers or by installing hooks. When a variant executes
a system call or triggers an exception, the processor transfers control to the ker-
nel/supervisor’s system call handler or exception handler, and the handler must
then invoke the monitor. This interaction method is fully secure. Since the moni-
tor invocation is handled by the kernel/supervisor, compromised variants are not
able to escape the monitoring mechanism.

CP/UL monitors, which operate in a separate address space, cannot be invoked
directly either. Instead, they rely on the operating system’s debugging interface
to “attach” to the variant, thus establishing a debugger-debuggee relationship be-
tween the monitor on one side and the variants on the other side. With such a rela-
tionship in place, the operating system will suspend the execution of the debuggee
(variant) whenever it triggers an event that requires the attention of the the de-
bugger (monitor). The operating system will then schedule the monitor and make
information about the event available to the monitor. This interaction method is
also fully secure but incurs significant runtime overhead, since synchronous inter-
action between two separate processes requires context and TLB flushes.

ReMon, the hybrid design we describe in Section 8.5, consists of both an IP mon-
itor and a CP monitor. ReMon has a system call broker component that intercepts
system calls in kernel space and invokes the appropriate monitor based on a user-
defined policy. The system call broker can invoke either the CP monitor, using the
operating system’s debugging interface, or the IP monitor, by pointing the user-
space program counter at the IP monitor’s known entry point before exiting kernel
space. ReMon’s system call handling mechanism is fully secure and more efficient
than the one used by CP/UL monitors.

8.1.3.2 Register Context and Data Transfer
The MVEE’s monitor requires access to the variant’s register context, e.g., to read
the system call number, and to the variant’s virtual memory, e.g., to read system
call arguments.

The variant’s virtual memory can be accessed directly by all IP/UL and IP/PL
monitors, as these monitors share their address space with the variant. IP/UL
monitors also share their register contexts with the variant and can therefore access
this context directly. IP/PL monitors do not share their register contexts with the
variant. Instead, they must access a copy of this context. The processor stores
this copy at a pre-defined location whenever it changes the privilege level. The
performance overhead incurred by having to access the copy of the register context
is negligible.

8.2 Implementation of GHUMVEE 217

CP monitors can access neither the register context nor the variant’s memory
directly. Instead, they rely on the OS’s debugging interfaces to transfer this infor-
mation to the monitor’s address space. Such transfers incur significant runtime
overhead.

8.1.3.3 Inter-monitor Communication
Some MVEE designs, particularly the IP/UL ones, use multiple monitor instances,
each embedded into or assigned to just one variant. The instances frequently com-
municate with each other, e.g., to verify if all variants execute the same system call.
While most operating systems offer a variety of options for inter-process commu-
nication, all MVEEs that fall into this category use a ring buffer backed by a shared
memory region for inter-monitor communication.

8.1.3.4 Performance Implications
Koning et al. [2016] conducted the most comprehensive study to compare monitor-
variant interaction mechanisms. Through a series of micro-benchmarks, they
showed that intercepting system calls and invoking the monitor in kernel space,
similar to N-Variant Systems’ IP/PL monitor [Cox et al. 2006], generally yields the
highest performance. Using hardware virtualization features to intercept system
calls and running the monitor in supervisor mode, similar to MvArmor’s IP/PL
monitor [Koning et al. 2016], is marginally faster than a kernel-based design if the
monitor can emulate the system call, and up to 7.59× slower if the call cannot be
emulated. Intercepting system calls using the OS’s debugging interface, as is done
in all existing CP/UL monitors, is up to two orders of magnitude slower than the
mechanisms used in IP/PL monitors.

Prior to this study, Volckaert et al. [2013] compared data transfer mechanisms
used in CP/UL monitors and showed that GHUMVEE’s ptrace extension yields sig-
nificantly faster monitor-variant data transfers than Orchestra’s shared-memory-
based mechanism [Salamat et al. 2009], while the latter, in turn, is significantly
faster than regular ptrace-based data transfers.

8.2 Implementation of GHUMVEE
GHUMVEE is a CP/UL monitor and thus relies on the OS’s debugging interface to set
up and communicate with the variants. GHUMVEE launches the variants by forking
them off its main thread and by executing a sys_execve system call in the context
of the forked-off processes. Prior to this call, the newly created variant processes
establish a link between GHUMVEE’s monitor and themselves by requesting to
be placed under a monitor’s supervision after which they raise a SIGSTOP signal.

218 Chapter 8 Multi-Variant Execution Environments

The kernel suspends the variants after they have raised this signal, and it reports
their status to the monitor. The monitor can then resume the variants and begin to
monitor their execution.

8.2.1 Monitoring System Calls
Like most MVEEs, GHUMVEE monitors the variants’ behavior at the system call
interface by intervening at the kernel level at the entry and exit of every system call.
GHUMVEE leverages the operating system’s debugging API to place the variants
under the monitor’s control, to intercept the variants’ system calls, and to run the
variants in lockstep. The monitor suspends each variant that enters or exits from a
system call until all variants have reached the same entry or return point. When this
happens, the variants are said to have reached a RendezVous Point (RVP) (sometimes
referred to as a synchronization point).

The monitor asserts that the variants are in equivalent states whenever they
reach such an RVP by comparing the system call arguments. Two sets of system
call arguments are considered equivalent if they are identical (in the case of non-
pointer arguments) or if the data they refer to is identical (in the case of pointer
arguments). Salamat [2009] gives a formal definition of equivalent states.

If the variants are not in equivalent states at an RVP, the monitor raises an
alarm and takes the appropriate action. GHUMVEE considers all tasks that share
an address space with one of the variants that caused the discrepancy as tainted,
and it therefore terminates these tasks. Do note that this does not necessarily
stop the entire program. It is becoming a common practice to compartmentalize
complex programs, such as web browsers and web servers, into multiple, mostly
independent tasks that do not share address spaces. In some modern web browsers,
for example, every open tab is backed by a separate process. Should GHUMVEE
detect a discrepancy when running multiple variants of such a process, it would
only terminate the browser tab that caused the discrepancy.

Reliability-oriented monitors that are, e.g., used to test new software patches may
differ from security-oriented monitors, such as GHUMVEE, with respect to system
call monitoring. For example, VARAN does not enforce lockstep execution [Hosek
and Cadar 2015]. Instead, it lets the master variant run ahead of the slave variants
and caches the arguments and results of all the master variant’s system calls so that
they may be consulted by the slave variants at a later point.

8.2.2 Transparent Execution
Many system calls require special handling to ensure that the multi-variant exe-
cution is transparent to the end user. With the exception of runtime overhead,

8.2 Implementation of GHUMVEE 219

Variant 1 Variant 2Monitor

Kernel
brk

write

brk

write

Time Time

Figure 8.2 Transparently executing I/O-related system calls.

the end user should not be able to notice that more than one variant of the pro-
gram is running. GHUMVEE therefore uses a master/slave replication model. One
of the variants is the designated master variant and the other variants are slaves.
GHUMVEE ensures that only the master variant can execute system calls that have
visible effects on the rest of the operating system. Specifically, these are the system
calls that correspond with I/O operations. Whenever the variants reach an RVP at
the start of an I/O-related system call, GHUMVEE verifies that the variants are in
equivalent states, and then overwrites the system call number in the slave variants
with that of a system call with no visible effects. GHUMVEE currently uses sys_

getpid for this purpose since it is a trivial and fast system call. When GHUMVEE
subsequently resumes all variants, only the master variant executes the intended
I/O operation.

At the next RVP, when all variants have returned from their system call, GHUM-
VEE copies the results of the system call from the address space of the master to
the address space of the slave variants. We refer to this mechanism as master calls.
System calls that do not require special handling, other than consistency checking,
and that may therefore be executed by all variants are called normal calls. In Fig-
ure 8.2, the handling of the normal call brk is shown, as well as that of the master
call write.

8.2.3 Injecting System Calls and Restarting Variants
On top of the above tasks, GHUMVEE can also inject new system calls and, as a
result, rewind variants to their initial state. Injecting system calls can be useful
to add new functionality to the variants transparently. To inject a system call in
a variant, GHUMVEE waits until the variant has reached an RVP. At this point,

220 Chapter 8 Multi-Variant Execution Environments

GHUMVEE stores a backup of the register context of the variant and overwrites
the system call arguments.

Many system calls accept arguments that are stored in data buffers. To inject
such arguments, GHUMVEE searches for a writable memory page in the variant
that is large enough for the arguments. If the variant is multi-threaded, GHUMVEE
searches for the variant’s thread-local stack, in order not to corrupt memory that
might be used by other tasks that share an address space with the variant.

GHUMVEE then reads and stores the original content of the memory page and
writes the arguments into that page; it then resumes the variant and waits until the
injected system call returns. At that point, GHUMVEE restores the original contents
of the overwritten memory page and restores the original register context, prior to
the system call injection.

Restarting variants to their initial state is a trivial extension of this system. To
support restarting, GHUMVEE stores the original arguments of the sys_execve

call that was used to start the variant as well as the environment variables [GNU.org
2017] at the time of the original sys_execve invocation. Whenever a variant
reaches an RVP, GHUMVEE can restore the original environment variables and
inject a new sys_execve call with those original arguments using the mechanism
described above to restart the variant. GHUMVEE uses this restart mechanism to
enforce disjoint code layouts, as we will explain in Section 8.4.

8.3 Inconsistencies and False Positive Detections
MVEEs must feed all variants the same input in order to guarantee that they be-
have identically under normal operating conditions. For explicit input operations,
such as reading an incoming packet from a socket, the monitor can satisfy this re-
quirement by applying the master call mechanism we described in Section 8.2.2 to
system calls, such as sys_read.

In some cases this is not sufficient, however. Several sources of input can be
accessed directly, without invoking any system calls. The variants often behave
differently after reading input from such sources. This can lead to false positive
detections by the monitor. In this section, we summarize the sources of input that
can be accessed directly and describe how we provide consistent input from such
sources to all variants.

8.3.1 Shared Memory
All commodity operating system kernels offer a file-mapping API and an Inter-
Process Communication (IPC) API to share physical memory pages among multiple
processes.

8.3 Inconsistencies and False Positive Detections 221

The file-mapping API, which can be accessed through the sys_mmap system call
on Linux systems, allows programmers to associate individual physical memory
pages with regions within a file on the file system. The associated file is often
referred to as the backing file. When a page fault is triggered on a physical page
that is backed by a file, which happens when this page is accessed for the first time,
the operating system loads the contents for the page from the associated region in
the backing file. The operating system will also write the contents of the page back
to the file should the page ever become dirty.

The programmer can specify which region of the backing file each memory page
corresponds to and whether or not the changes should be written back to the file.
However, even if the programmer requests that changes be written back to the file,
the operating system will only do so if the programmer has opened the backing
file with read/write access. For some backing files, such as system libraries, the
operating system denies any requests made by a non-privileged user to open the
file with read/write access and instead allows only read access.

Programmers often use file mapping as an efficient way to access files. A mapped
file can be accessed directly, without having to invokesys_readorsys_write calls.
The file-mapping API is also commonly used to create shared memory pages. A
program can create a temporary file with read/write access and map this temporary
file into its own address space. Other programs can then map the same file into
their address spaces, thus sharing the associated physical memory pages with the
program that created the file.

Programmers can also use the IPC API, which can be accessed through the
sys_ipc or sys_shmget/sys_shmat system calls on Linux systems, to create and
map shared physical memory pages not associated with a backing file. These pages
have a unique identifier. Programs that know this unique identifier can map the
associated physical pages into their virtual address spaces.

Shared memory pages often constitute a problem within an MVEE. Variants can
read from shared memory pages without invoking a system call and, consequently,
are not subject to the lockstep execution mechanism we discussed in Section 8.2.1
when doing so. The MVEE’s monitor therefore cannot guarantee that the variants
will read the same input from shared memory pages that are being written to by an
external process. Similarly, the variants could also write to the pages directly, which
prevents the MVEE’s monitor from asserting that the variants write the same data
to the pages.

A possible solution to this problem is to revoke the variants’ access rights to
all shared memory pages. Each read from or write to the shared pages would
then result in a page fault. The operating system would translate this page fault
into a SIGSEGV signal, which is normally passed down to the program so it can

222 Chapter 8 Multi-Variant Execution Environments

invoke its signal handler. When a debugger is attached, however, a notification
is sent to the debugger first and the actual signal is not passed to the program
until the debugger has approved it. In an MVEE, this mechanism could be used
to intercept all accesses to shared memory. For each SIGSEGV signal that results
from a read operation on a shared memory page, the monitor could perform the
read operation itself and replicate the results to all variants. For write operations,
the monitor could perform the write itself. The monitor could then prevent the
SIGSEGV signal from being delivered, thus effectively emulating all accesses to the
shared memory pages. Emulating accesses to shared memory is, unfortunately,
prohibitively slow [Maebe et al. 2003] and completely negates the performance
benefits of using shared memory in the first place.

In GHUMVEE, we therefore opted to deny all requests to map shared memory,
unless the monitor can assert that the accesses to the shared memory will not
result in inconsistencies. Specifically, GHUMVEE denies all requests to map shared
memory through the System V IPC API, since any pages mapped through this API
can always be written by external processes that know the page identifiers.

For file mappings, on the other hand, GHUMVEE does allow read-only shared
mappings that are backed by files to which the user does not have write access.
Such mappings have content that is completely static (i.e., the pages cannot be
written to by either the variants or any external process that runs at the same
privilege level). The monitor can therefore still guarantee that the variants will
receive the same input. Allowing read-only shared mappings is necessary to support
dynamically linked programs since the program interpreter’s preferred method of
loading shared libraries is by mapping them using the file-mapping API.1

GHUMVEE does not allow read/write shared mappings. The monitor generally
returns an EPERM error when a variant attempts to establish such a mapping, thus
indicating that the mapping is not allowed. In specific cases, however, read/write
shared mappings are used not to communicate with external processes but instead
simply as an efficient way to access files. To handle these cases, we implemented a
mapping-type-override method. With this method, GHUMVEE changes the mapping
type from shared to private by overriding the arguments of the sys_mmap call that
is used to set up the mapping. Private mappings are implemented using Copy-On-
Write (COW) paging. The operating system will therefore create a private copy of
the privately mapped page when a variant attempts to write to it for the first time.
From that point onward, external processes can no longer influence the contents of

1. The program interpreter is a user-space OS component responsible for loading programs and
setting up their initial virtual address space.

8.3 Inconsistencies and False Positive Detections 223

the privately mapped page, which eliminates the need for the monitor to replicate
the contents of the pages to all variants. The monitor does, however, still verify
whether the variants all write the same contents to the privately mapped pages by
comparing the page contents when they are unmapped. If the contents of the pages
do not match, the monitor raise an alarm. If they do match, however, the monitor
writes the contents back to the backing file.

GHUMVEE’s handling of shared memory is similar to Cavallaro’s MVEE
[Cavallaro 2007] but is more advanced than other security-oriented MVEEs because
those do not support the mapping-type-override method.

8.3.2 Timing Information
Interactive and real-time applications frequently need to measure the length of a
time interval to guarantee that they function correctly. Media players, for example,
need to know exactly when to start rendering a frame. For such applications, the
timing information must be accurate, precise, and accessible with minimal over-
head. Both processor vendors and kernel programmers therefore offer an interface
to access timing information with minimal overhead.

All x86 processors since the original Pentium support the ReaD TimeStamp
Counter (RDTSC) instruction, which reads the value of a special-purpose register
that counts the number of clock cycles since the processor was powered on [Intel
2014]. This number can be divided by the clock frequency to accurately measure
the length of a time interval.

The 64-bit x86 version of the Linux kernel, as well as recent versions of the
32-bit x86 kernel, implement the Virtual Dynamic Shared Object (VDSO) [Linux
Programmer’s Manual 2017a]. The VDSO is a small, dynamically linked library
that is mapped into every running program’s virtual address space. It consists of
two memory pages: an executable memory page that contains code and a read-
only memory page that contains timing information. The VDSO implements virtual
system call functions. Each virtual system call is an optimized version of one of the
system calls that is exposed by the kernel. Unlike the system call they correspond
to, however, the virtual system calls execute entirely in user space, thus avoiding the
often costly mode and/or context switches that come with the execution of a normal
system call. Linux currently offers virtual system calls for each API that exposes
timing information.

Both the RDTSC instruction and the VDSO are therefore sources of timing infor-
mation that can be accessed without invoking an actual system call. Once again,
an MVEE’s monitor cannot guarantee that the variants that access this information
receive consistent input.

224 Chapter 8 Multi-Variant Execution Environments

GHUMVEE implements work-arounds for both problems. GHUMVEE’s monitor
sets the Time Stamp Disable (TSD) flag in the CR4 register of the processor within
the context of each running variant [Intel 2014]. Setting this flag discards the
variants’ privileges to execute the RDTSC instruction. Whenever the variants try to
execute an RDTSC instruction, the processor raises a general protection fault. The
operating system translates this fault into aSIGSEGV signal and notifies the monitor
accordingly. Whenever the monitor receives such a notification, it disassembles the
instruction that caused the fault. If the instruction is indeed an RDTSC, GHUMVEE
executes the instruction on the variants’ behalf and replicates the results.

To eliminate the inconsistencies caused by the VDSO, GHUMVEE overrides
the arguments of each sys_execve system call. This call is used to execute a
program. GHUMVEE changes the name of the program that must be executed into
the name of a small loader program we have created. This small loader program,
which we aptly call the GHUMVEE Program Loader (GPL),2 deletes the ELF auxiliary
vector entry argument that specifies the location of the VDSO [Linux Programmer’s
Manual 2017b]. Afterward, GPL manually maps the original program into the virtual
address space, sets up the initial stack exactly as it would have been set up had
GHUMVEE not overridden the arguments of the sys_execve call, and passes the
control to the original program. A program never invokes the VDSO directly but
instead uses the wrappers provided by the C standard library (libc). If the ELF
auxiliary vector entry for the VDSO is missing, however, libc falls back to using
the original system call that each virtual system call corresponds to. These original
system calls are intercepted by GHUMVEE’s monitor. An alternative solution could
be to replace the VDSO with a custom library that leverages GHUMVEE’s USRVP
replication infrastructure (see Section 8.3.7) to replicate the master variant’s system
call results to all slave variants.

To the best of our knowledge, GHUMVEE is the only existing MVEE that handles
the RDTSC instruction correctly. Along with Hosek and Cadar, who independently
proposed a solution of their own, we were also the first to handle system calls in the
VDSO correctly [Hosek and Cadar 2015]. Our proposed solutions have a minimal
performance impact on the many applications we tested. The RDTSC instruction
is typically only used during the start-up and shutdown of a program, e.g., to
measure the runtime of individual threads. Our proposed solution for the VDSO
does significantly impact the latency on executing individual timing-related system
calls. In Section 8.5, we propose a new monitor design that reduces this impact to
a bare minimum.

2. GPL is available under the BSD 3-clause license at http://github.com/stijn-volckaert/ReMon/
tree/master/MVEE_LD_Loader.

http://github.com/stijn-volckaert/ReMon/tree/master/MVEE_LD_Loader

8.3 Inconsistencies and False Positive Detections 225

8.3.3 File Operations
Multi-variant execution should be transparent to the variants and to external ob-
servers. GHUMVEE therefore uses the master call mechanism to ensure that I/O
operations are only performed once. With this mechanism, only the master variant
performs the actual I/O operations, and the monitor replicates the results to the
slave variants. Intuitively, it might also make sense to use master calls for system
calls that open, modify, or close file descriptors. Regular files, however, might be
mapped into the variants’ address spaces using the file-mapping API. If we apply the
master call mechanism to such files, any subsequent file-mapping request would
fail in all slave variants. GHUMVEE therefore allows slave variants to open, modify,
and close file descriptors for regular files.

The master call mechanism must still be used to open, modify, and close
other file descriptors, such as sockets, however. Certain system calls, such as sys_
accept, operate only on file descriptors associated with sockets that are in listening
state. Since only one socket can listen on each port, GHUMVEE uses master calls
for all socket operations.

Since some file descriptors are opened only in the master variant and some
are opened in all variants, the same file descriptor might have different values
in the different variants. As GHUMVEE must ensure that the multi-variant execu-
tion is transparent to the variants, the monitor replicates the same file descriptor
values to all variants, regardless of whether or not they have actually opened the
file. Whenever the variants perform a normal system call that they must all exe-
cute, GHUMVEE maps the replicated file descriptor value back to the original file
descriptor value at the system call entrance site. When the call returns, GHUM-
VEE maps the original file descriptor value back to the replicated file descriptor
value.

Although few details on how other MVEEs handle file descriptors are available,
we assume that most of them use a similar solution to ours. One notable exception
is Orchestra. Orchestra’s monitor performs most I/O operations on behalf of the
variants. Variants running in Orchestra therefore do not open any file descriptors
other than those for regular files.

8.3.4 Signal Handling
UNIX systems use signals as a general-purpose mechanism to send processes notifi-
cations [Linux Programmer’s Manual 2017c]. Each notification has a signal number
associated with it, and the signal number generally defines the notification’s mean-
ing. For example, when a program performs an invalid memory access, the kernel
sends it a SIGSEGV signal.

226 Chapter 8 Multi-Variant Execution Environments

Broadly speaking, we can distinguish between two kinds of signals. Control-flow
signals, such as SIGSEGV, are sent as a direct consequence of a program’s normal
control flow. The program cannot continue executing until the kernel has handled
the control-flow signal. If a control-flow signal is not blocked and the program has
registered a signal handler function for the signal in the handler table, the signal
is delivered synchronously. Asynchronous signals, on the other hand, originate from
an external source, and the program may continue executing while the kernel is
handling the delivery of an asynchronous signal.

Supporting control-flow signals in an MVEE is generally straightforward, as they
occur at the same point in each variant’s execution. Supporting asynchronous sig-
nals sent to the variants is extremely challenging, however. These signals can easily
trigger behavioral divergences in the variants if their delivery is not meticulously
controlled by the MVEE’s monitor. Since the monitor generally only intervenes in
the variants when they execute a system call, the variants may execute freely for the
most part. Consequently, one variant can easily run ahead of the others, and they
are generally not in equivalent states until they reach an RVP.

If the behavior of a signal handler used to handle an asynchronous signal de-
pends on the state of the variant in any way, delivering these asynchronous signals
directly all but guarantees behavioral divergence and thus a false positive alarm.
MVEEs that support asynchronous signals therefore attempt to defer their delivery
until the variants reach an RVP. At an RVP, the variants are in equivalent states,
and the asynchronous signals can be delivered synchronously without inducing a
divergence.

While the general principle of deferred synchronous signal delivery is simple,
its implementation is not. To the best of our knowledge, GHUMVEE is the only
MVEE that overcomes all the intricacies of asynchronous signal delivery and im-
plements deferred synchronous signal delivery correctly. We refer to Volckaert’s
PhD dissertation for a full overview of challenges that need to be overcome when
implementing deferred signal delivery in an MVEE [Volckaert 2015]. These chal-
lenges include, but are not limited to, correct handling of blocked and ignored
signals, support for per-thread signal masks, support for system call interruption,
support for master call interruption, and support for sys_sigsuspend and sys_

rt_sigsuspend.
GHUMVEE’s mechanism for handling asynchronous signal delivery is opti-

mized for correctness rather than performance. During our evaluation, we con-
cluded that almost every program that relies on signal handling still functions
correctly inside GHUMVEE. The only exception is the john-the-ripper program
in the phoronix 4.8.3 benchmark suite. This program waits for signals to be de-

8.3 Inconsistencies and False Positive Detections 227

livered in a busy loop, in which no system calls are used. Therefore, if GHUMVEE
intercepts a signal that is delivered to the variants, it indefinitely defers the delivery
of the signal because the variants never reach another system call RVP. One solu-
tion could be to start a timer when a signal is intercepted and to force the delivery
of the signal when the timer expires.

Orchestra’s mechanism for signal handling is optimized for performance rather
than correctness [Salamat et al. 2009]. Orchestra uses a heuristic to determine
whether a signal can be safely delivered, even if its variants have not reached a
system call RVP yet. However, Orchestra does not handle signals that interrupt
system calls correctly.

VARAN’s signal-handling mechanism is ideal with respect to performance and
correctness [Hosek and Cadar 2015]. VARAN is an IP monitor and therefore does
not rely on the ptrace API. Furthermore, VARAN forces its follower variants not to
invoke system calls at all. Instead, the follower variants just wait for the results of
the leader variants’ system calls. In VARAN, the leader variant accepts and processes
incoming signals without delay. While the follower variants generally do not receive
signals at all, the leader variant logs the metadata associated with the signal into the
event streaming buffer. This metadata provides the follower variants with sufficient
information to replay the invocation of the signal handler truthfully.

8.3.5 Address-Sensitive Behavior
Most of the sources of inconsistencies in the behavior of single-threaded variants
can be eliminated or mitigated by the monitor itself. The one notable exception is
address sensitivity, a problem frequently encountered in real-world software. The
monitored behavior of address-sensitive programs depends on their address space
layout. Any form of code, data, or address space layout diversification we use in
the variants can therefore lead to false positive detections by the monitor. We have
identified three problematic idioms that lead to address sensitivity, and we discuss
them now.

Address-Sensitive Data Structures. We have frequently encountered programs that
use data structures whose runtime layout and shape depends on numerical pointer
values. This practice is especially common among programs that rely on glib, the
base library of the GNOME desktop suite. glib exposes interfaces that C programs
may use to create, manage, and access hash tables and binary trees. The default
behavior of these glib data structures is to insert new elements based on their
location in memory: the (hash) keys used to select buckets and to order elements are

228 Chapter 8 Multi-Variant Execution Environments

based on the numerical pointer values. The problem in general is that the address-
sensitive behavior induces changes in the shape of allocated data structures, i.e.,
in the way they are linked via pointer chains.

Applying diversification techniques that result in diversified address space lay-
outs and shapes eventually yields divergences in the variants’ system call and syn-
chronization behavior. For example, in address-sensitive hash tables an insertion
of the same object can trigger a hash table collision and a subsequent memory al-
location request (e.g., through a sys_mmap call) to resize the table in some variants
but not in others.

While it might seem sensible to tolerate small variations in the system call
behavior, we typically cannot allow variations in the memory allocation behavior
of the variants, which we are bound to see in programs with address-sensitive data
structures. Variations in the memory allocation behavior cause a ripple effect in
multi-threaded variants: tolerating a minor discrepancy early on leads to bigger
and bigger discrepancies in the synchronization behavior and, consequently, in
the system call of the variants, to the point where we can no longer distinguish
between benign discrepancies and compromised variants.

Dynamic memory allocators are the instigators of this ripple effect. For example,
GNU libc’s ptmalloc attempts to satisfy any memory allocation request by reserv-
ing memory in one of its arenas. All accesses to the allocator’s internal bookkeep-
ing structures must be thread-safe. It therefore relies on thread synchronization to
ensure safety. As we discuss in the next section, GHUMVEE replicates the master
variant’s synchronization operations in the slave variants. Thus, if the variants be-
have differently with respect to memory allocations, the replicated synchronization
information might be misinterpreted by other variants because it does not match
their actual behavior. From that point onward, such variants will no longer replay
synchronization operations in the same order as the master and will therefore typ-
ically diverge from the master with respect to the system call behavior.

Allocation of Aligned Memory Regions. An additional problem we identified in pt-

malloc is its requirement that any memory region it allocates through sys_mmap

is aligned to a large boundary of, e.g., 1 MiB. The operating system only guarantees
that newly allocated memory regions are aligned to a boundary equal to the size of
a physical memory page. To bridge this gap, ptmalloc always allocates twice the
memory it needs and subsequently deallocates the region before and the region
after the boundary. When running multiple variants that use this memory alloca-
tor, the sizes of the deallocated upper and lower regions might differ. Worse yet,
in some cases the newly allocated memory might already be aligned to the desired

8.3 Inconsistencies and False Positive Detections 229

boundary and ptmalloc therefore only deallocates the upper region. This might
trigger false positive detections in MVEEs that execute their variants in lockstep,
since some variants may deallocate the lower and the upper region while others
only deallocate the upper region.

Writing Output That Contains Pointers. Some programs output numerical pointer
values. Unlike the previous problematic idioms, writing out pointers often leads to
only minor differences in the system call behavior, and we have not encountered
any cases where writing out pointers triggers a ripple effect. It is therefore sensible
to tolerate minor differences in the program output.

One problem to deal with, however, is that pointers are not always easily rec-
ognizable in a program’s output. Some programs encode pointers, e.g., by storing
them as an offset relative to a global variable or object. Encoded pointers are often
smaller than the size of a memory word.

Similarly, many programs and libraries use partially uninitialized structures as
arguments for a system call. The uninitialized portions of these structures may
contain leftovers of previous allocations. These leftovers often include pointers.
While it can often be considered a bug to pass uninitialized structures to the kernel,
there are cases where the programmer and the compiler are not to blame. An
optimizing compiler aligns members of a data structure to their natural boundary.
If necessary, padding bytes are inserted between the members. These padding bytes
are never used, and it is therefore acceptable that they are not initialized. If that is
the case, and they overlap with remainders of previously allocated objects, this can
once again lead to minor variations in the output behavior.

All of the above idioms lead to discrepancies in the variants’ system call behavior
and/or synchronization behavior. Small variations in the system call behavior can in
some cases be tolerated, especially if the variations are limited to the arguments of
a single system call. Variations in the synchronization behavior cannot be tolerated,
however, as we argue in the next section.

8.3.6 Nondeterminism in Parallel Programs
Except for the few cases we discussed in the previous sections, single-threaded
variants produce the same outputs when given the same program inputs. The same
is not true of multi-threaded variants, in which threads may communicate directly
through shared memory, without using system calls. In these variants, the output
also depends on the runtime thread interleaving. Security-oriented MVEEs, which
run variants in strict lockstep, must therefore control the thread interleaving such
that each variant makes the same system calls with equivalent arguments.

230 Chapter 8 Multi-Variant Execution Environments

Two lines of research address exactly this challenge. On the one hand, there are
the Deterministic Multi-Threading (DMT) systems, which repeat the same thread
interleaving when given the same program inputs [Basile et al. 2002, Reiser et al.
2006, Berger et al. 2009, Liu et al. 2011, Merrifield and Eriksson 2013, Cui et al. 2013,
Olszewski et al. 2009, Lu et al. 2014, Devietti et al. 2009, Bergan et al. 2010, Zhou
et al. 2012]. On the other hand, there are online Record/Replay (R/R) systems, which
capture the thread interleaving in one running instance of a program and impose
this captured schedule in a concurrently running instance [Basile et al. 2006, Lee
et al. 2010, Basu et al. 2011].

DMT systems are an ill fit in the context of MVEEs, as such systems are likely to
impose a different thread interleaving whenever the program code or code layout
changes. Thus, running diversified variants in which the code layout differs with
near certainty and with DMT on top of an MVEE will still result in different thread
interleavings and, consequently, divergent behavior. We refer to our earlier work
for an in-depth reasoning to support this argument [Volckaert et al. 2017].

In GHUMVEE, we therefore opt for the second option. R/R systems usually
capture the thread interleaving at the granularity of synchronization operations
(e.g., pthread mutex operations). The underlying thought is that in data-race-free
programs, any inter-thread communication must, by definition, be protected by
critical sections. Imposing an equivalent synchronization operation schedule in
every execution of the program thus trivially leads to a thread interleaving that is
equivalent for each run. Since synchronization operations are not likely to differ
between diversified variants, R/R systems are a much better fit than DMT in the
context of an MVEE.

8.3.7 User-Space Rendezvous Points
In order to maintain equivalent system call behavior, even in parallel programs
or in programs that feature address-sensitive behavior, we introduce user-space
rendezvous points (USRVPs). Conceptually, we add these USRVPs to any operation
in the variants’ code if (i) the operation may affect the variants’ system call behavior
and (ii) the operation may produce different results in each variant. At each USRVP,
we insert calls to a replication agent. This replication agent is a shared library
we forcefully load into each variant’s address space. As shown in Figure 8.3, the
replication agent captures the results of the instrumented operation in the master
variant and stores them in a circular buffer that is visible to all variants. The agent
then forces the slave variants to overwrite the results of their own instrumented
operations with the results produced by the master variant.

8.3 Inconsistencies and False Positive Detections 231

replication
agent

replication
agent

Replication
agent

Replication
agent

Replication
buffer Slave variants

Master variant

KernelGHUMVEE

Figure 8.3 Using replication agents to replicate nondeterministic program behavior.

We developed three components that help a developer with the implementation
of USRVPs and replication agents:3

The GHUMVEE replication API. The GHUMVEE replication API can be used
to generate the replication agents and the USRVPs. The API consists of a set
of preprocessor macros that expand into C functions. These C functions im-
plement the recording and forwarding logic of the replication agent. In the
master variant, the generated function can retrieve the results of the instru-
mented operation by calling a programmer-specified function. It can then
record the input into a circular buffer. In the slave variants, the generated
function retrieves the results from the circular buffer. The replication API
further allows the programmer to specify whether or not the slaves should
also execute the instrumented operation. This may be necessary, e.g., if the
instrumented operation has side effects that may affect future system call
and synchronization behavior.

The Lazy hooker. The generated USRVP functions can be embedded in the
variant by registering them with a shared library, which we call “the lazy
hooker.” This library monitors the dynamic loading process of the variants
and determines whether or not a USRVP generated with the above API should
be installed. At the time of the registration, the lazy hooker may insert the
USRVP function immediately, if the specified library has already been loaded,
or it can defer the insertion until the program loads the library.

3. We refer interested readers to Volckaert’s Ph.D. thesis for an extensive discussion that includes
usage examples [Volckaert 2015].

232 Chapter 8 Multi-Variant Execution Environments

The LinuxDetours library. We insert the USRVP functions using LinuxDe-

tours, a runtime code-patching library we developed for use in GHUMVEE.
The library is named after Microsoft’sDetours library and implements a sub-
set of the official Detours API [Hunt and Brubacher 1999]. LinuxDetours
can redirect calls to functions and generate trampolines that may be used to
call the original function, without interception.

8.3.7.1 USRVP Applications
GHUMVEE currently relies on USRVPs for two purposes. First, we add USRVPs to
all thread synchronization operations in order to embed our R/R system into the
variants. Thanks to our replication APIs and infrastructure, we were able to con-
struct an R/R system that captures the order of thread synchronization operations
in the master variant and replays an equivalent order in the slave variants. Con-
trary to most existing R/R systems, which capture only high-level synchronization
operations, such as pthread mutex operations, we capture the order of all thread
synchronization operations, including individual atomic instructions.

Second, we add USRVPs to operations on address-dependent data structures,
such as the ones described in Section 8.3.5. At these USRVPs, we capture values such
as pointer hashes and pointer comparison results used by sorting algorithms, and
we force all the variants to use the same values. Thanks to our USRVPs, GHUMVEE
can ensure that address-dependent data structures potentially allocated at different
memory locations have the same shape in all variants.

It is important to note that USRVPs are application specific. Although we be-
lieve that the identification of USRVP insertion points can be automated to some
extent, some help from the application developer will always be required. We re-
fer to our earlier work for details on USRVP insertion point identification, the
construction of efficient replication agents and R/R systems, and automation op-
portunities [Volckaert et al. 2013, Volckaert et al. 2017].

Evaluation and Comparison with other MVEEs
We applied our replication API and infrastructure to run a variety of applications, in-
cluding the SPLASH-2x and PARSEC 2.1 parallel benchmark suites and two popular,
though now outdated, desktop programs: the Firefox 3.6 browser and the LibreOf-
fice 4.5 office suite.

To run the parallel benchmark suites, we constructed a replication agent that
contains an R/R system and embedded this agent into glibc. This R/R replication
agent is called from the more than 1,000 USRVPs we added to thread synchroniza-

8.4 Comprehensive Protection against Code-Reuse Attacks 233

tion operations in the glibc, libgomp, libpthread, and libstdc++ libraries, as
well as a few of the program binaries.

To run Firefox and LibreOffice, we constructed five different replication agents,
each one supporting a particular address-sensitive data structure.

To the best of our knowledge, GHUMVEE is the only MVEE to date that has any
provisions to eliminate inconsistencies resulting from address-sensitive behavior
and user-space synchronization operations.

8.4 Comprehensive Protection against Code-Reuse Attacks
In 2007 Shacham presented the first Return-Oriented Programming (ROP) attacks
for the x86 architecture [Shacham 2007]. He demonstrated that ROP attacks, unlike
return-to-libc attacks, can be crafted to perform arbitrary computations, provided
that the attacked application is sufficiently large. ROP attacks were later generalized
to architectures such as SPARC [Buchanan et al. 2008], ARM [Kornau 2010], and
many others.

8.4.1 Disjoint Code Layouts
As an alternative protection against user-space ROP attacks, we present Disjoint
Code Layouts (DCL). With this diversification technique, GHUMVEE ensures that
no code segments in the variants’ address spaces overlap. Lacking overlapping
code segments, no code gadgets co-exist in the different variants to be executed
during ROP attacks. Hence no ROP attacks can alter the behavior of all variants
consistently. Our design and implementation of DCL offers many advantages over
existing solutions:

. DCL offers complete immunity against user-space ROP attacks rather than
just raising the bar for attackers.

. The execution slowdown incurred by this form of diversification is minimal.

. A single version of the application binary suffices to protect against ROP
attacks. Optionally, our monitor supports the execution and replication of
multiple diversified binaries of an application to protect against other types
of exploits as well.

. DCL is compatible with existing compilers and existing solutions such as
stack canaries [Cowan et al. 1998] and control-flow integrity [Abadi et al.
2005a, Tice et al. 2014].

. Unlike some existing techniques for memory layout diversification in MVEEs,
DCL causes only marginal memory footprint overhead within the protected

234 Chapter 8 Multi-Variant Execution Environments

application’s address space. Thus, DCL can protect programs that flirt with
address space boundaries on, e.g., 32-bit systems. Systemwide, DCL does
of course still cause considerable memory overhead due to its duplication
of process-local data regions, such as the heap and writable pages. Still,
GHUMVEE with DCL outperforms memory-checking tools in this regard.

Our technique of DCL is implemented mostly inside GHUMVEE’s monitor. Its
support for DCL is based on the following Linux features:

. In general, any memory page that might at some point contain executable
code is mapped through a sys_mmap2 call. When the program interpreter
(e.g., ld-linux) or the standard C library (e.g., glibc) load an executable
or shared library, the initial sys_mmap2 requests that the entire image be
mapped with PROT_EXEC rights. Subsequent sys_mmap2 and sys_mprotect

calls then adjust the alignment and protection flags for non-executable parts
of the image. (The few exceptions are discussed later.)

. Even with ASLR enabled, Linux allows for mapping pages at a fixed address
by specifying the desired address in the addr argument of the sys_mmap2

call.

. When a variant enters a system call, this constitutes an RVP for GHUMVEE,
at which point GHUMVEE can modify the system call arguments before the
system call is passed on to the OS. Consequently, GHUMVEE can modify the
addr arguments of all sys_mmap2 calls to control the variant’s address space.

As shared libraries are loaded into memory from user space (i.e., by the pro-
gram interpreter component to which the kernel transfers control when returning
from the sys_execve system call used to launch a new process), GHUMVEE can
fully control the location of all loaded shared libraries. It suffices to replace the
arguments of any sys_mmap2 call invoked with PROT_EXEC protection flags and
originating from within the interpreter. Some simple bookkeeping in the moni-
tor then suffices to enforce that the code mapped in the different variants does not
overlap, i.e., that whenever one variant maps code onto some address in its address
space, the other ones do not map code there.

8.4.2 Mapping Segments Normally Mapped by the Kernel
Some code regions require special handling, however. Under normal circum-
stances the kernel maps the program image (i.e., the main binary’s segments),
the program interpreter, and the VDSO. When ASLR is enabled, it maps them at
randomized addresses. But randomized addresses in all the variants do not suffice

8.4 Comprehensive Protection against Code-Reuse Attacks 235

to guarantee disjoint code layout. Because GHUMVEE cannot intervene in decision
processes in kernel space, it therefore needs to prevent the kernel from mapping
them and instead have them mapped from user space, i.e., by the program inter-
preter. GHUMVEE can then again intercept the mapping system calls and enforce
non-overlapping mappings of code regions.

Disjoint Program Images. The standard way to launch new applications is to fork
off a running process and invoke a sys_execve system call. For example, to read a
directory’s contents with the ls tool, the shell forks and invokes

sys_execve("/bin/ls", {"ls", ...}, ...);

The kernel then clears the virtual address space of the forked process and maps
the mentioned components and a main process stack into its now empty address
space.

Mapping the program image from within user space is rather trivial. It suffices
to load a program indirectly, rather than directly, with a slightly altered system call

sys_execve("/lib/ld-linux.so.2", {"ld-linux.so.2", "/bin/ls",

argv[1], ...}, NULL);

If a program is loaded indirectly, the kernel maps only the program interpreter, the
VDSO, and the initial stack into memory. The remainder of the loading process is
handled by the interpreter from within user space. Through indirect invocation,
GHUMVEE can override the sys_mmap2 request in the interpreter that maps the
program image. In order to allow GHUMVEE to choose a different address for the
program image in each variant, the program needs be compiled into a Position-
Independent Executable (PIE). Recent versions of GCC and LLVM can do so without
introducing significant overheads.

At this point, it is important to point out that GHUMVEE does not itself launch
applications through this altered system call. Instead, GHUMVEE lets the original,
just forked-off processes invoke the standard system call, after which GHUMVEE
intercepts that system call and overrides its arguments before passing them to the
kernel. This way, GHUMVEE can control the layout of the variants’ processes it
spawns itself as well as the layout of all the processes subsequently spawned within
the variants. This is an essential feature to provide complete protection in the case
of multi-process applications, such as applications that are launched through shell
scripts.

236 Chapter 8 Multi-Variant Execution Environments

Program Interpreter. Even with the above indirect program invocation, we cannot
prevent the kernel itself from mapping the program interpreter. Hence the indirect
invocation does not suffice to ensure that no code regions overlap in the variants.

In Linux, the interpreter is only mapped when the kernel loads a dynamically
linked program. To prevent that loading even when launching dynamically linked
programs, we developed a statically linked loader program, hereafter referred to as
the GHUMVEE Program Loader (GPL). Whenever an application is launched under
the control of GHUMVEE, it is launched by launching GPL and having GPL load
the actual application. Launching GPL is again done by intercepting the original
sys_execve calls in GHUMVEE and rewriting their arguments.

VDSO. In each variant launched by GHUMVEE, the copy of GPL is started under
GHUMVEE’s control. At GPL’s entry point, GHUMVEE first checks whether the
VDSOs, which were allocated randomly in each variant with ASLR, are disjoint. If
they are not, GHUMVEE restarts new variants until a layout is obtained in which
the VDSOs are disjoint. Until recently, the Linux kernel mapped the VDSO anywhere
between 1 and 1,023 pages below the stack on the i386 platform. It was therefore not
uncommon that GHUMVEE had to restart one or more variants. However, a single
restart takes less than 4 ms on our system, so the overall performance overhead is
negligible.

After ensuring that the VDSOs are disjoint, GPL manually maps the program
interpreter through sys_mmap2 calls. This way, GHUMVEE can override the base
addresses of the variants’ interpreters to map them onto regions that contain no
code in the other variants.

Program Stack. Next, GPL sets up an initial stack in each variant with the exact
same layout as when the interpreter would have been loaded by the kernel. Setting
up this stack requires several modifications to the stack that the kernel had set up
for GPL itself, but this is rather simple to implement.

GPL then transfers control to GHUMVEE through a pseudo system call. GHUM-
VEE intercepts this call and modifies the call number and arguments such that the
kernel unmaps GPL in each variant. Upon return from the call to GHUMVEE, it
transfers control to the program interpreter. When the variants then resume, they
have fully disjoint code layouts.

Original Program and Shared Libraries. In each variant, the interpreter then contin-
ues to load and map the original program and the shared libraries, all of which will
be subject to DCL as GHUMVEE intercepts the invoked system calls. Afterward, the

8.4 Comprehensive Protection against Code-Reuse Attacks 237

interpreter passes control to the program in each of the variants, which are then
all ready to start executing the actual programs.

Assuming that the original program stack is protected by W⊕X, the summarized
loading and mapping process is rather complicated, but from the user’s perspective
this completely transparent launching process allows us to control, in user space,
the exact base address of every region that might contain executable code during
the execution of the actual program launched by the user.

The end result is two or more variants with completely disjoint code regions.
Any divergence in I/O behavior caused by a ROP attack successfully attacking one
variant will be detected and aborted by the monitor.

8.4.3 Disjoint Code Layout vs. Address Space Partitioning
Cox et al. and Cavallaro independently proposed to combat memory exploits with
essentially identical techniques they called Address Space Partitioning (ASP) [Cox
et al. 2006] and Non-Overlapping Address Spaces [Cavallaro 2007], respectively. We
will refer to both as ASP.

ASP ensures that addresses of program code (and data) are unique to each
variant, i.e., that no virtual address is ever valid for more than one variant. ASP
does this by effectively dividing the amount of available virtual memory by N ,
with N being the number of variants running inside the system. We relaxed this
requirement. In DCL, only code addresses must be unique among the variants,
but data addresses can occur in multiple variants. So for real-life programs, DCL
reduces the amount of available virtual memory by a much smaller fraction than N .

Another significant difference between both of the proposed ASP techniques
and DCL is that both implementations of ASP require modifications to either the
kernel or the program loader. Cox’s N-Variant Systems was fully implemented in
kernel space. This way, N-Variant Systems can easily determine where each mem-
ory block should be mapped. Cavallaro’s ASP implementation requires a patched
program loader (ld-linux.so.2) to remap the initial stack and override future map-
ping requests. By contrast, GHUMVEE and DCL do not rely on any changes to the
standard loader, standard libraries, or kernel installed on a system. As such, DCL
can much more easily be deployed selectively, i.e., for part of the software stack
running on a machine, similar to how PIE is used for selected programs on current
Linux distributions. As is the case with the relaxed monitoring policies we describe
in Section 8.5, by refraining from modifying core system libraries, GHUMVEE of-
fers the end user a great degree of flexibility in when, how, and where its security
features should be used.

238 Chapter 8 Multi-Variant Execution Environments

Finally, whereas DCL relies on PIE [Murphy 2012] to achieve non-overlapping
code regions in the variants, both presented forms of ASP rely on standard, non-
PIE ELF binaries, despite the fact that PIE support was added to the GCC/binutils
toolchain in 2003, well before ASP was proposed. Those non-PIE binaries cannot be
relocated at load time. Enabling ASP is therefore only possible by compiling mul-
tiple versions of the same ELF executable, each at a different fixed address. ASP
tackles this problem by deploying multiple linker scripts for generating the nec-
essary versions of the executable. Unlike regular ELF executables, PIE executables
can be relocated at load time. So our DCL solution requires only one, PIE enabled,
version of each executable. This feature can again facilitate widespread adoption
of DCL.

8.4.4 Compatibility Considerations
Programs that use self-modifying or dynamically compiled, decrypted, or down-
loaded code may require special treatment when run with DCL. Particularly, GHUM-
VEE needs to ensure that these programs cannot violate the DCL guarantees. We
therefore clarify how GHUMVEE interacts with the program variants in a number
of scenarios.

Changing the protection flags of memory pages that were not initially mapped as
executable is not allowed. GHUMVEE keeps track of the initial protection flags for
each memory page. If the initial protection flags do not include the PROT_EXECflag,
the memory page was not subject to DCL at the time it was mapped and GHUMVEE
therefore refuses any requests to make the page executable by returning the EPERM
error from thesys_mprotect call that is used to request the change. This inevitably
prevents some JIT engines from working out of the box. However, adapting the JIT
engine to restore compatibility is trivial. It suffices to request that any JIT region be
executable at the time it is initially mapped.

Changing the protection flags of memory pages that were initially mapped as
executable is allowed without restrictions. GHUMVEE does not deny any sys_

mprotect requests to change the protection flags of such pages.
Programs that use the infamous “double-mmap method” to generate code that

is immediately executable do not work in GHUMVEE. With the double-mmap
method, JIT regions are mapped twice—once with read/write access and once
with read/execute access [Moser 2006, Drepper 2006]. The code is generated by
writing into the read/write region and can then be executed from the read/execute
region. On Linux, a physical page can only be mapped at two distinct locations
with two distinct sets of protection flags through the use of one of the APIs for
shared memory. As we discussed in Section 8.2, GHUMVEE does not allow the

8.4 Comprehensive Protection against Code-Reuse Attacks 239

use of shared memory. Applications that use the double-mmap method therefore
would not work. That being said, in this particular case we do not consider our
lack of support for bi-directional shared memory as a limitation. Any attacker
with sufficient knowledge of such a program’s address space layout would be able
to write executable code directly, which renders protection mechanisms such as
W⊕X useless. The double-mmap method is therefore nothing short of a recipe
for disaster. In practice, we only witnessed this method being used once, in the
vtablefactory of LibreOffice.

8.4.5 Protection Effectiveness
We cannot provide a formal proof of the effectiveness of DCL. Informally, we can
argue that by intercepting all system calls, GHUMVEE can ensure that not a single
region in the virtual memory address space has its protections set to PROT_EXEC

in more than one variant. Furthermore, GHUMVEE’s replication ensures that all
variants receive exactly the same input. This is the case for input provided through
system calls and through signals. Combined, these features ensure that when an
attacker passes an absolute address to the application by means of a memory
corruption exploit, the code at that address is executable in no more than one
variant. The operating system’s memory protection makes the variants crash as
soon as they try to execute code in their non-executable or missing page at the same
virtual address.

We should point out, however, that this protection only works against external
attacks, i.e., attacks triggered by external inputs that feed addresses to the program.
Artificial ROP attacks set up from within a program itself, as is done in the runtime
intrusion prevention evaluator (RIPE) [Wilander et al. 2011], are not necessarily
prevented, because in such attacks return addresses are computed within the pro-
grams themselves. For those return addresses, different values are hence computed
within the different variants, rather than being replicated and intercepted by the
replication engine.

To validate the above claimed effectiveness of GHUMVEE with DCL to some
extent, we constructed four ROP attacks against high-profile targets. The attacks
are available at http://github.com/stijn-volckaert/ReMon/.

Our first attack is based on the Braille tool by Bittau et al. [2014]. It exploits a
stack buffer overflow vulnerability (CVE-2013-2028) in the nginx web server. The
attack first uses stack reading to leak the stack canary and the return address at the
bottom of the vulnerable function’s stack frame. From this address, it calculates
the base address of the nginx binary and uses prior knowledge of the nginx binary
to set up a ROP chain. The ROP program itself grants the attacker a remote shell. We

http://github.com/stijn-volckaert/ReMon/

240 Chapter 8 Multi-Variant Execution Environments

tested this attack by compiling nginx with GCC 4.8, with both PIE and stack canaries
enabled. The attack succeeds when nginx is run natively with ASLR enabled and
when nginx is run inside GHUMVEE with only one variant. If we run the attack on
two variants, however, it fails to leak the stack canary. While attempting to leak
the stack canary, at least one variant crashes for every attempt. Whenever a variant
crashes, GHUMVEE assumes that the program is under attack and shuts down all
other variants in the same logical process. Despite the repeatedly crashing worker
processes, the master process manages to restart workers quickly enough to keep
the server available throughout the attack.

While GHUMVEE with DCL blocks this attack, the attack probably would not
have worked even with DCL disabled: with more than one variant, the attack’s stack-
reading step can only succeed if every variant uses the same value for its stack canary
and the same base address for the nginx binary. To prove that DCL does indeed stop
ROP attacks, we therefore constructed three other attacks against programs that do
not use stack canaries and for which we read the memory layout directly from the
/proc interface rather than through stack reading.

Our second attack exploits a stack buffer overflow (CVE-2010-4221) in the
proftpd FTP server. The attack scans the proftpd binary and the libc library
for gadgets for the ROP chain, and reads the load addresses of proftpd and libc

from /proc/pid/maps to determine the absolute addresses of the gadgets. The
gadgets are combined in a ROP chain that loads and transfers control to an arbi-
trary payload. In our proof of concept, this payload ends with an execve system call
used to copy a file. The buffer containing the ROP chain is sent to the application
over an unauthenticated FTP connection. The attack succeeds when proftpd is run
natively with ASLR enabled and also when run inside GHUMVEE with only one vari-
ant. When run with two variants, GHUMVEE detects that one variant crashes while
the other attempts to perform a sys_execve call. GHUMVEE therefore assumes
that an attack is in progress, and it shuts down all variants in the same logical
process. During the attack, proftpd’s master process manages to restart worker
processes quickly enough to keep the server available throughout the attack.

Our third attack exploits a stack-based buffer overflow (CVE-2012-4409) in
mcrypt, an encryption program intended to replace crypt. The attack loads ad-
dresses of the mcrypt binary and the libc library from the /proc interface to
construct a ROP chain, which is sent to the mcrypt application over a pipe. The
attack succeeds when mcrypt is run natively with ASLR enabled and also when run
inside GHUMVEE with only one variant. When run with two variants, GHUMVEE
detects a crash in one variant and an attempt to perform a system call in the other.
It therefore shuts down the program to prevent any damage to the system.

8.5 Relaxed Monitoring 241

Our fourth attack exploits a stack-based buffer overflow vulnerability (CVE-2014-
0749) in the TORQUE resource manager server. The attack reads the load address of
the pbs_server process, constructs a ROP chain to load and execute an arbitrary
payload from found gadgets, and sends it to the server over an unauthenticated
network connection. The attack succeeds when TORQUE is run natively with ASLR
enabled and also when run inside GHUMVEE with only one variant. When run with
two variants, GHUMVEE detects a crash in one variant and an attempt to perform a
system call in the other. It therefore shuts down the program to prevent any damage
to the system.

8.5 Relaxed Monitoring
Most of the security-oriented MVEEs that preceded GHUMVEE incur non-negligible
runtime performance overhead. This overhead can be attributed to two key design
decisions: the strict lockstep synchronization model for system calls and the CP/UL
operation of the MVEE’s monitor.

Both of these design decisions aggressively favor security over performance. In
this section, we revisit these key decisions and present a new MVEE design called
ReMon. ReMon incurs significantly lower runtime overhead than other CP/UL
MVEEs, while maintaining a high level of security.

Our design is motivated by the fact that a security policy of monitoring all sys-
tem calls is overly conservative [Garfinkel et al. 2004, Provos 2003]. Many system
calls cannot affect any state outside of the process making the system call. Only
a small set of sensitive system calls are potentially useful to an attacker. Thanks
to its IP-MON component discussed below, ReMon supports configurable relax-
ation policies that allow non-sensitive calls to execute without being cross-checked
against other variants.

8.5.1 ReMon Design and Implementation
Like GHUMVEE, ReMon supervises the execution of multiple diversified program
variants that run in parallel. ReMon’s main goals are (i) to monitor all security-
sensitive system calls—hereafter referred to as “monitored calls”—issued by these
variants; (ii) to force monitored calls to execute in lockstep; (iii) to disable moni-
toring and lockstepping for non-security-sensitive system calls—hereafter referred
to as “unmonitored calls”—thus allowing the variants to execute these calls as ef-
ficiently as possible while still providing them with consistent system call results;
and (iv) to support configurable monitoring relaxation policies that define which

242 Chapter 8 Multi-Variant Execution Environments

Kernel

GHUMVEE

Variant

sys_read(…)1

IP-MON

2 +
&RB

43 2′

IK Broker-
interceptor

4′

IK Broker-
verifier

Figure 8.4 ReMon’s major components and interactions.

subset of all system calls is considered non-security-sensitive, and therefore should
not be monitored. ReMon uses three main components to attain these goals:

GHUMVEE is the security-oriented CP monitor implemented as discussed in the
preceding sections. Although GHUMVEE can be used in stand-alone fashion,
it only handles monitored calls when used as part of ReMon.

IP-MON is an in-process monitor loaded into each variant as a shared library. IP-
MON provides the application with the necessary functionality to replicate
the results of unmonitored calls.

IK-B is a small in-kernel broker that forwards unmonitored calls to IP-MON and
monitored calls to GHUMVEE. IK-B also enforces security restrictions on IP-
MON and provides auxiliary functionality that cannot be implemented in
user space. The broker is aware of the system calls that IP-MON handles and
of the relaxation policy that is in effect.

These three components interact whenever a variant executes a system call,
as shown in Figure 8.4. Our kernel-space system call broker, IK-B, intercepts the
system call ©1 and either forwards it to IP-MON ©2 or to GHUMVEE ©2′ . The call is
forwarded to IP-MON only if the variant has loaded an IP-MON that can replicate
the results of the call, and if the active relaxation policy allows the invoked call to
be executed as an unmonitored call. If these two criteria are not met, IK-B uses the
standard ptrace facilities to forward the call to GHUMVEE instead, which handles
it exactly as a regular CP-MVEE.

In the former case, IK-B forwards the call by overwriting the program counter
so that the system call returns to a known “system call entry point” in IP-MON’s

8.5 Relaxed Monitoring 243

executable code. While doing so, IK-B gives IP-MON a one-time authorization to
complete the execution of the call without having the call reported to GHUMVEE.
The broker grants this authorization by passing a random 64-bit token ©2 as an
implicit argument to the forwarded call. IP-MON then performs a series of security
checks and eventually completes the execution of the forwarded call by restarting
it ©3 . IP-MON can choose to restart the call with or without the authorization
token still intact. If the token is intact upon reentering the kernel, IK-B allows the
execution of the system call to complete and returns the call’s results to IP-MON
©4 . If the token is not intact, or if IP-MON executes a different system call, or if the
first system call executed after a token has been granted does not originate from
within IP-MON itself, IK-B revokes the token and forces the call to be forwarded to
GHUMVEE ©4′ .

IP-MON generally executes unmonitored system calls only in the master vari-
ant and replicates the results of the system call to the slave variants through the
Replication Buffer (RB) discussed in Section 8.5.1.2. The slaves wait for the master
to complete its system call and copy the replicated results from the RB when they
become available.

Although IP-MON allows the master variant to run ahead of the slaves, it still
checks if the variants have diverged. To do so, the master’s IP-MON deep-copies
all its system call arguments into the RB, and the slaves’ IP-MONs compare their
own arguments with the recorded ones when they invoke IP-MON. This measure
minimizes opportunities for asymmetrical attacks (cf. Section 8.5.2).

8.5.1.1 Securing the Design
The IK-B verifier only allows variants to complete the execution of unmonitored
system calls if those calls originate from within an IP-MON instance having a
valid one-time authorization token. As only the IK-B interceptor can generate valid
tokens, this mechanism forces every unmonitored system call to go through IK-B. At
the same time, it also ensures that IP-MON can only execute unmonitored system
calls if it is invoked by IK-B and it is invoked through its intended entry point. This
mechanism is, in essence, a form of control-flow integrity [Abadi et al. 2005a]. It
also allows us to hide the location of the RB, thereby preventing the RB from being
accessed from outside IP-MON. Protecting the RB is of critical importance to the
security of our MVEE, as we discuss in Section 8.5.2. To fully hide the location of
the RB while still allowing benign accesses, we ensure that the pointer to the RB is
only stored in kernel memory.

IK-B loads the RB pointer and the token into designated processor registers
whenever it forwards a call to IP-MON, and IP-MON is designed and implemented

244 Chapter 8 Multi-Variant Execution Environments

such that it does not leak these sensitive values into user-space-accessible memory.
First, we compile IP-MON using gcc and use the -ffixed-reg option to remove
the RB pointer and authorization token’s designated registers from gcc’s register
allocator. This ensures that the sensitive values never leak to the stack nor to
any other register. Second, we carefully craft specialized accessor functions to
access the RB. These functions may temporarily load the RB pointer into other
registers, e.g., to calculate a pointer to a specific element in the RB, but they
restore these registers to their former values upon returning. We also force IP-
MON to destroy the RB pointer and authorization token registers themselves upon
returning to the system call site. Finally, we use inlining to avoid indirect control-
flow instructions from IP-MON’s system call entry point. This ensures that IP-
MON’s control flow cannot be diverted to a malicious function that could leak the
RB pointer or authorization token.

ReMon further prevents discovery of the RB through the /proc/maps interface: it
forcibly forwards all system calls accessing the maps file to GHUMVEE and it filters
the data read from the file. This requires marking the maps file as a special file, as
described in Section 8.5.1.6.

To prevent IP-MON itself from being tampered with, we also force all system
calls that could adversely affect IP-MON to be forwarded to GHUMVEE. These calls
(e.g., sys_mprotect and sys_mremap) are then subject to the default lockstep
synchronization mechanism.

8.5.1.2 The IP-MON Replication Buffer
Like the replication agents discussed in Section 8.3.7, IP-MON must be embedded
into all variants, so it consists of multiple independent copies, one per variant.
These copies must cooperate, which requires an efficient communication channel.
Although a socket or FIFO could be used, we opted for an RB stored in a memory
segment and shared by all the variants.

To increase the scalability of our design, we opted not to use a true circular
buffer. Instead, we use a linear RB. When our RB overflows, we signal GHUMVEE
using a system call. GHUMVEE then waits for all variants to synchronize, resets
the buffer to its initial state, and resumes the variants. Involving GHUMVEE as an
arbiter avoids costly read/write sharing on RB variables that keep track of where
data starts and ends in the RB. Instead, each variant thread only reads and writes
its own RB position. The implementation of the IP-MON RB is nearly identical to
that of the RBs GHUMVEE uses to support USRVPs (see Section 8.3.7).

8.5 Relaxed Monitoring 245

/* read(int fd, void * buf, size_t count) */

MAYBE_CHECKED(read) {

// check if our current policy allows us to dispatch read

// calls on this file as unmonitored calls

return !can_read(ARG1);

}

CALCSIZE(read) {

// reserve space for 3 register arguments

COUNTREG(ARG);

COUNTREG(ARG);

COUNTREG(ARG);

// one buffer whose maximum size is in argument 3 of syscall

COUNTBUFFER(RET, ARG3);

}

PRECALL(read) {

// compare the args each variant passed to the call.

// if they match, we allow only the master to complete the call,

// while the slaves wait for the master’s results.

CHECKREG(ARG1);

CHECKPOINTER(ARG2);

CHECKREG(ARG3);

return MASTERCALL | MAYBE_BLOCKING(ARG1);

}

POSTCALL(read) {

// replicate the results

REPLICATEBUFFER(ARG2, ret);

}

Listing 8.1 Replicating the read system call in IP-MON.

8.5.1.3 Adding System Call Support
ReMon currently supports well over 200 system calls. To provide a fast path, IP-
MON supports a subset of 67 system calls. However, adding support to IP-MON for
a new system call is generally straightforward. IP-MON offers a set of C macros to
describe how to handle the replication of the system call and its results.

As an example, Listing 8.1 shows IP-MON’s code for the read system call. The
code is split across four handler functions that each implement one step in the
handling of a system call using the C macros provided by IP-MON.

First, the MAYBE_CHECKED function is called to determine if the call should be
monitored by GHUMVEE. If the MAYBE_CHECKED handler returns true, IP-MON

246 Chapter 8 Multi-Variant Execution Environments

forces the original system call to be forwarded to GHUMVEE (©4′) by destroying the
authorization token and restarting the call.

IP-MON uses a fixed-size RB to replicate system call arguments, results, and
other system call metadata. Prior to restarting the forwarded call, we therefore need
to calculate the maximum size this information may occupy in the RB. If the size of
the data as calculated by the CALCSIZE handler exceeds the size of the RB, IP-MON
forces the original system call to be forwarded to GHUMVEE. If the data size does
not exceed the size of the RB, but it is bigger than the available portion of the RB,
the master waits for the slaves to consume the data already in the RB, after which
it resets the RB.

Next, if IP-MON has decided not to forward the original system call to GHUM-
VEE, it calls the PRECALL handler. In the context of the master variant, this function
logs the forwarded call’s arguments, call number, and a small amount of metadata
into the RB. This metadata consists of a set of boolean flags that indicate whether
or not the master has forwarded the call to GHUMVEE, whether or not the call
is expected to block when it is resumed, etc. If the function is called in a slave
variant’s context, IP-MON performs sanity checking by comparing the slave’s ar-
guments with the master’s arguments. If they do not match, IP-MON triggers an
intentional crash, thereby signaling GHUMVEE through the ptrace mechanism
and causing a shutdown of the MVEE.

The return value of the PRECALL handler determines whether the original call
should be resumed or aborted. By returning the MASTERCALL constant from the
PRECALL handler, for example, IP-MON instructs the master variant to resume
the original call and the slave variants to abort the original call. Alternatively, the
original call may be resumed or aborted in all variants.

Finally, IP-MON calls the POSTCALL handler. Here, the master variant copies
its system call return values into the RB.

The slave variants instead wait for the return values to appear in the RB. De-
pending on the aforementioned system call metadata, the handler may wait using
either a spin-wait loop, if the system call was not expected to block, or a specialized
condition variable, whose implementation we describe in Section 8.5.1.7.

8.5.1.4 System Call Monitoring Policies
There are many ways to draw the line between system calls to be monitored by
GHUMVEE and system calls to be handled by IP-MON. We propose two concrete
monitoring relaxation policies.

The first option is spatial exemption, where certain system calls are either un-
conditionally handled by IP-MON and not monitored by GHUMVEE, or handled by

8.5 Relaxed Monitoring 247

IP-MON only if their system call arguments meet certain criteria. IP-MON comes
with several predefined levels of spatial exemption, which the program developer
or administrator can choose from. However, regardless of which level of spatial
exemption is selected, GHUMVEE always monitors system calls that relate to allo-
cation and management of process resources and threads, as we consider these sys-
tem calls dangerous no matter what. These system calls include all signal-handling
system calls as well as those that (i) allocate, manage, and close file descriptors
(FDs); (ii) map, manage, and unmap memory regions; and (iii) create, control, and
kill threads and processes. We refer to our earlier work for a full overview of IP-
MON’s spatial exemption policies [Volckaert et al. 2016].

The second option is temporal exemption, where IP-MON probabilistically ex-
empts system calls from the monitoring policy if similar calls have been repeatedly
approved by the monitor. We observe that many programs, especially those with
high system call frequencies, often repeatedly invoke the same sequence of system
calls. If a series of system calls is approved by GHUMVEE, then one possible tempo-
ral relaxation policy is to stochastically exempt some fraction of the identical system
calls that follow within some time window or range. Note that temporal relaxation
policies must be highly unpredictable; deterministic policies (e.g., “Exempt sys-
tem calls X, Y, Z from monitoring after N approvals within an M millisecond time
window”) are insecure. In other words, care must be taken to ensure that tempo-
ral relaxation does not allow adversaries to coerce the MVEE into a state where
potentially dangerous system calls are not monitored.

8.5.1.5 IP-MON Initialization
IK-B does not forward any system calls to IP-MON until IP-MON explicitly registers
itself through a new system call we added to the kernel. When this call is invoked,
the kernel first attempts to report the call to GHUMVEE, which receives the notifi-
cation and can decide if it wants to allow IP-MON to register.

The registration system call expects three arguments. The first argument is
the set of “unmonitored” calls supported by IP-MON. If the IP-MON registration
succeeds, IK-B forwards any system call in this set to IP-MON from that point
onward, as we explained earlier. GHUMVEE can modify this set of system calls or,
potentially, prevent the registration altogether. The second and third arguments
are a pointer to the RB and a pointer to the entry point function that should be
invoked when IK-B forwards a call to IP-MON.

The RB pointer must be valid and must point to a writable region. IP-MON
must therefore set up an RB that it shares with all the other variants. We use the
System V IPC facilities to create, initialize, and map the RB [man-pp. project 2017b].

248 Chapter 8 Multi-Variant Execution Environments

GHUMVEE arbitrates the RB initialization process to ensure that all the variants
attach to the same RB.

8.5.1.6 The IP-MON File Map
GHUMVEE arbitrates all system calls that create/modify/destroy FDs, including
sockets. It thus maintains metadata, such as the type of each FD (regular/pipe/
socket/poll-fd/special). It also tracks which FDs are in non-blocking mode. System
calls that operate on non-blocking FDs always return immediately, regardless of
whether or not the corresponding operation succeeds.

Variants can map a read-only copy of this metadata into their address spaces
using the same mechanism we use for the RB. We refer to this metadata as the
IP-MON file map. We maintain exactly 1 byte of metadata per FD, resulting in a
page-sized file map. For some system calls, IP-MON uses the file map to determine
if the call is to be monitored or not, as per the monitoring policy.

8.5.1.7 Blocking System Calls
Its file map permits IP-MON to predict whether an unmonitored call can block or
not. IP-MON handles blocking calls efficiently. If the master variant knows that a
call will block, it instructs the slaves to wait on an optimized and highly scalable
IP-MON condition variable (as opposed to a slower spin-read loop) until the results
become available. IP-MON uses the futex (7) API to implement wait and wake
operations. This allowed us to implement several optimizations.

For each system call invocation, IP-MON allocates a separate structure within
the RB. Each individual structure contains a condition variable. Slave variants
must wait on only the condition variable associated with the system call results
they are interested in. Using separate condition variables for each system call
invocation prevents an unnecessary bottleneck that would arise when using just
a single variable, because the slave variants might progress at different paces.
Furthermore, IP-MON tracks whether or not there are variants waiting for the
results of a specific system call invocation. If none are waiting when the master has
finished writing its system call results into the buffer, no FUTEX_WAKE operation
is needed to resume the slaves. IP-MON does not have to reuse condition variables
because a new condition variable is allocated for each system call invocation. Thus,
IP-MON does not have to reset condition variables to their initial state after it has
used one to signal slave variants.

8.5.2 Security Analysis
Unlike previous MVEEs, ReMon eschews fixed monitoring policies and instead
allows security/performance trade-offs to be made on a per-application basis.

8.5 Relaxed Monitoring 249

With respect to integrity, we already pointed out that a CP MVEE monitor
and its environment are protected by (i) running it in an isolated process space
protected by a hardware-enforced boundary to prevent user-space tampering with
the monitor from within the variants; (ii) enforcing lockstep, consistent, monitored
execution of all system calls in all variants to prevent malicious impact of a single
compromised variant on the monitor; and (iii) diversity among the variants to
increase the likelihood that attacks cause observable divergence, i.e., that they fail
to compromise the variants in consistent ways.

With those three properties in place, it becomes exceedingly hard for an at-
tacker to subvert the monitor and to execute arbitrary system calls. Nevertheless,
MVEEs do not protect against attacks that exploit incorrect program logic or leak
information through side-channel attacks. This is similar to many other code-reuse
mitigations such as software diversity, software fault isolation [Wahbe et al. 1993],
and control-flow integrity [Abadi et al. 2005a].

In ReMon, monitored system calls are still handled by a CP monitor, so mali-
cious monitored calls are as hard to abuse as they are in existing CP MVEEs. For
unmonitored calls, IP-MON relaxes the first two of the above three properties. The
master variants can run ahead of the slaves and the system call consistency checks
in the slaves’ IP-MON, so an attacker could try to hijack the master’s control with a
malicious input to execute at least one, and possibly multiple, unmonitored calls
without verification by a slave’s IP-MON. An attacker could also attempt to locate
the RB and feed malicious data to the slaves, in order to stall them or to tamper
with their consistency checks. This way, the attacker could increase the window of
opportunity to execute unmonitored calls in the master.

As long as the attacker executes unmonitored calls only according to a given re-
laxation policy, those capabilities by definition pose no significant security threat:
unmonitored calls are exactly those calls that are defined by the chosen policy to
pose either no security threat at all or an acceptable security risk. However, an at-
tacker can also try to bypass IP-MON’s policy verification checks on conditionally
allowed system calls to let IP-MON pass calls unmonitored that should have been
monitored by GHUMVEE according to the policy. Therefore, we now consider sev-
eral aspects of these attack scenarios.

Unmonitored Execution of System Calls. ReMon ensures that IP-MON can only ex-
ecute unmonitored system calls if it is invoked by IK-B through its intended sys-
tem call entry point. When invoked properly, IP-MON performs policy verification
checks on conditionally allowed system calls, as well as the security checks a CP
monitor normally performs. An attacker that manages to compromise a program
variant could jump over these checks in an attempt to execute unmonitored system

250 Chapter 8 Multi-Variant Execution Environments

calls directly. Such an attack would, however, be ineffective thanks to the authoriza-
tion mechanism we described in Section 8.5.1.1.

Manipulating the RB. We designed IP-MON so that it never stores a pointer to the
RB, nor any pointer derived thereof, in user-space-accessible memory. Instead, IK-
B passes an RB pointer to IP-MON, and IP-MON keeps the RB pointer in a fixed
register. To access the RB, the attacker must therefore find its location by random
guessing or by mounting side-channel attacks.

ReMon’s current implementation uses RBs that are 16 MiB and located on
different addresses in each variant. This gives the RB pointer 24 bits of entropy
per variant, which makes guessing attacks unlikely to succeed.

Furthermore, because neither IP-MON nor the application needs to know the
exact location of the RB and because every invocation of IP-MON is routed through
IK-B, we could extend IK-B to periodically move the RB to a different virtual address
by modifying the variants’ page table entries. This would further decrease the
chances of a successful guessing attack.

Diversified Variants. Our current implementation of ReMon deploys the combined
diversification of ASLR and DCL [Volckaert et al. 2015]. ReMon, however, support
all other kinds of automated software diversity techniques as well. We refer to the
literature for an overview of such techniques [Larsen et al. 2014]. The security eval-
uations in the literature, including demonstrations of resilience against concrete
attacks, therefore still apply to ReMon.

8.6 Evaluation
We performed both performance and functional correctness evaluations of the
different optimization techniques and protection schemes we implemented for
GHUMVEE. We consider GHUMVEE as our baseline MVEE, against which we com-
pare the spatial relaxation as implemented by ReMon.

8.6.1 Baseline GHUMVEE
To ensure that the approaches and design decisions taken in the development of
GHUMVEE are applicable to a wide range of real-life programs, we have evaluated
the functional correctness and the overhead imposed by our baseline MVEE on a
wide range of applications. This includes not only the typical computationally heavy
benchmarks, such as SPEC CPU2006, but also server applications and graphical
applications. Unless otherwise mentioned, we evaluated our baseline MVEE with
GHUMVEE monitoring two variants with DCL enabled.

8.6 Evaluation 251

All SPEC benchmarks can successfully run on top of GHUMVEE without the
need to apply any patches. One benchmark, 416.gamess, can trigger a false positive
intrusion detection in GHUMVEE because it unintentionally prints a small chunk
of uninitialized memory to a file. When ASLR is enabled, the uninitialized data
differs from one variant to another. In GHUMVEE, we whitelisted the responsible
system call to prevent the false positive. The average overhead on SPEC CPU2006
is 7.2%.

We also tested GHUMVEE on several interactive desktop programs that build
on large graphical user interface environments, including GNOME tools such
as gcalctool, KDE tools such as kcalc, and MPlayer. None of these programs
needed patches to run on top of GHUMVEE.

The method of overriding the mapping type for file-backed shared memory was
necessary to support KDE applications. These programs use file-backed shared
memory to read and write configuration files efficiently. Our method did not cause
noticeable slowdowns when running such programs. This overriding method will
likely not work for all programs, however.

Our decision to disallow read/write shared mappings and the use of the System V
IPC API in commodity applications does not constitute a big problem either. While
shared memory is the preferred method for graphical applications to communicate
with the display server, we have not seen a single application that does not have
a fallback method in place for when GHUMVEE’s monitor rejects the request
to map shared memory pages. This fallback method typically yields significantly
worse performance but is still acceptable in many situations. MPlayer, for example,
also relies on shared memory for hardware-accelerated playback of movies. When
running MPlayer in GHUMVEE, it falls back to software-rendered playback.

Early on in GHUMVEE’s development, we also tested Firefox and LibreOffice.
For LibreOffice, we tested operations such as opening and saving files, editing var-
ious types of documents, running the spell checker, etc. For Firefox, we tested
opening several web pages. We repeated tests in which GHUMVEE spawned be-
tween one and four variants from the same executable, and tests were conducted
with and without ASLR enabled. Although these tests were successful, both Libre-
Office and Firefox needed extensive patching to be able to run in the context of an
MVEE. These patches were needed to eliminate (benign) data races and address-
sensitive behavior (cf. Section 8.3.5) and to embed our implicit-input replication
agents and synchronization agents.

We not only verified the functional correctness but also evaluated the usabil-
ity of interactive and real-time applications. Except for small start-up overheads,
no significant usability impact was observed. For example, with two variants and

252 Chapter 8 Multi-Variant Execution Environments

without hardware support, MPlayer was still able to play 720p HD H.264 movies in
real time without dropping a single frame, and 1080p Full HD H.264 movies at a
frame drop rate of approximately 1%. Because none of the dropped frames were
keyframes, playback was still fluent.

Finally, while we can apply our DCL protection with each variant using the same
program binary, we did also successfully run programs for which we created a dif-
ferent diversified program binary for each variant. While we only created program
binaries to which we applied code randomization techniques [Larsen et al. 2014],
we believe that there are no fundamental limitations to the types of diversity tech-
niques GHUMVEE can support.

8.6.2 Disjoint Code Layouts
We evaluated the DCL protection with GHUMVEE on two machines. The first ma-
chine has two Intel Xeon E5-2650L CPUs with 8 physical cores and a 20 MB L3 cache
each. It has 128GB of main memory and runs a 64-bit Ubuntu 14.04 LTS OS with a
Linux 3.13.9 kernel. The second machine has an Intel Core i7 870 CPU with 4 phys-
ical cores and an 8 MB L3 cache. It has 32GB of main memory and runs a 32-bit
Ubuntu 14.10 OS with a Linux 3.16.7 kernel. On both machines, we disabled hyper-
threading and all dynamic frequency and voltage scaling features. Furthermore, we
compiled both kernels with a 1,000 Hz tick rate to minimize the monitor-variant
interaction latency.

Execution Time Overhead
To evaluate the execution time overhead of GHUMVEE and DCL on compute-
intensive applications, we ran each of the SPEC CPU2006 benchmarks five times
on their reference inputs. From each set of five measurements, we eliminated the
first one to account for I/O-cache warm-up. On the 64-bit machine, we compiled all
benchmarks using GCC 4.8.2. On the 32-bit machine, we used GCC 4.9.1. All bench-
marks were compiled at optimization level -O2 and with the -fno-aggressive-

loop-optimizationsflag. We did not use the-pieflag for the native benchmarks.
Although running with more than two variants does not improve DCL’s protection,
we have also included the benchmark results for three and four variants for the
sake of completeness.

As shown in Figures 8.5 and 8.6, the runtime overhead of DCL is rather low
overall.4 On our 32-bit machine, the average overhead across all SPEC benchmarks

4. The 434.zeusmp benchmark maps a very large code section and therefore does not run with
more than two variants on our 32-bit machine.

8.6 Evaluation 253

Native non-PIE

100

80

60

40

20

0

GHUMVEE + DCL + PIE (2 variants) GHUMVEE + DCL + PIE (3 variants) GHUMVEE + DCL + PIE (4 variants)

400.p
erlb

ench

401.b
zip

2

403.gcc

429.m
cf

445.gobm
k

456.h
m

m
er

458.sjeng

462.li
bquantu

m

464.h
264re

f

471.om
netp

p

473.astar

483.xalancbm
k

410.b
waves

416.gam
ess

433.m
ilc

434.zeusm
p

435.gro
m

acs

436.cactu
sADM

437.le
slie

3d

444.n
am

d

447.d
ealll

450.soplex

453.p
ovra

y

454.calculix

459.G
em

sFDTD

465.to
nto

470.lb
m

481.w
rf

482.sphin
x3

Avera
ge

Figure 8.5 Relative performance of 32-bit protected SPEC 2006 benchmarks.

Native non-PIE

100

80

60

40

20

0

GHUMVEE + DCL + PIE (2 variants) GHUMVEE + DCL + PIE (3 variants) GHUMVEE + DCL + PIE (4 variants)

400.p
erlb

ench

401.b
zip

2

403.gcc

429.m
cf

445.gobm
k

456.h
m

m
er

458.sjeng

462.li
bquantu

m

464.h
264re

f

471.om
netp

p

473.astar

483.xalancbm
k

410.b
waves

416.gam
ess

433.m
ilc

434.zeusm
p

435.gro
m

acs

436.cactu
sADM

437.le
slie

3d

444.n
am

d

447.d
ealll

450.soplex

453.p
ovra

y

454.calculix

459.G
em

sFDTD

465.to
nto

470.lb
m

481.w
rf

482.sphin
x3

Avera
ge

Figure 8.6 Relative performance of 64-bit protected SPEC 2006 benchmarks.

was 8.94%. On our 64-bit machine, which has much larger CPU caches, the aver-
age overhead was only 6.37%. That being said, a few benchmarks do stand out in
terms of overhead. On i386, we see that 470.lbm performs remarkably worse than
on AMD64. We also see several benchmarks that perform much worse than aver-
age on both platforms, including 429.mcf, 471.omnetpp, 483.xalancbmk, and
450.soplex. For each of these benchmarks, though, our observed performance
losses correlate very well with the figures in Jaleel’s cache sensitivity analysis for
SPEC [Jaleel 2007].

A second factor that definitely plays its role is PIE itself. While our figures only
show the native performance for the original, non-PIE, benchmarks, we did mea-
sure the native performance for the PIE version of each benchmark as well. For the
most part we did not see significant differences between PIE and non-PIE, except
for the 400.perlbench and 429.mcf benchmarks on the AMD64 platform. These
benchmarks slow down by 10.98% and 11.93%, respectively, by simply using PIE.

254 Chapter 8 Multi-Variant Execution Environments

8.6.3 ReMon and IP-MON
We evaluated the performance of IP-MON’s spatial relaxation policy on both syn-
thetic benchmark suites and on a set of server benchmarks. We conducted all of
our experiments on a machine with two 8-core Intel Xeon E5-2660 processors each
having 20 MB of cache, 64 GB of RAM, and a gigabit Ethernet connection, running
the x86_64 version of Ubuntu 14.04.3 LTS. This machine runs the Linux 3.13.11
kernel, to which we applied the IK-B patches. We used the official 2.19 versions of
GNU’s glibc and libpthreads in our experiments, but we did apply a small patch
of less than 10 LoC to glibc to reinitialize IP-MON’s thread-local storage variables
after each fork. As before, we disabled hyper-threading as well as frequency and
voltage scaling to maximize reproducibility of our measurements.

Address space layout randomization was enabled in our tests, and we configured
ReMon to map IP-MON and its associated buffers at non-overlapping addresses in
all variants.

Synthetic Benchmark Suites
We evaluated ReMon on the PARSEC 2.1, SPLASH-2x, and Phoronix benchmark
suites5. These benchmarks cover a wide range in system call densities and patterns
(e.g., bursty vs. spread over time, and mixes of sensitive and non-sensitive calls) as
well as various scales and schemes of multi-threading, the most important factors
contributing to the overhead of traditional CP-MVEEs that we want to overcome
with IP-MON.

We evaluated all five levels of our spatial exemption policy on some of the
Phoronix benchmarks, and show the performance of the NONSOCKET_RW_LEVEL

policy on the other suites. We used the largest available input sets for all bench-
marks and ran the multi-threaded benchmarks with four worker threads and used
two variants for all benchmarks. We excluded PARSEC’s canneal benchmark from
our measurements because it purposely causes data races that result in divergent
behavior when running multiple variants. This makes the benchmark incompatible
with MVEEs. We also excluded SPLASH’s cholesky benchmark due to incompati-
bilities with the version of the gcc compiler we used.

The results for these benchmarks are shown in Figures 8.7 and 8.8. The baseline
overhead was measured by running ReMon with IP-MON and IK-B disabled. In this
configuration, GHUMVEE runs as a stand-alone MVEE.

5. C. Segulja kindly provided his data race patches for PARSEC and SPLASH [Segulja and Abdel-
rahman 2014].

8.6 Evaluation 255

4

3

2

1

0

B
LA

C
K

SC
H

O
LE

S

B
O

D
Y

T
R

A
C

K

D
E

D
U

P

FA
C

E
SI

M

FE
R

R
E

T

FL
U

ID
A

N
IM

AT
E

FR
E

Q
M

IN
E

R
AY

T
R

A
C

E

ST
R

E
A

M
C

LU
ST

E
R

SW
A

P
T

IO
N

S

V
IP

S

X
26

4

G
E

O
M

E
A

N

B
A

R
N

E
S

FF
T

FM
M

LU
_C

B

LU
_N

C
B

O
C

E
A

N
_C

P

O
C

E
A

N
_N

C
P

R
A

D
IO

SI
T

Y

R
A

D
IX

R
AY

T
R

A
C

E

V
O

LR
E

N
D

W
AT

E
R

_N
SQ

U
A

R
E

D

W
AT

E
R

_S
PA

T
IA

L

G
E

O
M

E
A

N

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 ti

m
e

1.
09

1.
04 1.
15

1.
03

3.
53

1.
69

1.
11

1.
03

1.
04 1.
11 1.

28 1.
33

1.
06

1.
05

1.
03

1.
00 1.

16
0.

97 1.
07

1.
07

1.
10

1.
03 1.
11 1.
16 1.
22

1.
11 1.

48
1.

52
1.

03
1.

02
1.

55
1.

13
1.

01
1.

00
0.

94
0.

95 1.
06

1.
05

1.
09

1.
05

1.
63

1.
38

1.
05

1.
05 1.

17
1.

02 1.
22

1.
07

1.
04

1.
02

4.
20

1.
21 1.
29

1.
10

SPLASH-2x

No IP-MON IP-MON/NONSOCKET_RW_LEVEL

PARSEC 2.1

Figure 8.7 Performance overhead for PARSEC 2.1 and SPLASH-2x benchmark suites (two variants).

30

25

20

15

10

5

0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

N
E

T
W

O
R

K
LO

O
P

B
A

C
K

1.
0.

1

N
G

IN
X

1.
1.

0

C
O

M
P

R
E

SS
G

ZI
P

-1
.1

.0

E
N

C
O

D
E

FL
A

C
-1

.5
.0

E
N

C
O

D
E

O
G

G
-1

.4
.1

M
E

N
C

O
D

E
R

1.
4.

1

P
H

P
B

E
N

C
H

1.
1.

0

U
N

PA
C

K
LI

N
U

X
-1

.0
.0

G
E

O
M

E
A

N

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 ti

m
e

25
.4

6
25

.3
6

24
.8

9
17

.0
3

9.
18

3.
00

9.
77

7.
76

7.
74

7.
58

6.
65

3.
71

1.
11

1.
11

1.
04

1.
04

1.
04

1.
05 1.

17
1.

17
1.

08
1.

02
1.

02
1.

02 1.
09

1.
10

1.
06

1.
01

1.
01

1.
01

1.
05

1.
04

1.
01

1.
00

1.
00

1.
00

No IP-MON
IP-MON/NONSOCKET_RO_LEVEL
IP-MON/SOCKET_RO_LEVEL

2.
48

1.
90

1.
90

1.
13

1.
13

1.
13

1.
47

1.
48

1.
44

1.
22

1.
17

1.
17

2.
46

2.
31

2.
24

1.
93

1.
75

1.
41

IP-MON/BASE_LEVEL
IP-MON/NONSOCKET_RW_LEVEL
IP-MON/SOCKET_RW_LEVEL

Figure 8.8 Comparison of IP-MON’s spatial relaxation policies in a set of Phoronix benchmarks
(two variants).

GHUMVEE generally performs well in these benchmarks. Our machine can run
the variants on disjoint CPU cores, which means that only the additional pressure
on the memory subsystem and the MVEE itself cause performance degradation
compared to the benchmarks’ native performance. Yet, we still see the effect of
enabling IP-MON. For PARSEC 2.1, the relative performance overhead decreases

256 Chapter 8 Multi-Variant Execution Environments

from 21.9% to 11.2%. For SPLASH-2x, the overhead decreases from 29.2% to 10.4%.
In Phoronix, the overhead drops from 146.4% to 41.2%. Particularly interesting
are the dedup (PARSEC 2.1), water_spatial (SPLASH-2x) and network_loopback

(Phoronix) benchmarks, which feature very high system call densities of over 60 K
system call invocations per second. In these benchmarks, the overheads drop
from 252.9% to 69.4%, from 320% to 20.7%, and from 2446% to 200%, respectively.
Furthermore, the Phoronix results clearly show that different policies allow for
different security-performance trade-offs.

Server Benchmarks
Server applications are great candidates for execution and monitoring by MVEEs
because they are frequently targeted by attackers and they often run on many-
core machines with idle CPU cores that can run variants in parallel. In this sec-
tion, we specifically evaluate our MVEE on applications used to evaluate other
MVEEs. These applications include the Apache web server (used to evaluate Or-
chestra [Salamat et al. 2009]), thttpd (ab) and lighttpd (ab) (used to evaluate
Tachyon [Maurer and Brumley 2012]), lighttpd (http_load) (used to evaluate
Mx [Hosek and Cadar 2013]), and beanstalkd, lighttpd (wrk), memcached, ng-
inx (wrk), and redis (used to evaluate VARAN [Hosek and Cadar 2015]). We
use the same client and server configurations described by the creators of those
MVEEs.

We tested IP-MON by running a benchmark client on a separate machine that
was connected to our server via a local gigabit link. We evaluated three scenarios. In
the first scenario, we used the gigabit link as is and therefore simulated an unlikely
worst-case scenario since the latency on the gigabit link was very low (less than
0.125ms). In the second scenario, we added a small amount of latency (bringing
the total average latency to 2ms) to the gigabit link to simulate a realistic worst-case
scenario (average network latencies in the U.S. are 24–63 ms [Commission 2014]).
In the third scenario, which we only evaluated to allow for comparison with existing
MVEEs, we simulated a total average latency of 5ms. We used Linux’ built-in netem

driver to simulate the latency [man-pp. project 2017a].
Figure 8.9 shows the unlikely and the realistic scenarios side by side. For each

benchmark, we measured the overhead IP-MON introduces when running between
two and seven parallel variants with the spatial exemption policy at theSOCKET_RW_
LEVEL. We also show the overhead for running two variants with IP-MON disabled.
The latter case represents the best-case scenario without IP-MON.

8.6 Evaluation 257

8

7

6

5

4

3

2

1

0

B
E

A
N

ST
A

L
K

D
r1

57
d

88
b

L
IG

H
T

T
P

D
1.

4.
36

 (w
rk

)

M
E

M
C

A
C

H
E

D
1.

4.
17

N
G

IN
X

1.
5.

12
 (w

rk
)

R
E

D
IS

3.
0.

3

A
PA

C
H

E
1.

3.
29

 (A
B

)

T
H

T
T

P
D

2.
26

 (A
B

)

L
IG

H
T

T
P

D
1.

4.
36

 (A
B

)

L
IG

H
T

T
P

D
1.

4.
36

 (h
tt

p
_l

oa
d

)

B
E

A
N

ST
A

L
K

D
r1

57
d

88
b

L
IG

H
T

T
P

D
1.

4.
36

 (w
rk

)

M
E

M
C

A
C

H
E

D
1.

4.
17

N
G

IN
X

1.
5.

12
 (w

rk
)

R
E

D
IS

3.
0.

3

A
PA

C
H

E
1.

3.
29

 (A
B

)

T
H

T
T

P
D

2.
26

 (A
B

)

L
IG

H
T

T
P

D
1.

4.
36

 (A
B

)

L
IG

H
T

T
P

D
1.

4.
36

 (h
tt

p
_l

oa
d

)

N
or

m
al

iz
ed

 r
u

n
ti

m
e

ov
er

h
ea

d

7 replicas6 replicas5 replicas4 replicas

3 replicas2 replicas2 replicas (no IP-MON)

Unlikely scenario on local gigabit network
(~0.1 ms latency)

Realistic scenario on low-latency network
(2 ms latency)

Figure 8.9 Server benchmarks in two network scenarios for two to seven variants with IP-MON
and two variants without IP-MON.

8.6.4 Comparison to Existing MVEEs
Table 8.2 compares GHUMVEE’s and ReMon’s performance with the results re-
ported for other MVEEs in the literature [Hosek and Cadar 2013, Hosek and Cadar
2015, Maurer and Brumley 2012, Salamat et al. 2009]. We omitted some MVEEs
from this comparison because we could not find (i) enough published performance
results for these MVEEs or (ii) sufficient information about the setup in which
these MVEEs were evaluated to allow for a meaningful comparison with ReMon
and GHUMVEE.

Since each MVEE was evaluated in a different experimental setup, the table
also lists two features that have a significant impact on the performance overhead.
These are the network latencies, because higher latencies hide server-side over-
head, and the CPU cache sizes, as some of the memory-intensive SPEC benchmarks
benefit significantly from larger caches, in particular with multiple concurrent vari-
ants.

From a performance overhead perspective, the worst-case setup in which Mx and
Tachyon were evaluated had the benchmark client running on the same (localhost)
machine as the benchmark server. For VARAN, two separate machines resided in
the same rack and were hence connected by a very-low-latency gigabit Ethernet.

Ta
bl

e
8.

2
C

om
pa

ri
so

n
of

Ex
is

ti
ng

M
VE

Es
(t

w
o

va
ri

an
ts

)

O
ri

en
ta

ti
on

R
el

ia
b

il
it

y
M

V
E

E
Se

cu
ri

ty
M

V
E

E

T
ac

h
yo

n
M

x
V

A
R

A
N

O
rc

h
es

tr
a

G
H

U
M

V
E

E
R

eM
on

N
et

w
or

k
lo

ca
lh

os
t

lo
ca

lf
ew

h
op

s
co

as
t-

to
-

co
as

t
lo

ca
lh

os
t

U
SA

-U
K

(1
50

m
s)

sa
m

e
ra

ck
gi

ga
b

it

lo
ca

l
gi

ga
b

it
lo

ca
l

gi
ga

b
it

lo
ca

l
gi

ga
b

it
lo

ca
l

gi
ga

b
it

(5
m

s)

C
P

U
ca

ch
e

si
ze

.
.

.
8

M
B

.
.

.
8

M
B

20
M

B
.

.
.

20
M

B
.

.
.

R
ep

or
te

d
ov

er
h

ea
d

s:

ap
ac

h
e

(a
b

)
2.

4%
50

%
70

%
34

%
2.

4%

li
gh

tt
p

d
(a

b
)

79
0%

27
2%

30
%

0%
22

6%
55

%
0%

th
tt

p
d

(a
b

)
13

20
%

17
%

0%
0%

22
3%

73
%

2.
7%

li
gh

tt
p

d
(h

tt
p

ld
)

24
9%

4%
1.

0%
10

8%
45

%
3.

5%

re
d

is
15

72
%

5%
6%

11
48

%
45

%
0.

1%

b
ea

n
st

al
kd

52
%

12
59

%
45

%
0.

6%

m
em

ca
ch

ed
14

%
76

%
8.

4%
0.

3%

n
gi

n
x

(w
rk

)
28

%
56

4%
19

4%
0.

8%

li
gh

tt
p

d
(w

rk
)

12
%

60
3%

16
9%

0.
7%

SP
E

C
C

P
U

20
06

17
.9

%
7.

2%
3.

1%

SP
E

C
in

t
20

06
17

.6
%

14
.2

%
12

.1
%

3.
9%

SP
E

C
fp

20
06

18
.3

%
3.

8%
2.

5%

8.7 Conclusion 259

The worst-case setups in which ReMon and Orchestra were evaluated consist of
two separate machines connected by a low-latency gigabit link. In these unlikely
worst-case scenarios for servers, the differences in setups hence favor ReMon and
Orchestra over VARAN, and VARAN over Tachyon and Mx.

In the best-case setups in which Mx and Tachyon were evaluated, one of the
machines was located on the U.S. West Coast, while the other was located in
England (Mx) or the U.S. East Coast (Tachyon). In ReMon’s best-case setup, we used
a gigabit link with a simulated 5 ms latency. So in the more realistic setups and for
the server benchmarks, the differences favor Mx and Tachyon over ReMon.

This comparison demonstrates that ReMon outperforms existing non-hardware-
assisted security-oriented MVEEs while approaching the efficiency of reliability-
oriented MVEEs.

8.7 Conclusion
In this chapter, we presented GHUMVEE, the most efficient non-hardware-assisted
security-oriented MVEE to date. GHUMVEE is equipped to support a wide range of
realistic programs, including those that contain user-space thread synchronization
operations and address-sensitive data structures.

GHUMVEE supports disjoint code layouts, a practical technique to stop code-
reuse attacks that rely on payloads containing absolute code addresses. It also
supports relaxation policies and selective lockstepping, two techniques that further
boost GHUMVEE’s efficiency.

Acknowledgments
The authors thank Per Larsen, the Agency for Innovation by Science and Technology
in Flanders (IWT), and the Fund for Scientific Research - Flanders.

This material is based upon work partially supported by the Defense Advanced
Research Projects Agency (DARPA) under contracts FA8750-15-C-0124, FA8750-15-
C-0085, and FA8750-10-C-0237, by the National Science Foundation under award
number CNS-1513837 as well as gifts from Mozilla, Oracle, and Qualcomm.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA), its Contracting Agents, or
any other agency of the U.S. Government.

References

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005a. Control-flow integrity: Principles,
implementations, and applications. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS), pp. 340–353. DOI: 10.1145/1102120
.1102165. 12, 25, 38, 39, 62, 82, 86, 95, 97, 110, 114, 117, 139, 141, 173, 174, 181, 186,
211, 233, 243, 249

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2005b. A theory of secure control flow.
In Proceedings of the 7th International Conference on Formal Methods and Software
Engineering (ICFEM). DOI: 10.1007/11576280_9. 182, 186

M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. 2009. Control-flow integrity: Principles,
implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1). DOI: 10.1145/
1609956.1609960. 181, 189, 208

A. Acharya and M. Raje. 2000. MAPbox: Using parameterized behavior classes to confine
untrusted applications. In Proceedings of the 9th USENIX Security Symposium (SSYM),
pp. 1–17. 16

P. Akritidis. 2010. Cling: A memory allocator to mitigate dangling pointers. In USENIX
Security Symposium, pp. 177–192. 84, 173, 178

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. 2008. Preventing memory error
exploits with WIT. In Proceedings of the 29th IEEE Symposium on Security and Privacy
(S&P), pp. 263–277. DOI: 10.1109/SP.2008.30. 8, 58, 82, 84, 114, 173, 176, 178

P. Akritidis, M. Costa, M. Castro, and S. Hand. 2009. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In USENIX Security
Symposium, pp. 51–66. 84, 173, 178

Aleph One. 1996. Smashing the stack for fun and profit. Phrack, 7. 11, 17

A. Alexandrov, P. Kmiec, and K. Schauser. 1999. Consh: Confined execution environment
for Internet computations. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1
.1.57.488. DOI: 10.1.1.57.488. 16

G. Altekar and I. Stoica. 2010. Focus replay debugging effort on the control plane. In USENIX
Workshop on Hot Topics in Dependability. 89

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1007/11576280_9
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1145/1609956.1609960
http://dx.doi.org/10.1109/SP.2008.30
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.488
http://dx.doi.org/10.1.1.57.488

262 References

S. Andersen and V. Abella. August 2004. Changes to functionality in Windows XP service
pack 2—part 3: Memory protection technologies. http://technet.microsoft.com/
en-us/library/bb457155.aspx. 9, 19, 184

J. Ansel. March 2014. Personal communication. 53

J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. Schuff, D. Sehr, C. Biffle, and
B. Yee. 2011. Language-independent sandboxing of just-in-time compilation and
self-modifying code. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 355–366. DOI: 10.1145/1993316.1993540.
58, 59

O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R. Sadeghi, and D. Sullivan.
2015. HAFIX: Hardware-assisted flow integrity extension. In Proceedings of the 52nd
Design Automation Conference (DAC), pp. 74:1–74:6. DOI: 10.1145/2744769.2744847.
182, 208, 209

J.-P. Aumasson and D. J. Bernstein. 2012 SipHash: A fast short-input PRF. In 13th
International Conference on Cryptology in India (INDOCRYPT). 73

M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny. 2014. You can run but
you can’t read: Preventing disclosure exploits in executable code. In ACM Conference
on Computer and Communications Security (CCS). DOI: 10.1145/2660267.2660378, pp.
1342–1353. 65, 173, 177

M. Backes and S. Nürnberger. 2014. Oxymoron: Making fine-grained memory randomization
practical by allowing code sharing. In 23rd USENIX Security Symposium, pp. 433–447.
64, 66

A. Balasubramanian, M. S. Baranowski, A. Burtsev, and A. Panda. 2017. System programming
in Rust: Beyond safety. In Workshop on Hot Topics in Operating Systems (HotOS), pp.
94–99. DOI: 10.1145/3102980.3103006. 79

C. Basile, Z. Kalbarczyk, and R. Iyer. 2002. A preemptive deterministic scheduling
algorithm for multithreaded replicas. In Proceedings of the International Conference
on Dependable Systems and Networks, pp. 149–158. DOI: 10.1109/DSN.2003.1209926.
230

C. Basile, Z. Kalbarczyk, and R. K. Iyer. 2006. Active replication of multithreaded applications.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 17(5):448–465.
DOI: 10.1109/TPDS.2006.56. 230

A. Basu, J. Bobba, and M. D. Hill. 2011. Karma: Scalable deterministic record-replay. In
Proceedings of the International Conference on Supercomputing, pp. 359–368. DOI:
10.1145/1995896.1995950. 230

M. Bauer. 2006. Paranoid penguin: an introduction to Novell AppArmor. Linux J., (148):13.
16

A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis. 2012. Dune:
Safe user-level access to privileged CPU features. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 335–348. 213

http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://dx.doi.org/10.1145/1993316.1993540
http://dx.doi.org/10.1145/2744769.2744847
http://dx.doi.org/10.1145/2660267.2660378
http://dx.doi.org/10.1145/3102980.3103006
http://dx.doi.org/10.1109/DSN.2003.1209926
http://dx.doi.org/10.1109/TPDS.2006.56
http://dx.doi.org/10.1145/1995896.1995950

References 263

T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. 2010. CoreDet: A compiler and
runtime system for deterministic multithreaded execution. ACM SIGARCH Computer
Architecture News, 38(1):53–64. DOI: 10.1145/1735971.1736029. 230

E. Berger, T. Yang, T. Liu, and G. Novark. 2009. Grace: Safe multithreaded programming for
C/C++. ACM Sigplan Notices, 44(10):81–96. 230

E. D. Berger and B. G. Zorn. 2006. DieHard: Probabilistic memory safety for unsafe languages.
ACM SIGPLAN Notices, (6):158–168. DOI: 10.1145/1133255.1134000. 214

E. Bhatkar, D. C. Duvarney, and R. Sekar. 2003. Address obfuscation: An efficient approach
to combat a broad range of memory error exploits. In Proceedings of the USENIX
Security Symposium (SSYM), pp. 105–120. 10

S. Bhatkar and R. Sekar. 2008. Data space randomization. In Proceedings of the 5th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), pp. 1–22. DOI: 10.1007/978-3-540-70542-0_1. 11, 85

S. Bhatkar, R. Sekar, and D. C. DuVarney. 2005. Efficient techniques for comprehensive
protection from memory error exploits. In Proceedings of the 14th USENIX Security
Symposium (SSYM), pp. 17–17. http://dl.acm.org/citation.cfm?id=1251398.1251415.
10, 95

D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. 2015. Timely rerandomization
for mitigating memory disclosures. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 268–279. DOI: 10.1145/2810103
.2813691. 11

A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh. 2014. Hacking blind. In
Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), pp. 227–242.
DOI: 10.1109/SP.2014.22. 62, 140, 141, 182, 239

D. Blazakis. 2010. Interpreter exploitation. In Proceedings of the 4th USENIX Conference on
Offensive Technologies, pp. 1–9. 59

T. Bletsch, X. Jiang, and V. Freeh. 2011. Mitigating code-reuse attacks with control-flow
locking. In Proceedings of the 27th Annual Computer Security Applications Conference,
pp. 353–362. DOI: 10.1145/2076732.2076783. 208, 209

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. 2011. Jump-oriented programming: A new
class of code-reuse attack. In Procceedings of the 6th ACM Symposium on Information,
Computer, and Communications Security (ASIACCS), pp. 30–40. DOI: 10.1145/1966913
.1966919. 20, 81, 82, 117

E. Bosman and H. Bos. 2014. Framing signals—a return to portable shellcode. In IEEE
Symposium on Security and Privacy (S&P), pp. 243–258. DOI: 10.1109/SP.2014.23. 31,
140

K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen, and A.-R. Sadeghi. 2016.
Leakage-resilient layout randomization for mobile devices. In 23rd Annual Network
and Distributed System Security Symposium (NDSS). 68

http://dx.doi.org/10.1145/1735971.1736029
http://dx.doi.org/10.1145/1133255.1134000
http://dx.doi.org/10.1007/978-3-540-70542-0_1
http://dl.acm.org/citation.cfm?id=1251398.1251415
http://dx.doi.org/10.1145/2810103.2813691
http://dx.doi.org/10.1145/2810103.2813691
http://dx.doi.org/10.1109/SP.2014.22
http://dx.doi.org/10.1145/2076732.2076783
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1145/1966913.1966919
http://dx.doi.org/10.1109/SP.2014.23

264 References

S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and A. Shubina. 2011. Exploit pro-
gramming: From buffer overflows to “weird machines” and theory of computation.
Usenix ;login: issue: December 2011, volume 36, number 6. 19

E. Buchanan, R. Roemer, H. Shacham, and S. Savage. 2008. When good instructions go
bad: Generalizing return-oriented programming to RISC. In Proceedings of the 15th
ACM Conference on Computer and Communications Security (CCS), pp. 27–38. DOI:
10.1145/1455770.1455776. 233

M. Budiu, Ú. Erlingsson, and M. Abadi. Architectural support for software-based protection.
In Proceedings of the 1st Workshop on Architectural and System Support for Improving
Software Dependability (ASID), pp. 42–51. DOI: 10.1145/1181309.1181316. 208, 209

N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz. 2016. Control-
flow integrity: Precision, security, and performance. Computing Research Repository
(CoRR). 50(1). http://arxiv.org/abs/1602.04056. 12, 28, 62, 82

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. 2017. Control-
flow integrity: precision, security, and performance. ACM Computing Surveys. DOI:
10.1145/3054924. 12

J. Butler and anonymous. 2004. Bypassing 3rd party Windows buffer overflow protection.
Phrack, 11. 17

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. 2015. Control-flow bending: On
the effectiveness of control-flow integrity. In Proceedings of the 24th USENIX Security
Symposium, pp. 161–176. http://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini. 15, 20, 21, 59, 81, 82, 97, 137, 182, 183,
185, 186, 188, 200, 204, 211

N. Carlini and D. Wagner. 2014. ROP is still dangerous: Breaking modern defenses. In
Proceedings of the 23rd USENIX Security Symposium, pp. 385–399. http://dl.acm.org/
citation.cfm?id=2671225.2671250. 15, 53, 82, 84, 86, 97, 114, 137, 139, 140, 176, 177,
179, 182, 183, 184, 186, 188, 200, 202, 209

M. Castro, M. Costa, and T. Harris. 2006. Securing software by enforcing data-flow integrity.
In Proceedings of the 7th Symposium on Operating Systems Design and Implementation
(OSDI), pp. 147–160. 11, 86

M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and
R. Black. 2009. Fast byte-granularity software fault isolation. In ACM Symposium on
Operating Systems Principles, pp. 45–58. DOI: 10.1145/1629575.1629581. 86, 93

L. Cavallaro. 2007. Comprehensive memory error protection via diversity and taint-tracking.
PhD thesis, Universita Degli Studi Di Milano. 214, 223, 237

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy. 2010.
Return-oriented programming without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS), pp. 559–572. DOI:
10.1145/1866307.1866370. 20, 81, 117, 183, 184, 185, 186, 200, 202

http://dx.doi.org/10.1145/1455770.1455776
http://dx.doi.org/10.1145/1181309.1181316
http://arxiv.org/abs/1602.04056
http://dx.doi.org/10.1145/3054924
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://dl.acm.org/citation.cfm?id=2671225.2671250
http://dx.doi.org/10.1145/1629575.1629581
http://dx.doi.org/10.1145/1866307.1866370

References 265

S. Checkoway and H. Shacham. 2010. Escape from return-oriented programming: Return-
oriented programming without returns (on the x86). Technical report CS2010-0954,
UC San Diego. http://cseweb.ucsd.edu/~hovav/dist/noret.pdf. 200, 202

P. Chen, Y. Fang, B. Mao, and L. Xie. 2011. JITDefender: A defense against JIT spraying
attacks. In 26th IFIP International Information Security Conference, volume 354, pp.
142–153. 60

P. Chen, R. Wu, and B. Mao. 2013. JITSafe: A framework against just-in-time spraying attacks.
IET Information Security, 7(4):283–292. DOI: 10.1049/iet-ifs.2012.0142. 59, 60

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. 2005 Non-control-data attacks
are realistic threats. In Proceedings of the 14th USENIX Security Symposium.
http://dl.acm.org/citation.cfm?id=1251398.1251410. 21, 184

X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida. 2015. StackArmor:
Comprehensive protection from stack-based memory error vulnerabilities for
binaries. In Symposium on Network and Distributed System Security (NDSS). 173,
178

Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vijayakumar, and W. Shen.
2017. NORAX: Enabling execute-only memory for COTS binaries on AArch64. In IEEE
Symposium on Security and Privacy (S&P), pp. 304–319. DOI: 10.1109/SP.2017.30. 68

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. 2014. ROPecker: A generic and practical
approach for defending against ROP attacks. In Proceedings of the 21st Synposium on
Network and Distributed System Security (NDSS). 117, 118, 119, 127, 173, 176, 182, 209

M. Co, J. W. Davidson, J. D. Hiser, J. C. Knight, A. Nguyen-Tuong, W. Weimer, J. Burket, G. L.
Frazier, T. M. Frazier, and B. Dutertre, et al. 2016. Double Helix and RAVEN: A system
for cyber fault tolerance and recovery. In Proceedings of the 11th Annual Cyber and
Information Security Research Conference, p. 17. DOI: 10.1145/2897795.2897805. 214

F. B. Cohen. 1993. Operating system protection through program evolution. Computers &
Security, 12(6): 565–584. DOI: 10.1016/0167-4048(93)90054-9. 62

Corelan. 2011. Mona: A debugger plugin/exploit development Swiss army knife.
http://redmine.corelan.be/projects/mona. 136

C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor. 2000. SubDomain:
Parsimonious server security. In Proccedings of the 14th USENIX Conference on System
Administration, pp. 355–368. 16

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. 2003. Pointguard™: Protecting pointers from
buffer overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium
(SSYM), pp. 7–7. http://dl.acm.org/citation.cfm?id=1251353.1251360. 11, 63, 76, 82,
85

C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. 1998. StackGuard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Proceedings of the 7th USENIX Security Symposium, volume 81, pp.
346–355. 61, 63, 82, 95, 211, 233

http://cseweb.ucsd.edu/~hovav/dist/noret.pdf
http://dx.doi.org/10.1049/iet-ifs.2012.0142
http://dl.acm.org/citation.cfm?id=1251398.1251410
http://dx.doi.org/10.1109/SP.2017.30
http://dx.doi.org/10.1145/2897795.2897805
http://dx.doi.org/10.1016/0167-4048(93)90054-9
http://redmine.corelan.be/projects/mona
http://dl.acm.org/citation.cfm?id=1251353.1251360

266 References

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,
and J. Hiser. 2006. N-variant systems: A secretless framework for security through
diversity. In Proceedings of the 15th USENIX Security Symposium, 9. 211, 213, 214, 217,
237

S. Crane, A. Homescu, and P. Larsen. 2016. Code randomization: Haven’t we solved this
problem yet? In IEEE Cybersecurity Development (SecDev). DOI: 10.1109/SecDev.2016
.036. 66

S. Crane, P. Larsen, S. Brunthaler, and M. Franz. 2013. Booby trapping software. In New
Security Paradigms Workshop (NSPW), pp. 95–106. DOI: 10.1145/2535813.2535824. 68

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and M.
Franz. 2015. Readactor: Practical code randomization resilient to memory disclosure.
In 36th IEEE Symposium on Security and Privacy (S&P), pp. 763–780. DOI: 10.1109/SP
.2015.52. 11, 60, 66, 76, 173, 178

S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz, B. De
Sutter, and M. Franz. 2015. It’s a TRaP: Table randomization and protection against
function-reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS), pp. 243–255. DOI: 10.1145/2810103.2813682. 11,
68, 77, 159, 171, 173, 178

J. Criswell, N. Dautenhahn, and V. Adve. 2014. KCoFI: Complete control-flow integrity for
commodity operating system kernels. In IEEE Symposium on Security and Privacy
(S&P), pp. 292–307. DOI: 10.1109/SP.2014.26. 58

H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E. Bryant.
2013. Parrot: A practical runtime for deterministic, stable, and reliable threads. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP), pp.
388–405. DOI: 10.1145/2517349.2522735. 230

D. Dai Zovi. 2010. Practical return-oriented programming. Talk at SOURCE Boston, 2010. 117

L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear. 2010. Transactional mutex locks.
In Proceedings of the 16th International Euro-Par Conference on Parallel Processing: Part
II, pp. 2–13. 44

T. H. Y. Dang, P. Maniatis, and D. Wagner. 2015. The performance cost of shadow stacks and
stack canaries. In Proceedings of the 10th ACM Symposium on Information, Computer,
and Communications Security (ASIACCS), pp. 555–566. DOI: 10.1145/2714576.2714635.
10, 137, 208

DarkReading. November 2009. Heap spraying: Attackers’ latest weapon of choice. http://www
.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428.
133

L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund, S. Nurnberger, and A.-R.
Sadeghi. 2012. MoCFI: A framework to mitigate control-flow attacks on smartphones.
In Proceedings of the 19th Annual Network and Distributed System Security Symposium
(NDSS). 58, 208

http://dx.doi.org/10.1109/SecDev.2016.036
http://dx.doi.org/10.1145/2535813.2535824
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1109/SP.2015.52
http://dx.doi.org/10.1145/2810103.2813682
http://dx.doi.org/10.1109/SP.2014.26
http://dx.doi.org/10.1145/2517349.2522735
http://dx.doi.org/10.1145/2714576.2714635
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?articleID=221901428

References 267

L. Davi, P. Koeberl, and A.-R. Sadeghi. 2014. Hardware-assisted fine-grained control-
flow integrity: Towards efficient protection of embedded systems against software
exploitation. In Annual Design Automation Conference—Special Session: Trusted Mobile
Embedded Computing (DAC), pp. 1–6. DOI: 10.1145/2593069.2596656. 173, 174, 209

L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. 2014. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings
of the 23rd USENIX Security Symposium, pp. 401–416. http://dl.acm.org/citation
.cfm?id=2671225.2671251. 15, 43, 53, 82, 84, 86, 97, 114, 139, 140, 169, 174, 176, 177,
179, 182, 183, 184, 186, 188, 200, 209, 211

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. 2015. Isomeron:
Code randomization resilient to (just-in-time) return-oriented programming.
In 22nd Annual Network and Distributed System Security Symposium (NDSS). DOI:
10.14722/ndss.2015.23262. 64

L. Davi, A.-R. Sadeghi, and M. Winandy. 2011. ROPdefender: A detection tool to defend
against return-oriented programming attacks. In ACM Symposium on Information,
Computer, and Communications Security (ASIACCS), pp. 40–51. DOI: 10.1145/1966913
.1966920. 139, 141

L. de Moura and N. Bjørner. 2009. Generalized, efficient array decision procedures. In Formal
Methods in Computer Aided Design (FMCAD). DOI: 10.1109/FMCAD.2009.5351142. 161

L. M. de Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), pp. 337–340. 140, 161

T. de Raadt. 2005. Exploit mitigation techniques. http://www.openbsd.org/papers/ven05-
deraadt/index.html. 8

J. Dean, D. Grove, and C. Chambers. 1995. Optimization of object-oriented programs using
static class hierarchy analysis. In European Conference on Object-Oriented Programming
(ECOOP), pp. 77–101. 32

D. Dechev. 2011. The ABA problem in multicore data structures with collaborating
operations. In 7th International Conference on Collaborative Computing: Net-
working, Applications, and Worksharing (CollaborateCom), pp. 158–167. DOI:
10.4108/icst.collaboratecom.2011.247161. 44

L. Deng, Q. Zeng, and Y. Liu. 2015. ISboxing: An instruction substitution based data
sandboxing for x86 untrusted libraries. In 30th International Conference on ICT
Systems Security and Privacy Protection, pp. 386–400. 41

L. P. Deutsch and A. M. Schiffman. 1984. Efficient implementation of the Smalltalk-80
system. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 297–302. DOI: 10.1145/800017.800542. 54

J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. 2008. HardBound: Architectural
support for spatial safety of the C programming language. In International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 103–
114. DOI: 10.1145/1353534.1346295. 109

http://dx.doi.org/10.1145/2593069.2596656
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dl.acm.org/citation.cfm?id=2671225.2671251
http://dx.doi.org/10.14722/ndss.2015.23262
http://dx.doi.org/10.1145/1966913.1966920
http://dx.doi.org/10.1145/1966913.1966920
http://dx.doi.org/10.1109/FMCAD.2009.5351142
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://dx.doi.org/10.4108/icst.collaboratecom.2011.247161
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/1353534.1346295

268 References

J. Devietti, B. Lucia, L. Ceze, and M. Oskin. 2009. DMP: Deterministic shared mem-
ory multiprocessing. ACM SIGARCH Computer Architecture News, 37(1):85–96.
DOI: 10.1145/1508244.1508255. 230

D. Dewey and J. T. Giffin. 2012. Static detection of C++ vtable escape vulnerabilities in binary
code. In Symposium on Network and Distributed System Security (NDSS). 171

D. Dhurjati, S. Kowshik, and V. Adve. June 2006. SAFECode: Enforcing alias analysis for
weakly typed languages. SIGPLAN Notices, 41 (6): 144–157. DOI: 10.1145/1133255
.1133999. 82, 84

U. Drepper. April 2006. SELinux memory protection tests. http://www.akkadia.org/drepper/
selinux-mem.html. 238

V. D’Silva, M. Payer, and D. Song. 2015. The Correctness-Security Gap in Compiler
Optimization. In LangSec’15: Second Workshop on Language-Theoretic Security. DOI:
10.1109/SPW.2015.33. 16

T. Durden. 2002. Bypassing PaX ASLR protection. Phrack, 11. 10, 17

EEMBC. The embedded microprocessor benchmark consortium: EEMBC benchmark suite.
http://www.eembc.org. 206

Ú Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Necula. 2006. XFI: Software guards
for system address spaces. In Proceedings of the 7th USENIX Symposium on Operating
System Design and Implementation, pp. 75–88. 58, 86, 95

H. Etoh and K. Yoda. June 2000. Protecting from stack-smashing attacks. Technical report,
IBM Research Division, Tokyo Research Laboratory. 63

C. Evans. 2013. Exploiting 64-bit Linux like a boss. http://scarybeastsecurity.blogspot.com/
2013/02/exploiting-64-bit-linux-like-boss.html. 117

I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. E. Shrobe, S. Sidiroglou-
Douskos, M. Rinard, and H. Okhravi. 2015. Missing the point(er): On the effectiveness
of code pointer integrity. In 36th IEEE Symposium on Security and Privacy, (S&P), pp.
781–796. DOI: 10.1109/SP.2015.53. 11, 62, 87

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-
Douskos. 2015. Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 901–913. DOI: 10.1145/2810103.2813646. 20,
21, 59, 82, 97, 137, 211

Federal Communications Commission. 2014. Measuring broadband America—2014.
http://www.fcc.gov/reports/measuring-broadband-america-2014. 256

C. Fetzer and M. Suesskraut. 2008. SwitchBlade: Enforcing dynamic personalized system
call models. In Proceedings of the 3rd European Conference on Computer Systems, pp.
273–286. DOI: 10.1145/1357010.1352621. 16

A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. 2011. SmartDec: Approaching C++
decompilation. In Working Conference on Reverse Engineering (WCRE). 171

B. Ford and R. Cox. 2008. Vx32: Lightweight user-level sandboxing on the x86. In Proceedings
of the USENIX ATC, pp. 293–306. 8, 9

http://dx.doi.org/10.1145/1508244.1508255
http://dx.doi.org/10.1145/1133255.1133999
http://dx.doi.org/10.1145/1133255.1133999
http://www.akkadia.org/drepper/selinux-mem.html
http://www.akkadia.org/drepper/selinux-mem.html
http://dx.doi.org/10.1109/SPW.2015.33
http://www.eembc.org
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://dx.doi.org/10.1109/SP.2015.53
http://dx.doi.org/10.1145/2810103.2813646
http://www.fcc.gov/reports/measuring-broadband-america-2014
http://dx.doi.org/10.1145/1357010.1352621

References 269

M. Frantzen and M. Shuey. 2001. StackGhost: Hardware facilitated stack protection. In
USENIX Security Symposium. 139, 141

I. Fratric. 2012. Runtime prevention of return-oriented programming attacks. http://github
.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf. 139, 173, 176

Gaisler Research. LEON3 synthesizable processor. http://www.gaisler.com. 183, 206

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M.
Chang, and M. Franz. 2009. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 465–478. DOI: 10.1145/1543135.1542528. 50

T. Garfinkel, B. Pfaff, and M. Rosenblum. 2004. Ostia: A delegating architecture for secure
system call interposition. In Network and Distributed System Security Symposium
(NDSS). 241

R. Gawlik and T. Holz. 2014. Towards automated integrity protection of C++ virtual function
tables in binary programs. In Annual Computer Security Applications Conference
(ACSAC), pp. 396–405. 171, 173, 176, 182

R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz. 2016. Enabling client-side
crash-resistance to overcome diversification and information hiding. In 23rd Annual
Network and Distributed System Security Symposium (NDSS). 68

X. Ge, M. Payer, and T. Jaeger. 2017. An evil copy: How the loader betrays you. In Network
and Distributed System Security Symposium (NDSS). DOI: 10.14722/ndss.2017.23199 .
15

J. Gionta, W. Enck, and P. Ning. 2015. HideM: Protecting the contents of userspace memory
in the face of disclosure vulnerabilities. In 5th ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 325–336. DOI: 10.1145/2699026.2699107. 65

GNU.org. The GNU C library: Environment access. http://www.gnu.org/software/libc/
manual/html_node/Environment-Access.html. 220

E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. 2014a. Out of control: Overcoming
control-flow integrity. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (S&P), pp. 575–589. DOI: 10.1109/SP.2014.43. 15, 53, 82, 84, 86, 97, 114, 124,
125, 126, 129, 134, 136, 137, 139, 140, 174, 175, 177, 182, 183, 186, 188, 200, 202, 211

E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. 2014b. Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard.
In Proceedings of the 23rd USENIX Security Symposium. http://dl.acm.org/citation
.cfm?id=2671225.2671252. 122, 139, 140, 169, 177, 179, 182, 186, 188, 209

E. Göktaş, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis, C. Giuffrida, and H.
Bos. 2016. Undermining information hiding (and what to do about it). In Proceedings
of the 25th USENIX Security Symposium, pp. 105–119. 11, 68

I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. 1996. A secure environment for
untrusted helper applications: Confining the wily hacker. In Proceedings of the 6th
USENIX Security Symposium (SSYM). 16

http://github.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf
http://github.com/ivanfratric/ropguard/blob/master/doc/ropguard.pdf
http://www.gaisler.com
http://dx.doi.org/10.1145/1543135.1542528
http://dx.doi.org/10.14722/ndss.2017.23199
http://dx.doi.org/10.1145/2699026.2699107
http://www.gnu.org/software/libc/manual/html_node/Environment-Access.html
http://www.gnu.org/software/libc/manual/html_node/Environment-Access.html
http://dx.doi.org/10.1109/SP.2014.43
http://dl.acm.org/citation.cfm?id=2671225.2671252
http://dl.acm.org/citation.cfm?id=2671225.2671252

270 References

Google Chromium Project. 2013. Undefined behavior sanitizer. http://www.chromium.org/
developers/testing/undefinedbehaviorsanitizer. 7

B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. 2017. ASLR on the line: Practical cache
attacks on the MMU. In Annual Network and Distributed System Security Symposium
(NDSS). 67

Y. Guillot and A. Gazet. 2010. Automatic binary deobfuscation. J. Comput. Virol. 6(3): pp.
261–276. DOI: 10.1007/s11416-009-0126-4. 160

I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos. 2015. ShrinkWrap:
VTable protection without loose ends. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), pp. 341–350. DOI: 10.1145/2818000.2818025. 136

I. Haller, Y. Jeon, H. Peng, M. Payer, H. Bos, C. Giuffrida, and E. van der Kouwe. 2016.
TypeSanitizer: Practical type confusion detection. In ACM Conference on Computer
and Communication Security (CCS). DOI: 10.1145/2976749.2978405. 7

N. Hasabnis, A. Misra, and R. Sekar. 2012. Light-weight bounds checking. In IEEE/ACM
Symposium on Code Generation and Optimization. DOI: 10.1145/2259016.2259034. 84

Hex-Rays. 2017. IDA Pro. http://www.hex-rays.com/index.shtml. 128

M. Hicks. 2014. What is memory safety? http://www.pl-enthusiast.net/2014/07/21/memory-
safety/. 4

E. Hiroaki and Y. Kunikazu. 2001. ProPolice: Improved stack-smashing attack detection.
IPSJ SIG Notes, pp. 181–188. 11

J. Hiser, A. Nguyen, M. Co, M. Hall, and J. W. Davidson. 2012. ILR: Where’d my gadgets
go? In 33rd IEEE Symposium on Security and Privacy (S&P), pp. 571–585. DOI:
10.1109/SP.2012.39. 11, 66

J. D. Hiser, D. Williams, A. Filipi, J. W. Davidson, and B. R. Childers. 2006. Evaluating
fragment construction policies for SDT systems. In Proceedings of the 2nd Inter-
national Conference on Virtual Execution Environments (VEE), pp. 122–132. DOI:
10.1145/1134760.1134778. 8, 9

U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In European Conference on Object-Oriented
Programming (ECOOP), pp. 21–38. 54

U. Hölzle, C. Chambers, and D. Ungar. 1992. Debugging optimized code with dynamic
deoptimization. In Proceedings ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 32–43. DOI: 10.1145/143103.143114. 54

A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. 2013. Librando: Transparent
code randomization for just-in-time compilers. CCS ’13, pp. 993–1004. DOI:
10.1145/2508859.2516675. 58, 59

A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. 2013. Profile-guided
automated software diversity. In IEEE/ACM Symposium on Code Generation and
Optimization, pp. 1–11. DOI: 10.1109/CGO.2013.6494997. 85

http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
http://www.chromium.org/developers/testing/undefinedbehaviorsanitizer
http://dx.doi.org/10.1007/s11416-009-0126-4
http://dx.doi.org/10.1145/2818000.2818025
http://dx.doi.org/10.1145/2976749.2978405
http://dx.doi.org/10.1145/2259016.2259034
http://www.hex-rays.com/index.shtml
http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://dx.doi.org/10.1109/SP.2012.39
http://dx.doi.org/10.1145/1134760.1134778
http://dx.doi.org/10.1145/143103.143114
http://dx.doi.org/10.1145/2508859.2516675
http://dx.doi.org/10.1109/CGO.2013.6494997

References 271

P. Hosek and C. Cadar. 2013. Safe software updates via multi-version execution. In
Proceedings of the 2013 International Conference on Software Engineering (ICSE’13),
pp. 612–621. DOI: 10.1109/ICSE.2013.6606607. 214, 256, 257

Petr Hosek and Cristian Cadar. 2015. Varan the unbelievable: An efficient n-version execution
framework. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pp. 339–353.
DOI: 10.1145/2694344.2694390. 214, 215, 218, 224, 227, 256, 257

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. 2015. Automatic generation of
data-oriented exploits. In 24th USENIX Security Symposium, pp. 177–192. http://
www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu.
21

R. Hund, C. Willems, and T. Holz. 2013. Practical timing side channel attacks against kernel
space ASLR. In IEEE Symposium on Security and Privacy (S&P), pp. 191–205. DOI:
10.1109/SP.2013.23. 82, 86, 141

G. Hunt and D. Brubacher. 1999. Detours: Binary interception of win32 functions. In Usenix
Windows NT Symposium, pp. 135–143. 232

Intel. 2013. Intel Architecture Instruction Set Extensions Programming Reference.
http://download-software.intel.com/sites/default/files/319433-015.pdf. 108

Intel.2013. Introduction to Intel memory protection extensions. http://software.intel.com/
en-us/articles/introduction-to-intel-memory-protection-extensions. 93

Intel. 2013. Intel 64 and IA-32 Architectures Software Developer’s Manual—Combined Volumes
1, 2a, 2b, 2c, 3a, 3b, and 3c. 178

Intel. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruction
Set Reference, A–Z. 2014. 223, 224

Itanium C++ ABI. http://mentorembedded.github.io/cxx-abi/abi.html. 32

A. Jaleel. 2007. Memory characterization of workloads using instrumentation-driven
simulation—a pin-based memory characterization of the SPEC CPU2000 and SPEC
CPU2006 benchmark suites. technical report. http://www.glue.umd.edu/~ajaleel/
workload/. 253

D. Jang, Z. Tatlock, and S. Lerner. 2014. SAFEDISPATCH: Securing C++ virtual calls from
memory corruption attacks. In Symposium on Network and Distributed System Security
(NDSS). 32, 173, 176

jduck. 2010. The latest Adobe exploit and session upgrading. http://bugix-security.blogspot
.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html. 182

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang. 2002. Cyclone: A
safe dialect of C. In USENIX Annual Technical Conference. 5, 82, 84, 88, 95

N. Joly. 2013. Advanced exploitation of Internet Explorer 10/Windows 8 overflow (Pwn2Own
2013). http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_
Windows8_Pwn2Own_2013.php. 117, 124, 162

M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Branch regulation: Low-
overhead protection from code reuse attacks. In Proceedings of the 39th Annual

http://dx.doi.org/10.1109/ICSE.2013.6606607
http://dx.doi.org/10.1145/2694344.2694390
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://dx.doi.org/10.1109/SP.2013.23
http://download-software.intel.com/sites/default/files/319433-015.pdf
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://mentorembedded.github.io/cxx-abi/abi.html
http://www.glue.umd.edu/~ajaleel/workload/
http://www.glue.umd.edu/~ajaleel/workload/
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php

272 References

International Symposium on Computer Architecture (ISCA). http://dl.acm.org/citation
.cfm?id=2337159.2337171. DOI: 10.1109/ISCA.2012.6237009. 182, 209

M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-Ghazaleh. 2013. Scrap:
Architecture for signature-based protection from code reuse attacks. In IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA2013), pp.
258–269. DOI: 10.1109/HPCA.2013.6522324. 209

C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. 2006. Address space layout permutation (ASLP):
Towards fine-grained randomization of commodity software. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC), pp. 339–348. DOI:
10.1109/ACSAC.2006.9. 11, 85

V. Kiriansky, D. Bruening, and S. P. Amarasinghe. 2002. Secure execution via program
shepherding. In Proceedings 11th USENIX Security Symposium, pp. 191–206. 8, 9

K. Koning, H. Bos, and C. Giuffrida. 2016. Secure and efficient multi-variant execution
using hardware-assisted process virtualization. In Proceedings of the International
Conference on Dependable Systems and Networks, pp. 431–442. DOI: 10.1109/DSN
.2016.46. 211, 214, 217

T. Kornau. 2010. Return oriented programming for the ARM architecture. Ph.D. thesis,
Master’s thesis, Ruhr-Universitat Bochum. 233

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. 2014a. Code-pointer
integrity. In 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pp. 147–163. 9, 10, 59, 62, 105, 106, 107, 173, 178, 179

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. 2014b. Code-Pointer
Integrity website. http://dslab.epfl.ch/proj/cpi/. 179

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, and D. Song. 2015. Poster: Getting the point
(er): On the feasibility of attacks on code-pointer integrity. In 36th IEEE Symposium
on Security and Privacy (S&P). 87

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. 2014. SoK: Automated software diversity.
In Proceedings of the 35th IEEE Symposium on Security and Privacy (S&P), pp. 276–291.
DOI: 10.1109/SP.2014.25. 11, 62, 66, 250, 252

C. Lattner and V. Adve. 2005. Automatic pool allocation: Improving performance by
controlling data structure layout in the heap. In ACM Conference on Programming
Language Design and Implementation, pp. 129–142. DOI: 10.1145/1064978.1065027.
91, 108

C. Lattner, A. Lenharth, and V. Adve. 2007. Making context-sensitive points-to analysis
with heap cloning practical for the real world. In ACM Conference on Programming
Language Design and Implementation, pp. 278–289. DOI: 10.1145/1273442.1250766.
91, 108

B. Lee, C. Song, T. Kim, and W. Lee. 2015. Type casting verification: Stopping an emerging
attack vector. In USENIX Security 15, pp. 81–96. http://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/lee. 7

http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dl.acm.org/citation.cfm?id=2337159.2337171
http://dx.doi.org/10.1109/ISCA.2012.6237009
http://dx.doi.org/10.1109/HPCA.2013.6522324
http://dx.doi.org/10.1109/ACSAC.2006.9
http://dx.doi.org/10.1109/DSN.2016.46
http://dslab.epfl.ch/proj/cpi/
http://dx.doi.org/10.1109/SP.2014.25
http://dx.doi.org/10.1145/1064978.1065027
http://dx.doi.org/10.1145/1273442.1250766
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
http://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee

References 273

D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and J. Flinn. 2010. Respec:
Efficient online multiprocessor replayvia speculation and external determinism. ACM
SIGARCH Computer Architecture News, 38(1):77–90. DOI: 10.1145/1736020.1736031.
230

J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster, L. Davi, A.-R. Sadeghi, T. Holz, and
M. Franz. 2016. Subversive-C: Abusing and protecting dynamic message dispatch. In
USENIX Annual Technical Conference (ATC), pp. 209–221. 70, 140

E. Levy. 1996. Smashing the stack for fun and profit. Phrack, 7. 61

J. Li, Z. Wang, T. K. Bletsch, D. Srinivasan, M. C. Grace, and X. Jiang. 2011. Comprehensive
and efficient protection of kernel control data. IEEE Transactions on Information
Forensics and Security, 6(4):1404–1417. DOI: 10.1109/TIFS.2011.2159712. 82, 86

C. Liebchen, M. Negro, P. Larsen, L. Davi, A.-R. Sadeghi, S. Crane, M. Qunaibit, M. Franz,
and M. Conti. 2015. Losing control: On the effectiveness of control-flow integrity
under stack attacks. In ACM Conference on Computer and Communications Security
(CCS). DOI: 10.1145/2810103.2813671. 182, 183, 205

Linux Man-Pages Project. 2017a. tc-netem(8)—Linux manual page. 256

Linux Man-Pages Project. 2017b. shmop(2)—Linux manual page. 247

Linux Programmer’s Manual. 2017a. vdso(7)—Linux manual page. 223

Linux Programmer’s Manual. 2017b. getauxval(3)—Linux manual page. 224

Linux Programmer’s Manual. 2017c. signal(7)—Linux manual page. 225

T. Liu, C. Curtsinger, and E. Berger. 2011. DTHREADS: Efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium on Operating System Principles (SOSP),
pp. 327–336. DOI: 10.1145/2043556.2043587. 230

LLVM. The LLVM compiler infrastructure. http://llvm.org/. 102

K. Lu, X. Zhou, T. Bergan, and X. Wang. 2014. Efficient deterministic multithreading without
global barriers. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pp. 287–300. DOI: 10.1145/2555243
.2555252. 230

K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. 2015. ASLR-Guard: Stopping
address space leakage for code reuse attacks. In ACM Conference on Computer and
Communications Security (CCS), pp. 280–291. DOI: 10.1145/2810103.2813694. 68

J. Maebe, M. Ronsse, and K. D. Bosschere. 2003. Instrumenting JVMs at the machine code
level. In 3rd PA3CT symposium, volume 19, pp. 105–107. 222

G. Maisuradze, M. Backes, and C. Rossow. 2003. What cannot be read, cannot be leveraged?
Revisiting assumptions of JIT-ROP defenses. In USENIX Security Symposium. 67

M. Marschalek. 2014. Dig deeper into the IE vulnerability (cve-2014-1776) exploit.
http://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/. 182

A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh. 2014. Cryptographically enforced
control flow integrity. http://arxiv.org/abs/1408.1451. 86

http://dx.doi.org/10.1145/1736020.1736031
http://dx.doi.org/10.1109/TIFS.2011.2159712
http://dx.doi.org/10.1145/2810103.2813671
http://dx.doi.org/10.1145/2043556.2043587
http://llvm.org/
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/2555243.2555252
http://dx.doi.org/10.1145/2810103.2813694
http://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/
http://arxiv.org/abs/1408.1451

274 References

A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. 2015. CCFI: Cryptographically
enforced control flow integrity. In ACM Conference on Computer and Communications
Security (CCS), pp. 941–951. DOI: 10.1145/2810103.2813676. 72, 76, 77

M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. 2013. System V application binary interface:
AMD64 architecture processor supplement. http://x86-64.org/documentation/abi
.pdf. 150

M. Maurer and D. Brumley. 2012. Tachyon: Tandem execution for efficient live patch testing.
In USENIX Security Symposium, pp. 617–630. 214, 256, 257

S. McCamant and G. Morrisett. 2006. Evaluating SFI for a CISC architecture. In Proceedings
of the 15th USENIX Security Symposium. 41, 59, 68, 86

H. Meer. 2010. Memory corruption attacks: The (almost) complete history. In Proceedings of
Blackhat USA. 62

T. Merrifield and J. Eriksson. 2013. Conversion: Multi-version concurrency control for main
memory segments. In Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys), pp. 127–139. DOI: 10.1145/2465351.2465365. 230

Microsoft Corp. November 2014. Enhanced mitigation experience toolkit (EMET) 5.1.
http://technet.microsoft.com/en-us/security/jj653751. 173, 176

Microsoft Developer Network. 2017. Argument passing and naming conventions.
http://msdn.microsoft.com/en-us/library/984x0h58.aspx. 149, 151, 154

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. 2015. Opaque control-
flow integrity. In Proceedings of the 22nd Annual Network and Distributed System
Security Symposium (NDSS). http://www.internetsociety.org/doc/opaque-control-flow-
integrity. 173, 177, 182

J. R. Moser. 2006. Virtual machines and memory protections. http://lwn.net/Articles/210272/.
238

G. Murphy. 2012. Position independent executables—adoption recommendations for
packages. http://people.redhat.com/~gmurphy/files/pie.odt. 238

S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. 2012. Watchdog: Hardware for safe
and secure manual memory management and full memory safety. In International
Symposium on Computer Architecture, pp. 189–200. DOI: 10.1145/2366231.2337181.
109

S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. 2015. Everything you want to know about
pointer-based checking. In First Summit on Advances in Programming Languages
(SNAPL). DOI: 10.4230/LIPIcs.SNAPL.2015.190. 5

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. 2009. SoftBound: Highly
compatible and complete spatial memory safety for C. In ACM Sigplan Notices,
volume 44, pp. 245–258. DOI: 10.1145/1542476.1542504. 4, 5, 36, 82, 84, 88, 91, 97,
99, 101, 102, 110, 112, 211

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic. 2010. CETS: Compiler
enforced temporal safety for C. In ACM Sigplan Notices, volume 45, pp. 31–40. DOI:
10.1145/1806651.1806657. 6, 83, 84, 88, 89, 91, 98, 108, 173, 178, 211

http://dx.doi.org/10.1145/2810103.2813676
http://x86-64.org/documentation/abi.pdf
http://dx.doi.org/10.1145/2465351.2465365
http://technet.microsoft.com/en-us/security/jj653751
http://msdn.microsoft.com/en-us/library/984x0h58.aspx
http://www.internetsociety.org/doc/opaque-control-flow-integrity
http://www.internetsociety.org/doc/opaque-control-flow-integrity
http://lwn.net/Articles/210272/
http://people.redhat.com/~gmurphy/files/pie.odt
http://dx.doi.org/10.1145/2366231.2337181
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.190
http://dx.doi.org/10.1145/1542476.1542504
http://dx.doi.org/10.1145/1806651.1806657

References 275

G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. 2005. CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems, 27(3):477–526. DOI: 10.1145/1065887.1065892. 5, 82, 84, 88, 95

Nergal. December 2001. The advanced return-into-lib(c) exploits (PaX case study). Phrack,
58 (4): 54. http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-
lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt. 81, 82, 185, 203

B. Niu. 2015. Practical control-flow integrity. Ph.D. thesis, Lehigh University. 26, 37, 39, 56,
60

B. Niu and G. Tan. 2013. Monitor integrity protection with space efficiency and separate
compilation. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), pp. 199–210. DOI: 10.1145/2508859.2516649. 39, 82, 86, 173, 175

B. Niu and G. Tan. 2014a. Modular control-flow integrity. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
DOI: 10.1145/2594291.2594295. 26, 27, 40, 44, 58, 82, 110, 114, 182

B. Niu and G. Tan. 2014b. RockJIT: Securing just-in-time compilation using modular control-
flow integrity. In ACM Conference on Computer and Communication Security (CCS), pp.
1317–1328. DOI: 10.1145/2660267.2660281. 9, 26, 34

B. Niu and G. Tan. 2015. Per-input control-flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 914–926. DOI:
10.1145/2810103.2813644. 14, 30, 59

A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida. 2016. Poking holes in
information hiding. In 25th USENIX Security Symposium, pp. 121–138. 11, 68, 94

M. Olszewski, J. Ansel, and S. Amarasinghe. 2009. Kendo: Efficient deterministic
multithreading in software. ACM Sigplan Notices, 44(3):97–108. DOI: 10.1145/1508244
.1508256. 230

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. 2010. G-Free: Defeating return-
oriented programming through gadget-less binaries. In Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC), pp. 49–58. DOI: 10.1145/1920261
.1920269. 173, 177, 210

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2013. Transparent ROP exploit mitigation
using indirect branch tracing. In Proceedings of the 22nd USENIX Security Symposium,
pp. 447–462. 117, 118, 119, 127, 173, 176, 182, 209

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, Thorsten Holz, Herbert Bos, Elias
Athanasopoulos, and Cristiano Giuffrida. 2017. Marx: Uncovering class hiearchies in
C++ programs. In Annual Network and Distributed System Security Symposium (NDSS).
67

PaX Team. 2004a. Address space layout randomization. http://pax.grsecurity.net/docs/
aslr.txt, 2004a. 82, 85, 211

PaX Team. 2004b PaX non-executable pp. design & implementation. http://pax.grsecurity
.net/docs/noexec.txt, 2004b. 8, 211

http://dx.doi.org/10.1145/1065887.1065892
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://www.phrack.org/archives/58/p58_0x04_Advanced%20return-into-lib(c)%20exploits%20(PaX%20case%20study)_by_nergal.txt
http://dx.doi.org/10.1145/2508859.2516649
http://dx.doi.org/10.1145/2594291.2594295
http://dx.doi.org/10.1145/2660267.2660281
http://dx.doi.org/10.1145/2810103.2813644
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1920261.1920269
http://dx.doi.org/10.1145/1920261.1920269
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/noexec.txt
http://pax.grsecurity.net/docs/noexec.txt

276 References

M. Payer. 2012. Safe loading and efficient runtime confinement: A foundation for secure
execution. Ph.D. thesis, ETH Zurich. http://nebelwelt.net/publications/12PhD. DOI:
10.1109/SP.2012.11. 8

M. Payer, A. Barresi, and T. R. Gross. 2015. Fine-grained control-flow integrity through
binary hardening. In Proceedings of the 12th Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA). DOI: 10.1007/978-3-319-20550-2_8.
10, 14, 58, 173, 174

M. Payer and T. R. Gross. 2011. Fine-grained user-space security through virtualization.
In Proceedings of the 7th International Conference on Virtual Execution Environments
(VEE). DOI: 10.1145/1952682.1952703. 8, 9

A. Pelletier. 2012. Advanced exploitation of Internet Explorer heap overflow (Pwn2Own 2012
exploit). VUPEN Vulnerability Research Team (VRT) blog. http://www.vupen.com/
blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-
1876.php. 124, 131

J. Pewny and T. Holz. 2013. Control-flow restrictor: Compiler-based CFI for iOS. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), pp.
309–318. DOI: 10.1145/2523649.2523674. 58

Phoronix. Phoronix test suite. http://www.phoronix-test-suite.com/. 114

A. Prakash, X. Hu, and H. Yin. 2015. vfGuard: Strict protection for virtual function calls in
COTS C++ binaries. In Symposium on Network and Distributed System Security (NDSS).
58, 160, 170, 171, 173, 176, 182

N. Provos. 2003. Improving host security with system call policies. In Proceedings of the 12th
USENIX Security Symposium SSYM), volume 12, pp. 18–18. http://dl.acm.org/citation
.cfm?id=1251353.1251371. 16, 241

H. P. Reiser, J. Domaschka, F. J. Hauck, R. Kapitza, and W. Schröder-Preikschat. 2006.
Consistent replication of multithreaded distributed objects. In IEEE Symposium on
Reliable Distributed Systems, pp. 257–266. DOI: 10.1109/SRDS.2006.14. 230

R. Roemer, E. Buchanan, H. Shacham, and S. Savage. 2012. Return-oriented programming:
Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34.
DOI: 10.1145/2133375.2133377. 20, 117, 181, 185

R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane, C. Liebchen, P. Larsen,
L. Davi, M. Franz, A.-R. Sadeghi, and H. Okhravi. 2017. Address oblivious code reuse:
On the effectiveness of leakage resilient diversity. In Annual Network and Distributed
System Security Symposium (NDSS). 69

J. M. Rushby. 1981. Design and verification of secure systems. In Proceedings of the 8th ACM
Symposium on Operating Systems Principles (SOSP), pp. 12–21. DOI: 10.1145/800216
.806586. 214

M. Russinovich, D. A. Solomon, and A. Ionescu. 2012. Windows Internals, Part 1. Microsoft
Press, 6th edition. ISBN 978-0-7356-4873-9. 155, 175

SafeStack. Clang documentation: Safestack. http://clang.llvm.org/docs/SafeStack.html. 102

http://nebelwelt.net/publications/12PhD
http://dx.doi.org/10.1109/SP.2012.11
http://dx.doi.org/10.1007/978-3-319-20550-2_8
http://dx.doi.org/10.1145/1952682.1952703
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://dx.doi.org/10.1145/2523649.2523674
http://www.phoronix-test-suite.com/
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dl.acm.org/citation.cfm?id=1251353.1251371
http://dx.doi.org/10.1109/SRDS.2006.14
http://dx.doi.org/10.1145/2133375.2133377
http://dx.doi.org/10.1145/800216.806586
http://dx.doi.org/10.1145/800216.806586
http://clang.llvm.org/docs/SafeStack.html

References 277

B. Salamat. 2009. Multi-variant execution: Run-time defense against malicious code
injection attacks. Ph.D. thesis, University of California at Irvine. 218

B. Salamat, T. Jackson, A. Gal, and M. Franz. 2009. Orchestra: Intrusion detection using
parallel execution and monitoring of program variants in user-space. In Proceedings
of the 4th ACM European Conference on Computer Systems (EuroSys), pp. 33–46. DOI:
10.1145/1519065.1519071. 211, 213, 214, 217, 227, 256, 257

J. Salwan. 2011. ROPGadget. http://shell-storm.org/project/ROPgadget/. 136

F. Schuster. July 2015. Securing Application Software in Modern Adversarial Settings. Ph.D.
thesis, Katholieke Universiteit Leuven. 140

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. 2015. Counterfeit
object-oriented programming: On the difficulty of preventing code reuse attacks in
C++ applications. In 36th IEEE Symposium on Security and Privacy (S&P), pp. 745–762.
DOI: 10.1109/SP.2015.51. 15, 20, 67, 70, 97, 140, 182, 183, 184, 185, 186, 200, 204,
211

F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz. 2014.
Evaluating the effectiveness of current anti-ROP defenses. In Research in Attacks,
Intrusions, and Defenses, volume 8688 of Lecture Notes in Computer Science. DOI:
10.1007/978-3-319-11379-1_5. 139, 140, 177, 182, 186, 188, 209

E. J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In IEEE Symposium on Security and Privacy (S&P). DOI: 10.1109/SP.2010.26.
86

E. J. Schwartz, T. Avgerinos, and D. Brumley. 2011. Q: Exploit hardening made easy. In
Proceedings of the 20th USENIX Conference on Security (SEC), pp. 25–25. 136

C. Segulja and T. S. Abdelrahman. 2014. What is the cost of weak determinism? In Proceedings
of the 23rd International Conference on Parallel Architectures and Compilation, pp. 99–
112. DOI: 10.1145/2628071.2628099. 254

J. Seibert, H. Okhravi, and E. Söderström. 2014. Information leaks without memory
disclosures: Remote side channel attacks on diversified code. In Proceedings of
ACM Conference on Computer and Communications Security (CCS), pp. 54–65. DOI:
10.1145/2660267.2660309. 141, 182

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. 2012. AddressSanitizer: A fast
address sanity checker. In USENIX Annual Technical Conference, pp. 309–318. 82, 84,
173, 178

F. J. Serna. 2012. CVE-2012-0769, the case of the perfect info leak. http://media.blackhat
.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf. 63, 117

H. Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS’07), pp. 552–561. DOI: 10.1145/1315245.1315313.
62, 172, 184, 185, 186, 200, 233

http://dx.doi.org/10.1145/1519065.1519071
http://shell-storm.org/project/ROPgadget/
http://dx.doi.org/10.1109/SP.2015.51
http://dx.doi.org/10.1007/978-3-319-11379-1_5
http://dx.doi.org/10.1109/SP.2010.26
http://dx.doi.org/10.1145/2628071.2628099
http://dx.doi.org/10.1145/2660267.2660309
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
http://dx.doi.org/10.1145/1315245.1315313

278 References

H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. 2004. On the
effectiveness of address-space randomization. In Proceedings of ACM Conference on
Computer and Communications Security (CCS), pp. 298–307. DOI: 10.1145/1030083
.1030124. 62

N. Shavit and D. Touitou. 1995. Software transactional memory. In Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 204–213.
28

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi. 2013.
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In 34th IEEE Symposium on Security and Privacy (S&P), pp. 574–588.
DOI: 10.1109/SP.2013.45. 10, 20, 49, 63, 82, 86, 117, 141, 177, 182, 184, 186, 203

K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis. 2016. Return
to the zombie gadgets: Undermining destructive code reads via code inference
attacks. In 37th IEEE Symposium on Security and Privacy (S&P), pp. 954–968. DOI:
10.1109/SP.2016.61. 70

Solar Designer. 1997a. “return-to-libc” attack. Bugtraq. 203

Solar Designer.1997b. lpr LIBC RETURN exploit. http://insecure.org/sploits/linux.libc.return
.lpr.sploit.html. 203

C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. 2015. Exploiting and protecting dynamic
code generation. In Network and Distributed System Security Symposium (NDSS). 49,
58, 60

A. Sotirov. 2007. Heap feng shui in JavaScript. In Proceedings of Black Hat Europe. 132

E. H. Spafford. January 1989. The internet worm program: An analysis. SIGCOMM Comput.
Commun. Rev., 19 (1): 17–57. ISSN 0146-4833. DOI: 10.1145/66093.66095. 61

SPARC. SPARC V8 processor. http://www.sparc.org. 206

R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter. 2009.
Breaking the memory secrecy assumption. In 2nd European Workshop on System
Security (EUROSEC), pp. 1–8. DOI: 10.1145/1519144.1519145. 63, 117

D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin. 2016. Strategy without
tactics: Policy-agnostic hardware-enhanced control-flow integrity. In IEEE/ACM
Design Automation Conference (DAC), pp. 83.2:1–6. DOI: 10.1145/2897937.2898098.
209

L. Szekeres, M. Payer, T. Wei, and D. Song. 2013. SoK: Eternal war in memory. In Proceedings
International Symposium on Security and Privacy (S&P). DOI: 10.1109/SP.2013.13. 2,
61, 82, 85, 211

L. Szekeres, M. Payer, L. Wei, D. Song, and R. Sekar. 2014. Eternal war in memory. IEEE
Security and Privacy Magazine. DOI: 10.1109/MSP.2013.47. 2

A. Tang, S. Sethumadhavan, and S. Stolfo. 2015. Heisenbyte: Thwarting memory disclo-
sure attacks using destructive code reads. In ACM Conference on Computer and
Communications Security (CCS), pp. 256–267. DOI: 10.1145/2810103.2813685. 70

http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1109/SP.2013.45
http://dx.doi.org/10.1109/SP.2016.61
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://dx.doi.org/10.1145/66093.66095
http://www.sparc.org
http://dx.doi.org/10.1145/1519144.1519145
http://dx.doi.org/10.1145/2897937.2898098
http://dx.doi.org/10.1109/SP.2013.13
http://dx.doi.org/10.1109/MSP.2013.47
http://dx.doi.org/10.1145/2810103.2813685

References 279

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike.
2014. Enforcing forward-edge control-flow integrity in GCC & LLVM. In Proceedings
of the 23rd USENIX Security Symposium. http://dl.acm.org/citation.cfm?id=2671225
.2671285. 58, 86, 173, 175, 182, 204, 208, 211, 233

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. 2011. On the expressiveness
of return-into-libc attacks. In Proceedings of the 14th International Conference on Recent
Advances in Intrusion Detection (RAID), pp. 121–141. DOI: 10.1007/978-3-642-23644-
0_7. 117, 140, 183, 184, 185, 200, 204

A. van de Ven. August 2004. New security enhancements in Red Hat Enterprise Linux
v.3, update 3. http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_
Execshield.pdf. 9, 82

V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and C.
Giuffrida. 2015. PathArmor: Practical ROP protection using context-sensitive CFI.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS), pp. 927–940. DOI: 10.1145/2810103.2813673. 14, 137

V. van der Veen, N. D. Sharma, L. Cavallaro, and H. Bos. 2012. Memory errors: The past,
the present, and the future. In Proceedings of the 15th International Conference on
Research in Attacks, Intrusions, and Defenses (RAID), pp. 86–106. DOI: 10.1007/978-3-
642-33338-5_5. 61

S. Volckaert. 2015. Advanced Techniques for multi-variant execution. Ph.D. thesis, Ghent
University. 226, 231

S. Volckaert, B. Coppens, and B. De Sutter. 2015. Cloning your gadgets: Complete ROP
attack immunity with multi-variant execution. IEEE Trans. on Dependable and Secure
Computing, 13 (4): 437–450. DOI: 10.1109/TDSC.2015.2411254. 211, 250

S. Volckaert, B. Coppens, B. De Sutter, K. De Bosschere, P. Larsen, and M. Franz. 2017.
Taming parallelism in a multi-variant execution environment. In Proceedings of
the 12th European Conference on Computer Systems (EuroSys), pp. 270–285. DOI:
10.1145/3064176.3064178. 230, 232

S. Volckaert, B. Coppens, A. Voulimeneas, A. Homescu, P. Larsen, B. De Sutter, and M. Franz.
2016. Secure and efficient application monitoring and replication. In USENIX Annual
Technical Conference (ATC), pp. 167–179. 214, 215, 247

S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere. 2013. GHUMVEE: Efficient,
effective, and flexible replication. In 5th International Symposium on Foundations and
Practice of Security (FPS), pp. 261–277. 214, 217, 232

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. 1993. Efficient software-based fault
isolation. In Proceedings of the 14th ACM Symposium on Operating System Principles,
pp. 203–216. DOI: 10.1145/168619.168635. 8, 9, 41, 68, 249

Z. Wang and X. Jiang. 2010. HyperSafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), pp. 380–395. DOI: 10.1109/SP.2010.30. 58, 208

http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dx.doi.org/10.1007/978-3-642-23644-0_7
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://dx.doi.org/10.1145/2810103.2813673
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1007/978-3-642-33338-5_5
http://dx.doi.org/10.1109/TDSC.2015.2411254
http://dx.doi.org/10.1145/3064176.3064178
http://dx.doi.org/10.1145/168619.168635
http://dx.doi.org/10.1109/SP.2010.30

280 References

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. 2012. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 157–168. DOI: 10.1145/2382196
.2382216. 11, 173, 177

R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. 2010. Capsicum: Practical
capabilities for UNIX. In 19th USENIX Security Symposium, pp. 29–46. 16

T. Wei, T. Wang, L. Duan, and J. Luo. 2011. INSeRT: Protect dynamic code generation against
spraying. In International Conference on Information Science and Technology (ICIST),
pp. 323–328. DOI: 10.1109/ICIST.2011.5765261. 59

J. Werner, G. Baltas, R. Dallara, N. Otternes, K. Snow, F. Monrose, and M. Polychronakis.
2016. No-execute-after-read: Preventing code disclosure in commodity software.
In 11th ACM Symposium on Information, Computer, and Communications Security
(ASIACCS), pp. 35–46. DOI: 10.1145/2897845.2897891. 70

J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen. 2011. RIPE: Runtime
intrusion prevention evaluator. In Proceedings of the 27th Annual Computer Security
Applications Conference, pp. 41–50. DOI: 10.1145/2076732.2076739. 109, 239

R. Wojtczuk. 1998. Defeating Solar Designer’s non-executable stack patch. http://insecure
.org/sploits/non-executable.stack.problems.html. 20, 81, 82, 203

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. 2002. Linux security
modules: General security support for the Linux kernel. In Proceedings 11th USENIX
Security Symposium. 16

R. Wu, P. Chen, B. Mao, and L. Xie. 2012. RIM: A method to defend from JIT spraying attack.
In 7th International Conference on Availability, Reliability, and Security (ARES), pp.
143–148. DOI: 10.1109/ARES.2012.11. 59

Y. Xia, Y. Liu, H. Chen, and B. Zang. 2012. CFIMon: Detecting violation of control flow
integrity using performance counters. In IEEE/IFIP Conference on Dependable Systems
and Networks (DSN), pp. 1–12. DOI: 10.1109/DSN.2012.6263958. 173, 176

F. Yao, J. Chen, and G. Venkataramani. 2013. JOP-alarm: Detecting jump-oriented
programming-based anomalies in applications. In IEEE 31st International Conference
on Computer Design (ICCD), pp. 467–470. DOI: 10.1109/ICCD.2013.6657084. 209

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N.
Fullagar. 2009. Native client: A sandbox for portable, untrusted x86 native code. In
30th IEEE Symposium on Security and Privacy (S&P), pp. 79–93. DOI: 10.1109/SP.2009
.25. 8, 39, 86

B. Zeng, G. Tan, and Ú. Erlingsson. 2013. Strato: A retargetable framework for low-level
inlined-reference monitors. In USENIX Security Symposium, pp. 369–382. 58, 86

B. Zeng, G. Tan, and G. Morrisett. 2011. Combining control-flow integrity and static analysis
for efficient and validated data sandboxing. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 29–40. DOI: 10.1145/2046707
.2046713. 58, 59, 86

http://dx.doi.org/10.1145/2382196.2382216
http://dx.doi.org/10.1145/2382196.2382216
http://dx.doi.org/10.1109/ICIST.2011.5765261
http://dx.doi.org/10.1145/2897845.2897891
http://dx.doi.org/10.1145/2076732.2076739
http://insecure.org/sploits/non-executable.stack.problems.html
http://insecure.org/sploits/non-executable.stack.problems.html
http://dx.doi.org/10.1109/ARES.2012.11
http://dx.doi.org/10.1109/DSN.2012.6263958
http://dx.doi.org/10.1109/ICCD.2013.6657084
http://dx.doi.org/10.1109/SP.2009.25
http://dx.doi.org/10.1145/2046707.2046713
http://dx.doi.org/10.1145/2046707.2046713

References 281

C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. 2015. VTint: Defending virtual function
tables’ integrity. In Symposium on Network and Distributed System Security (NDSS).
DOI: 10.14722/ndss.2015.23099 . 160, 173, 176, 182

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. 2013.
Practical control flow integrity and randomization for binary executables. In 34th
IEEE Symposium on Security and Privacy (S&P), pp. 559–573. DOI: 10.1109/SP.2013.44.
38, 82, 86, 97, 110, 114, 117, 118, 119, 127, 136, 169, 173, 174, 182, 208, 209

M. Zhang and R. Sekar. 2013. Control flow integrity for COTS binaries. In Proceedings
of the 22nd USENIX Security Symposium, pp. 337–352. http://dl.acm.org/citation
.cfm?id=2534766.2534796. 38, 82, 86, 97, 110, 114, 117, 118, 119, 127, 136, 173, 174,
182, 208, 209

H. W. Zhou, X. Wu, W. C. Shi, J. H. Yuan, and B. Liang. 2014. HDROP: Detecting ROP
attacks using performance monitoring counters. In Information Security Practice and
Experience, pp. 172–186. Springer International Publishing. DOI: 10.1007/978-3-319-
06320-1_14. 173, 177

X. Zhou, K. Lu, X. Wang, and . Li. 2012. Exploiting parallelism in deterministic shared
memory multiprocessing. Journal of Parallel and Distributed Computing, 72(5):716–
727. DOI: 10.1016/j.jpdc.2012.02.008. 230

http://dx.doi.org/10.14722/ndss.2015.23099
http://dx.doi.org/10.1109/SP.2013.44
http://dl.acm.org/citation.cfm?id=2534766.2534796
http://dl.acm.org/citation.cfm?id=2534766.2534796
http://dx.doi.org/10.1007/978-3-319-06320-1_14
http://dx.doi.org/10.1007/978-3-319-06320-1_14
http://dx.doi.org/10.1016/j.jpdc.2012.02.008

Contributor Biographies
Editors
Per Larsen is trying his hand as an entrepreneur and co-founded an information
security startup—Immunant, Inc.—specializing in exploit mitigation. Previously,
he worked for four years as a postdoctoral scholar at the University of California,
Irvine. He graduated with a Ph.D. from the Technical University of Denmark in
2011.

Per co-organized the 2015 Dagstuhl Seminar upon which this book is based
and has served as program committee member for several academic conferences
including USENIX Security, USENIX WOOT, ICDCS, and AsiaCCS. In 2015, he was
recognized as a DARPA Riser.

Ahmad Sadeghi is a full professor of Computer Science at TU Darmstadt, Germany,
and the Director of the Intel Collaborative Research Institute for Secure Computing
(ICRI-SC) at TU Darmstadt. He holds a Ph.D. in computer science from the Univer-
sity of Saarland in Saarbrücken, Germany. Prior to academia, he worked in research
and development for telecommunications enterprises, amongst others Ericsson
Telecommunications. He is editor-in-chief of IEEE Security and Privacy Magazine,
and on the editorial board of ACM Books. He served five years on the editorial board
of the ACM Transactions on Information and System Security (TISSEC), and was guest
editor of the IEEE Transactions on Computer-Aided Design (Special Issue on Hardware
Security and Trust).

Authors
Orlando Arias is pursuing his Ph.D. in computer engineering from the University of
Central Florida under the advisement of Dr. Yier Jin. His research interests include
secure computer architectures, network security, IP core design, and integration
and cryptosystems.

Elias Athanasopoulos is an assistant professor with the Computer Science Depart-
ment at the University of Cyprus. Before joining the University of Cyprus, he was an
assistant professor with Vrije Universiteit Amsterdam. He holds a BSc in physics

284 Contributor Biographies

from the University of Athens and a Ph.D. in computer science from the Univer-
sity of Crete. Elias is a Microsoft Research Ph.D. Scholar. He has interned with
Microsoft Research in Cambridge and worked as a research assistant with FORTH
in Greece from 2005 to 2011. Elias is also a Marie Curie fellow. Before joining the
faculty of Vrije Universiteit Amsterdam, he was a postdoctoral research scientist
with Columbia University and a collaborating researcher with FORTH.

Herbert Bos is a professor of systems and network security at Vrije Universiteit
Amsterdam, where he heads the VUSec research group. He obtained his Ph.D.
from Cambridge University Computer Laboratory (UK). Coming from a systems
background, he drifted into security a few years ago and never left.

George Candea heads the Dependable Systems Lab at EPFL, where he conducts
research on both the fundamentals and the practice of achieving reliability and
security in complex software systems. His main focus is on real-world large-scale
systems—millions of lines of code written by hundreds of programmers—because
going from a small program to a large system introduces fundamental challenges
that cannot be addressed with the techniques that work at small scale. George is
also Chairman of Cyberhaven, a cybersecurity company he co-founded with his for-
mer students to defend sensitive data against advanced attacks, social engineering,
and malicious insiders. In the past, George was CTO and later Chief Scientist of
Aster Data Systems (now Teradata Aster). Before that, he held positions at Oracle,
Microsoft Research, and IBM Research. George is a recipient of the first Eurosys
Jochen Liedtke Young Researcher Award (2014), an ERC StG award (2011), and the
MIT TR35 Young Innovators award (2005). He received his Ph.D. (2005) in computer
science from Stanford and his B.S. (1997) and M.Eng. (1998) in electrical engineer-
ing and computer science from MIT.

Bart Coppens is a postdoctoral researcher at Ghent University in the Computer
Systems Lab. He received his Ph.D. in computer science engineering from the
Faculty of Engineering and Architecture at Ghent University in 2013. His research
focuses on protecting software against different forms of attacks using compiler-
based techniques and run-time techniques.

Stephen Crane started seriously diving into security during his undergrad at Cal
Poly Pomona, competing in CCDC. From there he worked on research somewhere
in the intersection of systems security and compilers at UC Irvine. After transform-
ing into Dr. Crane, Stephen founded Immunant with fellow UCI researchers, where
he tries to get exploit mitigation tools into the hands of developers.

Lucas Davi is an assistant professor of computer science at University of Duisburg-
Essen, Germany, and associated researcher at the Intel Collaborative Research

Contributor Biographies 285

Institute for Secure Computing (ICRI-SC) at TU Darmstadt, Germany. He received
his Ph.D. in computer science from TU Darmstadt. His research focus includes
system security, software security, and trusted computing. His Ph.D. thesis on code-
reuse attacks and defenses has been awarded with the ACM SIGSAC Dissertation
Award 2016.

Bjorn De Sutter is a professor at Ghent University in the Computer Systems Lab. He
obtained his MSc. and Ph.D. degrees in computer science from Ghent University’s
Faculty of Engineering in 1997 and 2002. His research focuses on the use of com-
piler techniques and run-time techniques to aid programmers with non-functional
aspects of their software, such as performance, code size, reliability, and software
protection. He has published over 80 peer-reviewed papers on these topics.

Michael Franz is the director of the Secure Systems and Software Laboratory at the
University of California, Irvine (UCI). He is a full professor of computer science in
UCI’s Donald Bren School of Information and Computer Sciences and a full pro-
fessor of electrical engineering and computer science (by courtesy) in UCI’s Henry
Samueli School of Engineering. Prof. Franz was an early pioneer in the areas of mo-
bile code and dynamic compilation. He created an early just-in-time compilation
system, contributed to the theory and practice of continuous compilation and opti-
mization, and co-invented the trace compilation technology that eventually became
the JavaScript engine in Mozilla’s Firefox browser. Franz received a Dr. sc. techn.
degree in computer science and a Dipl. Informatik-Ing. ETH degree, both from the
Swiss Federal Institute of Technology, ETH Zurich.

Enes Gökta̧s is a Ph.D. Student in the systems and network security group at the
Vrije Universiteit Amsterdam. His research focus is on evaluating and developing
mitigations against memory corruption vulnerabilities. His previous work includes
evaluation and proposal of Control-Flow Integrity based mitigations. His interests
lies in the area of software security, as well as binary analysis and instrumentation.

Thorsten Holz is a professor in the Faculty of Electrical Engineering and Infor-
mation Technology at Ruhr-University Bochum, Germany. His research interests
include systems-oriented aspects of secure systems, with a specific focus on ap-
plied computer security. Currently, his work concentrates on bots/botnets, auto-
mated analysis of malicious software, and studying the latest attack vectors. He
received the Dipl.-Inform. degree in computer science from RWTH Aachen, Ger-
many (2005), and a Ph.D. degree from University of Mannheim (2009). Prior to
joining Ruhr-University Bochum in April 2010, he was a postdoctoral researcher
in the Automation Systems Group at the Technical University of Vienna, Austria. In

286 Contributor Biographies

2011, Thorsten received the Heinz Maier-Leibnitz Prize from the German Research
Foundation (DFG).

Andrei Homescu finished his doctoral studies at UC Irvine in 2015, after which he
co-founded Immunant with three of the present co-authors. Andrei has published
widely in the areas of systems security, language runtimes, and exploit mitiga-
tion. He also led the development of selfrando, a production-ready, open-source
randomization engine, and is the lead author on several US patents and patent
applications.

Yier Jin received his Ph.D. in electrical engineering from Yale University in 2012.
He is an assistant professor in the Department of Electrical and Computer Engi-
neering, University of Central Florida, USA. His research interests include hardware
security, IoT security, and formal methods. He is a member of IEEE and ACM.

Volodymyr Kuznetsov is a security researcher who focuses on practical applications
of program analysis and other formal methods in systems security, with particu-
lar interest in protecting sensitive data in applications and systems with security
vulnerabilities. Volodymyr’s research was released as open source projects that
have become widely used in research community and industry (http://s2e.epfl.ch/,
http://clang.llvm.org/docs/SafeStack.html, and others) and were recognized with
an open source award. Volodymyr obtained his Ph.D. in Computer Science at EPFL
in 2016 and now leads a cyber security company that brings state-of-the-art research
into the world of enterprise cyber security.

Ben Niu earned his Ph.D. degree in computer science from Lehigh University, USA,
in 2016, advised by professor Gang Tan. He is currently a security software engineer
at Microsoft Corporation. His research interests are system security and parallel
programming.

Hamed Okhravi is a senior staff member at the Cyber Analytics and Decision Sys-
tems Group of MIT Lincoln Laboratory, where he leads programs and conducts
research in the area of systems security. His research interests include cyber se-
curity, science of security, security evaluation, and operating systems. He is the
recipient of the 2014 MIT Lincoln Laboratory Early Career Technical Achievement
Award and 2015 Team Award for his work on cyber moving target research. He
is also the recipient of an honorable mention (runner-up) at the 2015 NSA’s 3rd
Annual Best Scientific Cybersecurity Paper Competition. Currently, his research is
focused on analyzing and developing system security defenses.

He has served as a program chair for the ACM CCS Moving Target Defense (MTD)
workshop and program committee member for a number of academic conferences
and workshops including ACM CCS, NDSS, RAID, AsiaCCS, ACNS, and IEEE SecDev.

http://s2e.epfl.ch/
http://clang.llvm.org/docs/SafeStack.html

Contributor Biographies 287

Dr. Okhravi earned his MS and Ph.D. in electrical and computer engineering
from University of Illinois at Urbana-Champaign in 2006 and 2010, respectively.

Mathias Payer is a security researcher and assistant professor in computer science
at Purdue University, leading the HexHive group. His research focuses on protect-
ing applications even in the presence of vulnerabilities, with a focus on memory
corruption. He is interested in system security, binary exploitation, user-space
software-based fault isolation, binary translation/recompilation, and (application)
virtualization. All implementation prototypes from his group are open source. In
2014, he founded the b01lers Purdue CTF team. Before joining Purdue in 2014,
he spent two years as a postdoc in Dawn Song’s BitBlaze group at UC Berkeley. He
graduated from ETH Zurich with a Dr. sc. ETH in 2012.

Georgios Portokalidis is an assistant professor in the Department of Computer
Science at Stevens Institute of Technology. He obtained his Ph.D. from Vrije Univer-
siteit in Amsterdam in February 2010, and also spent a couple of years as a postdoc
at Columbia University in New York. His research interests center mainly around
the area of systems and security, including software and network security, authenti-
cation, privacy, and software resiliency. His recent work has revolved around code-
reuse attacks, efficient information-flow tracking, and security applications using
the Internet of Things. During his Ph.D. he worked on the Argos emulator, a plat-
form for hosting high-interaction honeypots that can automatically detect zero-day
control-flow hijacking attacks, and Paranoid Android, a record-replay system for the
Android OS.

Felix Schuster has been a researcher at the Microsoft Research Cambridge (UK)
lab since 2015. Before joining Microsoft Research, he obtained a Ph.D. from Ruhr-
Universität Bochum. Felix is broadly interested in applied systems and software
security and is part of the lab’s Constructive Security Group. In the past, he worked
on topics like code-reuse attacks and defenses (e.g., COOP) and automated binary
code analysis. Currently, Felix’s research focusses on the design of practical solu-
tions for the trusted cloud like the VC3 system or the Coco blockchain framework.

R. Sekar is a Professor of Computer Science and the Director of the Secure Systems
Laboratory and the Center for Cyber Security at Stony Brook University. He received
his Bachelor’s degree in Electrical Engineering from IIT, Madras (India) in 1986,
and his Ph.D. in Computer Science from Stony Brook in 1991. He then served
as a Research Scientist at Bellcore until 1996, and then as faculty at Iowa State
University. Sekar’s research interests are focused on software exploit detection and
mitigation, malware and untrusted code defense, and security policies and their
enforcement.

288 Contributor Biographies

Dawn Song is a professor in the Department of Electrical Engineering and Com-
puter Science at UC Berkeley. Her research interest lies in deep learning and se-
curity. She has studied diverse security and privacy issues in computer systems
and networks, including areas ranging from software security, networking security,
database security, distributed systems security, and applied cryptography, to the in-
tersection of machine learning and security. She is the recipient of various awards
including the MacArthur Fellowship, the Guggenheim Fellowship, the NSF CA-
REER Award, the Alfred P. Sloan Research Fellowship, the MIT Technology Review
TR-35 Award, the George Tallman Ladd Research Award, the Okawa Foundation Re-
search Award, the Li Ka Shing Foundation Women in Science Distinguished Lecture
Series Award, the Faculty Research Award from IBM, Google and other major tech
companies, and Best Paper Awards from top conferences. She obtained her Ph.D.
from UC Berkeley. Prior to joining UC Berkeley as a faculty, she was an Assistant
Professor at Carnegie Mellon University from 2002–2007.

Dean Sullivan is pursuing his Ph.D. in computer engineering from the University of
Central Florida under the advisement of Dr. Yier Jin. His research interests include
system security and computer architecture.

László Szekeres is a software security researcher at Google. He works on developing
techniques for protecting against security bugs, primarily in C/C++ code. His re-
search is focused on finding and hardening against vulnerabilities using automated
test generation, program analysis, compiler techniques, and machine learning. He
obtained his Ph.D. in Computer Science from Stony Brook University in 2017. Dur-
ing his studies he spent a year as a visiting researcher at UC Berkeley. In 2010, he was
awarded the Fulbright Foreign Student Scholarship. Before returning to academia
for his doctorate degree, he led a security research team at a spin-off company of
the Budapest University of Technology and Economics.

Gang Tan received his Ph.D. in computer science from Princeton University in
2005. He is an associate professor in the Department of Computer Science and
Engineering, Pennsylvania State University, USA. His research interests include
software security, programming languages, and formal methods. He is a member
of IEEE and ACM.

Stijn Volckaert received his Ph.D. degree from Ghent University’s Faculty of Engi-
neering and Architecture. He is currently a postdoctoral scholar in the Department
of Computer Science at the University of California, Irvine. His research interests
include security, operating systems, and software protection.

	Contents
	Preface
	1, How Memory Safety Violations Enable Exploitation of Programs
	2. Protecting Dynamic Code
	3. Diversity and Information Leaks
	4. Code-Pointer Integrity
	5. Evaluating Control-Flow Restricting Defenses
	6. Attacking Dynamic Code
	7. Hardware Control Flow Integrity
	8. Multi-Variant Execution Environments
	References
	Contributor Biographies

