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Preface

Parallelism is the key to achieving high performance in computing. However, writ-
ing efficient and scalable parallel programs is notoriously difficult, and often re-
quires significant expertise. To address this challenge, it is crucial to provide pro-
grammers with high-level tools to enable them to develop solutions easily, and at
the same time emphasize the theoretical and practical aspects of algorithm design
to allow the solutions developed to run efficiently under many different settings.
This book addresses this challenge using a three-pronged approach consisting of
the design of shared-memory programming techniques, frameworks, and algo-
rithms for important problems in computing. The book provides evidence that
with appropriate programming techniques, frameworks, and algorithms, shared-
memory programs can be simple, fast, and scalable, both in theory and practice.
The results developed in this book serve to ease the transition into the multi-
core era.

The first part of this book introduces tools and techniques for deterministic
parallel programming, including means for encapsulating nondeterminism via
powerful commutative building blocks, as well as a novel framework for execut-
ing sequential iterative loops in parallel, which lead to deterministic parallel algo-
rithms that are efficient both in theory and practice.

The second part of this book introduces Ligra, the first high-level shared-
memory framework for parallel graph traversal algorithms. The framework allows
programmers to express graph traversal algorithms using very short and concise
code, delivers performance competitive with that of highly optimized code, and
is up to orders of magnitude faster than existing systems designed for distributed
memory. This part of the book also introduces Ligra+, which extends Ligra with
graph compression techniques to reduce space usage and improve parallel perfor-
mance at the same time, and is also the first graph processing system to support
in-memory graph compression.
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The third and fourth parts of this book bridge the gap between theory and prac-
tice in parallel algorithm design by introducing the first algorithms for a variety of
important problems on graphs and strings that are both practical and theoretically
efficient. For example, this book develops the first linear-work and polylogarithmic-
depth algorithms for suffix tree construction and graph connectivity that are also
practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient
shared-memory algorithm for triangle computations that achieves a 2–5× speedup
over the best existing algorithms on 40 cores.

This book is a revised version of the thesis that won the 2015 ACM Doctoral
Dissertation Award.
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1Introduction
In today’s data-driven world with rapidly increasing data sizes, performance has
become more important than ever before. Reducing the running time of programs
lowers overall costs—for example, the rental costs of machines on Amazon EC21

is proportional to the usage time. In addition, reducing the time-to-completion
of tasks has been shown to increase worker productivity as well as end-user ex-
perience. Alternatively, one can view improving performance as enabling more
computation to be performed in a given amount of time, effectively increasing one’s
computing budget.

Traditionally, high-performance computing solutions have been developed and
used by only a small community, as these solutions rely on expensive and special-
ized computing environments. In recent years, in an effort to bring performance
computing closer to the rest of the community, large-scale computing solutions
using distributed clusters of commodity machines have emerged. However, within
the past decade, commodity multicore machines have become prevalent, and to-
day these machines support up to terabytes of memory,2 more than enough for a
majority of applications. This book contends that a single shared-memory machine is
sufficient for solving many problems in large-scale computing. It demonstrates that
large-scale shared-memory solutions can be simple, scalable to the largest data
sets considered by distributed-memory solutions for many problems, and signif-
icantly more efficient on a per-core, per-dollar, and per-joule basis than existing
distributed-memory solutions. The goal of this book is to bring high-performance com-
puting to the masses via parallel programming frameworks, techniques, and algorithms
for shared-memory multicore machines.

Why have multicore machines become so widespread in just the past decade?
Moore’s law states that the transistor density doubles approximately every 18

1. http://aws.amazon.com/ec2/pricing/

2. For example, the Intel Sandy Bridge-based Dell PowerEdge R930 can be configured with up to
96 cores and 6 TB of memory.

http://aws.amazon.com/ec2/pricing/
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months [Moore 1965], and along with Dennard scaling, which states that transistor
power density is constant [Dennard et al. 1974], this has historically corresponded
to increases in clock speeds of single core machines of roughly 30% per year since
the mid-1970’s [Leiserson and Mirman 2008]. However, since around the mid-
2000’s, Dennard scaling no longer continued to hold due to physical limitations of
hardware and, as a result, hardware vendors have turned to developing processors
with multiple cores to deliver improved performance. These machines are referred
to as shared-memory multicore machines,3 as the different cores have access to a
shared global memory. This shift in processor technology has often been referred
to as the “multicore revolution” [Leiserson and Mirman 2008]. Multicore technol-
ogy has become ubiquitous today, with most personal computers, and even most
cellular phones containing multiple cores. Therefore, writing parallel programs to
take advantage of the multiple cores on a machine is crucial to obtaining scalable
performance and enabling large-scale data to be processed.

In addition to multicore technology, parallel computing can come in the form
of distributed systems, as mentioned above, graphics processing units (GPUs), and
field programmable gate arrays (FPGAs). Unlike multicores, distributed systems
can solve problems that do not fit in the memory of a single machine. However,
compared to multicore shared-memory systems, communication and data replica-
tion in distributed systems often leads to high additional overheads. Therefore, for
problems that can fit in memory, shared-memory multicores are generally signifi-
cantly more efficient on a per-core, per-dollar, and per-joule basis than distributed-
memory systems. For example, this book shows that the exact triangle count of the
Yahoo! Web graph with over 6 billion edges can be computed in under 1.5 min and
a suffix tree can be constructed on the 3 GB human genome in under 3 min on a
modern 40-core machine, much faster than previous distributed-memory solutions
(both in absolute performance and on a per-core basis) for the same problem. The
data sets in these examples are among the largest considered in the literature for
the corresponding problems, and easily fit on a multicore machine. While GPUs
and FPGAs may be more efficient for certain problems, multicore machines are
much more general-purpose, support larger memory sizes (useful for scaling to
large data), and are considerably easier to program.4 This book argues that shared-

3. These are sometimes also referred to as manycore machines when the number of cores is large
enough.

4. The techniques developed in this book are also applicable to Intel’s new Xeon Phi coproces-
sors, which support higher memory bandwidth than traditional multicore machines. However,
currently their memory sizes are not sufficient for some of the larger data sets studied in this
book.
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memory multicores offer a sweet spot between programmability and efficiency.
There has been a large body of work on developing efficient algorithms and frame-
works for regular problems, where the parallelism is relatively well structured (e.g.,
problems in dense numerical linear algebra and scientific simulations), while less
work has been done for irregular problems, where the parallelism is much less
well-structured and highly dependent on input data (e.g., problems on graphs and
strings). This book studies shared-memory programming techniques, frameworks, and
algorithms for a wide class of irregular problems and shows that shared-memory par-
allelism can be simple, fast, and scalable.

This book adopts a three-pronged approach of studying shared-memory par-
allelism from the perspective of programming techniques, algorithm design, and
performance analysis. Furthermore, significant attention will be paid to both the
theoretical aspects as well as the practical implications of the solutions developed.
The work here builds on ideas from previous research on shared-memory paral-
lelism, but the comprehensive approach used enables simplicity, efficiency, and
scalability, both in theory and in practice, to be achieved for a variety of important
problems for the first time. The remainder of this chapter is organized as follows.

. Section 1.1 introduces nested fork-join parallelism, which is the type of
parallelism studied here. This section then describes challenges in shared-
memory programming, including obtaining determinism, controlling
shared access, and developing high-level programming abstractions. The
reader will obtain an overview of the contributions of this book to addressing
these challenges.

. Section 1.2 describes the Parallel Random Access Machine (PRAM) and work-
depth models for analyzing parallel algorithms. This is followed by some
highlights of the book’s contribution in bridging the gap between theory
and practice in parallel algorithms via designing theoretically efficient al-
gorithms that perform well on modern multicore machines.

. Section 1.3 describes performance factors of multicore programs, includ-
ing caching, memory contention, and parallel scalability. This section intro-
duces techniques developed in this book that take into account these factors
to improve performance.

. Section 1.4 introduces a benchmark suite developed in this book to compre-
hensively evaluate solutions to given problems in terms of simplicity as well
as theoretical and practical efficiency.

. The contributions of this book are summarized in Section 1.5.
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1.1 Shared-Memory Programming

Languages
While shared-memory parallelism has many advantages, writing correct, efficient,
and scalable shared-memory multicore programs is notoriously difficult. Tradition-
ally, shared-memory parallel programs are written with explicit assignment of tasks
to threads (e.g., usingpthreads). This low-level approach requires the programmer
to carefully consider the many possible interleavings of threads, and it is gener-
ally difficult to write a correct program let alone an efficient and scalable one. For
programs in which there is no clear way to evenly split the work among threads,
scheduling for good performance is a big challenge. Such programs generally re-
quire extensive tuning to obtain good performance.

Another method for writing shared-memory multicore programs is to use sim-
ple constructs that indicate which parts of the program are safe to run in parallel,
and allow a run-time scheduler to assign work to threads and perform load balanc-
ing on-the-fly. This approach is known as dynamic multithreading. Using dynamic
multithreading languages such as Cilk [Frigo et al. 1998], OpenMP, Intel Thread-
ing Building Blocks, Habanero [Budimlic et al. 2011], and X10 [Charles et al. 2005],
one can write clean parallel programs while letting the run-time scheduler perform
the work allocation and load balancing. This approach frees the programmer from
the low-level details of explicit thread management, leading to simpler code, while
delivering comparable or improved performance. With advances in scheduling, it
is now possible to write a wide class of parallel programs in this framework that
are efficient, both in theory and in practice [Blumofe and Leiserson 1999], without
having to tune the program to achieve balanced workloads.

Nested Fork-Join Parallelism
All of the algorithms and techniques studied in this book are designed for nested
fork-join parallelism, in which procedures can be called recursively in parallel via a
fork construct, and synchronized via a join construct [Blelloch 1992]. This includes
parallel for-loops, which can be implemented using fork and join. Nested parallel
computations can be defined inductively in terms of the composition of sequential
and parallel components, and modeled as a directed acyclic graph (computation
DAG). Dynamic multithreading languages such as Cilk support low-overhead prim-
itives to implement fork-join parallelism [Leiserson 2010]. A broad class of parallel
programs can be expressed with fork-join parallelism, and the programming tech-
niques and frameworks developed in this book aim to enable programs written
within this paradigm to be simpler and more efficient.
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Determinism
While dynamic multithreading languages free the programmer from scheduling
and load balancing, there are still many challenges in writing correct and fast
parallel programs. One of the key challenges in parallel programming is dealing with
nondeterminism arising from the parallel program and/or the parallel machine and its
runtime environment. Nondeterminism arises from race conditions in the program
(concurrent accesses to the same data with at least one being a write), and makes
it hard for programmers to debug and reason about the correctness/performance
of their code. One way to obtain determinism in nested parallel programs is to not
have any races. While this approach is reasonable for certain problems, in general
it can be overly restrictive as it is often useful and efficient to have shared data.
The goal in this book is to develop less restrictive and more efficient ways to obtain
determinism.

There has been significant previous work on obtaining determinism using vari-
ous approaches, including using special-purpose hardware, modifying compilers,
runtime systems and/or operating systems, and designing new programming lan-
guages (see Chapter 3 for references). In contrast to most previous work, this book
designs building blocks and programming techniques for simplifying determinis-
tic parallel programming that can be used with the existing computing stack, making
determinism more accessible. In other words, programmers do not have to in-
stall special programming languages, compilers, runtime systems, or operating
systems, nor do they need access to special-purpose hardware. This book advocates
a form of determinism called internal determinism. Informally, given an abstraction
level, a program is internally deterministic if key intermediate steps of the program
are deterministic with respect to the abstraction level. Internal determinism has
many benefits, including leading to external determinism and implying a sequen-
tial semantics, which in turn leads to many advantages such as ease of reasoning
about code, verifying correctness and debugging.

One of the main approaches to developing efficient deterministic parallel so-
lutions in this book is the deterministic reservations framework for parallelizing
greedy sequential algorithms (Chapter 3). The approach consists of two phases—
in the reserve phase, the iterates concurrently mark all of the data that they affect,
and in the commit phase, iterates whose mark is still written on all of its affected
data proceed with the computation on the data. Determining successful reserva-
tions is done in a deterministic manner, so that for a given round the same iterates
succeed/fail on every execution. Parallel algorithms written in this framework re-
turn the same answer as their sequential counterparts, which gives determinism,
and allows the parallel and sequential algorithms to be interchanged when nec-
essary. The algorithms developed are also very simple, as the user only needs to



6 Chapter 1 Introduction

struct STStep {

int u; int v;

edge *E; res *R; disjointSet F;

STStep(edge* _E, disjointSet _F, res* _R)

: E(_E), R(_R), F(_F) {}

bool reserve(int i) {

u = F.find(E[i].u); //find component

v = F.find(E[i].v); //find component

if (u == v) return 0; //skip edge if endpoints belong to the

// same component

if (u > v) swap(u,v);

R[v].reserve(i); //reserve larger component

return 1; }

bool commit(int i) {

if (R[v].check(i)) { F.link(v, u); return 1; } //link if reservation

// was successful

else return 0; }

};

void ST(res* R, edge* E, int m, int n, int psize) {

disjointSet F(n); //deterministic union-find data structure

speculative_for(STStep(E, F, R), 0, m, psize); //deterministic

// reservations driver

}

Figure 1.1 C++ code for spanning forest using deterministic reservations (with its operations
reserve, check, and speculative_for), where m is the number of edges and n is the
number of vertices in the graph.

specify the reserve and commit functions called by each iterate in the two corre-
sponding phases, as well as corresponding data structures. For example, Figure 1.1
shows the C++ code for a spanning forest algorithm using deterministic reserva-
tions. disjointSet is a deterministic union-find data structure developed in this
book, and speculative_for executes the deterministic reservations framework
using the user-defined reserve and commit functions (more details will be dis-
cussed in Chapter 3).

Part I describes tools for writing internally deterministic parallel code [Blelloch
et al. 2012, Shun et al. 2013, Shun and Blelloch 2014], drawing heavily on using
commutative operations. This part also describes internally deterministic solutions
to a broad set of benchmark problems using these tools, and shows that these
solutions are efficient (competitive with existing nondeterministic solutions and
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achieve good parallel speedup), scalable to large inputs, natural to reason about,
not complicated to code [Blelloch et al. 2012], and also have good theoretical
guarantees [Blelloch et al. 2012, Shun et al. 2015].

Controlling Shared Access
Many parallel programs use locks to control access to shared resources. The gran-
ularity of locking (e.g., locking an entire data structure vs. locking a small part of
the data structure) affects the performance, scalability, and programmability of
a solution, with coarser-grained locking leading to simpler solutions and finer-
grained locking leading to higher efficiency and scalability. Programming with
locks, however, has disadvantages such as leading to deadlock or livelock, and
writing efficient fine-grained lock-based programs is often very tedious. There has
been significant work on writing parallel programs without locks by making use of
atomic operations (e.g., compare-and-swap and fetch-and-increment) supported
in hardware [Herlihy and Shavit 2012]. Proper use of atomics can lead to more effi-
cient programs than fine-grained locking and has the advantage of having progress
guarantees. All of the programming techniques, algorithms, and data structures
developed in this book are lock-free, making use of atomic operations when neces-
sary, while also being simple. An extremely useful atomic primitive called priority
update for controlling shared access in deterministic programs [Shun et al. 2013]
is introduced in Chapter 6, and is used throughout the algorithms in this book.

Transactional memory (TM) is a technique to simplify shared-memory program-
ming by allowing users to specify regions of code that will execute atomically (see,
e.g., [Harris et al. 2010] for an overview). This frees the programmer from having
to lock critical sections in code, leading to simpler programs. There has been sig-
nificant research in implementing transactional memory both in software and in
hardware. However, the techniques developed in this book are unlikely to bene-
fit from TM for two reasons: (1) the order in which transactions succeed in TM is
not deterministic, and (2) the algorithms in this book have no lock-based critical
sections—shared accesses are protected using only a single atomic instruction.

Programming Frameworks
Another effort in simplifying shared-memory programming has been in develop-
ing higher-level frameworks and interfaces for writing parallel solutions. These
range from general parallel programming libraries such as the Parallel Boost
Graph Library [Gregor and Lumsdaine 2005], Multi-Core Standard Template Li-
brary (MCSTL) [Singler et al. 2007], SWARM [Bader et al. 2007], Galois [Pingali et al.
2011], and algorithms/containers provided as part of the Intel Threading Building
Blocks, to domain-specific frameworks/languages such as GraphLab [Low et al.
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1 Parents = {−1, . . . , −1} � initialized to all -1’s, indicating unexplored

2 procedure UPDATE(s, d)
3 return (CAS(&Parents[d], −1, s)) � atomically explore vertex

4 procedure COND(i)
5 return (Parents[i] == −1) � check if unexplored

6 procedure BFS(G, r) � G is the graph and r is the source vertex
7 Parents[r] = r

8 Frontier = {r} � vertexSubset initialized to contain only r

9 while SIZE(Frontier) �= 0 do
10 Frontier = EDGEMAP(G, Frontier, UPDATE, COND) � explore next frontier

Figure 1.2 Pseudocode for breadth-first search (BFS) in Ligra. The compare-and-swap function
CAS(loc, oldV , newV ) atomically checks if the value at location loc is equal to oldV and if
so it updates loc with newV and returns TRUE. Otherwise, it leaves loc unmodified and
returns FALSE.

2010, Gonzalez et al. 2012] and Green-Marl [Hong et al. 2012]. The solutions all
vary in programmability, efficiency, and coverage.

Graph processing frameworks have received significant recent interest due to
their importance in large-scale data analytics. Part II introduces Ligra, the first
high-level shared-memory graph processing framework that targets graph traversal
algorithms (i.e., algorithms that visit a small subset of the graph in each iteration).
The framework is very simple and lightweight. In addition to a graph data struc-
ture, it requires only one data structure, used for representing a subset of vertices
(vertexSubset), and two functions, one for mapping user-defined functions over
vertices (VERTEXMAP) and the other for mapping over edges (EDGEMAP). For exam-
ple, Figure 1.2 shows a concise implementation of a parallel breadth-first search
(BFS) algorithm in Ligra. Each iteration of the BFS algorithm applies an EDGEMAP

to the current frontier of vertices (Line 10), in which the user-defined UPDATE func-
tion is applied to all outgoing edges of the frontier vertices such that the applying
the COND function on the target of the edge returns TRUE. Here, the COND function
simply checks if a vertex is unexplored, and if so, the UPDATE function atomically
marks the neighbor as explored using a compare-and-swap.

This book shows that Ligra can process the largest publicly available real-world
graphs in shared-memory and is much faster than existing high-level graph pro-
cessing systems for the same applications. This work advocates performing large-
scale graph analytics on a single shared-memory server instead of using distributed
memory, and since the development of Ligra, there have been several other large-
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scale graph processing frameworks [Nguyen et al. 2013, Roy et al. 2013, Kaler et
al. 2014, Zhang et al. 2015] developed for shared-memory multicores, as well as a
graph processing framework for GPUs sharing ideas with Ligra [Wang et al. 2015].

Concurrency
There has been a large body of research on concurrency in parallel programming,
which studies how different threads interact with each other. Dealing with concur-
rency often requires considerable effort from the programmer because the behavior
of concurrent programs is almost always nondeterministic due to the nondeter-
ministic order in which the threads execute. The goal of this book is to hide the
concurrency in parallel programs from the programmer by raising the level of ab-
straction and developing deterministic tools at this higher level of abstraction (e.g.,
deterministic reservations described in Chapter 3 and priority updates described
in Chapter 6) and data structures (e.g., a deterministic phase-concurrent hash table
described in Chapter 5) that the user can simply call in their programs. By raising
the level of abstraction, the implementations of the tools can be nondeterministic
(but hidden to the programmer), giving more flexibility and efficiency. This ap-
proach leads to deterministic parallel solutions that are simple to reason about,
and that are also efficient at the same time.

Memory consistency issues often arise in concurrent programs as instructions
can be reordered on multicore processors. However, in all of the solutions devel-
oped here, reads and writes to the same memory location are either separated
by a synchronization point or use a compare-and-swap, which implicitly issues a
memory barrier to prevent consistency issues. All of the solutions are sequentially
consistent, which means that their results are consistent with some valid sequential
execution of the program [Lamport 1979].

Scope of the Book
In summary, the algorithms, frameworks, and techniques developed in this book
are for nested fork-join parallelism, and use only the fork and join primitives,
parallel for-loops (which can be implemented with fork and join), and atomic
instructions supported in hardware. This set of primitives was sufficient for all
of the problems considered here. Furthermore, designing algorithms within this
paradigm allows for clean theoretical analysis in the work-depth model, described
in Section 1.2, and good performance in practice using a work-stealing runtime
scheduler. Solutions in this book do not use techniques such as locks, transactional
memory, pipelining, futures, or message passing, as they were not necessary in
developing simple and efficient solutions for the problems considered.



10 Chapter 1 Introduction

1.2 Shared-Memory Algorithm Design

Parallel Random Access Machine
Algorithm designers have traditionally used the Parallel Random Access Model
(PRAM) to analyze parallel algorithms for shared memory. In this model, every core
has unit-time access to the shared global memory. An algorithm’s complexity is
characterized by its asymptotic time T and number of cores P , with the total num-
ber of operations being the product of the two terms. They can also be analyzed in
the Work-Time Framework [JaJa 1992], in which the total number of operations W

and number of parallel time steps T is specified. PRAM algorithms are written using
flat parallelism, in which parallel operations over a single array is done synchro-
nously at every time step. The algorithm must specify how work can be efficiently
allocated among the cores on each step (known as the processor allocation prob-
lem). Using Brent’s scheduling principle [Brent 1974, JaJa 1992], an algorithm with
W work and T time can be run in W/P + T time with P cores. Nested fork-join par-
allel algorithms cannot be directly expressed in the PRAM, and the parallelism in
such algorithms must be flattened to work for the PRAM. Different classes of PRAM
models differ in whether concurrent reads or writes are allowed, how to resolve
write conflicts, and how to deal with contention (see, e.g., [JaJa 1992, Gibbons et al.
1999]). There have also been variants proposed that allow for asynchrony among the
cores [Gibbons 1989, Cole and Zajicek 1989, Nishimura 1990, Gibbons et al. 1998],
as well as a related model that provides parallel primitives on vectors [Blelloch
1990].

Work-Depth Model
The work-depth model is a model supporting nested fork-join parallelism.5 As dis-
cussed in Section 1.1, a nested parallel computation can be modeled as a compu-
tation DAG. An algorithm’s complexity is analyzed by computing its work W , which
is the sum of the costs of all the tasks in the computation DAG, and its depth D,
which is the maximum sum of costs of tasks on a directed path in the DAG (the
longest sequential dependence). The maximum possible amount of parallelism
(i.e., the maximum number of cores the computation can take advantage of) is
W/D. The complexity of PRAM algorithms translate to results in the work-depth
model, however they can often be simplified, as the processor allocation step is not
necessary and divide-and-conquer can be used. The work-depth model underlies

5. This contrasts with the Work-Time Framework, which is a framework for analyzing PRAM
algorithms and does not allow for nested parallelism.
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the design of programming languages such as NESL [Blelloch 1992] and Cilk [Frigo
et al. 1998], and algorithms designed for the model can take advantage of dynamic
multithreading languages. For example, a computation with work W and depth D

using Cilk’s randomized work-stealing scheduler gives an expected running time
of W/P + O(D) when running on P cores [Blumofe and Leiserson 1999]. The algo-
rithms developed in this book are analyzed in the work-depth model, but they can
easily be translated into PRAM algorithms.

Traditional Design Goals
The main goal in developing efficient parallel algorithms is to have an algorithm
with low (polylogarithmic) depth and work matching that of the best sequential
algorithm for the same problem (work-efficiency). Being work-efficient is desirable
in that the parallel algorithm does not perform asymptotically more operations
than the best sequential algorithm for the same problem, and so is efficient even
when there is not much parallelism available. Having depth that is polylogarithmic
(O(logc n) for an input size of n and any constant c) is desirable in that it allows
for ample parallelism.6 Work-efficient and polylogarithmic-depth algorithms have
been developed for many fundamental problems in computing. Many of these al-
gorithms, however, are not practical as they involve many sophisticated techniques
and have large hidden constant factors in their complexity.

Bridging Theory and Practice
Because the goal of this book is to develop parallel algorithms that are efficient
and scalable on real shared-memory machines, the simplicity and practicality of
the algorithms are also important. Therefore, in addition to designing work-efficient
algorithms with low depth, this book also strives for simple solutions that perform well
in practice. Having algorithms that are efficient both in theory and in practice allows
for good performance across all possible inputs, scalability across a wide range of
core counts, and graceful scalability to larger data sets. There has traditionally been
a gap between theory and practice in parallel algorithms, with many theoretically
efficient algorithms not being practical and many algorithms used in practice lack-
ing strong theoretical guarantees. This book seeks to bridge this gap by developing
large-scale shared-memory algorithms for a variety of fundamental problems that
are simple and efficient both in theory and in practice.

6. Polylogarithmic-depth algorithms are also desirable for computational complexity reasons, as
they fall in the class NC (Nick’s Class) containing problems that can be solved on circuits with
polylogarithmic depth and polynomial size [Arora and Barak 2009].
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Table 1.1 Work and depth bounds for the (randomized) algorithms developed in this
book

Problem Work Depth

Maximal Independent Set (Chapter 4) O(m) O(log3 n)

Maximal Matching (Chapter 4) O(m) O(log3 m)

Random Permutation (Chapter 4) O(n) O(log2 n)

List Contraction (Chapter 4) O(n) O(log2 n)

Tree Contraction (Chapter 4) O(n) O(log2 n)

Connected Components (Chapter 9) O(m) O(log3 m)

Triangle Counting (Chapter 10) O(m3/2) O(log3/2 m)

Cartesian Tree/Suffix Tree a (Chapter 11) O(n) O(log2 n)

Longest Common Prefixes (Chapter 12) O(n) O(log2 n)

Lempel-Ziv Factorization a (Chapter 13) O(n) O(log2 n)

Wavelet Tree Construction b (Chapter 14) O(n log σ) O(log n log σ)

Note: For the graph problems, n = number of vertices and m = number of edges. For the other
problems, n is the input size. The depth of some of these algorithms can be improved with
approximate compaction [Gil et al. 1991a], as described in their respective chapters.

a. Bounds are for constant-sized alphabets.

b. σ = alphabet size.

Chapter 4 presents the theoretical guarantees and empirical performance of
several simple parallel algorithms developed using the technique of deterministic
reservations. The chapter shows that, perhaps surprisingly, several natural sequen-
tial iterative algorithms inherently have high parallelism, both in theory and in
practice, leading to very simple and practical deterministic parallel implementa-
tions. Parts III and IV introduce the first parallel algorithms for a variety of problems
on graphs and strings that are both theoretically-efficient and practical. The theo-
retical bounds of the algorithms developed in this book are shown in Table 1.1, and
an experimental analysis on modern multicore machines of each of the algorithms
is presented in their respective chapters.

We will now briefly look at the performance of two of the algorithms devel-
oped in this book—triangle counting and suffix tree construction. For triangle
counting, this book develops the first work-efficient, polylogarithmic-depth, and
cache-friendly shared-memory algorithm (Chapter 10), which outperforms existing
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(a) (b)

Figure 1.3 Experimental evaluation of triangle counting and suffix tree construction. (a) Speedup
of our triangle counting algorithm relative to the fastest shared-memory algorithm
(varies between the implementation in GraphLab [Gonzalez et al. 2012] and the one by
Green et al. [2014]) on various synthetic graphs from [Shun et al. 2012] and real-world
graphs from [Leskovec and Krevl 2014, Kwak et al. 2010] on 40 cores with two-way
hyper-threading. (b) Parallel running times of suffix tree construction on the 3 GB
human genome. * Reported times from the literature [Mansour et al. 2011, Comin and
Farreras 2013]. ** Code from [Mansour et al. 2011] run on our 40-core machine with a
memory budget of 160 GB.

shared-memory algorithms by a factor of 2–5× on 40 cores with two-way hyper-
threading and achieves a parallel speedup ranging from 22× to 49× [Shun and
Tangwongsan 2015]. The speedup of the algorithm with respect to the fastest exist-
ing shared-memory implementation on various graphs is shown in Figure 1.3(a).
Additionally, this algorithm has stronger theoretical bounds than previous shared-
memory algorithms. Compared to existing distributed-memory solutions, the al-
gorithm is faster by at least an order of magnitude on a per-core basis on the largest
graphs studied in the literature. For suffix tree construction, this book develops
the first parallel algorithm with linear work and polylogarithmic depth that is also
practical (Chapter 11) [Shun and Blelloch 2014]. On 40 cores with two-way hyper-
threading, the algorithm achieves a 5.4–50.4× speedup over the best sequential
algorithm [Kurtz 1999] on a variety of inputs. The algorithm can construct the suf-
fix tree for the 3 GB human genome, one of the largest data sets reported in the
literature for suffix tree construction, in under 3 min. Compared to the fastest num-
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bers reported in the literature for suffix tree construction on the human genome,
the algorithm is at least two times faster in practice, as shown in Figure 1.3(b), in
addition to being theoretically more efficient.

1.3 Shared-Memory Performance

Cache Performance
Due to the high latency to access main memory, modern multicore machines have
caches, which are smaller memories that support faster access times. Multicore ma-
chines can have multiple levels of caches, each with different sizes and access times,
and furthermore caches may either be shared among cores or private to a single
core. The caches thus form a hierarchy, and designing algorithms that make effi-
cient use of the cache hierarchy is crucial for performance. The algorithms studied
in this book involve many memory accesses, and thus their performance is largely
determined by the number of cache misses. While this book does not explicitly an-
alyze the cache performance of algorithms (with the exception of Chapter 10, which
analyzes cache performance of triangle computations), they are all implemented to
be cache-friendly, maximizing spatial and temporal locality when possible. Cache
misses can also be factored into an algorithm’s theoretical complexity (see, e.g.,
[Frigo et al. 1999, Simhadri 2013]), although this is not the focus of this book.

Contention
On multicore machines, different private caches may reference the same objects
in memory, and so there is the challenge of making sure that the cores’ views of
the data are consistent. A cache coherence protocol dictates how this consistency
is maintained among the caches (see, e.g., [Culler et al. 1998] for more details).
Cache coherence protocols have a significant effect on the performance of shared
memory accesses (see, e.g., the recent study by David et al. [2013]). In general,
when updates are performed to a shared location concurrently by many different
cores, the memory contention causes performance to worsen as the cache coherence
protocol must perform significant work to ensure consistency among different
caches. To reduce contention in shared-memory programs, Chapter 6 develops
and advocates the usage of the priority update operation, which performs an actual
update only when the value written has “higher priority” than the existing value, for
a large class of applications. This book studies its performance both experimentally
and theoretically under varying degrees of sharing, showing that it is much more
efficient than many commonly used operations, and comparable in performance to
other, less powerful operations. Figure 1.4(a) shows an experiment measuring the
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(a) (b)

Figure 1.4 (a) Experiments measuring contention of various parallel operations. Times are for 5
runs of 100 million operations to varying number of memory locations on a 40-core
Intel Nehalem machine (log-log scale). Since the number of operations is fixed, fewer
locations implies more operations sharing those locations. (b) Average speedup of
Ligra+ relative to Ligra on a variety of graph applications on 40 cores with two-way
hyper-threading.

performance of commonly used operations on varying numbers of shared locations
(fewer locations implies more sharing). Observe that when there is a high degree
of sharing (e.g., only eight locations) the priority update is competitive with reads
and test-and-sets (less powerful operations), and over two orders of magnitude faster
than standard writes and other atomic operations. The priority update operation
also has the added benefit of giving determinism and guaranteeing progress when
used appropriately.

Scalability
The goal in parallel computing is to design solutions that scale well both with
an increasing number of cores and also with increasing input size. The shared-
memory solutions developed in this book are able to achieve both of these goals.
They achieve good parallel scalability on the multicore machines used in this book
(limited by the memory subsystem, as discussed next), and due to their low depth
complexities are likely to scale well on future multicore machines with many more
cores. The solutions are also scalable to large data sets—for example, the Ligra
framework and the graph algorithms introduced in Part III are able to process the
largest publicly available real-world graphs (with billions of vertices and edges) in
the order of seconds to minutes, and the string algorithms developed in Part IV
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scale to texts with billions of symbols, such as the human genome. This book
proposes the use of graph compression in Chapter 8 to reduce space usage and
allow even larger graphs to be processed in shared-memory.

Due to the irregular nature of the solutions studied in this book, they often spend
a significant fraction of the time performing memory accesses, and their parallel
scalability is often limited by the memory subsystem of the machine (e.g., memory
bandwidth or cache contention). To alleviate this problem for graph applications,
this book uses graph compression techniques in Chapter 8 to reduce memory
usage, thus reducing the impact of the memory subsystem bottleneck, and as a
result improving parallel performance and scalability. This book develops Ligra+
by integrating the graph compression techniques into Ligra, and shows that reduced
space usage and improved parallel performance can be achieved at the same time [Shun
et al. 2015]. The graph sizes are reduced to about half of the original size on average,
and performance increases by about 14% on average on 40 cores. Figure 1.4(b)
shows the average relative performance of Ligra+ compared to Ligra on various
graph applications using 40 cores. Ligra+ is the first high-level graph processing
system to support in-memory compression.

1.4 The Problem Based Benchmark Suite
To measure the programming simplicity, theoretical efficiency, and empirical per-
formance among different solutions for given problems, my co-authors and I devel-
oped a benchmark suite, called the Problem Based Benchmark Suite (PBBS) [Shun
et al. 2012], containing a set of well-known fundamental problems that is represen-
tative of a broad class of non-numeric applications arising in computing. Table 1.2
shows the problems currently in the benchmark suite (the definitions of these prob-
lems can be found in Section 2.6).7 Unlike most existing benchmarks, which are
based on specific code, the PBBS benchmarks are defined in terms of the prob-
lem specifications—a concrete description of valid inputs and corresponding valid
outputs, along with some specific inputs. Any algorithms, programming method-
ologies, specific programming languages, or machines can be used to solve the
problems. The benchmark suite is designed to compare the benefits and short-
comings of different algorithmic and programming approaches, and to serve as
a dynamically improving set of educational examples of how to parallelize appli-
cations. The PBBS has enabled comparisons in terms of simplicity, and theoreti-

7. The table has been modified from [Shun et al. 2012] to reflect the problems currently in the
benchmark suite.
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Table 1.2 Benchmarks in the Problem Based Benchmark Suite

Domain Problems

Basic Building Blocks Prefix Sum, Integer Sort, Comparison Sort,
Remove Duplicates, Dictionary, Sparse Matrix-
Vector Multiply, Random Permutation, List
Contraction, Tree Contraction

Graphs Breadth-First Search, Connected Components,
Spanning Forest, Minimum Spanning Forest,
Maximal Independent Set, Maximal Matching,
Triangle Counting, Graph Separators

String/Text Processing Suffix Array, Burrows-Wheeler Transform,
Longest Common Prefixes, Sequence Alignment

Computational Geometry
and Graphics

Quad/Oct Tree, Delaunay Triangulation,
Delaunay Refinement, Convex Hull, k-Nearest
Neighbors, N-Body, Ray Casting

cal/practical performance among various algorithms and programming techniques
for the problems studied in this book.8 Many of the implementations developed in
this book are part of the PBBS.

1.5 Contributions of this Book
This book seeks to address the three types of challenges arising in multicore pro-
grams, as outlined in Sections 1.1, 1.2, and 1.3, to make large-scale shared-memory
parallelism more accessible. To address these challenges, I use a three-pronged
approach studying programming techniques, algorithm design, and performance
analysis for shared-memory multicores. These three areas are highly interrelated,
and so each of the chapters of this book will inevitably cut across the different
areas. An illustration placing each of the topics of this book into the closer two
among the three categories is shown in Figure 1.5. This book provides evidence
that with appropriate programming techniques, frameworks, and algorithms, shared-
memory programs can be simple, fast, and scalable, both in theory and in practice.

I believe that the frameworks, tools, algorithms, and ideas developed in this
book will enable more people to write efficient shared-memory parallel programs
and take advantage of the power of multicore machines to perform large-scale
computations. The code developed as part of this book is publicly available, and

8. While the book focuses on multicore solutions, this is not a constraint of the PBBS.
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Figure 1.5 A pictorial organization of this book. The topics touch upon programming techniques,
algorithm design, and performance analysis, and are placed in the closer two among
the three areas in the figure.

has already been used by various researchers for benchmarking and developing
their own shared-memory solutions.

I have developed the results of this book in collaboration with various co-
authors: Guy Blelloch, Laxman Dhulipala, Jeremy Fineman, Phillip Gibbons, Yan
Gu, Aapo Kyrola, Harsha Simhadri, Kanat Tangwongsan, and Fuyao Zhao. The
following paragraphs describe the organization and contributions of this book.

Chapter 2 introduces the necessary definitions and notation used throughout.
Then, Part I describes frameworks and techniques for simplifying deterministic
parallel programming. The contributions of this part include:

. a new approach for writing efficient deterministic parallel programs using
building blocks based on commutativity, and the design of several build-
ing blocks including priority updates, dictionaries, and disjoint sets (Chap-
ters 3, 5, and 6);

. a novel technique called deterministic reservations for taking sequential
loops with dependencies among iterations and parallelizing them determin-
istically (Chapters 3 and 4);

. a suite of deterministic parallel algorithms and data structures, including
comparison sorting, a hash table-based dictionary, remove duplicates, ran-
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dom permutation, list contraction, tree contraction, breadth-first search,
spanning forest, minimum spanning forest, maximal independent set, max-
imal matching, suffix arrays, Delaunay triangulation, Delaunay refinement,
quad/oct trees, k-nearest neighbors, N-body, and triangle ray intersect, along
with experiments showing they are fast, scalable, and competitive with the best
nondeterministic code for the same problem (Chapters 3–6);

. the first proofs that the lexicographically first maximal independent set and
maximal matching problems on random inputs have polylogarithmic depth,
as well as efficient linear-work parallel algorithms for the two problems
(Chapter 4);

. the first proofs that the standard sequential random permutation algorithm
and natural sequential iterative algorithms for list contraction and tree con-
traction on random inputs have logarithmic depth, as well as efficient linear-
work parallel implementations of the algorithms (Chapter 4);

. the first application of Nisan’s pseudorandom generator for space-bounded
computations [Nisan 1992] to reducing the amount of randomness in low-
depth parallel algorithms, in particular to reduce the amount of randomness
in the random permutation and list contraction algorithms from O(n log n)

to a polylogarithmic number of random bits (Chapter 4);

. the formalization of the concept of phase-concurrency in deterministic par-
allel programs to simplify the design of data structures and improve their
performance (Chapter 5);

. a deterministic phase-concurrent hash table that is faster than all existing
concurrent hash tables, and has many applications in deterministic parallel
programs, such as in removing duplicates, Delaunay refinement, suffix trees,
edge contraction, breadth-first search, and spanning forest (Chapter 5);

. the generalization of special cases of the priority update operation in the lit-
erature, an efficient contention-reducing implementation of the operation,
as well as the first theoretical analysis of its performance (Chapter 6);

. the first comprehensive experimental study of the priority update opera-
tion versus other widely-used operations under varying degrees of sharing,
demonstrating that it is up to orders of magnitude faster on modern Intel and
AMD multicore machines (Chapter 6); and



20 Chapter 1 Introduction

. many applications of the priority update operation in deterministic parallel
programs, enabling good performance even under a high degree of write
sharing (Chapter 6).

Part II describes the Ligra/Ligra+ graph processing framework and includes the
following contributions:

. the Ligra shared-memory graph processing framework containing just two
simple functions—one for mapping computation over a subset of vertices
and one for mapping computation over a subset of edges—sufficient to con-
cisely express a broad class of graph traversal algorithms in shared-memory
(Chapter 7);

. the generalization of the direction-optimizing idea used in breadth-first
search [Beamer et al. 2012] to a large class of graph traversal algorithms
to improve performance (Chapter 7);

. an experimental evaluation showing that the Ligra implementations are
efficient and scalable to the largest publicly available real-world graphs in
the literature, and outperform existing high-level graph processing frameworks
by up to orders of magnitude (Chapter 7);

. the first high-level shared-memory graph processing system (Ligra) to pro-
cess (in under a minute) the largest publicly available real-world graph, the
Yahoo! Web graph with over 6 billion edges, showing the benefits of shared-
memory for large-scale graph processing, and subsequently leading to sev-
eral other shared-memory graph processing systems [Nguyen et al. 2013, Roy
et al. 2013, Kaler et al. 2014, Zhang et al. 2015, Wang et al. 2015] (Chapter 7);

. Ligra+, the first high-level shared-memory graph processing system to use
graph compression to reduce in-memory space usage, improving the scala-
bility of shared-memory graph processing (Chapter 8); and

. an efficient implementation and experimental evaluation of Ligra+ showing
that graph compression both reduces the space usage and also improves the
parallel performance of graph algorithms (Chapter 8).

Part III describes practical large-scale parallel algorithms with strong theoretical
guarantees for solving problems on graphs. The contributions of this part include:

. the first practical linear-work and polylogarithmic-depth parallel algorithm
for graph connectivity, a problem that has been open for over a decade
(Chapter 9);
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. extensive empirical evaluation of the parallel connectivity algorithm, show-
ing that it is competitive with existing parallel implementations, none of
which are linear-work and polylogarithmic-depth (Chapter 9);

. the first work-efficient, polylogarithmic-depth, and cache-efficient shared-
memory algorithms for exact and approximate triangle computations that
are both simple and practical (Chapter 10); and

. comprehensive empirical evaluation of the running time and cache perfor-
mance of the triangle computation algorithms showing that they are faster
than distributed implementations by up to orders of magnitude and shared-
memory implementations by up to a factor of 5, and scale to the largest
publicly available real-world graphs (Chapter 10).

Part IV describes large-scale parallel string algorithms that have strong theoret-
ical guarantees and also perform well in practice, scaling to the largest data sets
considered in the literature for the problems. This part includes:

. a new and simple linear-work, polylogarithmic-depth parallel algorithm for
building multiway Cartesian trees using divide-and-conquer, and various
applications of Cartesian trees (Chapter 11);

. the first practical linear-work and polylogarithmic-depth parallel algorithm
for suffix tree construction, developed using suffix arrays and multiway Carte-
sian trees (Chapter 11);

. the state-of-the-art parallel suffix tree implementation for shared-memory,
achieving good parallel speedup (up to 24× on 40 cores) and outperforming
existing parallel implementations by at least a factor of 2 (Chapter 11);

. new theoretically efficient and practical parallel algorithms for computing
longest common prefixes, a useful primitive in suffix array (and suffix tree)
construction (Chapter 12);

. the first comprehensive experimental evaluation of parallel longest common
prefix algorithms, showing that the new algorithms achieve good parallel
speedup, are up to 2.3× faster than the best existing algorithm on 40 cores,
and lead to improved performance for suffix array construction (Chapter 12);

. the first practical linear-work and polylogarithmic-depth parallel algorithm
for Lempel-Ziv factorization (based on suffix arrays), an essential operation
in many data compression methods (Chapter 13);

. an extensive experimental study of the Lempel-Ziv factorization algorithm
showing that it achieves good parallel speedups (up to 23× on 40 cores) and
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outperforms the sequential algorithm with just 2 or more threads (Chap-
ter 13);

. the first polylogarithmic-depth parallel algorithms for constructing wavelet
trees, an essential component to many compressed data structures (Chap-
ter 14); and

. a comprehensive empirical evaluation of the wavelet tree algorithms show-
ing that they achieve good speedup over the sequential algorithm (up to 27×
on 40 cores) and are up to 5.6 times faster than existing parallel implemen-
tations (Chapter 14).

Finally, Chapter 15 concludes the book and describes directions for future work.



2Preliminaries
and Notation

This chapter presents the definitions, models, and notation that will be used
throughout the book. Individual chapters have additional definitions and notation
that are specific to the chapter.

2.1 Parallel Programming Model
All of the algorithms, frameworks, and tools in this book can be implemented using
nested fork-join parallelism, in which a fork specifies procedures that can be called
in parallel, and a join specifies a synchronization point among procedures. The
fork and join constructs can be nested, making this type of parallelism particularly
useful for divide-and-conquer algorithms.

More formally, nested parallel computations can be defined inductively in terms
of the composition of sequential and parallel components. At the base case, a
strand is a sequential computation. A task is then a sequential composition of
strands and parallel blocks, where a parallel block is a parallel composition of tasks
starting with a fork and ending with a join.

A nested parallel computation can be modeled (a posteriori) as a series-parallel
computation DAG over the operations of the computation: the tasks in a parallel
block are composed in parallel, and the operations within a strand as well as the
strands and parallel blocks of a task are composed in series in the order they are
executed. All operations are assumed to take a state and return a value and a new
state (any arguments are part of the operation). Vertices in the computation DAG are
labeled by their associated operation (including arguments, but not return values
or states). An operation (vertex) u precedes v if there is a directed path from u to v

in the DAG. If there is no directed path in either direction between u and v, then u

and v are logically parallel, meaning that they may be executed in parallel.
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The support of nested parallelism dates back at least to Dijkstra’s parbegin-
parend construct. Many parallel languages support nested parallelism includ-
ing NESL [Blelloch 1992], Cilk [Frigo et al. 1998], the Java Fork-Join framework,
OpenMP, X10 [Charles et al. 2005], Habanero [Budimlic et al. 2011], Intel Thread-
ing Building Blocks, and the Task Parallel Library (TPL). Although not appropriate
for certain types of parallelism, e.g., pipeline parallelism, nested parallelism has
many theoretical and practical advantages over more unstructured forms of par-
allelism, including simple schedulers for dynamically allocating tasks to cores,
compositional analysis of work and depth, and good space and cache behavior
(e.g., [Acar et al. 2002, Blumofe et al. 1996, Blelloch 1996, Blelloch and Greiner
1996]).

Programs in this book are written with the Cilk programming language, which
is a dynamic multithreading language for shared memory that supports nested
fork-join parallelism [Blumofe et al. 1996]. Simple constructs are used to indicate
which parts of the program are safe to run in parallel, and a run-time scheduler
assigns work to threads and performs load-balancing. The Cilk constructs used are
cilk_for, used to indicate that iterates of a for-loop may execute in parallel, cilk_
spawn, used to indicate a procedure may be called in parallel (fork), andcilk_sync,
used to indicate that the current procedure must wait for all procedures that it
spawned to complete before proceeding (join). A cilk_for loop is implemented
using cilk_spawn and cilk_sync. There is an implicit cilk_sync at the end of
each procedure.

2.2 Algorithmic Complexity Model
This book uses the work-depth model to analyze the complexity of algorithms. As
discussed in Section 2.1, a computation can be modeled using a computation DAG.
This book assumes unbounded in-degree and out-degree of the vertices in the DAG,
although other variants of the model assume bounded degree.1 The work W of an
algorithm is equal to the sum of the costs of all tasks in the computation DAG,
which is equivalent to the number of operations that the algorithm performs. The
depth D of an algorithm is equal to the maximum sum of costs of tasks over all
directed paths in the computation DAG, which is equivalent to the number of time
steps that the algorithm requires if an infinite number of cores were available. This
model makes it particularly convenient for analyzing nested parallel algorithms.

1. This increases the overall depth by at most a logarithmic factor.
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Using the randomized work-stealing scheduler of Cilk gives an expected running
time of W/P + O(D) when using P cores [Blumofe and Leiserson 1999]. Note
that for sequential algorithms the work and the depth terms are equivalent. A
parallel algorithm is defined to be work-efficient if its work is asymptotically equal
to the work of the fastest sequential algorithm for the same problem. The goal
of this book is to design work-efficient parallel algorithms with polylogarithmic
depth.

The traditional parallel random access machine (PRAM) model [JaJa 1992] for
analyzing parallel algorithms differs from the work-depth model in that nested
parallelism is not allowed (parallelism must be flattened), and on each time step the
algorithm must specify how work is allocated to the cores (known as the processor
allocation problem). Algorithms are analyzed using the Work-Time Framework [JaJa
1992], where work is the same as in the work-depth model and time is equivalent
to depth in the work-depth model. For an algorithm with work W and time T ,
Brent’s scheduling theorem [Brent 1974, JaJa 1992] bounds the running time by
W/T + P using a greedy scheduler with P cores. Most of the algorithms in this
book can be easily translated into PRAM algorithms with the same work and depth
(time) complexities as they use parallel primitives that have equivalent complexities
(see Section 2.3) in both the work-depth and PRAM models, parallelism can be
flattened when necessary, and there is enough parallel slackness in each iteration
to perform processor allocation efficiently. There are four versions of the PRAM that
are used in the book: (1) the exclusive-read exclusive-write (EREW) model, which
does not allow for concurrent reads or writes; (2) the concurrent-read exclusive-
write (CREW) model, which allows for concurrent reads but not concurrent writes;
(3) the concurrent-read concurrent-write (CRCW) model, which allows for both
concurrent reads and writes; and (4) the scan PRAM [Blelloch 1989], a version of
the EREW PRAM in which scan (prefix sum) operations take unit depth. For the
CRCW model, concurrent writes to a shared location results in either an arbitrary
write being recorded (arbitrary CRCW), or the minimum (or maximum) value being
recorded (priority CRCW).

Randomization. Many of the algorithms make use of randomization. For random-
ized algorithms, a result holds in expectation if it holds on average over all possible
random choices made by the algorithm (the input can be adversarially chosen). Sim-
ilarly, a result holds with high probability (w.h.p.) for an input of size n if it holds
with probability at least 1 − 1/nc, for any constant c > 0, over all possible random
choices made by the algorithm.
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2.3 Parallel Primitives
This book makes use of the basic parallel primitives, prefix sum (scan), reduce,
filter, and merge [Blelloch and Maggs 1997]. Prefix sum (scan) takes a sequence A of
length n, an associative binary operator ⊕, and an identity element ⊥ such that ⊥ ⊕
a = a for any a, and returns the sequence (⊥, ⊥ ⊕ A[0], ⊥ ⊕ A[0] ⊕ A[1], . . . , ⊥ ⊕
A[0] ⊕ A[1] ⊕ . . . ⊕ A[n − 2]) as well as the resulting “sum” ⊥ ⊕ A[0] ⊕ A[1] ⊕ . . . ⊕
A[n − 1]. Reduce takes the same arguments as prefix sum, but only returns the
resulting sum ⊥ ⊕ A[0] ⊕ A[1] ⊕ . . . ⊕ A[n − 1]. Filter takes a sequence A of length
n, and a predicate function f , and returns a sequence A′ of length n′ containing the
elements in a ∈ A such that f (a) returns TRUE, in the same order that they appear
in A. Filter can be implemented using prefix sum, and both require O(n) work and
O(log n) depth [Blelloch and Maggs 1997].2 Merge takes sorted sequences A and
B of lengths n and m, respectively, and returns a sorted sequence containing the
union of the elements in A and B. It can be implemented in O(n + m) work and
O(log(n + m)) depth [Blelloch and Maggs 1997]. Merge can be modified to return
the intersection of the elements of two sorted sequences in the same complexity
bounds. The above primitives all run on the EREW PRAM in the stated bounds. Cilk
implementations of the primitives are available in the Problem Based Benchmark
Suite.

A compare-and-swap (CAS) is an atomic instruction that takes three arguments—
a memory location (loc), an old value (oldV ), and a new value (newV ); if the value
stored at loc is equal to oldV it atomically stores newV at loc and returns TRUE, and
otherwise it does not modify loc and returns FALSE. CAS is supported in hardware
by modern multicore machines. The implementations in this book use CAS’s both
directly and as a subroutine to other atomic functions. The notation &x is used to
refer to the memory location of variable x.

2.4 Graphs
A directed unweighted graph is denoted by G = (V , E), where V is the set of vertices
and E is the set of (directed) edges in the graph. This book uses the convention of
denoting the number of vertices in a graph by n = |V | and number of edges in a
graph by m = |E|. The vertices are assumed to be indexed from 0 to n − 1. A weighted
graph is denoted by G = (V , E , w), where w is a function which maps an edge to a
real value, and each edge e ∈ E is associated with the weight w(e). N+(v) denotes

2. This book uses log x to be the base 2 logarithm of x, unless stated otherwise.
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the set of out-neighbors of vertex v in G and d+(v) denotes the out-degree of v in
G. Similarly, N−(v) and d−(v) denote the in-neighbors and in-degree of v in G. For
an undirected graph, N(v) is used to denote the neighbors of v and d(v) is used
to denote its degree. The book also uses N(V ) to denote the set of all neighbors of
vertices in a set V , and N(E) to denote the neighboring edges of a set of edges E

(ones that share a vertex). G[U ] is used to denote the vertex-induced subgraph of G

by vertex set U , i.e., G[U ] contains all vertices in U along with edges of G with both
endpoints in U . G[E′] is used to denote the edge-induced subgraph of G, i.e., G[E′]
contains all edges E′ along with their incident vertices in G.

The adjacency list format for graph representation stores for each vertex an array
of indices of other vertices that it has an edge to as well as the vertex’s degree. This
representation requires O(n + m) space.

2.5 Strings
A string is denoted by S, its length by n, the i’th character (using zero-based in-
dexing) of a string S by S[i], and the sub-string starting at the i’th character and
ending at the j ’th character of S by S[i , . . . , j ]. The alphabet of S is denoted by
� = [0, . . . , σ − 1], where σ = |�| is the alphabet size. The book assumes that a
string ends with a special character $, lexicographically smaller than all characters
in �. suf i of a string S is defined to be the suffix of S starting at position i (i.e.,

S[i , . . . , n − 1]).

2.6 Problem Definitions
This section defines the various problems studied in the book.

2.6.1 Sequences
Comparison Sort. For a sequence S and comparison function < defining a total
order on elements of S, return the values of S sorted by <.

Remove Duplicates. For a sequence of elements, a comparison function f , and a
hash function h that maps elements to integers, return a sequence in which any
duplicates (equal-valued elements) are removed.

Random Permutation. For a sequence S, return a random ordering of the elements
of S such that each of the |S|! possible orderings is equally likely.
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2.6.2 Lists, Trees, and Graphs
List Contraction. For an input of a collection of linked lists represented by an array
L (L[i] stores the predecessor and successor of node i), contract each list into a
single node, possibly combining values on the nodes during contraction.

List Ranking. For an input of a collection of linked lists represented by an array L

(L[i] stores the predecessor and successor of node i), compute the distance from
each node to the end of its linked list.

Tree Contraction. For a tree represented by an array T (T [i] stores pointers to the
parent and the two children of node i), contract the tree down to the root node,
possibly combining values on the nodes during contraction.

Breadth First Search. For an undirected graph G and a source vertex r , return a
breadth-first-search (BFS) tree, rooted at r , containing all of the vertices reachable
from r in G.

Connected Components. For an undirected graph G, return a labeling L such that
for two vertices u and v, L(u) = L(v) if u and v belong in the same connected
component (i.e., there exists a path between u and v), and L(u) �= L(v) otherwise.

Spanning Forest. For an undirected graph G = (V , E), return edges F ⊆ E, such
that for each connected component Ci = (Vi , Ei) in G, a spanning tree Ti (|Ti| =
|Vi| − 1) of Ci is contained in F . Furthermore, |F | = ∑

Ci∈G(|Vi| − 1).

Minimum Spanning Forest. For an undirected graph G = (V , E) with weights w :
E → R, return a spanning forest of minimum total weight.

Maximal Independent Set. For an undirected graph G = (V , E), return U ⊆ V such
that no vertices in U are neighbors and all vertices in V \ U have at least one
neighbor in U .

Maximal Matching. For an undirected graph G = (V , E), return E′ ⊆ E such that
no edges in E′ share a vertex and each edge in E \ E′ shares a vertex with at least
one edge in E′.

Single-source Shortest Paths. For a weighted graph G = (V , E , w) and a source
vertex r , compute either the shortest path distance from r to each vertex in V (if
a vertex is unreachable from r , then the distance returned is ∞), or report the
existence of a negative cycle.
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Table 2.1 Example: SA and LCP arrays for S = banana$

i S[i] SA[i] LCP[i] suf i

0 b 6 0 $

1 a 5 0 a$

2 n 3 1 ana$

3 a 1 3 anana$

4 n 0 0 banana$

5 a 4 0 na$

6 $ 2 2 nana$

2.6.3 Strings
Suffix Array and Longest Common Prefixes. The suffix array [Manber and Myers
1993] SA of S is a permutation of the integers [0, . . . , n − 1] such that suf SA[0] <

suf SA[1] < . . . < suf SA[n−1], where “<” means lexicographically smaller. The longest
common prefix array is an array LCP of length n such that LCP[0] = 0 and for i > 0,
LCP[i] contains the length of the longest common prefix (lcp) between suf SA[i−1]

and suf SA[i]. As an example, Table 2.1 shows the SA and LCP arrays for the string

S = banana$.

Trie. For a set of strings S, return a tree where (1) each edge stores a character,
(2) the concatenation of the characters on any path from the root to a node in the
tree is a prefix of at least one string in S, and (3) every string in S corresponds to
concatenation of labels for a path from the root to a leaf.

Patricia Tree. For a set of strings S, return a modified (compacted) trie in which (1)
edges can be labeled with a sequence of characters instead of a single character, (2)
no node has a single child, and (3) every string in S corresponds to concatenation
of labels for a path from the root to a leaf [Morrison 1968].

Suffix Tree. For a string S, return the Patricia tree storing the n suffixes of S [Weiner
1973].

2.6.4 Geometry
Triangle Ray Intersect. For a set of triangles T and rays R in three dimensions,
return the first triangle each ray intersects, if any.
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Delaunay Triangulation. For a set of n points in two dimensions, return a triangu-
lation such that no point is contained in the circumcircle of any triangle in the
triangulation [de Berg et al. 2008].

Delaunay Refinement. For a Delaunay Triangulation on a set of n points, and an
angle α, add new points such that in the resulting Delaunay Triangulation, no
triangle has an angle less than α.

N-body. For a set of n point sources in three dimensions, each point p with coor-
dinate vector �p and a mass mp, return the force induced on each one by the others
based on the Coulomb force �Fp = ∑

q∈P ,q �=p mqmp(�q − �p)/||�q − �p||3.

K-Nearest Neighbors. For n points in two or three dimensions, and a parameter k,
return for each point its k nearest neighbors (Euclidean distance) among all of the
other points.

2.7 Experimental Environment
This section summarizes the shared-memory multicore machines and compilers
used for experimental evaluation throughout this book. The experimental setup
varies among different chapters as the development of this book took several years,
and different machines and compilers were available at different points in time.
The specifications of the three machines and the compilers that were used are given
below.

32-core Intel Machine. A 32-core (with two-way hyper-threading) Dell PowerEdge
910 with 4 × 2.26 GHz Intel 8-core X7560 Nehalem Processors. Each processor has
a 1066 MHz bus and a 24 MB L3 cache. Each core has a 256 KB L2 cache, a 32 KB
L1 data cache, and a 32 KB L1 instruction cache. The processors are connected
via an Intel QuickPath Interconnect (QPI) with a theoretical peak bandwidth of
25.6 GB/second. The machine has a total of 64 GB of main memory.

40-core Intel Machine. A 40-core (with two-way hyper-threading) machine with 4 ×
2.4 GHz Intel 10-core E7-8870 Xeon processors. Each processor has a 1066 MHz bus
and 30 MB L3 cache. Each core has a 256 KB L2 cache, a 32 KB L1 data cache, and
a 32 KB L1 instruction cache. This machine also uses the Intel QPI and has a total
of 256 GB of main memory.

64-core AMD Machine. A 64-core AMD machine with 4 × 2.4 GHz 16-core 6278
Opteron processors. Each processor has a 1600 MHz bus and 16 MB L3 cache,
8 × 2 MB shared L2 caches, 8 × 64 KB shared L1 instruction caches, and 16 × 16 KB
private L1 data caches. The interconnect uses HyperTransport with a theoretical
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peak bandwidth of 25.6 GB/second. There is a total of 188 GB of main memory on
the machine.

Compilers. The three compilers used to compile parallel code are the cilk++

compiler (build 8503) with the -O2 flag, icpc compiler (version 12.1.0) with the -O3
flag, and theg++ (version 4.8.0, which supports Cilk) compiler with the-O2flag. The
sequential programs were compiled using g++ with the -O2 flag. The optimization
flags were chosen to give the best performance overall.





IP A R T

PROGRAMMING
TECHNIQUES
FOR DETERMINISTIC
PARALLELISM

This part of the book introduces techniques and primitives for deterministic paral-
lel programming, as well as deterministic algorithms and data structures. Chapter 3
studies a form of determinism, known as internal determinism, which requires the
result of the computation as well as certain intermediate states to be determinis-
tic. The chapter demonstrates that for a wide body of problems, there exist efficient
internally deterministic algorithms, and moreover that these algorithms are natu-
ral to reason about and not complicated to code. Programming at a higher level of
abstraction using commutative building blocks, and the technique of deterministic
reservations for parallelizing sequential loops with dependencies among iterations
are introduced as useful tools for deterministic parallel programming. Chapter 4
studies the theoretical properties of natural sequential algorithms for maximal in-
dependent set, maximal matching, random permutation, list contraction, and tree
contraction, and shows that they actually exhibit high parallelism. The chapter
designs simple parallel algorithms for these problems that obey the same depen-
dencies as the corresponding sequential algorithms, and hence are deterministic.
Experiments show that the implementations perform well in practice, outperform-
ing the corresponding sequential algorithms with just a modest number of cores.



Chapter 5 describes a deterministic phase-concurrent hash table in which opera-
tions of the same type are allowed to proceed concurrently (because they commute),
but operations of different types are not. Phase-concurrency guarantees that the
state of the table at any quiescent point is independent of the ordering of opera-
tions (and is hence deterministic). Furthermore, restricting the hash table to be
phase-concurrent enables it to support operations more efficiently than previous
concurrent hash tables. Chapter 6 presents a detailed study of the priority update
operation, a useful primitive for deterministic parallel programming. The chap-
ter shows both experimentally and theoretically that if implemented appropriately,
priority updates greatly reduce memory contention over standard writes or other
atomic operations when locations have a high degree of sharing. Various applica-
tions of the priority update in deterministic parallel programs are presented.

The results in this part of the book have appeared in the following publications:

G. Blelloch, J. Fineman, P. Gibbons, and J. Shun. 2012. Internally deterministic parallel
algorithms can be fast. Proceedings of the ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP), pp. 181–192.

G. Blelloch, J. Fineman, and J. Shun. 2012. Greedy sequential maximal independent set and
matching are parallel on average, Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 308–317.

J. Shun, Y. Gu, G. Blelloch, J. Fineman, and P. Gibbons. 2015. Sequential random
permutation, list contraction and tree contraction are highly parallel. Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 431–448.

J. Shun and G. Blelloch. 2014. Phase-concurrent hash tables for determinism. Proceedings of
the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 96–107.

J. Shun, G. Blelloch, J. Fineman, and P. Gibbons. 2013. Reducing contention through
priority updates. Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 152–163.



3Internally Deterministic
Parallelism: Techniques
and Algorithms

3.1 Introduction
One of the key challenges of parallel programming is dealing with nondeterminism.
For many computational problems, there is no inherent nondeterminism in the
problem statement, and indeed a serial program would be deterministic—the
nondeterminism arises solely due to the parallel program and/or due to the parallel
machine and its runtime environment. The challenges of nondeterminism have
been recognized and studied for decades [Patil 1970, Halstead 1985, Gibbons 1989,
Steele Jr. 1990]. Steele’s 1990 article, for example, seeks “to prevent the behavior
of the program from depending on any accidents of execution order that can arise
from the indeterminacy” of asynchronous programs [Steele Jr. 1990]. More recently,
there has been a surge of advocacy for and research in determinism, seeking to
remove sources of nondeterminism via specially-designed hardware mechanisms
[Devietti et al. 2009, Devietti et al. 2011, Hower et al. 2011], runtime systems and
compilers [Bergen et al. 2010a, Berger et al. 2009, Olszewski et al. 2009, Yu and
Narayanasamy 2009, Cui et al. 2010, Cui et al. 2011, Liu et al. 2011, Cui et al. 2013,
Nguyen et al. 2014, Kaler et al. 2014, Lu et al. 2015], operating systems [Bergen et al.
2010b, Aviram et al. 2010, Hunt et al. 2013], and programming languages [Bocchino
et al. 2009, Marlow et al. 2011, Kuper et al. 2014a, Kuper et al. 2014b].

While there seems to be a growing consensus that determinism is important,
there is disagreement as to what degree of determinism is desired (worth paying
for). Popular options include:

data-race free, which eliminates a particularly problematic type of nondeter-
minism: the data race. Synchronization constructs such as locks or atomic
transactions protect ordinary accesses to shared data, but nondeterminism
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among such constructs (e.g., the order of lock acquires) can lead to consid-
erable nondeterminism in the execution [Adve and Hill 1990, Gharachorloo
et al. 1990];

determinate (or external determinism), which requires that the program always
produces the same output when run on the same input. Program executions
for a given input may vary widely, as long as the program “converges” to the
same output each time;

internal determinism, in which key aspects of intermediate steps of the program
are also deterministic, as discussed in this chapter;

functional determinism, where the absence of side-effects in purely functional
languages make all components independent and safe to run in parallel; and

synchronous parallelism, where parallelism proceeds in lock step (e.g., SIMD-
style) and each step has a deterministic outcome.

There are trade-offs among these options, with stronger forms of determinism
often viewed as better for reasoning and debugging but worse for performance and
perhaps programmability. Making the proper choice for an application requires
understanding what the trade-offs are. In particular, is there a “sweet spot” for
determinism, which provides a particularly useful combination of debuggability,
performance, and programmability?

This chapter advocates a particular form of internal determinism as providing
such a sweet spot for nested-parallel computations in which there is no inherent
nondeterminism in the problem statement. As discussed in Chapter 2, an execu-
tion of a nested-parallel program defines a computation DAG with vertices repre-
senting computations and edges representing control dependencies among them.
This DAG when annotated with the operations performed at each vertex (including
arguments and return values, if any) is referred to as the trace. Informally, a pro-
gram/algorithm is internally deterministic if for any input there is a unique trace.
This definition depends on the level of abstraction of the operations in the trace.
At the most primitive level the operations could represent individual machine in-
structions, but more generally, and as used in this chapter, it is any abstraction level
at which the implementation is hidden from the programmer. Note that internal
determinism does not imply a fixed schedule since any schedule that is consistent
with the DAG is valid.

Internal determinism has many benefits. In addition to leading to external de-
terminism [Patil 1970], it implies a sequential semantics—i.e., considering any
sequential traversal of the dependence DAG is sufficient for analyzing the correct-
ness of the code. This in turn leads to many advantages including ease of reasoning
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about the code, ease of verifying correctness, ease of debugging, ease of defin-
ing invariants, ease of defining good coverage for testing, and ease of formally,
informally and experimentally reasoning about performance [Devietti et al. 2009,
Devietti et al. 2011, Hower et al. 2011, Berger et al. 2009, Olszewski et al. 2009, Yu
and Narayanasamy 2009, Bergen et al. 2010a, Bergen et al. 2010b, Bocchino et al.
2009]. Two primary concerns for internal determinism, however, are that it may re-
strict programmers to a style that (i) is complicated to program, unnatural, or too
special-purpose and (ii) leads to slower, less scalable programs than less restrictive
forms of determinism. Indeed, prior work advocating less restrictive forms of de-
terminism has cited these concerns, particularly the latter concern [Hassan et al.
2011].

This chapter seeks to address these two concerns via a study of a set of the bench-
mark problems in the Problem Based Benchmark Suite (refer to Section 1.4 and
Figure 1.2), which cover a reasonably broad set of applications including problems
involving sorting, graphs, geometry, graphics, and string processing. The main con-
tribution of this chapter is in demonstrating that for this wide body of problems, there
exist fast and scalable internally deterministic algorithms, and moreover that these al-
gorithms are natural to reason about and not complicated to code.

This book’s approach for implementing internal determinism for these bench-
marks is to use nested parallel programs in which concurrent operations on shared
state are required to commute [Weihl 1988, Steele Jr. 1990] in their semantics and
to be linearizable [Herlihy and Wing 1990] in their implementation. Many of the al-
gorithms implemented use standard algorithmic techniques based on nested data
parallelism where the only shared state across concurrent operations is read-only
(e.g., divide-and-conquer, map, reduce, and scan) [Blelloch 1996]. However, a key
aspect to several of the algorithms is the use of non-trivial commutative operations
on shared state. The notion of commutativity has a long history, dating back at least
to its use in analyzing when database transactions can safely overlap in time [Weihl
1988]. A seminal article by Steele [Steele Jr. 1990] discusses commutativity in the
context of deterministic nested-parallel programs, showing that when applied to
reads and writes on memory locations, commutativity of concurrent operations is
sufficient to guarantee determinism.

Although there has been significant work on commutativity, there has been little
work on the efficacy or efficiency of using non-trivial commutativity in the design of
deterministic parallel algorithms. Much of the prior work on commutativity focuses
on enforcing commutativity assuming the program was already written within the
paradigm (e.g., using type systems [Bocchino et al. 2011]), automatically paralleliz-
ing sequential programs based on the commutativity of operations [Rinard and
Diniz 1997, Steffan et al. 2000, Prabhu et al. 2011], or using commutativity to relax
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the constraints in transactional systems [Herlihy and Koskinen 2008, Kulkarni et
al. 2011], an approach that does not guarantee determinism. In contrast, this chap-
ter identifies useful applications of non-trivial commutativity that can be used in
the design of internally deterministic algorithms.

This chapter describes, for example, an approach called deterministic reserva-
tions for parallelizing certain greedy algorithms. In this approach, the user imple-
ments a loop with potential loop carried dependencies by splitting each iteration
into reserve and commit phases. The loop is then processed in rounds in which
each round takes a prefix of the unprocessed iterates applying the reserve phase
in parallel and then the commit phase in parallel. Some iterates can fail during
the commit due to conflicts with earlier iterates and need to be retried in the next
round, but as long as the operations commute within the reserve and commit
phases and the prefix size is selected deterministically, the computation is inter-
nally deterministic (for a given round, the same iterates always succeed/fail on every
execution).

This chapter describes algorithms for the benchmark problems using these ap-
proaches and presents performance results for Cilk implementations of these algo-
rithms on a 32-core machine. Perhaps surprisingly, for all problems, the internally
deterministic implementations achieve good speedup and good performance even
relative to prior nondeterministic and externally deterministic solutions, implying
that the performance penalty of internal determinism is quite low. The experiments
show parallel speedups of up to 31.6 on 32 cores with two-way hyper-threading (for
sorting), and almost all of the speedups are above 16. Compared to good sequential
implementations of the problems, the internally deterministic parallel implemen-
tations range from being slightly faster on one core (sorting) to about a factor of 2
slower (spanning forest). All of the internally deterministic algorithms are quite
concise (20–500 lines of code), and are “natural” to reason about (understand-
able, not complicated, and not special purpose). This combination of performance
and understandability provides significant evidence that internal determinism is a
sweet spot for a broad range of computational problems.

3.2 Programming Model
This chapter focuses on achieving internally deterministic behavior in nested-
parallel programs through “commutative” and “linearizable” operations. Each of
these terms limits the programs permitted by the programming model, but as Sec-
tion 3.4 exhibits, the model remains expressive. This section defines each of these
terms.
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3.2.1 Nested parallelism
As discussed in Chapter 2, nested-parallel computations achieve parallelism
through the nested instantiation of fork-join constructs, such as parallel loops,
parallel map, parbegin/parend, parallel regions, and spawn/sync. Figure 3.1 shows
an example of a nested-parallel program using a syntax similar to Dijkstra’s par-
begin [Dijkstra 1965]. Languages with nested parallelism rely on runtime sched-
ulers to assign sub-computations to cores. Whereas these runtime schedulers are
inherently nondeterministic to handle load balancing and changes in available
resources, the goal of this chapter is to guarantee that the program nevertheless
behaves deterministically.

3.2.2 Internal determinism
This chapter adopts a strong notion of determinism here, often called internal
determinism [Emrath and Padua 1988, Netzer and Miller 1992]. Not only must
the output of the program be deterministic, but all intermediate values returned
from operations must also be deterministic. Note that this does not preclude the
use of pseudorandom numbers, where one can use, for example, the approach of
Leiserson et al. [Leiserson et al. 2012] to generate deterministic pseudorandom
numbers in parallel from a single seed, which can be part of the input.

This chapter defines determinism with respect to abstract operations and ab-
stract state, not with respect to machine instructions and memory state. Never-
theless, the definition supplied here is general and applies to both cases. The
difference hinges on the notion of “equivalence.” Various levels of abstraction have
been considered in the literature (see [Lu and Scott 2011] for a discussion). Given
a definition of equivalent operations, states, and values, internal determinism is
defined as follows.

For a (completed) computation, its trace is the final state along with the com-
putation DAG on which operation vertices are (further) annotated with the values
returned (if any). Figure 3.2 shows two traces corresponding to executions of the
program shown in Figure 3.1. Two computation DAGs are equivalent if they have the
same graph structure and corresponding vertices are labeled with equivalent opera-
tions. Two traces are equivalent traces if they have equivalent final states, equivalent
computation DAGs, and corresponding DAG vertices are annotated with equivalent
return values.

Definition 3.1 A program is internally deterministic if for any fixed input I , all possible executions
with input I result in equivalent traces.
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1 x := 0
2 in parallel do
3 { r3 := AtomicAdd(x, 1) }
4 { r4 := AtomicAdd(x, 10)
5 in parallel do
6 { r6 := AtomicAdd(x, 100) }
7 { r7 := AtomicAdd(x, 1000) }
8 }
9 return x

Figure 3.1 An example nested-parallel program. The in parallel keyword means that the following
two {. . .} blocks of code may execute in parallel. AtomicAdd(x , v) atomically updates x

to x := x + v and returns the new value of x.

(a)

1 x � 0

r4 � 11

r7 � 1111

r6 � 111

Returns “1111”

r3 � 1

2

8

3

4

5

6 7

(a)

1 x � 0

r4 � 10

r7 � 1010

r6 � 1110

Returns “1111”

r3 � 1111

2

8

3

4

5

6 7

Figure 3.2 Two possible traces for the program in Figure 3.1. The diamonds, squares, and circles
denote forks, joins, and data operations, respectively. Vertices are numbered by
line number, as a short hand for operations such as AtomicAdd(x , 1). The left trace
corresponds to the interleaving/schedule 1, 2, 3, 4, 5, 6, 7, 8, whereas the right trace
corresponds to 1, 2, 4, 5, 7, 6, 3, 8. Because the intermediate return values differ, the
program is not internally deterministic. It is, however, externally deterministic as the
output is always the same. If AtomicAdd did not return a value, however, then the
program would be internally deterministic.
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Note that since the parallelism is dynamic, a nondeterministic program may
result in dramatically different DAGs. Because all decisions in a computation are
based only on the result of operations performed, however, if operations return
equivalent results despite different schedulings, then the structure of the DAG is
guaranteed to remain the same.

For primitive types like integers, it is clear what equivalence means. When
working with objects and dynamic memory allocation, however, a formal definition
of equivalent objects and states becomes more complicated, and is not within the
scope of this book. Informally, when we say that states or values are equivalent,
we mean semantically equivalent, i.e., that no sequence of valid operations can
distinguish between them (see, e.g., [Herlihy and Koskinen 2008]).

3.2.3 Commutativity
Internally deterministic programs are a subset of parallel programs, and thus pro-
gramming methodologies that yield internal determinism restrict a program’s be-
haviors. The methodology adopted in this chapter is to require all logically parallel
accesses of shared objects to use operations that commute. The fact that this re-
striction yields internally deterministic programs is observed in many works, see,
for example, [Steele Jr. 1990, Rinard and Diniz 1997, Cheng et al. 1998] among
others.

This chapter adopts Steele’s notation and definition of commutativity [Steele Jr.
1990]. We use f (S) → S′ ⇒ v to denote that when the operation f is executed (with-
out any concurrent operations) starting from system (object) state S, the system
transitions to state S′ and f returns the value v. To simplify notation, operations
not returning values are viewed as returning v = ∅.

Definition 3.2 Two operations f and g commute with respect to state S if the order in which they
are performed does not matter. That is, if

f (S) → Sf ⇒ vf

g(Sf ) → Sfg ⇒ vg

and

g(S) → S′
g

⇒ v′
g

f (S′
g
) → S′

gf
⇒ v′

f

then f and g commute with respect to S if and only if Sfg = S′
gf

, vf = v′
f

, and
vg = v′

g
, where “=” here denotes equivalence. (Note that there is no requirement

that Sf = S′
g

.)
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Moreover, that two operations are said to commute if they commute with re-
spect to all valid states S. It is possible to relax this definition (e.g., [Weihl 1988,
Herlihy and Koskinen 2008]), but this definition is sufficient for the purposes of
this chapter.

Linearizability
Commutativity is not a sufficient condition for deterministic behavior, as commu-
tativity alone does not guarantee that the implementation of the operations work
correctly when their instructions are interleaved in time. To guarantee safety of
concurrent execution of operations this chapter uses the standard definition of lin-
earizability [Herlihy and Wing 1990], which enforces atomicity of the operations.
In this setting, operations are concurrent if and only if they are logically parallel.
Thus, linearizability guarantees that there is a total order (or history), H , of the an-
notated operations in a trace T such that H is a legal sequential execution of those
operations, starting from the initial state. That is, (i) H is a valid scheduling of T ’s
computation DAG, and (ii) each annotated operation in T remains legal (including
its return value) when executed atomically in the order of H . Note that linearizabil-
ity is a property of the implementation and not the semantics of the operation (e.g.,
two insertions into a dictionary might semantically commute, but an implementa-
tion might fail when interleaved). One way to guarantee linearizability is to use a
lock around all commuting operations, but this is inefficient. This chapter uses only
non-blocking techniques to achieve linearizability among commuting operations.
However, we do not guarantee that all commuting operations are linearizable, just
that the logically parallel ones are.

Summary
The model this chapter uses for internally deterministic behavior is summarized
by the following theorem.

Theorem 3.1 Let P be a nested-parallel program. If for all inputs, all logically parallel operations
commute and are linearizable, then P is internally deterministic.

Proof (Sketch) Consider any fixed input I and any fixed (completed) execution of P with
input I . Let G (T ) be the resulting computation DAG (trace, respectively), and let H

be its linearizability history. The proof will show that T is equivalent to a canonical
trace T ∗ obtained by executing P with input I using only a single core. Let G∗ and
H ∗ be the computation DAG and linearizability history, respectively, for T ∗. The
proof shows by induction on the length of H ∗ that (i) G and G∗ are equivalent
and (ii) H permuted to match the order in H ∗ of equivalent vertices is also a
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linearizability history for T , implying equivalent return values. Construct such a
permutation, H ′, inductively, with H ′ = H initially. Assume inductively that (i) the
subgraph of G∗ corresponding to the vertices in H ∗[1, . . . , i] has an equivalent
subgraph in G, and (ii) H ′ is a linearizability history for T such that H ′[1, . . . , i]
and H ∗[1, . . . , i] are equivalent ([j , . . . , k] denotes subsequence). Consider i + 1,
and let σ ∗ be the i + 1’st annotated vertex in H ∗. It follows inductively that there
is a vertex σ in T with equivalent parent(s) and an equivalent operation, say the
j ’th vertex in H ′. If j = i + 1, the proof is done, so assume j > i + 1. None of the
vertices in H ′[i + 1, . . . , j − 1] can precede or be preceded by σ , so σ must commute
with each such vertex. Thus, σ can be pairwise swapped up to position i + 1 in H ′

while preserving a linearizability history, establishing both inductive invariants.
The argument is readily extended to show the equivalence of the final states by
augmenting each execution with operations that read the final state. The theorem
follows.

The approach of this chapter is similar to previous models for enforcing de-
terministic behavior [Steele Jr. 1990, Cheng et al. 1998], except that in Steele Jr.
[1990] commutativity is defined in terms of memory operations and memory state,
and in Cheng et al. [1998] commutativity is defined with respect to critical sections
and memory state. In this work, commutativity is defined in terms of linearizable
abstract operations and abstract state.

3.3 Commutative Building Blocks
Achieving deterministic programs through commutativity requires some level of
(object or operation) abstraction. Relying solely on memory operations is doomed
to fail for general-purpose programming. For example, requiring a fixed memory lo-
cation for objects allocated in the heap would severely complicate programs and/or
inhibit parallelism, possibly requiring all data to be pre-allocated. Instead, this
section defines some useful higher-level operations that are used as commutative
operations in many of the algorithms presented later. They are all defined over ab-
stract data types supporting a fixed set of operations. This section also describes
non-blocking linearizable implementations of each operation. These implemen-
tations do not commute at the level of single memory instructions and hence the
abstraction is important.

Priority Write
The most basic data type is a memory cell that holds a value, and supports a priority
write and a read. The priority write on a cell x, denoted by x .pwrite(v) updates x
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to be the maximum of the old value of x and a new value v. It does not return any
value. x .read() is just a standard read of the cell x returning its value. Priority write
is often used to select a deterministic winner among parallel choices, e.g., claiming
a next-step neighbor in breadth-first search (Section 3.4.4).

Any two priority writes x .pwrite(v1) and x .pwrite(v2) commute, in accordance
with Definition 3.2, because (i) there are no return values, and (ii) the final value of
x is the maximum among its original value, v1, and v2, regardless of which order
these operations execute. A priority write and a read do not commute since the
priority write can change the value at the location. We implement non-blocking and
linearizable priority writes using a compare-and-swap. With this implementation,
the machine primitives themselves do not commute. The implementation, further
applications, and a detailed experimental study of priority writes will be presented
in Chapter 6.

Priority Reserve
In the “deterministic reservations” approach described later in Section 3.4, mul-
tiple program loop iterates attempt to reserve the same object in parallel, and
later the winner operates on the reserved object. Deterministic reservations uses a
data type that supports three operations, a priority reserve (x .reserve(p)), a check
(x .check(p)), and a check-and-release (x .checkR(p)), where p is a priority. As with a
priority write, a higher priority value overwrites a lower priority and hence the high-
est priority will “reserve” the location. The one difference is that a unique priority
tag ⊥ is required to denote when the location is currently unreserved. The priority
⊥ has the lowest priority, and it is invalid to make a pwrite call with p = ⊥. As
with pwrite, any number of reserves commute, and we implement a linearizable
non-blocking version using compare-and-swap.

The x .checkR(p) call requires p �= ⊥. If the current value at location x has
priority p, then the reservation is released (i.e., the value ⊥ is written to x), and TRUE

is returned to indicate that p was the highest priority reservation on x. If the current
priority is not p, then the state does not change and FALSE is returned. Operations
x .checkR(p1) and x .checkR(p2) commute if and only if p1 �= p2. Acheck is the same
as a checkR without the release and commutes in the same way. A priority reserve
and either form of check do not commute.

The deterministic algorithms in this book ensure that for any given location:
(i) priority reserves are not called logically in parallel with either form of check and
(ii) all logically parallel operations use distinct priorities. Thus, the commutativity
and resulting internal determinism extend to those algorithms.
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Dynamic Map
The purpose of a dynamic map is to incrementally insert keyed elements and, once
finished inserting, to return an array containing a pseudorandom permutation
of these elements, omitting duplicates. A dynamic map supports two operations:
M .insert(x), which inserts keyed element x into the map M without returning
any value, and M .elements(), which returns an arbitrary, but deterministic, per-
mutation of all the elements in the map M . The map removes duplicate keys on
insertion: if elements x and y have the same key and y is already in the map when
M .insert(x) is called, then one of the elements (chosen deterministically based
on a user specified priority) is discarded.

This book implements a dynamic map using a parallel version of a history-
independent hash table by Blelloch and Golovin [2007]. The implementation,
proofs of correctness, along with an experimental study of the hash table will be
presented in Chapter 5. Chapter 5 shows that two inserts commute. However, the
M .insert(x) operation does not commute with the M .elements() operation since
for some states of S, x is not in M and will affect the result of elements.

Disjoint Sets
The spanning forest algorithms in this section rely on a structure for maintaining
a collection of disjoint sets corresponding to connected components in the graph.
Each set is associated with a unique element acting as the identifier for the set. A
disjoint set data type supports two operations: a find and a link. For an instance
F , the F .find(x) operation returns the set identifier for the set containing x. The
F .link(S , x) operation requires that S be a set identifier and the set containing
x be disjoint from the set S. It logically unions the set S with the set containing
x such that the identifier for the resulting unioned set is the identifier of the set
containing x. Here, x and S denote references or pointers to elements in the sets.

An instance F of the disjoint set data type is implemented as a collection of trees
with parent pointers, where the root of each tree acts as a unique identifier for the
set [Cormen et al. 2009]. A F .find(x) operation simply follows parent pointers up
the tree and returns the root. It may also perform path compression [Cormen et al.
2009], which points vertices along the query-to-root path directly to the root, thereby
accelerating future queries. A link(S , x) operation is implemented by pointing S

to the root vertex of the set containing x.
Two find operations commute with each other as they cause no semantic

modifications—i.e., any changes to the pointer structure caused by path compres-
sion cannot be discerned by future operations on F . Twolinkoperations commute
with each other as long as they do not share the same first argument. That is to say,
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F .link(S1, x1) and F .link(S2, x2) commute as long as S1 �= S2; having x1 and x2

be equal or from the same set is allowed, as is having x1 in set S2 or x2 in set S1.
link(S1, x1) and find(x2) only commute if x1 = x2.

Let us now consider linearizability. Even with path compression, find opera-
tions are linearizable (and non-blocking) since there is only one possible update to
each pointer (the a priori root of the tree). This requires no compare-and-swap or
any other special memory operations. Logically parallel link operations with dis-
tinct first arguments, and no cycles among the linked sets, are also linearizable and
non-blocking with no special memory operations since they only require updating
a pointer which is not shared by any other logically parallel operation. In the im-
plementation, find’s and link’s are not guaranteed to be linearizable. Hence, in
the algorithms that use disjoint sets, find’s are never logically parallel with link’s:
they alternate phases of only find’s and only link’s.

Note that an asymmetric link operation is used instead of the standard sym-
metricunion. This is becauseunion does not commute according to Definition 3.2,
which requires two operations to commute for all start states. In a more relaxed def-
inition of commutativity, union can be made to commute [Kulkarni et al. 2011].

3.4 Internally Deterministic Parallel Algorithms

3.4.1 Benchmark Problems
For testing the utility of nested parallel internally deterministic algorithms, this
chapter uses a set of benchmarks from the Problem Based Benchmark Suite (de-
scribed in Section 1.4). It is important that the benchmarks are problem based since
it might be that very different algorithmic approaches are suited for a determinis-
tic algorithm versus a nondeterministic algorithm. The problems studied in this
chapter are shown in Table 3.1, and their definitions can be found in Section 2.6.
The benchmarks are selected to cover a reasonable collection of fundamental prob-
lems. The focus, however, is on problems involving unstructured data since there
is already very good coverage for such benchmarks for linear algebra and typically
deterministic algorithms are much simpler for those problems.

The rest of this section describes the approaches used when designing internally
deterministic parallel algorithms for the benchmark problems and outlines the
resulting algorithms for each of the benchmarks. Many of the approaches used are
standard, but this section introduces a new approach for greedy algorithms, called
deterministic reservations. The approach plays a key role in the implementation
of several of the problems. The algorithms also make use of our commuting and
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Table 3.1 Techniques used in the algorithms for each of the benchmarks

Collection OperationsDivide & Deterministic Commutative/
Problem Conquer Reduce Scan Filter Reservations Linearizable a

Comparison Sort yes yes

Remove Duplicates yes DM

Breadth First Search yes yes PW

Spanning Forest yes yes DS

Minimum Spanning Forest sub b yes yes DS

Triangle Ray Intersect yes yes yes

Suffix Array sub yes yes yes

Delaunay Triangulation sub yes sub yes yes

Delaunay Refine yes yes yes DM

N-body yes yes yes

K-Nearest Neighbors sub yes

a. Indicates the use of a non-trivial commutative and linearizable operation other than reservations:
dynamic map (DM), disjoint sets (DS), or priority write (PW).

b. “sub” indicates that it is not used directly, but inside a subroutine, e.g., inside a sort.

linearizable implementations of various operations. Table 3.1 summarizes what
approaches/techniques are used in which of the algorithms.

3.4.2 Nested Data Parallelism and Collection Operations
The most common technique throughout the benchmark implementations is the
use of nested data parallelism. This technique is applied in a reasonably standard
way, particularly in the use of fork-join and parallel loops (with arbitrary nesting)
in conjunction with parallel operations on collections. For the operations on col-
lections, the implementations use a library of operations on sequences, developed
as part of the Problem Based Benchmark Suite. The operations make heavy use of
divide-and-conquer. In the divide-and-conquer algorithms, the implementations
almost always use parallelism within the divide step (to partition the input data),
and/or the merge step (to join the results), typically using the collection operations
in the sequence library. The three primitives, reduce, scan, and filter are used
throughout the algorithms, and are defined in Section 2.3. The PBBS implementa-
tions of reduce and scan are deterministic even if f is not associative—e.g., with
floating point addition.
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Reduce is used to calculate various “sums”; e.g., to calculate the bounding box
(maximum and minimum in each coordinate) of a set of points. Filter is used in
most of the algorithms. In the divide-and-conquer algorithms, it is typically used
to divide the input into parts based on some condition. In the other algorithms, it
is used to filter out elements that have completed or do not need to be considered.
It plays a key role in deterministic reservations. Scan is used in a variety of ways. In
the sorting algorithm it is used to determine offsets for the sample sort buckets,
in the suffix array algorithm it is used to give distinct elements unique labels, and
in the breadth-first search algorithm it is used to determine the positions in the
output array to place distinct neighbor arrays.

3.4.3 Deterministic Reservations
Several of the deterministic algorithms in this book (spanning forest, minimum
spanning forest, Delaunay triangulation, Delaunay refinement, maximal indepen-
dent set, maximal matching, random permutation, list contraction, and tree con-
traction) are based on a greedy sequential algorithm that processes elements (e.g.,
vertices) in linear order. These can be implemented using speculative execution on
a sequential loop that iterates over the elements in the greedy order.

Various studies have suggested both compiler [Rinard and Diniz 1997, Prabhu
et al. 2011] and runtime techniques [Steffan et al. 2000, Hassan et al. 2011] to auto-
mate the process of simulating in parallel the sequential execution of such a loop.
These approaches rely on recognizing at compile and/or run time when operations
in the loop iterates commute and allowing parallel execution when they do. Often
the programmer can specify what operations commute. The compiler-only tech-
niques would likely not work for the benchmark problems in this chapter because
the conflicts are highly data-dependent and any conservative estimates allowing
for all possible conflicts would serialize the loop. The runtime techniques typically
rely on approaches similar to software transactional memory: the implementation
executes the iterations in parallel or out-of-order but only commits any updates
after determining that there are no conflicts with earlier iterations. As with soft-
ware transactions, the software approach is expensive, especially if maintaining a
strict sequential order is required. In fact, in practice the suggested approaches
typically relax the total order constraint by requiring only a partial order [Prabhu
et al. 2011], potentially leading to nondeterminism. A second problem with the
software approach is that it makes it very hard for the algorithm designer to ana-
lyze efficiency—it is possible that subtle differences in the under-the-hood conflict
resolution could radically change which iterates can run in parallel.
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Prefix

Prefix

Figure 3.3 A generic example of deterministic reservations. The top and the bottom depict the
array of iterates during consecutive rounds. In each round, a prefix of some specified
size is selected. All of these prefix iterates perform the reserve component. Then they
all perform the commit component. The dark regions in the top array represent iterates
that successfully commit. All uncommitted iterates (shown in white) are packed towards
the right, as shown in the bottom array. The next round then begins by selecting a prefix
of the same size on the bottom array.

This section presents an approach, called deterministic reservations, that gives
more control to the algorithm designer and fits strictly within the nested parallel
framework (needing neither special compiler nor runtime support). In this ap-
proach, the algorithm designer controls exactly on what data the conflicts occur
and these conflicts are deterministic for a given input. The generic greedy algo-
rithm for deterministic reservations works as follows (an illustration is shown in
Figure 3.3). It is given a sequence of iterates (e.g., the integers from 0 to n − 1) and
proceeds in rounds until no iterates remain. Each round takes any prefix of the
remaining unprocessed iterates, and consists of two phases that are each paral-
lel loops over the prefix, followed by some bookkeeping to update the sequence
of remaining iterates. The first phase executes a reserve component on each iter-
ate, using a priority reserve (reserve) with the iterate priority, in order to reserve
access to data that might interfere (involve non-commuting or non-linearizable op-
erations) with other iterates. The second phase executes a commit component on
each iterate, using a check to see if the reservations succeeded, and if the required
reservations succeed then the iterate is processed, otherwise it is not. Typically,
updates to shared state (at the abstraction level available to the programmer) are
only made if successful. After running the commit phase, the processed iterates are
removed. In the implementation of deterministic reservations, the unprocessed it-
erates are kept in a contiguous array ordered by their priority. Selecting a prefix
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can therefore just use a prefix of the array, and removing processed iterates can be
implemented with a filter over the boolean results of the second phase.

The specifics of the reserve and commit components depend on the application.
The work done by the iterate can be split across the two components. We have found
that in the unstructured problems in the benchmarks, just determining what data
might interfere involves most of the work. Therefore, the majority of the work ends
up in the reserve component. In most cases, all of the reservations are required to
succeed, but we have encountered cases in which only a subset need to succeed
(e.g., the minimum spanning forest code reserves both endpoints of an edge but
only requires that one succeeds).

It is worth noting that the generic approach can select any prefix size including
a single iterate or all of the iterates. There is a trade-off, however, between the two
extremes. If too many iterates are selected for the prefix, then many iterates can
fail. This not only requires repeated effort for processing those iterates, but can
also potentially cause high contention on the reservation slots. On the other hand,
if too few iterates are selected then there might be insufficient parallelism. Clearly,
the amount of contention depends on the specific algorithms and also on the input
data. The effect of contention in deterministic reservations is studied in more detail
in Chapter 6.

As long as the prefix size is selected deterministically, and all operations com-
mute and are linearizable within the reserve phase and separately within the com-
mit phase, a program will be internally deterministic. This means that the al-
gorithm designer only needs to analyze commutativity/linearizability within each
phase. In our code, we have implemented a function speculative_for that takes
four arguments: a structure that implements thereserve and commit components
(both taking an index as an argument), a start index, an end index, and a prefix size.

The next section includes several algorithms (spanning forest, minimum span-
ning forest, Delaunay triangulation, and Delaunay refinement) that use the deter-
ministic reservations approach. Chapter 4 introduces several additional algorithms
(maximal independent set, maximal matching, random permutation, list contrac-
tion, and tree contraction) implemented using deterministic reservations that have
provably strong work and depth bounds.

3.4.4 Algorithms
This section describes each of the algorithms used to implement the benchmarks
discussed in Section 3.4.1. In all cases, we considered a variety of algorithms and
selected the one we felt would perform the best. In many cases, we arrived at the
algorithm discussed after trying different algorithms. In all cases, the algorithms
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are either motivated by or directly use results of many years of research on parallel
algorithm design by many researchers.

Comparison Sort. We use a low-depth cache-efficient sample sort [Blelloch et al.
2010]. The algorithm (1) partitions the input into

√
n blocks, (2) recursively sorts

each block, (3) selects a global sample of size
√

n log n by sampling across the
blocks, (4) sorts the sample, (5) buckets each of the blocks based on the sample,
(6) transposes the keys so keys from different blocks going to the same bucket are
adjacent, and (7) recursively sorts within the buckets. The transpose uses a cache-
efficient block-transpose routine. When the input is small enough, quicksort is
used. The algorithm is purely nested parallel. There is nesting of the parallelism
(divide-and-conquer) in the overall structure, in the merge used for bucketing
blocks, in the transpose, and in the quicksort.

Remove Duplicates. We use a parallel loop to concurrently insert the elements
into the dynamic map described in Section 3.3. This data structure already removes
all duplicates internally and returns the distinct elements with a call to elements

(which internally uses a filter). The ordering returned by the routine is determin-
istic, but does not correspond to the input ordering in any natural way and different
hash functions will give different orderings. The hash table size is set to be twice
the size of the input rounded up to the nearest power of 2.

Breadth First Search (BFS). We use a level-ordered traversal of the graph. In a
level-order traversal, each vertex u adds each of its unvisited neighbors v to the
next frontier and makes u the parent of v in the BFS tree. In standard parallel
implementations of BFS [Leiserson and Schardl 2010, Prabhu et al. 2011], each
level is processed in parallel and nondeterminism arises because vertices at one
level might share a vertex v at the next level. These vertices will attempt to add v to
the next frontier concurrently. By using a compare-and-swap or similar operation,
it is easy to ensure that a vertex is only added once. However, which vertex adds v

depends on the schedule, resulting in internal nondeterminism in the BFS code
and external nondeterminism in the resulting BFS tree.

This problem is avoided by using a priority write. The vertices in the frontier are
prioritized by their IDs and each level involves two rounds. In the first round, each
vertex in the frontier writes its priority to all neighbors that have not been visited in
previous rounds. In the second round, each vertex v in the frontier reads from each
neighbor u the priority. If the priority of u is v (v is the highest priority neighbor in
the frontier), then the implementation makes v the parent of u and adds u to the
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next frontier. The neighbors are added to the next frontier in the priority order of
the current frontier. This uses a scan to open enough space for each neighbor list.

Spanning Forest. Sequentially, a spanning forest can be generated by greedily
processing the edges in an arbitrary order using a disjoint set data structure. When
an edge is processed, if the two endpoints are in the same component (which can
be checked with find) then it is removed, and otherwise the edge is added to the
spanning forest and the components are joined (with union). This algorithm can
be run in parallel using deterministic reservations prioritized by the edge ordering
and will return the exact same spanning forest as the sequential algorithm. The
idea is simply to reserve both endpoints of an edge and check that both reservations
succeed in the commit component. Indeed, this is how we implement minimum
spanning forest, after sorting the edges. However, there is an optimization that can
be made with spanning forests that involves only requiring one of the reservations
to succeed. This increases the probability a commit will succeed and reduces the
cost. This approach returns a different forest than the sequential version but is
internally deterministic for a fixed schedule of prefix sizes.

The C++ code is given in Figure 3.4. For an iterate i corresponding to the edge
E[i], the reserve component does a find on each endpoint (as in the sequential
algorithm) returning u and v (without loss of generality, assume u ≤ v). If u = v, the
edge is within a component and can be dropped returning 0 (false),1 otherwise the
algorithm reserves v with the index i (R[v].reserve(i)). The commit component for
index i performs a R[v].check(i) to see if its reservation succeeded. If it has, it links
v to u and otherwise the commit fails. At the end of the algorithm, the edges E[i]
in the spanning tree can be identified as those where R[i] �= ⊥. The only difference
from the sequential algorithm is that after determining that an edge goes between
components, instead of doing the union immediately it reserves one of the two
sides. It later comes back to check that the reservation succeeded and if so does
the union (link).

Note that in a round the reservation guarantees that only one edge (the highest
priority) will link a vertex v to another vertex. This is the condition required in
Section 3.3 for commutativity of link. Also, because the link and find are in
different phases they are never logically parallel, as required. Finally, note that
because the algorithm links higher to lower vertex numbers, it will never create
a cycle. In this algorithm our code sets psize, the size of the prefix, to be .02m and
we have observed that on our test graphs less than 10% of the reservations fail.

1. If false is returned by reserve(), then the iterate is dropped without proceeding to the commit.
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struct STStep {

int u; int v;

edge *E; res *R; disjointSet F;

STStep(edge* _E, disjointSet _F, res* _R)

: E(_E), R(_R), F(_F) {}

bool reserve(int i) {

u = F.find(E[i].u); //find component

v = F.find(E[i].v); //find component

if (u == v) return 0; //skip edge if endpoints belong to the

// same component

if (u > v) swap(u,v);

R[v].reserve(i); //reserve larger component

return 1; }

bool commit(int i) {

if (R[v].check(i)) { F.link(v, u); return 1; } //link if reservation

// was successful

else return 0; }

};

void ST(res* R, edge* E, int m, int n, int psize) {

disjointSet F(n); //deterministic union-find data structure

speculative_for(STStep(E, F, R), 0, m, psize); //deterministic

// reservations driver

}

Figure 3.4 C++ code for spanning forest using deterministic reservations (with its operations
reserve, check, and speculative_for).

Minimum Spanning Forest (MSF). We use a parallel variant of Kruskal’s algorithm
[Cormen et al. 2009]. The idea of Kruskal’s algorithm is to sort the edges and then
add them one-by-one using disjoint sets as in the spanning forest code. Therefore,
deterministic reservations prioritized by the sorted order to insert the edges can
be used. Unlike the spanning forest described above, however, both endpoints of
an edge need to be reserved to guarantee the edges are inserted in “sequential”
order. However, during the commit component, only one of the two endpoint
needs to succeed because to commute link only requires that one of the two
arguments is unique. If v succeeds, for example, then the code uses link(v , u).
Note that this is still internally deterministic because which endpoints succeed is
deterministic. The code uses a further optimization: It sorts only the smallest k

edges (k = min(m, 4n/3) in the experiments), runs MSF on those, and filters out
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the remaining edges with both endpoints in the same tree. MSF is then run again
on the edges that are left. This optimization avoids the need to sort all of the edges.
The baseline sequential MSF algorithm also uses the same optimization.

Triangle Ray Intersect. We use a k-d tree with the surface area heuristic (SAH)
[MacDonald and Booth 1990] to store the triangles. The algorithm is similar to
the parallel algorithm discussed in [Choi et al. 2010] and makes use of divide-and-
conquer and heavy use of scan and filter.

Suffix Array. We use a parallel variant of the algorithm of Kärkkäinen and Sanders
[2003]. It uses sorting and merging as subroutines, which involves nesting, but
otherwise only makes use of reduce, scan, and filter.

Delaunay Triangulation. We use a Bowyer-Watson style incremental Delaunay trian-
gulation algorithm [de Berg et al. 2008] with deterministic reservations. The points
are used as the elements. To reduce contention, the prefix is always selected to
be smaller than the current size of the mesh. The algorithm therefore starts out
sequentially until enough points have been added. The reserve component of the
code, for a point p, identifies all triangles that contain p in their circumcircle, often
referred to as the hole for p. Adding p requires removing the hole and replacing it
with other triangles. The reserve component therefore reserves all vertices around
the exterior of the hole. The majority of the work required by a point p is in locating
p in the mesh and then identifying the triangles in the hole. The commit compo-
nent checks if all of the reserved vertices of the mesh have succeeded, and if so,
removes the hole and replaces it with triangles surrounding p, thereby filling the
hole. The reservations ensure that all modifications to the mesh commute since
the triangles in the mesh only interact if they share a vertex. In fact, reserving the
edges of the hole would be sufficient and reduce contention, but our mesh imple-
mentation has no data structures corresponding to edges on which to reserve. For
efficiently locating a point p in the mesh, the nearest neighbor structure described
below is used.

Delaunay Refinement. This algorithm uses the same routines for inserting points
as the Delaunay triangulation. However, it does not need a point location structure
but instead needs a structure to store the bad triangles (triangles with too small an
angle). A dynamic map is used for this purpose.

N-body. We use a parallel variant of the Callahan-Kosaraju algorithm [Callahan
and Kosaraju 1995]. This is a variant of Greengard and Rokhlin’s well-known FMM
algorithm [Greengard and Rokhlin 1987] but allows more flexibility in the tree
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structure. The algorithm makes use of traditional nested parallelism with divide-
and-conquer, as well as reduce and scan.

K-Nearest Neighbors. We use a quad- and oct-tree built over all input points for 2d
and 3d inputs, respectively. As with the k-d tree used in triangle-ray intersection,
the tree is built using only divide-and-conquer and nested parallelism. Once built,
the tree is static and used only for queries of the points.

3.5 Experimental Results
This section reports experimental results for the internally deterministic algo-
rithms on the 32-core Intel machine described in Section 2.7. The parallel programs
were compiled using thecilk++ compiler, and sequential programs were compiled
using g++. Experiments are presented for all of the benchmarks described in Sec-
tion 3.4, except for remove duplicates, which will be discussed in detail in Chapter 5.
The results are summarized in Table 3.2, which reports the average timings over all
inputs for each implementation.

Four of the benchmarks will be discussed in detail, and their performance
is compared to other published results at that time of the publication of this
work [Blelloch et al. 2012]. For each benchmark, given core count, and input,
Table 3.3 reports the median time over three trials.

For comparison sort, the experiments use a variety of inputs all of length 107.
This includes sequences of doubles in three distributions and two sequences of
character strings. Both sequences of character strings are the same but in one the
strings are allocated in order (i.e., adjacent strings are likely to be on the same cache
line) and in the other they are randomly permuted. The internally deterministic
sample sort is compared to three other sorting routines: the standard template
library (STL) sort, the parallel STL sort [Singler et al. 2007], and a simple divide-
and-conquer quicksort that makes parallel recursive calls but partitions the keys
sequentially. The results are summarized in Tables 3.2 and 3.3(a), and Figure 3.5(a).
Due to the cache-friendly nature of the sample sort algorithm, on average it is
more efficient than any of the algorithms even on one core, and it gets an average
parallel speedup of 31.6× on 32 cores with hyper-threading. It is not quite as fast
on the double-precision values since the cache effects are less significant there. As
expected, the quicksort implementation with serial partitioning does not scale well.

For breadth-first search (BFS), and all of the graph algorithms, three types of
graphs were used: random graphs, grid graphs, and rMat graphs [Chakrabarti
et al. 2004]. The rMat graphs have a power-law distribution of degrees. All edge
counts indicate the number of undirected edges—the implementations actually
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Table 3.2 Weighted average of running times (seconds) over various inputs on
a 32-core machine with hyper-threading (32h)

Application/
Algorithm 1 thread 64 threads (32h) Speedup

Comparison Sort
serialSort 3.581 — —
stlParallelSort* 3.606 0.151 23.88
sampleSort 2.812 0.089 31.6
quickSort 3.043 0.68 4.475

Breadth First Search
serialBFS 3.966 — —
ndBFS** 5.4 0.28 19.29
deterministicBFS 7.136 0.314 22.73
LS-PBFS** a 4.357 0.332 13.12

Spanning Forest
serialSF 2.653 — —
deterministicSF 6.016 0.326 18.45
Galois-ST** b 12.39 1.136 10.91

Minimum Spanning Forest
serialMSF 8.41 — —
parallelKruskal 14.666 0.785 18.68

Triangle Ray Intersect
kdTree 8.7 0.45 19.33

Suffix Array
parallelKS 13.4 0.785 17.07

Delaunay Triangulation
serialDelaunay 56.95 — —
deterministicDelaunay 80.35 3.87 20.76
Galois-Delaunay* 114.116 39.36 2.9

Delaunay Refine
deterministicRefine 103.5 6.314 16.39
Galois-Refine** c 81.577 5.201 15.68

N-body
parallelCK 122.733 5.633 21.79

K-Nearest Neighbors
octTreeNeighbors 37.183 3.036 12.25

* indicates an internally nondeterministic implementation.

** indicates an externally (and hence internally) nondeterministic implementation.
All other implementations are internally deterministic.

a. LS-PBFS does not generate the BFS tree, while the programs in this chapter do.

b. Galois-ST generates only a spanning tree, while the code in this chapter generates
the spanning forest.

c. Galois-Refine does not include the time for computing the triangle neighbors
and initial bad triangles at the beginning while the code in this chapter does (takes
10–15% of the overall time).
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Table 3.3 Running times (seconds) of algorithms over various inputs on a 32-core machine
(with hyper-threading)

(a) Comparison 107 trigram

Sort Algorithm 107 random 107 exponential 107 almost sorted 107 trigram (permuted)

(1) (32h) (1) (32h) (1) (32h) (1) (32h) (1) (32h)

serialSort 1.42 — 1.1 — 0.283 — 4.31 — 5.5 —

stlParallelSort* 1.43 0.063 1.11 0.057 0.276 0.066 4.31 0.145 5.57 0.236

sampleSort 2.08 0.053 1.51 0.042 0.632 0.028 3.21 0.095 3.82 0.131

quickSort 1.58 0.187 1.06 0.172 0.357 0.066 3.35 0.527 4.78 1.31

(b) BFS Algorithm Random Local Graph rMat Graph 3d-grid

n = 107 n = 224 n = 107

m = 5 × 107 m = 5 × 107

(1) (32h) (1) (32h) (1) (32h)

serialBFS 4.14 — 4.86 — 2.9 —

ndBFS** 6.07 0.226 6.78 0.294 3.35 0.322

deterministicBFS 7.13 0.255 9.25 0.345 5.03 0.343

LS-PBFS** 4.644 0.345 5.404 0.426 3.023 0.225

(c) MSF Algorithm Random Local Graph rMat Graph 2d-grid

n = 107 n = 224 n = 107

m = 5 × 107 m = 5 × 107

(1) (32h) (1) (32h) (1) (32h)

serialMSF 8.47 — 11.2 — 5.56 —

parallelKruskal 14.3 0.78 19.7 1.08 10.0 0.49

Galois-Boruvka* a — — — — 35.128 7.159

(d) Delaunay Triangulation 2d in Cube 2d Kuzmin

Algorithm n = 107 n = 107

(1) (32h) (1) (32h)

serialDelaunay 55.1 — 58.8 —

deterministicDelaunay 76.7 3.5 84.0 4.24

Galois-Delaunay* 110.705 39.333 117.527 36.302

* indicates an internally nondeterministic implementation

** indicates an externally (and hence internally) nondeterministic implementation.

a. Galois-Boruvka did not terminate in a reasonable amount of time for the first two inputs.
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(a) (b)

(c) (d)

Figure 3.5 Log-log plots of running times on a 32-core machine (with hyper-threading). The
deterministic algorithms are shown in red. (a) Comparison sorting algorithms with a
trigram string of length 107. (b) BFS algorithms with a random local graph (n = 107, m =
5 × 107). (c) MSF algorithms with a weighted random local graph (n = 107, m = 5 × 107).
(d) Delaunay Triangulation algorithms with a 2d-cube input (n = 107).

store twice as many since they store the edge in each direction. The experiments
compare the internally deterministic BFS (deterministicBFS) to a serial version
(serialBFS) and a nondeterministic version (ndBFS). The results are summarized
in Tables 3.2 and 3.3(b) and Figure 3.5(b). The nondeterministic version is slightly
faster than the deterministic version due to the fact that it avoids the second phase
when processing each round. The average parallel speedups on 32 cores of the
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deterministic and nondeterministic versions are 22.7× and 19.3×, respectively.
The experiments also compare to published results at the time of this work. We
ran the parallel breadth-first search algorithm from [Leiserson and Schardl 2010]
and our performance is very close to theirs (their algorithm is labeled LS-PBFS
in the tables and figures). Our performance is 5–6 times faster than the times
reported in [Hassan et al. 2011] (both for 1 thread and 32 cores), but their code
is written in Java instead of C++ and is on a Sun Niagara T2 processor which has
a clock speed of 1.6 GHz instead of 2.26 GHz so it is hard to compare directly.
Since the publication of this work [Blelloch et al. 2012], there have been faster
(nondeterministic) implementations of BFS developed [Shun and Blelloch 2013,
Beamer et al. 2012, Yasui et al. 2013, You et al. 2014]. One such implementation is
discussed in Chapter 7.

For minimum spanning forest (MSF), the experiments compare the internally
deterministic parallel algorithm to an optimized version of Kruskal’s serial algo-
rithm (see Section 3.4). The results are shown in Tables 3.2 and 3.3(c) and Fig-
ure 3.5(c). Our parallel code is about 1.7× slower on a single thread, and achieves
18–20× speedup on 32 cores. The experiments also compare to the parallel ver-
sion of Boruvka’s algorithm from the C++ release (2.1.0) of the Galois benchmark
suite [Pingali et al. 2011] (labeled as Galois-Boruvka in the table). Their code did
not terminate in a reasonable amount of time on the random and rMat graphs; for
the 2d-grid graph, our code is much faster and achieves much better speedup than
their algorithm.

For Delaunay triangulation, the experiments use two point distributions: points
distributed at random (2d-cube) and points distributed with the Kuzmin distribu-
tion (2d-kuzmin). The latter has a very large scale difference between the largest and
smallest resulting triangles. The experiments compare the internally deterministic
algorithm to a quite optimized serial version. The results are shown in Tables 3.2
and 3.3(d) and Figure 3.5(d). On one thread, the parallel code is a factor of about
1.4 slower, but it gets a speedup of 20–22× on 32 cores. The experiments also com-
pare to the implementations in the Galois benchmark suite [Pingali et al. 2011]
(labeled as Galois-Delaunay and Galois-Refine in the tables and figures), and our
triangulation code is faster and achieves better speedup on the same machine.2

Note, however, that on the Delaunay refinement problem our code achieves almost
the same running time as the Galois benchmarks (after subtracting the time for

2. The Galois code has been improved since the publication of this work.
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computing the initial processing of triangles from our times, which is about 10–
15% of the overall time, since this is not part of the timing in the Galois code). Since
the time for the refinement code is dominated by triangle insertion and the code
for triangulation is dominated by point location, it would appear that the reason
for our improved performance is due to our point location data structure, and that
triangle insertion performs about equally well in both cases.



4Deterministic Parallelism
in Sequential Iterative
Algorithms

4.1 Introduction
Over the past several decades there has been significant research on deriving new
parallel algorithms for a variety of problems, with the goal of designing highly
parallel (polylogarithmic depth), work-efficient algorithms. For some problems,
however, one might ask if perhaps a standard sequential algorithm is already highly
parallel if sub-computations are simply executed opportunistically when they no
longer depend on any other uncompleted sub-computations. This approach is
particularly applicable in iterative or greedy algorithms that iterate (loop) once
through a sequence of steps (or elements), each step depending on the results or
effects of only a subset of previous steps. In such algorithms, instead of waiting for
its turn in the sequential order, a given step can run immediately once all previous
steps it depends on have been completed. The approach allows for steps to run in
parallel while performing the same computations on each step as the sequential
algorithm, and consequently returning the same result. Surprisingly, this question
has rarely been studied.

Beyond the intellectual curiosity of whether sequential algorithms are inher-
ently parallel, the approach has several important benefits for the design of parallel
algorithms. First, it can lead to very simple parallel algorithms. In particular, if
there is an easy way to check for dependencies, then the parallel algorithm will
be very similar to the sequential one. Iterative/greedy parallel algorithms can be
naturally implemented in the deterministic reservations framework described in
the previous chapter (Section 3.4.3). Second, the approach can lead to very efficient
parallel algorithms. Using deterministic reservations, this chapter shows that if a
sufficiently small prefix of the uncompleted iterations are processed at a time, then
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most steps do not depend on each other and can run immediately. This reduces the
overhead for repeated checks and leads to work which is hardly any greater than
that of the sequential algorithm. Finally, the parallelization of the sequential algo-
rithm will be deterministic, returning the same result on each execution (assuming
the same source of random numbers). The result of the algorithm will therefore
be independent of how many threads are used, how the scheduler works, or any
other nondeterminism in the underlying hardware and software, which can make
debugging and reasoning about parallel programs much easier, as discussed in
Chapter 3.

This chapter studies the theoretical properties of several of these algorithms—
maximal independent set, maximal matching, random permutation, list contrac-
tion, and tree contraction. The chapter also presents a detailed experimental study
of these algorithms implemented using the deterministic reservations framework
introduced in Section 3.4.3. Background and previous work for each of the prob-
lems, and our new results for the problem are described below.

Maximal Independent Set
The maximal independent set (MIS) is a fundamental problem in parallel algo-
rithms with many applications [Luby 1996] (recall the definition from Section 2.6).
For example, if the vertices represent tasks and each edge represents the constraint
that two tasks cannot run in parallel, then the MIS finds a maximal set of tasks to
run in parallel. Parallel algorithms for the problem have been well-studied [Karp
and Wigderson 1985, Luby 1996, Alon et al. 1986, Goldberg 1986, Goldberg et al.
1987, Goldberg and Spencer 1989a, Goldberg and Spencer 1989b, Coppersmith et
al. 1989, Calkin and Frieze 1990]. Luby’s randomized algorithm [Luby 1996], for
example, runs in O(log n) depth on O(m) cores of a CRCW PRAM and can be con-
verted to run in linear work. The problem, however, is that on a modest number
of cores it is very hard for these parallel algorithms to outperform the very simple
and fast sequential greedy algorithm. Furthermore, the parallel algorithms give dif-
ferent results than that of the sequential algorithm. This can be undesirable in a
context where one wants to choose between the algorithms based on platform but
wants deterministic answers.

This chapter shows that, perhaps surprisingly, a trivial parallelization of the
sequential greedy algorithm is in fact highly parallel (polylogarithmic depth) when
the order of vertices is randomized. In particular, removing a vertex as soon as an
earlier neighbor is added to the MIS, or adding it to the MIS as soon as no earlier
neighbors remain gives a parallel linear-work algorithm. The MIS returned by the
sequential greedy algorithm, and hence also its parallelization, is referred to as
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the lexicographically first MIS [Cook 1985]. In a general undirected graph and an
arbitrary ordering, the problem of finding a lexicographically first MIS is P-complete
[Cook 1985, Greenlaw et al. 1995], meaning that it is unlikely that any efficient low-
depth parallel algorithm exists for this problem.1 Moreover, it is even P-complete
to approximate the size of the lexicographically first MIS [Greenlaw et al. 1995]. The
results in this chapter show that for any graph and for the vast majority of orderings,
the algorithm for finding the lexicographically first MIS has polylogarithmic depth.

The results generalize the work of Coppersmith et al. [1989] and Calkin and
Frieze [1990]. Coppersmith et al. provide a greedy parallel algorithm for finding
a lexicographically first MIS for a random graph Gn,p, 0 ≤ p ≤ 1, where there are
n vertices and the probability that an edge exists between any two vertices is p. It
runs in O(log2 n/ log log n) expected depth on a linear number of cores. Calkin and
Frieze give a tighter analysis showing that this algorithm runs in O(log n) expected
depth. They rely heavily on the fact that edges in a random graph are uncorrelated,
which is not the case for general graphs, and hence their results do not extend to
our context. This chapter, however, uses a similar approach of analyzing prefixes
of the sequential ordering.

Maximal Matching
The maximal matching (MM) of G can be solved by finding an MIS of its line graph
(the graph representing adjacencies of edges in G), but the line graph can be asymp-
totically larger than G. Instead, the efficient (linear-work) sequential greedy algo-
rithm goes through the edges in an arbitrary order, adding an edge if no adjacent
edge has already been added. As with MIS, this algorithm is naturally parallelized
by adding in parallel all edges that have no earlier neighboring edges remaining.
The results for MIS directly imply that this algorithm has polylogarithmic depth for
random edge orderings with high probability. This chapter also shows that with ap-
propriate prefix sizes, the algorithm runs in linear work. Previous work has shown
polylogarithmic-depth and linear-work algorithms for the MM problem [Israeli and
Shiloach 1986, Israeli and Itai 1986] but as with MIS, the MM algorithm in this chap-
ter returns the same result as the sequential algorithm and leads to very efficient
code. Subsequent to this work, Birn et al. [2013] developed a simple parallel maxi-
mal matching algorithm, although again it does not return the same result as the
sequential algorithm.

1. Cook [1985] shows this for the problem of finding the lexicographically first maximal clique,
which is equivalent to finding the MIS on the complement graph.
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Random Permutation
This chapter considers Durstenfeld’s well-known algorithm for randomly permut-
ing a sequence of n values [Durstenfeld 1964, Knuth 1969]. The algorithm iterates
through the sequence from the end to the beginning (or vice versa) and for each
location i, it swaps the value at i with the value at a random target location j at or
before i. In the algorithm, each step can depend on previous steps since on step
i the value at i and/or its target j might have already been swapped by a previous
step. The question is: What does this dependence structure look like? Also, can the
above approach be used to derive a low-depth, work-efficient parallelization of the
sequential algorithm?

Generating random permutations in parallel has been well studied, both theo-
retically [Alonso and Schott 1996, Anderson 1990, Czumaj et al. 1998, Gibbons et al.
1996, Gil 1991, Gil et al. 1991a, Gustedt 2003, Hagerup 1991, Miller and Reif 1985,
Rajasekaran and Reif 1989] and experimentally [Cong and Bader 2005, Gustedt
2008]. Many of these algorithms have linear work and polylogarithmic depth. As
far as we know, however, none of this previous work has considered the parallelism
available in Durstenfeld’s sequential algorithm, and none of them return the same
permutation as it does, given the same source of randomness.

This chapter shows that Durstenfeld’s random permutation algorithm as de-
scribed above has a dependence structure that follows the same distribution
over the random choices as random binary search trees. This implies an algo-
rithm with �(log n) depth with high probability. A straightforward linear-work
polylogarithmic-depth implementation of the algorithm is also presented. There-
fore, the “sequential” algorithm is effectively parallel.

List Contraction
The list contraction problem is to contract a set of linked lists each into a single
node (possibly combining values), and has many applications including in list
ranking and Euler tours [Karp and Ramachandran 1990, JaJa 1992, Reif 1993]. The
sequential algorithm considered in this chapter simply iterates over the nodes in
random order splicing each one out.2 This chapter shows that for this algorithm,
each linked list has a dependence structure that follows the same distribution
as random binary search trees, giving a O(log n) depth parallel algorithm w.h.p.
Again, a straightforward linear-work parallel implementation of the algorithm is
presented.

2. The random order can be implemented by first randomly permuting the nodes, and then
processing them in linear order.
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Tree Contraction
The tree contraction problem is to contract a tree into a single node (possibly
combining node values), and again has many applications [Miller and Reif 1985,
Miller and Reif 1991, JaJa 1992]. This chapter assumes that the tree is a rooted
binary tree. The sequential algorithm that is considered iterates over the leaves
of the tree in a random order and, for each leaf, it splices the leaf and its parent
out. This chapter shows that the dependence structure of this problem is shallow
(logarithmic dependence length). Unfortunately, there seems to be no easy on-line
way to determine when a step no longer depends on any other uncompleted steps.
However, with some pre-processing, the dependencies can be identified. This leads
to a linear-work parallelization of the algorithm.

Reducing Randomness for Random Permutation and List Contraction
Reducing the randomness required by algorithms is important, as randomness can
be expensive. Straightforward implementations of the algorithms from this chapter
require O(n log n) random bits. By making use of a pseudorandom generator for
space-bounded computations by Nisan [1992], we show that the algorithms for
random permutation and list contraction require only a polylogarithmic number
of random bits w.h.p. This result is based on leveraging the low depth of the
algorithms to show that they can be simulated in polylogarithmic space.

Experiments
We implement all of our algorithms in the deterministic reservations framework
(described in Section 3.4.3), and run experiments on shared-memory multicore
machines. The implementations contain under a dozen to a few dozen lines of C++
code. Experiments in this chapter show that achieving work-efficiency is indeed
important for good performance, and more specifically show how the choice of
prefix size affects total work performed, parallelism, and overall running time. With
a careful choice of prefix size, the algorithms achieve good speedup and require only
a modest number of cores to outperform optimized sequential implementations.

Other Related Work
The idea of studying the parallelism in a sequential algorithm has also been applied
to other problems. Hasenplaugh et al. [2014] show that the greedy sequential
algorithm for graph coloring has high parallelism. Pan et al. [2015] apply this
idea to the problem of correlation clustering. Finally, this approach has been used
to analyze the parallelism in incremental algorithms arising in computational
geometry [Blelloch et al. 2016].
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4.2 Analysis Tools
This chapter is concerned with the parallelism available in sequential iterative
algorithms. Assume that an iterative algorithm takes n steps, where each step
performs some computation, depending on the results or effects of a subset of
previous steps. The goal is to run some of these steps in parallel. What can run
safely in parallel will depend on both the algorithm and the input, which together
will be referred to as a computation. This chapter models the dependencies in
the computation as a graph, where the steps I = {0, . . . , n − 1} are vertices and
dependencies between steps are directed edges, denoted by E.

Definition 4.1 Iteration Dependence Graph. An iteration dependence graph for an iterative com-
putation is a (directed acyclic) graph G(I , E) such that if every step i ∈ I runs after
all predecessor steps in the graph complete, then every step will do the same com-
putation as in the sequential order.

The depth of an iteration dependence graph is referred to as the iteration depth,
D(G). It should be clear that one can correctly simulate a computation with itera-
tion dependence graph G in D(G) rounds, each running a set of steps in parallel.
However, it may not be clear how to efficiently determine for each step if all of
its predecessors have completed. As we will see, and not surprisingly, the method
for doing this check is algorithm-specific. We will say that a step can be efficiently
checked if it can determine that all of its predecessors have completed in constant
work/depth, and efficiently updated if the step itself takes constant work/depth.

The aggregate delay, A(G), of an iteration dependence graph G is defined to be
the sum of the heights (one plus the longest directed path to a vertex) of the vertices
in G. To understand why this is a useful measure, consider a process in which on
every round all steps that have not yet completed check to see if their predecessors
are complete, and if so they run and complete, otherwise they try again in the next
round. Each round can be run in parallel, and each step is delayed by a number of
rounds corresponding to its height in G. Assuming each non-completed step does
constant work on each round, then the total work across all steps and all rounds
will be bounded by O(A(G)).

4.3 Algorithmic Design Techniques
For MIS and maximal matching, this chapter will analyze the iteration depth of
subsets of the elements to prove that the overall iteration depth of the algorithm
is O(log2 n) w.h.p. Linear-work algorithms for the two problems will also be pre-
sented. For random permutation, list contraction, and tree contraction, this chap-
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ter will show that the iteration depth of the entire iteration dependence graph is
O(log n) depth w.h.p., and aggregate delay is O(n) in expectation. These three prob-
lems have steps that can be checked and updated in constant time, although tree
contraction requires a pre-processing step to allow for efficient checking.

For these all of these problems, one can easily obtain implementations from the
iteration dependence graph. If steps in a computation can be efficiently checked
and updated, then an algorithm for a problem with iteration depth D(G) can be
implemented with O(nD(G)) work and O(D(G)) depth simply by proceeding in
rounds, where in each round all steps check if their predecessors in the iteration
dependence graph have been processed, and proceed if so. As the goal is to obtain
work-efficient (linear-work) algorithms, we prove the following lemma, which will
be used to obtain linear-work algorithms for random permutation, list contraction,
and tree contraction. The linear-work algorithms for MIS and maximal matching
will require analysis specific to the problem and do not use this lemma.

Lemma 4.1 If steps can be efficiently checked and updated, then an algorithm for a prob-
lem with iteration depth D(G) can be implemented with O(A(G)) work and
O(D(G) log n) depth without concurrent reads/writes or O(D(G) log∗ n) depth with
high probability with concurrent reads/writes.

Proof A step is defined to be ready if all of its predecessors in the iteration dependence
graph have been processed. The algorithm proceeds in rounds, where in each round
all remaining steps check if they are ready. If a step is ready, it proceeds in executing
its computation. After processing the ready steps, consider them as having been
removed from the iteration dependence graph, and hence the iteration depth of the
remaining iteration dependence graph is 1 less than before. The initial iteration
depth is D(G), so D(G) rounds suffice. In each round, the successful steps are
packed out so that no additional work is done for them in later rounds. The pack
requires linear work in the number of remaining steps. Since each round removes
the leaves of the iteration dependence graph, and the steps can be efficiently
checked and updated, the work done on each step is proportional to its height
in the iteration dependence graph. The total work is proportional to the sum of
the heights of all steps in the iteration dependence graph, which is the aggregate
delay A(G). The depth of the algorithm is O(D(G)P (n)), where P(n) is the depth
of the pack. A standard implementation of pack requires O(log n) depth. However,
approximate compaction suffices for this purpose, and can be implemented work-
efficiently in O(log∗ n) depth w.h.p. using concurrent reads/writes [Gil et al. 1991a].
This proves the lemma.
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Algorithms developed using Lemma 4.1 can be mapped work-efficiently to
the EREW PRAM with O(D(G) log n) depth (if they do not require concurrent
reads/writes), to the CRCW PRAM with O(D(G) log∗ n) depth w.h.p., and to the scan
PRAM with O(D(G)) depth (again, if they do not require concurrent reads/writes).
The multiplicative factor in the depth only depends on how the pack is imple-
mented, and processor allocation on each iteration can be done using the same
packing algorithm.

Two techniques that are used to obtain algorithms for the problems are de-
scribed below. The deterministic reservations method that checks all remaining
steps in each round, executing the ones whose dependencies have all been satis-
fied, gives algorithms satisfying the bounds of Lemma 4.1. The activation-based
approach directly activates a step when it is ready.

Deterministic Reservations
The deterministic reservations approach is discussed in Section 3.4.3. A fully paral-
lel version of deterministic reservations which processes all remaining iterates in
every round gives algorithms satisfying the bounds in Lemma 4.1, and this is the
version used for analyzing linear-work implementations of random permutation,
list contraction, and tree contraction. The linear-work MIS and maximal match-
ing implementations require a careful choice of prefix size, and so Lemma 4.1 is
not used.

Activation-based Approach
The activation-based approach directly “wakes-up” (activates) each step exactly
when it is ready [Blelloch et al. 2012, Hasenplaugh et al. 2014, Shun et al. 2015].
In particular, the predecessors in the iteration dependence graph are responsible
for activating the step. At the beginning, the algorithm identifies all the steps that
do not depend on any others (for the problems studied in this chapter, these can be
determined easily). Then on each round, each active step executes its computation,
and then detects whether it is the last predecessor of a successor; if so, it wakes up
the successor. The approach is work-efficient since it only runs steps exactly when
they are needed. As we will see, the implementations are problem-specific.

4.4 Maximal Independent Set
The sequential algorithm for computing the MIS of a graph is a simple greedy algo-
rithm, shown in Algorithm 4.1 (refer to Section 2.4 for graph notation). In addition
to a graph G, the algorithm takes an arbitrary total ordering on the vertices π . π

is used to define priorities on the vertices. The algorithm adds the first remaining
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Algorithm 4.1 Sequential greedy algorithm for MIS

1 procedure SEQUENTIALGREEDYMIS(G = (V , E), π )
2 if |V | = 0 then return ∅
3 else
4 let v be the first vertex in V by the ordering π

5 V ′ = V \ (v ∪ N(v))

6 return v ∪ SEQUENTIALGREEDYMIS(G[V ′], π )

Algorithm 4.2 Parallel greedy algorithm for MIS

1 procedure PARALLELGREEDYMIS(G = (V , E), π )
2 if |V | = 0 then return ∅
3 else
4 let W be the set of vertices in V with no earlier neighbors (based on π )
5 V ′ = V \ (W ∪ N(W))

6 return W ∪ PARALLELGREEDYMIS(G[V ′], π )

vertex v according to π to the MIS and then removes v and all of v’s neighbors from
the graph, repeating until the graph is empty. The MIS returned by this sequential
algorithm is defined as the lexicographically first MIS for G according to π .

By allowing vertices to be added to the MIS as soon as they have no higher-
priority neighbor, a parallel greedy algorithm is obtained (Algorithm 4.2). It is not
difficult to see that this algorithm returns the same MIS as the sequential algorithm.
A simple proof proceeds by induction on vertices in order. (A vertex v may only be
resolved when all of its earlier neighbors have been classified. If its earlier neighbors
match the sequential algorithm, then it does too.) Naturally, the parallel algorithm
may (and should, if there is to be any parallel speedup) accept some vertices into
the MIS at an earlier time than the sequential algorithm, but the final set produced
is the same.

Note that if Algorithm 4.2 regenerates the ordering π randomly on each recursive
call then the algorithm is effectively the same as Luby’s Algorithm A [Luby 1996]. It
is the fact that a single permutation is used throughout that makes Algorithm 4.2
more difficult to analyze.

The Iteration Dependence Graph
An iteration dependence graph for MIS can be constructed by taking the original
graph and directing the edges from higher priority to lower priority endpoints based
on π . Each iteration of Algorithm 4.2 can be viewed as adding all of the roots of
the dependence graph to the MIS, and removing them and their children from the
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dependence graph. However, note that the iteration depth of the dependence graph
is only an upper bound on the number of rounds the MIS algorithm takes to finish.
Indeed for a complete graph, the longest directed path in the dependence graph is
�(n), but the number of rounds is O(1).

Therefore, instead of arguing that the number of rounds is polylogarithmic
directly from the iteration depth of the entire graph, this section considers iteration
dependence graphs induced by subsets of vertices and shows that these have small
longest paths and hence small iteration depth. Aggregating across all subsets of
vertices gives an upper bound on the total iteration depth.

Analysis Via a Modified Parallel Algorithm
Analyzing the depth of Algorithm 4.2 directly seems difficult as once some ver-
tices are removed, the ordering among the set of remaining vertices may not be
uniformly random. Rather than analyzing the algorithm directly, we preserve suf-
ficient independence over priorities by adopting an analysis framework similar to
that of [Coppersmith et al. 1989, Calkin and Frieze 1990]. Specifically, for the pur-
pose of analysis, we consider a more restricted, less parallel algorithm given by
Algorithm 4.3.

Algorithm 4.3 differs from Algorithm 4.2 in that it considers only a prefix of the
remaining vertices rather than considering all vertices in parallel. This modification
may cause some vertices to be processed later than they would in Algorithm 4.2,
which can only increase the total number of iterations of the algorithm when
the iterations are summed across all calls to Algorithm 4.2. We will show that
Algorithm 4.3 has a polylogarithmic number of iterations, and hence Algorithm 4.2
does as well.

Each iteration (recursive call) of Algorithm 4.3 is referred to as a round. For an
ordered set V of vertices and fraction 0 < δ ≤ 1, define the δ-prefix of V , denoted
by P(V , π , δ), to be the subset of vertices corresponding to the δ |V | earliest in

Algorithm 4.3 Modified parallel greedy algorithm for MIS

1 procedure MODIFIEDPARALLELMIS(G = (V , E), π )
2 if |V | = 0 then return ∅
3 else
4 choose prefix-size parameter δ

5 let P = P(V , π , δ) be the vertices in the prefix
6 W = PARALLELGREEDYMIS(G[P ], π )
7 V ′ = V \ (P ∪ N(W))

8 return W ∪ MODIFIEDPARALLELMIS(G[V ′], π )
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the ordering π . During each round, the algorithm selects the δ-prefix of remaining
vertices for some value of δ to be discussed later. An MIS is then computed on the
vertices in the prefix using Algorithm 4.2, ignoring the rest of the graph. When
the call to Algorithm 4.2 finishes, all vertices in the prefix have been processed
and either belong to the MIS or have a neighbor in the MIS. All neighbors of these
newly discovered MIS vertices and their incident edges are removed from the graph
to complete the round.

The advantage of analyzing Algorithm 4.3 instead of Algorithm 4.2 is that at the
beginning of each round, the ordering among remaining vertices is still uniform, as
the removal of a vertex outside of the prefix is independent of its position (priority)
among vertices outside of the prefix. The goal of the analysis is then to argue that
(a) the number of iterations in each parallel round is small, and (b) the number
of rounds is small. The latter can be accomplished directly by selecting prefixes
that are “large enough,” and constructively using a small number of rounds. Larger
prefixes increase the number of iterations within each round, however, so some
care must be taken in tuning the prefix sizes.

The analysis assumes that the graph is arbitrary (i.e., adversarial), but that the
ordering on vertices is random. In contrast, the previous analyses in this style
[Coppersmith et al. 1989, Calkin and Frieze 1990] assume that the underlying graph
is random, a fact that is exploited to show that the number of iterations within
each round is small. The analysis in this section, on the other hand, must cope
with nonuniformity on the permutations of prefixes as the prefix is processed with
Algorithm 4.2.

Reducing Vertex Degrees
A significant difficulty in analyzing the number of iterations of a single round of
Algorithm 4.3 (i.e., the execution of Algorithm 4.2 on a prefix) is that the iterations
of Algorithm 4.2 are not independent given a single random permutation that is
not regenerated after each iteration. The dependence, however, arises partly due
to vertices of drastically different degree, and can be bounded by considering only
vertices of nearly the same degree during each round.

Let 	 be the a priori maximum degree in the graph. The algorithm will select
prefix sizes so that after the i’th round, all remaining vertices have degree at most
	/2i with high probability. After log 	 < log n rounds, all vertices have degree 0,
and thus can be removed in a single iteration. Bounding the number of iterations
in each round by O(log n) then implies that Algorithm 4.3 has O(log2 n) total
iterations, and hence so does Algorithm 4.2.



72 Chapter 4 Deterministic Parallelism in Sequential Iterative Algorithms

The following lemma and corollary state that after processing the first
�(n log(n)/d) vertices, all remaining vertices have degree at most d.

Lemma 4.2 Suppose that the ordering on vertices is uniformly random, and consider the (
/d)-
prefix for any positive 
 and d ≤ n. If a lexicographically first MIS of the prefix and
all of its neighbors are removed from G, then all remaining vertices have degree at
most d with probability at least 1 − n/e
.

Proof Consider the following sequential process, equivalent to the sequential Algo-
rithm 4.1 (this proof refers to a recursive call of Algorithm 4.1 as a phase). The
process consists of n
/d phases. Initially, all vertices are live. Vertices become dead
either when they are added to the MIS or when a neighbor is added to the MIS.
During each phase, randomly select a vertex v without replacement. If v is live, it
has no earlier neighbors in the MIS. Add v to the MIS, after which v and all of its
neighbors become dead. If v is already dead, do nothing. Since vertices are selected
in a random order, this process is equivalent to choosing a random permutation
first, and then processing the prefix.

Consider any vertex u not in the prefix. This proof will show that by the end of this
sequential process, u is unlikely to have more than d live neighbors. (Specifically,
during each phase that it has d neighbors, it is likely to become dead; thus, if it
remains live, it is unlikely to have many neighbors.) Consider the i’th phase of the
sequential process. If either u is dead or u has fewer than d live neighbors, then
u alone cannot violate the property stated in the lemma. Suppose instead that u

has at least d live neighbors. Then the probability that the i’th phase selects one
of these neighbors is at least d/(n − i) > d/n. If the live neighbor is selected, that
neighbor is added to the MIS and u becomes dead. The probability that u remains
live during this phase is thus at most 1 − d/n. Since each phase selects the next
vertex uniformly at random, the probability that no phase selects any of the d

neighbors of u is at most (1 − d/n)δn, where δ = 
/d. This failure probability is at
most ((1 − d/n)n/d)
 < (1/e)
. Taking a union bound over all vertices completes the
proof.

Corollary 4.1 By setting δ = �(2i log(n)/	) for the i’th round of Algorithm 4.3, all remaining
vertices after the i’th round have degree at most 	/2i, with high probability.

Proof This follows from Lemma 4.2 with 
 ≥ c ln n and d = 	/2i for any constant c > 1.
The probability of success is at least 1 − 1/nc−1.
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Bounding the Number of Iterations in Each Round
To bound the depth for each prefix in Algorithm 4.3, an upper bound on the iter-
ation depth of the iteration dependence graph induced by the prefix is computed,
as this path length provides an upper bound on the iteration depth.

The following lemma implies that as long as the prefix is not too large with
respect to the maximum degree in the graph, then the longest path in the iteration
dependence graph of the prefix has length O(log n).

Lemma 4.3 Suppose that all vertices in a graph have degree at most d, and consider a randomly
ordered δ-prefix. For any 
 and r with 
 ≥ r ≥ 1, if δ < r/d, then the longest path in
the iteration dependence graph has length O(
) with probability at least 1 − n(r/
)
.

Proof Consider an arbitrary set of k positions in the prefix—there are
(
δn
k

)
of these, where

n is the number of vertices in the graph.3 Label these positions from lowest to
highest (x1, . . . , xk). To have a directed path in these positions, there must be an
edge between xi and xi+1 for 1 ≤ i < k. Having the prefix be randomly ordered is
equivalent to first selecting a random vertex for position x1, then x2, then x3, and
so on. The probability of an edge existing between x1 and x2 is at most d/(n − 1), as
x1 has at most d neighbors and there are n − 1 other vertices remaining to sample
from. The probability of an edge between x2 and x3 then becomes at most d/(n − 2).
(In fact, the numerator should be d − 1 as x2 already has an edge to x1, but rounding
up here only weakens the bound.) In general, the probability of an edge existing
between xi and xi+1 is at most d/(n − i), as xi may have d other neighbors and n − i

vertices remain in the graph. The probability increases with each edge in the path
since once x1, . . . , xi have been fixed, we may know, for example, that xi has no
edges to x1, . . . , xi−2. Multiplying the k probabilities together gives the probability
of a directed path from x1 to xk, which is rounded up to (d/(n − k))k−1.

Taking a union bound over all
(
δn
k

)
sets of k positions (i.e., over all length-k paths

through the prefix) gives a probability of at most(
δn

k

) (
d

n − k

)k−1

≤ n

(
eδn

k

)k (
d

n − k

)k

= n

(
eδnd

k(n − k)

)k

≤ n

(
2eδd

k

)k

3. The number of vertices n here refers to those that have not been processed yet. The bound holds
whether or not this number accounts for the fact that some vertices may be “removed” from the
graph out of order, as the n will cancel with another term that also has the same dependence.



74 Chapter 4 Deterministic Parallelism in Sequential Iterative Algorithms

where the last step holds for k ≤ n/2. Setting k = 4e
 and δ < r/d gives a probability
of at most n(r/
)
 of having a path of length 4e
 or longer. Note that if 4e
 > n/2,
violating the assumption that k ≤ n/2, then n = O(
), and hence the claim holds
trivially.

Corollary 4.2 Suppose that all vertices in a graph have degree at most d, and consider a randomly
ordered prefix. For an O(log(n)/d)-prefix or smaller, the longest path in the itera-
tion dependence graph has length O(log n) w.h.p. For a (1/d)-prefix or smaller, the
longest path has length O(log n/ log log n) w.h.p.

Proof For the first claim, applying Lemma 4.3 with r = c log n and 
 = 4c log n for a con-
stant c > 1/8 gives a success probability of at least 1 − 1/n8c−1. For the second claim,
using r = 1 and 
 = c ln n/ ln ln n for a constant c > 2 gives a success probability of
at least 1 − 1/nc−2 for large enough n.

The log n in this corollary should be treated as a constant across the execution
of the algorithm, so that the bounds hold with high probability with respect to the
original graph.

Parallel Greedy MIS Has Low Depth
The number log n of rounds is now combined with the O(log n) iterations per round
to prove the following theorem on the number of iterations in Algorithm 4.2.

Theorem 4.1 For a random ordering on vertices, where 	 is the maximum vertex degree, Algo-
rithm 4.2 requires O(log 	 log n) = O(log2 n) iterations w.h.p.

Proof Let us first bound the number of rounds of Algorithm 4.3, choosing δ = c2i ln(n)/	

in the i’th round, for some constant c and constant ln n (i.e., n here means the
original number of vertices). Corollary 4.1 states that with probability at least 1 −
1/nc−1, vertex degrees decrease in each round. Assuming this event occurs (i.e.,
vertex degree is d < 	/2i), Corollary 4.2 states that with probability at least 1 −
1/nc−1, the number of iterations per round is at most O(c log n). Taking a union
bound across any of these events failing says that every round decreases the degree
sufficiently, and thus the number of rounds required is log 	 with probability at
least 1 − 2/nc−2. Multiplying the number of iterations in each round by the number
of rounds gives the theorem bound. Since Algorithm 4.3 only delays processing
vertices as compared to Algorithm 4.2, it follows that this bound on iterations
also applies to Algorithm 4.2. The constant in the big-O notation in the theorem
statement is linear in c.
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4.4.1 Linear-work MIS Algorithms
While Algorithm 4.2 has low depth, a naive implementation will require O(m) work
on each iteration to process all edges and vertices and therefore a total O(m log2 n)

work. This section describes two linear-work versions. The first follows the form
of Algorithm 4.3, only processing prefixes of appropriate size. It has the advantage
that it is particularly easy to implement, and is for the experiments. The second
is an activation-based implementation of Algorithm 4.2 that directly traverses the
iteration dependence graph of the entire graph only doing work on the roots and
their neighbors on each iteration—and therefore every edge is only processed once.
The algorithm therefore does linear work and has depth that is proportional to the
number of iterations of the algorithm.

Prefix-based Implementation
The naive algorithm has high work because it processes every vertex and edge in ev-
ery iteration. Intuitively, if small enough prefixes are processed (as in Algorithm 4.3)
instead of the entire graph, there should be less wasted work. Indeed, a prefix of size
1 yields the sequential algorithm with O(m) work but �(n) depth. There is some
trade-off here—increasing the prefix size increases the work but also increases the
parallelism. This section formalizes this intuition and describes a highly parallel
algorithm that has linear work.

To bound the work, the number of edges operated on while considering a prefix
is bounded. For any prefix P ⊆ V with respect to permutation π , define the internal
edges of P to be the edges in the sub-DAG induced by P , i.e., those edges that
connect vertices in P . All other edges incident on P are referred to as external
edges. The internal edges may be processed multiple times, but external edges are
processed only once.

The following lemma states that small prefixes have few internal edges. This
lemma will be used to bound the work incurred by processing edges. The important
feature to note is that for very small prefixes, i.e., δ < k/d with k = o(1) and d

denoting the maximum degree in the graph, the number of internal edges in the
prefix is sub-linear in the size of the prefix, so the algorithm can afford to process
those edges multiple times.

Lemma 4.4 Suppose that all vertices in a graph have degree at most d, and consider a randomly
ordered δ-prefix P . If δ < k/d, then the expected number of internal edges in the
prefix is at most O(k |P |).

Proof Consider a vertex in P . Each of its neighbors joins the prefix with probability < k/d,
so the expected number of neighbors is at most k. Summing over all vertices in P

gives the bound.



76 Chapter 4 Deterministic Parallelism in Sequential Iterative Algorithms

The following related lemma states that for small prefixes, most vertices have
no incoming edges and can be removed immediately. This lemma will be used to
bound the work incurred by processing vertices, even those that may have already
been added to the MIS or implicitly removed from the graph.

Lemma 4.5 Suppose that all vertices in a graph have degree at most d, and consider a randomly
ordered δ-prefix P . If δ ≤ k/d, then the expected number of vertices in P with at
least 1 internal edge is at most O(k |P |).

Proof Let XE be the random variable denoting the number of internal edges in the
prefix, and let XV be the random variable denoting the number of vertices in the
prefix with at least 1 internal edge. Since an edge touches (only) two vertices, this
gives XV ≤ 2XE. It follows that E[XV ] ≤ 2E[XE], and hence E[XV ] = O(k |P |) from
Lemma 4.4.

The preceding lemmas indicate that small-enough prefixes are very sparse. By
choosing k = 1/ log n, for example, the expected size of the subgraph induced by
a prefix P is O(|P | / log n), and hence it can be processed O(log n) times with-
out exceeding linear work. This fact suggests the following theorem. The imple-
mentation given in the theorem is relatively simple. The prefix sizes can be de-
termined a priori, and the status of vertices can be updated lazily (i.e., when the
vertex is processed). Moreover, each vertex and edge is only densely packed into
a new array once, with other operations being done in place on the original ver-
tex list.

Theorem 4.2 Algorithm 4.3 can be implemented to run in expected O(n + m) work and O(log4 n)

depth with high probability.

Proof This implementation updates a vertex’s status (entering the MIS or removed due
to a neighbor) only when that vertex is part of a prefix.

Let 	 be the a priori maximum vertex degree of the graph. As before, consider
the rounds of Algorithm 4.3, with round i corresponding to an O(log(n)/d)-prefix
where d = 	/2i. Corollary 4.1 states that each round reduces the maximum de-
gree sufficiently, w.h.p. This prefix, however, may be too dense, so each round is
divided into log2 n sub-rounds, each operating on an O(1/(d log n))-prefix P . To
implement a sub-round, first process all external edges of P to remove those ver-
tices with higher priority MIS neighbors. Then accept any remaining vertices with
no internal edges into the MIS. These preceding steps are performed on the origi-
nal vertex/edge lists, processing edges incident on the prefix a constant number
of times. Let P ′ ⊆ P be the set of prefix vertices that remain at this point. Use
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prefix sums to count the number of internal edges for each vertex (which can be
determined by comparing priorities), and densely pack G[P ′] into new arrays. This
packing has O(log n) depth and linear work. Finally, process the induced subgraph
G[P ′] using a naive implementation of Algorithm 4.2, which has depth O(D) and
work equal to O(

∣∣G[P ′]
∣∣ . D), where D is the iteration depth of P ′. From Corol-

lary 4.2, D = O(log n) with high probability. Combining this with an expected prefix
size of E[

∣∣G[P ′]
∣∣] = O(|P | / log n) from Lemmas 4.4 and 4.5 yields expected O(|P |)

work for processing the prefix. Summing across all prefixes implies a total of O(n)

expected work for Algorithm 4.2 calls plus O(m) work in the worst case for pro-
cessing external edges. Multiplying the O(log n) prefix depth across all O(log3 n)

iterations (O(log n) iterations of Algorithm 4.2 per sub-round) completes the proof
for depth. Similar to the proof of Theorem 4.1, the success probability can be shown
to be at least 1 − 1/nc for some large enough constant c, with the constant in the
big-O notation linear in c.

The previous result can be translated to a PRAM algorithm with the same
bounds, as each round has O(log n) parallel slackness so processor allocation can
be done with prefix sums.

Activation-based Implementation
The idea of the linear-work implementation of Algorithm 4.2 is to explicitly keep
on each iteration of the algorithm the set of roots of the remaining iteration depen-
dence graph, e.g., as an array. With this set it is easy to identify the neighbors in
parallel and remove them, but it is trickier to identify the new root set for the next
iteration. One way to identify them would be to keep a count for each vertex of the
number of neighbors with higher priorities (parents in the iteration dependence
graph), decrement the counts whenever a parent is removed, and add a vertex to
the root set when its count goes to zero. The decrement, however, needs to be done
in parallel since many parents might be removed simultaneously. Such decrement-
ing is hard to do work-efficiently when only some vertices are being decremented.
Instead, note that the algorithm only needs to identify which vertices have at least
one edge removed on the iteration and then check each of these to see if all their
edges have been removed. Define a misCheck on a vertex as the operation of check-
ing if it has any higher priority neighbors remaining. The implementation assumes
that the neighbors of a vertex have been pre-partitioned into their parents (higher
priorities) and children (lower priorities), and that edges are deleted lazily—i.e.,
deleting a vertex just marks it as deleted without removing it from the adjacency
lists of its neighbors.
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Lemma 4.6 For a graph with m edges and n vertices where vertices are marked as deleted over
time, any set of l misCheck operations can be done in O(l + m) total work, and any
set of misCheck operations can be done in O(log n) depth.

Proof The pointers to parents are kept as an array (with a pointer to the start of the array).
A vertex can be checked by examining the parents in order. If a parent is marked
as deleted, the edge is removed by incrementing the pointer to the array start and
the cost is charged to that edge. If it is not, the misCheck completes and the cost
is charged to the check. Therefore the total charged across all operations is l + m,
each of which does constant work. Processing the parents in order would require
linear depth, so instead a doubling scheme is used: first examine one parent, then
the next two, then the next four, etc. This completes once a parent that is not deleted
is found and all work is charged to the previous ones that were deleted. The work
can be at most twice the number of deleted edges thus guaranteeing linear work.
The doubling scheme requires O(log n) steps each step requires O(1) depth, hence
the overall depth is O(log n).

Lemma 4.7 Algorithm 4.2 can be implemented in O(m) total work and O(log3 n) depth with
high probability.

Proof The implementation works by keeping the roots in an array, and on each iteration
marking the roots and its neighbors as deleted, and then using misCheck on the
neighbors’ neighbors to determine which ones belong in the root array for the next
iteration. The total number of checks is at most m, so the total work spent on checks
is O(m). After the misChecks, all vertices with no previous vertex remaining are
added to the root set for the next iteration. Some care needs to be taken to avoid
duplicates in the root array since multiple neighbors might check the same vertex.
Duplicates can be avoided, however, by having the neighbor write its identifier
into the checked vertex using an arbitrary concurrent write, and whichever write
succeeds is responsible for adding the vertex to the new root array. Each iteration
can be implemented in O(log n) depth, required for the checks and for packing the
successful checks into a new root set. Multiplying by the O(log2 n) iterations gives
an overall depth of O(log3 n) w.h.p. Every vertex and its edges are visited once when
removing them, and the total work on checks is O(m), so the overall work is O(m).

Again, this result can be translated to a CRCW PRAM algorithm with the same
work and depth bounds.
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Algorithm 4.4 Parallel greedy algorithm for MM

1 procedure PARALLELGREEDYMM(G = (V , E), π )
2 if |E| = 0 then return ∅
3 else
4 let W be the set of edges in E with no adjacent edges with higher priority by π

5 E′ = E \ (W ∪ N(W))

6 return W ∪ PARALLELGREEDYMM(G[E′], π )

4.5 Maximal Matching
One way to implement maximal matching (MM) is to reduce it to MIS by replacing
each edge with a vertex, and creating an edge between all adjacent edges in the
original graph. An iteration dependence graph for MM is defined using this reduc-
tion. This reduction, however, can significantly increase the number of edges in
the graph and therefore may not take work that is linear in the size of the original
graph. Instead a standard greedy sequential algorithm is used to process the edges
in an arbitrary order and include the edge in the MM if and only if no neighboring
edge on either endpoint has already been added. As with the vertices in the greedy
MIS algorithms, edges can be processed out of order when they do not have any ear-
lier neighboring edges. This idea leads to Algorithm 4.4 where π is now an ordering
of the edges.

Lemma 4.8 For a random ordering on edges, the number of iterations of Algorithm 4.4 is
O(log2 m) with high probability.

Proof This follows directly from the reduction to MIS described above. In particular an
edge is added or deleted in Algorithm 4.4 exactly on the same iteration it would be
for the corresponding MIS graph in Algorithm 4.2. Therefore Lemma 4.1 applies.

As done for MIS in the previous section, this section describes two linear-work
algorithms for maximal matching, the first of which processes prefixes of the
vertices in priority order and the second of which maintains the set of roots in the
iteration dependence graph. The first algorithm is easier to implement and is the
version used in the experiments.

Prefix-based Implementation
Algorithm 4.5 is the prefix-based algorithm for maximal matching (the analog of
Algorithm 4.3). To obtain a linear-work maximal matching algorithm, Algorithm
4.5 is used with a prefix-size parameter δ = 1/de, where de is the maximum number
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Algorithm 4.5 Modified parallel greedy algorithm for MM

1 procedure MODIFIEDPARALLELMM(G = (V , E), π )
2 if |V | = 0 then return ∅
3 else
4 choose prefix-size parameter δ

5 let P = P(E , π , δ) be the edges in the prefix
6 W = PARALLELGREEDYMM(G[P ], π )
7 E′ = E \ (P ∪ N(W))

8 return W ∪ MODIFIEDPARALLELMM(G[E′], π )

of neighboring edges any edge in G has. Each call to Algorithm 4.4 in Line 6 of
Algorithm 4.5 proceeds in iterations. The algorithm assumes that the edges are
pre-sorted by priority (for random priorities they can be sorted in linear work and
within the depth bounds with bucket sorting [Cormen et al. 2009]).

In each iteration, first every edge in the prefix does a priority write to its two
endpoints (attempting to record its rank in the permutation), and after all writes
are performed, every edge checks whether it won on (its value was written to) both
endpoints. Since edges are sorted by priority, the highest priority edge incident on
each vertex wins. If an edge wins on both sides, then it adds itself to the maximal
matching and deletes all of its neighboring edges (by packing). Each edge does
constant work per iteration for writing and checking. The packing takes work
proportional to the remaining size of the prefix. It remains to show that the expected
number of times an edge in the prefix is processed is constant.

Consider the iteration dependence graph on the δ-prefix of E, where a vertex in
the iteration dependence graph corresponds to an edge in the original graph G, and
a directed edge exists in the iteration dependence graph from Ei to Ej if and only if
Ei is adjacent to Ej in G and Ei has a higher priority than Ej . Note that this iteration
dependence graph is not explicitly constructed. Define the height of a vertex ve in
the iteration dependence graph to be the length of the longest incoming path to ve.
The height of ve is an upper bound on the number of iterations of processing the
iteration dependence graph required until ve is either added to the MM or deleted.

Theorem 4.3 For a (1/de)-prefix, the expected height of any vertex in the iteration dependence
graph (corresponding to an edge in the original graph G) is O(1).

Proof For a given vertex ve, the expected length of a directed path ending at ve is computed.
For there to be a length k path to ve, there must be k positions p1, . . . , pk (listed in
priority order) before ve’s position, pe, in the prefix such that there exists a directed
edge from pk to pe and for all 1 < i < k, a directed edge from pi to pi+1. Using an



4.5 Maximal Matching 81

argument similar to the one used in the proof of Lemma 4.3, the probability of this
particular path existing is at most (de/(m − k))k. The number of positions appearing
before pe in the prefix is at most the size of the prefix itself. So summing over all
possible choices of k positions implies that the probability of a directed path from
the root to some vertex being length k is

(
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k

) (
de

m − k

)k

≤
(

me

kde

)k (
de
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Now the expected length of a path from the root vertex is computed by summing
over all possible lengths. This expectation is upper bounded by
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= O(1)

To obtain the last inequality Lemma 4.3 is applied, giving Pr(k > m/2) = O(1/mc−1)

for c > 1. The desired bound is obtained by using the formula
∑∞

k=0 k(xk)/k! = xex.

Lemma 4.9 Given a graph with m edges, n vertices, and a random permutation on the edges
π , Algorithm 4.5 can be implemented in O(m) total work in expectation and
O(log4 m/ log log m) depth with high probability.

Proof Consider the rounds (recursive calls) of Algorithm 4.5. Each round operates on an
O(1/de)-prefix, so after O(log m) rounds an O(log(m)/de)-prefix is processed, and de

decreases by a constant factor w.h.p. by Lemma 4.2. Therefore, a total of O(log2 m)

rounds are required until completion.
In each round, each iteration of Algorithm 4.4 processes the top level (root

vertices) of the iteration dependence graph. Once an edge gets processed as a
root of the iteration dependence graph or gets deleted by another edge, it will not
be processed again in the algorithm. Since the expected height of an edge in the
iteration dependence graph is O(1), it will be processed a constant number of times
in expectation (each time doing a constant amount of work), and contributes a
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constant amount of work to the packing cost. Hence, the total work is linear in
expectation.

For a given round, the packing per iteration requires O(log |P |) depth where
|P | is the remaining size of the prefix. By Corollary 4.2, there are at most O(log m/

log log m) iterations w.h.p. Therefore, each round requires O(log2 m/ log log m)

depth and the algorithm has an overall depth of O(log4 m/ log log m) w.h.p. As
in the proof of Theorem 4.1, the success probability can be shown to be at least
1 − 1/nc for some large enough constant c, with the constant in the big-O notation
linear in c.

The above algorithm can be implemented on a PRAM with the same complexity.

Activation-based Implementation
As with the algorithm used in Lemma 4.7, on each round an array of roots (edges
that have no neighboring edges with higher priority) can be maintained and used
to both delete edges and generate the root set for the next round. However, the
algorithm cannot afford to look at all of the neighbors’ neighbors. Instead for each
vertex an array of its incident edges sorted by priority is maintained. This list is
maintained lazily such that deleting an edge only marks it as deleted and does not
immediately remove it from its two incident vertices. Refer to an edge as ready if
it has no remaining neighboring edges with higher priority. The algorithm uses
an mmCheck procedure on a vertex to determine if any incident edge is ready and
identifies the edge if so—a vertex can have at most one ready incident edge. The
mmChecks do not happen in parallel with edge deletions.

Lemma 4.10 For a graph with m edges and n vertices where edges are marked as deleted over
time, any set of l mmCheck operations can be done in O(l + m) total work, and any
set of mmCheck operations in O(log m) depth.

Proof The mmCheck is partitioned into two phases. The first phase identifies the highest
priority incident edge that remains, and the second phase checks if that edge is
also the highest priority on its other endpoint and returns it if so. The first phase
can be done by scanning the edges in priority order, removing those that have been
deleted and stopping when the first non-deleted edge is found. As in Lemma 4.6
this can be done in parallel using doubling in O(log m) depth, and the work can
be charged either to a deleted edge, which is removed, or the check itself. The total
work is therefore O(l + m). The second phase can similarly use doubling to see if
the highest priority edge is also the highest priority on the other side.
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Lemma 4.11 For a random ordering on the edges, Algorithm 4.4 can be implemented in O(m)

total work and O(log3 m) depth with high probability.

Proof Since the edge priorities are selected at random, the initial sort to order the edges
incident on each vertex can be done in O(m) work and within the depth bounds
w.h.p. using bucket sorting [Cormen et al. 2009]. Initially, the set of ready edges are
selected by using an mmCheck on all edges. On each iteration of Algorithm 4.4,
the set of ready edges and their neighbors are deleted (by marking them), and then
all vertices incident on the far end of each of the deleted neighboring edges are
checked. This returns the new set of ready edges in O(log m) depth. Redundant
edges can easily be removed. Thus, the depth per iteration is O(log m) and by
Lemma 4.8 the total depth is O(log3 m). Every edge is deleted once and the total
number of checks is O(m), so the total work is O(m).

This algorithm can be implemented on a CRCW PRAM with the same work and
depth bounds.

4.6 Random Permutation
Durstenfeld [1964] and Knuth [1969] discuss a simple sequential algorithm for
generating a random permutation which goes through the elements of an array
from the end to the beginning (or vice versa), and swaps each element with a
random element in the array earlier than or at the current position. This chapter
assumes that the random integers used in the algorithm are generated beforehand,
and stored in an array H—i.e., for 0 ≤ i < n, H [i] is a (uniformly) random integer
from 0 to i, inclusive. The pseudocode for Durstenfeld’s sequential algorithm is
given in Figure 4.1.

4.6.1 Iteration Dependence Depth and Aggregate Delay
To analyze the iteration dependence depth of Durstenfeld’s algorithm, the follow-
ing definitions will be used. When performing a swap(x , y), x is the source of the
swap and y is the target of the swap. For a given H , define i to dominate j if H [i] = j

and i �= j . Define the dominance forest of H to be the directed graph formed on n

1 procedure SEQUENTIALRANDPERM(A, H )
2 for i = n − 1 to 0 do
3 swap(A[H [i]], A[i])

Figure 4.1 Sequential algorithm for random permutation.
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(a) (b)

(d)

(c)

Figure 4.2 Dominance and dependence forests for H = [0, 0, 1, 3, 1, 2, 3, 1] are shown in (a) and
(b), respectively. (c) shows the linked dependence tree for H and (d) shows the possible
locations for inserting the 9th node; dashed circles correspond to the value of H [8].

nodes where node i points to node j if i dominates j . Since each node can dominate
at most one other node, the graph is a forest. Note that the roots of the dominance
forest are exactly the nodes where H [i] = i.

Define the dependence forest of H to be a modification of the dominance forest
where the children of each node (from incoming edges) are chained together in
decreasing order. In particular, for a node i with incoming edges from nodes
j1 < . . . < jk, add an edge from jl+1 to jl for 1 ≤ l < k (creating a chain) and delete
the edges from jl to i for l > 1. Note that the dependence forest is binary, since each
node can have at most one incoming edge from the set of nodes pointing to it in the
dominance forest, and since it can be part of at most one chain. See Figures 4.2(a)
and 4.2(b) for an example of the dominance forest and dependence forest for a
given H .
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Lemma 4.12 The dependence forest of H is an iteration dependence graph for SEQUENTIAL-
RANDPERM.

Proof Define a step to be ready if all of its descendants in the dependence forest have been
processed. The proof will show that when a step is ready, its corresponding location
in A will contain the same value as it would have when the sequential algorithm
processes it. The proof uses induction on the iteration in which a step is processed
in the sequential algorithm (i.e., step n − 1 is the first and step 0 is the last).

The base case is trivial as step n − 1 is ready at the start of any ordering (no node
can point to n − 1 in the dependence forest) and has the correct value (location
n − 1 cannot be the target of any swap with another element). Consider some
step i. Suppose there are multiple steps j1, . . . , jk, where j1 < j2 < . . . < jk, with
location i as the target of a swap operation. Since i < j1 < . . . < jk, by the inductive
hypothesis we may assume that steps j1, . . . , jk had the correct value in their
corresponding locations in A when they were ready. The sequential algorithm will
perform the swaps in decreasing order of the steps (jk down to j1), and since i < j1,
in the sequential algorithm location i will not be the source of a swap until all
of steps j1, . . . , jk have been processed. Any ordering respecting the dependence
forest will also process steps j1, . . . , jk in decreasing order, since by definition the
dependence forest contains a directed path from jk to j1. The fact that j1, . . . , jk

have the same value as in the sequential algorithm when they are ready, and that
they are processed in the same order as the sequential algorithm implies that the
location corresponding to step i will also have the same value as in the sequential
algorithm when it is ready (i.e., after all of its incoming steps have been processed).

The goal is to show that the dependence forest is shallow. To do this, we will
actually add some additional edges to make a tree and then show that this tree has
an identical distribution as random binary search trees, which are known to have
�(log n) depth with high probability. The standard definition of a random binary
search tree will be used, i.e., the tree generated by inserting a random permutation
of the integers {0, . . . , n − 1} into a binary search tree. Define the linked dependence
tree as the tree created by linking the roots of the dependence forest along the right
spine of a tree with indices appearing in ascending order from the top of the spine
to the bottom (see Figure 4.2(c) for an example of the linked dependence tree). The
linked dependence tree is clearly also an iteration dependence graph since it only
adds constraints.
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Theorem 4.4 Given a random H , the distribution of (unlabeled) linked dependence trees for H

is identical to the distribution of (unlabeled) random binary search trees.

Proof This is proved by induction on the input size n. For the base case, n = 1, there
is a single vertex and the claim is trivially true. For the inductive case, note that
the linked dependence tree for the first n − 1 locations is not affected by the last
location since numbers at H [i] point at or before i—i.e., the last location will end
up as a leaf. By the inductive hypothesis, the distribution of trees on the first n − 1
locations has the same distribution as random binary search trees of size n − 1.
Now we claim that, justified below, the n’th element can go into any leaf position.
Since the n’th location is a uniformly random integer from 0 to n − 1 and there are
n possible leaf positions in a binary tree of size n − 1, all leafs must be equally likely.
Hence, this is the same process as inserting randomly into a binary search tree.

To see that the n’th location can go into any leaf, first note that if it picks itself
(index n − 1), then it is at the bottom of the right spine of the tree, by definition.
Otherwise, if it picks j < n − 1, and it will be placed at the bottom of the right spine
of the left child of j . This allows for all possible tree positions—to be a left child of
a node just pick the parent, and to be a right child follow the right spine up to the
top, then pick its parent (e.g., see Figure 4.2(d)).

Theorem 4.5 For SEQUENTIALRANDPERM on a random H of length n, there is an iteration depen-
dence graph G with D(G) = �(log n) with high probability, and A(G) = �(n) in
expectation.

Proof For the depth, it is a well-known fact that the height of a random binary search
tree on n nodes is �(log n) w.h.p. [Devroye 1986]. For example, to be more precise,
the height is bounded by 4e log n with probability at least 1 − 1/n4e+1 (see Lemma
3.1 in [Devroye 1986]). Therefore, Theorem 4.4 implies that the longest path in the
iteration dependence graph is O(log n) w.h.p. To show that this is tight, note that
node 0 has �(log n) incoming edges in the dominance forest w.h.p. This can be
shown by applying Chernoff bounds [Motwani and Raghavan 1995] on the sum of
indicator variables Xk (indicating whether H [k] = 0) from k = 0, . . . , n − 1, where
Xk = 1 with probability 1/(k + 1). With probability at least 1 − 1/nδ2/2, the sum is at
least (1 − δ)Hn where Hn ≈ ln n is the n’th harmonic number and 0 < δ < 1. Hence,
the longest path to it in the iteration dependence graph is �(log n) w.h.p.

To analyze the aggregate delay, let us analyze the sum of heights of the nodes in
a random binary search tree. Let W(n) indicate the expected sum. The two children
of the root of a random binary search tree are also random binary search trees of
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size i and n − i − 1, respectively, for a randomly chosen i in {0, . . . , n − 1}. This
gives the recurrence W(n) = Height(n) + (1/n)

∑n−1
i=0 (W(i) + W(n − i − 1)), where

Height(n) = �(log n) is the expected height of a random binary search tree with n

nodes. This solves to �(n) and hence the theorem follows.

4.6.2 Algorithms
This section describes parallel implementations of random permutation that re-
turn the same result as Durstenfeld’s sequential algorithm.

Deterministic Reservations-based Implementation
To implement the random permutation algorithm using deterministic reserva-
tions, the RESERVE and COMMIT functions shown in Figure 4.3 are used. The im-
plementation uses an array R, initialized to contain all −1, to store reservations.
The implementation uses the function writeMax(l,i), a special case of the priority
update described in Chapter 6 which writes value i to location l such that the max-
imum value written to l will end up in that location. The RESERVE function for index
i simply calls writeMax to the two locations R[i] and R[H [i]] with value i and then
returns 1. The COMMIT function simply checks if both writeMax’s were successful
(i.e., both R[i] and R[H [i]] store the value i) and if so, swaps A[H [i]] and A[i] and re-
turns 0; otherwise it returns 1. This process guarantees that a step will successfully
commit (swap) if and only if its children in the dependence forest have finished
in a previous round of deterministic reservations. This is because if any child were

1 H = swap targets
2 R = {−1, . . . , −1}
3 procedure RESERVE(i)
4 writeMax(R[i], i) � reserve own location
5 writeMax(R[H [i]], i) � reserve target location
6 return 1

7 procedure COMMIT(i)
8 if R[i] = i and R[H [i]] = i then
9 swap(A[H [i]], A[i]) � swap if reserved

10 return 0
11 else return 1

Figure 4.3 RESERVE and COMMIT functions and associated data for random permutation using
deterministic reservations.
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not finished, then it would have competed in the writeMax and won since it has a
higher index. In particular, the left child as shown in Figure 4.2(b) will win on R[i]
and the right child in that figure will win on R[H [i]].

Theorem 4.6 For a random H , deterministic reservations using the RESERVE and COMMIT functions
for random permutation runs in O(n) expected work and O(log n log∗ n) depth with
high probability using concurrent reads/writes.

Proof Apply Theorem 4.5 and Lemma 4.1. The RESERVE and COMMIT functions take con-
stant work/depth, and so the steps of the computation can be efficiently checked
and updated. The writeMax requires concurrent reads/writes.

This implementation can be mapped to the priority CRCW PRAM, as processor
allocation on each round of deterministic reservations can be done in O(log∗ n)

depth w.h.p.

Activation-Based Implementation
A linear-work activation-based implementation of the parallel random permutation
algorithm is now presented. The implementation keeps track of the nodes ready
to be executed of the dependence graph, processes and deletes these nodes from
the graph in each round, and identifies the new nodes that are ready for the next
round. It relies on explicitly constructing the dependence forest, and the following
lemma states that this can be done efficiently.

Lemma 4.13 The dependence forest for a given H can be constructed in O(n) expected work and
O(log n) depth with high probability.

Proof Building the dependence forest of random permutation for a given H requires
sorting all of the nodes which point to the same node in the forest. This can be
done by (1) using a non-stable integer sort in the range [0, . . . , n − 1] [Rajasekaran
and Reif 1989] to group all the nodes, and then (2) sorting the nodes within each
group using a parallel comparison sort [JaJa 1992]. (1) can be done in O(n) work and
O(log n) depth (using concurrent reads/writes). The depth for (2) is O(log log n)

w.h.p. since the largest group is of size O(log n) w.h.p. The total work for (2) is∑n−1
i=0 csi log si where si is the number of nodes pointing to node i and c1 is a

constant. To show that
∑n−1

i=0 c1si log si = O(n), a similar argument used in the
analysis of perfect hash tables can be used [Motwani and Raghavan 1995]. Let
Xij = 1 if H [i] = H [j ] and Xij = 0 otherwise.
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The line marked (*) follows because H [i] and H [j ] are independent.
After sorting, creating the pointers in the dependence forest takes O(n) work

and O(1) depth.

The algorithm in Lemma 4.13 works on the CRCW PRAM as the integer sort
requires concurrent reads and writes. The following theorem uses Lemma 4.13 to
design an activation-based random permutation algorithm.

Theorem 4.7 For a random H , an activation-based implementation of random permutation runs
in O(n) expected work and O(log n log∗ n) depth with high probability.

Proof The algorithm forms the dependence forest for a given H , which by Lemma 4.13
can be done in O(n) expected work and O(log n) depth w.h.p.

The leaves of the dependence forest are first identified, and at each step the
set of leaves is maintained (these are the steps that are ready to be processed).
Then the algorithm repeatedly processes the leaf set, removes it and its edges
from the graph, and identifies the new leaf set until the dependence forest has
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been completely processed. Since all dependencies in the dependence forest are
satisfied, by Lemma 4.12, this guarantees correctness. The algorithm assumes that
the neighbors of a node are represented in an array, and partitioned into incoming
edges and outgoing edges. To identify the new leaf set at each step, nodes that
are removed perform a check on its parent to see if it has any incoming edges
remaining. The check can be done in O(1) work and depth per neighbor since each
node has at most two incoming edges.

After all checks are completed, nodes with no incoming edges are added to the
next leaf set. Duplicates can be eliminated by filtering in work linear in the size of
the new leaf set since each node can be appear at most twice (each node has at most
two incoming edges). The new leaf set is packed with approximate compaction,
requiring work linear in the leaf set size and O(log∗ n) depth w.h.p. Each step
is processed a constant number of times, so the total work is O(n). Each round
reduces the iteration depth of the iteration dependence graph on the remaining
steps by 1, and since the initial iteration depth is �(log n) w.h.p. by Theorem 4.5,
the overall depth is O(log n log∗ n) w.h.p.

The activation-based algorithm runs on the CRCW PRAM as processor alloca-
tion can be done with approximate compaction.

Adapting to the CRQW PRAM
The random permutation algorithms can be adapted to the concurrent-read queue-
write (CRQW) PRAM [Gibbons et al. 1996, Gibbons et al. 1999], which closely mod-
els cache coherence protocols in multicore machines. In this model, concurrent
reads to a memory location are charged unit cost but concurrent writes to a mem-
ory location have a contention cost equal to the total number of concurrent writes
to the location. In each step, the maximum contention over all locations is charged
to the depth.

Lemma 4.13 also applies for the CRQW PRAM as integer sorting can be done
in O(n) work and O(log n) depth w.h.p. on the CRQW PRAM [Gibbons et al. 1996],
and comparison sorting can be implemented on an EREW PRAM (a weaker model
than the CRQW PRAM). Packing on the CRQW PRAM can be done in linear work
and O(

√
log n) depth w.h.p. [Gibbons et al. 1999], so an activation-based imple-

mentation of the sequential algorithm can be made to run in O(n) expected work
and O(log3/2 n) depth w.h.p.

The deterministic reservation-based implementation of random permutation
can also be adapted to the CRQW PRAM, using prefix sums for packing. The only
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place in the algorithm that requires concurrent writes is the call to writeMax.
However, since the dominance forest has in-degree O(log n) w.h.p., there can
be at most O(log n) concurrent calls to writeMax to a given location, leading to
O(log n) contention. This requires O(log n) additional slackness (depth) per step.
Using prefix sums for packing, each round already requires O(log n) depth, so this
slackness does not affect the overall bounds. Therefore, the algorithm runs in linear
work and O(log2 n) depth w.h.p. on the CRQW PRAM.

Random Permutation via Rotations
The following describes another parallel implementation of the sequential algo-
rithm, using the fact that the values at the locations of the nodes pointing to the
same node in the dominance forest just get rotated. In particular, if i1, . . . , ik with
il < il+1 point to j , then after all other dependencies to i1, . . . , ik are resolved,
A[j ] = A[ik], A[i1] = A[j ], and A[il+1] = A[il] for 1 ≤ l < k. This algorithm builds the
dominance forest in O(n) work and O(log n) depth w.h.p. using Lemma 4.13. Then
it processes the forest level by level, starting with the leaves, and rotating the values
of each group of leaves and the target node. The level numbers for the nodes can
be computed using leaffix operations or Euler tours [JaJa 1992] in linear work and
O(log n) depth. Rotating the values can be done in work proportional to the num-
ber of nodes processed, and O(1) depth. As the height of the dominance forest is
�(log n) w.h.p., this gives an algorithm with O(n) work and O(log n) depth w.h.p.
The algorithm can be mapped to the CRCW PRAM or CRQW PRAM in the same
bounds.

4.7 List Contraction
List contraction, and the related list ranking, is one of the most canonical prob-
lems in the study of parallel algorithms. The problem has received considerable
attention both because of its fundamental nature as a pointer-based algorithm,
and also because it has many applications as a subroutine in other algorithms. A
summary of the work can be found in a variety of books and surveys (see, e.g., [Karp
and Ramachandran 1990, JaJa 1992, Reif 1993]).

This section is concerned with analyzing a simple sequential algorithm for
list contraction and showing that it has low iteration depth and aggregate delay.
Assume the linked list is represented as an array L of nodes, where L[i].prev stores
the index of the predecessor of node i (null if none) and L[i].next stores the index of
the successor of node i (null if none). A natural sequential iterative algorithm works
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1 procedure SEQUENTIALLISTCONTRACT(L)
2 for i = 0 to n − 1 do
3 if L[i].prev �= null then
4 L[L[i].prev].next = L[i].next
5 if L[i].next �= null then
6 L[L[i].next].prev = L[i].prev

Figure 4.4 Sequential algorithm for list contraction.

by splicing out the nodes in order of increasing index, as shown in Figure 4.4. Each
list in L is contracted down to a single node. For simplicity the values stored on the
nodes are not shown. If values are stored, then when a node is spliced out its value
is combined with its predecessor’s value using a combining function, and stored
on its predecessor. To perform list ranking, the process is then reversed, adding the
nodes back in with the appropriate values. Note that when the combining function
is non-associative, then the result depends on the order in which the nodes are
spliced out. In such a case, a parallel computation returns the same answer as
the sequential algorithm if it satisfies the dependence structure of the sequential
algorithm, which is defined next.

4.7.1 Iteration Dependence Depth and Aggregate Delay
The dependence forest for an input L is defined as follows. For a list, place the last
position k in which any of its links appear at the root r of a tree. Now recursively
for the sublists on each side of the node in position k, do the same and make the
two roots the children of r . If either sublist is empty, r will not have a child on that
side. This defines a tree for each list and a forest across multiple lists. As with the
dependence forest for random permutation, the dependencies go up the tree—i.e.,
each parent depends on its children. An example list along with its dependence
forest is shown in Figure 4.5.

Lemma 4.14 The dependence forest of L is an iteration dependence graph for SEQUENTIAL-
LISTCONTRACT(L).

Proof For each step i, let j and k be the indices of the prev and next nodes when i is
spliced out in the sequential order. Clearly, j and k must both be larger than i (or
null) since they have not yet been spliced out. It suffices to show that for each i,
once all of its descendants in the dependence forest are completed (spliced out),
possibly not in the sequential order, it will point to j and k, and hence will do an
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(a) (b)

Figure 4.5 (a) An example list, where the numbers represent the position in the input array L, and
(b) its dependence forest.

identical splice as in the sequential order. By induction, this is assumed to be true
for all indices less than i.

Consider the sublist between j and k (not inclusive). The index i must be the
largest index on this list because if there were a larger index l, when i is contracted
in the sequential order it cannot be linked with both j and k—l must be in the
way. By construction of the dependence forest, and because i is the largest on the
sublist, it is picked as the root of a tree containing the sublist. Therefore, when
all descendants are completed (and by induction, they operated correctly) all other
nodes on the sublist have been spliced out and i will point to j and k.

Lemma 4.15 Assuming that the ordering of L has been randomized, for each list in L the
distribution of (unlabeled) dependence trees is identical to the distribution of
(unlabeled) random binary search trees of the same size.

Proof The root node of the dependence tree can appear in any position of the list with
equal probability, since L is randomly ordered. This property also holds for each
sublist of the list. Therefore in each subtree all nodes are equally likely to be the
root, which is equivalent to the distribution for random binary search trees.

The following theorem now follows from the same argument as in Theorem 4.5
since the iteration dependence graph (for each list) has the same distribution—a
random binary search tree. There are no dependencies among different lists.

Theorem 4.8 For SEQUENTIALLISTCONTRACT on a randomly ordered L of length n, there is an
iteration dependence graph G with D(G) = O(log n) with high probability, and
A(G) = �(n) in expectation.
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1 R = {0, . . . , 0} � boolean array
2 procedure RESERVE(i)
3 if i < L[i].prev and i < L[i].next then
4 R[i] = 1 � reserve own location
5 return 1

6 procedure COMMIT(i)
7 if R[i] = 1 then
8 if L[i].prev �= null then
9 L[L[i].prev].next = L[i].next

10 if L[i].next �= null then
11 L[L[i].next].prev = L[i].prev
12 return 0
13 else return 1

Figure 4.6 RESERVE and COMMIT functions and associated data for list contraction using determin-
istic reservations.

4.7.2 Algorithms
This section describes parallel implementations of the list contraction that satisfy
the dependencies of the sequential iterative algorithm.

Deterministic Reservation-based Implementation
The deterministic reservations implementation of list contraction (pseudocode
shown in Figure 4.6) maintains a boolean array R initialized to all 0’s. The RESERVE

function for index i checks if i < L[i].prev and i < L[i].next, and if so, writes a value
of 1 to R[i]. The COMMIT function for index i checks if R[i] is equal to 1 and if so,
splices out the node L[i] and returns 0; otherwise it returns 1. These functions
preserve the ordering imposed by the iteration dependence graph of L throughout
its execution. To see this, note that if neither of its current neighbors in the list
is lower-indexed, then step i will be a leaf in the iteration dependence graph by
definition (both neighbors will be selected as roots before i in the dependence
graph construction process, and so i will have no descendants). Only in this case
will R[i] be set to 1 in the RESERVE phase, and the COMMIT phase of step i be executed.
Otherwise, step i will not proceed. Therefore, by Lemma 4.14, it generates the same
result as the sequential algorithm.

The RESERVE and COMMIT functions take constant work/depth, so the steps of
the computation can be efficiently checked and updated. Applying Theorem 4.8
and 4.1 gives the following theorem for list contraction. List contraction can be im-
plemented without concurrency because reads and writes of the neighbors inside
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the RESERVE and COMMIT steps can be separated into a constant number of phases
such that there are no reads or writes to the same location in a phase.

Theorem 4.9 For a random ordering of L, deterministic reservations using the RESERVE and
COMMIT functions for list contraction runs in O(n) expected work and O(log2 n)

depth w.h.p. without concurrent reads/writes or O(log n log∗ n) depth w.h.p. with
concurrent reads/writes.

Activation-Based Implementation
Theorem 4.10 For a random ordering of L, an activation-based implementation of list contraction

runs in O(n) work or O(log2 n) depth w.h.p. without concurrent reads/writes, and
O(log n log∗ n) depth w.h.p. using concurrent reads/writes.

Proof For each node, the algorithm stores a counter keeping track of the number of lower-
indexed neighbors it has in the list. These counters can be initialized in linear
work and constant depth. Then it identifies the “roots,” which are the nodes whose
counters are 0 (they have no lower-indexed neighbors). In each round, all roots are
processed, and the counters of their neighbors are updated as follows. For a root
v, let vnext be the successor node of v and vprev be the predecessor node of v. Let
us first analyze the case where vnext > vprev. By definition of a root, vprev > v. After
splicing out v, vnext becomes a neighbor of vprev so the algorithm decrements the
counter of vprev. If the counter of vprev reaches 0, then vprev is added to the next
set of roots. The counter of vnext is left unchanged as its new neighbor is still a
lower-indexed neighbor. In the case where vprev > vnext, the algorithm decrements
the counter of vnext, and checks whether it reaches 0. By splitting the reads and
updates of neighbors into a constant number of phases, no concurrent reads or
writes are required.

It can be seen that this algorithm satisfies the iteration dependence graph by
noting that a node will only be spliced out if both of its neighbors in the list have
higher indices, and appealing to the same argument made for the correctness of the
deterministic reservations-based implementation of list contraction. Each round
processes all leaves in the dependence graph, so by Theorem 4.8, O(log n) rounds
are sufficient w.h.p. to process all of the nodes. On each round, O(P (n)) depth is
required for packing the new roots into an array, leading to a total of O(P (n) log n)

depth w.h.p. across all rounds. P(n) is O(log n) if using prefix sums and O(log∗ n)

w.h.p. if using approximate compaction. The work spent on each node is constant,
since its counter is decremented a constant number of times. The work for packing
is linear in the number of nodes. Thus, the total work is O(n).



96 Chapter 4 Deterministic Parallelism in Sequential Iterative Algorithms

It is straightforward to map the algorithms to the EREW PRAM or the CRCW
PRAM in the same bounds as Theorem 4.10, and to the scan PRAM with linear
work and O(log n) depth w.h.p.

4.8 Tree Contraction
As with list contraction, parallel algorithms for tree contraction have received
considerable interest [Miller and Reif 1985, JaJa 1992, Reif 1993]. There are many
variants of parallel tree contraction. This section assumes the contraction of rooted
binary trees in which every internal node has exactly two children. To represent the
tree, an array T of nodes is used, each node with a parent and two child pointers,
with the first n nodes being leaves, and the next n − 1 being the internal nodes.

This section considers an iterative sequential algorithm for tree contraction that
rakes the leaves of the tree one at a time, shown in Figure 4.7. To rake a leaf v, the
algorithm splices it and its parent p out of the tree—i.e., sets v’s sibling’s parent
pointer to be v’s grandparent, and v’s grandparent’s child pointer to point to v’s
sibling instead of p. At the end, only the root node remains. As in list contraction,
values can be stored on the nodes, and combined during contraction (e.g., for
evaluating arithmetic expressions). This is left out of the pseudocode for simplicity.
Again, if the combining function is non-associative, then the result depends on the
order in which the leaves are raked, and a parallel computation returns the same
result as the sequential algorithm if it satisfies the dependence structure of the
sequential algorithm.

4.8.1 Iteration Dependence Depth and Aggregate Delay
This section defines the following labeling of internal nodes, and then defines
a dependence structure based on it. Let M(i) for each node i be the maximum

1 procedure SEQUENTIALTREECONTRACT(T )
2 for i = 0 to n − 1 do
3 p = T [i].parent
4 if T [p].parent �= null then � p is not root
5 s = sibling(T , i)

6 T [s].parent = T [p].parent
7 switchParentsChild(T , p, s)

8 else switchParentsChild(T , i , null) � p is root

Figure 4.7 Sequential algorithm for tree contraction, where sibling(T , i) returns the sibling of i in
T , and switchParentsChild(T , i , v) resets the appropriate child pointer of the parent of
i to point to v instead of i.
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index of any of the leaves in its subtree, and the label of each internal node be
L(i) = min{M(j), M(k)}, where j and k are the two children of i. The following fact
about labels will be useful.

Lemma 4.16 In SEQUENTIALTREECONTRACT on a tree T , the internal node with label i will be raked
by the leaf with index i.

Proof The proof is by induction. The base case for a tree with a single leaf is trivial as there
are no internal nodes. Now assume by induction that this holds for the internal
nodes of two separate subtrees, joined together by a new root r . The highest-indexed
leaf in each subtree will not appear as a label in the subtrees since the root takes
the minimum of the two subtrees, and hence the highest-indexed leaf must be
the leaf that remains when the tree is contracted (by induction). Thus, one of the
two highest-indexed leaves in the two subtrees must be the node that rakes r . The
smaller of these two leaves will be processed first, which is also the label on r by
definition. This proves the lemma.

The dependence tree for a tree T is the tree created by taking the maximum label
i and placing it at the root. The tree T is then partitioned by removing the internal
node labeled with i, and this process is recursively applied to each subtree. The
three resulting dependence trees become the children of i. This is repeated until
a leaf is reached. Note that this process creates a tree over the leaf indices, since
each label corresponds to a leaf index. Also note that this process is similar to how
the dependence forest for the list contraction problem is generated, and hence the
proof of the lemma below has a similar structure.

Lemma 4.17 The dependence tree of T is an iteration dependence graph for SEQUENTIALTREE-
CONTRACT(T ).

Proof For each step i, let j and k be the labels of i’s sibling and grandparent when it is
raked in the sequential order. Assume leaves have null labels, so the sibling could
be null. The labels j and k must both be larger than i (or null) since they have not yet
been raked out. It suffices to show that for each i, once all of its descendants in the
dependence tree are completed (raked out), it will have sibling j and grandparent k,
and hence will do an identical rake as in the sequential order. By induction, assume
that this is true for all indices less than i.

Consider the tree between j and k (not inclusive). The label i must be the largest
label in this tree since if there were a larger label l, when i is contracted in the
sequential order it cannot have both j as a sibling and k as a grandparent—the
node with label l is not yet raked out and must be in the way. By construction of the
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dependence tree, and since i is the largest label in the subtree, it is picked as the
root of a dependence tree containing the subtree. Therefore, when all descendants
are completed (and by induction we assumed they operated correctly), all other
nodes on the subtree have been raked out and i will have j as a sibling and k as a
grandparent.

Let us now analyze the iteration depth and work of a dependence tree.

Theorem 4.11 For SEQUENTIALTREECONTRACT on T with n randomly ordered leaves, there is an
iteration dependence graph G with D(G) = O(log n) with high probability, and
A(G) = �(n) in expectation.

Proof The dependence tree for T is based on recursively partitioning T into subtrees.
To analyze the depth of the dependence tree, two types of subtrees, which have
different properties, need to be considered. Define a (sub)tree to be in the P-state if
the distribution of its leaves is uniformly random. Define a subtree to be in the Q-
state if the location of its highest-indexed leaf is fixed. Without loss of generality,
assume that a Q-state tree has its highest-indexed leaf on its left spine. Denote the
leaf with the largest index in a subtree by l, the leaf with the second largest index
by s, and the internal node with label s by vs.

The initial tree is in the P-state since the ordering of the leaves is uniformly
random. For a P-state tree, it is partitioned by vs into three subtrees, where the two
subtrees of the children of vs are also in the P-state but the final tree is in the Q-
state (see Figure 4.8(a)). This is because as vs’s children’s subtrees are processed,
there is no information about the location of the highest-indexed leaf. However,
after both of the children’s subtrees are processed, then leaf l will become a leaf
in vs’s original position in (note that leaf l must be in vs’s subtree by definition),
hence fixing the location of the highest-indexed leaf in the remaining subtree.

For a tree in the Q-state, it is partitioned by vs into three subtrees (see Fig-
ure 4.8(b)), where vs’s left child subtree is in the Q-state (as leaf l was fixed to be
on the left spine), vs’s right child subtree is in the P-state (there is no information
about the location of the highest-index leaf in this subtree), and the remaining sub-
tree is in the Q-state as after vs’s subtree is completely processed, leaf l will become
a leaf in vs’s original position.

For a tree with n nodes in the P-state, the size of vs’s subtree is greater than 3n/4
with probability at most 1/4. This is because the location of leaf l is random and for
vs’s subtree not to contain leaf l, it must appear in the rest of the tree, which has
at most 1/4 probability of occurring if vs’s subtree size is greater than 3n/4. Hence,
at least one of vs’s children’s subtree has size greater than 3n/4 with probability
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(a) (b)

Figure 4.8 Decompositions for (a) P-state and (b) Q-state trees used in the proof of Theorem 4.11.
The red node is vs, the interior node corresponding to the leaf with the second largest
label. The yellow node is leaf l, the leaf with the largest label.

at most 1/4. By a similar argument, the other subtree (of the Q-state) also has size
greater than 3n/4 with probability at most 1/4.

For a tree with n nodes in Q-state, the size of vs’s left child’s is greater than 3n/4
with probability at most 1/4. This is because the location of leaf s must appear in
vs’s right subtree by definition, and the location of leaf s is uniformly random, so
with at most 1/4 probability it causes vs to have a left child of size at least 3n/4. For
the subtree remaining after removing vs’s subtree, its size is greater than 3n/4 with
probability at most 1/4 by a similar argument. Note that we have no bound on the
size of vs’s right child subtree that is in the P-state. However, this is fine because
once a tree transitions into P-state, it will be divided into small subtrees according
to the analysis for P-state trees in the previous paragraph.

Consider paths from the root to each leaf in the dependence tree. Every two steps
on such a path will shrink the size of the tree by a factor of 3/4 with probability at
least 1/4 (by the arguments above). Therefore, using Markov’s inequality, each path
will have at most 2c log16/3 n steps with probability at least 1 − 1/nc−1 for a constant
c > 2. By a union bound (multiplying the failure probability by n), all path lengths
and hence the tree depth will be O(log n) with probability at least 1 − 1/nc−2.

To bound A(G), note that a node in the dependence tree with a subtree of
size k will have height O(log k) in expectation since it is true w.h.p. from the
previous discussion. Let W(n) indicate the expected sum of the heights of the
nodes in the dependence tree. For a tree of size n, after two levels, with constant
probability the largest remaining component will be 3/4n. Assuming the worst case
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split is 3/4n and 1/4n when this is true, this gives the recurrence W(n) ≤ O(log n) +
p

(
W( 3

4n) + W( 1
4n)

) + (1 − p)W(n) for some constant 0 < p < 1. By substitution,
this gives W(n) = O(n).

4.8.2 Algorithms
Enabling efficient checking of steps for tree contraction requires a pre-processing
phase. The pre-processing phase labels each internal node with the highest-indexed
leaf in its subtree. Then each internal node stores the smaller of the two computed
labels of its children. Since the maximum operator does not have an inverse, the
pre-processing must be done with tree contraction (using the maximum operator)
in O(n) work and O(log n) depth. Note that, however, maximum is associative,
so the result of this pre-processing phase would be consistent with any tree con-
traction algorithm. After pre-processing, the parallel algorithms described in this
section can be run with any operator (does not have to be associative), and give the
same answer as the sequential algorithm (Figure 4.7). With the internal nodes la-
beled, the neighborhood of a leaf is defined as the leaves labeled on its parent and
its grandparent nodes. Only when the labels on these two internal nodes are greater
than or equal to the leaf’s ID can the leaf proceed in raking.

Deterministic Reservations-based Implementation
Figure 4.9 defines the RESERVE and COMMIT functions and associated data required
for deterministic reservations. N(i) corresponds to the neighborhood of step i,
which includes the leaf labeled on its parent (if it has one) and the leaf labeled on its
grandparent (if it has one). These functions preserve the ordering imposed by the
iteration dependence graph of T defined in this section throughout its execution
because if the i’th leaf is spliced out, the RESERVE step guarantees that if R[i] is set
to 1, and guarantees that there are no lower-indexed leaves in the neighborhood of
step i (i.e., step i has no children in the dependence forest). Only in this case does
step i rake itself out in the COMMIT step (the procedure for raking is the same as in
the sequential algorithm shown in Figure 4.7).

Again, the steps can be efficiently checked and updated because the RESERVE

and COMMIT functions take constant work/depth. Applying Theorem 4.11 and
Lemma 4.1 gives the following theorem for tree contraction. Again, concurrency
can be avoided because reads and writes of the neighbors inside the RESERVE and
COMMIT steps can be separated into a constant number of phases such that there
are no reads or writes to the same location within a phase.
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1 R = {0, . . . , 0} � boolean array
2 procedure RESERVE(i)
3 if i < j , ∀j ∈ N(i) then
4 R[i] = 1 � reserve own location
5 return 1

6 procedure COMMIT(i)
7 if R[i] = 1 then
8 p = T [i].parent
9 if T [p].parent �= null then � p is not root

10 s = sibling(T , i)

11 T [s].parent = T [p].parent
12 switchParentsChild(T , p, s)

13 else � p is root
14 switchParentsChild(T , i , null)
15 return 0
16 else return 1

Figure 4.9 RESERVE and COMMIT functions and associated data for tree contraction using de-
terministic reservations. sibling(T , i) returns the sibling of i in T , and switchPar-
entsChild(T , i , v) resets the appropriate child pointer of the parent of i to point to v

instead of i.

Theorem 4.12 For a random ordering of T , deterministic reservations using the RESERVE and
COMMIT functions for tree contraction runs in O(n) expected work and O(log2 n)

depth w.h.p. without concurrent reads/writes or O(log n log∗ n) depth w.h.p. with
concurrent reads/writes.

The tree contraction used for pre-processing can be done deterministically in
linear work and O(log n) depth (on the EREW PRAM), which is within the stated
complexity bounds of Theorem 4.12.

Activation-based Implementation
Theorem 4.13 An activation-based implementation of the algorithm in Figure 4.7 runs in O(n)

work and O(log2 n) depth w.h.p. without concurrent reads/writes or O(log n log∗ n)

depth w.h.p. with concurrent reads/writes.

Proof The activation-based implementation of list contraction described in Theorem 4.10
can be adapted for tree contraction. The “roots” are the steps with no lower labels
on its parent and grandparent, which implies that it has no lower-indexed steps
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in its neighborhood. A root that is successfully processed potentially updates the
counters of the steps in its neighborhood. The counter of each step is initialized
to the number of lower-indexed steps that are in its neighborhood. Overall, this
takes linear work and constant depth. This algorithm satisfies the dependencies of
the iteration dependence graph defined in this section because the roots are the
steps that have no more dependencies. Again, the reads and updates can be split
into a constant number of phases to avoid concurrency. Since the iteration depth is
O(log n) w.h.p. by Theorem 4.11, and each round of the algorithm reduces the iter-
ation depth of the remaining dependence graph by 1, O(log n) rounds are required
w.h.p. Therefore, the total depth is O(P (n) log n) w.h.p., where P(n) is O(log n)

using prefix sums and O(log∗ n) w.h.p. using approximate compaction (requiring
concurrent reads/writes). The work is linear because each step is processed a con-
stant number of times.

Again, mapping the algorithms to the EREW PRAM, CRCW PRAM, or scan PRAM
is straightforward.

4.9 Limited Randomness
The parallel algorithms described in this chapter use O(log n) random bits per in-
put element, thus requiring O(n log n) bits of randomness in total.4 This section
describes how to reduce the amount of randomness to a polylogarithmic number
of random bits while preserving the iteration dependence depth for random per-
mutation and list contraction.

To show that limited randomness suffices, this section employs Nisan’s pseudo-
random generator for space-bounded computation [Nisan 1992], which uses
O(S log n) truly random bits to generate pseudorandom bits that are capable of
fooling an S-space machine. More accurately, the probability of failure event given
the generated stream of pseudorandom bits differs by at most (an additive) ε from
the failure probability given truly random bits, where the bias ε can be driven down
to O(1/nc) for any constant c by increasing the number of truly random bits by a
constant factor. Thus, a result that holds with high probability using truly random
bits also holds with high probability using the pseudorandom bits, provided that
the failure event can be tested by an S-space machine.

For the purposes of this section, it suffices to show that a space-S computation
can verify the iteration depth of the dependence graph. As long as the low-space

4. O(m log m) bits of randomness for maximal matching.
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computation uses the same mapping from random bits to steps, the actual com-
putation will have the same dependence graph. The challenge in designing these
low-space verifiers and applying Nisan’s theorem is that the verifier must consume
the random bits as a one-pass stream of bits. By exhibiting such O(log n)-space and
O(log2 n)-space verifiers for the iteration depths of random permutation and list
contraction, respectively, this section proves that O(log2 n) random bits suffice for
random permutation and O(log3 n) random bits suffice for list contraction.

Theorem 4.14 Using Nisan’s generator with a seed of O(log2 n) random bits, the iteration depth of
the dependence graph for random permutation is O(log n) with high probability.

Proof Consider a single step i. Theorem 4.5 states that if each step chooses uniformly
random numbers, then for any constant c the probability of step i exceeding depth
O(c log n) is O(1/nc). Assuming that the depth bound for step i can be verified in
O(log n) space, Nisan’s theorem states that the probability of exceeding the depth
bound using the generated pseudorandom bits is at most O(1/nc) + ε = O(1/nc).
Taking a union bound over all steps, the probability of choosing a seed that causes
any step to have high depth is O(1/nc−1).

The following is an O(log n)-space procedure for calculating the depth of step
i, using a single pass through the stream of random bits. Scan from step i down to
step H [i] in the input array, counting the number of intervening steps k such that
H [k] = H [i]. These steps form a chain in the dependence forest directed from i to
H [i]. Repeat this process starting from i′ = H [i] down to H [i′], until reaching the
root of this tree. The sum of the lengths is equal to the depth of i in the dependence
forest. This process requires O(log n) space to maintain a few pointers and the sum.

One additional detail is that the permutation algorithm expects random values
in the range [0, . . . , i], but what we have access to is a stream of (pseudo)random
bits. Without loss of generality, assume n is a power of 2. To generate a number
in the range [0, . . . , i], for any constant c first generate a number x in the range
[0, . . . , nc − 1]. For values x < (i + 1)�nc/(i + 1)�, use H [i] = x/(�nc/(i + 1)�). If
any larger value is generated, the algorithm fails. The probability of failure for a
particular value is at most n/nc = 1/nc−1, and using a union bound over all values,
the failure probability becomes O(1/nc−2).

Note that the random permutation produced using limited randomness is not
truly random.

For list contraction, assume that each node is assigned a random number, called
a priority, from the random bits of Nisan’s generator. The random ordering of the
list L can be viewed as the ordering in which the priorities are sorted in increasing
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order. By choosing random numbers from the range [0, . . . , nc − 1] for constant
c > 1, the priorities are distinct w.h.p. and Theorem 4.8 applies.

Theorem 4.15 Using Nisan’s generator with a seed of O(log3 n) random bits to assign each node
a (pseudo)random priority, the iteration depth of the dependence graph for list
contraction is O(log n) with high probability.

Proof As in the proof of Theorem 4.14, this proof will exhibit an algorithm that can verify
the depth of a node/step in the dependence tree using a single pass through the
random priorities. Since the probability of the depth bound being exceeded is
polynomially small, a union bound over all steps completes the proof.

To verify the depth of node x in the dependence forest, the verifier simulates
the incremental insertion of nodes, in input order, into the dependence forest.
After each step, the structure of the dependence tree containing x is identical to a
treap using the same priorities and node comparisons respecting list-order. The
simulation begins by inserting the node x, assuming pessimistically that it has
minimum priority (which only increases its depth). Throughout the process, the
root-to-leaf path down to x is maintained. When inserting a new node z, the idea is
to simulate the treap insertion process with respect to the path down to x. To insert
z, step down the path until finding the first (highest) node y such that either x and
z are in different subtrees of y, or y = x. If z has lower priority than y, then the path
to x is unchanged. Otherwise, splice in z to be the parent of y, and repeatedly rotate
z and its parent until z has lower priority than its parent. This rotation process may
result in the path shortening and/or the ancestors being rearranged, depending on
the list-order comparisons among nodes.

List-order comparisons can be performed in O(log n) space using a constant
number of pointers and traversing the list. As long as the depth of a node never
exceeds O(log n), then the space used by the simulation is O(log2 n). If the depth
ever exceeds O(log n), then the simulation stops and reports a high-depth node. By
Theorem 4.8, this is a low probability event.

The work and depth required to generate the random numbers from Nisan’s
pseudorandom generator will be analyzed next. The generator uses O(log n) in-
dependent hash functions h1, . . . , hS, each requiring O(S) random bits, and
a seed x with O(S) random bits [Nisan 1992]. Define G0(x) = x and Gt(x) =
(Gt−1(x), ht(Gt−1(x))) for t ≥ 1. The output of the generator is Gt ′(x), where t ′ =
O(log(n log(n)/S)), which has O(n log n) bits.

Lemma 4.18 The output of Nisan’s pseudorandom generator can be computed in O(nS/ log n)

work and O(log n log(1 + S/ log n)) depth.
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Proof Construct Gt ′(x) recursively using the definition above. Level t of the recursion
requires O(2t (S/ log n)2) work and O(log(1 + S/ log n)) depth, as the hash func-
tions can be evaluated in O((S/ log n)2) work and O(log(1 + S/ log n)) depth using
naive multiplication (O(log n) bits can be evaluated with one unit of work). Gen-
erating O(n log n) pseudorandom bits requires O(log(n log(n)/S)) levels of recur-

sion. The total work is
∑log(n log(n)/S)

t=0 O(2t (S/ log n)2) = O(nS/ log n) and depth is
O(log n log(1 + S/ log n)).

Plugging in the space bounds for random permutation and list contraction into
Lemma 4.18 gives the following corollary.

Corollary 4.3 The random bits of Nisan’s pseudorandom generator for the random permutation
and list contraction algorithms can be computed in O(n) work and O(log n) depth,
and O(n log n) work and O(log n log log n) depth, respectively.

4.10 Experiments
This section describes experimental results for the deterministic reservations-
based implementations of the problems studied in this chapter. The experiments
are done using varying prefix sizes, to show how prefix size affects work, parallelism,
and overall running time. The parallel codes are compared to their corresponding
sequential implementations.

4.10.1 MIS and Maximal Matching
Experimental Setup
The experiments are run on the 32-core Intel machine described in Section 2.7.
The parallel programs were compiled using the cilk++ compiler, and sequential
programs were compiled using g++. For each prefix size, thread count, and input,
the reported time is the median time over three trials.

Inputs
The input graphs and their sizes are listed in Table 4.1. The random local graph
(rg) was generated such that probability of an edge existing between two vertices
is inversely proportional to their distance in the vertex array. The rMat graph has
a power-law distribution of degrees and was generated according to the procedure
described in [Chakrabarti et al. 2004], with parameters a = 0.5, b = 0.1, c = 0.1, and
d = 0.3. The 3d-grid graph consists of vertices on a grid in a 3-dimensional space,
where each vertex has edges to its 6 nearest neighbors (2 in each dimension).
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Table 4.1 Input graphs for maximal independent set and maximal matching

Input Graph Size

Random local graph (rg) n = 107, m = 5 × 107

rMat graph (rMat) n = 224, m = 5 × 107

3d-grid n = 107, m = 2 × 107

Implementation
The implementation of the prefix-based MIS and MM algorithms differ slightly
from the ones with good theoretical guarantees described in the previous sections,
but we found that these implementations work better in practice. First, the prefix
size is fixed throughout the algorithm. Second, the algorithm does not process
each prefix to completion but instead process each particular prefix only once, and
moves the iterates that still need to be processed into the next prefix (the number
of new iterates in the next prefix is equal to the difference between the prefix size
and the number of iterates that still need to be processed from the current prefix).

For MIS, each time a prefix is processed, there are three possible outcomes
for each vertex in the prefix: (1) the vertex joins the MIS and is deleted because
it has the highest priority among all of its neighbors; (2) the vertex is deleted
because at least one of its neighbors is already in the MIS; or (3) the vertex is
undecided and is moved to the next prefix. The C++ code based on the deterministic
reservations interface from Chapter 3 is given in Figure 4.10 and an example of how
the algorithm proceeds is shown in Figure 4.11. The struct MISStep defines the
code for the reserve and commit components for each loop iteration. The array V
stores for each of the n vertices its degree and a pointer to an array of neighbors.
The array Fl keeps track of the status of each vertex—IN indicates it is done and
in the set (corresponding to the first outcome), OUT indicates it is done and not in
the set (a neighbor is in the set; this corresponds to the second outcome), and LIVE

indicates it is still live (corresponding to the third outcome). The reserve phase for
each iteration i loops over the neighbors of V[i] and sets a local variable flag as
follows:

flag =

⎧⎪⎨
⎪⎩
OUT any earlier neighbor is IN

LIVE any earlier neighbor is LIVE

IN otherwise

The second case corresponds to a conflict since for an earlier neighbor it is not
yet known if it is IN or OUT. The commit phase for iteration i simply copies the
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enum FlType {IN, OUT, LIVE};

struct MISStep {

FlType flag; vertex *V;

MISStep(char* _F, vertex* _V) : flag(_F), V(_V) {}

bool reserve(int i) {

int d = V[i].degree;

flag = IN;

for (int j = 0; j < d; j++) {

int ngh = V[i].Neighbors[j];

if (ngh < i) { //earlier neighbor

if (Fl[ngh] == IN) { flag = OUT; return 1;} //drop out if neighbor

// is in MIS

else if (Fl[ngh] == LIVE) flag = LIVE; } } //undecided if neighbor

// is still live

return 1; }

bool commit(int i) { return (Fl[i] = flag) != LIVE;} //write status

};

void MIS(FlType* Fl, vertex* V, int n, int psize) {

speculative_for(MISStep(Fl, V), 0, n, psize); //deterministic reservations

// driver

}

Figure 4.10 C++ code for maximal independent set using deterministic reservations.

local flag to Fl[i]. Since Fl is only read in the reserve phase and only written (to
location i) in the commit phase, all operations commute. Note that, surprisingly,
this implementation does not even require any priority writes. Also, note that the
reserve phase for each vertex is implemented sequentially, which allows the loop
to break early when possible (an earlier neighbor is in the MIS). While this loop
could be parallelized, we did not find a performance improvement by doing so for
the inputs considered, due to the extra overheads involved.

For MM, each time a prefix is processed, there are two phases. In the first phase,
each edge in the prefix checks whether or not either of its endpoints have been
matched, and if not, the edge does a priority write to each of its two endpoints. In
the second phase, each edge checks whether its priority writes were successful on
both of its endpoints, and if so joins the MM and marks its endpoints as matched.
Successful edges from the second phase and edges that discovered during the first
phase that it has an endpoint already matched are deleted.
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(1) (2)

(3) (4)

u1

u1 u2 u3 u4 u5 u6 u7 u8 u2 u3 u4 u5 u6 u7 u8

u4 u5 u6 u7 u8 u7 u8

u2

u3

u4

u5

u6

u7

u8

Figure 4.11 An example graph and an execution of deterministic reservations for finding a maximal
independent set. Here, the subscript of a vertex corresponds to its priority in the
deterministic reservations. The prefix size is chosen to be 4. (1) shows the initial graph
in priority order and (2)–(4) show subsequent rounds of the algorithm. The vertical
line indicates the end of the current prefix. Dark-gray vertices are those that become
IN or OUT during that round: vertices with a thick border are IN and accepted into the
MIS, and vertices with an “X” are OUT as they have a neighbor already in the MIS. For
example, u1 is the only vertex accepted into the MIS during the first round. Similarly, u2
becomes OUT in the second round as it has a neighbor already in the MIS (namely, u1).
White vertices are those belonging to the current prefix that remain LIVE. For example,
in the first round u2, u3, and u4 all have a higher priority neighbor in the same prefix and
remain live. Only vertices that survive the previous round (LIVE vertices) are displayed
in the array and part of the current prefix, so u5 is skipped in (3). Vertices in the MIS are
also shown with thick border in the graph.
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Results
The first set of experiments analyze the work, parallelism, and running time of the
MIS and MM implementations as a function of the prefix size on the random local
and rMat graphs. The results are plotted in Figures 4.12 and 4.13.

For both MIS and MM, the reader can observe that, as expected, increasing the
prefix size increases both the total work performed (Figures 4.12(a), 4.12(d), 4.13(a),
and 4.13(d)) and the parallelism, which is estimated by the number of rounds of
the outer loop (selecting prefixes) the algorithm takes to complete (Figures 4.12(b),
4.12(e), 4.13(b), and 4.13(e)). As expected, the total work performed and the number
of rounds taken by a sequential implementation are both equal to the input size.
By examining the graphs of running time vs. prefix size (Figures 4.12(c), 4.12(f),
4.13(c), and 4.13(f)), we see that there is some optimal prefix size between 1 (fully
sequential) and the input size (fully parallel). In the running time vs. prefix size
graphs, there is a small bump when the prefix-to-input size ratio is between 10−6

and 10−4 corresponding to the point when the for-loop in the implementation
transitions from sequential to parallel (the implementation uses a grain size of
256).

The single-thread and 32-core parallel times on the input graphs for MIS
and MM using the optimal prefix size (refer to Figures 4.12(c), 4.12(f), 4.13(c),
and 4.13(f)) are reported in Tables 4.2 and 4.3, respectively. The experiments
also compare the prefix-based algorithms to optimized sequential implemen-
tations, and additionally for MIS compare with our optimized implementation
of Luby’s algorithm. We implemented several versions of Luby’s algorithm and
report the times for the fastest one. The prefix-based MIS implementation is
3–8 times faster than Luby’s algorithm (shown in Figures 4.14(a) and 4.14(b)),
which processes the entire remaining graph (and generates new priorities) in
each round. This improvement demonstrates that the prefix-based approach, al-
though sacrificing some parallelism, leads to less overall work and lower running
time. When using more than 2 threads, the prefix-based implementation of MIS
outperforms the serial version, while the implementation of Luby’s algorithm
requires 16 or more threads to outperform the serial version. The prefix-based
algorithm achieves 9–13× speedup on 32 cores. For MM, the prefix-based al-
gorithm outperforms the corresponding serial implementation with 4 or more
threads and achieves 16–23× speedup on 32 cores (shown in Figures 4.15(a)
and 4.15(b)). Note that since the serial MIS and MM algorithms are so simple,
it is not easy for a parallel implementation to outperform the corresponding serial
implementation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12 Plots showing the trade-off between various properties and the prefix size in maximal
independent set. (a) Total work done vs. prefix size on rg. (b) Number of rounds vs.
prefix size on rg in log-log scale. (c) Running time (32 cores) vs. prefix size on rg in log-
log scale. (d) Total work done vs. prefix size on rMat. (e) Number of rounds vs. prefix
size on rMat in log-log scale. (f) Running time (32 cores) vs. prefix size on rMat in log-log
scale.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13 Plots showing the trade-off between various properties and the prefix size in maximal
matching. (a) Total work done vs. prefix size on rg. (b) Number of rounds vs. prefix size
on rg in log-log scale. (c) Running time (32 cores) vs. prefix size on rg in log-log scale.
(d) Total work done vs. prefix size on rMat. (e) Number of rounds vs. prefix size on rMat
in log-log scale. (f) Running time (32 cores) vs. prefix size on rMat in log-log scale.
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Table 4.2 Running times (in seconds) of the various MIS algorithms on different input graphs
on a 32-core machine with hyper-threading using one thread (1) and all threads
(32h)

Input Graph Serial MIS Prefix-based MIS Prefix-based MIS Luby Luby
(1) (1) (32h) (1) (32h)

rg 0.455 0.57 0.059 6.49 0.245

rMat 0.677 0.939 0.073 8.33 0.313

3d-grid 0.393 0.519 0.051 4.18 0.161

Table 4.3 Running times (in seconds) of the various MM algorithms on different
input graphs on a 32-core machine with hyper-threading using one
thread (1) and all threads (32h)

Input Graph Serial MM Prefix-based MM Prefix-based MM
(1) (1) (32h)

rg 1.04 2.24 0.135

rMat 1.41 3.51 0.155

3d-grid 0.792 1.8 0.11

(a) (b)

Figure 4.14 Plots showing the running time vs. number of threads for the different MIS algorithms
on a 32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix
size of n/50 was used. (a) Running time vs. number of threads on rg in log-log scale.
(b) Running time vs. number of threads on rMat in log-log scale.
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(a) (b)

Figure 4.15 Plots showing the running time vs. number of threads for the different MM algorithms
on a 32-core machine (with hyper-threading). For the prefix-based algorithm, a prefix
size of m/50 was used. (a) Running time vs. number of threads on rg in log-log scale.
(b) Running time vs. number of threads on rMat in log-log scale.

4.10.2 Random Permutation, List Contraction, and Tree Contraction
Experimental Setup
The implementations of random permutation, list contraction, and tree contrac-
tion use Cilk Plus, and are compiled using g++. The experiments are performed on
the 40-core Intel machine with two-way hyper-threading, described in Section 2.7.
The times that are reported are based on a median of three trials.

Inputs
The number of elements for random permutation, number of nodes for list con-
traction, and number of leaves for tree contraction is 109. For random permutation,
the data array A stores 32-bit integers and the swap targets (the H array) are ran-
domly generated. For list contraction, to generate the input, a random permutation
was first generated, giving a collection of cycles on the nodes, and then one edge
on each cycle was deleted, giving a collection of linked lists. For tree contraction,
the input was a random binary tree with 109 randomly indexed leaves, giving a total
of 2 × 109 − 1 nodes. Often, list and tree contraction are used as a part of a larger
algorithm, so the pre-processing step of randomly permuting the elements only
needs to be applied once. The experiments do not store values on the nodes for list
contraction and tree contraction.
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Implementation
We implement the deterministic parallel algorithms for random permutation, list
contraction, and tree contraction. The writeMax operation used in random permu-
tation is a case of priority update (discussed in Chapter 6). For tree contraction, we
use a version that does not do a pre-processing step, and each leaf simply checks
its nearby leaves to see if there are any conflicts. This version does not return the
same answer as the sequential algorithm (but is still deterministic), and it is more
efficient as it does not require a pre-processing step. All of the parallel implemen-
tations use the prefix-based version of deterministic reservations, which performs
better in practice than the version used in the analysis that processes all remaining
steps in each round. Proofs of the complexity bounds of the prefix-based algorithms
can be found in the Appendix of [Shun et al. 2015]. As in the implementations of
maximal independent set and maximal matching, each prefix is processed once,
and the unsuccessful steps are moved to the next prefix. For random permutation,
the implementation uses a prefix size of ni/50 where ni is the number of remaining
steps. For list contraction, the implementation uses a fixed prefix size of n/100, and
for tree contraction the implementation uses a fixed prefix size of n/50. These were
experimentally determined to give the best performance. The implementations are
all very simple—the random permutation and list contraction implementations use
under a dozen lines of C++ code and the tree contraction implementation uses a
few dozen lines. For comparison, we also implement the corresponding sequential
iterative algorithms for the three problems.

Results
A summary of the timings for each of the three algorithms are shown in Table 4.4.
Plots of running time vs. number of threads in log-log scale for each of the three
algorithms are shown in Figure 4.16. Observe that the parallel implementations all

Table 4.4 Times (seconds) for n = 109 on 40 cores with hyper-threading

Sequential
Algorithm 1 Thread 80 Hyper-threads Iterative Implementation

Random permutation 92.1 4.62 38.8

List contraction 160 3.97 46

Tree contraction 350 10.0 172
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(a)

(b)

(c)

Figure 4.16 Running time vs. number of threads for n = 109 on 40 cores with hyper-threading
(log-log scale). “40h” indicates 80 hyper-threads. (a) random permutation; (b) list
contraction; (c) tree contraction.
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get good speedup, and outperform the corresponding sequential implementation
with a modest number of threads.

For random permutation, the parallel implementation outperforms the stan-
dard simple sequential implementation [Knuth 1969] with four or more threads.
We also compared it to a sorting-based random permutation algorithm that we im-
plemented, which creates pairs (A[i], ri) where each ri is a random number drawn
from [1, . . . , n2], and sorts on the second value of the pair. Note that this does not
give the same permutation as the sequential algorithm. The implementation uses
a parallel sample sort, which is part of the Problem Based Benchmark Suite. On
80 hyper-threads the sorting-based algorithm took 5.38 s, and on a single thread it
took 204 s. Both of these timings are inferior to the times reported in Table 4.4 for
the random permutation algorithm implemented with deterministic reservations.

An experimental study of other parallel random permutation algorithms has
recently been conducted by Cong and Bader [2005], which compares algorithms
based on sorting [Rajasekaran and Reif 1989], dart-throwing [Miller and Reif 1985,
Gibbons et al. 1996, Gil 1991], and an adaptation of Sander’s distributed algo-
rithm [Sanders 1998]. None of these algorithms generate the same permutation as
the sequential algorithm. It is difficult to directly compare with their reported num-
bers because their numbers include the cost for generating random numbers, while
the numbers reported in this section do not, their input sizes are much smaller (the
largest size was 20 million elements), and the machine specifications are different.

For list contraction, the parallel implementation outperforms the serial imple-
mentation with eight or more threads. The experiments also compare to a parallel
implementation of list contraction where the random numbers are regenerated
in each round. In this strawman implementation, the prefix processing idea can-
not be directly applied because the priorities of the nodes are not fixed. Therefore,
all remaining nodes are processed in each iteration. On 80 hyper-threads, the im-
plementation took 6.46 s to finish. This is slower than the prefix-based parallel
implementation reported in Table 4.4, which took 3.97 s on the same input. The
reason is that there is more wasted work in processing all of the nodes on each
iteration, and also an added cost of regenerating random numbers on each iter-
ation. In addition, this implementation does not return the same answer as the
sequential implementation.

List ranking algorithms have been studied experimentally in the literature [Reid-
Miller 1996, Sibeyn 1997, Patel et al. 1997, Dehne and Song 1997, Helman and JaJa
1999, Helman and JaJa 2001, Bader et al. 2005, Rehman et al. 2009]. None of these
implementations return the same answer as a sequential ordering of processing the
nodes would. The most recent experimental work on list ranking for multicores is
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by Bader et al. [2005]. However, since they used a much older machine, and they
are solving list ranking instead of list contraction, it is hard to compare.

Finally, for tree contraction the parallel implementation outperforms the se-
quential implementation with 4 or more threads. Again, the experiments compare
it with a parallel strawman version that processes all remaining leaves and regen-
erates the random numbers on each iteration. On 80 hyper-threads this implemen-
tation took 23.3 s, compared to 10 s for the prefix-based parallel implementation
reported in Table 4.4. As in list contraction, this is due to the wasted work of pro-
cessing all leaves on each iteration and the added cost of regenerating the random
numbers.

The most recent experimental work on tree contraction on multicores is by
Bader et al. [2002]. They present an implementation of tree contraction based on
the standard algorithm that only rakes leaves [JaJa 1992]. The algorithm is more
complicated than the one described in this chapter as it involves using Euler tours
and list ranking to label the leaves to allow non-conflicting leaves to be raked in
parallel. Furthermore, it does not return the same answer as a natural sequential
algorithm. Again, because they use a much older machine and they solve the more
expensive arithmetic expression computation, it is hard to compare.

Figure 4.17 plots the total work performed by the three algorithms as a function
of the prefix size for n = 108. Since the prefix size is a constant fraction for random
permutation, in the plots, the x-axis shows the fraction used. For list contraction
and tree contraction, the prefix size is fixed across rounds, so the x-axis shows
the actual size of the prefix. Similar to the case of maximal independent set and
maximal matching, the work goes up as the prefix size is increased as there is more
wasted work due to failed steps. Note that a prefix size of 1 corresponds to the work
performed by the sequential algorithm. Figure 4.18 plots the number of rounds of
deterministic reservations as a function of prefix size in log-log scale. The opposite
effect is observed here—a larger prefix size leads to fewer rounds because there is
more parallelism. These plots show the trade-off between work and parallelism.
Finally, Figure 4.19 plots the parallel running time as a function of the prefix size
in log-log scale, showing that the best running times use a prefix size somewhere
in between 1 and n.
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(a)

(b)

(c)

Figure 4.17 Total work vs. prefix size for n = 108 for (a) random permutation, (b) list contraction,
and (c) tree contraction.
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(a)

(b)

(c)

Figure 4.18 Number of rounds vs. prefix size for n = 108 (log-log scale) for (a) random permutation,
(b) list contraction, and (c) tree contraction.
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(a)

(b)

(c)

Figure 4.19 Running time vs. prefix size for n = 108 on 40 cores with hyper-threading (log-log scale)
for (a) random permutation, (b) list contraction, and (c) tree contraction.
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5.1 Introduction
The importance of internal determinism in developing and debugging parallel pro-
grams has been argued in Chapter 3. In the context of concurrent access, a data
structure is internally deterministic if even when operations are applied concur-
rently the final observable state depends uniquely on the set of operations applied,
but not on their order. This property is equivalent to saying the operations com-
mute with respect to the final observable state of the structure [Weihl 1988, Steele Jr.
1990]. However, for certain data structures, the operations naturally do not com-
mute. For example, in a hash table, mixing insertions and deletions in time would
inherently depend on ordering since inserting and deleting the same element do
not commute, but insertions commute with each other and deletions commute
with each other, independently of value. The same is true for searching mixed with
either insertion or deletion. For a data structure in which certain operations com-
mute but others do not, it is useful to group the operations into phases such that
the concurrent operations within a phase commute. This chapter defines a data
structure to be phase-concurrent if subsets of operations can proceed (safely) con-
currently. If the operations within a phase also commute, then the data structure
is deterministic. Note that phase-concurrency can have other uses besides deter-
minism, such as giving more efficient data structures. It is the programmer’s re-
sponsibility to separate concurrent operations into phases, with synchronization
in between, which for most nested parallel programs is easy and natural to do.

This chapter focuses on the hash table data structure. We develop a determin-
istic phase-concurrent hash table and prove its correctness. This hash table is part
of the Problem Based Benchmark Suite, and is also what is used to implement the
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dynamic map in Section 3.3. The data structure builds upon a sequential history-
independent hash table [Blelloch and Golovin 2007] and allows concurrent inser-
tions, concurrent deletions, concurrent searches, and reporting the contents. It
does not allow different types of operations to be mixed in time, because commu-
tativity (and hence determinism) would be violated in general. This chapter shows
that using one type of operation at a time is still very useful for many applications.
The hash table uses open addressing with a prioritized variant of linear probing
and guarantees that in a quiescent state (when there are no operations ongoing)
the exact content of the array is independent of the ordering of previous updates.
This allows, for example, quickly returning the contents of the hash table in a de-
terministic order simply by packing out the empty cells, which is useful in many
applications. Returning the contents could be done deterministically by sorting,
but this is more expensive. The hash table can store key-value pairs either directly
or via a pointer.

The experimental section in this chapter (Section 5.6) presents timings for in-
sertions, deletions, finds, and returning the contents into an array on a 40-core
machine. These timings are compared with the timings of several other implemen-
tations of concurrent and phase-concurrent hash tables, including the fastest con-
current open addressing [Herlihy et al. 2008] and closed addressing [Lea 2016] hash
tables that we could find, and two of our nondeterministic phase-concurrent imple-
mentations (based on linear probing and cuckoo hashing). The experiments also
compare the implementations to standard sequential linear probing, and to the
sequential history-independent hash table. The experiments show that the deter-
ministic hash table developed in this chapter significantly outperforms the existing
concurrent (nondeterministic) versions on updates by a factor of 1.3–4.1. Further-
more, it gets up to a 52× speedup over the (standard) nondeterministic sequential
version on 40 cores with two-way hyper-threading. The experiments compare inser-
tions to simply writing into an array at random locations (a scatter). On 40 cores,
and for a load factor of 1/3, insertions into the deterministic hash table is only
about 1.3× the cost of random writes. This is because most insertions only involve
a single cache miss, as does a random write, and that is the dominant cost.

Such a deterministic hash table is useful in many applications. For example,
Delaunay refinement iteratively adds triangles to a triangulation until all triangles
satisfy some criteria (see Section 5.5). “Bad triangles” which do not satisfy the cri-
teria are broken up into smaller triangles, possibly creating new bad triangles. The
result of Delaunay refinement depends on the order in which bad triangles are
added. Chapter 3 showed that, using deterministic reservations, triangles can be
added in parallel in a deterministic order on each iteration. However, for the algo-
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rithm to be deterministic, the list of new bad triangles returned in each iteration
must also be deterministic. Since each bad triangle does not know how many new
bad triangles will be created, the most natural and efficient way to accomplish this
is to add the bad triangles to a deterministic hash table and return the contents of
the table at the end of each iteration. Without a hash table, one would either have
to first mark the bad triangles and then look through all the triangles identifying
the bad ones, which is inefficient, or use a fetch-and-add to a vector storing bad tri-
angles (nondeterministic), leading to high contention, or possibly use a lock-free
queue (nondeterministic), again leading to high contention. By using a determin-
istic hash table in conjunction with deterministic reservations, the order of the
bad triangles is deterministic, giving a deterministic implementation of parallel
Delaunay refinement.

This chapter presents six applications which use hash tables in a phase-con-
current manner, and shows that the deterministic phase-concurrent hash table can
be used both for efficiency and for determinism. For four of these applications—
remove duplicates, Delaunay refinement, suffix trees, and edge contraction—we
believe the most natural and/or efficient way to write an implementation is to use
a hash table. Experiments shows that for these applications, using the determin-
istic hash table is only slightly slower than using a nondeterministic one based
on linear probing, and is faster than using cuckoo hashing or chained hashing
(which are also nondeterministic). For two other applications—breadth-first search
and spanning tree—this chapter presents simpler implementations using hash ta-
bles, compared to array-based versions directly addressing memory. Experiments
show that the implementations using hash tables are not much slower than the
array-based implementations, and again using our deterministic hash table is only
slightly slower than using our nondeterministic linear probing hash table and faster
than using the other hash tables.

Contributions
The contributions of this chapter are as follows. First, the notion of phase-con-
currency is formalized. Second, this chapter shows that phase-concurrency can be
applied to hash tables to obtain both determinism and efficiency. Proofs of correct-
ness and termination of the deterministic phase-concurrent hash table are given.
Third, a comprehensive experimental evaluation of our hash tables with the fastest
existing parallel hash tables is presented. The experiments compare our determin-
istic and nondeterministic phase-concurrent linear probing hash tables, our phase-
concurrent implementation of cuckoo hashing, hopscotch hashing (which was the
fastest existing concurrent open addressing hash table at the time of this work), and
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an optimized implementation of concurrent chained hashing. Finally, the chapter
describes several applications of the deterministic hash table, and presents experi-
mental results comparing the running times of using different hash tables in these
applications.

5.2 Related Work
A data structure is defined to be history-independent if its layout depends only
on its current contents, and not the ordering of the operations that created it
[Hartline et al. 2005, Naor and Teague 2001]. For sequential data structures, history-
independence is motivated by security concerns, and in particular ensures that
examining a structure after its creation does not reveal anything about its history.
This chapter extends a sequential history-independent hash table based on open
addressing [Blelloch and Golovin 2007] to work phase-concurrently. The motivation
is to design a data structure which is deterministic independent of the order of
updates. Although this work is not concerned with the exact memory layout, it is
important to be able to return the contents of the hash table very quickly and in an
order that is independent of when the updates arrived. For a history-independent
open addressing table, this can be done easily by packing the non-empty elements
into a contiguous array, which just involves a parallel prefix sum and cache-friendly
writes.

Several concurrent hash tables have been developed over the years. There has
been significant work on concurrent closed addressing hash tables using separate
chaining [Hsu and Yang 1986, Ellis 1987, Kumar 1990, Michael 2002, Shalev and
Shavit 2006, Greenwald 2002, Triplett et al. 2011, Lea 2016, Herlihy and Shavit
2012, Liu et al. 2014]. It would not be hard to make one of these deterministic
when reporting the contents of the buckets since each list could be sorted by a
priority at that time. However, such hash tables are expensive relative to open
address hashing because they involve more cache misses, and also because they
need memory management to allocate and de-allocate the cells for the links. The
fastest closed addressing hash that we know of is Lea’s ConcurrentHashMap from
the Java Concurrency Package [Lea 2016], and the experiments in this chapter
compare with a C++ implementation of it, obtained from Herlihy et al. [2008].

Martin and Davis [1997], Purcell and Harris [2005], and Gao et al. [2005] de-
scribe lock-free hash tables with open addressing. For deletions, Gao et al.’s version
marks the locations with a special “deleted” value, commonly known as tomb-
stones, and insertions and finds simply skip over the tombstones (an insertion is
not allowed to fill a tombstone). This means that the only way to remove deleted
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elements is to copy the whole hash table. All of these hash tables are nondeter-
ministic and quite complex. The experiments in this chapter use an implemen-
tation of nondeterministic linear probing similar to that of Gao et al. (see Sec-
tion 5.6).

Herlihy et al. [2008] describe and implement an open addressing concurrent
hash table called hopscotch hashing, which is based on cuckoo hashing [Pagh and
Rodler 2004] and linear probing. Their hash table guarantees that an element is
within K locations of the location it hashed to (where K could be set to the machine
word size), so that finds will touch few cache lines. To maintain this property,
insertions which find an empty location more than K locations away from the
location h that it hashed to will repeatedly displace elements closer to h until it
finds an empty slot within K locations of h (or resizes if no empty slot is found). A
deletion will recursively bring in elements later in the probe sequence to the empty
slot created. Their hash table requires locks and its layout is nondeterministic even
if only one type of operation is performed concurrently. Hopscotch hashing was
the fastest concurrent hash table available at the time of this work, and is used for
comparison in Section 5.6.

Kim and Kim [2013] recently present several implementations of parallel hash
tables, although our experiments showed that the code developed in this chap-
ter and the hopscotch hashing code of [Herlihy et al. 2008] are much faster. Van
der Vegt and Laarman describe a concurrent hash table using a variant of lin-
ear probing called bidirectional linear probing [van der Vegt 2011, van der Vegt
and Laarman 2011], however it requires a monotonic hash function, which may
be too restrictive for many applications. Their hash table is nondeterministic and
requires locks. Alcantara et al. describe a parallel hashing algorithm using GPUs
[Alcantara et al. 2009], which involves a synchronized form of cuckoo hashing, and
is nondeterministic because collisions are resolved nondeterministically. Concur-
rent cuckoo hashing has also been discussed by Fan et al. [2013], and very recently
by Li et al. [2014]. The hash table of Fan et al. supports concurrent access by mul-
tiple readers and a single writer, but do not support concurrent writers. Li et al.
extends this work by supporting concurrent writers as well. Subsequent to the
publication of the results in this chapter [Shun and Blelloch 2014], Nguyen and
Tsigas describe a lock-free implementation of cuckoo hashing [Nguyen and Tsigas
2014].

Phase-concurrency has been previously explored in the work on room synchro-
nizations by Blelloch et al. [2003]. They describe phase-concurrent implementa-
tions of stacks and queues. However, they were concerned only about efficiency,
and their data structures are not deterministic even within a single phase.
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5.3 Preliminaries
Let us now review the sequential history-independent hash table of Blelloch and
Golovin [2007]. The algorithm is similar to that of standard linear probing. It as-
sumes a total order on the keys used as priorities. For insertion, the only difference
is that if during the probe sequence a key currently in the location has lower prior-
ity than the key being inserted, then the two keys are swapped. An insertion probes
the exact same number of elements as in standard linear probing. For finds, the
only difference is that since the keys are ordered by priority, it means that a find
for a key k can stop once it finds a location i with a lower priority key. This means
that searching for keys not in the table can actually be faster than in standard linear
probing. One common method for handling deletions in linear probing is to simply
mark the location as “deleted” (a tombstone), and modify the insert and search ac-
cordingly. However, this would not be history-independent. Instead, for deletions
in the history-independent hash table, the location where the key is deleted is filled
with the next lower priority element in the probe sequence that hashed to or after
that location (or the empty element if it is at the end of the probe sequence). This
process is done recursively until the element that gets swapped in is the empty
element.

This chapter defines phase-concurrency as follows.

Definition 5.1 Phase-Concurrency. A data structure with operations O and operation subsets S

is phase-concurrent if ∀s ∈ S, we have s ⊆ O and all operations in s can proceed
concurrently and are linearizable.

5.4 Deterministic Phase-Concurrent Hash Table
The deterministic phase-concurrent hash table developed in this chapter extends
the sequential history-independent hash table to allow for concurrent inserts, con-
current deletes, and concurrent finds. The contents can also be extracted (referred
to as the elements operation) easily by simply packing the non-empty cells. Using
the notation of Definition 5.1, the hash table is phase-concurrent with:

. O = {insert, delete, find, elements}, and

. S =
{

{insert}, {delete}, {find, elements}
}

The code for insertion, deletion, and find is shown in Figure 5.1, and assumes
that the table is not full and that different keys have different priorities (total
ordering). For simplicity, the code assumes there is no data associated with the
key, although it could easily be modified for key-value pairs. Note that the code
works for arbitrary key-value sizes as for structure sizes larger that what a compare-
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and-swap can operate on, a pointer (which fits in a word) to the structure can be
stored in the hash table instead. The code assumes a hash function h that maps
keys into the range [0, . . . , |M| − 1], and that the keys have a total priority ordering
that can be compared with the function <p. By convention, assume that the empty
element (⊥) has lower priority than all other elements. The code uses NEXTINDEX(i)

and PREVINDEX(i) to increment and decrement the index modulo the table size.
Note that neither INSERT nor DELETE have return values, so the implementation only
needs to ensure that a set of inserts (or deletes) are commutative with respect to
the resulting configuration of the table.

For a given element v, INSERT loops until it finds a location with ⊥ (Line 3) or
it finds that v is already in the hash table (Line 5), at which point it terminates. If
during the insert, it finds a location that stores a lower priority value (Line 8), it
attempts to replace the value there with v using a CAS, and if successful the lower
priority key is temporarily removed from the table and INSERT is now responsible
for inserting the replaced element later in the probe sequence, i.e., the replaced
element is set to v (Line 9).

For a given element v, DELETE first finds v or an element after v in the probe
sequence at location k (Lines 27–29) since v may either not be in the table or its
position has been shifted back due to concurrent deletions. If v is not at loca-
tion k, then DELETE decrements the location (Lines 30–32) until either v is found
(Line 33) or the location becomes less than h(v) (Line 30), in which case v is not in
the table. After finding v, DELETE finds the replacement element for v by calling
FINDREPLACEMENT (Line 34). FINDREPLACEMENT first increments the location until
finding a replacement element that is either ⊥ or a lower priority element that
hashes after v (Lines 13–16). The resulting location will be one past the replacement
element, so it is decremented on Line 17. Then because the replacement element
could have shifted, it decrements the location until finding the replacement ele-
ment (Lines 18–23). DELETE then attempts to swap in the replacement element v′

on Line 35, and if successful, and v′ �= ⊥ (Line 36), there is now an additional copy
of v′ in the table so DELETE is responsible for deleting v′ (Lines 37–39). Otherwise,
if the CAS was unsuccessful, either v has already been deleted or used as a replace-
ment element so possibly appears at some earlier location. DELETE decrements the
location and continues looping (Line 41).

To FIND an element v, the algorithm starts at h(v) and loops upward until
finding either an empty location or a location with a key with equal or lower priority
(Lines 43–45). Then it returns the result of the comparison of v with that key
(Line 46). Since there is a total priority ordering on the keys, M[i] will contain v

if and only if v is in the table.
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1 procedure INSERT(v)
2 i = h(v)

3 while v �= ⊥ do
4 c = M[i]
5 if c = v then return
6 elseif c >p v then
7 i = NEXTINDEX(i)
8 elseif CAS(&M[i], c, v) then
9 v = c

10 i = NEXTINDEX(i)

11 procedure FINDREPLACEMENT(i)
12 j = i

13 do
14 j = NEXTINDEX(j )
15 v = M[j ]
16 while v �= ⊥ and h(v) > i

17 k = PREVINDEX(j )
18 while k > i do
19 v′ = M[k]
20 if v′ = ⊥ or h(v′) ≤ i then
21 v = v′
22 j = k

23 k = PREVINDEX(k)
24 return (j , v)

25 procedure DELETE(v)
26 i = h(v)

27 k = i

28 while M[k] �= ⊥ and v <p M[k] do
29 k = NEXTINDEX(k)
30 while k ≥ i do
31 if v = ⊥ or v �=p M[k] then
32 k = PREVINDEX(k)
33 else
34 (j , v′) = FINDREPLACEMENT(k)
35 if CAS(&M[k], v , v′) then
36 if v′ �= ⊥ then
37 v = v′
38 k = j

39 i = h(v)

40 else return
41 else k = PREVINDEX(k)

42 procedure FIND(v)
43 i = h(v)

44 while M[i] �= ⊥ and v <p M[i] do
45 i = NEXTINDEX(i)
46 return (M[i] = v)

Figure 5.1 Pseudocode for the phase-concurrent deterministic hashing with linear probing.
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Note that for INSERT, DELETE, and FIND, it is crucial that the hash table is not
full, otherwise the operations may not terminate. Throughout the discussion, we
assume wraparound with modulo arithmetic. Since the table is not full, every
cluster has a beginning, and when comparing the positions of two elements within
a cluster, the “higher” position is the one further from the beginning of the cluster
in the forward direction with wraparound. The goal is to show that when starting
with an empty hash table, the phase-concurrent hash table maintains the following
invariant:

Definition 5.2 Ordering Invariant. If a key v hashes to location i and is stored in location j in the
hash table, then for all k , i ≤ k < j it must be that M[k] ≥p v.

As long as the keys are totally ordered by their priorities, the ordering invariant
guarantees a unique representation for a given set of keys [Blelloch and Golovin
2007]. This invariant was shown to hold in the sequential history-independent hash
table [Blelloch and Golovin 2007].

The concurrent versions of insert and delete work similarly to the sequential
versions, but need to be careful about concurrent modifications. What this section
shows is that the union of the keys being inserted and the current content always
equals the union of all initial keys and all insertions that started. A key property
to make it work is that since only insertions are occurring, the priority of the keys
at a given location can only increase. It should be clear from the implementation
that is not safe to run inserts concurrently with finds, since an unrelated key can
be temporarily removed and invisible to a find.

The deletion routine is somewhat trickier. It allows for multiple copies of a key to
appear in the table during deletions. In fact, with p concurrent threads it is possible
that up to p + 1 copies of a single key appear in the table at a given time. This might
seem counterintuitive since the goal is to delete keys. Recall, however, that when
a key v is deleted, a replacement v′ needs to be found to fill its slot. When v′ is
copied into the slot occupied by v, there will temporarily be two copies of v′, but
the delete operation is now responsible for deleting one of them. The sequential
code deletes the second copy, but in the concurrent version since there might be
concurrent deletes aimed at the same key, the delete might end up deleting the
version it copied into, another thread’s copy, or it might end up not finding a copy
and quitting. The important invariant is that for a value v the number of copies
minus the number of outstanding deletes does not change (when a copy is made,
the number of copies is increased but so is the number of outstanding deletes). A
key property that makes deletions work is that since only deletions are occurring,
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the priority of the keys at a given location can only decrease, and hence a key can
only move to locations with a lower index.

The rest of this section proves important properties of the hash table. Mv is used
to indicate the set of (non-empty) values contained in the hash table, Iv to indicate
the set of values in a collection of insertion operations I , and |M| to indicate the
size of the table.

Theorem 5.1 Starting with a table M that satisfies the ordering invariant and with no operations
in progress, after any collection of concurrent insertions I complete (and none are
in progress) with |Mv ∪ Iv| < |M|, M will satisfy the following properties.

. M contains the union of the keys initially in the table and all values in I , and

. M satisfies the ordering invariant.

Furthermore, all insertion operations are non-blocking and terminate in a finite
number of steps.

Proof The proof assumes that all instructions are linearizable and considers the lin-
earized sequential ordering of operations. A step is used to refer to a position in
this sequential ordering. At a given step, Iv is used to indicate the set of values for
which an INSERT has started. Between when an INSERT starts and finishes, it is said
to be active with some value. At its start, an INSERT(v) is active with the value v, but
whenever it performs a successful CAS(&M[i], v , c) on Line 8, the INSERT becomes
active with the value c on the next step (Line 9)—it is now responsible for inserting
c instead of v. When it does a successful CAS(&M[i], v , ⊥) an INSERT is no longer
active—it will terminate as soon as it gets to the next start of the while loop and
do nothing to the shared state in the meantime. An INSERT is also no longer active
when it reads a value c on Line 4 that is equal to v—it will terminate on Line 5.

Av is used to indicate the union of values of all INSERT’s that are active. Mv is
used to indicate the values contained in M on a given step, and Ms to be the initial
values contained in M . We will prove that the following invariants are maintained
on every step:

1. Mv ∪ Av = Ms ∪ Iv.

2. The table M satisfies the ordering invariant.

Since at the end Av = ∅, these invariants imply the two properties of the theorem.
Invariant 1 is true at the start since Av and Iv are both empty and Ms = Mv by

definition. The invariant is maintained since (1) when an INSERT starts, its value
is added to both Av and Iv and therefore the invariant is unchanged, (2) when an
INSERT terminates it reads a M[i] = v, so a v is removed from Av but it exists in Mv
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so the union is unaffected, (3) every CAS with c = ⊥ removes a v from Av but inserts
it into Mv, maintaining the union, and (4) every CAS with c �= ⊥ swaps an element
in Mv with an element in Av, again maintaining the union. In the code, whenever
a CAS succeeds, c is placed in the location where v was (by the definition of CAS)
and immediately afterward v is set to c (Line 9).

Invariant 2 is true at the start by assumption. The invariant is maintained since
whenever a CAS(&M[i], v , c) succeeds it must be the case after the CAS that (1) all
locations from h(v) up to i have equal or higher priority than v, and (2) all keys that
hash to or before i but appear after i have lower priority than v. These properties
imply that the ordering invariant is maintained. The first case is true since the only
time i is incremented for v is when c = M[i] has a equal or higher priority (Lines 6–7)
and since the code only swaps higher priority values with lower priority ones (v >p c

for all CAS’s), once a cell has an equal or larger priority than v, it always will. Also,
when the code has a successful CAS, swaps v and c, and increments i, it must be
the case that all locations in the probe sequence for the new v and before the new
i have priority higher than the new v. This is because it was true before the swap
and the only thing changed by the swap was putting the old v into the table, which
we know has a higher priority than the new v. The second case of invariant 2 is true
since whenever a CAS is performed, the priority of the value at that location only
increases.

The termination condition is true since when the hash table of size |M| is not
full, an INSERT can call NEXTINDEX at most |M| times before finding an empty loca-
tion. Therefore for p parallel INSERT’s, there can be at most p|M| calls to NEXTINDEX.
Furthermore, any CAS failure of an INSERT is associated with a CAS success of an-
other INSERT. A CAS success corresponds to either a call to NEXTINDEX (Line 7) or
termination of the insertion. Therefore, for a set of p parallel INSERT’s, there can be
at most p − 1 CAS failures for any one CAS success and call to NEXTINDEX. So after
p2|M| CAS attempts, all INSERT’s have terminated. It is non-blocking because an
INSERT can only fail on a CAS attempt if another INSERT succeeds and thus makes
progress.

Theorem 5.2 Starting with a table M with |Mv| < |M| that satisfies the ordering invariant and with
no operations in progress, after any collection of concurrent deletes D complete
(and none are in progress), the table will satisfy the following properties:

. M contains the difference of the keys initially in the table and all values in D.

. M satisfies the ordering invariant.

Furthermore, all delete operations are non-blocking and terminate in a finite num-
ber of steps.
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Proof Similar to insertions, from when a DELETE starts until it ends, it is active with
some value: initially it is active with the v it was called with, and after a success-
ful CAS(&M[k], v , v′) for v′ �= ⊥ it becomes active with v′ (Lines 35–37). A DELETE

finishes on CAS(&M[k], v , ⊥) or when the condition of the while loop on Line 30
no longer holds (in this case, it finishes because v is not in the table).

During deletions, the table M can contain multiple copies of a key. The defini-
tion of the ordering invariant is still valid with multiple copies of a key, and for a
fixed multiplicity the layout remains unique. Unlike insertions, analyzing deletions
requires keeping track of multiplicities.

The proof uses Dv to indicate the set of values in D, and Ms the initial contents of
M . A(v) is used to indicate the number of active DELETE’s with value v, and M(v) to
indicate the number of copies of v in M . We will prove that the following invariants
are maintained at every step:

1. ∀v ∈ Ms, if v ∈ Ms \ Dv then M(v) − A(v) = 1, and otherwise M(v) − A(v) < 1.

2. The table M satisfies the ordering invariant allowing for repeated keys.

3. On Line 30, the index k of a DELETE of v must point to or past the last copy of
v (the “rightmost” copy with respect to the cluster).

Since at the end A(v) = 0 for all v, these invariants prove the properties of the
theorem.

Invariant 1 is true at the start since Dv is empty and ∀v ∈ Ms, A(v) = 0. To show
that the invariant is maintained, consider all events that can change M(v), A(v),
or Dv. These are: (1) when a DELETE on v starts, then A(v) is incremented making
M(v) − A(v) less than 1 (since it can be at most 1 before the start) and v is added to
Dv so v is not in Ms \ Dv, (2) when a CAS(&M[k], v , ⊥) succeeds, A(v) and M(v) are
both decremented, therefore canceling out, (3) when a CAS(&M[k], v , v′) for v′ �= ⊥
succeeds, then by Lines 35–37, A(v) and M(v) are both decremented, canceling
out, and A(v′) and M(v′) are both incremented, again canceling out, and (4) when
a DELETE finishes due to the condition not holding on Line 30, the value v cannot
be in the table because of invariant 3, so A(v) is decremented, but M(v) − A(v) is
less than 1 both before and after since M(v) = 0.

Invariant 2 is true at the start by assumption. The only way it could become
violated is if as a result of a CAS(&M[k], v , v′), the value v′ falls out of order with
respect to values after location j (i.e., there is some key that hashes at or before j ,
is located after j , and has a higher priority than v′). This cannot happen since the
replacement element found is the closest key to j that hashes after j and has lower
priority than v. The loop in Lines 13–16 scans upward to find an element that hashes
after v in the probe sequence, and the while loop at Lines 18–23 scans downward
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in case the desired replacement element was shifted down in the meantime by
another thread. It is important that this loop runs backward and is the reason that
there are two redundant looking loops, one going up and one going back down.

Invariant 3 is true since the initial find (Lines 27–29) locates an index of an
element with priority lower that v, which must be past v, and FINDREPLACEMENT

returns an index at or past the replacement v′. k is only decremented on a failed
CAS, which in this case means that v can only be at an index lower than k.

To prove termination, let us bound the number of index increments and decre-
ments a single DELETE operation can perform while executing in parallel with other
deletes. For a hash table of size |M|, the while loop on Lines 30–41 can execute at
most |M| times before i changes, and i will only increase since the replacement
element must have a higher index than the deleted element. i can increase at most
|M| times before v′ = ⊥, so the number of calls to FINDREPLACEMENT is at most |M|2.
The number of decrements and assignments to k in the while loop on Lines 30–41
is at most |M| per iteration of the while loop (for a total of |M|2). FINDREPLACEMENT

contains a loop incrementing j , which eventually finishes because the condition
on Line 16 will be true for a location containing ⊥, and a loop decrementing j ,
which eventually finishes due to the condition on Line 18. So the total number of
increments and decrements is at most 2|M| per call to FINDREPLACEMENT. The initial
find on Lines 27–29 involves at most |M| increments. Therefore, a DELETE operation
terminates after at most |M| + |M|2 + 2|M|3 increments/decrements, independent
of the result of the CAS on Line 35. A collection of p DELETE’s terminates in at most
p(|M| + |M|2 + 2|M|3) increments/decrements. Increments, decrements, and all
instructions in between are non-blocking and thus finish in a finite amount of time.
Therefore, concurrent deletions are non-blocking.

Combining
For a deterministic hash table that stores key-value pairs, if there are duplicate
keys, the implementation must decide how to combine the values of these keys
deterministically. This can be done by passing a commutative combining function
that is applied to the values of pairs with equal keys and updating the location (using
a double-word CAS) with a pair containing the key with the combined values. The
experiments in Section 5.6 use min or + as the combining function.

Resizing
Using well-known techniques it is relatively easy to extend the hash table with
resizing [Herlihy and Shavit 2012]. Here we outline an approach for growing a table
based on incrementally copying the old contents to a new table when the load
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factor in the table is too high. An INSERT can detect that a table is overfull when
a probe sequence is too long. In particular, theoretically a probe sequence should
not be longer than k log n with high probability for some constant k that depends
on the allowable load factor. Once a process detects that the table is overfull, it
allocates a new table of twice the size and (atomically) places a link to the new table
accessible to all users. A lock can be used to avoid multiple processes allocating
simultaneously. This would mean that an insertion will have to wait between when
the lock is taken and the new table is available, but this should be a short time, and
only on rare occasions.

Once the link is set, new INSERT’s are placed in the new table. Furthermore, as
long as the old table is not empty, every INSERT is responsible for copying at least two
elements from the old table to the new one. The thread responsible for creating the
new table allocates the elements to copy to other threads, and thereafter some form
of work-stealing [Blumofe and Leiserson 1999] is used to guarantee that a thread
has elements to copy when there are still uncopied elements. As long as a constant
number of keys are copied for every one that is inserted, the old table will be emptied
before the new one is filled. This way only two tables are active at any time. There is
an extra cost of indirection on every INSERT since the table has to be checked to find
if it has been relocated. However, most of the time this pointer will be in a local
cache in shared mode (loaded by any previous table access) and therefore the cost
is very cheap. When there are two active tables, FIND’s and DELETE’s would look in
both tables.

5.5 Applications
This section describes applications which use the deterministic hash table. For
these applications, using a hash table is either the most natural and/or efficient
way to implement an algorithm, or it simplifies the implementation compared to
directly addressing the memory locations. The hash table implementation contains
a function ELEMENTS() which packs the contents of the table into an array and returns
it. It is important that ELEMENTS() is deterministic to guarantee determinism for the
algorithms that use it.

Delaunay refinement and breadth-first search use the WRITEMIN function for
determinism, which is an instantiation of the priority update operation that will
be described in Section 6.2. It takes two arguments–a memory location loc and a
value val and stores val at loc if and only if val is less than the value at loc. It returns
TRUE if it updates the value at loc and FALSE otherwise.
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5.5.1 Remove Duplicates
This is a simple application which can be implemented using a hash table by simply
inserting all of the elements into the table and returning the result of ELEMENTS(), as
described in Section 3.4.4. For determinism, the sequence returned by ELEMENTS()
should contain the elements in the same order every time, which is guaranteed by
a deterministic hash table. This is an example of an application where the most
natural and efficient implementation uses hashing (one could remove duplicates
by sorting and removing consecutive equal-valued elements, but it would be less
efficient).

5.5.2 Delaunay Refinement
Recall from Section 2.6.4 that the Delaunay refinement problem takes as input a
Delaunay triangulation and an angle α, and adds new points to the triangulation
such that no triangle has an angle less than α. A triangle with an angle less than α

is referred to as a bad triangle. This section elaborates on the Delaunay refinement
implementation used in Section 3.4.4.

Initially all of the bad triangles of the input triangulation are computed and
stored into a hash table. On each iteration of Delaunay refinement, the contents
of the hash table are obtained via a call to ELEMENTS(). The next step of an iteration
follows that of the deterministic reservations-based implementation of Delaunay
triangulation described in Section 3.4.4. Using deterministic reservations, the bad
triangles mark (using a WRITEMIN with their index in the sequence) all of the trian-
gles that would be affected if they were to be inserted. Bad triangles whose affected
triangles all contain their mark are “active” and can proceed to modify the trian-
gulation by adding their center point. This method guarantees that there are no
conflicts, as any triangle in the triangulation is affected by at most one active bad tri-
angle. During each iteration of the refinement, new triangles with angles less than
α are generated and they are inserted into the hash table as they are discovered.
This process is repeated until either a specified number of new points are added or
the triangulation contains no more bad triangles. For determinism, it is important
that the call to ELEMENTS() is deterministic, as this makes the indices/priorities of
the bad triangles, and hence the resulting triangulation deterministic.

This is an example of an application where using a hash table significantly
simplifies the implementation. Prior to inserting a point, it is hard to efficiently
determine how many new bad triangles it will create, and pre-allocate an array of
the correct size to allow for storing the new bad triangles in parallel.
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5.5.3 Suffix Tree
Recall from Section 2.6.3 that a suffix tree stores all suffixes of a string S in a trie
where internal nodes with a single child are contracted. A suffix tree allows for
efficient searches for patterns in S, and also has many other applications in string
analysis and computational biology. To allow for expected constant time look-ups, a
hash table is used to store the children of each internal node. The phase-concurrent
hash table allows for parallel insertions of nodes into a suffix tree and parallel
searches on the suffix tree. This is an example of an application where hash tables
are used for efficiency, and where the inserts and finds are naturally split into two
phases. The suffix tree implementation is discussed in more detail in Chapter 11.

5.5.4 Edge Contraction
The edge contraction problem takes as input a sequence of edges (possibly with
weights) and a label array R, which specifies that vertex v should be relabeled with
the value R[v]. It returns a sequence of unique edges relabeled according to R. Edge
contraction is used in recursive graph algorithms where certain vertices are merged
into “supervertices” and the endpoints of edges need to be relabeled to the IDs of
these supervertices. Duplicate edges are processed differently depending on the
algorithm.

To implement edge contraction, the edges are inserted into a hash table using
the two new vertex IDs as the key, and any data on the edge as the value. A commu-
tative combining function can be supplied for combining data on duplicate edges.
For example, the edge with minimum weight might be kept for a minimum span-
ning tree algorithm, or the edge weights added together for a graph partitioning
algorithm [Karypis and Kumar 1998]. To obtain the relabeled edges for the next
iteration, a call to ELEMENTS() is made. To guarantee determinism in the algorithm,
the hash table must be deterministic.

The edge contraction idea described here is used to combine duplicate edges
in the parallel graph reordering algorithm described in Chapter 8, and to remove
duplicate edges in the contraction-based parallel connected components imple-
mentation described in Chapter 9.

5.5.5 Breadth-First Search
Recall that the standard parallel breadth-first search (BFS) implementation pro-
ceeds by visiting each frontier of the search in parallel, and generates a BFS tree.
This can be made deterministic using a priority write (WRITEMIN), as discussed in
Section 3.4.4. The approach discussed in Section 3.4.4, however, requires first cre-
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1 procedure BFS(G, r) � r is the root
2 Parents = {∞, . . . , ∞} � initialized to all ∞ (unvisited)
3 Parents[r] = r

4 Frontier = {r}
5 while Frontier �= {} do
6 Create hash table T

7 parfor v ∈ Frontier do � loop over frontier vertices
8 parfor ngh ∈ N(v) do � loop over neighbors
9 if WRITEMIN(&Parents[ngh], v) then

10 T .INSERT(ngh)

11 Frontier = T .ELEMENTS() � get contents of T

12 parfor v ∈ Frontier do
13 Parents[v] = −Parents[v] � negative indicates visited
14 return Parents

Figure 5.2 Hash table-based implementation of breadth-first search.

ating an array large enough to contain all unvisited neighbors of all vertices in the
current frontier (since at this point parents have not been assigned yet), assign seg-
ments of the array to each vertex in the frontier, and have each frontier vertex copy
unvisited neighbors that it is a parent of into the array. This array is then packed
down with a prefix sums and assigned to the next frontier.

An alternative solution is to use a concurrent hash table and insert unvisited
neighbors into the table. Obtaining the next frontier simply involves a call to ELE-

MENTS(). With this method, duplicates are removed automatically, and the packing
is hidden from the user. This leads to a much cleaner solution. If one wants to look
at or store the frontiers or simply generate a level ordering of the vertices, then it
is important that ELEMENTS() is deterministic. The pseudocode for this algorithm is
shown in Figure 5.2. This method gives a deterministic BFS tree. Section 5.6 shows
that using the deterministic phase-concurrent hash table does not slow down the
BFS code by much compared to the best previous deterministic BFS code (from
Chapter 3), which uses memory directly as described in the first method above.

5.5.6 Spanning Forest
Recall that a spanning forest algorithm can be implemented using the determinis-
tic reservations approach as described in Section 3.4.4. If the vertex IDs are integers
from the range [0, . . . , n − 1], then an array of size n can be used to store the reser-
vations. However, if the IDs are much larger integers or strings, it may be more
convenient to use a hash table to perform the reservations to avoid vertex relabeling.
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Determinism is maintained if the hash table is deterministic. For the reservation
phase, edges insert into a hash table each of its vertices (as the key), with value
equal to the edge priority. For a deterministic hash table, if duplicate vertices are
inserted, the one with the value with the highest priority remains in the hash table.
In the commit phase, each edge performs a hash table find on the vertex it inserted
and if it contain the edge’s priority value, then it proceeds with linking its two com-
ponents together. The experiments in Section 5.6 show that the implementation
of spanning forest using a hash table is only slightly slower than the array-based
version from Section 3.4.4.

5.6 Experiments
This section experimentally analyzes the performance of the concurrent determin-
istic history-independent hash table (linearHash-D) on its own, and also when used
in the applications described in Section 5.5.

The experiments compare it with two nondeterministic phase-concurrent hash
tables that we implement, and with the best existing concurrent hash tables that we
know of (hopscotchHash and chainedHash). linearHash-ND is a concurrent version
of linear probing that we implement, which places values in the first empty location
and hence depends on history (nondeterministic). It is based on the implementa-
tion of Gao et al. [2005], except that for deletions it shifts elements back instead
of using tombstones, and does not support resizing. In linearHash-ND, insertions
and finds can proceed concurrently (although they are still separated in the exper-
iments), since inserted elements are not displaced. cuckooHash is a concurrent
version of cuckoo hashing that we implement, which locks two locations for an el-
ement insertion, places the element in one of the locations, and recursively inserts
any evicted elements. To prevent deadlocks, it acquires the locks in increasing or-
der of location. It is nondeterministic because an element can be placed in either
of its two locations based on the order of insertions. For key-value pairs, on encoun-
tering duplicate keys linearHash-D uses a priority function [Shun et al. 2013] on the
values to deterministically decide which pair to keep, while the nondeterministic
hash tables do not replace on duplicate keys.

hopscotchHash is a fully concurrent open-addressing hash table by Herlihy et al.
[2008], which is based on a combination of linear probing and cuckoo hashing. It
uses locks on segments of the hash table during insertions and deletions. We no-
ticed that there is a time-stamp field in the code which is not needed if operations
of different types are not performed concurrently. We modified the code accord-
ingly and call this phase-concurrent version hopscotchHash-PC. chainedHash is a
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widely used, fully concurrent closed-addressing hash table by Lea [2016] that places
elements in linked lists. It was originally implemented in Java, but we were able to
obtain a C++ version from the authors of [Herlihy et al. 2008]. We also tried the
chained hash map (concurrent_hash_map) implemented as part of Intel Thread-
ing Building Blocks, but found it to be slower than chainedHash. We implement the
ELEMENTS() routine for both hopscotch hashing and chained hashing, as the orig-
inal implementations did not come with this routine. For hopscotch hashing, we
simply pack out the empty locations. For chained hashing, we first count the num-
ber of elements per bucket by traversing the linked lists, compute each bucket’s
offset into an array using a parallel prefix sum, and then traverse the linked lists
per bucket copying elements into the array (each bucket can proceed in parallel).
The original implementation of chainedHash acquires a lock at the beginning of
an insertion and deletion. This leads to high lock contention for distributions with
many repeated keys. We optimized the chained hash table such that insertion only
acquires a lock after an initial find operation does not find the key, and deletion
only acquires a lock after an initial find operation successfully finds the key. This
contention-reducing version is referred to as chainedHash-CR.

The experiments also include timings for a serial implementation of the history-
independent hash table using linear probing (serialHash-HI) and a serial imple-
mentation using standard linear probing (serialHash-HD).

For the applications, the experiments compare their performance using the
phase-concurrent hash tables that we implement and the chained hash table.1

For breadth-first search and spanning tree, the experiments also compare with
implementations that directly address memory and show that the additional cost
of using hash tables is small.

All of the implementations developed in this chapter use Cilk Plus, and are
compiled using g++. The experiments were run on the 40-core Intel machine with
two-way hyper-threading, described in Section 2.7. The experiments use six input
distributions from the Problem Based Benchmark Suite. randomSeq-int is a se-
quence of n random integer keys in the range [1, . . . , n] drawn from a uniform
distribution. randomSeq-pairInt is a sequence of n key-value pairs of random in-
tegers in the range [1, . . . , n] drawn from a uniform distribution. trigramSeq is a
sequence of n string keys generated from trigram probabilities of English text (there

1. The source code for hopscotch hashing that we obtained online sometimes does not work
correctly on our Intel machine (it was originally designed for a Sun UltraSPARC machine), so it is
not used it in the applications.
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(a) (b)

Figure 5.3 Times (seconds) for 108 operations for the hash tables on 40 cores (with hyper-
threading). (PC) indicates a phase-concurrent implementation and (C) indicates a
concurrent implementation. (a) Times (seconds) for 108 operations on randomSeq-int.
(b) Times (seconds) for 108 operations on trigramSeq-pairInt.

are many duplicate keys in this input). trigramSeq-pairInt has the same keys as tri-
gramSeq, but each key maintains a corresponding random integer value. For this
input, the key-value pairs are stored as a pointer to a structure with a pointer to a
string, and therefore involves an extra level of indirection. exptSeq-int is a sequence
of n random integer keys drawn from an exponential distribution—this input is
also used to test high collision rates in the hash table. exptSeq-pairInt contains
keys from the same distribution, but with an additional integer value per key. For
all distributions, the input size was set to n = 108. For the open addressing hash
tables, the experiments initialized a table of size 228.

Figures 5.3(a) and 5.3(b) compare the hash tables for several operations on
randomSeq-int and trigramSeq-pairInt, respectively. For Insert, a random set of
keys from the distribution is inserted starting from an empty table. For Find Ran-
dom and Delete Random, n elements are first inserted (not included in the time)
and then the operations are performed for a random set of keys from the distribu-
tion. Elements is the time for returning the contents of the hash table in a packed
array. Table 5.1 lists the parallel and serial running times (seconds) for insertions,
finds, deletions, and returning the elements for the various hash tables on different
input sequences. For Find and Delete, n elements are first inserted (not included
in the time) and then operations are performed either on the same keys (Inserted)
or for a random set of keys from the distribution (Random).
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As Figure 5.3 and Table 5.1 indicate, insertion, finds, and deletions into the
deterministic (history-independent) hash table are slightly more expensive than
into the history-dependent linear probing version. This is due to the overhead of
swapping and checking priorities. Elements just involves packing the contents of
the hash table into a contiguous array, and since for a given input, the locations
occupied in the hash table are the same in the linear probing tables, the times are
roughly the same (within noise) between the two serial versions and the two parallel
version. On a single thread, the serial versions are cheaper since they do not use a
prefix sum.

Overall, linearHash-D and linearHash-ND are faster than cuckooHash, since
cuckooHash involves more cache misses on average (it has to check two random
locations). Elements is also slower for cuckooHash because each hash table en-
try includes a lock, which increases the memory footprint. For random integer
keys, the linear probing hash tables are 2.3–4.1× faster than chainedHash and
chainedHash-CR, as chained hashing incurs more cache misses. As expected, in
parallel chainedHash performs very poorly under the sequences with many dupli-
cates (trigramSeq, trigramSeq-pairInt, exptSeq, and exptSeq-pairInt) due to high
lock contention, while chainedHash-CR performs better.

Compared to hopscotch hashing, which is the fastest concurrent open address-
ing hash table that we are aware of, both of our phase-concurrent versions of
linear probing are faster. For random integer keys, the deterministic version is
about 2× faster than hopscotch hashing for inserts, and 1.3× faster for finds
and deletes. For elements, the deterministic hash table is also faster because it
stores less information per hash table entry. Hopscotch hashing does not get good
speedup for insertions and deletions for the sequences with many repeats (i.e., the
trigram and exponential sequences) due to lock contention. Compared to cuck-
ooHash, on the lower-contention random integer sequence hopscotch hashing is
faster for finds and inserts but slower for deletes and elements (it stores more
data).

Figure 5.4 show the speedup of linearHash-D relative to serialHash-HI on varying
number of threads on randomSeq-int and trigramSeq-pairInt, respectively. The
experiments use a hash table of size 228 and apply 108 operations of each type.
Observe that all of the operations get good speedup as the number of threads
increases.

Figure 5.5 shows the per operation running times on linearHash-D with varying
loads. For this experiment, a hash table of size 227 was used, and the table is first
filled to the specified load before timing the operations. Observe that inserts and
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(a) (b)

Figure 5.4 Speedup relative to serialHash-HI for linearHash-D vs. number of threads. “40h”
indicates 80 hyper-threads. (a) Speedup on randomSeq-int; (b) speedup on trigramSeq-
pairInt.

Figure 5.5 Times (nanoseconds) per operation with varying loads for linearHash-D on 40 cores
(with hyper-threading). Values on the x-axis indicate the load factor (fraction of the
table that is full).

deletes become more expensive as load increases, with a rapid increase as the load
approaches 1.

The experiments compare the performance of hash table inserts to doing ran-
dom writes (times for 108 writes are shown in Table 5.2). For a uniformly random
sequence (randomSeq-int), parallel insertion into the deterministic hash table with
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Table 5.2 Times (seconds) for 108 random writes (scatter)

Memory Operation (1) (40h)

Random write 1.62 0.129

Conditional random write 1.82 0.131

Hash table insertion 4.53 0.171

a load of 1/3 is 1.3× slower than parallel random writes. The experiments also com-
pare with a conditional random write, which only writes to the location if it is empty,
and the parallel running time is about the same as for random writes.

Very recently, Li et al. [2014] describe a concurrent cuckoo hash table that
achieves up to 40 million inserts per second for filling up a hash table to 95% load
using 16 cores and integer key-value pairs, where the integers are 8 bytes each. On 16
cores, our linearHash-ND performs 75 million inserts per second and linearHash-
D performs 65 million inserts per second filling the table up to 95% load and using
integer key-value pairs with 8-byte integers. As the performance of linear probing
degrades significantly at high loads, for smaller loads our hash table is faster than
theirs by a larger factor. However, the hash table of Li et al. is fully concurrent, and
optimizations can probably be made for a phase-concurrent setting. Subsequent
to the publication of the results of this chapter [Shun and Blelloch 2014], Nguyen
and Tsigas describe a lock-free cuckoo hash table that is fully concurrent [Nguyen
and Tsigas 2014]. The experiments in their article are not for a phase-concurrent
workload, and we leave a comparison with their hash table on phase-concurrent
workloads for future work.

Applications
Experiments were performed to compare implementations of the applications
using different versions of the hash tables. For the open addressing hash tables, a
larger table size decreases the load and usually leads to faster insertions, deletions,
and finds, but the algorithms require either returning the elements of the hash
table or mapping over the elements, which takes time proportional to the size of
the hash table. Due to this trade-off, we chose table sizes that gave the best overall
performance per application. For chained hashing, only the times for chainedHash-
CR are presented, as we tried both chainedHash and chainedHash-CR and found
that the timings were within 5% of each other since the inputs do not exhibit high
contention. The experiments on applications did not use hopscotch hashing as the
implementation that we obtained did not always work correctly.
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Table 5.3 Times (seconds) for remove duplicates

randomSeq-int trigramSeq-pairInt exptSeq-int

Remove Duplicates (1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.36 0.212 10.4 0.242 3.72 0.139

linearHash-ND 6.33 0.212 9.64 0.213 3.63 0.116

cuckooHash 11.0 0.417 12.9 0.3 5.76 0.185

chainedHash-CR 19.9 1.32 15.6 0.586 9.67 0.541

The experiments for remove duplicates use the same input distributions as in
the previous set of experiments (n = 108). Removing duplicates involves a phase of
insertions, which is more efficient with a larger table in open addressing, and a
call to ELEMENTS(), which is more efficient with a smaller table in open addressing.
Setting the table size to 227 for the open addressing hash tables gave the best overall
performance. The times for using linearHash-D, linearHash-ND, cuckooHash, and
chainedHash to remove duplicates on several input distributions are shown in
Table 5.3. The results show that our deterministic version of linear probing is 7–
23% slower than our nondeterministic version on the key-value inputs with many
duplicates because the deterministic version may perform a swap on duplicate
keys, whereas the nondeterministic version does not. Both linear probing tables
outperform the cuckoo and chained hash tables.

The Delaunay refinement experiments use as input the Delaunay triangulation
of the 2d-cube and 2d-kuzmin geometry data from the PBBS, each of which contain
5 million points. The times for the hash table portion of one iteration of Delaunay
refinement, which involves a call to ELEMENTS() and hash table insertions, are shown
in Table 5.4. For the open addressing hash tables, a table size of twice the number of
bad triangles rounded up to the nearest power of 2 is used. LinearHash-D performs
slightly slower than linearHash-ND, but allows for a deterministic implementation
of Delaunay refinement. Both of the linear probing hash tables outperform the
cuckoo hash table and chained hash tables for this application.

The experiments for suffix trees use three real-world texts from http://people
.unipmn.it/manzini/lightweight/corpus/. etext99 (105 MB) and rctail96 (115 MB)
are taken from real English texts, and sprot34.dat (110 MB) is taken from a protein
sequence. The experiments measure the times for the portion of the code which
inserts the nodes into the suffix tree (represented with a hash table), and also the
times for searching one million random strings in the suffix tree (which uses hash
table finds). The searches use strings with lengths distributed uniformly between 1

http://people.unipmn.it/manzini/lightweight/corpus/
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Table 5.4 Times (seconds) for Delaunay refinement

2d-cube 2d-kuzmin

Delaunay Refinement (1) (40h) (1) (40h)

linearHash-D 1.01 0.033 0.986 0.033

linearHash-ND 0.95 0.031 0.956 0.032

cuckooHash 1.62 0.051 1.56 0.054

chainedHash-CR 1.89 0.079 1.95 0.099

Table 5.5 Times (seconds) for suffix tree operations

(a) etext99 rctail96 sprot34.dat
(105 MB) (115 MB) (110 MB)

Suffix Tree Insert (Size) (1) (40h) (1) (40h) (1) (40h)

linearHash-D 4.84 0.12 4.96 0.117 4.77 0.115

linearHash-ND 4.6 0.114 4.74 0.112 4.57 0.109

cuckooHash 9.11 0.184 8.85 0.177 8.6 0.172

chainedHash-CR 7.72 0.256 7.65 0.238 7.39 0.235

(b) etext99 rctail96 sprot34.dat

Suffix Tree Search (1) (40h) (1) (40h) (1) (40h)

linearHash-D 1.08 0.023 0.728 0.015 0.803 0.017

linearHash-ND 1.07 0.023 0.713 0.015 0.787 0.017

cuckooHash 1.22 0.026 0.826 0.017 0.911 0.019

chainedHash-CR 1.35 0.03 0.91 0.02 1.01 0.023

and 50. Half of the search strings are random sub-strings of the text, which should
all be found, and the other half are random strings, most of which will not be found.
The open addressing hash tables use a size of twice the number of nodes in the
suffix tree rounded up to the nearest power of 2. The times are shown in Table 5.5.
Again the deterministic linear probing hash table is only slightly slower than the
nondeterministic one, and both of them outperform the cuckoo hash table and
chained hash tables.

The experiments for edge contraction, breadth-first search, and spanning forest
use three undirected graphs from the PBBS. 3d-grid is a grid graph in 3d space
where every vertex has six edges, each connecting it to its 2 neighbors in each
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Table 5.6 Times (seconds) for edge contraction

3d-grid random rMat

Edge Contraction (1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.03 0.154 10.9 0.265 10.8 0.272

linearHash-ND 5.4 0.136 9.09 0.229 9.18 0.235

cuckooHash 9.31 0.269 16.8 0.447 16.7 0.455

chainedHash-CR 11.6 0.55 20.1 0.907 20.0 0.917

dimension. It has a total of 107 vertices and 3 × 107 edges. random is a random
graph where every vertex has five edges to neighbors chosen randomly. It has a
total of 107 vertices and 5 × 107 edges. The rMat graph [Chakrabarti et al. 2004] has
a power-law degree distribution. It has a total of 224 vertices and 5 × 107 edges.

The experiments time one round of edge contraction when used as a part of
a parallel graph separator program. A maximal matching is first computed on the
input graph to generate the vertex relabelings (not timed) and then edges with their
relabeled endpoints are inserted into a hash table if the endpoints are different
(timed). Duplicate edges between the same vertices after relabeling have their
weights added together using a fetch-and-add. Since in linearHash-D, the edges
may shift around during insertions, it requires using compare-and-swap on the
entire edge. On the other hand, in linearHash-ND, once an element is inserted
it no longer moves, so when encountering duplicate edges, it only needs to add
the weight of the duplicate edge to the inserted edge and can use the faster xadd
atomic hardware primitive to do this. The linear probing hash table sizes are set to
4/3 times the number of edges, rounded up to the nearest power of 2. The times are
shown in Table 5.6. The deterministic version of linear probing is about 15% slower
than the nondeterministic version, but guarantees a deterministic ordering of the
edges and hence a deterministic graph partition when used in a graph partitioning
algorithm. Again, both linear probing hash tables outperform cuckoo hashing and
chained hashing.

Each iteration of BFS uses a hash table with size equal to the sum of the degrees
of the frontier vertices rounded up to the nearest power of 2 for linear probing
and twice that size for cuckoo hashing. Table 5.7 gives the running times for
various BFS implementations where serial is the serial implementation, and array
is the implementation which uses a temporary array to compute new frontiers
as described in Section 5.5. LinearHash-D is slightly slower than linearHash-ND,
and both linear probing tables outperform cuckooHash and chainedHash-CR. In
parallel, the deterministic hash table-based BFS is 16–35% slower than the array-
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Table 5.7 Times (seconds) for breadth-first search

3d-grid random rMat

Breadth-First Search (1) (40h) (1) (40h) (1) (40h)

serial 2.3 — 2.89 — 3.33 —

array 3.57 0.271 4.89 0.169 6.81 0.225

linearHash-D 3.2 0.367 5.44 0.211 6.25 0.262

linearHash-ND 3.21 0.362 5.43 0.204 6.24 0.256

cuckooHash 4.56 0.454 7.3 0.292 9.1 0.373

chainedHash-CR 5.08 1.14 8.11 0.343 9.78 0.439

Table 5.8 Times (seconds) for spanning forest

3d-grid random rMat

Spanning Forest (1) (40h) (1) (40h) (1) (40h)

serial 1.42 — 1.87 — 2.35 —

array 3.54 0.186 4.68 0.226 6.13 0.289

linearHash-D 4.73 0.212 5.87 0.286 7.31 0.346

linearHash-ND 4.8 0.215 5.86 0.282 7.36 0.344

cuckooHash 5.86 0.251 7.08 0.341 9.08 0.387

chainedHash-CR 6.04 0.408 7.46 0.544 9.73 0.662

based BFS. On a single thread, linearHash-D is faster on two of the inputs, however
it does not get as good speedup. We observed that in parallel, the linear probing
hash table-based BFS implementations spend 70–80% of the time performing hash
table insertions, and sequentially they spend 80–90% of the time on insertions.

For spanning forest, the experiments compare versions using hash tables with a
serial version and the array-based version from Section 3.4.4. For the versions using
open addressing tables, a table of size twice the number of vertices rounded up to
the nearest power of 2 was used. The timings are shown in Table 5.8. LinearHash-
D and linearHash-ND perform similarly, and they both outperform the cuckoo and
chained hash tables. The deterministic hash table-based version is 14–26% slower
than the array-based version, but avoids vertex relabeling when the vertex IDs are
integers from a large range or are not integers.

For BFS and spanning forest, the experiments show that hash tables can replace
directly addressing memory, while incurring only a small performance penalty.





6Priority Updates:
A Contention-Reducing
Primitive for
Deterministic
Programming

6.1 Introduction
When programming algorithms and applications on shared memory machines,
contention in accessing shared data structures is often a major source of perfor-
mance problems. The problems can be particularly severe when there is a high
degree of sharing of data among threads. With naive data structures the perfor-
mance issues are typically due to contention over locks. Lock-free data structures
alleviate the contention, but such solutions only partially solve issues of contention
because even the simplest lock-free shared write access to a single memory location
can create severe performance problems. For example, simply having all threads
write to a small set of shared locations can lead to orders of magnitude loss in
performance relative to writing to distinct locations. The problem is caused by co-
herence protocols that require each thread to acquire the cache line in exclusive
mode to update a location; this cycling of the cache line through the caches incurs
significant overhead—far greater than even the cost of having a single thread per-
form all of the writes. The performance is even worse when using operations such
as a compare-and-swap to atomically update shared locations.

To avoid these issues, researchers have suggested a variety of approaches to re-
duce the cost of memory contention. One approach is to use contention-aware sched-
ulers [Zhuravlev et al. 2010, Fedorova et al. 2010] that seek to avoid co-scheduling
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threads likely to contend for resources. For many algorithms, however, high degrees
of sharing cannot be avoided via scheduling choices. A second approach is to use
hardware combining, in which concurrent associative operations on the same mem-
ory location can be “combined” on their way through the memory system [Gottlieb
et al. 1983a, Gottlieb et al. 1983b, Fang et al. 2007, Blelloch et al. 1998]. Multiple
writes to a location, for example, can be combined by dropping all but one write.
No current machines, however, support hardware combining. A third approach is
to use software combining based on techniques such as combining funnels [Shavit
and Zemach 2000] or diffracting trees [Shavit and Zemach 1996, Della-Libera and
Shavit 2000]. These approaches tend to be complicated and have significant over-
head, because a single operation is implemented by multiple accesses that traverse
the shared combining structure. In cases where the contending operations are
(atomic) updates to a shared data structure, more recent work has shown that hav-
ing a single combiner thread perform the updates greatly reduces the overheads
[Hendler et al. 2010, Fatourou and Kallimanis 2012]. This approach, however, does
not scale in general. A fourth approach partitions the memory among the threads
such that each location (more specifically, each cache line) can be written by only
a single thread. This avoids the cycling-of-cache-lines problem: Each cache line
alternates between the designated writer and a set of parallel readers. Such parti-
tioning, however, severely limits the sorts of algorithms that can be used. Finally,
the test and test-and-set operation can be used to significantly reduce contention
in some settings [Rudolph and Seagall 1984, Mellor-Crummey and Scott 1991a,
Mellor-Crummey and Scott 1991b, Mellor-Crummey and Scott 1991c]. While con-
tention can still arise from multiple threads attempting to initially set the location,
any subsequent thread will see the location set during its “test” and drop out with-
out performing a test-and-set. This operation has limited applicability, however, so
the aim of this chapter is to identify a more generally applicable operation with the
same contention-reducing benefits.

Throughout the chapter, the term sharing will be used to indicate that a location
is shared among many parallel operations, and contention to indicate a perfor-
mance problem due to such sharing.

Priority Update
This chapter studies a generalization of the test-and-set operation, which we call
priority update. A priority update takes as arguments a memory location, a new value,
and a >p function that enforces a partial order over values. The operation atomically
compares the new value with the current value in the memory location, and writes
the new value only if it has higher priority according to >p. At any (quiescent) time a



6.1 Introduction 153

Figure 6.1 Impact of sharing on a variety of operations. Times are for 5 runs of 100 million
operations to varying number of memory locations on a 40-core Intel Nehalem with
hyper-threading (log-log scale). Since the number of operations is fixed, fewer locations
implies more operations sharing those locations.

location will contain the highest priority value written to it so far. A test-and-set is
a special case of priority update over two values—the location initially holds 0, the
new value to be written is 1, and 1 has a higher priority than 0. The priority write
operation discussed in Section 3.3 is also a special case of priority update, where the
maximum (or minimum) value written has priority. The priority update, however,
can also be used when values do not fit in a hardware “word”. For example the
values could be character strings represented as pointers to the string stored in a
memory word, or complex structures where a subfield is compared. The operation is
therefore more general than what could be reasonably expected to be implemented
in hardware.

This chapter provides evidence that the priority update operation serves as a
good abstraction for programmers of shared memory machines because it is useful
in many applications on shared data (often in a way that is deterministic, guaran-
tees progress, and avoids serial bottlenecks), and when implemented appropriately
performs reasonably well under any degree of sharing. This latter point is illustrated
in Figure 6.1. Each data point represents the time for 5 runs of 108 operations each
on a 40-core machine. The x-axis gives the number of distinct locations being oper-
ated on—hence the leftmost point is when all operations are on the same location
and at the right the graph approaches no sharing. (More details on the setup and
further experimental comparisons are described in Section 6.3.1.) As can be seen,
when there is a high degree of sharing (e.g., only 8 locations) the read, the test-
and-set, and the priority update (with random values) are all over two orders of
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magnitude faster than the other operations. One would expect the read to do well
because the cache lines can be shared. Similarly, the test-and-set does well because
it can be implemented using a test and test-and-set (as described above) so that un-
der a high degree of sharing only the early operations will attempt to set a location,
and the rest will access the already set location in shared mode.

The priority update can be implemented in software with a read, a local com-
parison, and a compare-and-swap. The compare-and-swap is needed only when the
value being written is smaller than the existing value. Thus, when applied with ran-
dom values (or in a random order) most invocations of priority update only read
shared data, which is why the running time nearly matches the read curve, and is
effectively the same as the test-and-set curve. The curve shows that the high sharing
case is actually the best case for a priority update. This implies the user need not
worry about contention, although, as with reads, the user might still need to worry
about the memory footprint and whether it fits in cache—the steps in the curve
arise each time the number of locations no longer fits within a cache at a particular
level.

Applications of Priority Updates
Priority updates have many applications. Here we outline several such applications
and go into significantly more detail in Sections 6.4 and 6.5. The operation can be
used directly within an algorithm to take the minimum or maximum of a set of
values, but it also has several other important properties. Due to the fact that the
operation is commutative [Weihl 1988, Steele Jr. 1990] (order does not matter) in the
common case when >p is a total order, it can often be used to avoid nondeterminism
when sharing data. By assigning threads unique priorities it can also be used to
guarantee (good) progress by making sure at least the highest priority thread for
each location succeeds in a protocol.

Priority updates are used in the deterministic reservations framework, intro-
duced in Section 3.4.3, to guarantee the same order of execution of the iterates in
a for-loop as the sequential order every time. Furthermore, it guarantees progress
since at least the earliest iterate will always succeed (and often many iterates suc-
ceed in parallel, if different locations are used). It is also used in BFS, as described
in Section 3.4.4.

Priority updates on locations can also be used to efficiently implement a more
general dictionary-based priority update where the “locations” are based on keys.
Each insert consists of a key-value pair, and updates the data associated with the
key if either the key does not appear in the dictionary or the new value has higher
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priority. The deterministic hash table described in Chapter 5 uses priority updates
for determinism.

This chapter describes algorithms for several important problems using prior-
ity updates. The chapter studies the performance of several of these algorithms
including BFS, Kruskal’s minimum spanning forest algorithm, a maximal match-
ing algorithm, and a dictionary-based remove duplicates algorithm. Timing results
for inputs with high sharing are presented, and for BFS and remove duplicates,
the experiments compare with versions that use writes instead of priority updates
and show that the versions using priority update are significantly faster under high
sharing.

Contributions
In summary, the main contributions of this chapter are as follows. First, this
chapter generalizes and unifies special cases of priority update operations from
the literature, and is the first to call out priority update as a key primitive in
ensuring that having many threads updating a few locations does not result in
cache/memory system performance problems. Second, the first comprehensive
experimental study of priority update versus other widely-used operations under
varying degrees of sharing is presented, demonstrating up to orders of magnitude
differences on modern multicores from both Intel and AMD. The first analytic
justification for priority update’s good performance is also given. Third, several
examples of algorithms for a number of important problems that demonstrate a
variety of ways to benefit from priority updates are presented. Finally, this chapter
presents the first experimental study demonstrating the (good) performance of
priority update algorithms on inputs that result in a high degree of write sharing,
extending the experimental studies in Chapters 3–5 by considering a wider range
of degrees of sharing, running on more cores, and providing a comparison to
implementations using alternative primitives.

6.2 Priority Updates
A priority update takes as arguments a memory location containing a value of type
T , a new value of type T to write, and a binary comparison function >p: T × T →
bool that enforces a partial order over values. The priority update atomically com-
pares the two values and replaces the current value with the new value if the new
value has higher priority according to >p. It does not return a value. In the sim-
plest form, called a write-with-min (or write-with-max), T is a number type, and the
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1 procedure PRIORITYUPDATE(addr , newval , >p)
2 oldval = ∗addr
3 while newval >p oldval do
4 if CAS(addr , oldval , newval) then
5 return
6 else
7 oldval = ∗addr

Figure 6.2 Priority update implementation.

comparison function is standard numeric less-than (or greater-than). The imple-
mentation in this chapter, however, allows T to be an arbitrary type with an arbi-
trary comparison function. When >p defines a total order over T , priority updates
commute—i.e., the value ending up in the location will be the same independent
of the ordering of the updates.

A priority update can be implemented as shown in Figure 6.2 using a compare-
and-swap (CAS). Because CAS (on a single word, or sometimes a double length
word) is provided as a hardware atomic on modern machines, no new hardware
primitives are required. If the value does not “fit” in a word, one can use a pointer
to the actual data being compared (a pointer certainly fits in a word), so the im-
plementation can easily be applied to a variety of types (e.g., structures with one
of the fields being compared, variable-length character strings with lexicographic
comparison, or even more complex structures). One should distinguish the com-
parison function >p defining the partial order over the values from the “compare”
in compare-and-swap, which is a comparison for equality and is applied to the in-
direct representation of the value (e.g., the bits in the pointer) and not the abstract
type. The object is assumed to not be mutated during the operation so that equality
of the indirect representation (pointer) implies equality of the abstract value.

In the best case, the given implementation of priority update completes imme-
diately after a single application of the comparison function, determining that the
value already stored in the location has higher priority than the new value. Oth-
erwise, an update attempt occurs with the compare-and-swap operation. (Because
the implementation uses CAS to attempt an update, we will also refer to this as a
CAS attempt.) If successful, we say that an update occurs. If not, the priority update
retries, completing only when the value currently stored has an equal or higher
priority than the new value, or when a successful update occurs.

As noted earlier, a test-and-set is a special case of priority update over two
values. A write-once operation is another special case of a priority update where
the contents of a location starts in an “empty” state and once one value is written
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to the location, making it “full”, no future values will overwrite it. As with test-and-
set there are just two priorities—empty and full. A third special case is the priority
write from the PRAM literature [JaJa 1992]—a synchronous concurrent write from
the cores that resolves writes to a common location by taking the value from the
highest (or lowest) numbered core. This can be implemented by using pointers to
(core number, value) pairs: addr contains a pointer to the current pair, newval is
a pointer to a new pair, and >p chases the two pointers and compares the core
numbers. Note that both test-and-sets and PRAM-style priority writes commute
because the values form a total order, but that write-once operations do not because
there are many values with equal priority and the first one that arrives is written.

Although the version of priority update described does not return a value, it is
easy to extend it to return the old value stored in the location. Indeed in one of the
applications in this chapter makes use of this feature.

6.3 Contention in Shared Memory Operations
This chapter distinguishes between sharing and contention. Sharing means oper-
ations that share the same memory location (or possibly some other resource)—for
example, a set of instructions reading a single location, and contention means some
form of sequential access to a resource that causes a bottleneck. Contention can be
a major source of performance problems on parallel systems while sharing need
not be. A key motivation for the priority update operation is to reduce contention
under a high degree of sharing.

Although contention can be a problem in any system with sequential access
to a shared resource, the problem is amplified for memory updates on cache
coherent shared memory machines because of the need to acquire a cache line
in exclusive mode. In the widely used MESI (Modified, Exclusive, Shared, Invalid)
protocol [Papamarcos and Patel 1984] and its variants, a read can acquire a cache
line in shared mode and any number of other caches can simultaneously acquire
the line. Concurrent reads to shared locations therefore tend to be reasonably
efficient. In fact since most machines support some form of snooping, reading
a value that is in another cache can be faster than reading from memory.

On the other hand, in the MESI protocol (and other similar protocols imple-
mented on current multicores) concurrent writes can be very inefficient. In partic-
ular, the protocol requires that a cache line be acquired in exclusive mode before
making an update to a memory location. This involves invalidating all copies in
other caches and waiting for the invalidates to complete. If a set of caches simulta-
neously make an update request for a location (or even different locations within a
line) then the cache line will need to be acquired in exclusive mode by the caches



158 Chapter 6 Priority Updates: A Contention-Reducing Primitive for Deterministic Programming

one at a time, doing a dance around the machine. The cost of each acquisition is
high because it involves communicating with the cache that has the line in exclu-
sive or modified state, waiting for it to complete its operation, getting a copy of
the newly updated line, and updating any tables that keep track of ownership. If
the cores make a sequence of requests to a small set of locations then all requests
could be rotating through the caches. Because of the cost of the protocol, this can
be much more expensive than simply having one core do all the writes. On a system
with just 8 cores this can be a serious performance bottleneck, and on one with 40
cores it can be crippling, as the experiments later in this section demonstrate.

If there are a mix of read and write requests to a shared location then the effi-
ciency will fall in between the all-read and all-write cases, depending on the ratio
of reads to writes as well as more specifics about how the protocol is implemented.
The experiments in this section show that for this case there is actually a signifi-
cant difference in performance between the protocols implemented on the AMD
Opteron and the Intel Nehalem multicores.

This section studies the cost of write sharing among caches (cores) on modern
multicores. Along with other operations, we study the cost of a priority update
and give both experimental evidence (Section 6.3.1) and theoretical justification
(Section 6.3.2) of its efficiency.

6.3.1 Experimental Measurements of Contention
This section experimentally studies the cost of contention under varying degrees of
sharing on two contemporary shared memory multicores (from Intel and AMD) for
a variety of memory operations—priority update (using write-with-min), test-and-
set, fetch-and-add using CAS, fetch-and-add using the x86 assembly instruction
xadd, load-and-CAS, (plain) write, and read.1 The experiments compare the per-
formance of priority update (write-with-min) when values are random versus when
values arrive in a decreasing order (the worst case). The experiments also study the
performance of priority update where the comparison is on character strings.

The experiments are performed on the 40-core (with two-way hyper-threading)
Intel machine and the 64-core AMD machine described in Section 2.7. The pro-
grams were written in Cilk Plus, and compiled with the icpc compiler on the Intel
machine and the g++ compiler on the AMD machine.

In the experiments, 108 operations are performed on a varying number of ran-
dom locations. Two sets of experiments were performed on each machine. The
first set of experiments choose the locations randomly in [0, x) where x is the to-

1. The read includes a write to local memory to get around compiler optimizations.
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tal number of locations written to and locations 0 through x appear contiguously
in memory. The second set of experiments choose the locations randomly from
{h(i) : i ∈ [0, x)} where h(i) is a hash function that maps i to an integer in [0, 108).
In the first set of experiments, there will be high false sharing due to concurrent
writing to locations on the same cache line. The second set is supposed to represent
a more common usage of priority update, which is a set of writes to a potentially
large set of locations but for which there is heavy load at a few locations. There is
significantly less effect of false sharing in the second set since the heavily loaded
locations are unlikely to be on the same cache line.

Figure 6.3(a) shows that with high sharing (low number of total locations) and
high false sharing, priority update outperforms plain write, both versions of fetch-
and-add, and load-and-CAS by orders of magnitude. Due to an Intel anomaly (de-
scribed in the Appendix of [Shun et al. 2013]), there is a spike in the running time
for priority update between 256 and 8192 locations, but even with this anomaly,
priority update still outperforms plain write, fetch-and-add, and load-and-CAS by
an order of magnitude. This anomaly disappears when the false sharing effect is
reduced, as shown in Figure 6.3(b). Figure 6.3(b), which is a repeat of Figure 6.1,
also shows that the performance of priority update is very close to the performance
of both test-and-set and read. For writing to 108 locations (the lowest degree of
sharing), priority update is slightly slower than fetch-and-add, and test-and-set is
slightly slower than write (even though intuitively fetch-and-add does more work
than priority update and write does more work than test-and-set). We conjecture
this behavior to be due to the branch in both priority update and test-and-set ob-
structing speculation on the hardware compare-and-swap instruction. Note that
xadd is consistently faster than implementing a fetch-and-add with a CAS, because
the CAS could fail. Also, we noticed that xadd performs about the same as a CAS
without a load. Preliminary experiments on a 32-core Intel Sandy Bridge machine
yielded results that were qualitatively similar to Figures 6.3(a) and 6.3(b).

Figures 6.3(c) and 6.3(d) show the same two experiments on the AMD machine.
Note that even with high false sharing, the anomaly for the priority update operation
observed for the Intel machine does not appear for the AMD machine. Except for
this anomaly, the performance on the Intel machine is better than the performance
on the AMD machine.

Note that for priority update, the relative order of values over time greatly im-
pacts the number of update attempts and hence the cost. In the above experiments,
the priority update uses random values, which is also the setting that will be stud-
ied in the theoretical analysis in Section 6.3.2. The worst case is when the values
have increasing priorities over time, as this incurs the most update attempts. With
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(a) (b)

(c) (d)

Figure 6.3 Impact of sharing. Times are for 5 runs of 100 million operations to varying number
of memory locations on Intel and AMD machines under high and low degrees of
false sharing (log-log scale). Since the number of operations is fixed, fewer locations
implies more operations sharing those locations. (a) High false sharing on 40-core
Intel machine; (b) Low false sharing on 40-core Intel machine; (c) High false sharing
on 64-core AMD machine; (d) Low false sharing on 64-core AMD machine.

write-with-min, for example, this case arises when values occur in decreasing or-
der. Figure 6.4 shows that the performance of this case (labeled “priority update
(decreasing)”) is much worse than the random case.

Figure 6.5 shows the performance of priority update, where the comparison is
on character strings based on the trigram distribution of the English language (the
trigrams input in Section 6.5). This uses the more general form of priority update
as the comparison function requires dereferencing the pointers to the strings. The
experiment also compares the performance to using plain writes and write-once
to update the values at the shared locations. Note that no pointer dereferencing
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Figure 6.4 Comparing priority update (write-with-min) on random values vs. decreasing values.
Times are for 5 runs of 100 million operations to varying number of memory locations
with low false sharing on the 40-core Intel machine with hyper-threading (log-log scale).

Figure 6.5 Priority update on character strings based on trigram distribution of the English
language. Times are for 5 runs of 100 million operations to varying number of memory
locations with low false sharing on the 40-core Intel machine with hyper-threading
(log-log scale).

needs to be done in these versions—plain write just overwrites the pointer at the
location, and write-once writes the pointer to the location only if it is empty. Similar
to the performance on integer values shown in Figure 6.3, the performance of the
version using plain writes is an order of magnitude worse than the priority update
and write-once versions. The write-once version is faster than the priority update
version, and the gap is more significant here (compared to priority update vs. test-
and-set in Figure 6.3) due to the cost of pointer dereferencing in the priority update.
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6.3.2 Priority Update Performance Guarantees
As discussed in Section 6.2, the priority update is a further generalization of the test-
and-set and write-once operations. Unlike those operations, in a priority update a
value can change multiple times instead of just once. However, if the ordering of
operations is randomized, then the analysis in this section shows that the number
of updates is small, with most invocations only reading the shared data. This sec-
tion begins with a straightforward analysis of sequential updates and then extends
the analysis to a collection of parallel priority updates. There are two main chal-
lenges in the parallel analysis: developing a cost model that reasonably captures
the read/write asymmetry in the coherence protocol, and coping with the fact that
different access delays cause operations to fall out of sync.

This section considers priority update operations where >p defines a total order
over the value domain T . Values can be repeated, so that the number of operations
n can be much larger than the number of priorities or the size of T . A collection
of priority update operations is said to have φ occurring priorities if the values in
those operations fall into exactly φ distinct priorities according to >p.

Let us begin with the simplest case of a sequence of priority updates, performed
in random order. Here, all update attempts succeed as there are no concurrent
CAS operations. This simple lemma shows that the value stored in the location is
updated very few times.

Lemma 6.1 Consider a random sequential ordering on a collection of priority update opera-
tions to a single location, with φ occurring priorities. Then Hφ updates occur in
expectation and O(ln φ) updates occur with high probability (in φ), where Hi ≈ ln i

is the i’th harmonic number.

Proof Let S be the subsequence of priority updates that are the first occurrences in the
original sequence of a distinct priority—these are the only operations that could
possibly perform an update. Let Xk be an indicator for the event that the k’th oper-
ation in S performs an update. Then Xk = 1 with probability 1/k, as it updates only if
its priority is the highest among the first k operations in S. The expected number of
updates is then given by E[X1 + . . . + Xφ] = E[X1] + . . . + E[Xφ] = ∑φ

k=1 1/k = Hφ.
Applying a Chernoff bound [Motwani and Raghavan 1995] implies that the proba-
bility that more than αHφ updates occur is at most (eα−1/αα)ln φ < 1/φα for a large
enough constant α.

Lemma 6.1 can be generalized to provide bounds on the running time when
performing priority updates in parallel under two models. In either model, assume
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that if multiple concurrent CAS’es are executing an update attempt, the one that
“wins” and successfully updates the value is independent of the data being written.
The analysis also assumes that the comparison function >p takes constant time,
although it can be easily extended to non-constant time comparison functions.

Assume that a collection of n priority updates are ordered2 and have values
corresponding to a random permutation of the set {1, . . . , n}, with 1 being the
highest priority and each location initialized to a special lowest-priority value ∞.
This is equivalent to randomly ordering the priority updates and then assigning
each value to its relative rank in the total order. While the analysis assumes that
the values are distinct, the bounds can be readily sharpened to take into account
the actual number of occurring priorities, as in Lemma 6.1. Note that the actual
values of the priority updates do not matter, as long as the order of the priority
updates is randomized.

The models in this section are based on a simplified cache-coherence protocol,
where a cache line can be in invalid, shared, or exclusive mode. A core performing
a CAS requests the relevant cache line in exclusive mode, thereby invalidating the
line in all other caches, and performs the CAS.3 When reading a cache line that is
invalid in the local cache, the core first requests the line in shared mode and then
performs the read. A constant time of c is charged for acquiring the line in either
mode, but some acquisitions may serialize due to conflicts depending on which
model is adopted.

In the fair model, outstanding cache-line requests to a particular memory loca-
tion are viewed as ordered in a queue. New requests are added to the end of the
queue. When a CAS (exclusive request) is serviced, no other operations may pro-
ceed. When a read is processed, all other reads before the next CAS in the queue
may be serviced in parallel, and if the cache line is modified, c time is charged for
acquiring the line (the first reader puts the line in shared mode).

In the adversarial model, operations are not queued. Instead, an adversary
may arbitrarily order any outstanding CAS and read operations (e.g., based on the
locations being written), but without considering the values being written.

2. Cores have disjoint subsequences of this ordering, determined at runtime by the scheduler.

3. To clarify, once a core is granted exclusive mode, the model assumes that the CAS completes
immediately. A priority update, however, consists of two steps—a read and a CAS—and while the
line could be invalidated in between those two steps, the experiments in this chapter on both Intel
Nehalem and AMD Opteron multicores support assuming it is not.
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Bounds for the Fair Model
To analyze priority updates to a single location in the fair model, operations are
viewed as being processed in rounds induced by the queue ordering. Each round
processes p operations, one per core, which may be either of the two steps of a
priority update: a read or a CAS.4 More precisely, let vj denote the value stored at the
start of round j . For any core performing the read step, the analysis pessimistically
assumes that it observes the value vj . The core then compares its value to vj , and
commits to either performing a CAS in round j + 1 or skipping the CAS attempt
step and proceeding to the next operation (i.e., issuing another read). Since a CAS in
round j + 1 is based on the value observed in round j , there is at most 1 successful
CAS per round. All reads between consecutive CAS attempts complete in c time,
so those reads can be charged against the preceding CAS attempt. The goal is to
bound the number of unsuccessful CAS attempts.

Initially, v1 = ∞. Every core issues a read in round 1, compares its value against
∞, and then issues a CAS in round 2 comparing against v1 = ∞. Because the CAS
attempts are serialized, the time to complete round 2 is �(cp). Exactly one core (the
first one in the queue) succeeds in round 2, so the value v3 observed at the start of
round 3 is one drawn uniformly at random from {1, . . . , n}.

Lemma 6.2 The expected total time for performing n randomly ordered priority updates to a
single location using p cores under the fair model is O((n/p) + c ln n + cp).

Proof By Lemma 6.1, there are O(ln n) successful updates, so the goal is to bound the
number of unsuccessful CAS attempts. The analysis starts by bounding the number
of priority updates that include at least one failed CAS.

An unsuccessful CAS occurs only if a successful CAS is made in the same or
preceding round (which is bounded by O(ln n) in Lemma 6.1). Define phase i to
be the set of rounds during which (a) the value stored in the location falls between
n/2i−1 and n/2i (recall that the values are assumed to be the relative ranks), and (b)
a successful CAS occurs. The goal is to bound the number of new priority updates
during these rounds that perform a (failed) CAS attempt. First, observe that phase
i consists of O(1) rounds in expectation, as each successful update has probability
1/2 of reducing the value below the threshold of n/2i. Moreover, in each of these
rounds, each core has probability at most 1/2i−1 of performing a priority update
of a value below n/2i−1. Summing across all cores and all rounds in the phase, the

4. Here, the analysis assumes that the type fits in a word. The analysis readily extends to the more
general case where >p must chase pointers.
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expected number of (failed) priority updates during phase i is at most O(p/2i−1).
Summing across all phases, the total number of such failed priority updates is O(p).

A failed priority update may retry several times, but a random failed update
has probability 1/2 of retrying through each subsequent phase because the value
stored at the location is halved. Thus, there are an expected O(1) retries per priority
update that make any CAS attempt. Combining with the above gives a total of O(p)

unsuccessful CAS attempts.
Each of the O(ln n) successful and O(p) unsuccessful CAS’es take c time. As

for the reads, any of the reads that must reacquire a cache line (taking c time) can
be charged to the preceding CAS attempt, only doubling the time. The first read
takes c time, and the remaining reads and all local computation take O(n/p) time,
completing the proof.

The above results are for performing priority updates to a single location. Let
us now analyze the time for multiple locations where cores apply operations to
locations chosen uniformly at random from {1, . . . , m}, where m is the number of
locations. Let ni be the number of operations at the i’th location. Here, the analysis
assumes that all locations can fit simultaneously in cache and that there are no
false-sharing effects. The difficulty here is that the round analysis only applies to
each individual location—the model has a separate queue for each location, and
simply multiplying the CAS-components of the bound by m is too pessimistic.

Theorem 6.1 The expected total time for performing n randomly ordered priority updates to m

randomly chosen locations under the fair model is O((n/p) + cm ln(n/m) + (cp)2).

Proof According to the analysis of Lemma 6.2, there are at most O(ln(ni) + p) CAS at-
tempts when p cores perform O(ni) updates to location i. Increasing the number of
locations only decreases the number of CAS failures, since not all cores choose the
same location. So a bound of O((n/p) + cm ln(n/m) + cpm) follows by maximizing
the logarithmic term (setting ni = n/m for all i) and multiplying by m locations. This
bound is pessimistic, so the analysis will improve it for m > p. The O(cm ln(n/m))

term seems inherent because each update invalidates the line in all other caches,
so the time to reload those lines later is O(cpm ln(n/m)) (which is divided across p

cores). The goal is to reduce the O(cpm) term.
Consider the round analysis as in Lemma 6.2 applied to a single location. The

main question is how many (unsuccessful) CAS’es are launched on this location
during a round containing a successful CAS. The maximum duration of a round
is O(cp) if every core performs a CAS attempt. Each core may thus sample up
to O(cp) locations within a round (each sample is independent from the rest),
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giving a probability of O(cp/m) of choosing this location in any of those attempts.
Summing across all cores, the expected number of priority updates to this location
per round is O(cp2/m), only some of which may actually perform a CAS attempt. As
in Lemma 6.2, the likelihood of performing a CAS attempt decreases geometrically
per phase, so the total number of failed CAS’es on this location is O(cp2/m).
Summing across all locations gives O(cp2) failed attempts, each taking c time.

Bounds for the Adversarial Model
Let us now analyze priority updates under the adversarial model. Recall that in the
adversarial model, an adversary may order any outstanding CAS and read opera-
tions arbitrarily (e.g., based on the locations being written), but without considering
the actual values being written.

Lemma 6.3 The total time for performing n randomly ordered priority updates to a single
location using p cores under the adversarial model is O((n/p) + cp ln n) with high
probability.

Proof By Lemma 6.1, the number of random updates is O(ln n) with high probability. The
analysis now shows that the number of attempts is at most O(p ln n), which implies
the lemma. A CAS is said to fail due to the i’th update if the old value conditioned
on in the CAS is that of the (i − 1)’st update. There can be at most 1 CAS failure due
to the i’th update on each core, as any subsequent priority update on the same core
would read the i’th update and hence only fail due to a later update. There can thus
be at most p − 1 CAS failures per update, for a total of O(p ln n) CAS attempts. The
high probability in this lemma is the same as in Lemma 6.1.

In the adversarial model, the bound of Lemma 6.3 generalizes to O((n/p) +
cpm ln(n/m))—for n operations the time for reads is still O(n/p); now each location
i can take O(cp ln(ni)) time, leading to a total contribution of O(

∑m
i=1 cp ln(ni))

which is maximized when ni = n/m for all i.

Theorem 6.2 The total time for performing n randomly ordered priority updates to m randomly
chosen locations under the adversarial model is O((n/p) + cpm ln(n/m)) with high
probability.

For reasonably sized n, the bounds in this section (under both models) are much
better than the bounds for operations that always have to access a cache line in
exclusive mode. Such operations will run in O(cn) at best assuming either the fair or
adversarial model—all accesses will be sequentialized and will involve a cache miss.
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6.4 Applications of Priority Update
Priority updates are well-suited to a widely applicable two-phase programming
style, which we call update-and-read in its general form, and reserve-and-commit in
a special case. An update-and-read program alternates two types of phases. During
an update phase, multiple update attempts occur on some collection of objects,
using either a priority update, a plain write, or another write primitive. During
the subsequent read phase, the value that was successfully recorded is read. Using
priority updates or write-once operations during the update phase is desirable to
achieve better performance (see Section 6.5). Moreover, the commutative nature of
priority updates implies that the values stored at completion of the read phase are
deterministic.

When operating on a collection of interacting objects (e.g., vertices of a graph),
where each object seeks to update a “neighborhood” of objects, a reserve-and-
commit style is more appropriate. In the reserve (update) phase, each object in
parallel attempts to reserve the neighborhood of objects that it would read from
or write to. In the commit (read) phase, each object in parallel checks whether it
holds a reservation on its neighborhood, and if so, performs the desired operations.
There should be a synchronization point between the reserve and commit phases,
guaranteeing that commits and reserves cannot occur concurrently with each other.
Since reservations are exclusive (indeed reservations are acting as mutual-exclusion
locks), this approach guarantees that each commit behaves atomically. As with
the generic update-and-read, the reservations can be implemented using either a
priority update, write-once, or plain write. The priority update is more desirable
both for performance and to guarantee forward progress when multiple objects
are reserved. The technique of deterministic reservations, described in Section 3.4.3,
extends this reserve-and-commit abstraction to an entire parallel loop.

If used correctly and employing a priority update, this reserve-and-commit style
can be thought of as a special case of transactional programming, but one in which
forward progress guarantees are possible. The reserve phase essentially specula-
tively attempts a “transaction,” and the commit phase commits transactions that
do not interfere. By using priority updates, there is a total order over reservations,
guaranteeing that at least one reserver (i.e., the one with the highest priority) is able
to commit. This forward-progress guarantee does not apply when using a plain write
or a write-once, as it is possible that no reserver “wins” on all of its neighbors.

Note that because the highest priority update succeeds for each location, pri-
ority updates often enable considerable parallel progress in each update-and-read
phase, yielding good parallel speed-ups (see Section 6.5). For example, with deter-
ministic reservations, often �(p) iterates succeed in parallel.
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The remainder of this section describes several algorithms that use priority
update, most of which employ some form of update-and-read. An exception is con-
nected components, where a priority update is used to asynchronously update val-
ues. The definitions of the problems are described in Section 2.6. In some of these
cases (e.g., breadth-first-search and maximal matching), several write primitives
maintain correctness of the algorithms and priority updates are just desirable for
performance. In others (e.g., connected components, minimum spanning forest,
and single-source shortest paths), the priority update is necessary for correctness
of the given algorithm.

6.4.1 Breadth-First Search (BFS)
Recall the parallel BFS algorithm discussed in Section 3.4.4 that proceeds in rounds,
during which all vertices on the frontier (initialized to contain only the source
vertex) attempt to place all of their neighbors on the next frontier. To guarantee
that each vertex is added only once, each round is implemented with an update-and-
read style. During the update phase, a frontier vertex writes its ID to its neighbors.
During the read phase, each frontier vertex checks to see if it successfully reserved
its neighbor, and if so it adds the neighbor to the next frontier. Since only one
frontier vertex will successfully reserve a neighbor, there will be no duplicates on
the next frontier.

This BFS algorithm may be correctly implemented by using priority updates
(write-with-min), write-once, or plain writes, with plain writes being less efficient
(see Section 6.5) and priority updates guaranteeing a deterministic BFS-tree output
(this is the version described in Section 3.4.4).

This chapter also uses a version of deterministic BFS that has only one phase
per round and returns the same BFS tree as a sequential implementation. This
version uses a priority update on pairs (index, parent), where index is a vertex’s
parent’s order in a sequential BFS traversal, and parent is the vertex’s parent’s ID.
The priority update does a min-comparison only on the index field of the pair. All
frontier vertices perform priority updates to neighbors and if it successfully updates
the neighbor’s location, it adds the neighbor to the next frontier in the same phase.
Since this implementation only has a single phase, it allows for duplicate vertices
on the frontier (multiple priority updates may succeed on the same neighbor). The
form of priority update used here is more general than write-with-min.

6.4.2 Maximal Matching
The maximal matching (MM) problem can be solved with deterministic reserva-
tions using a priority update (write-with-min), as discussed in Section 4.10. The
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algorithm can also be implemented using write-once or plain writes, but forward
progress is not guaranteed because it is possible that no edge succeeds in reserving
both of its endpoints in an iteration.

6.4.3 Connected Components
A simple vertex-based algorithm for connected components assigns each vertex a
unique ID at the start, and in each iteration every vertex sets its ID to the minimum
of all its neighbors’ IDs. The algorithm terminates when no vertex’s ID changes in
an iteration. In each iteration, each vertex performs a priority update (write-with-
min) to all of its neighbors’ IDs. This is an example of using priority update to
guarantee the correctness of an algorithm, and where the priority update yields
a remarkably simple solution. The Ligra graph processing framework that will be
described in Chapter 7 uses this algorithm.

6.4.4 Minimum Spanning Forest
Most minimum spanning forest (MSF) algorithms begin with an empty spanning
forest and grow the spanning forest incrementally by adding “safe” edges (those
with minimum weight crossing a cut) [Cormen et al. 2009]. Kruskal’s algorithm
considers edges in sorted order by weight and iteratively adds edges that connect
two different components, using a union-find data structure to query the compo-
nents. This algorithm can be parallelized by accepting an edge into the MSF if
no earlier edge in the sorted order is connected to the same component. As de-
scribed in Section 3.4.4, this can be implemented using deterministic reservations
with a priority update (write-with-min) on the edge weight (and breaking ties by
edge ID) if it joins separate components. As with connected components, the pri-
ority update is required for correctness here, otherwise the edge added may not
be a safe edge. Boruvka’s algorithm is similar to Kruskal’s except that Kruskal’s
sorts all edges initially and employs a union-find data structure over connected
components, whereas Boruvka’s algorithm uses contraction to reduce connected
components.

6.4.5 Hash-based Dictionary
By using priority updates to a single location, it is possible to implement a dictio-
nary that supports insertions of (key, value)-pairs such that the values of multiple
insertions of the same key will be combined with a priority update. This can be
thought of as a generalization of priority updates in which the “locations” are not
memory addresses or positions in an array, but instead are indexed by arbitrary
(hashable) keys. Applications of such key-based priority updates include making
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reservations in a dictionary instead of directly addressing memory as discussed
in Section 5.5. Another application is to remove duplicates in a prioritized and/or
deterministic way, as discussed in Sections 3.4.4 and 5.5.

6.4.6 Other Applications
Priority updates are applicable to other problems whose solutions are implemented
using deterministic reservations (see Chapters 3 and 4). In most of these cases
(as with maximal matching), write-once and plain write implementations are cor-
rect, but because multiple reservations are required to commit, priority updates
are necessary to guarantee forward progress. Moreover, the priority update version
guarantees a consistent, deterministic output once the random numbers are fixed.
A priority update (write-with-min) can be naturally applied to a single-source short-
est paths implementation to asynchronously update potentially shorter paths to
vertices (this is the implementation used in Ligra [Shun and Blelloch 2013], and de-
scribed in Section 7.4.6). A write-once or plain write implementation would not be
correct here, since the shortest path to each vertex must be stored. Priority updates
are also useful in other parallel algorithms that, like deterministic reservations,
impose a random priority order among elements [Blelloch et al. 2012].

6.5 Experiment Study: Applications
The experiments on applications use the Intel Nehalem machine setup described
in Section 6.3.1. Sequential programs were compiled using the g++ compiler with
the -O2 flag. For the breadth-first search, maximal matching, minimum spanning
forest, and remove duplicates applications, experiments were run on inputs that
exhibit varying degrees of sharing. The experimental setup for each of applications
is described in more detail below. All times reported are based on the median of
three trials.

The inputs used for the graph algorithms are shown in Table 6.1. Because in the
algorithms a vertex can only be simultaneously processed by its neighbors, graphs
with low degree overall exhibit low sharing while graphs containing some vertices
of high degree can exhibit high sharing (depending on the application). 3d-grid is
a grid graph in 3-dimensional space. Every vertex has six edges, each connecting it
to its two neighbors in each dimension, and thus is a low-sharing graph. random-
local is another low-sharing graph in which every vertex has five undirected edges to
neighbors chosen randomly where the probability of an edge between two vertices
is inversely correlated with their distance in the vertex array (vertices tend to have
edges to other vertices that are close in memory). The rMat graph is a graph
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Table 6.1 Inputs for graph applications

Number of Number of
Input Vertices Directed Edges Sharing Level

3d-grid 107 6 × 107 Low

random-local 107 108 Low

rMat 224 108 Medium

4-comb 2.5 × 107 108 High

exponential 5 × 106 1.1 × 108 High

4-star 5 × 107 108 High

Figure 6.6 k-comb graph (used for BFS experiments to measure varying degrees of sharing).

with a power-law distribution of degrees generated using the algorithm described
in [Chakrabarti et al. 2004] with parameters a = 0.5, b = c = 0.1, d = 0.3. The k-comb
graph is a three layered graph (see Figure 6.6) with the first layer containing only the
source vertex r , second layer containing n − k − 1 vertices and third layer containing
k vertices. The source vertex has an edge to all vertices in the second layer, and
each vertex in the second layer has an edge to a randomly chosen vertex in the third
layer. There are a total of 4(n − k − 1) directed edges in this graph. The experiments
use varying values of k to model concurrent operations to k random locations. The
exponential graph has an exponential distribution in vertex degrees, and given a
degree, incident edges from each vertex are chosen uniformly at random. The 4-
star graph is a graph with four “center” vertices and each of the n − 4 remaining
vertices is connected to a randomly chosen center vertex (total of 2(n − 4) directed
edges).
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Figure 6.7 BFS times vs. number of cores on the 4-comb graph (log-log scale). (nd) indicates a
nondeterministic implementation.

In BFS, because many vertices may compete to become the parent of the same
neighbor, there can be high sharing. The k-comb graph illustrates this: In the
first round the source vertex r explores the n − k − 1 vertices in the second level,
without sharing; in the second round all of the second level vertices contend on
vertices in the third level (see Figure 6.6). The experiments models sharing on k-
comb graphs with different k values in order to observe the effect of write sharing
that was discussed in Section 6.3. The experiments use four versions of parallel BFS
which deal with reserving neighbors and placing them onto the frontier differently.
The first version uses a priority update with the minimum function (priorityUpdate-
BFS) in a two-phase update-and-read style; the second uses a priority update in a
single phase, produces the sequential BFS tree but allows for duplicate vertices
on the frontier (seqOrder-BFS); the third uses a test-and-set (writeOnce-BFS); and
the fourth uses a plain write (write-BFS) (see Section 6.4 for details). Figure 6.7
compares the four BFS implementations and the sequential BFS implementation
(serial-BFS) as a function of number of cores on the 4-comb graph. Table 6.2 shows
the running times for each of the BFS implementations on all of the graphs. The
(nondeterministic) test-and-set implementation is the fastest because only one
actual write is done per vertex. However, the priority update implementations do
not do much worse even on the high-sharing comb graph while the plain-write
implementation does poorly on it (even worse than serial-BFS). The two-phase
and one-phase priority update implementations are comparable in performance.
Figure 6.8 shows the 40-core running times of the different BFS implementations
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Figure 6.8 BFS times on different k-comb graphs with n = 2.5 × 107 on 40 cores with hyper-
threading (log-log scale). Lower k means higher sharing. (nd) indicates a nondetermin-
istic implementation.

using a family of k-comb graphs with varying k. A lower value of k corresponds to
higher sharing. Observe that for values of k up to around 10000, priorityUpdate-
BFS and seqOrder-BFS outperform write-BFS, by nearly an order of magnitude for
small k, and is almost as fast as writeOnce-BFS. For higher values of k where there is
little sharing, priorityUpdate-BFS and seqOrder-BFS are slower than writeBFS due
to the overhead of the test and compare-and-swap, however they have the benefit
of being deterministic. For values of k less than 2,000 (high sharing), write-BFS is
worse than even the sequential implementation.

For maximal matching and minimum spanning forest, the 4-star and exponen-
tial graphs exhibit high sharing. Table 6.2 shows the times for implementations
using priority updates and also serial implementations on the various graphs. Ob-
serve that even for the high-sharing graphs the implementations performs well (less
than 3 times worse than the lower-sharing inputs on 80 hyper-threads).

The input to the remove duplicates problem is a sequence of (key, value) pairs,
and the return value is a sequence containing a subset of the input pairs that
contains only one element of any given key from the input. The experiments use the
hash-based dictionary (and modifications of it) described in Chapter 5. For pairs
with equal keys, the pair that is kept is determined based on the value of the keys.
The sequence inputs are shown in Table 6.3. The allDiff sequence contains pairs
all with different keys. The

√
n-unique sequence contains

√
n copies of each of

√
n

unique keys. The allEqual sequence contains pairs with all the same key. Finally,
the trigrams sequence contains string keys based on the trigram distribution of the
English language. The values of the pairs are random integers. The level of sharing
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Table 6.3 Inputs for remove duplicates

Input Size Sharing Level

allDiff 107 Low√
n-unique 107 Medium

trigrams 107 Medium

allEqual 107 High

Figure 6.9 Remove duplicates times on the allEqual sequence on 40 cores with hyper-threading
(log-log scale). “40h” corresponds to 80 hyper-threads. (nd) indicates a nondetermin-
istic implementation.

at a location in the hash table is a function of the number of equal keys inserted at
the location, and hence sequences with many equal keys will exhibit high sharing,
whereas sequences with few equal keys will have low sharing. Experiments are
performed for three versions of the parallel hash table which deal with insertions of
duplicate keys differently. The first version, write-RemDups, always performs a write
of the value to the location when encountering a key that has already been inserted;
the second version, writeOnce-RemDups, does not do anything when encountering
an already inserted key (this is the nondeterministic linear probing hash table
described in Section 5.6); and the last version, priorityUpdate-RemDups, uses a
priority update with the minimum function on the values associated with the keys
when encountering duplicate keys (this is the deterministic linear probing hash
table from Chapter 5).

Figure 6.9 compares the performance of the various parallel implementations,
along with a serial implementation (serial-RemDups) on the sequence of all equal
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keys, which exhibits the highest sharing. The priority update and write-once im-
plementations scale gracefully with an increasing number of threads, while on
a large number of threads, the plain write implementation performs an order of
magnitude worse. The priority update and write-once implementations of remove
duplicates have similar performance, but the former also has the advantage that it
is deterministic. The timings for all of the inputs are shown in Table 6.2.



IIP A R T

LARGE-SCALE
SHARED-MEMORY
GRAPH ANALYTICS

Chapter 7 introduces Ligra, a lightweight graph processing framework for shared-
memory multicore machines, which makes graph traversal algorithms easy to write.
The framework has a simple data structure for representing a subset of vertices,
and two very simple routines, one for mapping over edges and one for mapping
over vertices. The algorithms expressed in Ligra are extremely simple and con-
cise. Furthermore, they get impressive parallel speedups on a modern multicore
machine and are significantly more efficient than previously reported results for
other graph frameworks using many more cores. Ligra is able to process the largest
publicly-available real-world graphs on just a single multicore machine. Chapter 8
integrates graph compression techniques into Ligra. The resulting system, called
Ligra+, reduces space usage, and surprisingly also improves parallel performance
compared to the original Ligra system. Ligra+ increases the sizes of graphs that can
be processed for a given memory budget, and also enables even larger graphs to be
processed on a single shared-memory machine.

The results in this part of the book have appeared in the following publications:

J. Shun and G. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared
Memory. Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pp. 135–146.

J. Shun, L. Dhulipala, and G. Blelloch. 2015. Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+. Proceedings of the IEEE Data Compression Conference
(DCC), pp. 403–412.





7Ligra: A Lightweight
Graph Processing
Framework for
Shared Memory

7.1 Introduction
There has been significant recent interest in processing large graphs due to their
applicability in studying social networks, the Web graph, networks in biology,
and unstructured meshes in scientific simulation. Prior to the work in this book,
several packages had been developed for processing such large graphs on parallel
machines including the parallel Boost graph library (PBGL) [Gregor and Lumsdaine
2005], Pregel [Malewicz et al. 2010], Pegasus [Kang et al. 2011], GraphLab [Low et al.
2010, Low et al. 2012], PowerGraph [Gonzalez et al. 2012], the Knowledge Discovery
Toolkit [Buluç and Gilbert 2011, Lugowski et al. 2012], GPS [Salihoglu and Widom
2012], Giraph [Giraph 2012], and Grace [Prabhakaran et al. 2012]. Motivated by
the need to process very large graphs, most of these systems (with the exception of
the original GraphLab [Low et al. 2010] and Grace) have been designed to work on
distributed-memory parallel machines.

This chapter studies Ligra, a lightweight interface for graph algorithms that is
particularly well suited for graph traversal problems. Such problems visit possibly
small subsets of the vertices on each step. The interface is lightweight in that it
supplies only a few functions, the implementation is simple, and it is fast.

Ligra is motivated in part by Beamer et al.’s recent work on a very fast BFS for
shared-memory machines [Beamer et al. 2011, Beamer et al. 2012]. They use a hy-
brid BFS which uses a sparse representation of the vertices when the frontier is
small and a dense representation when it is large. The Ligra interface supports hy-
brid graph traversal algorithms and for BFS, it achieves close to the same efficiency
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(time and space) as the optimized BFS of Beamer et al., and the Ligra code is much
simpler than theirs. In addition, this chapter applies the interface to many other ap-
plications including betweenness centrality, graph eccentricity estimation, graph
connectivity, PageRank, and single-source shortest paths.

Ligra is designed for shared-memory machines. As discussed in Chapter 1, com-
pared to distributed-memory systems, communication costs are much cheaper
in shared-memory systems, leading to performance benefits. Although shared-
memory machines cannot scale to the same size as distributed-memory clusters,
current commodity single-unit servers can easily fit graphs with well over a hundred
billion edges in memory, large enough for any of the graphs reported in the articles
mentioned above.1 Shared-memory along with the existing support for parallel code
(e.g., Cilk Plus [Leiserson 2010]) on multicores allows for a lightweight implemen-
tation. Furthermore, these multicore servers have sufficient memory bandwidth
to get quite good speedups over sequential codes (up to 39-fold on 40 cores in
our experiments). Shared-memory algorithms tend to be simpler than their dis-
tributed counterparts. Unlike in distributed-memory, race conditions can occur in
shared-memory, but as this chapter later shows, this can be dealt with in Ligra with
appropriate uses of the atomic compare-and-swap instruction. Compared to the
distributed-memory systems mentioned above, Ligra is over an order of magnitude
faster on a per-core basis for the benchmarks we could compare with, and typically
faster even on absolute terms to the largest systems run, which sometimes have
two orders of magnitude more cores. Finally, commodity shared-memory servers
are quite reliable, often running for up to months or possibly years without a failure.

Ligra supports two data types, one representing a graph G = (V , E) with vertices
V and edges E, and another for representing subsets of the vertices V , which is
referred to as vertexSubset. Other than constructors and size queries, the interface
supplies only two functions, one for mapping over vertices (VERTEXMAP) and the
other for mapping over edges (EDGEMAP). Since a vertexSubset is a subset of V ,
the VERTEXMAP can be used to map over any subset of the original vertices, and
hence its utility in traversal algorithms—or more generally in any algorithm in
which only (possibly small) subsets of the graph are processed on each round.
The EDGEMAP also processes a subset of the edges, which is specified using a
vertexSubset to indicate the valid sources, and a boolean function to indicate the

1. The largest graph in the articles cited is a synthetic 127 billion edges in Malewicz et al. [2010].
The rest of the articles do not use any graphs larger than 20 billion edges. The largest real-
world graph described in the articles cited is the Yahoo! Web graph with 6.6 billion directed
edges [Altavista 2012].
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1 Parents = {−1, . . . , −1} � initialized to all -1s, indicating unexplored
2 procedure UPDATE(s, d)
3 return (CAS(&Parents[d], −1, s)) � atomically explore vertex

4 procedure COND(i)
5 return (Parents[i] == −1) � check if unexplored

6 procedure BFS(G, r) � G is the graph and r is the source vertex
7 Parents[r] = r

8 Frontier = {r} � vertexSubset initialized to contain only r

9 while SIZE(Frontier) �= 0 do
10 Frontier = EDGEMAP(G, Frontier, UPDATE, COND) � visit next frontier

Figure 7.1 Pseudocode for breadth-first search in Ligra.

valid targets of each edge. Abstractly, a vertexSubset is simply a set of integer
labels for the included vertices and the VERTEXMAP simply applies the user supplied
function to each integer. It is up to the user to maintain any vertex-based data.
The implementation switches between a sparse and dense representation of the
integers depending on the size of the vertexSubset. In the Ligra interface, multiple
vertexSubsets can be maintained and furthermore, a vertexSubset can be used for
multiple graphs with different edge sets, as long as the number of vertices in the
graphs are the same.

With this interface a breadth-first search (BFS), for example, can be imple-
mented as shown in Figure 7.1. This version of BFS uses a Parents array (initialized
all to −1, except for the root r where Parents[r] = r) in which each vertex will point
to its parent in a BFS tree. As with standard parallel versions of BFS [Blelloch et
al. 2012, Leiserson and Schardl 2010], on each step i (starting at 0) the algorithm
maintains a frontier of all vertices reachable from the root r in i steps. Initially a
vertexSubset containing just the root vertex is created to represent the frontier (Line
8). Using EDGEMAP, each step checks the neighbors of the frontier to see which have
not been explored, updates those to point to their parent in the frontier, and adds
them to the next frontier (Line 10). The user supplied function UPDATE (Lines 2–3)
atomically checks to see if a vertex has been explored using a compare and swap
(CAS) and returns TRUE if not previously explored (Parents[i] == −1). The COND

function (Lines 4–5) tells EDGEMAP to consider only target vertices which have not
been explored (here, this is not needed for correctness, but is used for efficiency).
The EDGEMAP function returns a new vertexSubset containing the target vertices for
which UPDATE returns TRUE, i.e., all the vertices in the next frontier (Line 10). The
BFS completes when the frontier is empty and hence no more vertices are reachable.
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The interface is designed to allow the edges to be processed in different orders
depending on the particular situation. This is different from many of the interfaces
mentioned in the first paragraph of this section (e.g., Pregel, GraphLab, GPS, and
Giraph) which are vertex-based and have the user hardcode how to loop over the
out-edges or in-edges. The Ligra implementation supports a few different ways to
traverse the edges. One way is to loop over each vertex in a sparse representation of
the active source vertices applying the function to each out-edge (this is basically the
order Pregel, GPS, and Giraph supports). This loop over the out-edges can either be
parallel or sequential depending on the degree of the vertex (Pregel and the others
do not support parallel looping over out-edges, although the most recent version of
GraphLab does [Gonzalez et al. 2012]). A dense representation of the set of source
vertices could also be used. Another way to map over the edges is to loop over all
destination vertices sequentially or in parallel, and for each in-edge check if the
source is in the source vertex set and apply the edge function if so. Finally, a flat
map can be simply be applied over all edges, checking which need to be processed.

This chapter applies the Ligra framework to a collection of problems: breadth-
first search, betweenness centrality, graph eccentricity estimation, graph-connec-
tivity, PageRank, and Bellman-Ford single-source shortest paths. All of these ap-
plications have the property that they work in rounds and each round potentially
processes only a subset of the vertices. In the case of BFS, each vertex is only pro-
cessed once, and in the others they can be processed multiple times. For example,
in the shortest paths algorithm a vertex only needs to be added to the active vertex
set if its distance has changed. Similarly in a variant of PageRank, a vertex needs
to be processed only if its PageRank value has changed by more than some delta
since it was last processed.

Betweenness centrality, a technique for measuring the “importance” of vertices
in a graph, is basically a version of BFS that accumulates statistics along the way
and propagates first in the forward direction and then in the backward direction. In
betweenness centrality, one needs to keep around the frontiers during the forward
traversal to facilitate the backward traversal. In Ligra, this is easily done by storing
the vertexSubsets in each iteration during the forward traversal. In contrast, this
cannot be easily expressed in Pregel and GraphLab, because although vertices can
be made inactive in Pregel and GraphLab, the state is associated with the vertices
as opposed to being separate.

The contributions of this chapter are as follows:

1. an abstraction based on edgeMaps, vertexMaps, and vertexSubsets for pro-
gramming a class of parallel graph algorithms;
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2. an efficient and lightweight implementation of the framework, and applica-
tions using the framework; and

3. an experimental evaluation of using the framework and timing results of
different applications on various input graphs, including the largest publicly
available real-world graph at the time this work was first published.

7.2 Related Work

7.2.1 Hybrid Breadth-First Search
Beamer et al. [Beamer et al. 2011, Beamer et al. 2012] recently developed a very fast
BFS for shared-memory machines.They use a hybrid BFS consisting of the conven-
tional top-down approach, where each vertex on the current frontier explores all
of its neighbors and adds unexplored neighbors to the next frontier (write-based),
and a bottom-up approach, where each unexplored vertex in the graph tries to find
any parent (explored vertex) among its neighbors (read-based). While the neigh-
bor visits in the top-down approach will mostly be to unexplored vertices when the
frontier is small, for large frontiers many of the edges will be to neighbors already
explored. The edges to explored neighbors can be avoided in the bottom-up ap-
proach because an unexplored vertex can stop checking once it has found a parent;
this makes it more efficient than the top-down approach for large frontiers. The
disadvantage of the bottom-up approach is that it processes all of the vertices, so
is more expensive than the top-down approach for small frontiers. Beamer et al.’s
hybrid BFS switches between the two approaches based on the size of the frontier,
and the representation of the active set of vertices also switches between sparse and
dense accordingly. They show that for small-world and scale-free graphs, the hybrid
BFS achieves a significant speedup over previous BFS implementations based on
the top-down approach. Ligra uses this same idea in a more general setting.

There has been additional work on hybrid breadth-first search algorithms [Yasui
et al. 2013, You et al. 2014] since the publication of this work [Shun and Blelloch
2013].

7.2.2 Graph Processing Systems
Pegasus [Kang et al. 2011] and the Knowledge Discovery Toolbox (KDT) [Lugowski et
al. 2012, Gilbert et al. 2008] process graphs by using sparse matrix operations with
generalized matrix operations. Each row/column corresponds to a vertex and each
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non-zero in the matrix represents an edge. Pegasus uses the Hadoop implementa-
tion of MapReduce in the distributed-computing setting, and includes implemen-
tations for PageRank, random walk with restart, graph diameter/eccentricity, and
connected components. It does not allow a sparse representation of the vertices and
therefore is inefficient when only a small subset of vertices are active. Also, because
it is built on top of MapReduce, it is hard to make it perform well. KDT provides a
set of generalized matrix-vector building blocks for graph computations. It is built
on top of the Combinatorial BLAS [Buluç and Gilbert 2011], a lower-level general-
ized sparse matrix library for the distributed setting. Using the building blocks, the
KDT developers implement algorithms for breadth-first search, betweenness cen-
trality, PageRank, belief propagation, and Markov clustering. Since the abstraction
allows for sparse vectors as well as sparse matrices, it is suited for the case when
only a small number of vertices are active. However, it does not switch represen-
tations of the vertex sets based on its density. Section 7.5 gives some performance
comparisons with both systems.

Pregel is an API for processing large graphs in the distributed setting [Malewicz
et al. 2010]. It is a vertex-centric framework, where vertices can loop over their edges
and send messages to all their out-neighbors. These messages are then collected
at the target vertex, possibly using associative combining. The system is bulk-
synchronous so the received value is not seen until the next round. The reported
performance of Pregel is relatively slow, likely due to the overhead of the framework
and the use of a distributed memory machine. The GPS [Salihoglu and Widom
2012] and Giraph [Giraph 2012] systems are public source implementations of the
Pregel interface with some additional features. The GPS system allows for graph
partitioning and reallocation during the computation. This improves performance
over Pregel, but only marginally.

GraphLab is a framework for asynchronous parallel graph computations in ma-
chine learning. It works in both shared-memory and distributed-memory archi-
tectures [Low et al. 2010, Low et al. 2012]. It differs from Pregel in that it does
not work in bulk-synchronous steps, but rather allows the vertices to be processed
asynchronously based on a scheduler. The vertex functions can run at any time as
long as specified consistency rules are obeyed. It is therefore well suited for the
machine learning types of applications for which it is defined, where each vertex
accumulates information from its neighbors states and updates its state, possibly
asynchronously. The recent PowerGraph framework combines the shared-memory
and asynchronous properties of GraphLab with the associative combining concept
of Pregel [Gonzalez et al. 2012]. In contrast to Ligra’s vertexSubset data type, both
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Pregel and GraphLab assume a single graph, and do not allow for multiple vertex
sets, since state is associated with the vertices.

Grace is a graph management system for shared-memory [Prabhakaran et al.
2012]. It uses graph partitioning techniques and batched updates to exploit locality.
Updates to the graph are done transactionally. Their reported times are slower
than that of Ligra for applications like BFS and PageRank, after accounting for
differences in input size and machine specifications.

GraphChi is a system for handling graph computations using just a PC [Kyrola
et al. 2012]. It uses a novel parallel sliding windows method for processing graphs
from disk. Although their running times are slower than Ligra, their system is
designed for processing graphs out of memory, whereas Ligra assumes that the
graphs fit in memory.

Galois is a graph system for shared-memory based on set iterators [Pingali et al.
2011]. Unlike Ligra’s EDGEMAP and VERTEXMAP functions, their set iterator does not
abstract the internal details of the loop from the user. Their sets of active elements
for each iteration must be generated directly by the user, unlike our EDGEMAP that
generates a vertexSubset which can be used for the next iteration.

Green-Marl is a domain-specific language for writing graph algorithms for
shared-memory [Hong et al. 2012]. Graph traversal algorithms using Green-Marl
are written using built-in breadth-first search (BFS) and depth-first search (DFS)
primitives whose implementations are built into the compiler. Their language does
not support operations over arbitrary sets of vertices on each iteration of the traver-
sal, and instead the user must explicitly filter out the vertices to skip. This makes
it less flexible than our framework, which can operate on arbitrary vertexSubsets.
In Green-Marl, for traversal algorithms which cannot be expressed using a BFS or
DFS (e.g., eccentricity estimation and Bellman-Ford shortest paths), the user has
to write the for-loops themselves. On the other hand, such algorithms are naturally
expressed in the Ligra framework.

TOTEM [Gharaibeh et al. 2012] is a programming framework for designing
graph algorithms that runs on both CPUs and GPUs. The framework executes algo-
rithms iteratively, where each iteration consists of a computation, communication,
and synchronization phase. However, the user has to write the for-loops within each
phase, and furthermore has deal with the complexity of GPU programming, which
is much more complicated than programming for CPUs.

Other high-performance libraries for parallel graph computations include the
Parallel Boost Graph Library (PBGL) [Gregor and Lumsdaine 2005] and the Mul-
tithreaded Graph Library (MTGL) [Berry et al. 2007]. The former is developed for
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the distributed-memory setting and the latter is developed for massively multi-
threaded architectures. These libraries provide few higher-level abstractions be-
yond the graphs themselves.

Since the publication of Ligra [Shun and Blelloch 2013], there have been many
other graph processing systems developed. Shared-memory multicore systems in-
clude X-Stream (an edge-centric system) [Roy et al. 2013], PRISM (a deterministic
graph processing framework) [Kaler et al. 2014], and Polymer (a NUMA-aware ver-
sion of Ligra) [Zhang et al. 2015]. Galois has also been extended to include other
programming abstractions, including Ligra’s [Nguyen et al. 2013]. There have also
been graph processing systems developed for GPUs [Zhong and He 2014, Khorasani
et al. 2014, Fu et al. 2014, Wang et al. 2015, Seo et al. 2015], including one that uses
a similar interface to Ligra [Wang et al. 2015]. Finally, various parallel algorithms
for eccentricity estimation [Shun 2015] and local graph clustering [Shun et al. 2016]
have been developed using Ligra.

7.3 Framework
The following notation will be used in this chapter. A variable var with type type
is denoted as var: type. A function f is denoted by f : X �→ Y if each x ∈ X has
a unique value y ∈ Y such that f (x) = y. The Cartesian product of sets A and B

is denoted by A × B where A × B = {(a , b) : a ∈ A ∧ b ∈ B}. The boolean value set
bool is defined to be the set {0, 1} (equivalently {FALSE, TRUE}). Unweighted graphs
have type graph, vertices have type vertex and edges have type vertex × vertex,
where the first vertex is the source of the edge and the second the target. For a
weighted graph G = (V , E , w), w is a function which maps an edge to a real value
(w : vertex × vertex �→ R).

7.3.1 Interface
For an unweighted graph G = (V , E) or weighted graph G = (V , E , w), Ligra pro-
vides a vertexSubset type, which represents a subset of vertices U ⊆ V . Note that V ,
and hence U , may be shared among graphs with different edge sets. Except for some
constructor functions and some optional arguments described in Section 7.3.4, the
following describes the entire Ligra interface.

SIZE(U : vertexSubset): N.
Returns |U |.

EDGEMAP(G: graph, U : vertexSubset, F : (vertex × vertex) �→ bool, C: vertex �→ bool):
vertexSubset.
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For an unweighted graph G = (V , E), EDGEMAP applies the function F

to all edges with source vertex in U and target vertex satisfying C. More
precisely, for an active edge set

Ea = {(u, v) ∈ E | u ∈ U ∧ C(v) = TRUE},

F is applied to each element in Ea, and the return value of EDGEMAP is a
vertexSubset:

Out = {v | (u, v) ∈ Ea ∧ F(u, v) = TRUE}.

In this framework, F can run in parallel, and so the user must ensure parallel
correctness. F is allowed to side effect any data that it is associated with (and
does so when used in the graph algorithms we discuss later), so F , C, Ea,
and Out can depend on order. The function C is useful in algorithms where
a value associated with a vertex only needs to be updated once (i.e., breadth-
first search). If the user does not need this functionality, a default function
Ctrue that always returns TRUE may be supplied.

For weighted graphs, F takes the edge weight as an additional argument.

VERTEXMAP(U : vertexSubset, F : vertex �→ bool): vertexSubset.
Applies F to every vertex in U . Its returns a vertexSubset:

Out = {u ∈ U | F(u) = TRUE}.

As with EDGEMAP, the function F can run in parallel.

7.3.2 Implementation
The framework indexes the vertices V of a graph from 0 to n − 1, where n = |V |. A
vertexSubset U ⊆ V is therefore a set of integers in the range 0, . . . , n − 1. In the
implementation, this set is either represented sparsely as an array of |U | integers
(not necessarily sorted) or as a boolean array of length n, TRUE in location i if and
only if i ∈ U . For example, for a graph with 8 vertices the sparse representation of
a vertex subset {0, 2, 3} could be [0, 2, 3] or [3, 0, 2] and the corresponding dense
representation would be [1, 0, 1, 1, 0, 0, 0, 0]. The implementation of vertexSubset
contains routines for converting its sparse representation to a dense representation
and vice versa. The following pseudocode assumes unweighted graphs, but it can
easily be extended to weighted graphs. Also, we will overload notation and use U

and Out both to denote subsets of vertices and also to denote the vertexSubsets
representing them.
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1 procedure EDGEMAP(G, U , F , C)
2 if |U | + sum of out-degrees of U > threshold then
3 return EDGEMAPDENSE(G, U , F , C)
4 else return EDGEMAPSPARSE(G, U , F , C)

Figure 7.2 Ligra EDGEMAP implementation.

1 procedure EDGEMAPSPARSE(G, U , F , C)
2 Out = {}
3 parfor v ∈ U do
4 parfor ngh ∈ N+(v) do
5 if C(ngh) == 1 and F(v , ngh) == 1 then
6 Add ngh to Out
7 Remove duplicates from Out
8 return Out

Figure 7.3 Ligra EDGEMAPSPARSE implementation.

For a given graph G = (V , E), a vertexSubset representing a set of vertices U ⊆ V

and functions F and C, the EDGEMAP function (pseudocode shown in Figure 7.2)
calls one of EDGEMAPSPARSE (Figure 7.3) and EDGEMAPDENSE (Figure 7.4) based on |U |
and the number of outgoing edges of U (if this quantity is greater than some thresh-
old, it calls EDGEMAPDENSE, and otherwise it calls EDGEMAPSPARSE). EDGEMAPSPARSE

loops through all vertices present in U in parallel, and for a given u ∈ U applies
F(u, ngh) to all of u’s outgoing neighbors ngh in G in parallel. It returns a ver-
texSubset that is represented sparsely. The work performed by EDGEMAPSPARSE is
proportional to |U | plus the sum of the out-degrees of U . On the other hand,
EDGEMAPDENSE loops through all vertices in V in parallel and for each vertex v ∈ V

it sequentially applies the function F(ngh, v) for each of v’s incoming neighbors
ngh that are in U , until C(u) returns FALSE. It returns a dense representation of
a vertexSubset. For EDGEMAPSPARSE, since a sparse representation of a vertexSub-
set is returned, duplicate vertex IDs in the output vertexSubset must be removed.
Intuitively, EDGEMAPSPARSE should be more efficient than EDGEMAPDENSE for small
vertexSubsets, while for larger vertexSubsets EDGEMAPDENSE should be faster. The
default threshold of when to use EDGEMAPSPARSE vs. EDGEMAPDENSE is set to m/20,
which was found to work well across all of our applications.

The VERTEXMAP function (Figure 7.5) takes as inputs a vertexSubset representing
the vertices U and a boolean function F , and applies F to all vertices in U . It returns
a vertexSubset representing the subset Out ⊆ U containing vertices u such that F(u)

returns TRUE.
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1 procedure EDGEMAPDENSE(G, U , F , C)
2 Out = {}
3 parfor i ∈ {0, . . . , n − 1} do
4 if C(i) == 1 then
5 for ngh ∈ N−(i) do
6 if ngh ∈ U and F(ngh, i) == 1 then
7 Add i to Out
8 if C(i) == 0 then break
9 return Out

Figure 7.4 Ligra EDGEMAPDENSE implementation.

1 procedure vertexMAP(U , F )
2 Out = {}
3 parfor u ∈ U do
4 if F(u) == 1 then Add u to Out
5 return Out

Figure 7.5 Ligra VERTEXMAP implementation.

7.3.3 Graph Representation
Ligra represents in-edges and out-edges as arrays. In particular, the in-edges for all
vertices are kept in one array partitioned by their target vertex and storing the source
vertices. Similarly, the out-edges are in an array partitioned by the source vertices
and storing the target vertices. Each vertex points to the start of their in-edge and
out-edge partitions and also maintains their in-degree and out-degree. Note that
EDGEMAPSPARSE only uses the out-edges and EDGEMAPDENSE only uses the in-edges.
To transpose a graph (i.e., switch the direction of all edges), which is needed in
betweenness centrality, the roles of the in-edges and out-edges are swapped. When
a graph is symmetric (or undirected), the in-neighbors and out-neighbors are the
same so only one copy needs to be stored. For weighted graphs, the weights are
interleaved with the edge targets in the edge array for cache efficiency.

7.3.4 Optimizations
This section describes several optimizations to the interface and implementation.
These optimizations affect only performance and not correctness.

Note that EDGEMAPSPARSE applies F in parallel to target vertices (second argu-
ment), while EDGEMAPDENSE applies F sequentially given a target vertex. Therefore
the F in EDGEMAPDENSE does not need to be atomic with respect to the target vertex.
An optimization is for EDGEMAP to accept two version of its function F , the first of
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1 procedure EDGEMAPDENSE-WRITE(G, U , F , C)
2 Out = {}
3 parfor i ∈ {0, . . . , n − 1} do
4 if i ∈ U then
5 parfor ngh ∈ N+(i) do
6 if C(ngh) == 1 and F(i , ngh) == 1 then
7 Add ngh to Out
8 return Out

Figure 7.6 Ligra EDGEMAPDENSE-WRITE implementation.

which must be correct when run in parallel with respect to both arguments, and
the second of which must be correct when run in parallel only with respect to the
first argument (source vertex). Both functions should behave exactly the same if
EDGEMAP were run sequentially. If this optimization is used, then EDGEMAPSPARSE

uses the first version of F as before, but EDGEMAPDENSE uses the second version of
F (which we found to be slightly faster for some applications).

The default threshold of when to use EDGEMAPSPARSE vs. EDGEMAPDENSE is m/20,
but if the user discovers a better threshold, it can be passed as an optional argument
to EDGEMAP.

If the user is careful in defining the F and C functions passed to EDGEMAP

to guarantee that no duplicate vertices will appear in the output vertexSubset of
EDGEMAP, then the remove-duplicates stage of EDGEMAPSPARSE can be bypassed.
The EDGEMAP function takes a flag indicating whether duplicate vertices need to
be removed.

For EDGEMAPDENSE, the inner for-loop is sequential (see Figure 7.4) because the
behavior of C may allow it to break early (e.g., in BFS, breaking after the first valid
parent is found). If instead the user wants to run the inner for-loop in parallel and
give up the option of breaking early, a flag can be passed to EDGEMAP to indicate this.

Since EDGEMAPDENSE is read-based, Ligra also provides a write-based version of
EDGEMAPDENSE called EDGEMAPDENSE-WRITE (shown in Figure 7.6). This write-based
version loops through all vertices in V in parallel and for vertices contained in U it
applies F (now required to correct when run in parallel with respect to both argu-
ments) to all of its neighbors in parallel, as in EDGEMAPSPARSE. It returns a dense rep-
resentation of a vertexSubset. We experimentally found EDGEMAPDENSE-WRITE to be
more efficient than EDGEMAPDENSE only for two of the applications—PageRank and
Bellman-Ford shortest paths. In the framework, the user may pass a flag to EDGEMAP

specifying whether to use EDGEMAPDENSE (default) or EDGEMAPDENSE-WRITE when
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the vertexSubset is dense. The user would need to figure out experimentally which
version is more efficient.

For VERTEXMAP, if the user knows that the input and output vertexSubsets are the
same, an optimized version of VERTEXMAP that avoids creating a new vertexSubset
can be used.

7.4 Applications
This section describes six applications of the Ligra framework. In the following
discussions, the “frontiers” of the algorithms are represented as vertexSubsets.

7.4.1 Breadth-First Search
A simple parallel algorithm processes each level of the BFS in parallel. The number
of iterations required is equal to the (unweighted) distance of the furthest vertex
reachable from the starting vertex, and the algorithm processes each edge at most
once. In Ligra, a breadth-first search implementation is very simple as described in
Section 7.1. To make the computation more efficient for dense frontiers for which
EDGEMAPDENSE is used, one can also provide a version of UPDATE, which is not atomic
with respect to d and does not use a CAS. The pseudocode for BFS is shown in
Figure 7.1.

7.4.2 Betweenness Centrality
Centrality indices for graphs have been widely studied in social network analysis
because they are useful indicators of the relative importance of vertices in a graph.
One such index is the betweenness centrality index [Freeman 1977].

To precisely define the betweenness centrality index, let us first introduce some
additional definitions. For a graph G = (V , E) and some s , t ∈ V , let σst be the
number of shortest paths from s to t in G. For vertices s , t , v ∈ V , define σst(v)

to be the number of shortest paths from s to t that pass through v. Define δst(v) =
σst(v)/σst to be the pair-dependency of s , t on v. The betweenness centrality of a
vertex v, denoted by CB(v) is equal to

∑
s �=v �=t∈V δst(v). A naive method to compute

the betweenness centrality scores is to perform a BFS starting at each vertex to
compute the pair-dependencies, and then sum the pair-dependencies for each
v ∈ V . There are O(n2) pair-dependency terms associated with each vertex, and
hence this method requires O(n3) work.

Brandes [2001] presents an algorithm which avoids the explicit summation
of pair-dependencies and runs in (nm + n2 log n) work for weighted graphs and
O(nm + n2) work for unweighted graphs. Brandes defines the dependency of a vertex
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r on a vertex v as follows:

δr•(v) =
∑
t∈V

δrt(v) (7.1)

For any given r , Brandes’ algorithm computes δr•(v) for all v in linear work for
unweighted graphs, by using the following two equations, where Pr(v) is defined
to contain all immediate parents of v in the BFS tree rooted at r :

σrv =
∑

u∈Pr(v)

σru (7.2)

δr•(v) =
∑

w:v∈Pr(w)

σrv

σrw

× (1 + δr•(w)) (7.3)

The algorithm works in two phases: the first phase of the algorithm computes the
number of shortest paths from r to each vertex using Equation 7.2, and the second
phase computes the dependency scores via Equation 7.3. The first phase is simi-
lar to a forward BFS from vertex r and the second phase works backward from the
last frontier of the BFS. This algorithm can be parallelized in two ways: (1) for each
vertex, the traversal can be done in parallel and (2) each vertex can perform their
individual computations independently in parallel with other vertices’ computa-
tions. Although much more efficient than the naive algorithm, Brandes’ algorithm
still requires at least quadratic time, and is thus prohibitive for large graphs. To
address this problem, there has been work on computing approximate between-
ness centrality scores based on using the pair-dependency contributions from just
a sample of the vertices of the vertices and scaling the betweenness centrality scores
appropriately [Bader et al. 2007, Geisberger et al. 2008]. The KDT package provides a
parallel implementation of batched computation of betweenness centrality scores
by running multiple individual computations independently in parallel [Lugowski
et al. 2012].

This section describes the Ligra implementation of betweenness centrality com-
putation from a single root vertex—these computations can be run independently
in parallel for any sample of the vertices. The first phase here is different from the
BFS described in Section 7.4.1 in that instead of finding a parent, each vertex v

needs to maintain a count of the number of shortest paths passing through it. This
means the number of updates to v is equal to its number of incoming neighbors
in the previous level of the search, instead of just one update as in BFS.

The psuedocode for the Ligra implementation is shown in Algorithm 7.1. The
frontier is initialized to contain just r . For the first phase, the code uses an array of
integers NumPaths, which is initialized to all 0’s except for the root vertex which has
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Algorithm 7.1 Betweenness Centrality

1 NumPaths = {0, . . . , 0} � initialized to all 0
2 Visited = {0, . . . , 0} � initialized to all 0
3 currLevel = 0
4 Levels = [ ]
5 Dependencies = {0.0, . . . , 0.0} � initialized to all 0.0

6 procedure VISIT(i)
7 Visited[i] = 1
8 return 1

9 procedure PATHSUPDATE(s, d)
10 repeat
11 oldV = NumPaths[d]
12 newV = oldV + NumPaths[s]
13 until CAS(&NumPaths[d], oldV , newV) == 1
14 return (oldV == 0)

15 procedure DEPUPDATE(s, d)
16 repeat
17 oldV = Dependencies[d]
18 newV = oldV + NumPaths[d]

NumPaths[s] × (1 + Dependencies[s])
19 until CAS(&Dependencies[d], oldV , newV) == 1
20 return (oldV == 0.0)

21 procedure COND(i)
22 return (Visited[i] == 0)

23 procedure BC(G, r)
24 NumPaths[r] = 1
25 Visited[r] = 1
26 Frontier = {r} � vertexSubset initialized to contain only r

27 while SIZE(Frontier) �= 0 do � Phase 1
28 Frontier = EDGEMAP(G, Frontier , PATHSUPDATE, COND)

29 Levels[currLevel] = Frontier
30 Frontier = VERTEXMAP(Frontier , VISIT)

31 currLevel = currLevel + 1

32 Visited = {0, . . . , 0} � reinitialize to all 0
33 currLevel = currLevel − 1
34 TRANSPOSE(G) � transpose graph

35 while currLevel ≥ 0 do � Phase 2
36 Frontier = Levels[currLevel]
37 VERTEXMAP(Frontier, VISIT)
38 EDGEMAP(G, Frontier, DEPUPDATE, COND)
39 currLevel = currLevel − 1
40 return Dependencies
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NumPaths[r] set to 1. By traversing the graph in a breadth-first manner and updating
the NumPaths value for each v that is traversed, this gives the number of shortest
paths passing through each v from r (NumPaths[v] will remain 0 if v is unreachable
from r). The PATHSUPDATE function passed to EDGEMAP is shown in Lines 9–14. As
there can be multiple updates to some NumPaths[v] in parallel, the update attempt
is repeated with a compare-and-swap until successful. Line 14 guarantees that a
vertex is placed on the frontier only once, since the old NumPaths value will be 0 for
at most one update. Each frontier of the search is stored in a Levels array for use in
the second phase.

To keep track of vertices that have been visited (and avoid having to remove du-
plicates in EDGEMAPSPARSE), the code also maintain a boolean array Visited. Visited
is initialized to all 0’s (except for the root vertex whose entry is set to 1), and a ver-
tex’s entry in Visited is set to 1 after it is first visited in the computation. To do this,
a VERTEXMAP is used with the VISIT function shown in Lines 6–8 of Algorithm 7.1 to
VERTEXMAP. The COND function in Lines 21–22 makes EDGEMAP only consider unvis-
ited target vertices. The psuedocode for the first phase starting at a root vertex is
shown in Lines 27–31.

For the second phase, a new array Dependencies (initialized to all 0.0) is used and
the Visited array (reinitialized to all 0) is reused. Also, the graph is transposed (Line
34), since edges now need to point in the reverse direction. The algorithm operates
on the vertexSubsets in the Levels array returned from the first phase in reverse
order, uses the same VISIT and COND functions as in the first phase, and passes the
DEPUPDATE function shown in Lines 15–20 of Algorithm 7.1 to EDGEMAP. Psuedocode
for the second phase of the betweenness-centrality computation is shown in Lines
35–40.

7.4.3 Graph Eccentricity Estimation and Multiple BFS
For a graph G = (V , E), the eccentricity of a vertex v ∈ V is defined to be the shortest
distance to the furthest reachable vertex of v. The diameter of the graph is defined
to be the maximum eccentricity over all v ∈ V . For unweighted graphs, one simple
method for computing the eccentricity of all vertices (and hence the diameter of
the graph) is to run n BFS’s, one starting at each vertex. However, for large graphs
this method is impractical as each BFS requires O(n + m) work, leading to a total
of O(n2 + nm) work (see [Cormen et al. 2009]). This approach can be parallelized
by running the BFS’s independently in parallel, and also by parallelizing each
individual BFS, but currently this is still impractical for large graphs.
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There has been work on techniques to estimate the diameter of a graph.
Magnien et al. [2009] describe several techniques for computing upper and lower
bounds on the diameter of a graph, using BFS’s and spanning subgraphs. They de-
scribe a method called the double sweep lower bound, which works by first running
a BFS from some vertex v and then a second BFS from the furthest vertex from v

(call it w). The eccentricity of w is then taken to be a lower bound on the diameter
of the graph. Their method can be repeated by picking more vertices to run BFS’s
from. Ferrez et al. [1998] perform experiments with parallel implementations of
some of these methods. Another approach based on counting neighborhood sizes
was described by Palmer et al. [2002]. Their algorithm approximates the neighbor-
hood function for each vertex in a graph, which is more general than computing
graph eccentricities. Kang et al. [2011] parallelize this algorithm using MapReduce.
Cohen [1997] describes an algorithm for approximating neighborhood sizes, which
requires O(m log n) expected work for undirected graphs.

Ligra implements the simple method for estimating graph eccentricities by per-
forming BFS’s from a sample of K vertices. Its accuracy can be improved by using
the double sweep method [Corneil et al. 2001, Magnien et al. 2009]. Instead of run-
ning the BFS’s in parallel independently, the Ligra implementation runs multiple
BFS’s together. In the multiple-BFS algorithm, each vertex maintains a bit-vector of
length K . Initially K vertices are chosen randomly to act as “source” vertices and
each of these K vertices has exactly one unique bit in their bit-vector set to 1; all
other vertices have their bit-vectors initialized to all 0’s. The K sampled vertices
are placed on the initial frontier of the multiple-BFS search. In each iteration, each
frontier vertex bitwise-ORs its vector into each of its neighbors’ vectors. Vertices
whose bit-vectors changed in an iteration are placed on the frontier for the next
iteration. The algorithm iterates until none of the bit-vectors change.

For a sample of size K this algorithm simulates running K BFS’s in parallel,
but without computing the BFS tree (which is not needed for the eccentricity
computation). Storing the iteration number in which a vertex v’s bit-vector last
changed is a lower-bound on the eccentricity of v since at least one of the K sampled
vertices took this many rounds to reach v. If K is set to be the number of bits in
a word (32 or 64), then this algorithm is more efficient than naively performing
K individual BFS’s in two ways: (1) the frontiers of the K BFS’s could overlap in
any given iteration and this algorithm stores the union of these frontiers usually
leading to fewer edges traversed per iteration; and (2) performing a bitwise-OR on
bit-vectors can pass information from more than one of the K BFS’s while only
requiring one arithmetic operation. Note that this algorithm only estimates the
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Algorithm 7.2 Eccentricity Estimation

1 Visited = {0, . . . , 0} � initialized to all 0
2 NextVisited = {0, . . . , 0} � initialized to all 0
3 Ecc = {∞, . . . , ∞} � initialized to all ∞
4 round = 0

5 procedure ECCUPDATE(s, d)
6 if Visited[d] �= Visited[s] then
7 ATOMICOR(&NextVisited[d], Visited[d] | Visited[s])
8 oldEcc = Ecc[d]
9 if Ecc[d] �= round then

10 return CAS(&Ecc[d], oldEcc, round)

11 return 0

12 procedure ORCOPY(i)
13 NextVisited[i] = NextVisited[i] | Visited[i]
14 return 1

15 procedure ECC(G)
16 Sample K vertices and for each one set a unique bit in Visited to 1
17 Initialize Frontier to contain the K sampled vertices
18 Set the Ecc entries of the sampled vertices to 0
19 while SIZE(Frontier) �= 0 do
20 round = round + 1
21 Frontier = EDGEMAP(G, Frontier, ECCUPDATE, Ctrue)
22 VERTEXMAP(Frontier, ORCOPY)
23 SWAP(Visited, NextVisited) � switch roles of bit-vectors
24 return Ecc

diameter of the connected components of the graph which contain at least one of
the K sampled vertices; if there are multiple connected components in the graph,
one would first compute in parallel the components of the graph and then run the
multiple-BFS algorithm in parallel on each component.

To implement the multiple-BFS algorithm in Ligra (pseudocode shown in Algo-
rithm 7.2), the code maintains two bit-vectors, Visited and NextVisited, which are
initialized to all 0’s, except for the K sampled vertices each of which has a unique
bit in their Visited bit-vector set to 1. An array Ecc is also maintained, which for
each vertex stores the iteration number in which the bit-vector of the vertex last
changed. It is initialized to all ∞ except for the K sampled vertices which have a
value of 0. At the end of the algorithm, Ecc contains the estimated (lower-bound)
eccentricity of each vertex, the maximum of which is a lower-bound on the graph
diameter. In the pseudocode, “|” is used to denote the bitwise-OR operation. The
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initial frontier contains the K sampled vertices. The update function ECCUPDATE

passed to EDGEMAP is shown in Lines 5–11 of Algorithm 7.2. ATOMICOR(x , y) per-
forms a bitwise-OR of y with the value stored at x and atomically updates x with
this new value. It is implemented using a compare-and-swap. The reason that the
code has both Visited and NextVisited is so that new bits that a vertex receives in an
iteration do not get propagated to its neighbors in the same round, otherwise the
values in Ecc would be incorrect. The compare-and-swap on Line 10 guarantees that
any Ecc entry is updated at most once (and returns TRUE) per iteration. Therefore
any vertex will be placed at most once on the next frontier, eliminating the need
for removing duplicates. As in the other implementations, the implementation can
provide a version of ECCUPDATE that is non-atomic with respect to d to EDGEMAP.

The ORCOPY function (Lines 12–14) passed to VERTEXMAP simply copies Visited[i]
into NextVisited[i] for each vertex i. This is used because the roles of NextVisited and
Visited are switched between iterations. The while loop in Lines 19–23 is executed
until the entries of the Ecc array do not change (or equivalently, none of the bit-
vectors change).

A detailed study of the performance and accuracy of different parallel eccen-
tricity algorithms, including the one described in this section, has recently been
conducted in [Shun 2015].

7.4.4 Connected Components
Recall the definition of the connected components problem from Section 2.6. One
method of computing the connected components of a graph is to maintain an array
IDs of size n = |V | initialized such that IDs[i] = i, and iteratively have every vertex
update its IDs entry to be the minimum IDs entry of all of its neighbors in G, as
well as its own entry. This method is known as label propagation, and the total
work performed by this algorithm is O(d(n + m)) where d is the diameter of G. For
high-diameter graphs, this algorithm can perform much worse than other parallel
algorithms that require less work (see Chapter 9), but for low-diameter graphs it
runs reasonably well. This section describes the label propagation algorithm as a
simple application of Ligra.

The pseudocode for the Ligra implementation is shown in Algorithm 7.3. The
initial frontier contains all vertices in V . In addition to the IDs array, the code
maintains a second array prevIDs (used to check whether a vertex has been placed
on the frontier in a given iteration yet), and passes the CCUPDATE function shown
in Lines 3–7 of Algorithm 7.3 to EDGEMAP. WRITEMIN(x , y) is an instantiation of
the priority update operation from Chapter 6—it atomically updates the value at
location x to be the minimum of x’s old value and y, returning TRUE if the value
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Algorithm 7.3 Connected Components

1 IDs = {0, . . . , n − 1} � initialized such that IDs[i] = i

2 prevIDs = {0, . . . , n − 1} � initialized such that prevIDs[i] = i

3 procedure CCUPDATE(s, d)
4 origID = IDs[d]
5 if WRITEMIN(&IDs[d], IDs[s]) then
6 return (origID == prevIDs[d])
7 return 0

8 procedure COPY(i)
9 prevIDs[i] = IDs[i]

10 return 1

11 procedure CC(G)
12 Frontier = {0, . . . , n − 1} � vertexSubset initialized to V

13 while SIZE(Frontier) �= 0 do
14 VERTEXMAP(Frontier, COPY)
15 Frontier = EDGEMAP(G, Frontier, CCUPDATE, Ctrue)
16 return IDs

at location x was changed, and FALSE otherwise. Line 6 places a vertex on the next
frontier if and only if its ID changed in the iteration. To synchronize the values of
prevIDs and IDs after every iteration, the COPY function is passed to VERTEXMAP. The
while loop in Lines 13–15 is executed until IDs remains the same as prevIDs. When
the algorithm terminates, all vertices in the same component will have the same
value stored in their IDs entry.

7.4.5 PageRank
PageRank is an algorithm that was first used by Google to compute the relative
importance of webpages [Brin and Page 1998]. It takes as input a graph G = (V , E),
a damping factor 0 ≤ γ ≤ 1, and a convergence constant ε. It initializes a PageRank
vector PR of length n to have all entries set to 1/n, and iteratively applies the
following equation2 for all indices v, until the sum of the differences of PR values
between iterations drops to below ε:

PR[v] = 1 − γ

n
+ γ

∑
u∈N−(v)

PR[u]
d+(u)

(7.4)

2. This equation assumes d+(u) > 0 for all u. If the graph has any vertices with an out-degree of 0
(dangling vertices), the PageRank entries will not sum to 1. This can be fixed by adding outgoing
edges from dangling vertices to all vertices in the graph.
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Algorithm 7.4 PageRank

1 pcurr = {1/n, . . . , 1/n} � initialized to all 1
n

2 pnext = {0.0, . . . , 0.0} � initialized to all 0.0
3 diff = {} � array to store differences

4 procedure PRUPDATE(s, d)
5 ATOMICINCREMENT(&pnext[d], pcurr[s]

d+(s)
)

6 return 1

7 procedure PRLOCALCOMPUTE(i)
8 pnext[i] = (γ × pnext[i]) + (1 − γ )/n

9 diff [i] = |pnext[i] − pcurr[i] |
10 pcurr[i] = 0.0
11 return 1

12 procedure PAGERANK(G, γ , ε)
13 Frontier = {0, . . . , n − 1} � vertexSubset initialized to V

14 error = ∞
15 while error > ε do
16 Frontier = EDGEMAP(G, Frontier, PRUPDATE, Ctrue)
17 Frontier = VERTEXMAP(Frontier, PRLOCALCOMPUTE)
18 error = sum of diff entries
19 SWAP(pcurr , pnext)

20 return pcurr

This leads to a very simple implementation in Ligra. This section also describes a
variant of PageRank (PageRank-Delta) which applies Equation (7.4) to only a subset
of V in an iteration. By choosing the subset to contain only vertices whose PageRank
entry that changed by more than a certain amount, the computation can be sped up.

The pseudocode for the Ligra implementation of PageRank is shown in Algo-
rithm 7.4. In every iteration, the frontier contains all vertices. The implementation
maintains two arrays pcurr and pnext each of length n. pcurr is initialized to 1/n for
each entry and pnext is initialized to all 0.0’s. The PRUPDATE function passed to
EDGEMAP is shown in Lines 4–6. ATOMICINCREMENT(x , y) atomically adds y to the
value at location x and stores the result in location x; it can be implemented with
a compare-and-swap. Each iteration of the while loop (Lines 15–19) applies an
EDGEMAP, uses a VERTEXMAP to process the result of the EDGEMAP, computes the er-
ror for the iteration, and switches the roles of pnext and pcurr. The PRLOCALCOMPUTE

function (Lines 7–11) passed to VERTEXMAP normalizes the result of the EDGEMAP by
γ , adds a constant, computes the absolute difference between pnext and pcurr, and
resets pcurr to 0.0 for the next iteration (since the roles of pnext and pcurr become
switched). The while loop is executed until the error drops below ε.
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PageRank-Delta is a variant of PageRank in which vertices are active in an iter-
ation only if they have accumulated enough change in their PR value. This idea is
described in [McSherry 2005, Zhang et al. 2011] and used in GraphLab for comput-
ing PageRank [Low et al. 2012]. In the Ligra framework, in each EDGEMAP, vertices
pass their changes in PR value to their neighbors, and all vertices accumulate a sum
of delta contributions from their neighbors. Each VERTEXMAP only updates and re-
turns vertices whose accumulated delta contributions from neighbors is more than
a δ-fraction of its PR value since the last time it was active. Such an implementa-
tion allows for vertices which do not influence the PR values much to stay inactive,
thereby shrinking the frontier. PageRank-Delta can be implemented in Ligra by
modifying the function passed to EDGEMAP to pass the changes in PR values in-
stead of the actual PR values, and modifying the function passed to VERTEXMAP to
only perform updates and return TRUE for the vertices whose accumulated contri-
butions from neighbors since it was last active is more than a δ-fraction of its PR
value.

7.4.6 Bellman-Ford Shortest Paths
This section studies the single-source shortest paths problem (recall the defini-
tion from Section 2.6). If the edge weights are all non-negative, then the single-
source shortest paths problem can be solved with Dijkstra’s algorithm [Cormen
et al. 2009]. Parallel variants of Dijkstra’s algorithm have been studied [Meyer and
Sanders 2003], and have been shown to work well on real-world graphs [Madduri et
al. 2007]. However, Dijkstra’s algorithm does not work with negative edge weights,
and the Bellman-Ford algorithm can be used instead in this case. Although in the
worst case the Bellman-Ford algorithm requires O(nm) work, in contrast to the
O(m + n log n) worst-case work of Dijkstra’s algorithm, in practice it can require
many fewer than the worst case since on every step only some of the vertices might
change distances. It is therefore important to take advantage of this fact and only
process vertices when their distances actually change.

This section first describes the standard Bellman-Ford algorithm [Cormen et al.
2009] and then shows how it can be implemented in Ligra. The algorithm initializes
the shortest paths array SP to all ∞ except for the root vertex which has an entry
of 0. A RELAX procedure is repeatedly invoked by Bellman-Ford. RELAX takes G as an
input and checks for each edge (u, v) if SP[u] + w(u, v) < SP[v]; if so, it sets SP[v] to
SP[u] + w(u, v). If a call to RELAX does not change any SP values, then the algorithm
terminates. If RELAX is called n or more times, then there is a negative cycle in G

and the Bellman-Ford algorithm reports the existence of one.
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Algorithm 7.5 Bellman-Ford

1 SP = {∞, . . . , ∞} � initialized to all ∞
2 Visited = {0, . . . , 0} � initialized to all 0

3 procedure BFUPDATE(s, d, edgeWeight)
4 if WRITEMIN(&SP[d], SP[s] + edgeWeight) then
5 return CAS(&Visited[d], 0, 1)

6 else return 0

7 procedure BFRESET(i)
8 Visited[i] = 0
9 return 1

10 procedure BELLMAN-FORD(G, r)
11 SP[r] = 0
12 Frontier = {r} � vertexSubset initialized to contain just r

13 round = 0
14 while SIZE(Frontier) �= 0 and round < n do
15 Frontier = EDGEMAP(G, Frontier, BFUPDATE, Ctrue)
16 VERTEXMAP(Frontier, BFRESET)
17 round = round + 1
18 if round == n then return “negative-weight cycle”
19 else return SP

To implement the Bellman-Ford algorithm in Ligra (pseudocode shown in Al-
gorithm 7.5), a Visited array is maintained in addition to the SP array. Since only
vertices whose SP value has changed in an iteration need to propagate its SP value
to its neighbors, the Visited array (initialized to all 0’s) keeps track of which vertices
had their SP value changed in an iteration. The update function passed to EDGEMAP

is shown in Lines 3–6 of Algorithm 7.5 (note that since this algorithm works on
weighted graphs, the update function has the edge weight as an additional argu-
ment). It uses WRITEMIN (as described in Section 7.4.4) to possibly update SP with
a smaller path length. The compare-and-swap on Line 5 guarantees that a vertex
is placed on the frontier at most once per iteration. The initial frontier contains
just the root vertex r . Each iteration of the while loop in Lines 14–17 applies the
EDGEMAP, which outputs a vertexSubset containing the vertices whose SP value has
changed. In order to reset the Visited array after an EDGEMAP, the BFRESET function
(Lines 7–9) is passed to VERTEXMAP. The algorithm either runs until no SP values
change or runs for n iterations and reports the existence of a negative-weight cy-
cle. An iteration here differs from the RELAX procedure in that RELAX processes all
vertices each time.
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Table 7.1 Graph inputs for Ligra experiments

Input Number of Vertices Number of Directed Edges

3d-grid 107 6 × 107

randLocal 107 9.8 × 107

rMat24 1.68 × 107 9.9 × 107

rMat27 1.34 × 108 2.12 × 109

Twitter 4.17 × 107 1.47 × 109

Yahoo! a 1.4 × 109 12.9 × 109

a. The original asymmetric graph has 6.6 × 109 edges.

7.5 Experiments
All of the experiments presented in this section are performed on the 40-core (with
two-way hyper-threading) Intel machine described in Section 2.7. The programs are
written in Cilk Plus and compiled with Intel’sicpc compiler. Experiments were also
performed on a 64-core AMD Opteron machine, but the results were slower than
the ones from the Intel machine so only the Intel results are reported.

The input graphs used in the experiments are shown in Table 7.1. 3d-grid is a
grid graph in 3-dimensional space in which every vertex has six edges—one con-
necting it to each of its two neighbors in each dimension. randLocal is a synthetic
graph in which every vertex has edges to five randomly chosen neighbors, where
the probability of an edge between two vertices is inversely correlated with their
distance in the vertex array (vertices tend to have edges to other vertices that are
close in memory). The rMat graphs are synthetic graphs with a power-law distri-
bution of degrees [Chakrabarti et al. 2004]. rMat24 (scale 24) contains 1.68 × 107

vertices and was generated with parameters a = 0.5, b = c = 0.1, d = 0.3. rMat27
(scale 27) is one of the Graph500 benchmark graphs [Graph500], and was gener-
ated with parameters a = 0.57, b = c = 0.19, d = 0.05. Twitter is a real-world graph
of the Twitter social network containing 41.7 million vertices and 1.47 billion di-
rected edges [Kwak et al. 2010]. Yahoo! is a real-world graph of the Web containing
1.4 billion vertices and 6.6 billion directed edges (12.9 billion after symmetrizing
and removing duplicates) [Altavista 2012]. With the exception of Pregel, the Yahoo!
graph is the largest real-world graph reported by other graph processing systems at
the time this work was first published.

The number of edges reported is the number of directed edges in the graph
with duplicate edges removed. The synthetic graphs are all symmetric, and the



7.5 Experiments 203

Table 7.2 Running times (in seconds) of algorithms over various inputs on a 40-core machine
(with hyper-threading)

3d-grid randLocal rMat24

Application (1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU)

Breadth-First Search 2.9 0.28 10.4 2.11 0.073 28.9 2.83 0.104 27.2

Betweenness Centrality 9.15 0.765 12.0 8.53 0.265 32.2 11.3 0.37 30.5

Graph Eccentricity 351 10.0 35.1 25.6 0.734 34.9 39.7 1.21 32.8

Connected Components 51.5 1.71 30.1 14.8 0.399 37.1 14.1 0.527 26.8

PageRank (1 iteration) 4.29 0.145 29.6 6.55 0.224 29.2 8.93 0.25 35.7

Bellman-Ford 63.4 2.39 26.5 18.8 0.677 27.8 17.8 0.694 25.6

rMat27 Twitter Yahoo!

Application (1) (40h) (SU) (1) (40h) (SU) (1) (40h) (SU)

Breadth-First Search 11.8 0.423 27.9 6.92 0.321 21.6 173 8.58 20.2

Betweenness Centrality 113 4.07 27.8 47.8 2.64 18.1 634 23.1 27.4

Graph Eccentricity 337 12.0 28.1 171 7.39 23.1 1280 39.6 32.3

Connected Components 204 10.2 20.0 78.7 3.86 20.4 609 29.7 20.5

PageRank (1 iteration) 243 6.13 39.6 72.9 2.91 25.1 465 15.2 30.6

Bellman-Ford 116 4.03 28.8 75.1 2.66 28.2 255 14.2 18.0

(SU) indicates the speedup of the application (single-thread time divided by 40-core time).

Yahoo! graph was symmetrized to create a larger graph for the experiments. The
original asymmetric Twitter graph was used. For the synthetic weighted graphs,
the edge weights were generated randomly and were verified to contain no negative
cycles. The experiments used unit weights on the Twitter and Yahoo! graphs for the
Bellman-Ford experiments.

Table 7.2 shows the running times for our implementations on each of the
input graphs using a single thread and on 40 cores with hyper-threading. All of the
implementations used EDGEMAPDENSE for the dense iterations with the exception of
Bellman-Ford, PageRank, and PageRank-Delta, which used EDGEMAPDENSE-WRITE,
an optimization described in Section 7.3.4 (it was found to be more efficient in
these cases). Figure 7.7 shows that all of the Ligra implementations scale well with
the number of threads. Each application is discussed in more detail below, and
compared with the fastest graph processing system that also supports a high-level
programming abstraction available at the time Ligra [Shun and Blelloch 2013] was
published.

For BFS, Ligra achieves a 10–28-fold parallel speedup on 40 cores. Ligra inte-
grates the ideas of [Beamer et al. 2011] to give a simple implementation of BFS,
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(c) (d)

(a) (b)

(e) (f)

Figure 7.7 Log-log plots of running times on rMat24 on a 40-core machine with two-way hyper-
threading. “40h” corresponds to 80 hyper-threads. (a) BFS; (b) Betweenness Centrality;
(c) Eccentricity Estimation; (d) Connected Components; (e) PageRank; (f) Bellman-Ford.
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which is almost as fast as their highly-optimized implementation while being much
simpler. The Ligra running times are better than those reported in [Leiserson and
Schardl 2010, Blelloch et al. 2012, Agarwal et al. 2010], which do not take advantage
of changes in the frontier density. Compared to the sequential BFS implementation
in the Problem Based Benchmark Suite, Ligra is faster on two or more threads.

For betweenness centrality (performing the two-phase computation for a single
source), Ligra achieves a 12–32-fold speedup on 40 cores. The KDT system [Lugow-
ski et al. 2012] reports that on 256 cores (2.1 GHz AMD Opteron) their batched
implementation of betweenness centrality (which performs the two-phase com-
putation for multiple sources in parallel) traverses almost 125 million edges per
second on an rMat graph with 218 vertices and 16 × 218 edges. On rMat27, the Ligra
implementation traverses 526 million edges per second using 40 cores on the Intel
Nehalem machine, but it is difficult to directly compare because the machine used
for experiments is different and Ligra does not do a batched computation. For the
Twitter graph, since the graph is transposed for the second phase, the in-degree
of some of the vertices increases dramatically, so we found that using a parallel
inner loop in EDGEMAPDENSE, an optimization described in Section 7.3.4, was more
efficient.

The graph eccentricity estimation implementation was run using a 64-bit vec-
tor for each vertex (K = 64) and it achieves a 23–35× speedup on 40 cores. Kang
et al. [2011] implement a slightly different algorithm for estimating the eccen-
tricity distribution using MapReduce, and run experiments on the Yahoo! M45
Hadoop cluster (480 machines with 2 quad-core Intel Xeon 1.86 GHz processors
per machine). Using 90 machines their reported running time for 3 iterations on a
2 billion-edge graph is almost 30 minutes. Using a 40-core machine, the Ligra code
is able to process the rMat27 graph of similar size until completion (9 iterations)
in 12 s.

The Ligra connected components implementation achieves a 20–37-fold
speedup on 40 cores. The Pegasus library [Kang et al. 2011] also has a connected
components algorithm implemented for the MapReduce framework. For a graph
with 59,000 vertices and 282 million edges, and using 90 machines of the Yahoo!
M45 cluster, they report a runtime of over 10 min for 6 iterations. In contrast, for
the much larger rMat27 graph (also requiring 6 iterations) the Ligra algorithm
completes in about 10 s on the 40-core machine.

For a single iteration, Ligra’s PageRank implementation achieves a 29–39-fold
speedup on 40 cores. GPS [Salihoglu and Widom 2012] reports a running time of
144 min for 100 iterations (1.44 min per iteration) of PageRank on a web graph
with 3.7 billion directed edges on an Amazon EC2 cluster using 30 large instances,
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each with 4 virtual cores and 7.5 GB of memory. In contrast, Ligra’s PageRank
implementation takes less than 20 s per iteration on the larger Yahoo! graph. For
PageRank on the Twitter graph [Kwak et al. 2010], the Ligra system is slightly faster
per iteration (2.91 s vs. 3.6 s) on 40 cores than PowerGraph [Gonzalez et al. 2012] on
8 × 64 cores (processors are 2.933 GHz Intel Xeon X5570 with a 3200 MHz bus). The
experiments also compare the Ligra implementations of PageRank and PageRank-
Delta, run to convergence with a damping factor of γ = 0.85 and parameters ε =
10−7 and α = 10−2. Figure 7.7(e) shows that PageRank-Delta is faster (by more than
a factor of 6 on rMat24) because in any given iteration it processes only vertices
whose accumulated change is above a δ-fraction of its PageRank value at the time
it was previously active. The error (which depends on δ) of the PageRank-Delta
implementation is not analyzed in this work—the purpose of this experiment is to
show that Ligra also works well for problems other than standard graph traversals.

Ligra’s parallel implementation of Bellman-Ford achieves a 18–28× speedup on
40 cores. Figure 7.7(f) compares this implementation with a naive one which visits
all vertices and edges in each iteration, and Ligra’s more efficient version is almost
twice as fast. The single-source shortest paths algorithm of Pregel [Malewicz et al.
2010] for a binary tree with 1 billion vertices takes almost 20 s on a cluster of 300
multicore commodity PCs. Ligra’s Bellman-Ford algorithm on a larger binary tree
with 227(≈ 1.68 × 107) vertices completed in under 2 s (time not shown in Table 7.2).
Compared to the implementation of the standard sequential algorithm described
in [Cormen et al. 2009], Ligra’s parallel implementation is faster on a single thread.

Since the Yahoo! graph is highly disconnected, we computed the number of ver-
tices and directed edges traversed for BFS and betweenness centrality and found
it to be 701 million and 12.8 billion, respectively (this is the largest connected
component of the graph). The number of vertex and edge traversals for the graph
eccentricity algorithm (K = 64) on the Yahoo! graph were 2.7 billion and 50 billion,
respectively. Note that doing 64 individual BFS’s to compute the same thing would
require many more vertex and edge traversals; the Ligra implementation of eccen-
tricity estimation (multiple-BFS) reduces the number of traversals (and hence the
running time) by combining the operations of multiple BFS’s into fewer operations.

Figure 7.8 shows scalability plots for the various applications. The experiments
were performed on random graphs of varying size with the number of directed
edges being ten times the number of vertices. The reader can observe that the
implementations scale quite well with increasing graph size, with some noise due
to the variability in the structures of the different random graphs.

Figure 7.9 shows plots of the size of the frontier plus the number of outgoing
edges for each iteration and each application on rMat24. The rMat24 graph is a



7.5 Experiments 207

(c) (d)

(a) (b)

(e) (f)

Figure 7.8 Plots of running times vs. edge counts in random graphs on a 40-core machine (with
hyper-threading). (a) BFS; (b) Betweenness Centrality; (c) Eccentricity Estimation;
(d) Connected Components; (e) PageRank (1 iteration); (f) Bellman-Ford.
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(c) (d)

(a) (b)

(e) (f)

Figure 7.9 Plots of frontier size plus number of outgoing edges (y-axis in log scale) vs. iteration
number for rMat24. (a) BFS; (b) Betweenness Centrality; (c) Eccentricity Estimation;
(d) Connected Components; (e) PageRank-Delta; (f) Bellman-Ford.
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scale-free graph and hence able to take advantage of the hybrid BFS idea of Beamer
et al. [2012]. The y-axes are shown in log-scale. The figures also plot the threshold,
above which EDGEMAP uses the dense implementation and below which EDGEMAP

uses the sparse implementation. For BFS, betweenness centrality (same frontier
plot as that of BFS), eccentricity estimation, and Bellman-Ford, the frontier is
initially sparse, switches to dense after a few iterations and then switches back
to sparse later. For connected components and PageRank-Delta, the frontier starts
off as dense (the vertexSubset contains all vertices), and becomes sparser as the
algorithm continues. See [Beamer et al. 2012] for a more detailed analysis of frontier
plots for BFS.





8Ligra+: Adding
Compression to Ligra

8.1 Introduction
The previous chapter showed the simplicity, expressiveness, and efficiency of Ligra
for shared-memory graph processing. This chapter describes graph compression
techniques that can be used to reduce Ligra’s memory usage. While the largest real-
world graphs can fit on a single shared-memory server, reducing memory usage
allows one to use machines with less memory for graph processing. This leads to
reduced costs, whether one is purchasing the machines or renting machines in the
cloud. Additionally, it is interesting to know if using compression can speed up
parallel graph algorithms.

This chapter parallelizes and integrates various compression and decoding
techniques from the graph compression literature as well as from the sparse matrix-
vector multiplication literature into Ligra. The extended framework, called Ligra+,
uses less space than Ligra, while providing comparable or improved performance.
Ligra+ is able to represent a variety of synthetic and real-world graphs using 49–
56% of its original size on average, depending on the compression scheme. The
performance of the graph algorithms in Ligra+ ranges from 2.2× faster to 1.1×
slower than the original Ligra system. In many cases, Ligra+ outperforms Ligra due
to its smaller memory footprint, and is about 14% faster on average when using the
fastest compression scheme. Using compression, Ligra+ is able to process graphs
using less memory, and fit larger graphs in memory, while performing just as well
as or better than Ligra. As the compression techniques are part of a graph process-
ing framework, users can easily work with compressed graphs without worrying
about the implementation details. Applications written in Ligra can also be used
in Ligra+, as the interfaces are identical.
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8.2 Previous Work
There has been a large amount of work on compressing graphs, especially planar
graphs and graphs with constant genus (see, e.g., [Blandford et al. 2003] and the
references within). Blandford et al. [2003, 2004] experiment with a variety of graph
compression techniques, and study the performance of graph algorithms on com-
pressed graphs, which requires on-the-fly decoding. Their techniques can reduce
space usage by up to a factor of 3–6 compared to normal adjacency arrays. However,
they only study the techniques in a sequential setting, and for only three specific
algorithms—depth-first search, PageRank, and bipartite matching. They show that
the algorithms on compressed graphs are about 25% slower. This chapter paral-
lelizes their compression techniques, and studies the performance of a broad class
of parallel graph algorithms on much larger graphs than used in [Blandford et
al. 2003, Blandford et al. 2004]. The experiments show that sequentially, the al-
gorithms on compressed graphs are indeed often slower, however in parallel they
become competitive with or faster than the algorithms on uncompressed graphs.
This is because graph algorithms are memory-bound, and memory is a larger bottle-
neck in parallel due to multiple cores competing for resources—therefore reducing
the memory footprint is more important, while at the same time decoding becomes
less of an overhead as it has better parallel scalability relative to the rest of the com-
putation.

Recent work [Kang et al. 2012, Lim et al. 2014] has used compression to reduce
graph sizes in the MapReduce setting. Their focus is on reducing the storage size
on disk because a large portion of the running time of MapReduce is from disk
I/O’s, and they show performance improvements for MapReduce graph algorithms.
However, the techniques are not used to reduce the in-memory space usage. In con-
trast, this work focuses on reducing the in-memory space usage while maintaining
or improving performance, so it becomes necessary to efficiently decode on-the-fly.

Other work has focused mainly on compressing Web and social network graphs
(see, e.g., [Adler and Mitzenmacher 2001, Boldi and Vigna 2004, Chierichetti et
al. 2009]). Most of these works have not been used to improve the performance
of general graph algorithms. The techniques that have been applied to graph algo-
rithms are particular to the algorithm and compression scheme [Randall et al. 2002,
Hannah et al. 2008, Buehrer and Chellapilla 2008, Karande et al. 2009, Brunelle et
al. 2013], and not used in a general framework. The algorithms are also studied in
the sequential setting.

Running algorithms on compressed inputs has been previously explored in the
setting of sparse matrix-vector (spMV) multiplication [Willcock and Lumsdaine
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2006, Kourtis et al. 2010, Blelloch et al. 2010, Kourtis et al. 2011, Buluç et al. 2011].
Like graph algorithms, spMV is also a memory-bound computation, and so better
improvements are observed in parallel. These articles show promising results, but
only study the specific spMV computation. In contrast, this chapter studies the
impact of compression in a broad class of parallel graph algorithms.

8.3 Ligra+ Implementation
This section first describes preliminaries and then presents the implementation of
Ligra+ to support processing of compressed graphs.

8.3.1 Preliminaries
The difference encoding scheme takes a vertex v’s adjacency list, {v0, v1, . . . ,
vd(v)−1}, given in increasing order, and encodes the differences, {v0 − v ,
v1 − v0, . . . , vd(v)−1 − vd(v)−2}. The graph compression scheme of Blandford et.
al [Blandford et al. 2004] uses a class of variable-length codes, known as k-bit codes,
which encode (compress) an integer x as a series of k-bit blocks. Each block uses
one bit as a continue bit, which indicates if the following block is also a part of
x’s encoded representation. To encode x, we first check if x < 2k−1. If this is the
case, we simply write the binary representation of x into a single block, and set the
continue bit to 0. Otherwise, we write the binary code for x mod 2k−1 in the block,
set the continue bit to 1, and then encode �x/2k−1� in the subsequent blocks. An ex-
ample of encoding the value “90” with 8-bit (byte) and 4-bit (nibble) codes is shown
in Figure 8.1. Decoding works by examining blocks until a block with a continue
bit of 0 is found. The decoded value in the i’th examined block is multiplied by
2i(k−1), and added to the result. For values that can be negative (e.g., the first edge
of a vertex), an extra bit in the first block is used as the sign bit, and decoding is
modified accordingly.

(b)

1 0 1 0 1 0 1 1 0 0 0 1

(a)

0 1 0 1 1 0 1 0

Figure 8.1 Encoding the value “90” with a byte (8-bit) code and a nibble (4-bit) code. The continue
bits are shaded in gray. In this case, the nibble code uses more space.
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8.3.2 Encoding
Ligra+ uses two types of k-bit codes—byte codes and nibble codes, which corre-
spond to 8-bit and 4-bit codes, respectively. Byte codes are fast to decode, as com-
pressed blocks lie on byte-aligned boundaries. Nibble codes lie on 4-bit boundaries,
and are slower to decode due to the extra bit arithmetic required. Blandford et
al. [Blandford et al. 2004] show that 2-bit codes and gamma codes (effectively 1-bit
codes) do not provide much additional space savings compared to nibble codes,
while being more expensive to decode, so Ligra+ does not use them.

For byte codes, Ligra+ also uses an idea from the sparse matrix-vector multiplica-
tion (spMV) compression literature [Kourtis et al. 2010] which reduces the decoding
time. Instead of storing a variable-length code for each value, it finds consecutive
groups of elements that require the same number of bytes (1 to 4 bytes) to store. For
each group it stores an 8-bit header indicating the number of bytes each element
requires (2 bits of the header) and the size of the group (6 bits of the header, which
allows for groups of up to size 64). This technique slightly increases the space usage,
but decreases the decoding time as there is no longer a continue bit which needs to
be checked to figure out when to stop decoding. This allows the decoding loop for
an element to be unrolled, as the number of bytes it requires is known beforehand,
and branch mispredictions are reduced. This chapter refers to this scheme as run-
length encoded byte codes. Note that with this scheme, each byte can use all 8 bits
for data, as it no longer needs to store a continue bit.

Ligra+ implements an encoder program that generates a binary file representing
a compressed graph using one of the coding schemes. The encoding is parallelized
over the vertices. For each vertex in the graph, the edges are first sorted in non-
decreasing order, and then the edge set of each vertex is compressed by encoding
the differences between consecutive edges. For the first edge of each vertex, the
difference between the source and the target vertex (which can be negative) is
encoded, with an additional sign bit in the first block. The run-length encoded byte
codes do this as well for the first edge of each vertex (the discussion in the previous
paragraph is only applied to the remaining edges). The implementation maintains
a single array of compressed edge values, and stores the vertex offsets into the array.
To process the vertices in parallel in the applications, vertex degrees must be known
before decoding so that appropriate offsets into shared arrays can be computed.
In Ligra+, the vertex degrees are not implicit from the offsets, while in Ligra they
are. Hence, the vertex degrees are stored as well. Vertex offsets and degrees are not
compressed, since for many real-world graphs the number of edges is much larger
than the number of vertices, so the space savings are low. For asymmetric input
graphs, the in-edges for each vertex are also generated and encoded.



8.3 Ligra+ Implementation 215

1 procedure DECODESPARSE(v, d, outEdges, F , C, Out)
2 prevEdge = −1
3 for j = 0 to d − 1 do � Loop over out-neighbors
4 if j == 0 then
5 ngh = FirstEdge(outEdges) + v

6 else
7 ngh = NextEdge(outEdges) + prevEdge
8 prevEdge = ngh
9 if (C(ngh) == 1 and F(v , ngh) == 1) then

10 Add ngh to Out

Figure 8.2 Ligra+ DECODESPARSE implementation

8.3.3 Decoding
The vertexSubset and VERTEXMAP implementations in Ligra+ are the same as in
Ligra, since vertices are not compressed. The implementations of EDGEMAP are
modified, so that the neighbors of a vertex are decoded using a special function.
In particular, Lines 4–6 of the EDGEMAPSPARSE pseudocode in Figure 7.3 and Lines
5–7 of the EDGEMAPDENSE-WRITE pseudocode in Figure 7.6 are replaced by a call to
DECODESPARSE, and Lines 5–8 of the EDGEMAPDENSE pseudocode in Figure 7.4 are
replaced by a call to DECODEDENSE.

This section describes the sequential implementations of DECODESPARSE and
DECODEDENSE for the variable-length codes, and Section 8.3.4 will describe how to
parallelize them. The implementations use two decoding functions FirstEdge and
NextEdge. FirstEdge takes as input a pointer into the compressed edge array, and
decodes one value representing the difference between the edge and source vertex
(which can be negative). It then modifies the pointer to point to the start of the
next value in the compressed edge array. NextEdge takes as input a pointer into
the compressed edge array, decodes one value representing the difference between
consecutive edges (which is non-negative), and modifies the pointer to point to the
start of the next value in the compressed edge array. The decoding functions decode
byte codes or nibble codes following the procedure described in Section 8.3.1.

The pseudocode for DECODESPARSE is shown in Figure 8.2. It takes as input the
source vertex v, its degree d, a pointer to the start of its out-neighbors in the
compressed array of out-edges (outEdges), the functions F and C, and a pointer
to the output vertexSubset of EDGEMAPSPARSE (Out). It decodes the first neighbor
by calling the function FirstEdge, which returns the difference between the source
and target vertex, and then adds the value of the source vertex v to the result to
obtain the value of the neighbor (Lines 4–5). The result is assigned to the variable
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1 procedure DECODEDENSE(v, d, inEdges, F , C, Out, U )
2 prevEdge = −1
3 for j = 0 to d − 1 do � Loop over in-neighbors
4 if j == 0 then
5 ngh = FirstEdge(inEdges) + v

6 else
7 ngh = NextEdge(inEdges) + prevEdge
8 prevEdge = ngh
9 if (ngh ∈ U and F(ngh, v) == 1) then

10 Add v to Out
11 if C(v) == 0 then break

Figure 8.3 Ligra+ DECODEDENSE implementation

prevEdge to allow for decoding of subsequent edges (Line 8). In later iterations, the
difference between the previous edge and current edge is obtained by calling the
function NextEdge; the edge value is obtained by adding the difference to the value
of prevEdge (Lines 6–7), and then subsequently assigned to prevEdge (Line 8). As in
EDGEMAPSPARSE, the function C is applied to ngh, and if it returns TRUE, F is applied
to (v , ngh); if F returns TRUE then the neighbor is added to the output vertexSubset
(Lines 9–10).

The pseudocode for DECODEDENSE is shown in Figure 8.3. It takes the same
arguments as DECODESPARSE, except that the compressed edge array is for the in-
edges (inEdges) instead of the out-edges, and it also takes the input vertexSubset U

to EDGEMAPDENSE. Decoding the edges is done in the same way as in DECODESPARSE.
When DECODEDENSE is called with vertex v, it is assumed that C(v) is TRUE. As in the
original EDGEMAPDENSE, it checks if an in-neighbor ngh is in the input vertexSubset
U , and if so applies F to (v , ngh); if F returns TRUE then v is added to the resulting
vertexSubset (Lines 9–10). The optimization of breaking early is done on Line 11.

For run-length encoded byte codes, the decoding procedures are modified to
process groups of edges after reading the header. Lines 9–10 of DECODESPARSE and
Lines 9–11 of DECODEDENSE are applied immediately after each neighbor ID is
decoded.

8.3.4 Parallel Decoding
The decoding process described in the previous section is sequential for a given ver-
tex. Although for most graphs, decoding the edges sequentially for each vertex gives
performance competitive with Ligra, we found that for some applications on certain
graphs, it was up to two times slower. In these cases, parallelizing over the vertices
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Figure 8.4 BFS running time of Ligra+ using run-length encoded byte codes on Twitter on 40 cores
with hyper-threading vs. T (left), and space of Twitter vs. T (right).

was not sufficient due to the highly skewed distributions of degrees. Therefore, we
designed a parallel decoding scheme, in which vertices with degree greater than
some threshold T split their edges into chunks each containing T edges (except
for possibly the last chunk), and the first edge of each chunk is difference encoded
with respect to the source vertex. For each vertex, offsets into its chunks of edges
are stored, except for the first chunk. Thus, for vertices with only one chunk (degree
at most T ), no extra storage is required. For each vertex, the different chunks of the
edge array are decoded in parallel, as the offset to the start of each chunk is known.
For DECODEDENSE, the optimization of breaking early is applied inside each chunk.
The threshold T represents a trade-off between parallelism and space overhead.
The experiments used a threshold T = 1000, which was found to work best overall,
although the performance was similar across a wide range of T (from 100–10,000).
The storage required for the additional offsets is minimal for this range of T , as
there are at most m/T − n offsets needed for the graph. As an example, Figure 8.4
shows the parallel BFS running time of Ligra+ using run-length encoded byte codes
on the Twitter graph and its space as a function of T . The Twitter graph [Kwak et al.
2010] (see Table 8.1 for its size) is a graph with a very skewed degree distribution,
and thus benefits from parallel decoding. The rightmost point (T = maximum de-
gree) of each plot corresponds to not chunking the edges at all. Observe that the
running time is similar for T in the range 100–10,000, but increases if T is too
small or too large. The space usage for T ≥ 1000 is about the same as not using
chunking at all, but can be significantly higher if T is too small. A similar trend was
observed in other applications and other graphs with skewed degree distributions.
It is worth noting that the papers describing compression in parallel spMV do not
perform parallel decoding within rows of the matrix (analogously, the edges of a
vertex).
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Table 8.1 Graph input sizes and storage sizes, including both vertices and edges

Number of Number of Ligra+ Ligra+ Ligra+
Input Graph Vertices Directed Edges Ligra (byte) (byte-RLE) (nibble)

randLocal 10,000,000 98,201,048 433 MB 228 MB 246 MB 221 MB

3d-grid 9,938,375 59,630,250 278 MB 219 MB 209 MB 209 MB

soc-LJ 4,847,571 85,702,474 362 MB 188 MB 204 MB 178 MB

cit-Patents 6,009,555 33,037,894 156 MB 107 MB 117 MB 105 MB

com-LJ 4,036,538 69,362,378 294 MB 152 MB 166 MB 143 MB

com-Orkut 3,072,627 234,370,166 950 MB 440 MB 466 MB 421 MB

nlpkkt240 27,993,601 746,478,752 3.1 GB 1.06 GB 1.16 GB 815 MB

Twitter 41,652,231 1,468,365,182 12.08 GB 6.17 GB 6.46 GB 5.95 GB

uk-union 133,633,041 5,507,679,822 45.9 GB 15.5 GB 16.2 GB 10.9 GB

Yahoo! 1,413,511,391 12,869,122,070 62.8 GB 37.9 GB 39.3 GB 34.4 GB

8.3.5 Graph Storage
Two arrays for edges are used—one for the compressed in-edges and one for the
compressed out-edges. Vertex offsets into the edge arrays and their degrees are
stored in a separate array, uncompressed. For symmetric graphs, only one edge
array is required, and for asymmetric graphs, both the in-edges and out-edges are
required.

8.3.6 Weighted Graphs
For weighted graphs, the edge weights are encoded using difference encoding with
respect to the value 0, and a bit in the first block is used as the sign bit. Decoding is
done in the same manner as decoding the first edge of a vertex, but relative to the
value 0. As in Ligra, the edge targets and weights are interleaved to improve cache
locality. The FirstEdge and NextEdge functions are modified to decode the target
of an edge along with its weight.

For run-length encoded byte codes, the encoder finds groups of edges that
require at most x bytes for the difference with the previous edge and y bytes for
the weight, where x ∈ {1, 2, 3, 4} and y ∈ {1, 4}. The header byte uses 3 bits to store
the (x , y) combination and 5 bits for the size of the group (allowing for groups of
up to size 32). The decoding functions are modified accordingly to decode groups
of edge targets/weights after reading the header.
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8.3.7 Comparison to Ligra
The user interface to Ligra+ is the same as in Ligra, so applications developed
using Ligra are compatible with Ligra+. Only the graph representation and the
implementations of EDGEMAP have changed, and the user is not exposed to this.

8.4 Experiments
This section analyzes the effect of compression on the space usage and running
time using a collection of large-scale graphs. The experiments are done on the
six graph applications described in Section 7.4: breadth-first search (BFS), be-
tweenness centrality computation from a source vertex (BC), graph eccentricity
estimation (Eccentricity), connected components (Components), PageRank (one it-
eration), and Bellman-Ford shortest-paths. This section only compares Ligra+ with
Ligra, as the goal of the experimental study is to observe the impact of graph com-
pression on running time and space usage, while keeping other factors the same.
The code is written in Cilk Plus and compiled with the icpc compiler, and the
experiments are run on the 40-core Intel machine described in Section 2.7.

Input Graphs
The experiments use a set of synthetic and real-world graphs, whose sizes are shown
in Table 8.1. The randLocal, 3d-grid, Twitter, and Yahoo! graphs are as described
in Section 7.5. The experiments also use the soc-LJ , cit-Patents, com-LJ , and com-
Orkut graphs from the Stanford Network Analysis Project [Leskovec and Krevl
2014], which we symmetrized. nlpkkt240 is a graph from an optimization problem
obtained from [Davis and Hu 2011]. uk-union is a graph generated from snapshots
of a subset of the UK web network [Boldi et al. 2008]. Twitter and uk-union are
asymmetric, and the rest of the graphs are symmetric. All self and duplicate edges
are removed from the graphs.

Compression Quality
We experimented with several graph reordering schemes (e.g., [Blandford et al.
2003, Karypis and Kumar 1998]) to improve the locality (i.e., renumber vertices
such that the IDs of vertices and their neighbors are close), and hence compression
of the graphs. Detailed experiments on various reordering schemes are presented
in Section 8.4.1. While for most graphs, applying the best reordering algorithm
improves compression, the locality of our real-world graphs is already quite good
without reordering. The experiments use the best ordering for each graph, but we
found that reordering is not always necessary to obtain good compression.
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Figure 8.5 Average number of bits per edge required for the different coding schemes in Ligra+.

Figure 8.5 compares the average bits per edge required for byte coding (byte),
run-length encoded byte coding (byte-RLE), and nibble coding (nibble) using the
best reordering algorithm for each graph. For reference, the figure also shows that
the uncompressed graph in Ligra requires 32 bits per edge. For the input graphs,
all three coding schemes use many fewer bits per edge than in Ligra (at most 19 bits
per edge). Among the three coding schemes, nibble codes require the least space,
followed by byte codes, and finally byte-RLE codes.

Table 8.1 reports the size required to store each graph in Ligra, Ligra+ with
byte coding, run-length encoded byte coding, and nibble coding. This includes the
edges, vertex offsets, and vertex degrees (for Ligra+). For graphs that have a high
vertex-to-edge ratio (e.g., 3d-grid) the space savings of Ligra+ compared to Ligra are
smaller, since Ligra+ does not compress vertices. However, for graphs with good
compression and/or low vertex-to-edge ratio, such as nlpkkt240 and uk-union, the
space savings are up to 3× for byte and byte-RLE coding and 4× for nibble coding.
On average, byte codes, byte-RLE codes, and nibble codes reduce the space to about 53%,
56%, and 49% of the uncompressed size, respectively.

Running Time
Table 8.2 (p. 222) reports the times using a single-thread (T1) and times using 40
cores with hyper-threading (T40h) for each application on each input graph. The
time for encoding graphs is not included in the running times, as this process
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only needs to be done once per graph and hence the cost is amortized across all
subsequent computations on the graph. The encoding step is quite efficient as
it essentially amounts to a scan over each vertex’s edges, and is done in parallel.
Figure 8.6 (p. 224) plots the average performance per application of Ligra+ with
each encoding scheme relative to Ligra. The reader can observe that sequentially,
Ligra+ is slower on average than Ligra for all of the applications except PageRank,
but in parallel, Ligra+ with byte-RLE or byte codes is faster on all applications. In
parallel, Ligra+ using nibble codes is still generally slower than Ligra due to the
high overhead of decoding, but not by as much as on a single thread (see Figure 8.6).
Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE
codes is generally faster than with byte codes because there is a lower decoding
overhead.

Graph algorithms are memory-bound, and the reason for the improvement in
the parallel setting is because memory is more of a bottleneck in parallel than in
the sequential case, and so the reduced memory footprint of Ligra+ is important in
reducing the effect of the memory bottleneck. In addition, the decoding overhead
is lower in parallel than sequentially because it gets better parallel speedup relative
to the rest of the computation.

Overall, Ligra+ is at most 1.1× slower and up to 2.2× faster than Ligra on 40
cores with hyper-threading. On average, over all applications and inputs, Ligra+ using
byte-RLE codes is about 14% faster than Ligra in parallel and about 8% faster using
byte codes. In parallel, Ligra+ using nibble codes is about 35% slower than Ligra on
average. The graphs with better compression (e.g., nlpkkt240 and uk-union) tend
to have better performance in Ligra+. For the larger graphs, Ligra+ outperforms
Ligra in most cases because vertices tend to have higher degrees and neighbors no
longer fit on a cache line, making the reduced memory footprint a more significant
benefit. Sequentially, Ligra+ is slower than Ligra by about 3%, 13%, and 73% on
average when using byte-RLE, byte, and nibble codes, respectively.

Figure 8.7 (p. 224) plots the average parallel self-relative speedups (T1/T40h) over
all inputs for each of the coding schemes per application. Both Ligra and Ligra+
achieve good speedups on the applications—at least a factor of 20 for Ligra and
25 for Ligra+. The applications using the compression schemes all achieve bet-
ter speedup than Ligra. Again, this is because compression alleviates the memory
bottleneck which is a bigger issue in parallel, and the overhead of decoding is
lower because it has better parallel scalability relative to the rest of the compu-
tation.
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Table 8.2 Sequential (T1) and parallel (T40h) times (seconds) on a 40-core machine with
hyper-threading on different applications a

BFS Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 1.46 0.055 1.93 0.056 1.8 0.054 3.23 0.08
3d-grid 1.47 0.214 1.3 0.216 1.26 0.214 1.66 0.233
soc-LJ 0.634 0.028 0.677 0.027 0.676 0.026 0.902 0.031
cit-Patents 0.639 0.029 0.758 0.03 0.752 0.03 1.08 0.037
com-LJ 0.523 0.023 0.539 0.023 0.54 0.023 0.708 0.026
com-Orkut 0.663 0.029 0.899 0.031 0.789 0.029 1.65 0.049
nlpkkt240 10.3 0.489 9.41 0.463 8.74 0.466 14.2 0.517
Twitter 6.91 0.27 8.79 0.274 8.33 0.268 13 0.347
uk-union 48.5 2.29 45.9 1.48 37.6 1.34 60.4 1.99
Yahoo! 124 4.68 113 3.98 128 3.8 161 4.81

BC Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 4.82 0.152 6.36 0.167 5.33 0.159 7.95 0.228
3d-grid 4.75 0.559 4.64 0.572 5.36 0.558 5.78 0.588
soc-LJ 2.6 0.093 3.37 0.108 3.11 0.1 5.08 0.139
cit-Patents 2.1 0.086 2.59 0.091 2.49 0.091 3.62 0.115
com-LJ 2.12 0.082 2.89 0.091 2.57 0.087 4.14 0.121
com-Orkut 4.38 0.14 5.98 0.163 4.94 0.142 9.59 0.268
nlpkkt240 33.3 1.34 33.3 1.28 28.1 1.23 35.7 1.39
Twitter 40.1 4.62 47.4 3.16 44.9 3.53 75.2 3.78
uk-union 128 5.4 131 4.05 101 3.46 177 5.47
Yahoo! 458 13.8 510 13.6 438 12.4 767 19

Eccentricity Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 9.22 0.286 10.7 0.295 9.82 0.284 17.1 0.433
3d-grid 135 5.23 173 5.57 139 5.25 244 7.73
soc-LJ 8.06 0.22 10.6 0.233 10.6 0.218 15 0.363
cit-Patents 4.75 0.149 6.91 0.16 5.81 0.157 8.61 0.224
com-LJ 7.75 0.212 8.73 0.222 8.23 0.213 14 0.343
com-Orkut 13.2 0.355 14.4 0.367 12.3 0.323 26.1 0.645
nlpkkt240 897 22.6 1120 24.4 906 21.1 1820 39.1
Twitter 172 7.46 193 7.26 172 7.13 392 10.2
uk-union 664 32 462 16.7 383 14.5 718 25.6
Yahoo! 1390 36.4 1440 35.2 1250 32.7 2280 53.7

a. Running times for the original Ligra (orig.), Ligra+ using byte coding (byte), byte coding with
run-length encoding (byte-RLE), and nibble coding (nibble).
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Table 8.2 (continued)

Components Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 2.03 0.074 2.87 0.08 2.51 0.074 4.94 0.116
3d-grid 1.02 0.635 1.36 0.772 1.06 0.68 2 1.21
soc-LJ 2.37 0.074 3.32 0.083 2.84 0.075 5.5 0.132
cit-Patents 1.16 0.044 1.66 0.05 1.52 0.046 2.61 0.069
com-LJ 1.87 0.061 2.63 0.067 2.26 0.062 4.47 0.108
com-Orkut 3.7 0.108 4.31 0.119 3.74 0.094 8.52 0.223
nlpkkt240 10.6 0.547 14 0.596 10.5 0.49 23 0.927
Twitter 76.4 3.35 82.2 2.42 72.3 2.27 147 3.83
uk-union 71.1 5.57 53.2 2.73 45.7 2.61 76.1 3.9
Yahoo! 307 12.1 309 10.7 271 9.84 500 15.8

PageRank Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 1.74 0.062 1.87 0.062 1.79 0.062 3 0.082
3d-grid 0.871 0.04 0.799 0.039 0.823 0.036 1.2 0.048
soc-LJ 1.85 0.059 1.88 0.061 1.79 0.055 3.11 0.088
cit-Patents 0.884 0.032 0.857 0.034 0.849 0.032 1.33 0.042
com-LJ 1.51 0.049 1.5 0.045 1.42 0.041 2.46 0.068
com-Orkut 4.53 0.158 4.16 0.146 3.98 0.144 7.44 0.236
nlpkkt240 7.36 0.24 6.89 0.224 8.09 0.226 9.2 0.269
Twitter 48.6 2.68 73.5 2.74 70.5 2.66 95.2 3.15
uk-union 74.4 4.89 56.9 2.26 52.3 2.24 64.8 2.65
Yahoo! 263 8.2 258 7.73 238 7.39 347 9.79

Bellman-Ford Orig. Byte Byte-RLE Nibble

Input Graph (T1) (T40h) (T1) (T40h) (T1) (T40h) (T1) (T40h)

randLocal 9.64 0.329 10.1 0.325 10.1 0.326 15.6 0.432
3d-grid 24.7 1.36 23.4 1.14 23.2 1.16 31.5 1.31
soc-LJ 3.63 0.139 4.87 0.141 4.38 0.138 6.99 0.203
cit-Patents 3.28 0.14 3.97 0.145 4.05 0.145 6.02 0.179
com-LJ 4.02 0.124 3.59 0.127 3.62 0.128 6.65 0.181
com-Orkut 5.55 0.241 6.26 0.246 5.78 0.228 13.2 0.427
nlpkkt240 142 4.88 144 4.46 141 4.43 265 6.91
Twitter 41.3 1.14 50.2 1.11 34.9 1.06 65.7 1.68
uk-union 42.9 2.9 45.1 1.74 42.8 1.53 63.8 2.34
Yahoo! 176 6.28 225 6.54 210 6.11 331 8.92
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Figure 8.6 Average performance of Ligra+ relative to Ligra for each application on a single-thread
(left) and on 40 cores with hyper-threading (right).

Figure 8.7 Average self-relative speedup over all inputs for each application on 40 cores with
hyper-threading of Ligra and Ligra+.

Memory Usage
Figure 8.8 plots the peak memory usage of the applications using Ligra and Ligra+
for several graphs. For all graphs, Ligra+ has a lower peak memory usage than
Ligra. Since the applications use auxiliary data structures of size proportional to
the number of vertices, for graphs with a low vertex-to-edge ratio (e.g., com-Orkut
and nlpkkt240), there is a significant saving in memory usage with Ligra+ compared
to Ligra, and for other graphs the saving is lower.
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(a) (b)

(c)

Figure 8.8 Peak memory usage of graph algorithms on (a) com-LJ, (b) com-Orkut, and (c) nlp-
kkt240 in Ligra and Ligra+.

8.4.1 Experimental Analysis of Graph Reordering Algorithms
As discussed by Blandford et al. [2003], vertex ordering in graphs can affect com-
pression quality and cache performance of graph algorithms. Graph orderings have
also been studied in the context of sparse matrix computations to reduce the num-
ber of arithmetic operations and memory usage (fill-in). It is also used in the spMV
algorithm of [Blelloch et al. 2010] to improve compression. This section discusses
several graph reordering algorithms that we experimented with. There are also
other reordering techniques not discussed in this section, which are mostly de-
signed specifically for web and social network graphs (see, e.g., [Boldi et al. 2009,
Boldi et al. 2011, Randall et al. 2002, Chierichetti et al. 2009, Safro and Temkin
2011]).
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Depth-first search (dfs). The numbering of the vertices is determined by the depth-
first traversal of the vertices starting from an arbitrary vertex. Pre-order, in-order,
and post-order traversals can all be used, and we found the compression quality to
be very similar in all three cases.

Breadth-first search (bfs). The numbering of the vertices is determined by the
breadth-first traversal of the vertices starting from an arbitrary vertex. This tech-
nique was suggested by Apostolico and Drovandi [2009] for web graphs.

Hybrid depth-first/breadth-first search (hybrid). BFS tends to label children of ver-
tices close together, leading to good difference compression between neighbors
of a vertex, while DFS tends to label subtrees of vertices close together, leading to
good difference compression between source and target vertex. We tried a hybrid
approach using properties of both BFS and DFS. In particular, the vertices are vis-
ited in DFS order, but the children of each vertex are labeled with consecutive IDs
before recursively calling DFS on the children. The motivation here is to exploit
properties of both BFS and DFS to obtain small differences between source and
target vertices, and neighbors of the same vertex.

Recursive breadth-first search (bfs-r). This approach is described by Blandford et al.
[2003]. It first performs a BFS from an arbitrary vertex, finds the furthest vertex from
that starting vertex, and performs a BFS from the furthest vertex until half of the
vertices are visited. This partitions the vertices into two halves, and the algorithm
assigns a consecutive range of the indices to each half and recurses on each half.

METIS. We use the ordering program in the graph partitioning software METIS
[Karypis and Kumar 1998]. The method is based on multi-level graph partitioning,
and recursively partitions a graph using a separator algorithm, assigning consec-
utive IDs to each half, and recursing on each half. We also tried the reordering
program in Scotch [Pellegrini and Roman 1996], and found the quality to be very
close to that of METIS.

A Parallel Separator-Based Reordering Algorithm (p-sep). Blandford et al. [2003]
describe a separator-based method in their paper, and we develop a parallel version
of it in this section. Let us first review the sequential algorithm of Blandford et al.
[2003].

The algorithm of Blandford et al. [2003] repeatedly coarsens a graph by contract-
ing edges until a single vertex remains, building a separator tree, in which every
two vertices contracted together become the children of the new vertex. To choose
which edges to contract at each step, it uses the metric w(EAB)/(s(A)s(B)) where
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w(EAB) is the weight of the edge between vertices A and B, and s(A) and s(B) are
the weights of A and B, respectively. Initially, all vertices and edges have a weight of
1. When contracting two vertices A and B, the resulting vertex is assigned a weight
of s(A) + s(B), and when there are multiple edges between two vertices after con-
tracting, a single edge with weight equal to the sum of the edges is kept. The new
ordering is then generated by an in-order traversal of the leaves of the separator
tree. Blandford et al. apply a child-flipping optimization, in which the children of
two siblings in the separator tree are rearranged if it leads to a better ordering.

A parallel version of the Blandford et al. algorithm that we develop is described
next. The contraction of edges at each step can be done in parallel as long as any
single vertex only participates in at most one contraction. To guarantee this, the
parallel algorithm first selects an edge for each vertex which maximizes the metric
used by Blandford et al., creating a sub-graph (which is a forest). A parallel maximal
matching algorithm optimized for forests (based on the maximal matching algo-
rithm developed in Chapter 4) is then executed on the sub-graph. The resulting
maximal matching determines the edges which will be contracted in a phase. The
algorithm then contracts the edges, relabels the vertices, and relabels the remain-
ing edges with their new endpoints. Contracted vertices have their weights added
together. Duplicate edges between vertices after contraction have their weights
summed together. This is done by inserting the edges into a parallel hash table
(the algorithm uses the hash table developed in Chapter 5), and if an edge already
exists in the table, an atomic fetch-and-add is used to add the weight to the existing
edge in the table. The maximum number of levels of recursion can be controlled
(10,000 in the experiments), as for graphs with skewed degree distribution, very few
vertices are contracted per level of recursion. The parallel algorithm does not apply
the child-flipping optimization of Blandford et al. [2003]. As in the sequential algo-
rithm, a left-to-right traversal of the leaves of the separator tree generated gives the
vertex ordering.

Measures of Locality/Compression. Two useful statistics of the degree of locality,
which correlate with the compression quality of a graph, are the average log cost
and average log gap cost. The log cost of an edge (v , u) is defined to be the log-
arithm (base 2) of the absolute difference between u and v, i.e., log2 |u − v|. The
average log cost of a graph is the average log cost over all edges in the graph,
i.e., (1/m)

∑
(u,v)∈E log2 |u − v|. If the adjacency list {v0, . . . , vd(v)−1} of each ver-

tex v are sorted in ascending order, then the log gap cost of an edge (v , vi) is
defined to be log2 |vi − v| if i = 0 and log2 |vi − vi−1| otherwise. The average log
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gap cost of a graph is the average log gap cost over all edges in the graph, i.e.,
(1/m)

∑
v∈V ′(log2 |v0 − v| + ∑d(v)−1

i=1 log2 |vi − vi−1|), where V ′ contains all vertices
in V with non-zero degree.

Compression Statistics. Table 8.3 shows the average log gap cost (gap) and average
log cost (log) of the reordered graphs using each algorithm described in this section,
with the lowest average log gap cost per graph shown in bold. The average log gap
cost is a more accurate indicator of compression performance in Ligra+ since it
uses difference encoding between consecutive edges. The reordering algorithms
were applied on the graphs with the original ordering. Also shown in Table 8.3 are
compression statistics for the original ordering (orig.) and a random ordering of
the vertices (rand.).

For the randLocal and 3d-grid graphs, the graph generator generates an ordering
with good locality already, so the reordering algorithms are not applied. Due to
the high memory requirements of the parallel separator code and METIS, and
the high running time of bfs-r, we were unable to obtain compression statistics
for these reordering algorithms on the large uk-union and Yahoo! graphs. For
the Twitter graph, none of the reordering algorithms gave a better average log
gap cost than the original ordering. The timing experiments in Table 8.2 and
Figures 8.6 and 8.7 use the ordering which gives the best average log gap cost
as this also corresponded to the fewest bits per edge. Note that the compression
rates shown in Figure 8.5 are higher than the average log gap cost because the
compression schemes requires each edge to be byte- or nibble-aligned, therefore
possibly wasting some bits per edge.

Orderings with low average log gap and average log costs have more locality
(i.e., the IDs of vertices and their neighbor are close to each other), which lead to
improvements in performance even without using compression, due to incurring
fewer cache misses. In other words, reordering the graphs improves performance
for the uncompressed graphs using Ligra as well. Furthermore, Ligra+ still reduces
the space usage even without applying graph reordering, as our experiments con-
firmed that the average bits per edge for the original ordering using the various
compression schemes was still much lower than 32. Therefore, while graph reorder-
ing can help with compression, it is not necessary to obtain reduced space usage.
This section experiments with a broad set of graph reordering algorithms, but there
are certainly other algorithms and variants that can be experimented with, possibly
giving even better compression statistics. A further study is left for future work.
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Table 8.3 Average log cost and average log gap cost of graphs using various reordering
algorithms a

Ordering: Orig. rand. p-sep dfs

Input Graph Gap Log Gap Log Gap Log Gap Log

randLocal 6.88 6.74 — — — — — —

3d-grid 10.6 8.12 — — — — — —

soc-LJ 10.6 16.97 15.71 20.05 8.08 12.18 9.86 16.16

cit-Patents 16.43 19.48 17.97 20.35 8.57 10.1 11.7 16.37

com-LJ 10.28 16.13 15.65 19.78 7.95 11.84 9.71 15.83

com-Orkut 10.42 17.5 13.61 19.39 8.58 14.53 10.09 17.7

nlpkkt240 4.49 23.74 19.28 22.57 4.13 8.18 5.1 14.27

Twitter 9.23 18.76 15.22 23.14 12.12 20.64 12.16 22.17

uk-union 3.14 11.44 17.08 24.83 — — 3.0 13.39

Yahoo! 7.6 24.56 21.33 28.22 — — 6.56 18.09

Ordering: bfs hybrid bfs-r METIS

Input Graph Gap Log Gap Log Gap Log Gap Log

randLocal — — — — — — — —

3d-grid — — — — — — — —

soc-LJ 10.67 16.96 9.64 15.3 10.36 16.48 9.39 15.2

cit-Patents 12.3 17.53 11.66 15.09 13.0 16.39 10.25 13.98

com-LJ 10.84 16.93 9.52 14.91 10.34 16.19 9.33 14.93

com-Orkut 10.35 17.85 9.87 17.26 10.16 17.74 10.03 16.85

nlpkkt240 4.02 17.44 3.81 11.17 3.15 8.56 3.87 10.61

Twitter 10.6 22.15 11.59 21.69 10.74 21.01 11.01 20.97

uk-union 3.01 18.62 2.31 14.41 — — — —

Yahoo! 7.14 23.34 6.22 17.66 — — — —

a. The lowest average log gap cost per graph is shown in bold.





IIIP A R T

PARALLEL GRAPH
ALGORITHMS

Chapter 9 presents the first linear-work (work-efficient) and polylogarithmic-depth
parallel algorithm for graph connectivity that is also practical. The chapter de-
scribes several implementation variants of the algorithm, and shows experimen-
tally that the fastest implementation is competitive with the fastest existing par-
allel connectivity implementations (which are not theoretically linear-work and
polylogarithmic-depth) and does not have “worst-case” inputs due to its theoretical
guarantees. Chapter 10 presents the design and implementation of simple, fast,
and cache-efficient shared-memory algorithms for exact, as well as approximate,
triangle counting and other triangle computations. In addition, the chapter proves
strong asymptotic bounds on the work, depth, and cache complexity of the solu-
tions. A comprehensive experimental evaluation shows that the implementations
scale to the largest publicly available real-world graphs, obtain excellent parallel
scalability on multicore machines, and are significantly faster than previous paral-
lel solutions for the same problem.

The results in this part of the book have appeared in the following publications.

J. Shun, L. Dhulipala, and G. Blelloch. 2004. A simple and practical linear-work parallel
algorithm for connectivity. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 143–153.

J. Shun and K. Tangwongsan. 2015. Multicore triangle computations without tuning. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp. 149–
160.





9Linear-Work Parallel
Graph Connectivity

9.1 Introduction
Finding the connected components of a graph is a fundamental problem in com-
puter science that has been well studied (see Section 2.6 for the definition of the
problem), having many important applications such as in VLSI design and image
analysis for computer vision. Sequentially, connectivity can be easily implemented
in linear work using breadth-first search (BFS) or depth-first search, or nearly lin-
ear work with union-find. On the other hand, computing connected components
and spanning forests1 in parallel has been a long studied problem [Agarwal 1987,
Awerbuch and Shiloach 1983, Chin et al. 1982, Chong and Lam 1995, Cole and
Vishkin 1991, Han and Wagner 1990, Hirschberg et al. 1979, Iwama and Kam-
bayashi 1994, Johnson and Metaxas 1997, Karger et al. 1999, Koubek and Krsnakova
1985, Kruskal et al. 1990, Lim et al. 1986, Nath and Maheshwari 1982, Nisan et
al. 1992, Pettie and Ramachandran 2002, Phillips 1989, Reif 1985, Shiloach and
Vishkin 1982, Vishkin 1984]. Some of the parallel algorithms developed are rela-
tively simple, but require super-linear work. The algorithms of Shiloach and Vishkin
[1982] and Awerbuch and Shiloach [1983] work by combining the vertices into trees
such that at the end of the algorithm vertices in the same component will belong to
the same tree. These algorithms guarantee that the number of trees decreases by a
constant factor in each iteration, but do not guarantee that a constant fraction of
the edges are removed, and thus require O(m log n) work. The random mate algo-
rithms of Reif [1985] and Phillips [1989] work by contracting vertices in the same
component together and guarantee that a constant fraction of the vertices decrease

1. A spanning forest algorithm can be used to compute connected components.
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in expectation per iteration, but again do not guarantee that a constant fraction
of the edges are removed. Therefore, these algorithms also require O(m log n) ex-
pected work and are not work-efficient.

Work-efficient polylogarithmic-depth parallel connectivity algorithms have
been designed in theory [Cole et al. 1996, Gazit 1991, Halperin and Zwick 1996,
Halperin and Zwick 2000, Pettie and Ramachandran 2002, Poon and Ramachan-
dran 1997]. These algorithms are based on random edge sampling [Gazit 1991,
Halperin and Zwick 1996, Halperin and Zwick 2000] or linear-work minimum span-
ning forest algorithms, which also involve sampling and filtering edges [Cole et al.
1996, Pettie and Ramachandran 2002, Poon and Ramachandran 1997]. However,
these algorithms are complicated and unlikely to be practical (there are no imple-
mentations of these algorithms available).

There has also been significant experimental work on parallel connectivity algo-
rithms in the past. Hambrusch and TeWinkel [1988] implement connected compo-
nent algorithms on the Massively Parallel Processor (MPP). Greiner [1994] imple-
ments and compares parallel connectivity algorithms using NESL [Blelloch 1992].
Goddard et al. [1995], Hsu et al. [1997], Bader and Madduri [2005], Bader et al.
[2005], Patwary et al. [2012], Shun et al. [2012], Slota et al. [2014], and the Galois
system [Nguyen et al. 2013] implement algorithms for shared-memory CPUs. Bus
and Tvrdik [2001], Krishnamurthy [1994], Bader and JaJa [1996], and Caceres et al.
[2010] implement connected components algorithms for distributed-memory ma-
chines. There has been some recent work on designing connectivity algorithms for
GPUs [Hawick et al. 2010, Soman et al. 2010, Banerjee and Kothapalli 2011]. There
have also been connectivity algorithms that require time proportional to the diam-
eter of the graph in recent graph processing packages [Kang et al. 2011, Kyrola et
al. 2012, Kyrola et al. 2014, Shun and Blelloch 2013]. None of the previous parallel
algorithms implemented are theoretically work-efficient.

Note that a parallel BFS can be performed to visit the components of the graph
one-by-one. While this approach is linear-work, the depth is proportional to the
sum of the diameters of the connected components. Therefore, this approach is
not efficient as a general-purpose parallel connectivity algorithm, although it works
well for low-diameter graphs with few connected components.

This chapter introduces a simple linear-work algorithm for connectivity requiring
polylogarithmic depth, and experimentally show that it rivals the best existing paral-
lel implementations for connectivity. The algorithm is the first work-efficient parallel
graph connectivity algorithm with an implementation, and furthermore the imple-
mentation also performs well in practice.
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The algorithm is based on a simple parallel algorithm for generating low-
diameter decompositions of graphs by Miller et al. [2013], which is an improvement
of an algorithm by Blelloch et al. [2011]. A low-diameter decomposition of a graph
partitions the vertices, such that the diameter of each partition is small, and the
number of edges between partitions is small [Linial and Saks 1993]. Such de-
compositions have many uses in computer science, including in linear system
solvers [Blelloch et al. 2011] and in metric embeddings [Bartal 2004]. The algo-
rithm of Miller et al. partitions a graph such that the diameter of each partition is
O(log(n)/β) and the number of edges between partitions is O(βm) for 0 < β < 1. It
runs in linear work and O(log2(n)/β) depth with high probability. Their algorithm
is based on performing breadth-first searches from different starting vertices in
parallel, with start times drawn from an exponential distribution. Due to prop-
erties of the exponential distribution, the algorithm only needs to run the mul-
tiple breadth-first searches for at most O(log(n)/β) iterations before visiting all
vertices.

We observe that this decomposition algorithm can be used to generate the con-
nected components labeling of a graph. Our algorithm simply calls the decompo-
sition algorithm recursively with β set to a constant fraction, and after each call
contracts each partition into a single vertex, and relabels the vertices and edges
between partitions. Since the number of edges decreases by a constant fraction in
expectation in each recursive call, the algorithm terminates after O(log n) calls with
high probability. This results in an algorithm for connected components labeling
that runs in linear work and O(log3 n) depth with high probability. An illustration
of this algorithm is shown in Figure 9.1. Our implementation is based on parallel
breadth-first searches and some simple parallel routines.

We also present a slight modification of the decomposition algorithm of Miller
et al., which relaxes the relative ordering among vertices due to different breadth-
first search start times. We show that this modification does not affect the asymp-
totic complexity of the decomposition algorithm, while leading to a simpler and
faster implementation. We use this decomposition algorithm for connectivity and
apply various optimizations to our implementations.

This chapter experimentally compares the decomposition-based connectivity
algorithm against the fastest existing parallel connectivity implementations (which
are not theoretically linear-work and polylogarithmic-depth) [Blelloch et al. 2012,
Patwary et al. 2012, Shun and Blelloch 2013, Slota et al. 2014] on a variety of
input graphs and shows that the decomposition-based algorithm is competitive.
On 40 cores, the parallel implementations achieve 18–39 times speedup over the
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(a) (b)

Figure 9.1 Illustration of the decomposition-based connectivity algorithm. (a) At t = 0, vertex 0
starts a BFS (red ball), and at t = 1, vertices 3 (green ball) and 4 (blue ball) start BFS’s.
In this illustration, when there are ties (multiple BFS’s visiting the same unvisited
neighbor), the BFS center with the lowest ID wins. The balls represent the resulting
partitions and the rings around the balls represent each level of the corresponding
BFS. (b) Each ball is contracted into a single vertex and the decomposition is applied
recursively.

same implementation run on a single thread, and achieve good speedups over
the sequential implementations on many graphs. Experiments show that on most
graphs, the number of edges decreases by significantly more than predicted by
the theoretical bounds due to duplicate edges between partitions. In addition, the
chapter presents experiments that study how the performance of the connectivity
algorithms varies with different settings of β in the decomposition algorithms.

Contributions
The main contributions of this chapter are as follows. First, a simple linear-work
and polylogarithmic-depth parallel algorithm for connectivity is presented. This
is the first practical parallel connectivity algorithm with a linear-work guarantee.
Second, the chapter describes a (modest) variation of the parallel decomposition
algorithm by Miller et al. that leads to a faster implementation and proves that it has
the same theoretical guarantees as the original algorithm. Next, optimized imple-
mentations of the connectivity algorithm are presented. Finally, an experimental
evaluation is performed, showing that the algorithm is competitive with the best
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previously available parallel implementations of graph connectivity, which are not
linear-work and polylogarithmic-depth.

9.2 Linear-Work Low-Diameter Decomposition
The exponential distribution with parameter λ is defined by the probability density
function:

f (x , λ) =
{

λe−λx if x ≥ 0

0 otherwise

The mean of the exponential distribution is 1/λ.
A (β,d)-decomposition (0 < β < 1) of an undirected graph G = (V , E) is a parti-

tion of V into subsets V1, . . . , Vk such that (1) the shortest path between any two
vertices in each Vi using only vertices in Vi is at most d, and (2) the number of edges
(u, v) ∈ E such that u ∈ Vi, v ∈ Vj , i �= j is at most βm.

Miller et al. present a parallel decomposition algorithm based on parallel
BFS’s [Miller et al. 2013], which this chapter refers to as DECOMP. They prove that for
a value β, DECOMP generates a (β , O(log(n)/β)) decomposition in O(m) work and
O(log2(n)/β) depth with high probability on a CRCW PRAM. The algorithm works
by assigning each vertex v a shift value δv drawn from an exponential distribution
with parameter β (mean 1/β). Miller et al. show that the maximum shift value is
O(log(n)/β) w.h.p. Each vertex v is then assigned to the partition Su that mini-
mizes the shifted distance dist−δ(u, v) = dist(u, v) − δu. This can be implemented
by performing multiple BFS’s in parallel. Each iteration of the implementation
explores one level of each BFS and at iteration t (starting with t = 0) breadth-first
searches are started from the unvisited vertices v such that δv ∈ [t , t + 1). If mul-
tiple BFS’s reach the same unvisited vertex w in the same time step, then w is
assigned to the partition corresponding to the origin of the BFS with the smaller
fractional portion of the shift value (equivalently, w is assigned to the partition
whose origin has the smallest shifted distance to w). Since the maximum shift
value is O(log(n)/β), the algorithm terminates in O(log(n)/β) iterations. Each it-
eration requires O(log n) depth for packing the frontiers of the BFS’s, leading to an
overall depth of O(log2(n)/β) w.h.p. The BFS’s are work-efficient, and so the total
work is O(m).

9.3 Linear-Work Connectivity
This section introduces a simple linear-work parallel algorithm for connectivity.
As a subroutine, it uses the parallel decomposition algorithm DECOMP described
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Algorithm 9.1 Parallel decomposition-based algorithm for connected components labeling

1 β = some constant fraction in (0, 1)

2 procedure CC(G(V , E))
3 L = DECOMP(G(V , E), β) � L contains the labels returned by DECOMP

4 G′(V ′, E′) = CONTRACT(G(V , E), L)
5 if |E′| = 0 then
6 return L

7 else
8 L′ = CC(G′(V ′, E′))
9 L′′ = RELABELUP(L, L′)

10 return L′′

in Section 9.2. By the definition of a decomposition, the number of inter-partition
edges remaining after a call to DECOMP starting with m edges is at most βm in ex-
pectation. The algorithm contracts each partition into a single vertex and recurses
on the remaining graph, whose edge count has decreased by at least a constant
factor in expectation. This leads to a linear-work parallel connectivity algorithm,
assuming that the contraction and relabeling can be done efficiently.

The pseudocode for this connected components algorithm (CC) is shown in
Algorithm 9.1. The input to DECOMP is a graph G(V , E) and a value β, and the output
is a labeling L of the vertices in V , such that vertices in the same partition will
have the same label. CONTRACT takes a graph G(V , E) and a labeling L as input,
and returns a new graph G′(V ′, E′) such that vertices with the same label in V

according to L are contracted into a single vertex, forming the vertex set V ′, and
the inter-partition edges in E are relabeled according to L and form the edge set
E′. RELABELUP takes as input labelings L and L′ and returns a new labeling L′′ such
that L′′[i] = L′[L[i]]. RELABELUP is necessary because the original labels L must be
updated with the labels L′ returned by the recursive call to CC.

Theorem 9.1 Algorithm 9.1 runs in O(m) expected work and O(log3 n) depth with high proba-
bility.

Proof The algorithm sets β to a constant between 0 and 1. Since the number of edges
decreases to at most βm in expectation after each recursive call, and the rate of re-
duction is independent across iterations, the total number of calls is O(α log1/β m)

with probability at least 1 − 1/mα−1 for some constant α > 1. Each recursive call
requires O(γ log2(n)/β) depth with probability at least 1 − 1/nγ−1 for some con-
stant γ > 1 and O(m′) work where m′ is the number of remaining edges for
DECOMP [Miller et al. 2013]. Hence, the total contribution of DECOMP to the depth
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of CC is O(δ log1/β m log2(n)/β) = O(log3 n) with probability at least 1 − 1/mδ for
some large enough constant δ (depending on α amd γ ), and the total contribution
to the work of CC is upper bounded by

∑∞
i=0 βicm for some constant c, which is

O(m) in expectation.
Let us now walk through an implementation of DECOMP that allows contraction

and relabeling to be done within the same complexity bounds. Recall that DECOMP

performs multiple breadth-first searches in parallel, with each BFS corresponding
to one of the partitions of the graph. All BFS’s can be maintained using a single
frontier array, where vertices belonging to the same partition are in consecutive
positions in the frontier. On each iteration, vertices that need to start their own BFS
are added to the end of this frontier array in parallel. The algorithm stores all of the
frontiers created throughout one call to DECOMP, and there are O(log(n)/β) such
frontiers w.h.p. Each individual BFS stores the starting and ending position of its
partition’s vertices on each frontier, as well as the total number of edges for these
vertices. Using this information, the algorithm can compute appropriate offsets
into shared arrays for each partition using prefix sums over all the O(log(n)/β)

frontiers for each BFS. For each iteration of CC, the work for computing offsets is
O(m′) where m′ is the number of edges at the beginning of the iteration, and the
depth is O(log(n)/β).

As a vertex visits other vertices during the BFS’s, if it encounters an edge to a
vertex belonging to the same partition (an intra-partition edge), it will mark that
edge as deleted (using some special value). These edges will be packed out at the
end of DECOMP, which can be done in O(m′) total work and O(log m′) depth, where
m′ is the number of edges at the beginning of the iteration. The rest of the edges
will be inter-partition edges and hence need to be kept for the next iteration. Each
partition will become a single vertex in the next iteration, with all of the edges of
the partition vertices merged. The algorithm then creates a new edge array and the
original vertices copy their edges into the new array (each vertex’s offset into this
array can be computed with a prefix sum), and since the vertices of each partition
are stored consecutively on the frontiers, this guarantees that the resulting array will
store each partition’s edges consecutively. The algorithm then removes duplicate
edges within the complexity bounds of an iteration using parallel hashing [Matias
and Vishkin 1991, Gil et al. 1991a], although the number of edges decreases by a
constant factor in expectation even if duplicates are not removed.

To relabel the new vertices, the algorithm first computes the total number of
partitions k and assigns each original label with a new label in the range [0, . . . ,
k − 1], which can be done using prefix sums. Singleton vertices are then removed,
but their labels are kept. For the k′ non-singleton vertices remaining, the algorithm
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relabels them to the range [0, . . . , k′ − 1] and recursively call CC. After the recursive
call, the original labels are relabeled according to the result of CC. This can all be
done using prefix sums in linear work in the number of remaining vertices and
O(log n) depth per iteration.

Let us summarize the proof of this theorem. For a constant fraction β, there are
O(log n) calls to DECOMP w.h.p., each of which does O(log n) iterations of BFS. Each
iteration of BFS requires O(log n) depth for packing. The depth for contraction
and relabeling is absorbed by the depth of DECOMP. This gives an overall depth
of O(log3 n) with high probability. DECOMP, contraction, and relabeling can be
done work-efficiently, and each call to DECOMP decreases the number of edges by a
constant fraction in expectation, leading to O(m) expected work overall.

This algorithm can be implemented on the CRCW PRAM as there is O(log n) par-
allel slackness per iteration, which is enough to do processor allocation with prefix
sums. Theoretically the depth of DECOMP could be improved to O(log n log∗ n) by
using approximate compaction [Gil et al. 1991a] (which is linear-work) for pack-
ing the frontiers of the BFS’s, as well as processor allocation on the CRCW PRAM.
The depth of the connectivity algorithm can further be improved by running just
O(log log n) iterations of the algorithm, at which point there are O(m/ log n) edges
remaining, and an algorithm with O(m log n) work and O(log n) depth (e.g., [Reif
1985, Phillips 1989]) is used. This gives a (modified) algorithm with expected linear
work and O(log n log log n log∗ n) depth w.h.p.

Let us consider a slight variation of DECOMP which breaks ties arbitrarily among
frontier vertices visiting the same unvisited neighbor in a given iteration of the
BFS’s. This modification simplifies the implementation of the algorithm and leads
to improved performance as discussed later in the chapter. This variation is equiv-
alent to rounding down all the δv values to the nearest integer and again assigning
each vertex v to the partition Su that minimizes dist−δ(u, v) = dist(u, v) − δu, but
breaking ties arbitrarily. This chapter refers to this version as Decomp-Arb and
shows that this modified version has the same theoretical guarantees (within a
constant factor). In particular, the number of inter-partition edges in the decom-
position is shown to be at most 2βm in expectation (the original bound was βm).

Theorem 9.2 Decomp-Arb generates a O(2β , O(log(n)/β)) decomposition in O(m) expected
work and O(log2(n)/β) depth with high probability.

Proof Since the algorithm still picks values from an exponential distribution, the diame-
ter of each partition is O(γ log(n)/β) with probability at least 1 − 1/nγ−1 as shown
in [Miller et al. 2013]. Hence, the depth of the algorithm is the same as the orig-
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inal algorithm, namely O(log2(n)/β) w.h.p. The work is still O(m) in expectation,
since the BFS’s are work-efficient. What remains is to show that the number of
inter-partition edges is at most 2βm in expectation.

As in [Miller et al. 2013], consider the midpoint w of an edge (u, v). Lemma
4.3 of [Miller et al. 2013] states that if u and v belong to different partitions, then
dist−δ(u

′, w) and dist−δ(v
′, w) are within 1 of the minimum shifted distance to w.

Decomp-Arb rounds all shifted distances down to the nearest integer. Hence when
comparing two rounded shift distances, their difference is at most 1 if and only if
the two original shift distances were within 2 of each other. In other words, suppose
the two distances being compared are d1 and d2. Then |�d2� − �d1�| ≤ 1 if and only if
|d2 − d1| < 2. Hence Lemma 4.3 of [Miller et al. 2013] can be modified to state that
if u and v belong to different partitions, then dist−δ(u

′, w) and dist−δ(v
′, w) (using

the original shift distances) are within 2 of the minimum shifted distance to w.
Lemma 4.4 of [Miller et al. 2013] uses properties of the exponential distribution

to show that the probability that the smallest and second smallest shifted distance
to w (corresponding to the first two BFS’s that arrive at w) has a difference of less
than c is at most βc. In this case, c = 2, so the probability that an edge is an inter-
partition edge is at most 2β. By linearity of expectations, the expected total number
of inter-partition edges is at most 2βm.

Plugging in Decomp-Arb into the proof of Theorem 9.1 results in a linear-work
parallel connectivity algorithm for 0 < β < 1/2.

9.4 Implementation Details
This section describes the algorithmic engineering efforts to obtain a fast imple-
mentation of Algorithm 9.1. The section describes three versions of DECOMP, re-
ferring to the original algorithm as Decomp-Min, the version which breaks ties
arbitrarily as Decomp-Arb, and a variant of Decomp-Arb that will be discussed later
as Decomp-Arb-Hybrid.

The implementation uses the adjacency list format for graph representation,
discussed in Section 2.4, where the array V stores offsets into an array of edges E.
The targets of the outgoing edges of vertex i are then stored in E[V [i]], . . . , E[V [i +
1]] − 1 (to deal with the edge case, V [n] is set to m). The graphs are undirected
so each edge is stored in both directions. The implementation also maintains
an array D, where D[i] stores the degree of the i’th vertex. Initially D[i] is set to
V [i + 1] − V [i], and is updated during the algorithm to avoid revisiting edges when
possible.
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As suggested in [Miller et al. 2013], the implementations simulate the assign-
ment of values from the exponential distribution to vertices by generating a random
permutation (in parallel), and in each round adding chunks of vertices starting from
the beginning of the permutation as start centers for new BFS’s, where the chunk
size grows exponentially. If a vertex in a chunk has already been visited, then it is
not added as a start center. Each vertex also draws a random integer from a large
enough range to simulate the fractional part of its shift value (denoted by δ′

v
for

vertex v), used to break ties if multiple BFS’s visit the same unvisited neighbor.
The active frontier of the BFS’s is maintained using a single array. New BFS cen-
ters are simply added to the end of this array in parallel. Note that parallel BFS can
also be implemented using Cilk reducers [Leiserson and Schardl 2010] with similar
performance.

Since the algorithm does not need to keep around the inter-partition edges in re-
cursive calls to CC, the inter-partition edges are packed out as they are encountered.
Therefore, as vertices are explored the incident edge to the explored vertex is deter-
mined on-the-fly whether it is an inter-partition edge or an intra-partition edge.

In contrast to the description in the proof of Theorem 9.1, the implementations
do not store the frontiers of the BFS’s and offsets of each BFS into the frontiers.
Therefore, the vertices of the same partition will not be able to be accessed contigu-
ously in memory. Instead, in the contraction phase an integer sort is used to collect
all the vertices of the same partition together. Experimentally, this was found to be
more efficient than the method described in the proof of Theorem 9.1 because the
amount of bookkeeping is reduced and the integer sort is only performed over the
remaining inter-partition edges, which is usually much fewer than the number of
original edges. The implementations use the O(m/ε) work and O((1/ε)mε) depth
(0 < ε < 1) integer sorting algorithm from the Problem Based Benchmark Suite.

The first implementation, Decomp-Min, is split into two phases over the frontier
vertices (pseudocode shown in Algorithm 9.2). In the implementation, an array C

is used to store both the partition ID’s of the vertices and to store the values that
vertices write to resolve conflicts. In particular, the array C stores pairs (c1, c2) where
for a vertex v, c1 is used for markings from frontier vertices competing to visit v,
and c2 stores the partition ID of vertex v. The pseudocode uses C1[v] and C2[v] to
refer to the first and second value of the pair C[v], respectively. Decomp-Min uses
the WRITEMIN operation, which is an instantiation of the priority update described
in Chapter 6. The element type of WRITEMIN is an integer pair, and the comparison
function (not shown in the pseudocode) uses integer “less-than” comparison on the
first value of pair. Note that instead of keeping pairs in C, the implementation could
keep two arrays, one to store the partition IDs and the other to resolve conflicts, but
this leads to an additional cache miss per vertex visit.
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Algorithm 9.2 Decomp-Min

1 C = {(∞, ∞), . . . , (∞, ∞)}
2 Frontier = {}
3 numVisited = 0
4 while numVisited < n do
5 add to Frontier unvisited vertices v with δv < round + 1
6 and set C[v] = (−1, v) � new BFS centers
7 numVisited = numVisited + size(Frontier)
8 NextFrontier = {}
9 parfor v ∈ Frontier do

10 start = V [v] � start index of edges in E

11 k = 0
12 for i = 0 to D[v] − 1 do
13 w = E[start + i]
14 if C1[w] �= −1 then
15 if C1[w] > δ′

C2[v] then
16 WRITEMIN(&C[w],(δ′

C2[v], C2[v]))
17 E[start + k] = w

18 k = k + 1
19 else
20 if C2[w] �= C2[v] then
21 E[start + k] = −C2[w] − 1
22 k = k + 1
23 D[v] = k

24 parfor v ∈ Frontier do
25 start = V [v] � start index of edges in E

26 k = 0
27 for i = 0 to D[v] − 1 do
28 w = E[start + i]
29 if w ≥ 0 then
30 if C1[w] = δ′

C2[v] and CAS(&C1[w], δ′
C2[v], −1) then

31 add w to NextFrontier � v won on w

32 else
33 if C2[w] �= C2[v] then
34 E[start + k] = −C2[w] − 1
35 k = k + 1
36 else
37 E[start + k] = w

38 k = k + 1
39 D[v] = k

40 NextFrontier = Frontier
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The entries of C are initialized to (∞, ∞) on Line 1. The ∞ in the second value
of the pair indicates that the vertex has not yet been visited, and the first value of the
pair is the identity value for the WRITEMIN function. When a vertex v is added to the
BFS on Lines 5–6 (i.e., it starts a new BFS), C[v] is set to (−1, v)—the value −1 in C1[v]
indicates that v has been visited, and the value v in C2[v] indicates that the partition
ID of v is its own vertex ID. In the implementation, inter-partition edges are kept
while intra-partition edges are deleted on-the-fly. The implementation overwrites
the edge array E as it loops over the edges (Lines 17–18 and 21–22) using a counter
k indicating the current position in the array (Line 11). In the first phase, frontier
vertices mark unvisited neighbors using the WRITEMIN primitive (Lines 14–16) with
the fractional part of its BFS center’s shift value, δ′

C2[v] (the BFS center’s ID is equal
to C2[v], the partition ID of v). The code assumes that there are no ties as the
numbers can be drawn from a large enough range to guarantee this w.h.p. Also,
as long as for a neighbor w, C1[w] �= −1, this means the neighbor has not been
visited in a previous iteration. In this case, the edge needs to be kept (Lines 17–18)
as it is not currently known whether it is an intra- or inter-partition edge (this can
only be determined once all other frontier vertices finish doing their WRITEMIN’s).
Otherwise, the neighbor w has been visited in a previous iteration and the status of
the edge to w can be determined—if w has a partition label different from v, then it
keeps the edge as it is an inter-partition edge (Lines 20–22). It labels the endpoint
of the edge with its new partition ID (so that it does not have to be relabeled later)
but sets the sign bit of the value (negates it and subtracts 1) to indicate that this
edge need not be considered again in the second phase. Otherwise, the edge is an
intra-partition edge and is deleted. The degree of v is set to be the number of edges
kept in this phase (Line 23).

In the second phase, the remaining edges incident on v are looped over and
for edges which have a non-negative value (an edge whose status has not yet been
determined from the first phase), the implementation determines whether δ′

C2[v] is
stored on the neighbor w. If so, then v uses a compare-and-swap (CAS) to attempt
to atomically set C1[w] to −1 (so that future WRITEMIN’s will not mark it again), and
if successful adds w to the next frontier (Lines 30–31) and does not keep the edge
(it is an intra-partition edge). A CAS is required here since there could be multiple
vertices from the same partition exploring the same neighbor w (they all have the
same δ′

C2[v] value), and w should be added only once to the next frontier. If the
condition on Line 30 does not hold, then the implementation checks whether the
partition ID of w matches that of v, and if they differ, then the edge is an inter-
partition edge and is kept (Lines 32–35). The sign bit of the value of its partition ID
is set and stored in E (Lines 34–35). If C2[w] = C2[v], then (v , w) is an intra-partition
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edge and is not kept. If the edge has a negative value, then it was already processed
in the first phase, and is kept (Lines 36–38). The degree of v is set to be the number
of inter-partition edges incident on v (Line 39). After the BFS’s are finished, the sign
bits of the remaining (inter-partition) edges are unset, so that they can be properly
processed during the relabeling phase after the call to DECOMP by the connected
components algorithm.

Note that for high-degree vertices (e.g., degree greater than k log n for some
constant k), the inner sequential for-loops over the neighbors of a vertex can be
replaced with a parallel for-loop, marking the deleted edges with a special value
and packing the edges with a parallel prefix sums after the for-loop.

Decomp-Min is split into two phases because it needs all the vertices to apply
the WRITEMIN on their unvisited neighbors before it can determine a winner. Hence,
a synchronization point is needed between the WRITEMIN’s and the checks to see
if a vertex successfully visits a neighbor. Decomp-Arb, another implementation of
the decomposition algorithm that only requires one phase, is described next.

In contrast to Decomp-Min, Decomp-Arb only requires one phase over the edges
of the frontier vertices and their outgoing edges (pseudocode shown in Algo-
rithm 9.3). Here C stores only a single integer value, indicating the partition ID’s
of the vertices. Each entry is initialized to ∞ (Line 1) to indicate that the vertex has
not yet been visited. The code of Decomp-Arb is similar to that of Decomp-Min,
except that there is only a single phase over the edges of each frontier. Instead of
using a WRITEMIN as in Decomp-Min, Decomp-Arb uses a CAS to mark an unvisited
neighbor (Line 14) with the partition ID of the frontier vertex. A vertex that success-
fully marks a neighbor can delete its edge to that neighbor since it is guaranteed to
be an intra-partition edge. That vertex is also responsible for adding the neighbor
to the next frontier (Line 15). Otherwise, the vertex checks the partition ID of its
neighbor and if it differs from its own, it keeps the edge as an inter-partition edge
(Lines 17–19). It also marks the endpoint of the edge with its partition ID so that
it doesn’t have to be relabeled later (Line 18). Note that although the pseudocode
shown does not make use of the fact that the degree is set to the number of inter-
partition edges on Line 20, it is used during the relabeling phase (not shown in
the pseudocode). Unlike in Decomp-Min, Decomp-Arb does not need to use the
fractional part of the shift values (the δ′

v
values) because an arbitrary BFS can mark

an unvisited neighbor.
Decomp-Arb only requires a single phase over the edges of the frontier vertices

because once a vertex w is visited by some vertex v and its partition ID is set to the
partition ID of v, it can no longer be visited again by another vertex. At that point
the implementation knows that the edge from v to w is an intra-partition edge and
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Algorithm 9.3 Decomp-Arb

1 C = {∞, . . . , ∞}
2 Frontier = {}
3 numVisited = 0
4 while numVisited < n do
5 add to Frontier unvisited vertices v with δv < round + 1
6 and set C[v] = v � new BFS centers
7 numVisited = numVisited + size(Frontier)
8 NextFrontier = {}
9 parfor v ∈ Frontier do

10 start = V [v] � start index of edges in E

11 k = 0
12 for i = 0 to D[v] − 1 do
13 w = E[start + i]
14 if C[w] = ∞ and CAS(&C[w], ∞, C[v]) then
15 add w to NextFrontier
16 else
17 if C[w] �= C[v] then � inter-partition edge
18 E[start + k] = C[w]
19 k = k + 1
20 D[v] = k

21 NextFrontier = Frontier

can delete it, and any other neighbor of w with a different partition ID than w that
fails to mark w with the CAS has an inter-partition edge to w which is kept.

During the relabeling phase, the implementations only needs to relabel the
source endpoint of each remaining edge, as the target endpoint was already re-
labeled during DECOMP. After relabeling, the parallel hash table [Shun and Blelloch
2014] from Chapter 5 is used to remove duplicate edges between partitions. On the
way back up from the recursive call to CC, the implementations simply index into
the labeling returned by CC with a parallel for-loop to relabel the original labels
appropriately (corresponding to RELABELUP of Algorithm 9.1).

As shown experimentally in Section 9.5, Decomp-Arb performs better than
Decomp-Min due to only requiring one pass over the edges of each frontier during
the BFS’s, and needing less bookkeeping overall.

We also considered the direction-optimizing (hybrid) BFS idea first described by
Beamer et al. [2012] and later implemented for general graph traversal algorithms
in Ligra [Shun and Blelloch 2013] (see Chapter 7). In BFS, the idea is that when
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the frontier is large, it is cheaper to have all unvisited vertices read their incoming
neighbors and once a vertex finds a neighbor on the frontier, it chooses it as its
parent and quits (subsequent incoming edges to this vertex do not need to be
examined). If a large number of vertices’ neighbors are on the frontier, then this
possibly saves many edge traversals.

In contrast to a standard BFS, the connectivity algorithm presented in this
chapter requires all edges to be inspected, since it must decide whether each edge
is an inter-partition or an intra-partition edge for the recursive call. Therefore, if
the direction-optimizing idea is employed, there must be a post-processing step
that inspects the edges determining whether or not they should be kept, so the
total number of edges inspected is not reduced. We apply this optimization to
Decomp-Arb, as it allows a vertex to select an arbitrary neighbor’s partition ID,
and thus can exit the loop over the neighbors early. One modification is that edges
that are relabeled on-the-fly during the write-based computation (on Line 18 of
Algorithm 9.3) must be marked that they have been relabeled, so that they are
not processed again during the post-processing phase (the sign bit in the label
is used for this purpose). The experiments in Section 9.5 show that even though
no edge traversals are saved, switching to the read-based computation when the
frontier is large (the fraction of vertices on the frontier is greater than 20%) helps for
some graphs, as the read-based computation is more cache-friendly, and does not
require using an atomic operation, in contrast to the original Decomp-Arb which
uses compare-and-swaps to resolve conflicts. The direction-optimizing version of
Decomp-Arb is referred to as Decomp-Arb-Hybrid.

9.5 Experiments
This section compares the three implementations of the connectivity algorithm
to the fastest available parallel connectivity algorithms at the time that this work
was initially published [Shun et al. 2014]. The section refers to the connectivity
algorithm using Decomp-Min as decomp-min-CC, Decomp-Arb as decomp-arb-CC,
and Decomp-Arb-Hybrid as decomp-arb-hybrid-CC. We also tried parallelizing over
the edges for the high-degree vertices in our implementations (as discussed in Sec-
tion 9.4), but due to the modest core count of the machine used in the experiments,
we did not find a performance improvement. Patwary et al. [2012] describe two par-
allel spanning forest implementations—a lock-based one and a verification-based
one. The experiments use only their lock-based implementation (parallel-SF-PRM)
since the verification-based one sometimes failed to terminate. Furthermore, they
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found that their lock-based implementation usually outperforms their verification-
based one. The experiments also compare with the parallel spanning forest im-
plementation in the Problem Based Benchmark Suite (parallel-SF-PBBS), imple-
mented using deterministic reservations as described in Section 3.4.4. Note that
these existing spanning forest-based parallel implementations are not theoretically
work-efficient. As for connectivity based on BFS, the experiments compare with the
direction-optimizing BFS [Beamer et al. 2012] available as part of Ligra (Chapter 7),
performed on each component of the graph. This implementation is referred to
as hybrid-BFS-CC. This approach is work-efficient but the depth can be linear in
the worst case. Independently of our work, Slota et al. [2014] describe a connected
components algorithm which combines direction-optimizing BFS with label prop-
agation (multistep-CC). Label propagation is the method used by the connected
components implementation in Ligra (see Section 7.4.4). In the worst case, the al-
gorithm of Slota et al. requires quadratic work and linear depth. All of the parallel
implementations are compared to a simple sequential spanning forest-based con-
nectivity algorithm using union-find (serial-SF) from the PBBS. The single-thread
times for hybrid-BFS-CC and multistep-CC are sometimes better than serial-SF, and
can also be used as a sequential baseline. For the spanning forest-based connectiv-
ity algorithms, the reported timings include a post-processing step that finds the
ID of the root of the tree for each vertex (done in parallel for the parallel implemen-
tations).

The experiments are performed on the 40-core (with two-way hyper-threading)
Intel machine described in Section 2.7. The parallel codes use Cilk Plus to express
parallelism, and are compiled with the g++ compiler. The experiments use a variety
of synthetic graphs, the first three of which are taken from the Problem Based
Benchmark Suite, and a real-world graph. random is a random graph where every
vertex has five edges to neighbors chosen randomly. The rMat graph [Chakrabarti
et al. 2004] is a graph with a power-law degree distribution. rMat2 uses the same
generator as rMat, but with a higher edge-to-vertex ratio, giving a denser graph. 3d-
grid is a grid graph in 3d space where every vertex has six edges, each connecting
it to its two neighbors in each dimension. line is a path of length n − 1 (i.e., each
vertex has two neighbors except for the first and the last vertex in the path). This
is a degenerate graph with diameter n − 1. com-Orkut is a social network graph
downloaded from the Stanford Network Analysis Project [Leskovec and Krevl 2014].
For the synthetic graphs, the vertex labels are randomly assigned. The sizes of the
graphs are shown in Table 9.1. The decomposition-based algorithms described in
this chapter store an edge in each direction, so use twice the number of edges than
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Table 9.1 Input graphs for connected components

Input Graph Number of Vertices Number of Undirected Edges

random 108 5 × 108

rMat 227 5 × 108

rMat2 220 4.2 × 108

3d-grid 108 3 × 108

line 5 × 108 5 × 108

com-Orkut 3,072,627 117,185,083

as reported in Table 9.1, while for the spanning forest-based algorithms, edges only
need to be stored in one direction.

The serial and parallel running times of the implementations on the various
inputs are summarized in Table 9.2. The times reported are based on a median of
three trials. Observe that decomp-arb-CC and decomp-arb-hybrid-CC usually out-
perform decomp-min-CC (by up to 2.3 times). This is because (1) decomp-arb-CC
and decomp-arb-hybrid-CC require only one pass over the edges of the frontier in-
stead of two passes in decomp-min-CC and (2) the vertices store less data when com-
puting the labeling. Decomp-arb-hybrid-CC is faster than decomp-arb-CC for most
of the graphs, especially for the graphs whose frontier grows very large (e.g., about
2× faster for rMat2 and com-Orkut), as these graphs benefit more from the opti-
mization of using a read-based computation for the large frontiers. For the 3d-grid
and line graphs, the times are about the same for decomp-arb-CC and decomp-arb-
hybrid-CC, since in decomp-arb-hybrid-CC the frontier never grows large enough
to switch to the read-based computation. Among the two spanning forest-based
parallel implementations, parallel-SF-PRM is faster than parallel-SF-PBBS in paral-
lel. Compared to parallel-SF-PRM, decomp-arb-hybrid-CC is at most 70% slower in
parallel, and faster sequentially. On 40 cores with hyper-threading, the parallel im-
plementations developed in this chapter achieve a self-relative speedup of between
18 and 39.

The experiments show that the implementations based on a single direction-
optimizing BFS (hybrid-BFS-CC and multistep-CC) work well for dense graphs with
low-diameter, such as random, rMat2, and com-Orkut, outperforming the other
implementations both sequentially and in parallel on these graphs. For the dense
rMat2 graph, which requires only 5 levels of BFS to completely traverse, even
the sequential times of these implementations are competitive with the parallel
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Table 9.2 Times (seconds) for connected components labeling

random rMat rMat2

Implementation (1) (40h) (1) (40h) (1) (40h)

serial-SF 19.5 — 21.5 — 2.86 a —

decomp-arb-CC 43.1 1.97 46.7 2.5 6.95 0.256

decomp-arb-hybrid-CC 38.7 1.89 39.8 2.22 4.11 0.116

decomp-min-CC 74.8 2.86 76.3 3.49 7.22 0.221

parallel-SF-PBBS 70.9 1.91 79.2 2.13 9.79 0.515

parallel-SF-PRM 48.8 1.64 42.2 1.3 4.51 0.1

hybrid-BFS-CC 28 1.3 25.9 13.3 0.111 0.009

multistep-CC 9.74 1.29 15.9 2.06 0.23 0.05

3d-grid line com-Orkut

Implementation (1) (40h) (1) (40h) (1) (40h)

serial-SF 17.5 — 68.6 — 0.82 a —

decomp-arb-CC 30.1 1.36 254 6.49 2.35 0.115

decomp-arb-hybrid-CC 30.6 1.39 247 6.5 1.22 0.058

decomp-min-CC 57.9 2.11 348 9.11 2.39 0.132

parallel-SF-PBBS 41.1 1.53 174 5.22 2.98 0.156

parallel-SF-PRM 30.3 1.33 313 4.02 1.25 0.04

hybrid-BFS-CC 22.1 1.51 304 304 b 0.191 0.021

multistep-CC 27.0 1.22 343 343 b 0.16 0.06

(40h) indicates 40 cores with hyper-threading.

a. The timing for the sequential spanning forest code from Patwary et al. [Patwary et al. 2012] is used
as it was faster than the PBBS implementation.

b. The sequential time is reported due to overheads of parallel execution.

times of the other implementations. This is because the read-based optimization
of direction-optimizing BFS significantly reduces the number of edges traversed.
For graphs with many components (e.g., rMat with over 13 million components),
hybrid-BFS-CC does poorly in parallel since it visits the components one-by-one,
while multistep-CC does better because it uses parallel BFS to compute only one
component, and then switches to label propagation to compute the rest. For the
line graph, both implementations perform poorly and get no speedup due to the
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large diameter of the graph. The fastest parallel implementation from this chap-
ter (decomp-arb-hybrid-CC) is faster than hybrid-BFS-CC and multistep-CC for the
line graph, competitive for the rMat and 3d-grid graphs, and slower for the ran-
dom, rMat2, and com-Orkut graphs. For graphs with only one component (random,
rMat2, 3d-grid, and line), multistep-CC and hybrid-BFS-CC both perform exactly
one BFS, and the differences in running times are due to the choice of when to
switch to the read-based computation, starting vertex of the BFS, and slight im-
plementation differences. Note that on a single thread, multistep-CC outperforms
serial-SF for four of the graphs, since the read-based optimization allows it to tra-
verse many fewer edges for these graphs.

Compared to the best single-thread times among serial-SF, hybrid-BFS-CC, and
multistep-CC, on 40 cores the fastest implementation developed in this chapter
(decomp-arb-hybrid-CC) achieves up to a 13 times speedup. For the dense rMat2
graph, on 40 cores decomp-arb-hybrid-CC is actually slower than hybrid-BFS-CC
run on a single thread, but this is a special case on which the direction-optimizing
BFS approach works particularly well.

Figures 9.2, 9.3, and 9.4 show the running time vs. the number of threads for
the different implementations on the input graphs. For the line graph, hybrid-
BFS-CC, and multistep-CC are not plotted as they perform very poorly and get no

(a) (b)

Figure 9.2 Times vs. number of threads on a 40-core machine with hyper-threading of connected
components implementations on (a) random and (b) rMat. “40h” indicates 80 hyper-
threads.
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(a) (b)

Figure 9.3 Times vs. number of threads on a 40-core machine with hyper-threading of connected
components implementations on (a) rMat2 and (b) 3d-grid. “40h” indicates 80 hyper-
threads.

(a) (b)

Figure 9.4 Times vs. number of threads on a 40-core machine with hyper-threading of connected
components implementations on the (a) line graph and (b) com-Orkut. “40h” indicates
80 hyper-threads.
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speedup. Observe that the decomposition-based parallel implementations get good
speedup, and except for rMat2 and com-Orkut, outperform the best sequential time
with a modest number of threads. The parallel implementations developed in this
chapter (decomp-arb-CC, decomp-arb-hybrid-CC, and decomp-min-CC) perform
reasonably well and are competitive with the other parallel implementations (which
are not theoretically linear-work and polylogarithmic-depth) for all graphs except
rMat2 and com-Orkut, on which the direction-optimizing BFS implementations
perform exceptionally well. While the decomposition-based parallel implementa-
tions do not achieve the fastest performance for any particular graph, due to their
theoretical guarantees, they perform reasonable well across all inputs and do not
suffer from poor performance on any “worst-case” inputs.

Figure 9.5 shows the 40-core running time of decomp-arb-CC, decomp-arb-
hybrid-CC, and decomp-min-CC as a function of the parameter β for several graphs.
The reader can observe that the trends for the implementations are similar, and the
β leading to the fastest running times is between 0.05 and 0.2. Figure 9.6 shows the
number of edges remaining per iteration for decomp-arb-hybrid-CC as a function
of β. As expected, the number of edges drops more quickly for smaller β, leading to
fewer phases before reaching the base case. Furthermore, the upper bound of a 2β-
fraction of edges being removed (or β-fraction for decomp-min-CC) per iteration
does not account for the removal of duplicate edges between contracted partitions.
For all of the inputs except the line graph, there are (many) duplicate edges between
partitions that are removed, leading to a much sharper decrease (up to an order of
magnitude more than predicted by the upper bound) in the number of remaining
edges per iteration.

Figure 9.7 shows the breakdown of the 40-core running time for decomp-min-
CC on several graphs. In the figure, “init” refers to the time for generating random
permutations and initializing arrays, “bfsPre” refers to adding new vertices to the
BFS frontier and computing offsets into shared arrays for the frontier vertices, “bf-
sPhase1” refers to the first phase (Lines 9–23 of Algorithm 9.2), “bfsPhase2” refers
to the second phase (Lines 24–39 of Algorithm 9.2), and “contractGraph” includes
the time for removing duplicate edges, renumbering vertices and edges, creating
the contracted graph for the recursive call, and relabeling after the recursive call.
The figure shows that 80–90% of the time is spent in the two BFS phases, with the
first phase being the more expensive of the two.

Figure 9.8 shows the breakdown of the running time for decomp-arb-CC on 40
cores on several inputs. “bfsMain” refers to the single phase of the BFS iteration
(Lines 9–20 of Algorithm 9.3), and the other sub-timings have the same meaning as
in the previous paragraph. The majority of the time (55–75%) is spent in the main
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(a) (b)

(c) (d)

Figure 9.5 Running time vs. β on various input graphs on a 40-core machine using 80 hyper-
threads. (a) random; (b) rMat; (c) 3d-grid; (d) line.

BFS phase. Compared to decomp-min-CC, the savings in running time of decomp-
arb-CC comes from this part of the computation due to requiring only one pass
over the edges.

Figure 9.9 shows the breakdown of the 40-core running time for decomp-arb-
hybrid-CC. “bfsSparse” refers to the time spent in the main phase of the BFS
when performing the write-based computation for sparse frontiers, and “bfsDense”
refers to the time spent in the main phase performing the read-based computation
on the dense frontiers. As noted in Section 9.4, a post-processing step to filter out
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(a) (b)

(c) (d)

Figure 9.6 Number of remaining edges per iteration vs. β of decomp-arb-hybrid-CC. (a) random;
(b) rMat; (c) 3d-grid; (d) line.

the intra-partition edges is required, and “filterEdges” refers to this phase. For the
3d-grid and line graphs, the frontier never becomes dense enough to switch to the
read-based computation, hence all of the BFS time is captured by bfsSparse. On
the other hand, random and rMat do have BFS frontiers that become dense enough
where the read-based computation is invoked. Since they switch to the read-based
computation, some edges do not get inspected and hence the filterEdges phase
performs more work to filter out the intra-partition edges. For random and rMat,
about 40% of the time is spent in the main BFS phase.
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Figure 9.7 Breakdown of timings on 40 cores with hyper-threading for decomp-min-CC.

Figure 9.8 Breakdown of timings on 40 cores with hyper-threading for decomp-arb-CC.

Figure 9.10 shows the running time of decomp-arb-hybrid-CC on 80 hyper-
threads as a function of graph size for random graphs with sizes from m = 5 × 107

to 5 × 108, and n = m/5. The running time increases almost linearly as the graph
size is increased.

Besides PBBS and the implementations by Patwary et al., Bader and Cong
describe a parallel spanning tree implementation based on parallel depth-first
search [Bader and Madduri 2005]. However, Patwary et al. [2012] show that their
implementations are faster than Bader and Cong’s implementation. Galois
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Figure 9.9 Breakdown of timings on 40 cores with hyper-threading for decomp-arb-hybrid-CC.

Figure 9.10 Running time of decomp-arb-hybrid-CC vs. problem size for random graphs on 40
cores with hyper-threading.

[Nguyen et al. 2013] also contains implementations of connected components
based on union-find, but they were slower than the implementation by Patwary et
al., decomp-arb-hybrid-CC, and decomp-arb-CC for all of the input graphs used in
this section. Several graph processing systems [Shun and Blelloch 2013, Kang et al.
2011, Kyrola et al. 2012, Kyrola et al. 2014] have connected components implemen-
tations based on label propagation, but the depth of the algorithm is proportional
to the diameter of the graph and the algorithm is not work-efficient. As noted in
Chapter 7, this label propagation algorithm usually does not perform as well as
linear or near-linear work algorithms.





10Parallel and
Cache-Oblivious
Triangle Computations

10.1 Introduction
As graphs are increasingly used to model and study interactions in a variety of
contexts, there is a growing need for graph analytics to process massive graphs
quickly and accurately. Among various metrics of interest, the triangle count and
related measures have attracted a lot of recent attention because they reveal im-
portant structural information about the network being studied. Unsurprisingly,
triangle counting and enumeration has seen applications in the study of social
networks [Newman 2003], identifying thematic structures of networks [Eckmann
and Moses 2002], spam and fraud detection [Becchetti et al. 2008], link classifi-
cation and recommendation [Tsourakakis et al. 2011], joining three relations in
a database [Ngo et al. 2014, Pagh and Silvestri 2014], database query optimiza-
tion [Bar-Yossef et al. 2002]—with further examples discussed in [Pagh and Silvestri
2014, Hu et al. 2013, Berry et al. 2014].

Driven by such applications, several algorithms have been proposed for the
distributed setting (e.g., [Cohen 2009, Suri and Vassilvitskii 2011, Gonzalez et al.
2012, Park and Chung 2013, Arifuzzaman et al. 2013, Wang et al. 2013]) and the
external-memory setting (e.g., [Dementiev 2006, Menegola 2010, Chu and Cheng
2012, Kyrola et al. 2012, Hu et al. 2013, Pagh and Silvestri 2014, Kim et al. 2014])
as graphs of interest were deemed too big to keep in the main memory of a single
computer. The distributed algorithms are not tailored for a multicore machine, and
the external-memory algorithms typically do not support parallelism (with the ex-
ception of [Kyrola et al. 2012, Kim et al. 2014]). However, as discussed in Chapter 1,
a single multicore machine today can have tens of cores and can support several
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terabytes of memory—capable of storing graphs with tens or even hundreds of bil-
lions of edges. Compared to distributed-memory systems, communication costs
are much cheaper in multicore systems, leading to performance benefits with a
proper design. Moreover, for graph algorithms, multicores are known to be more
efficient per core and per watt than an equivalent distributed system. Therefore,
this chapter develops fast and simple shared-memory parallel algorithms for trian-
gle computations using Cilk Plus and analyzes them in the work-depth model.

In addition to parallelism, the cache behavior of programs has a significant
impact on performance. Writing parallel programs with good cache behavior has
often required expertise. Because machines differ, this often requires fine-tuning
code or parameters for each individual machine. Even then, it is still difficult to
achieve good cache performance because the memory system of a modern machine
has become highly sophisticated, consisting of multiple levels of caches and layers
of indirection.

To sidestep this complex issue, this chapter designs algorithms that make effi-
cient use of caches without needing to know the specific memory/cache parameters
(e.g., cache size, cache line size). Such parallel algorithms are known as parallel
cache-oblivious algorithms, as they are oblivious to cache parameters [Simhadri
2013, Blelloch et al. 2011, Frigo et al. 1999]. Parallel cache-oblivious algorithms
free the programmer from optimizing the cache parameters for specific machines,
as they run efficiently on all shared-memory machines. These algorithms are ana-
lyzed for parallel cache complexity as a function of the problem size n, the cache
size M , and the cache line size B.

Contributions
This chapter presents fast and simple shared-memory parallel algorithms for tri-
angle counting, both exact and approximate, that are able to scale to billions of
vertices and edges. The algorithms take full advantage of parallelism in a multi-
core system and are optimized for the memory hierarchy by being cache-oblivious.
The main contributions are as follows.

Parallel Algorithms. This chapter designs parallel algorithms for triangle
counting, one which uses merging for intersecting adjacency lists (TC-Merge)
and one which uses hashing for intersection (TC-Hash). The algorithms are
based on Latapy’s sequential algorithm [Latapy 2008], and are shown to
have good theoretical bounds in the Parallel Cache Complexity (PCC) model
[Blelloch et al. 2011, Simhadri 2013]. The work, depth, and cache complex-
ity bounds are shown in Table 10.1. In addition, the chapter describes how
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Table 10.1 (Randomized) complexity bounds for triangle counting algorithms

Algorithm Work Depth Cache Complexity

TC-Merge O(m3/2) O(log3/2 m) O(m + m3/2/B)

TC-Hash O(n log n + αm) O(log3/2 m) O(sort(n) + αm)

Parallel-PS O(m3/2) O(log5/2 m) O(m3/2/(
√

MB))

n = number of vertices, m = number of edges, α is arboricity of the graph,
M = cache size, B = cache line size, and sort(N) = O((N/B) logM/B(N/B)).

to extend the algorithms to approximate triangle counting, directed trian-
gle counting, triangle enumeration, local triangle counting, and computing
clustering coefficients. The algorithms are easy to implement and do not
require parameter tuning. In addition, a parallelization of the recent sequen-
tial cache-oblivious triangle enumeration algorithm of Pagh and Silvestri
[2014] (Parallel-PS) is presented, obtaining the complexity bounds shown in
Table 10.1, which may be of independent interest.

Performance Evaluation. An extensive empirical evaluation is performed on
a 40-core Intel machine with two-way hyper-threading as well as a 64-core
AMD machine. The Cilk Plus implementations of the parallel exact global
and local triangle counting algorithms achieve speedups of 17–50× and out-
perform previous algorithms for the same task. On the large-scale Yahoo!
Web graph (with over 6 billion edges), the fastest algorithm from this chap-
ter computes the triangle count in under 1.5 min. For approximate triangle
counting, the parallel implementation from this chapter approximates the
triangle count for the Yahoo! graph to within 99.6% accuracy in under 10 s,
and is much faster than existing parallel approximate triangle counting im-
plementations for a given accuracy.

Analysis of Cache Behavior. To further understand how these performance
benefits come about, this chapter analyzes the cache performance of the
implementations on several graphs, showing that cache performance is con-
sistent with the theory and that cache efficiency is crucial for performance.

10.2 Preliminaries
For a simple, undirected graph G = (V , E), a triangle is a set of three vertices
v1, v2, v3 ∈ V such that the undirected edges (v1, v2), (v2, v3), and (v1, v3) are present
in E. The triangle counting problem takes an undirected graph G and returns a
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count of the number of triangles in G. For triangle listing, all of the triangles in
the graph are output. The triangle enumeration problem takes an emit function
that is called on each triangle discovery (hence, each triangle must appear in mem-
ory). Algorithms for local triangle counting/listing return the count/list of triangles
incident on each vertex v ∈ V .

In this chapter, graphs are represented using the adjacency list format, as de-
scribed in Section 2.4. This chapter assumes, without loss of generality, that the
graph does not have any isolated vertices (they can be removed within the com-
plexity bounds of the algorithms described). The arboricity α of a graph is the
minimum number of forests its edges can be partitioned into (hence, α ≥ 1). This is
upper bounded by O(

√
m) for general graphs and O(1) for planar graphs [Chiba and

Nishizeki 1985]. Furthermore, it is known that
∑

(u,v)∈E min {d(u), d(v)} = O(αm).

Cache Complexity
For cache complexity analysis, this chapter uses the parallel cache complexity (PCC)
model [Blelloch et al. 2011, Simhadri 2013], a parallel variant of the cache-oblivious
model [Frigo et al. 1999]. A cache-oblivious algorithm has the advantage of being
able to make efficient use of the memory hierarchy without knowing the specific
cache parameters (e.g., cache size and cache line size). In the PCC model, the cache
complexity of an algorithm is given as a function of cache size M and cache line
size B, assuming the optimal offline replacement policy. This function reflects how
the algorithm behaves for a particular cache/line size, although this information is
unknown to the algorithm. For a parallel machine, it represents the number of
cache misses across all cores for a particular level (e.g., L2, L3, etc.). An algorithm
is analyzed assuming a single level of cache, but since the algorithm is oblivious
to the cache parameters, the bounds simultaneously hold across all levels of the
memory hierarchy, which can contain both private and shared caches.

This chapter uses scan(N) and sort(N) to denote the cache complexity of scan-
ning (prefix sum) and sorting, respectively, on an input of size N . In the PCC model,
it has been shown that scan(N) = O(N/B) and sort(N) = O((N/B) logM/B(N/B)),
under the standard assumption M = �(B2), which is readily met in practice. In
the PCC model, scan requires O(N) work and O(log N) depth, and sort requires
O(N log N) work and O(log3/2 N) depth with probability at least 1 − 1/Nc for some
constant c > 0 and large enough N (or O(log2 N) depth deterministically) [Blelloch
et al. 2010, Blelloch et al. 2011, Simhadri 2013]. Merging two sorted sequences of
lengths N1 and N2 requires O(N1 + N2) work, O(log(N1 + N2)) depth, and a cache
complexity of scan(N1 + N2) [Blelloch et al. 2010, Blelloch et al. 2011, Simhadri
2013].



10.3 Triangle Counting 263

Algorithm 10.1 High-level parallel triangle counting algorithm

1 procedure RANK-BY-DEGREE(G = (V , E))
2 Compute an array R such that if R[v] < R[w] then d(v) ≤ d(w)

3 parfor v ∈ V do
4 A+[v] = {w ∈ N(v) | R[v] < R[w]}
5 return A+

6 procedure TC(A+)
7 Allocate an array C of size

∑
v∈V |A+[v]|

8 parfor v ∈ V do
9 parfor w ∈ A+[v] do

10 I = intersect(A+[v], A+[w])
11 C[ρ(v , w)] = |I | � ρ(.) gives a unique index in C

12 count = sum of values in C

13 return count

10.3 Triangle Counting
This section describes a conceptual algorithm for triangle counting that exposes
substantial parallelism. Later sections describe how to derive efficient implemen-
tations for it.

The conceptual algorithm follows Latapy’s sequential compact-forward algo-
rithm [Latapy 2008] for triangle counting. This chapter extends Latapy’s algorithm
because it was shown to perform well sequentially, and is amenable to paralleliza-
tion. To count the number of triangles in a graph, the algorithm performs two main
steps, as shown in Algorithm 10.1.

Step 1, Ranking. Form a directed graph where each undirected input edge
gives rise to exactly one directed edge. The ranking helps to improve the
asymptotic performance and ensures each triangle is counted only once.

Step 2, Counting. Count triangles of a particular form in the directed graph
formed in the previous step.

For the ranking step, the RANK-BY-DEGREE function on Lines 1–5 takes an
undirected graph G, and computes a rank array R ordering the vertices by non-
decreasing degree.1 R contains unique integers, and for any two vertices v and w,

1. Various ranking functions can be used, but ordering by degree in the original graph has it
has been shown to perform the best in practice if both ranking and triangle counting times are
included [Ortmann and Brandes 2014]. This ordering heuristic also leads to good theoretical
guarantees for triangle counting [Latapy 2008].
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if R[v] < R[w] then d(v) ≤ d(w). On Lines 3–4, it goes over the vertices of G in par-
allel, storing for each vertex v, the higher-ranked neighbors of v in A+[v]. Finally,
it returns the ranked adjacency list A+.

For the counting step, the triangle counting function TC on Lines 6–13 takes
as input a ranked adjacency list A+. An array C of size equal to the number of
directed edges (

∑
v∈V |A+[v]|) is initialized on Line 7. Each edge (v , w) is assigned a

unique location in C, denoted by ρ(v , w). On Lines 8–11, all vertices are processed,
and for each vertex v, its neighbors w in A+[v] are inspected, and the intersection
between A+[v] and A+[w] is computed. Each common out-neighbor u corresponds
to a triangle (v , w, u) where R[v] < R[w] < R[u]. The count of triangles incident on
(v , w) is thus set to the size of the intersection (Line 11). In Line 12, the individual
counts are summed, and finally returned on Line 13.

Two observations are in order: (1) because of the ranking step, all triangles will
be counted exactly once; and (2) since the intersection can be computed on all
directed (v , w) pairs in parallel, this algorithm already has abundant parallelism.

The following example (Figure 10.1) illustrates these steps. Notice the degree of
parallelism the algorithm obtains (Figure 10.2).

Example
Figure 10.1 shows an example graph and the graph after ranking by degree, which
contains directed edges from lower to higher-ranked vertices. The rank of the
vertices are stored in an array R:

Vertex 0 1 2 3 4

R 1 4 0 3 2

Figure 10.1 Example of a graph (left) and its directed edges after ranking by degree (right). The
contents of A+ are A+[0] = {1, 3}, A+[1] = {}, A+[2] = {1}, A+[3] = {1}, and A+[4] = {1, 3}.
The triangles found are (0, 3, 1) and (4, 3, 1), discovered by intersect(A+[0], A+[3])
and intersect(A+[4], A+[3]).
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Figure 10.2 Example of how the parallel triangle counting algorithm performs in action.

Figure 10.1 (right) shows the edges after running RANK-BY-DEGREE. Then, running
TC on this graph will compute the set intersections of multiple pairs, as shown in
Figure 10.2. Notice that at this point, the algorithm indicates that these intersec-
tions are parallel tasks; however, in the context of dynamic multithreading, the ex-
act combination of tasks that will be run simultaneously depends on the scheduler.
Subsequently, for each of these pairs, the size of the intersection is recorded in C

(e.g., C[ρ(0, 3)] = 1 as |A+[0] ∩ A+[3]| = 1 and C[ρ(4, 3)] = 1 as |A+[4] ∩ A+[3]| = 1).

10.4 Exact Triangle Counting
This section introduces efficient parallel algorithms for exact triangle counting
based on the conceptual algorithm in the previous section. In particular, the section
describes how the ranking and counting steps are implemented.

10.4.1 Ranking
To implement the ranking step, a rank array R is first constructed. Assume that the
degrees of the vertices are stored in an array D of size n in order of vertex ID (i.e.,
D[i] is the degree of the i’th vertex). By sorting the vertices by degree and breaking
ties by ID, an array R can be constructed such that R contains unique integers,
and if R[u] < R[v] then D[u] ≤ D[v]. The sort requires O(n log n) work, O(log3/2 n)

depth and O(sort(n)) cache misses w.h.p., as mentioned in Section 10.2.
Then, given the ranking array R, the algorithm looks up the rank for each

endpoint of every edge and chooses which direction to retain. In particular, each
vertex looks up the rank of each of its neighbors and applies a parallel filter, keeping
only the higher-ranked neighbors. Each vertex will incur a cache miss to access the
start of its adjacency list, for a total of O(n) cache misses. The filters require O(m)

work, O(log m) depth and scan(m) cache misses overall. Looking up the rank of the
neighbors requires O(m) work, O(1) depth and O(m) cache misses overall (since
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the neighbors can appear anywhere in R). The following lemma summarizes the
complexity of ranking:

Lemma 10.1 RANK-BY-DEGREE can be implemented in O(n log n + m) work, O(log3/2 n) depth and
O(sort(n) + m) cache misses w.h.p.

It is worth noting that a cache complexity of O(sort(m)) w.h.p. can be obtained
for ranking (while increasing the work to O(m log m)) by using sorting routines.
However, this approach is more expensive in practice, and furthermore it does not
improve the overall complexity of triangle counting, so it is not elaborated on here.

10.4.2 Counting
This section describes the counting algorithm TC assuming that the ranked adja-
cency list A+ has already been computed. The size of C and the unique locations
ρ(v , w) in C for each directed edge (v , w) can be computed with a parallel scan
over the directed edges. In particular, each vertex v writes the length of A+[v] into a
shared array at location v, and then a scan with the + operator is applied to generate
the starting offset ov for each vertex. The offset for element i in A+[v] is computed
as ov + i. The result of the scan also gives the size of C. This requires O(m) work,
O(log m) depth, and O(scan(m)) cache misses. On Line 12, the individual counts
in C are added together using a prefix sum. Two implementations of Lines 10–11,
differing in how the intersect function is implemented, are described next.

Merge-based Algorithm. The first algorithm, called TC-Merge, implements Line
10 by using a merge on the directed adjacency lists of v and w. It requires sort-
ing the adjacency lists as a pre-processing step, which requires O(m log m) work,
O(log3/2 m) depth and O(sort(m) + n) cache misses w.h.p. Merging the sorted lists
gives the intersection and its size, requiring work linear in the size of the two lists.
Sequentially, the total amount of work done in merging has been shown to be
O(m3/2) [Latapy 2008], and since the merge is done in the same asymptotic work
in parallel, the bound is the same (hence, it is work-efficient). The depth for merg-
ing is O(log(m3/2)) = O(log m) and cache complexity is O(scan(m3/2)) = O(m3/2/B)

(note that this dominates the cache complexity of sorting). Accessing the adjacency
list for each edge involves a random access, adding a total of O(m) cache misses.
The complexity of counting dominates the complexity of ranking. This gives the
following theorem.

Theorem 10.1 Ranking and triangle counting using TC-Merge can be performed in O(m3/2) work,
O(log3/2 m) depth, and O(m + m3/2/B) cache misses w.h.p.
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Note that if B = O(
√

m), then m3/2/B is the dominant term in the cache com-
plexity. This condition is readily met in practice for in-memory algorithms since a
typical cache line is 64 bytes, which holds at most 16 edges in a standard imple-
mentation,2 and typical graphs of interest have at least tens of thousands of edges
(the graphs used in this book have tens of millions to billions of edges). This con-
dition will likely continue to hold in the future when analyzing large graphs (i.e.,
graph sizes in terms of number of edges will grow faster than �(B2)). The situation
may be different for the external-memory setting, as was pointed out in [Hu et al.
2013].

Hash-based Algorithm. The second algorithm, TC-Hash, uses a hash table stor-
ing the edges of A+ to compute the intersection on Line 10 of Algorithm 10.1.
A hash table can be implemented in parallel to support worst-case O(1) work
and depth queries [Matias and Vishkin 1991], and so Line 8 can be implemented
in O(min {A+[v], A+[w]}) work by looping over the smaller of A+[v] and A+[w]
and querying the hash table of the other vertex. Insertion of the edges into the
hash tables can be done in O(m) work, O(log m) depth and O(m) cache misses
w.h.p. [Matias and Vishkin 1991].

Since |A+[v]| ≤ d(v) for all v, this gives an overall work bound of O(αm) for TC-
Hash, where α ≥ 1 denotes the arboricity of the graph (recall from Section 10.2
that

∑
(u,v)∈E min {d(u), d(v)} = O(αm)). Note that since α = O(

√
m), this bound

is tighter than O(m3/2) and is in fact optimal. However, each hash table look-
up incurs O(1) cache misses, leading to O(αm) total cache misses. Looking up
the adjacency list of each edge involves a random access, leading to O(m) cache
misses. Computing the size of each intersection can be done work-efficiently with
a parallel scan. Hence, this can be implemented in O(αm) work, O(log m) depth,
and a parallel cache complexity of O(αm).

Putting together the bounds for ranking and counting gives the following
theorem.

Theorem 10.2 Ranking and triangle counting using TC-Hash that performs O(n log n + αm) work,
O(log3/2 m) depth, and O(sort(n) + αm) cache misses w.h.p.

2. Compression techniques could be used to store edges more compactly, however B = O(
√

m)

still holds for large graphs.
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Algorithm 10.2 Pagh-Tsourakakis Sampling

Input: a graph G = (V , E) and a parameter 0 < p ≤ 1
Output: a sampled subgraph H = (VH , EH) of G.

1 Assign a random color c(v) ∈ {1, . . . , C} to every vertex v, where C = �1/p�
2 Construct EH = {(u, v) ∈ E | c(u) = c(v)} and VH ⊆ V if the vertex has
3 at least one neighbor
4 Return H = (VH , EH)

10.5 Approximate Triangle Counting
If some amount of error can be tolerated, the running time of triangle counting can
be reduced using approximate counting algorithms. This section extends the paral-
lel algorithms for exact triangle counting to approximate triangle counting. As will
be discussed in Section 10.9, many approximate triangle counting schemes have
been proposed [Avron 2010, Tsourakakis 2011, Tsourakakis et al. 2009, Tsourakakis
et al. 2011, Pagh and Tsourakakis 2012, Seshadri et al. 2013, Wang et al. 2013], and
the recent colorful triangle counting scheme of Pagh and Tsourakakis [2012] (PT) is
one of the most efficient. This section uses the PT colorful triangle counting scheme
to develop parallel and cache-oblivious approximate triangle counting algorithms.

The PT algorithm works by first sampling edges from the input graph using
Algorithm 10.2. An exact triangle counting algorithm is then run on the subgraph.
If the exact triangle counting algorithm reports T triangles, then the PT algorithm
reports an estimate of T/p2 triangles.

Pagh and Tsourakakis [2012] show that the estimate T/p2 is an unbiased esti-
mate (i.e., its expectation equals the true triangle count) as each triangle is included
in the subgraph with probability p2 (if two edges in a triangle are present in the sub-
graph, then the third edge must also be present). They also prove that the estimate
is tightly concentrated around its mean for appropriate values of p. Note that a
larger p value leads to higher quality estimates and vice versa.

Using TC-Merge after sampling gives the following lemma:

Lemma 10.2 For a parameter 0 < p ≤ 1, approximating the number of triangles in a graph can be
done in O(m + (pm)3/2) work, O(log3/2 m) depth, and a parallel cache complexity
of O(scan(m) + pm + (pm)3/2/B) in expectation.

Proof To form the subgraph, the representation of the graph is first converted to an edge
array representation, which is an array of length m storing pairs of vertices that have
an edge between them. Since the adjacency list representation stores the neighbor
arrays contiguously in memory, the conversion can be done using a scan. Then,
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a parallel filter is applied to the edge set keeping only edges with both endpoints
having the same color. The algorithm assumes that the color of a vertex can be
computed with a hash function, and so does not involve a memory access. The scan
and filter can be done in O(m) work, O(log m) depth, and O(scan(m)) cache misses.
Then any singleton (isolated) vertices are removed and remaining vertices and the
edges are relabeled so that the vertex ID’s are in a consecutive range. This packing
step can be done using standard techniques involving prefix sums in O(pm) work
and cache misses. Afterward, the edge array is converted back to the adjacency list
representation using prefix sums. Using TC-Merge on the subgraph and applying
Theorem 10.1 on a subgraph with an expected number of edges equal to pm proves
the lemma.

The following lemma can be obtained by using TC-Hash instead of TC-Merge
on the subgraph, where nH is the number of vertices in the subgraph (nH = O(pm)

in expectation, since singleton vertices are removed) and αH ≥ 1 is the arboricity of
the subgraph.

Lemma 10.3 For a parameter 0 < p ≤ 1, approximating the number of triangles in a graph can be
done in O(m + nH log nH + pαHm) work, O(log3/2 m) depth, and a parallel cache
complexity of O(scan(m) + sort(nH) + pαHm) in expectation.

10.6 Extensions

10.6.1 Triangle Enumeration
To adapt TC-Merge and TC-Hash for triangle enumeration, only the implemen-
tation of Line 10 of Algorithm 10.1 needs to be modified so that emit is called
whenever a triangle is present in memory. Note that since the emit function may
be called in parallel, one must ensure that any modifications to shared structures
are atomic.

For example, to list all the triangles in the graph, an algorithm can initialize
a concurrent hash table, and have the emit function add the triangle to the hash
table when it finds one.3 With a good hash function and large enough hash table,
the probability that two triangles hash to the same location is small, and hence

3. If threads are explicitly managed then the program can initialize a list for each thread, and
whenever a thread finds a triangle it simply adds the triangle to its list. The lists are then be joined
at the end.
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memory contention will be small. After all triangles are added, the algorithm can
write out the contents of the hash table.

Without accounting for the cost of emit (consistent with the analysis in [Pagh
and Silvestri 2014]), which varies with the application, the complexity is the same
as that of exact triangle counting.

10.6.2 Directed Triangle Counting and Enumeration
Triangle computations on directed graphs have also attracted recent interest
[Gonzalez et al. 2012, Seshadhri et al. 2013]. The goal is to count triangles of differ-
ent configurations of directed edges. For example, the GraphLab directed triangle
counting implementation [Gonzalez et al. 2012] counts four types of triangles: in-,
out-, through, and cycle triangles. If a vertex v with two incoming edges partici-
pates in a triangle, it is said to be an in-triangle incident on v. If a vertex v with two
outgoing edges participates in a triangle, it is said to be an out-triangle incident on
v. Finally, if a vertex v with one incoming edge and one outgoing edge participates
in a triangle, and the final triangle edge forms a cycle, then the triangle is a cycle
triangle incident on v; otherwise it is said to participate in a through triangle.

Let us now look at how to modify TC-Merge and TC-Hash using Algorithm 10.1
to count the four types of directed triangles described above. When the graph is
symmetrized for the ranking phase, additional information is stored indicating
which direction(s) the edge appears in the original graph. The array of counts C

on Line 7 is modified to store 4-tuples per entry, where C[ρ(u, w)] stores the count
of each type of triangle incident on edge (u, w). Then on Lines 10–11, the counts of
each type of directed triangle is computed and stored into C[ρ(u, w)]. The type(s)
of each triangle can be computed locally with constant work/depth and no memory
accesses. Finally, to sum the counts on Line 12, element-wise sums of the 4-tuples
of C are computed using a prefix sum, and a single 4-tuple is returned. If the
enumeration variant is instead desired, emit can be modified to take additional
information about the orientation of edges in the triangle. The work, depth, and
cache complexity bounds of Theorems 10.1 and 10.2 are preserved for directed
triangle counting.

10.6.3 Local Triangle Counting
The local triangle counting problem takes a graph and returns for each vertex,
the number of triangles incident on it. TC-Merge and TC-Hash as described in
Section 10.4 only count each triangle once, instead of 3 times, since the ranking
phase keeps each edge in only one direction. So just returning the array of counts
C in Algorithm 10.1 would not produce the correct answer. One way to perform
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local triangle counting is to first store all of the triangles in an array using a triangle
enumeration algorithm. To obtain the local counts, the array of triangles are sorted,
using the first endpoint of the triangle as the key. After the sort, the triangles
sharing the first endpoint will be in consecutive order. Then standard techniques
involving prefix sum operations can be used to compute the partial local counts
per vertex. This procedure (sorting and computing partial local counts) is repeated
on the second and third endpoints of the triangles, and the result will be the local
triangle counts for each vertex. The cost of this method is dominated by sorting
the triangles, and since there are O(αm) triangles, the work is O(αm log m), depth
is O(log3/2 m), and cache complexity is O(sort(αm)) w.h.p. Including the cost of
triangle enumeration using TC-Hash increases the cache complexity to O(αm +
sort(αm)) w.h.p. If TC-Merge is used, then the work becomes O(m3/2 + αm log m)

and cache complexity becomes O(m + m3/2/B + sort(αm)) w.h.p.
If an atomic increment operation is assumed to take O(1) work, then the bounds

can be improved with the following scheme. An array of size n is created to store
the local count of each vertex (initialized to 0). Whenever a triangle is identified
in the triangle counting algorithm, an atomic increment is performed on the lo-
cations in the array corresponding to each of the three triangle endpoints. Since
these locations can be anywhere, each triangle found causes O(1) cache misses.
The total number of triangles is bounded by O(αm) so if TC-Hash is used for count-
ing, this gives an algorithm with O(n log n + αm) work, O(log3/2 m) depth and
O(sort(n) + αm) cache misses w.h.p. The experiments in Section 10.7 use TC-Merge
for counting as it performs better in practice, although the theoretical bounds of
local triangle counting become weaker—the work bound increases to O(m3/2) and
cache complexity increases to O(m3/2/B + αm).

Local triangle counting also works for the directed setting. In the first method,
a directed triangle enumeration algorithm which gives the type of each triangle
can be used. After each sort, which groups the triangles by a certain endpoint,
the algorithm can sort within the groups by triangle type. Then the sizes of these
subgroups as well as the groups are computed using prefix sums. For the second
method, the algorithm can store 4-tuples in the global array of local counts, and
atomically increment the appropriate element(s) in the tuples based on the triangle
type(s).

10.6.4 Clustering Coefficients and Transitivity Ratio
The local clustering coefficient [Watts and Strogatz 1998] for a vertex v is defined to
be the number of triangles incident on v divided by d(v)(d(v) − 1)/2 (the number
of potential triangles incident on v). The global clustering coefficient is the average
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over all local clustering coefficients. Both quantities can be computed using the
algorithms for local triangle counting.

The transitivity ratio of a graph is defined to be the ratio of 3 times the number
of triangles to the number of length-2 paths (wedges), which can be computed as∑

v∈V (d(v)(d(v) − 1)/2). The number of triangles is already returned by TC-Merge
and TC-Hash and the number of wedges can be computed with a prefix sum. Hence,
the bounds for computing the transitivity ratio are the same as in Theorems 10.1
and 10.2.

10.7 Evaluation
This section experimentally evaluates how the algorithms developed in this chapter
perform in practice, specifically how well they scale with the number of threads,
how fast they are compared to existing alternatives, and whether they are cache-
efficient. To this end, this section reports and discusses the running times, parallel
speedups, and cache misses for the exact algorithms, as well as the accuracy of the
approximation algorithm versus its running time. Overall, the results indicate that
the algorithms are very fast in practice, scaling well with the number of cores.

Input Data
The input graphs include a variety of real-world networks from the Stanford Net-
work Analysis Project [Leskovec and Krevl 2014], and several synthetic graphs gen-
erated from the Problem Based Benchmark Suite. The experiments also use the
Twitter graph [Kwak et al. 2010] and the Yahoo! Web graph [Altavista 2012]. These
graphs are drawn from many fields and have different characteristics, and many are
graphs stemming from social media, where triangle computations often see appli-
cations. The graph sizes and triangle counts are shown in Table 10.2. The table
reports the number of undirected edges (i.e., an edge between u and v is counted
once), but the implementations store, in the intermediate representation, each
edge in both directions, so store twice as many edges. Therefore, the implemen-
tations effectively symmetrize all of the graphs. The graphs are also pre-processed
to remove self-loops and duplicate edges.

Environment
The experiments are performed on both the 40-core (with two-way hyper-threading)
Intel machine and the 64-core AMD machine described in Section 2.7. Most of the
reported results are obtained from the Intel machine, but some results on the
AMD machine are also reported, showing that the algorithms exhibit the same
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Table 10.2 Graph inputs for triangle computations

Number of

Input Graph Vertices Directed Edges Triangles

random 100,000,000 491,001,390 24,899,692

rMat 134,217,728 498,586,618 539914

3d-grid 99,897,344 299,692,032 0

soc-LJ 4,847,571 42,851,237 285,730,264

cit-Patents 3,774,768 16,518,947 7,515,023

com-LJ 3,997,962 34,681,189 177,820,130

com-Orkut 3,072,441 117,185,083 627,584,181

Twitter 41,652,231 1,202,513,046 34,824,916,864

Yahoo! 1,413,511,391 6,434,561,035 85,782,928,684

performance trends on different machines. The codes use Cilk Plus to express
parallelism, and are compiled with the g++ compiler.

10.7.1 Implementation
The implementations use the parallel primitives prefix sum, filter, and sort, from
the Problem Based Benchmark Suite, which are all cache-oblivious. In the imple-
mentations of Algorithm 10.1, the for-loop on Line 3 and nested parallel for-loops
on Lines 8 and 9 use the cilk_for construct. Note that already, the counting code
has abundant parallelism (a lot more than the number of cores available) because
all of the intersect calls are made in parallel (Lines 10–11 of Algorithm 10.1).
Consequently, for TC-Merge, it suffices for each intersect to use a sequential
merge; making the merge parallel does not improve the speedup as has been ex-
perimentally confirmed. Each merge terminates when one of the lists has been
fully traversed. For TC-Hash, the concurrent hash table described in Chapter 5 is
used. Before counting, each vertex creates a hash table of its neighbors in A+[v].
During counting, which intersects A+[v] and A+[w] for each directed edge (v , w),
the implementation loops through the smaller adjacency list and queries the table
of the vertex with the larger adjacency list. Again, due to abundant parallelism in
the nested parallel for-loop, the hash table look-ups for each intersect are done
sequentially, as there was no performance improvement observed from paralleliz-
ing it.
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Table 10.3 Triangle counting times (seconds) on the Intel machine

Algorithm random rMat 3d-grid soc-LJ cit-Patents com-LJ com-Orkut Twitter Yahoo!

serial-OB

T1 278 298 133 24.52 6.23 18.15 95.4 — —

Green et al.

T40h 6.92 9.54 3.66 2.55 0.31 1.61 17.98 — —

GraphLab

T40h 58.0 56.1 51.3 3.45 1.7 2.33 5.7 178.7 —

TC-Merge

T1 106 155 60.4 15.2 3.22 10.7 94.1 2680 1740

T40h 3.13 3.89 1.75 0.49 0.079 0.389 1.92 55.9 77.7

T1/T40h 33.9 39.8 34.5 31.0 40.8 27.5 49.0 47.9 22.4

TC-Hash

T1 193 279 107 27.5 6.92 19.5 158 4850 2960

T40h 5.33 7.21 3.25 0.931 0.198 0.723 3.3 93 104

T1/T40h 36.2 38.7 32.9 29.5 34.9 27.0 47.9 50.2 28.5

TC-Local

T1 119 166 64.9 17.3 3.72 12.2 101 2900 2090

T40h 3.28 3.99 1.76 0.639 0.088 0.397 2.09 163 90.7

T1/T40h 36.3 41.6 36.9 27.1 42.3 30.7 48.3 17.8 23.0

T1 is single-thread time, T40h the time on 40 cores with hyper-threading, and T1/T40h the parallel
speedup.

10.7.2 Exact Triangle Counting
The first set of experiments is concerned with exact triangle counting. The times on
the Intel machine are shown in Table 10.3, and the times on the AMD machine are
shown in Table 10.4. The times include both ranking and counting, and are based
on a median of three trials. The parallel speedup is also reported by dividing the
time on a single thread by the parallel time (40 cores with hyper-threading for the
Intel machine and 64 cores for the AMD machine). For some graphs, a speedup
factor of over 40 is obtained on the Intel machine due to the effects of hyper-
threading. Overall, the times on the Intel machine are faster than on the AMD
machine, but the parallel speedups are comparable. This section later discusses
the parallel performance of the algorithms developed in this chapter is compared
with recent parallel/distributed algorithms.

Several things are worth discussing. First, the single-threaded performance of
TC-Merge is competitive with existing implementations. To see whether the imple-
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Table 10.4 Triangle counting times (seconds) on the AMD machine

Algorithm random rMat 3d-grid soc-LJ cit-Patents com-LJ com-Orkut Twitter Yahoo!

TC-Merge

T1 188 283 72.4 20.2 4.29 14.3 122 3730 2420

T64 4.93 6.18 2.68 0.81 0.155 0.623 2.67 78.9 100

T1/T64 38.1 45.8 27.0 24.9 27.7 23.0 45.7 47.3 24.2

TC-Hash

T1 274 416 184 33.4 11.1 23.8 173 6050 4340

T64 8.26 12.0 4.95 1.39 0.321 1.12 4.24 133 183

T1/T64 33.2 34.7 37.2 24.0 34.6 21.3 40.8 45.5 23.7

TC-Local

T1 168 268 79.1 24.5 5.3 17.2 134 4100 4060

T64 5.29 6.26 2.65 0.886 0.172 0.628 3.15 164 152

T1/T64 31.8 42.8 29.8 27.7 30.8 27.4 42.5 25.0 26.7

T1 is single-thread time; T64 the time on 64 cores; and T1/T64 is the speedup.

mentations incur high overhead due to parallelization, we ran the Ortmann and
Brandes serial implementations (serial-OB) [Ortmann and Brandes 2014] on the
same set of graphs and report the running time for their best implementation on
each input on the Intel machine (Table 10.3). We do not have their times on the
Twitter and Yahoo! graphs, as we could not run their implementations on them.
When running single-threaded, the TC-Merge implementation is faster than their
implementation. Their paper includes a comprehensive evaluation of other serial
algorithms, which are described in Section 10.9.

Second, both TC-Merge and TC-Hash obtain very good speedups on all graphs, be-
tween 22–50× on 40 hyper-threaded cores, with TC-Merge having an edge over TC-Hash.
For further detail, Figure 10.3 shows the running time versus the number of threads
for several graphs on the Intel machine. Observe that both implementations scale
well as the number of threads is increased, and that TC-Merge is faster than TC-
Hash for all thread counts (by a factor of 1.3–2.5×). The trends are similar on the
AMD machine, with TC-Merge again being faster than TC-Hash, although the ab-
solute running times are slower than on the Intel machine.

Third, for both implementations, usually the majority of the time is spent inside
counting. Figure 10.4 shows the breakdown of the parallel running times for the
two implementations on the Intel machine. Observe that ranking usually takes
a small fraction of the total time. For most of the real-world graphs (except cit-
Patents), the time for ranking in TC-Merge is at most 10%, although it is higher
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(a)

(c)

(b)

Figure 10.3 Times (seconds) for exact triangle counting (TC-Merge and TC-Hash) as the number of
threads varies on a log-log scale. (a) soc-LJ; (b) com-LJ; (c) com-Orkut. “40h” indicates
80 hyper-threads.

(a) (b)

Figure 10.4 Breakdown of times on 40 cores with hyper-threading on various graphs for TC-Merge
and TC-Hash. (a) TC-Merge; (b) TC-Hash.
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Table 10.5 L2 and L3 cache misses and work for intersection (ops) in TC-Merge
and TC-Hash

Algorithm soc-LJ cit-Patents com-LJ com-Orkut

TC-Merge (L3 misses) 126M 58M 87M 762M

TC-Hash (L3 misses) 217M 90M 150M 1.2B

TC-Merge (L2 misses) 301M 134M 215M 1.4B

TC-Hash (L2 misses) 432M 182M 314M 1.8B

TC-Merge (ops) 2.54B 153M 1.7B 15.8B

TC-Hash (ops) 2.58B 164M 1.7B 18.4B

for the synthetic graphs (as high as 48% for the 3d-grid graph). This is because the
number of potential triangles is much lower in the synthetic graphs, so the fraction
of time spent in the counting portion of the computation is lower. For TC-Hash, at
most 25% of the time is spent in ranking. The experiments also measure the time
for inserting the edges into the hash tables, and the results show that for most of the
real-world graphs this step takes longer than ranking, but less time than counting.
For most of the real-world graphs (except cit-Patents), this step also takes at most
25% of the total time.

Fourth, despite the bounds, in practice, TC-Hash performs about the same amount
of work as TC-Merge—but, as predicted from the theoretical bounds, TC-Hash incurs
many more cache misses than the TC-Merge. Table 10.5 shows the number of L2 and
L3 cache misses for TC-Merge and TC-Hash on several input graphs. The numbers
are collected on the 32-core Intel machine described in Section 2.7, since we did not
have root access on the 40-core Intel machine. The cache misses reported are for
an execution using all hyper-threads; however, the results were similar for different
thread counts.

Table 10.5 also reports the total number of operations inside intersect for
each implementation. For TC-Merge, the number of operations is computed by the
number of comparisons done in the merge between elements in the adjacency lists.
For TC-Hash, the number of operations is computed by the number of locations
inspected in the hash table, for both insertions and finds. The reader can observe
that TC-Hash performs about the same amount of work as TC-Merge, but the key
differentiating factor is the number of cache misses. This confirms that cache
efficiency is crucial for algorithm performance.
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Parallel Pagh-Silvestri Algorithm
Pagh and Silvestri [2014] (PS) recently present a sequential cache-oblivious al-
gorithm, which we parallelize and experiment with (more details appear in Sec-
tion 10.8). We found that our parallel PS implementation achieves reasonable par-
allel self-relative speedup; however, it is orders of magnitude slower than TC-Merge
and TC-Hash. When run sequentially, we also found it to be orders of magnitude
slower than other sequential triangle counting algorithms. This is because the PS
algorithm makes many more passes over the edges of the graph, and does many
sorts, which makes it expensive in practice. As far as we know, there is no public
implementation of the PS algorithm available. Engineering the algorithm to run
fast in practice, both sequentially and in parallel, would be an interesting direction
for future work.

Comparison with Other Work
Several parallel triangle counting algorithms for distributed-memory have been
proposed, and run on recent machines with comparable specifications to ours. Ar-
ifuzzaman et al. [Arifuzzaman et al. 2013] propose PATRIC, which is an MPI-based
parallel algorithm based on a variant of the node-iterator algorithm. Using 200 pro-
cessors, they require 9.4 min to process the Twitter graph. Park and Chung [2013]
propose a MapReduce algorithm for counting triangles, which requires 213 min
to process the Twitter graph on a cluster server with 47 nodes. They show that
their algorithm outperforms the MapReduce algorithms of Cohen [2009] and Suri
and Vassilvitskii [2011]. The MapReduce triangle enumeration algorithm of Park
et al. [2014] takes several hours on the Twitter graph, although they are solving the
more expensive task of enumerating all triangles instead of just counting them.
GraphLab implements triangle counting using MPI, and achieves better perfor-
mance than the other algorithms—they process the Twitter graph in 1.5 min using
64 16-core machines [Gonzalez et al. 2012]. In contrast to the distributed-memory
algorithms, the TC-Merge algorithm from this chapter is able to process Twitter
in under a minute on a single 40-core machine. Note that while the algorithms
in this chapter are much faster than the distributed-memory algorithms, they are
constrained to graphs that fit in the memory of a single machine (and all of the
real-world graphs used in the literature do fit).

The experiments in this section also compare with the implementations of
Green et al. [2014], the fastest in-memory implementations of triangle counting.
The parallel time on the Intel machine for their fastest implementation per graph
is reported in Table 10.3 for the graphs which their implementations success-
fully ran on. Their times do not include the time for sorting the edges per vertex
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(required for merging), although this would be a small fraction of the total time for
most graphs. In parallel, TC-Merge is 2–9 times faster than their fastest algorithm.
Their algorithms are parallel versions of the node-iterator algorithm without any or-
dering heuristic, and uses merging for intersection. Therefore their algorithms take
O(

∑
v∈V (d(v)2 + ∑

w∈N(v) d(w))) work, which in general is higher than the work of
our algorithms. We believe that the difference in empirical performance between
their algorithms and ours is largely due to the algorithmic difference. They also
perform load balancing by estimating the work per vertex and dividing vertices and
edges among threads appropriately, whereas we take the simpler approach of leav-
ing the scheduling to the run-time system, which we found to work well in practice.
In addition, the experiments compare with running GraphLab on a single machine
(the 40-core Intel machine) and the times are reported in Table 10.3 for all of the in-
put graphs except Yahoo!, which caused their program to thrash. The experiments
show it to be several times slower than the implementations from this chapter as
well as the implementations of Green et al. [2014], as the GraphLab implementation
has additional overheads.

It is worth noting that there has been recent work showing that hash-based joins
are usually better than sort-merge-based joins on multicores [Balkesen et al. 2013].
However, the setting of this work is that only two tables are joined and hence only
a single join needs to be performed. Thus, the cost for sorting and hash table
insertions dominate the cost. In contrast, in triangle computations each vertex
participates in many intersections, but the sorting and hash table insertions for
each vertex only needs to be done once, so this pre-processing cost is amortized
over all of the subsequent intersections. Another difference is that for a single hash-
based join, the elements of the smaller set are inserted into a hash table, with the
elements from the larger set querying it, while to obtain good complexity bounds
for triangle computations, the elements from the smaller adjacency list are queried
in the hash table of the vertex with a larger adjacency list. Therefore, the conclusion
of [Balkesen et al. 2013] does not directly apply to the context of this chapter.

10.7.3 Approximate Triangle Counting
The previous section showed that TC-Merge is fast and scales well with the number
of threads. This section studies the parallel approximate triangle counting imple-
mentation from Section 10.5, which sparsifies the input graph using the colorful
triangle counting scheme of Pagh and Tsourakakis [2012], and applies TC-Merge
on the sampled subgraph. This algorithm is referred to as TC-Approx. In the im-
plementation, the ranking step is combined with the subgraph creation step to
improve overall performance. In addition, the implementation operates directly
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Table 10.6 Times (seconds) and accuracy for approximate triangle counting on the Intel
machine for p = 1/25 and p = 1/10

Algorithm random rMat 3d-grid soc-LJ cit-Patents com-LJ com-Orkut Twitter Yahoo!

p = 1/25
T1 43.5 47.8 30.1 1.39 1.05 1.11 2.64 42.4 300

T40h 1.38 1.54 0.95 0.04 0.031 0.033 0.067 2.4 9.1

Error (%) 0.48 3.06 0.0 0.31 0.99 0.48 0.23 0.1 0.39

σ 2 0.003 0.11 0.0 0.001 0.014 0.003 0.0 0.0 0.002

p = 1/10
T1 56.5 62.3 40.1 1.77 1.22 1.39 4.05 79.4 350

T40h 1.6 1.77 1.11 0.05 0.036 0.042 0.1 5.88 14.5

Error (%) 0.19 0.8 0.0 0.34 0.38 0.4 0.17 0.12 0.18

σ 2 0.0 0.007 0.0 0.002 0.003 0.001 0.0 0.0 0.0

T1 indicates single-thread time and T40h indicates the time on 40 cores with hyper-threading.

on the adjacency list representation, and has each vertex separately apply a filter
on its edges, instead of converting to the edge array representation and back as de-
scribed in Section 10.5. While this adds an extra O(n) term to the cache complexity,
it performs better in practice as less work is performed.

The times on the 40-core Intel machine for p = 1/25 and p = 1/10 are shown
in Table 10.6. The times include sampling edges from the original graph, and
performing ranking and counting on the sampled subgraph. The reported times are
based on an average of 10 trials, and the average error and variance of the estimates
are also reported. The reader can observe that the times are much lower than those
for exact triangle counting, and the error and variance of the estimates are very
small and well-controlled. For graphs where the number of edges is much larger
than the number of vertices, the speedup of TC-Approx over TC-Merge in parallel
is significant (28.7× for com-Orkut and 23.3× for Twitter with p = 1/25), although
for sparser graphs the savings is not as high. For the real-world graphs, the average
error is less than 1% for a sampling factor of p = 1/25.

Figure 10.5 shows the breakdown of the parallel running time on the Intel
machine of TC-Approx for p = 1/25. The time spent on computing the subgraph
and ranking is a large fraction of the total time (at least 80% for all graphs except
for the Twitter graph) because all of the edges are inspected. In contrast, the time
spent on counting is a small fraction of the overall time for most graphs because
there are much fewer edges in the sampled subgraph than in the original graph.
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Figure 10.5 Breakdown of time for TC-Approx on 40 cores with hyper-threading.

Figure 10.6 The fraction of time taken by TC-Approx relative to TC-Merge without sampling (vertical
axis) as the sampling rate p (horizontal axis) varies, on the input graphs soc-LJ, com-LJ,
and com-Orkut.

Figure 10.6 shows the parallel running time of TC-Approx relative to TC-Merge
on the Intel machine as a function of the parameter p for several graphs. Overall,
the time goes up as p increases, as this corresponds to a larger sample of edges.

Comparison with Other Work
TC-Approx is much faster than the multicore algorithm for approximate triangle
counting by Rahman and Hasan [2013]. For the Wikipedia-2007-02-06 graph4 that
they report times for (which has 3.566 million vertices and 42.375 million undi-
rected edges), on 16 threads TC-approx obtains a 99.5% accuracy in 0.13 s (for

4. http://www.cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
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p = 1/10), while they require 10.68 s to achieve 99.07% accuracy using 16 threads.
The machines used in both cases are comparable, but even after adjusting for
any small differences, TC-Approx would still be significantly faster. The exact algo-
rithm TC-Merge is also faster than their algorithm on the same graph, running in
1.45 s on 16 threads. Recent work has extended wedge sampling to the MapReduce
setting [Kolda et al. 2014]. Their experiments use 32 4-core machines with hyper-
threading, and they show that the overhead of MapReduce in their algorithm is
already 225 s, and require about 10 min on the Twitter graph, which is slower than
the parallel times for exact counting using 40 cores shown in Table 10.3. Papers
for other approximate algorithms [Tsourakakis et al. 2009, Pagh and Tsourakakis
2012] do not have parallel running times, and so could not be compared against.

10.7.4 Local Triangle Counting
We have also implemented a parallel algorithm for local triangle counting (TC-
Local). For this algorithm, we modify TC-Merge to keep a count for every vertex in
the graph. We use an atomic add (using the x86 atomic instruction xadd) to a global
array of local counts when a triangle is found. We use the following optimization to
reduce work/contention: for a triangle discovered by looping over vertex v and vertex
w ∈ A+[v] with a third vertex being u ∈ A+[v] ∩ A+[w], we atomically increment the
count of u when it is discovered; for the second endpoint (w), we atomically add
the count (if nonzero) after the intersection A+[v] ∩ A+[w] is finished, and for the
first endpoint (v), we atomically add the count (if nonzero) after all merges with
neighbors are finished.

The experiments show that TC-Local also scales well with the number of cores.
Tables 10.3 and 10.4 show the times for local triangle counting (TC-Local) on the
Intel machine and the AMD machine, respectively. As expected, it is slightly slower
than global triangle counting because whenever a triangle is found, an atomic
increment to a global array is performed (which likely involves a cache miss).
Compared to TC-Merge, on 40 cores with hyper-threading on the Intel machine
TC-Local is at most 30% slower for most graphs, but almost 3 times slower for
the Twitter graph possibly due to contention with the atomic increment (Twitter
has many high-degree vertices). TC-Local achieves 17–48× speedup over all of the
inputs. The trends on the AMD machine are similar, although the absolute running
times are slower.

As a simple application, this section extends the analysis of Tsourakakis [2008]
to much larger graphs. Tsourakakis observes that in real-world graphs the rela-
tionship between local triangle count and the number of vertices with such a count
follows a power law [Tsourakakis 2008], though the graphs used were much smaller
than the inputs used in this section. Figure 10.7 plots the relationship in log-log
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(a) (b)

(c)

Figure 10.7 Distribution of local triangle counts (log-log scale), showing local triangle count
(horizontal axis) vs. the number of vertices with that count (vertical axis). (a) com-
Orkut; (b) Twitter; (c) Yahoo!.

scale for the larger real-world input graphs and confirms that this relationship does
indeed quite closely resemble a power law. Due to the efficiency of the algorithm de-
veloped in this chapter, these plots for some of the largest publicly available graphs
can be generated in just a few minutes.

10.8 Parallelization of the Pagh-Silvestri Algorithm
Pagh and Silvestri [2014] recently describe a sequential cache-oblivious algorithm
for triangle enumeration with an expected cache complexity of O(m3/2/(

√
MB)).

This section reviews their sequential algorithm and then shows how to parallelize
it (see Algorithm 10.3). Their algorithm uses the edge array representation of the
graph, which uses an array of length m storing pairs of vertices that have an edge
between them.
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Algorithm 10.3 Pagh-Silvestri (PS) algorithm

procedure PS-ENUM(G = (V , E), (c0, c1, c2))
(1) For each high-degree vertex (degree at least m/8), enumerate all triangles

satisfying the (c0, c1, c2) coloring, and construct G′ by removing these
high-degree vertices

(2) On G′, assign new colorings to the vertices by adding a random bit to its
least significant position in its current coloring

(3) Recursively call PS-ENUM on G′ on the 8 colorings in (c′
0, c′

1, c′
2) ∈

{2c0 − 1, 2c0} × {2c1 − 1, 2c1} × {2c2 − 1, 2c2}, where each subproblem
contains only compatible edges.

Pagh and Silvestri first show that enumerating all triangles containing a given
vertex v can be done with O(sort(m)) cache misses. They do this by (a) finding all
of v’s neighbors via a scan and sorting them lexicographically; (b) sorting the edge
array by the source vertex and intersecting it with v’s neighbors to get the outgoing
edges of v’s neighbors; and (c) sorting the result by target vertex and intersecting
it with v’s neighbors to get all edges with both endpoints in v’s neighbor set. The
result of this is all the triangles incident on v. Since these operations are known to
be implementable in a parallel and cache-oblivious manner, this gives the following
lemma.

Lemma 10.4 There is an algorithm for enumerating all triangles incident on a vertex v that
requires O(m log m) work, O(log3/2 m) depth, and O(sort(m)) cache misses w.h.p.

However, naively using this for each vertex is too costly, and hence their al-
gorithm only uses this step for high-degree vertices and then uses a novel col-
oring scheme to recursively solve the problem on subgraphs. Using their defini-
tions, a triangle (u, v , w) satisfies the (c0, c1, c2) coloring if c(u) = c0, c(v) = c1 and
c(w) = c2 where c is the coloring function. An edge (u, v) is compatible with a col-
oring (c0, c1, c2) if (c(u), c(v)) ∈ {(c0, c1), (c1, c2), (c0, c2)}. The Pagh-Silvestri (PS)
algorithm is a recursive algorithm with three steps:

The algorithm is initially called on the original edge set E with a coloring (1, 1, 1),
and all vertices assigned a color of 1.

Step 1 applies the subroutine described above to at most 16 vertices, and so re-
quires O(sort(m)) cache misses. Step 2 requires O(scan(n)) cache misses. Pagh and
Silvestri show that each subproblem in Step 3 contains at most m/4 edges in expec-
tation and uses this to show an expected cache complexity of O(m3/2/(

√
MB)). The

work of their algorithm is O(m3/2).



10.9 Prior and Related Work 285

Each of the three steps of the PS algorithm can be parallelized, as discussed
below. Step 1 requires at most 16 calls to the subroutine that finds all triangles
incident on a vertex, hence can be done in the bounds stated in Lemma 10.4.
Step 2 can be implemented with a parallel scan in O(n) work, O(log n) depth,
and O(scan(n)) cache misses. The new colors of the endpoints of the edges can
be computed by sorting the edges by the first endpoint, merging with the array
of colors, then sorting by the second endpoint and doing the same. For each
subproblem in Step 3, generating the subset of edges belonging to the subproblem
can be done with a parallel filter in O(m) work, O(log m) depth, and O(scan(m))

cache misses. As the expected size of each subproblem is at most m/4, there are
O(log m) levels of recursion w.h.p. This gives an overall depth of O(log5/2 m) w.h.p.
The parallel algorithm requires O(m3/2) work since every sequential routine that is
replaced with a parallel routine has the same asymptotic work bound. The parallel
cache complexity is O(m3/2/(

√
MB)) in expectation as the cache complexity of the

parallel routines match those of the sequential routines. This gives the following
theorem.

Theorem 10.3 A parallel version of the PS algorithm can be implemented in O(m3/2) work,
O(log5/2 m) depth, and a parallel cache complexity of O(m3/2/(

√
MB)) in expec-

tation.

While the cache complexity of the parallel PS algorithm is better than that of TC-
Merge and TC-Hash, in practice we found our implementation to be much slower
due to large constants in the bounds, as discussed in Section 10.7.

10.9 Prior and Related Work

Exact Sequential Algorithms
Sequential algorithms for exact triangle counting and enumeration have a long
history (see, e.g., [Itai and Rodeh 1977, Schank and Wagner 2005, Schank 2007,
Latapy 2008, Ortmann and Brandes 2014]). For sparse graphs, of particular interest
is the line of work starting from Schank and Wagner [2005], who describe an
algorithm, called forward, that achieves a work bound of O(m3/2) with a space
bound of O(n + m). The algorithm ranks the vertices in order of non-decreasing
degree, but it populates the neighborhood A+ sequentially while computing the
intersection. Improving upon the constants in the space bounds, Latapy [2008]
describes an algorithm compact-forward, on which the algorithms in this chapter
are based. Both algorithms are sequential and require O(m3/2) work and O(n + m)

space. By using hash tables for intersection, the work of both algorithms can be
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improved to O(αm) [Chiba and Nishizeki 1985]. Experimentally, Latapy shows that
forward and compact-forward yield the best running time with compact-forward
consuming less space [Latapy 2008], consistent with Schank’s findings [Schank
2007].

The node-iterator algorithm [Schank 2007] iterates over all vertices v ∈ V , and
intersects the adjacency lists of each pair of v’s neighbors. This algorithm requires

O

⎛
⎝∑

v∈V

(d(v)2 +
∑

w∈N(v)

d(w))

⎞
⎠ = O(mdmax)

work and O(n + m) space. Green and Bader describe an optimization to this algo-
rithm using vertex covers, which improves its performance in practice [Green and
Bader 2013]. The edge-iterator algorithm [Itai and Rodeh 1977] iterates over the
edges instead of the vertices. For each edge, it intersects the adjacency lists of the
two endpoints.

Ortmann and Brandes [2014] describe a framework for designing triangle listing
algorithms and explore many variations of the previous algorithms.

For a graph with 	 triangles, Bjorklund et al. [2014] give the best work bounds
for triangle listing, requiring roughly O(nω + n3(ω−1)/(5−ω)	2(3−ω)/(5−ω)) work for
dense graphs, and O(m2ω/(ω+1) + m3(ω−1)/(ω+1)	(3−ω)/(ω+1)) work for sparse graphs,
where ω is the matrix multiplication exponent (ω ≈ 2.3729, using the current-best
algorithm [Williams 2012]).

Triangle counting, but not listing, can also be solved using matrix multiplication
in O(nω) work [Itai and Rodeh 1977]. For sparse graphs, this can be improved to
O(m2ω/(ω+1)) [Alon et al. 1997]. Other algorithms and variants can be found in
[Schank 2007, Latapy 2008, Ortmann and Brandes 2014] and the references therein.

Exact Parallel Algorithms
There has been recent work on adapting sequential triangle counting/listing/
enumeration algorithms to the parallel setting. Several algorithms have been de-
signed for distributed-memory using MapReduce [Cohen 2009, Suri and Vassilvit-
skii 2011, Park and Chung 2013, Wang et al. 2013, Park et al. 2014]. Arifuzzaman et
al. [2013] describe a distributed-memory algorithm using MPI, and GraphLab also
contains an MPI implementation [Gonzalez et al. 2012]. A multicore implemen-
tation of the node-iterator algorithm is presented by Green et al. [2014]. Triangle
counting has also been implemented on the GPU [Wu et al. 2014, Green et al. 2015].
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I/O Complexity of Triangle Computations
Various triangle counting/listing/enumeration algorithms have been designed for
I/O efficiency, either in terms of disk accesses or cache misses. Triangle enumera-
tion can be computed by using a natural join of three relations using O(m3/(M2B))

I/O’s [Pagh and Silvestri 2014]. An external-memory version of compact-forward
was described by Menegola [2010], requiring O(m + m3/2/B) I/O’s. An external-
memory version of node-iterator was described by Dementiev [2006], requiring
O((m3/2/B) logM/B(m/B)) I/O’s. Chu and Cheng [2012] describe an algorithm us-
ing graph partitioning with an I/O complexity O(m2/(MB) + 	/B), where 	 is
the number of triangles in the graph. Their algorithm requires that each parti-
tions fits in memory, that n ≤ M , and that M = �(

√
mB). Later, Hu et al. [2013]

describe an algorithm achieving the same I/O complexity of O(m2/(MB) + 	/B),
without the restrictions of the previous algorithm. These algorithms are designed
for the external-memory model, where the algorithm must be tuned for the pa-
rameters M and B of the specific machine. Recently, Pagh and Silvestri [2014] de-
scribe a cache-oblivious algorithm requiring O(m3/2/(

√
MB)) expected I/O’s (cache

misses), which is described in Section 10.8. They also describe a deterministic
cache-aware algorithm requiring O(m3/2/(

√
MB)) I/O’s (cache misses) with the re-

quirement M ≥ m�(1) [Pagh and Silvestri 2014]. None of the above algorithms have
been parallelized. Kyrola et al. [2012] and Kim et al. [2014] present parallel disk-
based triangle counting implementations, which require parameter tuning.

Approximate Counting Schemes
To speed up triangle counting, many approximation schemes have been proposed.
These do not work for triangle listing/enumeration, as not all triangles are even gen-
erated. DOULION is among the first approximation schemes proposed [Tsourakakis
et al. 2009]. Pagh and Tsourakakis [2012] later give a more accurate scheme that
improves upon DOULION, called colorful triangle counting, which is described
in Section 10.5. A recent scheme based on sampling wedges was presented by
Seshadri et al. [2013]. Hadoop implementations have been described for some of
these schemes (e.g., [Pagh and Tsourakakis 2012, Wang et al. 2013, Kolda et al.
2014]). Several other approximation schemes have been proposed based on com-
puting eigenvalues of the graph [Avron 2010, Tsourakakis et al. 2011, Tsourakakis
2011]. The performance of these methods depend on the spectrum of the graphs.
Rahman and Al Hasan recently present approximate counting algorithms for mul-
ticores based on the edge-iterator algorithm [Rahman and Hasan 2013], which is
compared with in Section 10.7.
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Streaming Algorithms
Triangle counting has also been studied in streaming settings as an alternative
means to processing massive graphs (see, e.g., [Becchetti et al. 2008, Bar-Yossef et
al. 2002, Kolountzakis et al. 2012, Buriol et al. 2006, Ediger et al. 2010, Jha et al.
2013, Pavan et al. 2013, Tangwongsan et al. 2013, Kutzkov and Pagh 2014] among
many others).



IVP A R T

PARALLEL STRING
ALGORITHMS

This part of the book develops shared-memory string algorithms that are efficient
both in theory and in practice. Chapter 11 presents a simple linear-work and space,
and polylogarithmic depth parallel algorithm for generating multiway Cartesian
trees, and uses it in conjunction with a suffix array algorithm to generate suffix
trees in linear work and polylogarithmic depth. This gives the first linear-work and
polylogarithmic-depth parallel suffix tree algorithm that is also practical. Chap-
ter 12 proposes simple parallel algorithms for computing the longest common pre-
fix (LCP) array given the suffix array as input, and shows that they are efficient both
in theory and in practice. In Chapter 13, a simple linear-work and polylogarithmic-
depth parallel algorithm for Lempel-Ziv factorization based on suffix arrays is pre-
sented, resulting in the first practical parallel algorithm for this problem that is also
theoretically-efficient. Finally, Chapter 14 develops the first polylogarithmic-depth
parallel algorithms for constructing wavelet trees, a building block for many com-
pressed data structures. Each chapter presents experimental results on a modern
multicore machine showing that the implementations of the parallel algorithms
outperform existing parallel implementations for the same problem, and achieve
significant speedups over the corresponding sequential solutions.

The results in this part of the book have appeared in the following publications:

J. Shun and G. Blelloch. 2014. A simple parallel Cartesian tree algorithm and its application
to parallel suffix tree construction. ACM Trans. Parallel Comput. (TOPC), 1(1), article
no. 8,

J. Shun. 2014. Fast parallel computation of longest common prefixes. In Proceedings of
the ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 387–398.



J. Shun and F. Zhao. 2013. Practical parallel Lempel-Ziv factorization. In Proceedings of the
IEEE Data Compression Conference (DCC), pp. 123–132.

J. Shun. 2015. Parallel wavelet tree construction. In Proceedings of the IEEE Data Compression
Conference (DCC), pp. 63–72.



11Parallel Cartesian Tree
and Suffix Tree
Construction

11.1 Introduction
A Cartesian tree on a sequence of elements taken from a total order is a binary tree
that satisfies two properties: (1) heap order on values, i.e., a node has an equal or
lesser value than any of its descendants, and (2) an in-order traversal of the tree
defines the sequence order.

Given the suffix array SA and its corresponding LCP array (refer to Section 2.6.3
for the definitions) for a string, a Cartesian tree on the string formed by interleaving
SA and LCP can be used to answer queries related to the string. By adding downward
pointers (e.g., using a hash table), this gives a suffix tree for binary alphabets. The
approach can be generalized to arbitrary alphabets by using multiway Cartesian
trees (Cartesian trees where connected components of equal value are contracted
into single nodes) without much difficulty.

For a string S of length n over a character set � ⊆ {0, . . . , n − 1}1 the suffix tree
data structure stores all the suffixes of s in a Patricia tree (defined in Section 2.6.3).
In addition to supporting searches in S for any string t ∈ �∗ in O(|t |) expected
work,2 suffix trees efficiently support many other operations on strings, such as
finding the longest common substring, maximal repeats, longest repeated sub-
strings, and the longest palindrome, among many others [Gusfield 1997]. As such,
it is one of the most important data structures for string processing. For example, it

1. More general alphabets can be used by first sorting the characters and then labeling them from
0 to n − 1.

2. Worst-case work for constant-sized alphabets.
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is used in several bioinformatic applications, such as REPuter [Kurtz and Schleier-
macher 1999], MUMmer [Delcher et al. 2002], OASIS [Meek et al. 2003], and Trellis+
[Phoophakdee and Zaki 2008, Phoophakdee and Zaki 2007]. Both suffix trees and
a linear-work algorithm for constructing them were introduced by Weiner [1973]
(although he used the term position tree). Since then various similar constructions
have been described [McCreight 1976, Ukkonen 1995] and there have been many
implementations of these algorithms. Although originally designed for fixed-sized
alphabets with deterministic linear work, Weiner’s algorithm can work on an alpha-
bet {0, . . . , n − 1}, henceforth [n], in linear expected work simply by using hashing
to access the children of a node.

The algorithm of Weiner and its derivatives are all incremental and inherently
sequential. The first parallel algorithm for suffix trees was given by Apostolico et al.
[1988] and was based on a quite different doubling approach. For a parameter 0 <

ε ≤ 1 the algorithm runs in O((1/ε) log n) depth, O((n/ε) log n) work, and O(n1+ε)

space on the CRCW PRAM for arbitrary alphabets. Although reasonably simple,
this algorithm is likely not practical since it is not work-efficient and uses super-
linear memory (by a polynomial factor). The parallel construction of suffix trees was
later improved to linear work and polynomial space by Sahinalp and Vishkin [1994],
with an algorithm taking O(log2 n) depth on the CRCW PRAM (they note that linear
space can be obtained by using hashing and randomization) and linear work and
linear space by Hariharan [1994], with an algorithm taking O(log4 n) depth on the
CREW PRAM. Farach and Muthukrishnan improved the depth to O(log n) with high
probability on the CRCW PRAM [Farach and Muthukrishnan 1996]. These later
results are for constant-sized alphabets, are considerably non-trivial, and do not
seem to be amenable to efficient implementations.

As mentioned earlier, one way to construct a suffix tree is to first generate a suf-
fix array and then convert it to a suffix tree using a Cartesian tree algorithm. Using
suffix arrays is attractive since in recent years there has been considerable theo-
retical and practical advances in the generation of suffix arrays (see, e.g., [Puglisi
et al. 2007]). The interest is partly due to their need in the widely used Burrows-
Wheeler compression algorithm [Burrows and Wheeler 1994], and also as a more
space-efficient alternative to suffix trees. As such, there have been dozens of pa-
pers on efficient implementations of suffix arrays. Among these, Kärkkäinen and
Sanders have developed a quite simple and efficient parallel algorithm for suffix ar-
rays [Kärkkäinen and Sanders 2003, Kärkkäinen et al. 2006] that can also generate
the longest common prefix (lcp) values.

The story with generating Cartesian trees in parallel is less satisfactory. Berkman
et al. [1993] describe a parallel algorithm for the all nearest smaller values (ANSV)
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problem, which can be used to generate a binary Cartesian tree. However, it cannot
directly be used to generate a multiway Cartesian tree, and the algorithm is very
complicated. Iliopoulos and Rytter [2004] present two much simpler algorithms
for generating suffix trees from suffix arrays, one based on merging and one based
on a variant of the ANSV problem that allows for multiway Cartesian trees. However
they both require O(n log n) work.

This chapter describes a linear-work, linear-space, and polylogarithmic-depth
algorithm for generating multiway Cartesian trees. The algorithm is based on
divide-and-conquer and the chapter presents two versions that differ in whether
the merging step is done sequentially or in parallel. The first based on a sequential
merge, is very simple, and for a tree of height d, it runs in O(min{d log n, n}) depth.
The second version is only slightly more complicated and runs in O(log2 n) depth.
They both use linear work and space.3

Using the multiway Cartesian tree algorithm in conjunction with any linear-
work and space algorithm for generating a suffix array and the corresponding LCP
array using O(S(n)) depth results in a linear work and space algorithm for gen-
erating suffix trees in O(S(n) + log2 n) depth. For example, using the skew algo-
rithm [Kärkkäinen and Sanders 2003, Kärkkäinen et al. 2006], the algorithm has
O(log2 n) depth with high probability for constant-sized alphabets and O((1/ε)nε)

depth (0 < ε < 1) for the alphabet [n]. It is worth noting that a polylogarithmic-
depth, linear-work, and linear-space algorithm for the alphabet [n] would imply
stable radix sort on [n] in the same bounds, which is a long-standing open prob-
lem [Rajasekaran and Reif 1989].

For comparison, this chapter also presents a technique for using the ANSV
problem to generate multiway Cartesian trees on arbitrary alphabets in linear work
and space. The algorithm runs in O(I (n) + log log n) depth, where I (n) is the best
depth bound for a linear-work stable sorting of integers from [n]. Of independent
interest, this chapter shows that the Cartesian tree can be used to solve the ANSV
problem in linear work and O(log2 n) depth, and the algorithm is much simpler
than that of previous work [Berkman et al. 1993].

This chapter gives an implementation of the first version of the parallel Carte-
sian tree algorithm and presents various experimental results analyzing the algo-
rithm on a shared-memory multicore machine on a variety of inputs. First, the
parallel Cartesian tree algorithm is compared to a simple stack-based sequential
implementation. On a single thread, the parallel algorithm is about 3× slower, but

3. Subsequent to our work, Poon and Yuan improve the depth bound by describing a modification
to the algorithm in this chapter that runs in O(n) work and O(log n) depth [Poon and Yuan 2013].
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achieves about 35× speedup (about 12× with respect to the sequential implemen-
tation) on 40 cores with two-way hyper-threading. The chapter shows three queries
on strings that can be answered with the Cartesian tree on the suffix array and LCP
array of the string. First, the number of leaves in the subtree at each internal node
of the Cartesian tree can be computed in order to support various types of queries
relating to counts of repeated substrings in the input. As an example, the experi-
ments use this information to compute the longest substring that occurs at least k

times in the input. The third query is to compute the minimum position of a suf-
fix in the subtree of internal nodes, which is useful for computing the Lempel-Ziv
decomposition of a string. These computations only require some basic parallel
operations and are fast compared to the suffix array and LCP construction times.

The experiments also analyze the Cartesian tree algorithm when used as part
of code to generate a suffix tree from the original string. This code is compared to
the ANSV-based algorithm described in the previous paragraph and to the fastest
existing sequential implementation of suffix trees. The experiments show that the
Cartesian tree-based algorithm is always faster than the ANSV-based algorithm. The
algorithm is competitive with the sequential code on a single thread, and achieves
good speedup on 40 cores. The chapter presents timings for searching multiple
strings in the suffix trees constructed using the algorithm developed in this chapter.
On one thread, the search times are always faster than searching with the sequential
suffix tree and are an order of magnitude faster on 40 cores using hyper-threading.

11.2 Preliminaries
This chapter uses the Patricia tree and suffix tree, which are defined in Section 2.6.3,
and assumes an integer alphabet � ⊆ [n] where n is the total number of characters.
The Patricia tree and suffix tree are assumed to support the following queries on a
node in constant expected work: finding the child edge based on the first character
of the edge, finding the first child, finding the next and previous sibling in the
character order, and finding the parent. If the alphabet size is constant, then all of
these operations can easily be implemented in constant worst-case work.

A Cartesian tree [Vuillemin 1980] on a sequence of elements taken from a total
order is a binary tree that satisfies two properties: (1) heap order on values, i.e., a
node has an equal or lesser value than any of its descendants, and (2) an in-order
traversal of the tree defines the sequence order. If the elements in the sequence
are distinct then the tree is unique, and otherwise it might not be. When elements
are not distinct, a connected component of equal value nodes in a Cartesian tree is



11.3 Parallel Cartesian Trees 295

referred to as a cluster. A multiway Cartesian tree is derived from a Cartesian tree
by contracting each cluster into a single node while maintaining the order of the
children. A multiway Cartesian tree of a sequence is always unique.

Let LCP(si , sj) be the length of the longest common prefix of Si and Sj . Given
a sorted sequence of strings S = [S1, . . . , Sn], if the string lengths are interleaved
with the length of their longest common prefixes (i.e., [| S1 |, LCP(S1, S2), | S2 |, . . . ,
LCP(Sn−1, Sn), | Sn |]), then the corresponding multiway Cartesian tree has the struc-
ture of the Patricia tree for S. The Patricia tree can be generated by adding strings
to the edges, which is easy to do—e.g., for a node with value v = LCP(Si , Si+1) and
parent with value v′, the edge corresponds to the substring Si[v

′ + 1, . . . , v]. As a
special case, interleaving a suffix array with its lcp values for a string S and gener-
ating the multiway Cartesian tree gives the suffix tree structure for S. Adding the
nodes to a hash table to allow for efficient downward traversals completes the suffix
tree construction.

11.3 Parallel Cartesian Trees
This section develops a work-efficient parallel divide-and-conquer algorithm for
constructing a Cartesian tree. The algorithm works recursively by splitting the input
array A into two subarrays, generating the Cartesian tree for each subarray, and
then merging the results into a Cartesian tree for A. Define the right-spine (left-
spine) of a tree to consist of all nodes on the path from the root to the rightmost
(leftmost) node of the tree. The merge works by merging the right-spine of the left
tree and the left-spine of the right tree based on the value stored at each node. This
algorithm is similar to the O(n log n) work divide-and-conquer suffix array to suffix
tree algorithm of Iliopoulos and Rytter [2004], but the most important difference
is that our algorithm only looks at the nodes on the spines at or deeper than the
deeper of the two roots and the fully parallel version of the algorithm developed in
this chapter uses trees instead of arrays to represent the spines. This leads to the
O(n) work bound. In addition, Iliopoulos and Rytter’s algorithm works directly on
the suffix array rather than solving the Cartesian tree problem so the specifics are
different.

Two versions of the algorithm are described: a partially parallel version of this
algorithm (Algorithm 1a) and a fully parallel version (Algorithm 1b). Algorithm 1a
is very simple, and takes up to O(min(d log n, n)) depth, where d is the depth of
the resulting tree, although for most inputs it takes significantly less depth (e.g.,
for the sequence [0, 1, . . . , n − 1] it takes O(log n) depth even though the resulting
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1 struct node { node* parent; int value; };

2

3 void merge(node* left, node* right) {

4 node* head;

5 if (left->value > right->value) {

6 head = left; left = left->parent;}

7 else { head = right; right= right->parent; }

8

9 while(1) {

10 if (left == NULL) { head->parent = right; break; }

11 if (right == NULL) { head->parent = left; break; }

12 if (left->value > right->value) {

13 head->parent = left; left = left->parent; }

14 else { head->parent = right; right = right->parent; }

15 head = head->parent; }}

16

17 void cartesianTree(node* Nodes, int n) {

18 if (n < 2) return;

19 cilk_spawn cartesianTree(Nodes, n/2);

20 cartesianTree(Nodes+n/2, n-n/2);

21 cilk_sync;

22 merge(Nodes+n/2-1, Nodes+n/2); }

Figure 11.1 C++ code for Algorithm 1a for constructing a Cartesian tree.

tree has depth n). The algorithm only needs to maintain parent pointers for the
nodes in the Cartesian tree. The complete C++ code is provided in Figure 11.1 and
line numbers from it will be referenced throughout our description.

The algorithm takes as input an array of n elements (Nodes) and recursively splits
the array into two halves (Lines 19–21), creates a Cartesian tree for each half, and
then merges them into a single Cartesian tree (Line 22). For the merge (Lines 3–15),
the algorithm combines the right spine of the left subtree with the left spine of the
right subtree (see Figure 11.2). The right (left) spine of the left (right) subtree can
be accessed by following parent pointers from the rightmost (leftmost) node of the
left (right) subtree. The leftmost and rightmost nodes of a tree are simply the first
and last elements in the input array of nodes. Note that once the merge reaches the
deeper of the two roots, it stops and needs not process the remaining nodes on the
other spine. The code in Figure 11.1 does not keep child pointers since they are not
needed for the experiments, but it is easy to add a left and right child pointer and
maintain them.
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Figure 11.2 Merging two spines of Cartesian trees. Thick lines represent the spines of the resulting
tree; dashed lines represent edges that existed before the merge but not after the merge;
dotted edges represent an arbitrary number of nodes; all non-dashed lines represent
edges in the resulting tree.

Theorem 11.1 Algorithm 1a produces a Cartesian tree on its input array.

Proof The proof shows that at every step in the algorithm, both the heap and the in-order
properties of the Cartesian trees are maintained. At the base case, a Cartesian tree
of one node trivially satisfies the two properties. During a merge, the heap property
is maintained because a node’s parent pointer only changes to point to a node with
equal or lesser value. Consider modifications to the left tree. Only the right children
of the right spine can be changed. Any new right children of a node come from
the right tree, and hence correspond to elements later in the original sequence.
An in-order traversal will correctly traverse these new children of a node after the
node itself. A symmetric argument holds for nodes on the left spine of the right
tree. Furthermore, the order within each of the two trees is maintained since any
node that is a descendant on the right (left) in the trees before merging remains a
descendant on the right (left) after the merge.
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Theorem 11.2 Algorithm 1a for constructing a Cartesian tree requires O(n) work, O(min(d log n,
n)) depth, and O(n) space.

Proof The following definitions are used to help with proving the complexity bounds of
the algorithm: A node in a tree is left-protected if it does not appear on the left spine
of its tree, and a node is right-protected if it does not appear on the right spine of
its tree. A node is protected if it is both left-protected and right-protected.

In the algorithm, once a node becomes protected, it will always be protected
and will never have to be looked at again since the algorithm only ever processes
the left and right spines of a tree. The proof shows that during a merge, all but two
of the nodes that are looked at become protected, and the cost of processing those
two nodes is charged to the merge itself. Call the last node looked at on the right
spine of the left tree lastnodeLeft and the last node looked at on the left spine of
the right tree lastnodeRight (see Figure 11.2).

All nodes that are looked at, except for lastnodeLeft and lastnodeRight will be
left-protected by lastnodeLeft. This is because those nodes become either descen-
dants of the right child of lastnodeLeft (when lastnodeLeft is below lastnodeRight)
or descendants of lastnodeRight (when lastnodeRight is below lastnodeLeft). A
symmetric argument holds for nodes being right-protected. Therefore, all nodes
looked at, except for lastnodeLeft and lastnodeRight, become protected after this
sequence of operations. The cost for processing lastnodeLeft and lastnodeRight is
charged to the merge itself.

Other than when a node appears as lastnodeRight or lastnodeLeft, it is only
looked at once and then becomes protected. Therefore, the total number of nodes
looked at is 2n − 2 for lastnodeRight or lastnodeLeft on the n − 1 merges, and at
most n for the nodes that become protected for a total work of O(n).

Although Algorithm 1a makes parallel recursive calls, it uses a sequential merge
routine. In the worst case, this has depth equal to the depth of the tree per level of
recursion. As there are O(log n) levels of recursion, the depth is O(min(d log n, n)).

Since each node only maintains a constant amount of data, the space required
is O(n).

The algorithm can be converted to an PRAM algorithm by iterating over the levels
of the recursion tree synchronously. Since each level evenly divides the problem
size in half, the algorithm can easily assign cores to the sub-problems in constant
work. The parallel recursive calls are on different parts of the data, so no concurrent
reads/writes are needed, and hence it runs on the EREW PRAM.

A fully parallel version of the algorithm, referred to as Algorithm 1b, is described
below. The algorithm maintains binary search trees for each spine, and substitutes
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the sequential merge with a parallel merge. The algorithm will use split and join
operations on the spines. A split goes down the spine tree and cuts it at a specified
value v so that all values less or equal to v are in one tree and values greater than
v are in another tree. A join takes two trees such that all values in the second are
greater than or equal to the largest value in the first and joins them into one. Both
operations can run in depth proportional to the depth of the spine tree and the join
adds at most one to the height of the larger of the two trees.

Without loss of generality, assume that the root of the right Cartesian tree has
a smaller value than the root of the left Cartesian tree (as in Figure 11.2). For the
left tree, the end point of the merge will be its root. To find where to stop merging
on the right tree, the algorithm searches the left-spine of the right tree for the root
value of the left tree and splits the spine at that point. Now it merges the whole
right-spine of the left tree and the deeper portion of the left-spine of the right tree.
After the merge, these two parts of the spine can be discarded since their nodes
have become protected. Finally, the algorithm joins the shallower portion of the
left spine of the right tree with the left spine of the left tree to form the new left
spine. The right-spine of the resulting Cartesian tree is the same as that of the right
Cartesian tree before the merge.

Theorem 11.3 Algorithm 1b for constructing a Cartesian tree requires O(n) work, O(log2 n) depth,
and O(n) space.

Proof The trees used to represent the spines are never deeper than O(log n) since each
merge does only one join, which adds at most one to the depth. All splits and joins
therefore take O(log n) depth. The merge can be done using a parallel merging
algorithm that runs in O(log n) depth and O(n) work [Hagerup and Rüb 1989],
where n is the number of elements being merged. The depth of Algorithm 1b’s
recursion is O(log n), which gives a O(log2 n) depth bound. The O(n) work bound
follows from a similar analysis to that of Algorithm 1a, with the exception that splits
and joins in the spine cost an extra O(log n) per merge. The extra cost follows a
recurrence of W(n) = 2W(n/2) + O(log n), which solves to O(n). The trees on the
spines take linear space so the O(n) space bound still holds.

The parallel merging algorithm runs on the EREW PRAM so this algorithm can
be mapped onto the EREW PRAM. Processor allocation on each level of recursion
is straightforward to do within O(log n) depth.

Lemma 11.1 The outputs of Algorithm 1a and Algorithm 1b can be used to construct a multi-
way Cartesian tree in O(n) work and space. This requires O(d) depth using path
compression or O(log n) depth using tree contraction.
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Proof Path compression can be used to compress all clusters of the same value into the
root of the cluster, which can then be used as the “representative” of the cluster. All
parent pointers to nodes in a cluster will now point to the “representative” of that
cluster. This is done sequentially and requires linear work and O(d) depth. Path
compression can also be substituted with a parallel tree contraction algorithm,
which requires O(n) work and O(log n) depth [Reid-Miller et al. 1993].

Both path compression and tree contraction can be done on the EREW PRAM.
For non-constant sized alphabets if one wants to search in the tree efficiently

(O(1) expected depth per edge), the edges need to be inserted into a hash table,
which can be done in O(log n) depth and O(n) work (both with high probabil-
ity) [Matias and Vishkin 1991], and the process can be done on a CRCW PRAM.

Corollary 11.1 Given a suffix array for a string over the alphabet [n] and the longest common
prefixes between adjacent elements, a suffix tree can be generated in hash table
format with Algorithm 1b, tree contraction and hash table insertion using O(n)

work and space, and O(log2 n) depth with high probability.

Proof This follows directly from Theorem 11.3, Lemma 11.1, and the bounds for hash
table insertion.

11.4 Cartesian Trees and the ANSV Problem
The all nearest smaller values (ANSV) problem is defined as follows: for each el-
ement in a sequence of elements from a total ordering, find the closest smaller
element to the left of it and the closest smaller element to the right of it. This sec-
tion augments the ANSV-based Cartesian tree algorithm of Berkman et al. [1993]
to support multiway Cartesian trees, and also shows how to use Cartesian trees to
solve the ANSV problem.

The algorithm of Berkman et al. [1993] solves the ANSV problem in O(n) work
and O(log log n) depth on the CRCW PRAM. The ANSV can then be used to generate
a Cartesian tree by noting that the parent of a node has to be the nearest smaller
value in one of the two directions (in particular, the larger of the two nearest smaller
values is the parent). To convert their Cartesian tree to the multiway Cartesian tree,
one needs to group all nodes pointing to the same parent and coming from the
same direction together. If I (n) is the best depth bound for stably sorting integers
from [n] using linear space and work, then the grouping can be done in linear work
and O(I (n) + log log n) depth by sorting on the parent ID numbers of the nodes.
Stability is important since a suffix tree needs to maintain the relative order among
the children of a node.



11.4 Cartesian Trees and the ANSV Problem 301

Theorem 11.4 A multiway Cartesian tree on an array of elements can be generated in O(n) work
and space, and O(I (n) + log log n) depth.

Proof This follows from the bounds of the ANSV algorithm and of integer sorting.

It is not currently known whether I (n) is polylogarithmic so at present this
result seems weaker than the result from the previous section. The experimental
section (Section 11.5) compares the algorithms on various inputs. In a related
work, Iliopoulos and Rytter [2004] present an O(n log n)-work polylogarithmic-
depth algorithm based on a variant of ANSV.

11.4.1 Cartesian Tree to ANSV
This section describes a method for obtaining the ANSVs from a Cartesian tree in
parallel using tree contraction. Note that for any node in the Cartesian tree, both
of its nearest smaller neighbors (if they exist) must be on the path from the node
to the root (one neighbor is trivially the node’s parent). First, a simple linear-work
algorithm for the task that takes depth equal to the depth of the Cartesian tree is
presented. Let d denote the depth of the tree, with the root being at depth 1. The
following algorithm returns the left nearest neighbors of all nodes. A symmetric
algorithm returns the right nearest neighbors.

1. For every node, maintain two variables, node.index which is set to the node’s
index in the sequence corresponding to the in-order traversal of the Cartesian
tree and never changed, and node.inherited, which is initialized to null.

2. For each level i of the tree from 1 to d: in parallel, for all nodes at level i:
pass node.inherited to its left child and node.index to its right child. The child
stores the passed value in its inherited variable.

3. For all nodes in parallel: if node.inherited �= null, then node.inherited denotes
the index of the node’s left smaller neighbor. Otherwise, it does not have a
left smaller neighbor.

By using parallel tree contraction [Reid-Miller et al. 1993], a linear-work and
polylogarithmic-depth algorithm for computing the ANSVs can be obtained, as
described in the following theorem.

Theorem 11.5 There is an linear-work algorithm for computing the ANSVs of a sequence using
O(log2 n) depth.

Proof The algorithm first computes the binary Cartesian tree of the input sequence. Then
it performs tree contraction on the resulting Cartesian tree. The following describes
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tree contraction operations for finding the smaller left neighbors; the procedure for
finding the smaller right neighbors is symmetric. To find the left neighbors, com-
pressing and decompressing the tree for several configurations is described, and
the rest of the configurations have a symmetric argument. For compression, there
are the left-left and right-left configurations. The left-left configuration consists of
three nodes A, B, and C, with B being the left child of A and C being the left child
of B. For this configuration, B is the compressed node, and during decompression
B takes the inherited value of A and passes its inherited value to C. The right-left
configuration consists of three nodes A, B, and C with B being the right child of A

and C being the left child of B. For this configuration, B is again the compressed
node, and during decompression takes the index value of A and passes its inherited
value to C. The right-right and left-right configurations are defined similarly and
have symmetric properties. A raked left leaf takes the inherited value of its parent
when it is unraked, and a raked right leaf takes the index value of its parent when it
is unraked. Note that values are only passed during decompression and unraking,
and not during compression and raking. Tree contraction requires O(n) work and
O(log n) depth. Combined with the complexity bounds for generating the Carte-
sian tree of Theorem 11.3, this gives us a O(n) work and O(log2 n) depth algorithm
for computing the all nearest smaller values.

As tree contraction can be done on the EREW PRAM, this algorithm can be
mapped to the EREW PRAM. Although the depth complexity is higher, this algo-
rithm is much simpler than the linear-work algorithms of Berkman et al. [1993].

11.5 Experiments
The goal of the experiments is to analyze the efficiency of our parallel Cartesian
tree algorithm both on its own and also as part of code to generate suffix trees. This
section describes three applications of the Cartesian tree for answering queries on
strings. In addition, the experiments compare the Cartesian tree-based suffix tree
algorithm to the ANSV-based algorithm and to the best available sequential code for
suffix trees. In the discussion, the two variants of the main algorithm (Section 11.3)
are referred to as Algorithm 1a and Algorithm 1b, and the ANSV-based algorithm
is referred to as Algorithm 2. For the experiments, in addition to implementing
Algorithm 1a and a variant of Algorithm 2, we implemented parallel code for
computing suffix arrays and their corresponding lcp values, and parallel code for
inserting the tree nodes into a hash table to allow for efficient search (these codes
are now part of the Problem Based Benchmark Suite). All of the experiments were
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performed on the 40-core Intel machine with two-way hyper-threading, described
in Section 2.7, using a variety of real-world and artificial strings.

Auxiliary Code
To generate the suffix array and LCP array, we implemented a parallel version of
the skew algorithm [Kärkkäinen and Sanders 2003, Kärkkäinen et al. 2006]. The
implementation uses a parallel radix sort, requiring O(n/ε) work and O((1/ε)nε)

depth for some constant 0 < ε < 1. The LCP code is based on an O(n log n) work
solution for the range-minima problem instead of the optimal O(n) work solution.
The O(n log n) work solution creates a table with log n levels, where the i’th level
of the table stores the minimum value of every interval of length 2i in the sequence
(computed in parallel from the i − 1’st level). We did implement a parallel version
of the O(n) work range-minima algorithm by [Fischer and Heun 2006], but found
that it was slower. Due to better locality in the parallel radix sort than the sequential
one, our code on a single thread is actually faster than a version of [Kärkkäinen and
Sanders 2003, Kärkkäinen et al. 2006] implemented in their article and available on-
line, even though that version does not compute the LCP array. Our code achieves a
9–27-fold speedup on a 40 core machine. Compared to the parallel implementation
of suffix arrays by [Kulla and Sanders 2007], our times are faster on 40 cores than
the 64-core numbers reported by them (10.8 s vs. 37.8 s on 522 million characters),
although their clock speed is slower than ours and it is a different system so it is
hard to compare directly. Mori provides a parallel suffix array implementation using
OpenMP [Mori 2010a], but we found it to be slower than their corresponding se-
quential implementation. Our parallel implementation significantly outperforms
that of Mori.

Note that recent sequential suffix array codes are faster than ours running on one
thread [Puglisi et al. 2007, Mori 2010a], but most of them do not compute the LCP
array (though these could be computed sequentially in a post-processing step [Kasai
et al. 2001, Kärkkäinen et al. 2009], or in parallel as discussed in Chapter 12). For
real-world texts, those programs are faster than our code due to many optimizations
that these programs make. We expect that many of these optimizations can be
parallelized and could significantly improve the performance of parallel suffix array
construction, but this was not the purpose of our studies. One advantage of basing
suffix tree code on suffix array code, however, is that improvements made to parallel
suffix arrays will improve the performance of the suffix tree code as well.

We use the parallel hash table described in Chapter 5 to allow for fast search
in the suffix tree. Furthermore, we optimized the code so that most entries near
leaves of the tree are not inserted into the hash table and a linear search is used
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instead. In particular, since the Cartesian tree code stores the tree nodes as an in-
order traversal of the suffixes of the suffix tree, a child and parent near the leaf are
likely to be near each other in this array. In the code, if the child is within some
constant c (16 in the experiments) in the array, then we do not store it in the hash
table and instead use a linear search to find it.

For Algorithm 2, we use an optimized O(n log n) work and O(log n) depth ANSV
algorithm, which was part of the code of [Shun and Zhao 2013], instead of the much
more complicated work-optimal version of [Berkman et al. 1993].

Experimental Setup
The experiments were performed on the 40-core Intel machine (with two-way hyper-
threading) described in Section 2.7. The parallel programs are written using Cilk
Plus and compiled using Intel’s icpc compiler. The sequential programs are com-
piled using g++.

For comparison to sequential suffix tree code, the publicly-available code of
[Tsadok and Yona 2003] and Kurtz’s code from the MUMmer project [Delcher et
al. 2002, Kurtz 1999] were used. Only the results of Kurtz are reported because they
are superior to those of [Tsadok and Yona 2003] for all of the input files used. Kurtz’s
code is based on McCreight’s suffix tree construction algorithm [McCreight 1976]—
it is inherently sequential and completely different from the algorithms developed
in this chapter. Other researchers have experimented with building suffix trees in
parallel [Ghoting and Makarychev 2009, Tsirogiannis and Koudas 2010] and the
running times of the algorithm in this chapter appear significantly faster than
those reported in the corresponding papers, even after accounting for differences
in machine specifications. Iliopoulos and Rytter describe how to transform a suffix
array into a suffix tree in parallel [Iliopoulos and Rytter 2004] in O(n log n) work,
but they do not have an implementation available. More recent parallel disk-based
suffix tree implementations [Mansour et al. 2011, Comin and Farreras 2013] will
be compared against later in this section.

The experiments use a variety of strings available online (http://people.unipmn
.it/manzini/lightweight/corpus/), a Microsoft Word document (thesaurus.doc),
XML code from Wikipedia samples (wikisamp*.xml), the human genome (http://
webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz) (HG18.fasta), and artificial inputs.
The artificial inputs are all of size 108 and include an all identical string (100Miden-
tical), random strings with an alphabet size of 10 (100Mrandom), and a string with
an alphabet size of 2 where every 104’th position contains one character and all
other positions contain the other character (100Msqrtn). The inputs also include
two files of integers, one with random integers ranging from 1 to 104 (100Mrandom-

http://people.unipmn.it/manzini/lightweight/corpus/
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
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Figure 11.3 Speedup of the parallel Cartesian tree algorithm relative to the stack-based sequential
algorithm on a 40 core machine. “40h” indicates 80 hyper-threads.

Ints10K), and one with random integers ranging from 1 to 231 (100MrandomIntsI-
max), to show that the algorithms run efficiently on arbitrary integer alphabets. See
Table 11.2 for all of the input sizes.

Cartesian Trees
First, the experiments compare the Cartesian tree algorithm from Algorithm 1 to
the linear-work stack-based sequential algorithm of [Gabow et al. 1984]. There is
also a linear-work sequential algorithm based on ANSVs, but we verified that the
stack-based algorithm outperforms the ANSV one so only times for the former are
reported. Figure 11.3 shows the speedup of the parallel Cartesian tree algorithm
with respect to the sequential stack-based algorithm on the interleaved SA and
LCP arrays of various inputs. The parallel algorithm outperforms the sequential
algorithm with 4 or more cores, and achieves about 35× speedup (about 12×
speedup with respect to the sequential algorithm) on 40 cores. The performance is
consistent across the different inputs.

Applications of Cartesian Trees
The Cartesian tree built on the interleaved SA and LCP arrays of the string, which
is essentially a suffix tree without the downward pointers, is able to answer cer-
tain string queries by performing bottom-up traversals. Abouelhoda et al. [2004]
show how to perform certain suffix tree queries using just SA and LCP. Their se-
quential stack-based method essentially computes the ANSVs on LCP to generate
the tree structure, similar to the classic sequential stack-based ANSV algorithm.
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Table 11.1 Times (seconds) for computing number of leaves per subtree on a 40 core machine
with hyper-threading

Longest Leftmost
Cartesian Tree Leaf Counts Substring (k = 10) Suffix Positions

Text T40h T1 SU T40h T1 SU T40h T1 SU T40h T1 SU

100Midentical 0.23 6.61 28.7 1.7 3.27 1.92 1.69 3.61 2.14 1.73 3.37 1.95

etext99 0.26 9.2 35.4 0.12 4.77 39.8 0.14 5.19 37.1 0.12 4.87 40.6

rctail96 0.28 9.58 34.2 0.15 5.1 34 0.16 5.71 35.7 0.14 5.22 37.3

rfc 0.28 9.78 34.9 0.15 5.16 34.4 0.16 5.66 35.4 0.14 5.27 37.6

w3c2 0.26 9.14 35.2 0.13 4.37 33.6 0.14 4.83 34.4 0.13 4.47 34.4

wikisamp8.xml 0.25 8.52 34.1 0.12 4.48 37.3 0.13 4.99 38.4 0.12 4.58 38.2

T40h is the time for our parallel algorithm on 40 cores (80 hyper-threads), T1 is the single-thread
time, and SU is the speedup computed as T1/T40h.

Berkman et al. [1993] showed how to parallelize the ANSV algorithm, which Sec-
tion 11.4 generalizes. At the end of the day, however, the experiments in this section
confirmed that building the Cartesian tree directly is more efficient than using the
ANSV method, at least in parallel (see the “Cartesian tree” timings in Figure 11.5
vs. the “ANSV,” “Compute parents,” plus “Create internal nodes” timings in Fig-
ure 11.6). As with the Abouelhoda et al. method, building the Cartesian tree is so
fast that it can be re-computed per bottom-up computation, only requiring one
to store the SA and LCP arrays between computations. For the experiments, the
times both for constructing the Cartesian tree and for answering the queries (see
Table 11.1) are reported. The times include parallel times on 40 cores with two-way
hyper-threading (T40h), times using a single thread (T1), and the parallel speedup
(SU). The code for the Abouelhoda et al. method is not available online so timings
could not be obtained.

The first application is to use the Cartesian tree on the interleaved SA and LCP
array of a string to compute for each internal node the number of leaf nodes in
its subtree. This information can be used to answer queries related to repeated
substrings, such as the number of repeated substrings of a given length that appear
at least x times, or the number of repeated substrings of length at least y.

To compute the number of leaves contained in the subtree of each internal node,
the Cartesian tree is processed in a bottom-up manner where initially all of the
leaves are active and all active nodes pass the number of leaves in its subtree to
its parent, which records the sum of these values it receives. Once a node receives
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values from all of its children, it becomes active and passes its value to its parent.
This process is work-efficient but requires depth proportional to the height of the
tree. The times for this query are shown in the “Leaf counts” column in Table 11.1.

The second application is to use the Cartesian tree to compute the longest
substring which appears at least k times in the text. To answer this query, the
previous computation is modified to return the deepest node in the tree which
has a subtree of at least size k. The times for this query for k = 10 are shown in the
“Longest substring (k = 10)” column in Table 11.1.

The final application is to use the Cartesian tree on the interleaved SA and LCP
array of a string to compute the leftmost starting position of any suffix in the subtree
of each node. This is useful for computing the Lempel-Ziv decomposition [Ziv and
Lempel 1977] of a string (studied in Chapter 13), as described in [Abouelhoda et al.
2004]. The code for doing this is very similar to computing the number of leaves per
subtree. Instead of summing the children’s values, each parent takes the minimum
value of its children and leaves start with a value equal to the starting position of
their corresponding suffix in the original string. The times for this query are shown
in the “Leftmost suffix positions” column in Table 11.1.

For most real-world strings, the height of the Cartesian tree of the interleaved SA
and LCP arrays is not very large and these three applications get good speedup. As
expected this process does not get much speedup for the all identical string, whose
tree has linear height (the slight speedup comes from the pre-processing and post-
processing steps). For the real-world strings, the cost of building the Cartesian tree
is just about twice the cost of the query, which makes it reasonable to store just the
SA and LCP arrays and build the Cartesian tree on-the-fly when performing a query.
Other queries, such as finding maximal repeated pairs [Abouelhoda et al. 2004] and
finding the longest common substring of two strings [Gusfield 1997] can also be
computed by a bottom-up traversal of the Cartesian tree.

Suffix Trees
This section evaluates the performance of Algorithms 1a and 2 used with paral-
lel suffix array and hash table code to generate suffix trees on strings. Table 11.2
presents the runtimes for generating the suffix tree based on Algorithm 1a, Al-
gorithm 2, and Kurtz’s code. For the implementations based on Algorithms 1a
and 2, both sequential (single thread) running times (T1) and parallel running times
on 40 cores with hyper-threading (T40h) are reported. The parallel speedup (SU) is
computed as T1/T40h. The experiments show that the speedup ranges from 14–24.
Compared to Kurtz’s code, the parallel code developed in this chapter running se-
quentially is between 2.1× faster and 5.3× slower. In parallel, however, the code
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Table 11.2 Comparison of running times (seconds) of Kurtz’s sequential algorithm and our
algorithms for suffix tree construction on different inputs on a 40 core machine
with hyper-threading

Size Kurtz Alg. 1a Alg. 2

Text (MB) T40h T1 SU T40h T1 SU

100Midentical 100 9.53 2.299 41.7 18.14 2.812 44.75 15.91

100Mrandom 100 168.9 3.352 80.6 24.05 3.971 84.2 21.2

100Msqrtn 100 14.52 3.518 55.2 15.69 4.023 57.97 14.41

100MrandomInts10K 100 — 5.24 81.1 15.48 5.774 84.8 14.69

100MrandomIntsImax 100 — 3.88 61.3 15.8 4.141 64.1 15.48

chr22.dna 34.6 24.5 1.469 32.62 22.21 1.728 34.45 19.94

etext99 105 119 4.977 120.3 24.17 5.75 125 21.74

howto 39.4 27.31 1.785 41.02 22.98 2.062 42.87 20.79

jdk13c 69.7 14.69 3.278 78.22 23.86 3.833 81.73 21.33

rctail96 115 55.13 5.61 133.2 23.74 6.34 138.9 21.91

rfc 116 71.77 5.619 133 23.67 6.476 139.2 21.49

sprot34.dat 110 75.11 5.299 126.2 23.82 6.048 131.6 21.76

thesaurus.doc 11.2 8.61 0.485 7.677 15.83 0.564 8.19 14.52

w3c2 104 28.44 5.24 121.2 23.13 5.913 126.1 21.33

wikisamp8.xml 100 31.48 4.808 117.2 24.37 5.612 124.8 22.24

wikisamp9.xml 1000 — 53 1280 24.15 61.88 1339 21.64

HG18.fasta 3083 — 168 3402 20.25 — a — a — a

T40h is the time using 40 cores (80 hyper-threads) and T1 is the time using a single thread. SU is the
speedup computed as T1/T40h.

a. Times for Algorithm 2 on HG18.fasta are not reported since for this file, the algorithm uses more
memory than the machine has available.

is always faster than Kurtz’s code and up to 50.4× faster. Comparatively, Kurtz’s
code performs best on strings with lots of regularity (e.g., the all identical string).
This is because the incremental sequential algorithms based on McCreight’s algo-
rithm are particularly efficient on these strings. The runtime for the parallel code
is affected much less by the type of input string. Kurtz’s code only supports reading
in text files with fewer than 537 million characters, so timings for wikisamp9.xml
(1 billion characters) and HG18.fasta (3.08 GB) could not be obtained. Also since
the code reads the input files as ASCII (alphabet size of 128), timings for integer
files with larger alphabet sizes could not be obtained. The speedup of Algorithm 1a
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Figure 11.4 Speedup of Algorithm 1a relative to Kurtz’s sequential algorithm on a 40 core machine.
“40h” indicates 80 hyper-threads.

relative to Kurtz’s sequential algorithm on various inputs is shown in Figure 11.4.
The speedup varies widely based on the input file, with as much as 50.4× speedup
for 100Mrandom and as little as 5.4× speedup for w3c2.

Figures 11.5 and 11.6 show the breakdown of the times for the implementations
of Algorithms 1a and 2, respectively, when run on 40 cores with hyper-threading. In
Figure 11.5, “Cartesian tree” refers to the time to construct the binary Cartesian tree
and “Grouping internal nodes” refers to the time to convert to a multiway Cartesian
tree. In Figure 11.6, “ANSV” is the time to compute the nearest smaller neighbors in
the LCP array, “Compute parents” is the time to select a smaller neighbor to be the
parent, and “Create internal nodes” does an integer sort to create the internal nodes
of the tree. In both figures, “Hash table insertion” is the time to create a hash table
for downward traversal, and completes the suffix tree construction. Figure 11.7
shows the breakdown of the time for generating the suffix array and LCP array.
For Algorithm 1a, more than 80% of the total time is spent in generating the suffix
array, less than 10% in inserting into the hash table, and less than 5% on generating
the Cartesian tree from the suffix array (i.e., the code shown in Figure 11.1). For
Algorithm 2, note that the ANSV portion takes less than 2% of the total time even
though it is an O(n log n) work algorithm. Improvements to the suffix array or hash
table code will likely lead to an improvement in the overall code performance.
Figure 11.8 shows the performance of Algorithm 1a in terms of characters per
second on random character strings of varying sizes. Observe that the ratio remains
nearly constant as the input size increases, indicating good scalability. While the
implementation of Algorithm 1a is not truly parallel, it is incredibly straightforward
and performs better than Algorithm 2.
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Figure 11.5 Breakdown of running times for converting a suffix array to suffix tree using Algorithm
1a on 40 cores with hyper-threading.

Figure 11.6 Breakdown of running times for the suffix tree portion of Algorithm 2 on 40 cores with
hyper-threading.

Independent of this work, Mansour et al. developed a disk-based parallel suffix
tree algorithm [Mansour et al. 2011] that works for input strings that do not fit in
main memory. Algorithm 1a from this chapter is faster than their reported num-
bers on a per-core basis—on the human genome (3.08 GB), our algorithm takes
168 s using 40 cores while the algorithm of Mansour et al. takes 19 min on 8 cores
and 11.3 min on 16 cores. However, their algorithm is disk-based and requires less
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Figure 11.7 Breakdown of running times for the suffix array portion of Algorithms 1a and 2 on 40
cores with hyper-threading.

Figure 11.8 Performance (characters per second) of Algorithm 1a on random character strings of
varying sizes on 40 cores with hyper-threading.

memory than ours. To account for machine differences, we ran their code on the
human genome using all 80 hyper-threads on our 40-core machine, allowing each
thread to use 2 GB of memory (for a total of 160 GB of memory, more memory than
required for our algorithm on the human genome). The running time was approxi-
mately 400 s, more than a factor of 2 higher than the running time of our algorithm.
A comparison of the running times of our algorithm with their algorithm on the
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Figure 11.9 Parallel running times of suffix tree construction on the human genome. * Reported
time from the literature [Mansour et al. 2011, Comin and Farreras 2013]. ** Code
from [Mansour et al. 2011] run on our 40 core machine with a memory budget of
160 GB.

human genome is shown in Figure 11.9. It is worth noting that their algorithm re-
quires super-linear work and depth in the worst case. More recently, Comin and
Farreras describe a parallel disk-based algorithm implemented using MPI [Comin
and Farreras 2013]. For the human genome, they report a running time of 7 min
using 172 processors, which is slower than our algorithm using 40 cores (see Fig-
ure 11.9). However, their algorithm again is disk-based, and their experiments were
done on older hardware. Again, the algorithm takes super-linear work.

Searching the Suffix Tree
Experiments were performed to measure the time for existential queries (search-
ing) on random strings in the suffix trees of several texts constructed using the
code developed in this chapter as well as Kurtz’s code. Times for searches using
Manber and Myer’s suffix array code [Manber and Myers 1993] are also reported,
as Abouelhoda et al. [2004] show that this code (mamy) performs searches more
quickly than Kurtz’s code does. The suffix array code uses the LCP array and an-
swers queries in O(m + log n) time where m is the length of the pattern. For each
text, the experiments search 500,000 random substrings of the text (these should
all be found) and 500,000 random strings (most of these will not be found) with
lengths uniformly distributed from 1–50. For all searches, the starting position in
the text of the search string is reported if found.
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Table 11.3 Comparison of times (seconds) for searching (existential queries) 1,000,000
strings of lengths 1–50 on a 40-core machine with hyper-threading

Alg. 1a Kurtz mamy

Text T40h T1 SU T1 T1

100Mrandom 0.017 0.78 45.88 1.65 1.05

etext99 0.019 0.9 47.37 6.32 1.38

sprot34.dat 0.014 0.681 48.64 3.29 1.3

T40h is the time using 40 cores (80 hyper-threads), T1 is the time using a single thread, and
SU is the speedup computed as T1/T40h.

Existential query times are reported in Table 11.3. Searches done in our code
are on integers, while those done in Kurtz’s code and Myer and Manber’s code
(mamy) are done on characters, giving a slight disadvantage to our code. Both
sequential and parallel search times for our code are reported. The results show
that sequentially, our code performs searches faster than Kurtz’s code (by 2.1–7×)
and mamy (by 1.3–1.9×). Abouelhoda et al. [2004] report being 1.2–1.7× faster than
mamy for searches on strings with small alphabets, but are up to 16× slower than
mamy on larger alphabets. In contrast, the search performance of our code does not
degrade with increasing alphabet size, since we use a hash table to store children
of internal nodes.

The layout of our nodes in memory is in suffix array order, so listing occurrences
can also be done in a cache-friendly manner by scanning the nearby nodes, similar
to mamy.

Space Requirements
Since suffix trees are often constructed on large texts (e.g., the human genome), it is
important to keep the space requirements minimal. As such, there has been related
work on compactly representing suffix trees [Giegerich et al. 2003, Abouelhoda et
al. 2004, Sadakane 2007, Navarro and Mäkinen 2007, Gog and Ohlebusch 2013].
The suffix tree code developed in this chapter uses 3 integers per node (leaf and
internal) and about 5n bytes for the hash table, which totals to about 29n bytes.
This compares to about 12n bytes for Kurtz’s code, which has been optimized for
space [Delcher et al. 2002, Kurtz 1999]. Table 11.4 shows the space requirements
(in bytes) for the different portions and data structures of our implementation.
Further optimization of the space requirements of our implementation is left to
future work.
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Table 11.4 Space requirements for the different components of
Algorithm 1a for suffix tree construction

Component Space (number of bytes)

Computing SA + LCP 32n

SA + LCP data structure 8n

Node initialization 24n

Building Cartesian Tree 16n

Cartesian Tree data structure 16n

Finding roots 16n

Hash table insertion 31n

Suffix Tree data structure 29n



12Parallel Computation
of Longest Common
Prefixes

12.1 Introduction
Suffix arrays [Manber and Myers 1993] along with the corresponding longest com-
mon prefix array (refer to Section 2.6.3 for their definitions) have applications in
many fields, including bioinformatics, information retrieval, and data compres-
sion. Many applications of suffix arrays require the longest common prefix (LCP)
array as well. For example, the lcp values are used for efficient pattern matching
with a suffix array [Manber and Myers 1993], and are used along with the suffix ar-
ray to build a suffix tree [Shun and Blelloch 2014] (as discussed in Chapter 11) or
to simulate suffix tree traversals [Abouelhoda et al. 2004]. The suffix array and its
corresponding LCP array are often preferred over suffix trees for text indexing due
to their lower space requirements [Gusfield 1997]. With the rapid growth in data
sizes, having fast parallel algorithms for suffix arrays and LCP arrays are particu-
larly important. While there exists algorithms that compute both the suffix array
and LCP array together, sometimes the suffix array is already available, and it is
beneficial to have a fast algorithm for computing just the LCP array. Furthermore,
separating the computation of SA and LCP allows one to use a fast SA algorithm that
does not compute the lcp values, followed by a fast LCP algorithm. With such a sep-
aration, improvements in either suffix array algorithms or LCP algorithms improve
the overall running time of the SA+LCP computation.

The suffix array and the first algorithm for constructing it were described by
Manber and Myers [1993]. Their sequential algorithm requires O(n log n) work,
and also produces the LCP array. The first linear-work suffix array algorithms were
described independently by Kärkkäinen and Sanders [2003], Ko and Aluru [2005],
and Kim et al. [2003]. Among these, the skew algorithm [Kärkkäinen and Sanders
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2003] (also named DC3 in [Kärkkäinen et al. 2006]) of Kärkkäinen and Sanders can
also compute the LCP array. Fischer [2011] later describes a sequential linear-work
algorithm which computes both the SA and LCP, and is based on a modification of
the sequential linear-work suffix array algorithm of Nong et al. [2009]. In addition,
many superlinear-work suffix array algorithms exist (see, e.g., [Puglisi et al. 2007]),
and some are faster in practice than the linear-work algorithms for certain inputs.

As for sequential standalone LCP algorithms (which compute the LCP array
given the SA as input), a brute-force method is to directly compute the lcp value
between every pair of adjacent suffixes in the SA, requiring quadratic work in the
worst-case. The first linear-work LCP algorithm was described by Kasai et al. [2001].
Kärkkäinen et al. [2009] later describe a linear-work algorithm for computing the
permuted longest common prefix (PLCP) array. The LCP array can easily be com-
puted from the PLCP array, and Kärkkäinen et al. show that their approach is more
efficient in practice than that of Kasai et al. They also discuss another technique
in the same paper based on irreducible lcp values, which requires O(n log n) work.
The details of these algorithms will be described in Section 12.2. Gog and Ohle-
busch [2011] present a more space-efficient sequential LCP algorithm that requires
the Burrows-Wheeler Transform [Burrows and Wheeler 1994] as input and requires
O(n2) work in the worst case. There have also been many papers describing how
to reduce the working space requirements of LCP computation [Beller et al. 2013,
Manzini 2004, Puglisi and Turpin 2008, Kärkkäinen et al. 2009, Sirén 2010, Gog and
Ohlebusch 2011, Bauer et al. 2012, Gog and Ohlebusch 2013] and adapting them to
external memory [Louza et al. 2013, Bingman et al. 2013, Kärkkäinen and Kempa
2014].

As for parallel algorithms, besides simply parallelizing the brute-force method,
there are two existing methods for computing the LCP array. The first method is
to use the skew algorithm of Kärkkäinen and Sanders [2003], which runs in linear
work and O(log2 n) depth with high probability for constant-sized alphabets. Note
that the skew algorithm is not a standalone LCP algorithm as it computes both the
SA and LCP array together. Deo and Keely [2013] present a standalone parallel LCP
algorithm for GPUs that is based on a parallelization of the sequential algorithm
by Kasai et al. [2001].

Note that by first constructing the suffix tree, the lcp values can be obtained by
inspecting the depth of each internal node in the tree (refer to the construction of
the suffix tree described in Chapter 11). However, this approach is less satisfactory
since constructing the suffix tree is less efficient in practice than constructing the
SA and LCP array together. In fact, the fastest shared-memory parallel suffix tree
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algorithm in practice requires first constructing the SA and LCP array, as described
in Chapter 11.

With a fast parallel LCP algorithm, the performance of parallel applications that
require the SA and LCP array can be improved. For example, the fastest shared-
memory parallel algorithms for suffix tree construction (Chapter 11) and Lempel-
Ziv factorization (Chapter 13) require computing the SA and LCP array, which is the
dominant cost of the algorithms (at least 80% of the total running time).

Contributions
This chapter presents several parallel standalone LCP algorithms. The first two
are based on a parallelization of the sequential algorithms of [Kasai et al. 2001]
and [Kärkkäinen et al. 2009] (par-LCP and par-PLCP, respectively), and require
O(n + Klmax) work and O(n/K + lmax) depth for a parameter K ≤ n, where lmax

is the maximum lcp value of the suffixes of the string. The parameter K repre-
sents a trade-off between work and parallelism. This chapter discusses variants of
these algorithms that improve the work to O(n + Klavg) in expectation, where lavg

is the average lcp value. The third algorithm (skew-LCP) is a slight modification of
the skew algorithm [Kärkkäinen and Sanders 2003], and requires linear work and
O(log2 n) depth in the worst case. This chapter also applies Deo and Keely’s par-
allelization idea (dk-LCP) to the sequential algorithm of Kärkkäinen et al. [2009]
(this variant is referred to as dk-PLCP). Finally, a straightforward parallelization of
the irreducible LCP algorithm of Kärkkäinen et al. [2009] (par-iLCP) is presented,
requiring O(n log n) work and O(log n + lmax) depth. Note that the only two paral-
lel algorithms that require O(n) work (i.e., are work-efficient) and polylogarithmic
depth independent of the LCP values of the string are the original skew algorithm
(skew-SA+LCP) and skew-LCP, the variant for standalone LCP computation devel-
oped in this chapter. For reference, a table of the work and depth bounds for LCP
algorithms is provided in Table 12.1, with the new algorithms/variants shown in
bold font.

This chapter presents the first comprehensive evaluation of shared-memory im-
plementations of parallel LCP algorithms, comparing the new algorithms along
with a CPU implementation of the parallel algorithm of Deo and Keely [Deo and
Keely 2013] and an implementation of the original parallel skew algorithm. The par-
allel implementations are also compared with the fastest sequential algorithms for
computing the LCP array. Experiments on a 40-core shared-memory machine using
a variety of real-world and artificial inputs show that par-PLCP usually performs the
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Table 12.1 Work and depth bounds for LCP algorithms

Algorithm Work Depth

klaap-LCP (seq.) O(n) O(n)

kmp-LCP (seq.) O(n) O(n)

naive-LCP O(nlavg) O(lmax)

skew-SA+LCP O(n) w.h.p. O(log2 n) w.h.p.

skew-LCP O(n) O(log2 n)

par-iLCP O(n log n) O(log n + lmax)

par-LCP O(n + Klmax) O(n/K + lmax)

O(n + Klavg) expected O(n/K + lmax)

par-PLCP O(n + Klmax) O(n/K + lmax)

O(n + Klavg) expected O(n/K + lmax)

dk-LCP O(n + Klmax) O(n/K + log n + lmax)

O(n + Klavg) expected O(n/K + log n + lmax)

dk-PLCP O(n + Klmax) O(n/K + log n + lmax)

O(n + Klavg) expected O(n/K + log n + lmax)

n = input size, lmax = maximum lcp value, lavg = average lcp value, and K is an
algorithm parameter, which trades off between work and depth. The new algorithms
are shown in bold.

fastest among the parallel implementations, and outperforms the CPU implemen-
tation of Deo and Keely’s algorithm by a factor of 1.5–2.3 in parallel. Compared to
the fastest sequential LCP algorithm, par-PLCP is 14.4–21.8 times faster on 40 cores
on the real-world inputs. The experiments also show that while the linear-work
and polylogarithmic depth skew-LCP algorithm is 6–11× slower than par-PLCP,
it outperforms the only existing algorithm with the same theoretical guarantees
(skew-SA+LCP) by 1.4–2× in parallel.

12.2 Preliminaries
The SA and LCP arrays are defined in Section 2.6.3. For a suffix array SA, the inverse
array Rank stores the rank of each suffix in SA. In particular, Rank[j ] = i if and only
if SA[i] = j . The permuted longest common prefix array [Kärkkäinen et al. 2009] is
an array PLCP of length n that stores the lcp’s in the order that they appear in S
instead of their order in SA. In other words, PLCP[SA[i]] = LCP[i]. As an example,
Figure 12.1 shows the SA, LCP, and PLCP arrays for the string S = banana$.
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i S[i] SA[i] LCP[i] PLCP[i] suf i

0 b 6 0 0 $

1 a 5 0 3 a$

2 n 3 1 2 ana$

3 a 1 3 1 anana$

4 n 0 0 0 banana$

5 a 4 0 0 na$

6 $ 2 2 0 nana$

Figure 12.1 Example: SA, LCP, and PLCP arrays for S = banana$.

Algorithm 12.1 naive-LCP: naive parallel LCP algorithm

1 procedure NAIVE-LCP(S, SA, n)
2 LCP[0] = 0
3 parfor i = 1 to n − 1 do
4 h = 0
5 j = SA[i]
6 k = SA[i − 1]
7 while S[j + h] == S[k + h] do
8 h = h + 1
9 LCP[i] = h

A standalone LCP algorithm takes as input the string S, its suffix array SA, and
its length n, and outputs the LCP array. Let us now review the existing sequential
and parallel standalone LCP algorithms.

Naive-LCP
The LCP array can be computed in a brute-force manner by comparing every pair
of adjacent suffixes one character at a time from the beginning of the suffixes.
This approach can easily be parallelized as the comparison of each suffix pair is
independent of any other suffix pair. The work is proportional to the sum of all
lcp values, which can be bounded by O(nlavg), where lavg is the average lcp value,
but is quadratic in the worst case. The depth is proportional to the maximum lcp
value, lmax. The pseudocode for this brute-force algorithm, which is referred to as
naive-LCP, is shown in Algorithm 12.1.
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Algorithm 12.2 klaap-LCP: sequential LCP algorithm of Kasai et al. [2001]

1 procedure KLAAP-LCP(S, SA, n)
2 for i = 0 to n − 1 do � Compute Rank array
3 Rank[SA[i]] = i

4 LCP[0] = 0
5 h = 0
6 for i = 0 to n − 1 do
7 if Rank[i] �= 0 then
8 k = SA[Rank[i] − 1]
9 while S[i + h] == S[k + h] do

10 h = h + 1
11 LCP[Rank[i]] = h

12 if h > 0 then
13 h = h − 1

Klaap-LCP
The first linear-work sequential LCP algorithm was described by Kasai et al. [2001],
which is referred to as klaap-LCP. The pseudocode for the klaap-LCP algorithm is
shown in Algorithm 12.2, and is adapted from Kasai et al. [2001]. The klaap-LCP
algorithm uses the observation LCP[Rank[i]] ≥ LCP[Rank[i − 1]] − 1 to reduce re-
dundant computation. The algorithm first computes the Rank array (lines 2–3). It
then uses the Rank array to iterate over the suffixes in the order that they appear
in the original string, keeping a counter h of the lcp value of the current suffix. To
compute the lcp value of the next suffix in original string order, character compar-
isons are performed between the suffix and its previous suffix in SA order, starting
with the (h − 1)’st character of the suffixes. Kasai et al. show that this algorithm
requires at most 2n character comparisons, giving an O(n) work algorithm.

KMP-LCP
Kärkkäinen et al. [2009] describe a modification of the klaap-LCP algorithm, which
writes out the lcp values in a permuted order. This chapter refers to their algorithm
as kmp-LCP. The pseudocode for the algorithm is shown in Algorithm 12.3, and is
adapted from Kärkkäinen et al. [2009]. In particular, it writes the lcp value of the i’th
suffix in S in position i in the PLCP array (line 15). Obtaining the LCP array is done in
a post-processing phase (lines 16–17), by applying the relation LCP[i] = PLCP[SA[i]].
Another difference from klaap-LCP is that in the pre-processing phase (lines 3–4)
kmp-LCP computes the index of the preceding suffix in SA for each suffix (stored
in the � array), whereas klaap-LCP does this in the main loop using the Rank array
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Algorithm 12.3 kmp-LCP: sequential LCP algorithm of Kärkkäinen et al. [2009]

1 procedure KMP-LCP(S, SA, n)
2 �[SA[0]] = −1
3 for i = 1 to n − 1 do � Compute � array
4 �[SA[i]] = SA[i − 1]

5 h = 0
6 for i = 0 to n − 1 do
7 if �[i] == −1 then
8 h = 0
9 else

10 k = �[i]
11 while S[i + h] == S[k + h] do
12 h = h + 1
13 if h > 0 then
14 h = h − 1
15 PLCP[i] = h

16 for i = 0 to n − 1 do � Convert PLCP to LCP
17 LCP[i] = PLCP[SA[i]]

(line 8 of 12.2). This saves a random read to SA, since the read to SA[i − 1] on line
4 of kmp-LCP is already in cache, whereas line 8 of klaap-LCP involves a random
read to SA.

As in klaap-LCP, the number of character comparisons in kmp-LCP is at most
2n, but kmp-LCP was shown to perform faster in practice (by about 50%) than klaap-
LCP due to requiring fewer random reads and writes. The authors of [Kärkkäinen
et al. 2009] discuss space-saving variants which computes only n/q entries of PLCP
but requires O(q) work for a random access. They also discuss certain applications
where the PLCP array may be used instead of the LCP array (see, e.g., [Sadakane
2002]). This chapter assumes that the entire LCP array must be computed.

DK-LCP
Deo and Keely describe a parallel version of klaap-LCP for GPUs [Deo and Keely
2013]. The pseudocode for an implementation of their algorithm is shown in Al-
gorithm 12.4, and is referred to as dk-LCP. Lines 2–3 are the same as in klaap-
LCP, except done in parallel. The algorithm finds all of the indices ij such that
LCP[Rank[ij ]] = 0, which can be done by comparing the first character of each suf-
fix with the first character of its previous suffix in SA, and applying a parallel filter
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Algorithm 12.4 dk-LCP: parallel LCP algorithm of Deo and Keely [2013]

1 procedure DK-LCP(S, SA, n)
2 parfor i = 0 to n − 1 do � Compute Rank array
3 Rank[SA[i]] = i

4 LCP[0] = 0, i0 = 0
5 Compute indices i1 < i2 < . . . < i|�|−1 such that
6 for all 1 ≤ j < |�|, S[ij ] �= S[SA[Rank[ij ]] − 1] � lcp is 0

7 parfor j = 0 to |�| − 1 do � Parallelize over intervals

8 B = � (ij+1−ij )K

n
� � Number of sub-intervals

9 parfor b = 0 to B − 1 do � Parallelize over sub-intervals
10 h = 0
11 start = ij + bn

K

12 end = min {ij + (b+1)n
K

, ij+1}
13 for i = start to end − 1 do � Sequential klaap-LCP
14 if Rank[i] �= 0 then
15 k = SA[Rank[i] − 1]
16 while S[i + h] == S[k + h] do
17 h = h + 1
18 LCP[Rank[i]] = h

19 if h > 0 then
20 h = h − 1

(line 5).1 In particular, all the indices i such that S[i] �= S[SA[Rank[i]] − 1] are marked
and a filter is applied to keep just the marked indices. These indices form inter-
vals [ij , . . . , ij+1 − 1], and since the intervals could be large (especially for strings
from a small alphabet), each interval that is larger than some threshold is split into
sub-intervals, and in parallel the sequential klaap-LCP algorithm is applied to all
sub-intervals (lines 7–20). This chapter’s implementation uses a threshold of �n/K�
for some input parameter K ≤ n (for simplicity, the pseudocode assumes K evenly
divides n, but can be adapted for the general case). Since the first suffix of a sub-
interval may not have an lcp value of 0, there is extra work done relative to klaap-LCP
in computing its lcp value (unlike in klaap-LCP, it does not know the lcp value of
its previous suffix). Hence the total work can no longer be bounded by O(n). An
analysis of the algorithm is provided in Section 12.3. Deo and Keely’s original GPU

1. The number of these indices is at most |�|. Without loss of generality, the pseudocode assumes
that all characters in � appear in the string.
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algorithm also includes a load-balancing component, but this chapter uses a CPU
implementation that leaves load-balancing to the runtime scheduler.

Skew-SA+LCP
The skew algorithm [Kärkkäinen and Sanders 2003] is a linear-work parallel suffix
array construction algorithm, and can be used to also compute the LCP array during
the suffix array construction. The skew algorithm works in four steps:

1. Recursively construct the suffix array SA12 and longest common prefix array
LCP12 of the suffixes starting at positions i in S where i mod 3 �= 0.

2. Use SA12 to construct the suffix array SA0 of the positions i in S where i mod
3 = 0.

3. Merge SA12 and SA0 together to form SA.

4. Use SA and LCP12 to compute the full LCP array.

To perform step (1) it assigns lexicographic integer labels s′
i
∈ [1, . . . , 2n/3] to

the triples S[i , i + 1, i + 2] for i mod 3 �= 0 using a stable integer sort followed by a
prefix sum. If the names are all unique then the array of labels is the suffix array
SA12, and LCP12 contains all 0’s; otherwise, it recurses on the string S′ = s1s2 where
s1 is formed by concatenating all of the labels s′

i
for i mod 3 = 1 in order of i and

s2 is formed by concatenating all of the labels s′
j

for j mod 3 = 2 in order of j . The
authors of [Kärkkäinen and Sanders 2003] show that the stable integer sorting here
can be done in linear work and O(log n) depth w.h.p. for an initial alphabet of
constant size by using techniques from [Rajasekaran and Reif 1989, Hagerup and
Raman 1992].

To perform step (2), the suffixes at positions i where i mod 3 = 0 can be sorted
by sorting the pairs (S[i], suf i+1) using an integer sort, as the suffixes suf i+1 are at
mod 1 positions and hence already in sorted order in SA12 from step (1). The integer
sort requires O(n) work and O(log n) depth w.h.p.

The merge in step (3) can be performed by using pairs (S[i], suf i+1) if comparing
a mod 0 suffix with a mod 1 suffix, and triples (S[i], S[i + 1], suf i+2) if comparing
a mod 0 suffix with a mod 2 suffix. This ensures that the suffixes appearing in the
pairs or triples already appear in sorted order in SA12. Computing the relative order
of two suffixes in SA12 can be done in constant work by pre-computing an inverse
array mapping each suffix to its position in SA12. The inverse array can be computed
in linear work and O(1) depth. The merge can be done using a parallel merging
algorithm in O(n) work and O(log n) depth [JaJa 1992].
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Finally, to perform step (4) the algorithm uses the fact that an lcp value in LCP
corresponds to three times the corresponding value in LCP12, and the fact that
the lcp value between the two suffixes at positions i and j of the LCP12 array is
equal to mini≤k<j LCP12[k]. For two suffixes suf SA[i−1] and suf SA[i], the algorithm
first compares c characters (0 ≤ c ≤ 2) from the beginning of the suffixes until
both (SA[i − 1] + c) mod 3 �= 0 and (SA[i] + c) mod 3 �= 0. If fewer than c characters
match, then LCP[i] = c′, where c′ is the length of the prefix that matches. Otherwise,
let l be equal to the lcp between suf SA[i−1]+c and suf SA[i]+c. These suffixes are
represented in LCP12 because they are at mod 1 and/or mod 2 positions, and the
positions in LCP12 can be looked up using the inverse array from step (3). However,
the suffixes may not be adjacent in LCP12, and so a range minima query between the
two positions in LCP12 is done if necessary to give the lcp value between the suffixes.
Then LCP[i] is equal to c + 3l + l′, where l′ is the lcp value between suf SA[i−1]+c+3l

and suf SA[i]+c+3l. l′ is at most 2 and is computed by comparing the characters of
the suffixes one-by-one. To answer range minima queries in O(1) work/depth, the
algorithm builds a range minima query table over LCP12, which requires O(n) work
and O(log n) depth [JaJa 1992].

The overall work of the algorithm is O(n) since each level of recursion requires
linear work and reduces the problem size to 2n/3. The depth is O(log2 n) w.h.p. for
constant-sized alphabets as there are O(log n) levels of recursion, each requiring
O(log n) depth w.h.p. This chapter later shows how to modify the skew algorithm
to compute the LCP array given the suffix array as input.

Irreducible-LCP
Kärkkäinen et al. [2009] describe a technique for computing the PLCP array based
on irreducible lcp values, which this chapter refers to as irreducible-LCP. PLCP[i] is
reducible if S[i − 1] = S[�[i] − 1] and irreducible otherwise, where � is computed as
in kmp-LCP, i.e., �[SA[i]] = SA[i − 1]. For reducible values, it can be shown [Manzini
2004, Kärkkäinen et al. 2009] that PLCP[i] = PLCP[i − 1] − 1. The algorithm works
by computing the PLCP values corresponding to the irreducible lcp’s using the
brute-force method of comparing the suffixes from the beginning, and using the
results to compute each remaining PLCP value in constant work. The authors
of [Kärkkäinen et al. 2009] show that the sum of all irreducible lcp values is at most
2n log n. Hence, the overall work is O(n log n) (note that this is not work-efficient).
The authors also show that in practice the algorithm is slower than kmp-LCP. This
chapter later presents a straightforward parallelization of this algorithm.
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Algorithm 12.5 par-LCP: parallelization of klaap-LCP

1 procedure PAR-LCP(S, SA, n)
2 parfor i = 0 to n − 1 do � Compute Rank array
3 Rank[SA[i]] = i

4 LCP[0] = 0
5 parfor j = 0 to K − 1 do � Parallelize over intervals
6 h = 0
7 for i = jn

K
to (j+1)n

K
− 1 do � Sequential klaap-LCP

8 if Rank[i] �= 0 then
9 k = SA[Rank[i] − 1]

10 while S[i + h] == S[k + h] do
11 h = h + 1
12 LCP[Rank[i]] = h

13 if h > 0 then
14 h = h − 1

12.3 Algorithms and Analysis
This section presents several parallel algorithms for computing the longest com-
mon prefix array given a string and its corresponding suffix array. The work and
depth bounds of the algorithms are also analyzed.

Par-LCP and Par-PLCP
This first approach developed in this chapter is similar to that of Deo and Keely
[2013], but instead of requiring a pre-processing step to find the intervals that are
processed in parallel, the input is split into equal-sized intervals. This approach can
be used to parallelize both klaap-LCP and kmp-LCP. The algorithms use a parame-
ter K ≤ n, which trades off between parallelism and work, and split the input into
intervals of size at most �n/K� (there are either K or K + 1 intervals). This chapter
refers to the parallelization of klaap-LCP using this approach as par-LCP (pseu-
docode shown in Algorithm 12.5) and the parallelization of kmp-LCP as par-PLCP
(pseudocode shown in Algorithm 12.6). For simplicity, the pseudocode assumes
K evenly divides n, but can be adapted for the general case. The intervals are pro-
cessed in parallel, where each interval runs klaap-LCP or kmp-LCP sequentially,
with a counter h starting at 0. The parameter K could, for example, be set to O(P )

where P is the number of cores available to the computation, and this is what is
used in the experiments in Section 12.4.
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Algorithm 12.6 par-PLCP: parallelization of kmp-LCP

1 procedure PAR-PLCP(S, SA, n)
2 �[SA[0]] = −1
3 parfor i = 1 to n − 1 do � Compute � array
4 �[SA[i]] = SA[i − 1]

5 parfor j = 0 to K − 1 do � Parallelize over intervals
6 h = 0
7 for i = jn

K
to (j+1)n

K
− 1 do � Sequential kmp-LCP

8 if �[i] == −1 then
9 h = 0

10 else
11 k = �[i]
12 while S[i + h] == S[k + h] do
13 h = h + 1
14 if h > 0 then
15 h = h − 1
16 PLCP[i] = h

17 parfor i = 0 to n − 1 do � Convert PLCP to LCP
18 LCP[i] = PLCP[SA[i]]

In par-LCP (Algorithm 12.5), the Rank array is computed in parallel on lines 2–3.
Then line 5 is a parallel for-loop splitting the indices into equal-sized chunks, where
each chunk is processed sequentially in lines 6–14 using klaap-LCP. For par-PLCP
(Algorithm 12.6), the loops computing � (lines 3–4) and computing LCP (lines 17–
18) can be trivially parallelized. Again, on line 5, the indices are split in a parallel
for-loop, and each chunk is processed sequentially in lines 6–16 using kmp-LCP.

In contrast to dk-LCP (and dk-PLCP, which is described next), par-LCP and par-
PLCP do not have a pre-processing phase to find all the indices for which the lcp
value is 0, therefore leading to splits that perform more extra work on average for
the first element of each chunk. However, the experiments later show that the extra
work is insignificant compared to the work required for pre-processing.

DK-PLCP
This chapter observes that the approach of Deo and Keely can also be used to paral-
lelize kmp-LCP. This variant is referred to as dk-PLCP. The code for this algorithm
is very similar to that of dk-LCP and is not shown here.
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Analysis
Let us now analyze the theoretical performance of the four parallel algorithms
(par-LCP, par-PLCP, dk-LCP, and dk-PLCP) based on splitting the computation into
intervals (and sub-intervals). In the analysis, K is assumed to evenly divide n, but the
bounds still hold in the general case. The performance is based on the maximum
or average lcp value of the suffixes of the string, which are denoted as lmax and lavg,
respectively.

Lemma 12.1 For a parameter K ≤ n, par-LCP and par-PLCP require O(n + Klmax) work and
O(n/K + lmax) depth.

Proof For each interval, the maximum value of the counter h is lmax and there are n/K

decrements, so the number of character comparisons (equal to the number of times
h is incremented) is at most n/K + lmax. This analysis is similar to that of [Kasai et
al. 2001]. Over all K intervals, the number of character comparisons is at most
n + Klmax. The work of the main loop (lines 5–14 of par-LCP and lines 5–16 of par-
PLCP) is thus O(n + Klmax).

An alternative argument for the work bound of the main loop is that except for
the first element of each interval, the work for the rest of the elements is exactly
the same as in the sequential algorithm and hence bounded by O(n). The first
element of an interval can do at most lmax comparisons, and over all K intervals,
this contributes O(Klmax) to the work. Hence the total work is bounded by O(n +
Klmax).

The intervals can be processed in parallel, but each interval is done sequentially
doing at most n/K + lmax comparisons, so the depth of the main loop is O(n/K +
lmax). The parallel loops on lines 2–3 of par-LCP, and lines 3–4 and 17–18 of par-
PLCP require O(n) work and O(1) depth. Therefore, the work of the algorithms is
O(n + Klmax) and depth is O(n/K + lmax).

Note that if K = ω(n/lmax), then par-LCP and par-PLCP do more than O(n) work
in the worst case. However, in the experiments K is set to be the number of threads,
which is less than n/lmax for most inputs. Also, for real-world strings the O(Klmax)

term is usually very loose as it is unlikely that the first elements of many intervals
have an lcp value close to lmax.

By using randomization, the work bound can be improved to O(n + Klavg) in
expectation, as shown in Lemma 12.2 below. This improvement is significant when
lavg � lmax.
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Lemma 12.2 Modified versions of par-LCP and par-PLCP require O(n + Klavg) expected work
and O(n/K + lmax) depth.

Proof Instead of fixing the interval start indices at jn/K for 0 ≤ j < K , the algorithm picks
an integer uniformly at random between 0 and n/K − 1 and shift all start indices
to the right by this amount. A start index at i = 0 is added back (if it was shifted) to
guarantee that all elements are processed.

Consider the extra work performed for the first elements of the intervals, except
for at i = 0. Summing over all possible random shifts, each first element where
i > 0 will be a first element of an interval exactly once, and the total extra work for
these elements can be upper bounded by nlavg (the sum over all lcp values). Each
random shift is picked with 1/(n/K) = K/n probability, so the expected work for
these elements for a single execution is at most (K/n)nlavg = Klavg. The extra work
for the first element at i = 0 can be bounded by lmax. The remainder of the work
done in the main loop is the same as in the sequential algorithm, and so contributes
O(n) to the total work. Therefore, the total expected work is O(n + Klavg).

Again, the depth is bounded by the maximum size of an interval plus lmax, giving
a bound of O(n/K + lmax).

An analysis of dk-LCP and dk-PLCP, which is similar to that of par-LCP and par-
PLCP, is provided in the following lemma.

Lemma 12.3 dk-LCP and dk-PLCP require O(n + Klmax) work and O(n/K + log n + lmax) depth.

Proof For dk-LCP, computing the indices where the lcp value is 0 (line 5) is done with a
parallel filter, which requires O(n) work and O(log n) depth. Lines 2–3 can be done
in O(n) work and O(1) depth. Each interval larger than size n/K is divided into
sub-intervals of size n/K (except for the last sub-interval which may contain fewer
than n/K elements). Similar to the analysis of par-LCP and par-PLCP, the number
of character comparisons for each sub-interval is O(n/K + lmax). The intervals that
were not sub-divided do no more work than the sequential algorithm as the first lcp
value is 0, and hence contribute O(n) work. The maximum number of sub-intervals
is O(K) so this gives an overall work of O(n + Klmax). The overall depth including
the filter is O(n/K + log n + lmax) as the maximum interval and sub-interval size is
n/K . The analysis for dk-PLCP is similar.

Analogous to Lemma 12.2, for dk-LCP and dk-PLCP, the sub-intervals in each
interval can be shifted by a random amount to obtain the following lemma. The
proof is omitted as it is similar to the proof of Lemma 12.2.
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Lemma 12.4 Modified versions of dk-LCP and dk-PLCP require O(n + Klavg) expected work and
O(n/K + log n + lmax) depth.

Skew-LCP—Standalone LCP Computation with the Skew Algorithm
A slight modification of the skew algorithm [Kärkkäinen and Sanders 2003] that can
be used as a standalone LCP algorithm (referred to as skew-LCP) given the suffix
array SA as input is described below. Refer to the steps of the skew algorithm as
described in Section 12.2.

For step (1), construct SA12 by marking the indices i such that SA[i] mod 3 �= 0,
and apply a parallel filter keeping just the elements at these indices. Computing
the new lexicographic names is still done by comparing triples and using a parallel
prefix sum to compute the new name of each triple. However, since the suffixes
in SA12 are already sorted (SA is sorted), the algorithm assigns new lexicographic
names in the range [1, . . . , 2n/3] based on the suffix’s index in SA12, instead of
using an integer sort. Creating the string S′ to recurse on is done as before—by
moving all of the mod 1 suffixes to the beginning and mod 2 suffixes to the end of
the string using a parallel for-loop. Steps (2) and (3) are no longer required since
the algorithm does not need to generate SA. Step (4) to generate the LCP array from
LCP12 remains the same as before.

Theorem 12.1 skew-LCP requires O(n) work and O(log2 n) depth.

Proof For each level of recursion, the prefix sum and filter take linear work and O(log n)

depth, and to answer range minima queries in O(1) work and depth in step (4),
a range minima query look-up table can be built in linear work and O(log n)

depth [JaJa 1992]. As each recursive call reduces the problem to two-thirds of the
original size, the work recurrence is W(n) = W(2n/3) + O(n) and depth recurrence
is D(n) = D(2n/3) + O(log n). Solving the recurrences gives the theorem.

Note that the bounds of the original skew algorithm [Kärkkäinen and Sanders
2003] are O(n) work and O(log2 n) depth w.h.p. for a constant-sized alphabet. The
bounds required use of integer sorting algorithms [Rajasekaran and Reif 1989,
Hagerup and Raman 1992] which limited the alphabet size. Since skew-LCP does
not involve integer sorting, the bounds hold for general alphabets.

Just like the original skew algorithm, skew-LCP can be adapted to other models
of computation using the ideas in [Kärkkäinen and Sanders 2003]. In the Bulk
Synchronous Parallel (BSP) model [Valiant 1990], skew-LCP requires O(n/P +
L log2 P + gn/P ) time for a communication parameter g, synchronization cost
L and number of cores P . This bound was true only for P = O(n1−ε) in the original
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Algorithm 12.7 Parallel-iLCP: parallel irreducible LCP algorithm

1 procedure PAR-ILCP(S, SA, n)
2 �[SA[0]] = −1
3 parfor i = 1 to n − 1 do � Compute � array
4 �[SA[i]] = SA[i − 1]
5 Compute all indices i1 < i2 < . . . < im−1, such that S[ij − 1] �= S[�[ij ] − 1]
6 i0 = 0, im = n

7 parfor j = 0 to m − 1 do
8 h = 0
9 if �[ij ] �= −1 then

10 k = �[ij ]
11 while S[ij + h] == S[k + h] do
12 h = h + 1
13 PLCP[ij ] = h � Irreducible lcp value
14 parfor l = ij + 1 to ij+1 − 1 do
15 PLCP[l] = h − (l − ij ) � Reducible lcp values
16 parfor i = 0 to n − 1 do � Convert PLCP to LCP
17 LCP[i] = PLCP[SA[i]]

skew algorithm due to the need for integer sorting. The bounds for skew-LCP in
the external-memory and cache-oblivious models are the same as for the original
skew algorithm—that is O((n/B) logM/B(n/B)) I/O’s (external-memory) or cache
misses (cache-oblivious) for a block size of B and a fast memory size of M .

Par-iLCP—A Parallel Irreducible LCP algorithm
A straightforward parallelization of the irreducible-LCP algorithm described in
Section 12.2 is discussed below, and is referred to as par-iLCP. The pseudocode is
shown in Algorithm 12.7. The parallel for-loops on Lines 3–4 and 16–17 are the same
as in par-PLCP, since the algorithm first computes the PLCP array before converting
it to the LCP array. On Line 5, all of the indices ij , where PLCP[ij ] corresponds to
an irreducible lcp value (an irreducible index), are computed. This is done with a
parallel filter with the predicate S[ij − 1] �= S[�[ij ] − 1], and requires O(n) work and
O(log n) depth.

Then for each irreducible index in parallel (Line 7), the algorithm first com-
putes its PLCP value by comparing characters one-by-one (Lines 8–13). All of the
indices after the irreducible index ij and before the next irreducible index ij+1

correspond to reducible lcp values, so the algorithm then applies the formula
PLCP[l] = PLCP[ij ] − (l − ij ) from [Manzini 2004, Kärkkäinen et al. 2009] for all
ij < l < ij+1 in parallel (Lines 14–15). The work of the main loop (Lines 7–15) is the
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same as in the sequential irreducible-LCP algorithm, namely O(n log n). The work
for the rest of the algorithm is O(n). The depth is O(lmax + log n) as computing the
lcp values for the irreducible indices requires O(lmax) depth and the parallel filter
requires O(log n) depth. This gives the following theorem.

Theorem 12.2 par-iLCP requires O(n log n) work and O(log n + lmax) depth.

12.4 Experiments
This section presents a detailed experimental evaluation of LCP algorithms in
a shared-memory setting. The implementations and experimental setup are first
discussed. Then, the performance of the standalone LCP implementations is eval-
uated. Finally, this section studies the performance of the implementations when
used in conjunction with suffix array code. Additional experiments can be found
in [Shun 2014].

This chapter implements all of the algorithms listed in Table 12.1, and as a
reminder, among the parallel LCP algorithms compared, par-LCP, par-PLCP, dk-
PLCP, skew-LCP, and par-iLCP are new, and naive-LCP, dk-LCP, and skew-SA+LCP
are existing algorithms. The main findings of the experimental study are summa-
rized below:

. On a 40-core machine with two-way hyper-threading, par-PLCP achieves the
best parallel running times for most real-world inputs. It is 1.5–2.3× faster
than this chapter’s CPU implementation of the existing parallel LCP algo-
rithm of Deo and Keely [Deo and Keely 2013].

. While skew-LCP has better worst-case theoretical guarantees than par-PLCP,
it is 6–11× slower in parallel.

. For real-world inputs, the performance of par-LCP, par-PLCP, dk-LCP, and
dk-PLCP is quite robust to the choice of the parameter K as long as K is not
too extreme.

. par-PLCP achieves good parallel speedup relative to kmp-LCP (up to 21.8×
on 40 cores), the fastest sequential LCP algorithm.

. All of the parallel algorithms achieve good self-relative speedup on most
inputs.

. In parallel, computing the SA and LCP arrays separately is 1.2–2.1× faster
than computing them together with the skew algorithm.
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. Comparing the two parallel LCP algorithms which require O(n) work and
polylogarithmic depth, in parallel skew-LCP is 1.4–2× times faster than the
original skew algorithm.

Implementations
We implement the parallel algorithms using Cilk Plus [Leiserson 2010]. In the
implementations of par-LCP and par-PLCP, K is set to be the number of available
threads P (except for the experiment in Figure 12.3). Therefore, the interval size is
at most �n/P � and number of intervals is either P or P + 1. In practice, this gave
the best balance between the extra work spent in computing the lcp values for the
first element of each chunk and the amount of parallelism. The modified versions
of par-LCP and par-PLCP using random shifting as discussed in Lemma 12.2 were
also implemented, but there was no improvement over the original versions. This
is because in the original versions, the work for computing the first element of each
interval is usually much lower than lmax in practice.

The dk-LCP and dk-PLCP algorithms are implemented using the parallel filter
code (which uses prefix sum) from the Problem Based Benchmark Suite. K is set
to 2P (except for the experiment in Figure 12.3) and each interval with size greater
than �n/K� is split into sub-intervals of size �n/K�, except for the last sub-interval,
which may be smaller. For single-threaded execution K is set to 1. This setting gave
the best performance across all inputs. Note that the value of K here is higher than
in par-LCP and par-PLCP. This is because the sizes of the intervals and sub-intervals
in dk-LCP and dk-PLCP vary more, and creating more parallel tasks gives more
flexibility to the runtime scheduler to achieve better load-balancing.

The implementation of par-iLCP uses the parallel filter code from the Problem
Based Benchmark Suite, and the for-loop over the indices between two irreducible
values is only parallelized when the size is greater than 1,000 (to avoid the overhead
of a parallel for-loop for smaller sizes). We also implement the naive parallel LCP al-
gorithm (naive-LCP) from Algorithm 12.1. We implement skew-LCP, the standalone
LCP algorithm described in Section 12.3, by making the necessary modifications to
the parallel implementation of the skew algorithm from the Problem Based Bench-
mark Suite.

The implementations of the sequential klaap-LCP and kmp-LCP algorithms
follow the pseudocode shown in Algorithms 12.2 and 12.3, respectively. Gog and
Ohlebusch [2011] describe a sequential LCP algorithm that requires the Burrows-
Wheeler transform array as input. Its implementation [Gog et al. 2014] uses com-
pressed integers and are semi-external, leading to lower space usage but higher
running time, and hence it is difficult to perform a direct comparison with the
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internal memory implementations in this chapter that do not use compressed
integers.

Experimental Setup
The experiments are performed on the 40-core (with two-way hyper-threading) Intel
machine described in Section 2.7. The implementations are compiled with the g++
compiler. The times reported are based on a median of three trials.

The experiments use a variety of strings available online (http://people.unipmn
.it/manzini/lightweight/corpus/), XML code from Wikipedia samples (wikisamp8
and wikisamp9), human genomic data (http://webhome.cs.uvic.ca/~thomo/HG18
.fasta.tar.gz) (HG18.fasta), protein data (http://pizzachili.dcc.uchile.cl/texts/
protein/) (proteins), short reads of a DNA sequence (ftp://ftp.ncbi.nih.gov/pub/
TraceDB/Personal_Genomics/Venter/) (Venter0), and artificial inputs. The artificial
inputs are all of size 108 and include a random string with an alphabet size of 10
(random), an all identical string (identical), and a binary string where every 104’th
position contains one character and all other positions contain the other character
(sqrtn). One byte is used to represent each character for all inputs. Table 12.2 shows
the file size, alphabet size (|�|), maximum lcp value (lmax), and average lcp value
(lavg) for each input.

Comparison of LCP algorithms
Table 12.2 shows the single-threaded times (T1), 40-core with hyper-threading times
(T40h), and parallel speedups (T1/T40h) for all of the standalone LCP implementa-
tions. The fastest parallel time per input in Table 12.2 is shown in bold.

First, let us look at the performance of naive-LCP, the brute-force parallel algo-
rithm. As expected, naive-LCP performs relatively well for inputs with small average
lcp values, but significantly worse for inputs with large lcp values. For Venter0 and
the random string, naive-LCP performs the best among all implementations due
to the small lcp values. For several inputs, naive-LCP did not finish in a reasonable
amount of time due to large lcp values, and hence the running time is not reported.

Figure 12.2 shows a bar chart comparing the running times for the parallel im-
plementations using 80 hyper-threads on several inputs (for clarity of presentation,
naive-LCP is not included as it is an order of magnitude slower on some inputs).
From Table 12.2 and Figure 12.2, we see that par-PLCP performs the fastest on most of
the inputs. We do see some exceptions, however. For the identical and sqrtn strings,
par-LCP performs the best. This is because most contiguous suffixes in the suffix ar-
ray also appear contiguously in the original string, and thus most memory accesses
are cache-friendly. par-PLCP is designed to reduce random accesses at the cost of

http://people.unipmn.it/manzini/lightweight/corpus/
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://pizzachili.dcc.uchile.cl/texts/protein/
http://pizzachili.dcc.uchile.cl/texts/protein/
ftp://ftp.ncbi.nih.gov/pub/TraceDB/Personal_Genomics/Venter/
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Table 12.2 Running times (seconds) of the LCP algorithms on different inputs on a 40-core
machine with hyper-threading

chr22 etext99 HG18.fasta howto jdk13c proteins rctail96 rfc

Size (MB) 34.6 105 3083 39.4 69.7 1184 115 116

|�| 5 146 27 197 113 27 93 120

lmax 2 . 105 3 . 105 2 . 107 70720 37334 6 . 105 26597 3445

lavg 1979 1109 4 . 105 268 679 1422 282 93

klaap-LCP (seq.) 2.34 6.67 315 2.16 2.94 76.7 5.69 6.09

kmp-LCP (seq.) 1.67 5.53 233 1.67 2.56 58.9 4.78 5.14

naive-LCP (T1) 51.9 93.5 — a 10 43.6 1420 37.2 17.6

naive-LCP (T40h) 2.11 2.82 — 0.326 1.32 45.5 0.965 0.403

naive-LCP (T1/T40h) 24.6 33.2 — 30.7 33 31.2 38.5 43.7

skew-LCP (T1) 15.2 58.4 2610 18.5 45.6 887 91.7 82.2

skew-LCP (T40h) 0.584 1.99 64 0.705 1.48 26.6 2.45 2.28

skew-LCP (T1/T40h) 26 29.3 40.8 26.2 30.8 33.3 37.4 36.1

par-iLCP (T1) 2.97 9.27 407 2.5 3.11 87.2 6.68 7.8

par-iLCP (T40h) 0.115 0.41 15.8 0.12 0.196 4.85 0.354 0.384

par-iLCP (T1/T40h) 25.8 22.6 25.8 20.8 15.9 18 18.9 20.3

par-LCP (T1) 2.29 6.5 311 2.12 2.93 76.2 5.61 5.95

par-LCP (T40h) 0.144 0.44 14.2 0.138 0.215 4.88 0.388 0.389

par-LCP (T1/T40h) 15.9 14.8 21.9 15.4 13.6 15.6 14.5 15.3

par-PLCP (T1) 1.68 5.51 233 1.66 2.56 58.8 4.78 5.16

par-PLCP (T40h) 0.083 0.31 10.7 0.095 0.173 3.89 0.293 0.31

par-PLCP (T1/T40h) 20.2 17.8 21.8 17.5 14.8 15.1 16.3 16.6

dk-LCP (T1) 3.25 9.32 384 2.98 4.01 106 7.76 8.37

dk-LCP (T40h) 0.195 0.606 20.1 0.185 0.265 6.51 0.523 0.535

dk-LCP (T1/T40h) 16.7 15.4 19.1 16.1 15.1 16.3 14.8 15.6

dk-PLCP (T1) 2.06 6.78 328 1.99 2.99 71.7 5.68 6.23

dk-PLCP (T40h) 0.107 0.386 13.3 0.117 0.196 4.47 0.34 0.358

dk-PLCP (T1/T40h) 19.3 17.6 24.7 17 15.3 16 16.7 17.4

The new algorithms are shown in bold.

T1 is the time using a single thread, T40h is the time using 40 cores (80 hyper-threads), and T1/T40h

is the parallel speedup.

The numbers in bold indicate the fastest parallel LCP running time for an input among all
implementations.

a. Indicates that the experiment did not finish running in a reasonable amount of time.
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Table 12.2 (continued)

sprot34 Venter0 w3c2 wikisamp8 wikisamp9 random identical sqrtn

Size (MB) 110 427 104 100 1000 100 100 100

|�| 66 5 256 204 207 10 1 2

lmax 7373 1139 106 1265 2032 15 108 108

lavg 89.1 44 42300 53.2 68 7.31 5 . 107 5 . 107

klaap-LCP (seq.) 5.71 31.8 4.27 4.8 56.1 7.39 0.522 1.86

kmp-LCP (seq.) 4.83 26.3 3.74 4.08 43.8 6.07 0.726 1.57

naive-LCP (T1) 19.2 61.3 3250 12.9 191 5.37 — a —

naive-LCP (T40h) 0.373 1.41 119 0.256 4.01 0.169 — —

naive-LCP (T1/T40h) 51.5 43.5 27.3 50.4 47.6 31.8 — —

skew-LCP (T1) 67.3 257 69 63.4 784 34.1 18.9 34.9

skew-LCP (T40h) 2.21 8.34 2.31 2.06 21.9 1.26 0.814 2.07

skew-LCP (T1/T40h) 30.4 30.8 29.9 30.8 35.8 27.1 23.2 16.9

par-iLCP (T1) 6.79 49.3 4.64 5.57 62.7 11.3 0.976 1.81

par-iLCP (T40h) 0.355 2.03 0.3 0.31 3.31 0.51 0.243 0.261

par-iLCP (T1/T40h) 19.1 24.3 15.5 18 18.9 22.2 4 6.9

par-LCP (T1) 5.63 30.2 4.22 4.76 55.9 7.31 0.568 1.91

par-LCP (T40h) 0.359 1.93 0.31 0.312 3.32 0.481 0.119 0.179

par-LCP (T1/T40h) 15.7 15.6 13.6 15.3 16.8 15.2 4.8 10.7

par-PLCP (T1) 4.84 25.1 3.85 4.07 44.1 6.98 0.767 1.58

par-PLCP (T40h) 0.287 1.42 0.268 0.251 2.73 0.343 0.143 0.186

par-PLCP (T1/T40h) 16.9 17.7 14.4 16.2 16.2 20.3 5.4 8.5

dk-LCP (T1) 7.83 55.1 5.83 6.63 76.4 10.5 1.06 3.1

dk-LCP (T40h) 0.495 2.7 0.389 0.406 4.56 0.663 0.212 0.301

dk-LCP (T1/T40h) 15.8 20.4 15 16.3 16.8 15.8 5 10.3

dk-PLCP (T1) 5.81 31 4.35 4.79 52.1 7.55 1.14 1.98

dk-PLCP (T40h) 0.335 1.77 0.302 0.306 3.16 0.446 0.227 0.236

dk-PLCP (T1/T40h) 17.3 17.5 14.4 15.7 16.5 16.9 5 8.4
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Figure 12.2 Comparison of running times of parallel LCP algorithms using 40 cores (80 hyper-
threads).

an extra phase to convert the PLCP array into the LCP array so this makes it slower
than par-LCP for these two strings. For Venter0, which has small lcp values, par-
PLCP performs almost as fast as naive-LCP. For the random string, which has even
smaller lcp values, par-PLCP is about two times slower than naive-LCP. However,
even though par-PLCP is not the fastest on these inputs, it still performs reasonably
well. For all of the other inputs, par-PLCP is the fastest in parallel, so without prior
knowledge about an input, par-PLCP will likely give the best performance.

We see that skew-LCP is 6–11 times slower than par-PLCP in parallel, even though
it has a better worst-case complexity than par-PLCP. This is because the constants
in its work bound are higher than for par-PLCP, and the extra work in computing
the first element of each interval in par-PLCP (the O(Klmax) term) is not high in
practice. For par-iLCP, although it is not the fastest on any input, it is at most three
times slower than the fastest implementation in parallel. Furthermore, it always
outperforms skew-LCP. This is probably because for most inputs, the amount of
work performed is less than its worst-case bound of O(n log n).

Note that par-PLCP is overall faster than par-LCP, and dk-PLCP is overall faster
than dk-LCP. This is consistent with the study of sequential LCP implementations
by Kärkkäinen et al. [2009], showing that kmp-LCP is faster than klaap-LCP.

Observe that in parallel par-LCP outperforms dk-LCP by 23–78%, and par-PLCP
outperforms dk-PLCP by 13–59%. dk-LCP and dk-PLCP guarantee that the elements
with an lcp value of 0 are at the beginning of intervals with the goal of performing
less wasted work compared to the corresponding sequential algorithm. However,
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Figure 12.3 Parallel running times vs. K for different algorithms on etext99 (left) and wikisamp8
(right). The y-axis is in log scale.

it requires a pre-processing phase to identify the indices of elements for which the
lcp value is 0 using a parallel filter. Therefore, the overall time becomes slower
than that of par-LCP and par-PLCP, which simply work on equal-sized chunks.
Compared to dk-LCP, the only existing parallel standalone LCP algorithm, the fastest
LCP algorithm developed in this chapter, par-PLCP, is 1.5–2.3× faster on 40 cores with
hyper-threading.

Varying K

In the complexity bounds of par-LCP, par-PLCP, dk-LCP, and dk-PLCP, the param-
eter K represents a trade-off between work and parallelism. To see how it affects
performance in practice, this section measures the parallel running times as K is
varied. Figure 12.3 shows the running time of the four implementations using 40
cores (80 hyper-threads) as a function of K for etext99 and wikisamp8. For par-LCP
and par-PLCP, the interval size is �n/K�, except for possibly the last interval. For
dk-LCP and dk-PLCP, the number of intervals beginning with an lcp value of 0 is
fixed (at most |�|), but the algorithms divide each interval larger than size �n/K�
into sub-intervals of size �n/K�, except for possibly the last sub-interval.

For small values of K , dk-LCP and dk-PLCP are faster than par-LCP and par-
PLCP, respectively, as they exhibit more parallelism due to having separate intervals
starting at all indices corresponding to an lcp value of 0. For larger values of K there
is enough parallelism and par-LCP and par-PLCP are faster due to not requiring a
parallel filter. Figure 12.3 shows that the performance of the algorithms is quite robust
across different values of K as long as it is not too small or too large. Similar behavior
was observed for the other real-world inputs.
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Figure 12.4 Speedup of par-PLCP with respect to kmp-LCP. “40h” indicates 80 hyper-threads.

Comparing to Sequential
As shown in Table 12.2, on a single thread, par-LCP and par-PLCP do just as well
as klaap-LCP and kmp-LCP, respectively. This is because in the implementations,
when there is only a single thread, only one interval is used (K = 1) and the parallel
implementations do the same amount of work as their sequential counterparts. The
speedup curves of par-PLCP with respect to kmp-LCP for several inputs are plotted
in Figure 12.4. Compared to the sequential kmp-LCP code, par-PLCP achieves a
speedup of 14.4–20.3× for the inputs in Figure 12.4 (and 21.8× for HG18.fasta). For
the identical and sqrtn strings, the speedups are only 5.4× and 8.5×, respectively,
since the parallel version does much more work than the sequential version due to
the large lcp values; the speedup comes from the parallelism in generating the �

array and converting the PLCP array to the LCP array.
Note that since K is varied based on the number of threads available, the amount

of work done at each data point is not the same. In particular, with more threads
there are more intervals, leading to more work compared to a single-threaded
execution. Adjusting K is done to minimize the work, while taking advantage of
all of the available parallelism. For inputs with high lcp values (e.g., HG18.fasta,
identical, and sqrtn), this leads to lower speedup than if K had been fixed for
different thread counts. For the other inputs, this effect was minimal for the modest
values of K used in the experiments (between 1 and 80), as the extra work done (the
O(Klmax) term) is small.

Self-Relative Speedup
All of the parallel implementations achieve good self-relative speedup on the real-world
inputs. For the implementations whose work is independent of the number of
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Figure 12.5 Running times vs. number of threads of LCP algorithms on etext99 (left) and wikisamp8
(right) in log-log scale. “40h” indicates 80 hyper-threads.

threads, on 80 hyper-threads, naive-LCP, skew-LCP, and par-iLCP achieve speedups
of up to 51.5×, 40.8×, and 25.8×, respectively (see Table 12.2). par-iLCP does not
achieve good speedups on the identical and sqrtn strings as the available paral-
lelism is low due to the large lcp values. As for the implementations whose work
varies with thread count (par-LCP, par-PLCP, dk-LCP, and dk-PLCP), the self-relative
speedups are lower, ranging from 13.6× to 24.7× on the real-world inputs. Again,
these implementations do not get good speedup on the identical and sqrtn strings
due to the large lcp values. Since the implementations perform many random mem-
ory accesses, the speedups are also likely limited by the memory bandwidth of the
machine.

Varying Thread Count
Figure 12.5 shows the running time as a function of thread count for the differ-
ent LCP implementations on etext99 and wikisamp8. Except for naive-LCP and
skew-LCP, all of the parallel implementations outperform the best sequential im-
plementation (kmp-LCP) with four or more threads.

Varying Input Size
To show scalability with increasing input size, par-PLCP was run on random strings
of varying sizes (|�| = 10). Figure 12.6 shows the 40-core running time of par-PLCP
as a function of input size. We observe that the running time scales linearly with
the input size.
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Figure 12.6 Running time vs. input size of random text for par-PLCP using 40 cores (80 hyper-
threads).

12.4.1 Performance of suffix array and LCP construction
In addition to studying the performance of the LCP algorithms on their own, this
section also studies the overall performance of suffix array and LCP construction.
The experiments show that in the parallel setting, separating suffix array and LCP
construction leads to performance improvements in practice over constructing
both arrays together. In this sub-section, the suffix array algorithms used are first
discussed, and then their performance when combined with LCP algorithms is
presented.

Performance of Suffix Array Algorithms. Table 12.3 reports the times for suffix array
computation using the fastest available parallel algorithms, skew-SA and range-
SA, which are part of the Problem Based Benchmark Suite. skew-SA is the parallel
implementation of the skew algorithm that does not compute the LCP array. range-
SA is a parallel algorithm based on the prefix-doubling idea of sorting prefixes
of suffixes with the prefix sizes increasing in powers of two. This idea has been
used in several sequential suffix array algorithms [Puglisi et al. 2007] and also in
parallel suffix tree algorithms [JaJa 1992]. range-SA requires O(n log n) work in the
worst-case and does not generate the LCP array. The times for standalone suffix
array construction in using the fastest available sequential algorithm (divsufsort-
SA) implemented by Mori [Mori 2010a] are also reported in Table 12.3. Mori also
provides a parallel implementation of divsufsort-SA using OpenMP [Mori 2010a],
however we were unable to obtain any speedup compared to the corresponding
sequential implementation.
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Table 12.3 Running times (seconds) of SA algorithms and various SA+LCP combinations

chr22 etext99 HG18.fasta howto jdk13c proteins rctail96 rfc

SA Algorithms

divsufsort-SA (seq.) 4.21 17.3 — a 4.65 8.48 268.5 16.6 15

range-SA (T1) 6.82 38.9 1130 12.1 35.3 548 53.2 43.4

range-SA (T40h) 0.609 2.52 79.9 0.88 2.15 29.3 3.31 2.76

skew-SA (T1) 15.2 57.8 2020 19.5 34.6 736 59.4 60.9

skew-SA (T40h) 0.931 3.26 97.4 1.16 1.98 39.3 3.41 3.48

SA+LCP Combinations

divsufsort-SA + kmp-LCP
(seq.)

5.88 22.8 — 6.32 11 327.4 21.4 20.1

skew-SA+LCP (T40h) 1.15 4.01 122 1.44 2.71 50.8 4.56 4.48

parallel-SA + par-PLCP
(T40h)

0.692 2.83 90.6 0.975 2.153 33.19 3.6 3.07

sprot34 Venter0 w3c2 wikisamp8 wikisamp9 random identical sqrtn

SA Algorithms

divsufsort-SA (seq.) 15.7 83.7 13.2 14.6 190.9 20.7 0.62 1.69

range-SA (T1) 40.1 99.8 75.7 37.3 421 16.2 135 119

range-SA (T40h) 2.59 5.53 4.58 2.78 27.9 0.84 8.58 6.39

skew-SA (T1) 57.7 214 55.1 50.4 555 34 14.6 19.8

skew-SA (T40h) 3.31 12.7 3.22 2.99 32.8 1.99 1.07 1.63

SA+LCP Combinations

divsufsort-SA + kmp-LCP
(seq.)

20.5 110 16.9 18.7 234.7 26.7 1.35 3.26

skew-SA+LCP (T40h) 4.28 16 4.34 3.98 43.1 2.48 1.45 2.84

parallel-SA + par-PLCP
(T40h)

2.877 6.95 3.49 3.03 30.63 1.18 1.21 1.82

T1 is the time using a single thread, and T40h is the time using 40 cores (80 hyper-threads).

The numbers in bold indicate the fastest parallel running time for an input. (Refer to Table 12.2 for
input statistics.)

a. Indicates that the implementation failed to run.
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The fastest parallel suffix array time per input is shown in bold in Table 12.3,
and observe that in parallel there is no clear winner between range-SA and skew-
SA. Compared to the sequential divsufsort-SA, the faster parallel implementation
achieves a speedup of 4.1–15.1× on the real-world inputs. On the random string,
the faster parallel implementation achieves a 24.6-fold speedup over divsufsort-SA,
while for the identical and sqrtn strings, it performs about the same or worse, as the
two parallel implementations are not well-suited for inputs with a lot of repeated
structure. divsufsort-SA is faster than both range-SA and skew-SA on a single thread
for all inputs except HG18.fasta, on which it failed to run, and the random string,
on which it loses to range-SA.

Generating Both the Suffix Array and LCP Array. Table 12.3 reports the times for
computing both the suffix array and the LCP array. For sequential times, the table
reports the time for divsufsort-SA followed by kmp-LCP (divsufsort-SA + kmp-LCP).
We also tried the implementation of Fischer’s sequential algorithm [Fischer 2011,
Mori 2010b], which generates both the suffix array and LCP array, but found it to
be slower than divsufsort-SA followed by kmp-LCP for all of the inputs. For parallel
times, Table 12.3 reports the time for the parallel skew algorithm from the PBBS
that generates both the suffix array and LCP array (skew-SA+LCP) and also the time
for running the fastest parallel suffix array algorithm for the input followed by par-
PLCP (parallel-SA + par-PLCP).

In parallel, the faster parallel SA algorithm followed by par-PLCP always out-
performs skew-SA+LCP, with a speedup factor ranging from 1.2–2.1, confirming
that separating LCP construction from the suffix array construction leads to improved
performance in the parallel setting. Separating the construction of the two arrays al-
lows one to use a faster parallel SA algorithm that does not compute the lcp values
followed by a fast LCP algorithm. Furthermore, improvements in either parallel SA
algorithms or parallel LCP algorithms lead to an overall performance improvement
in the construction process.

The improvement in the parallel running time of SA and LCP array construction
improves the overall running time of parallel applications that require SA and
LCP, such as suffix tree construction (Chapter 11) [Shun and Blelloch 2014] and
Lempel-Ziv factorization (Chapter 13) [Shun and Zhao 2013]. The improvements are
significant as the SA + LCP computation is the dominant part of the computation
in these applications (at least 80% of the total running time).

Compared to the sequential method of applying divsufsort-SA followed by
kmp-LCP, applying the faster parallel suffix array algorithm followed by par-PLCP
achieves a speedup of 4.8–15.8× on 40 cores for the real-world inputs. For the ran-
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dom string, the speedup is 22.6×, which is higher than for the real-world inputs,
due to the good performance of the parallel suffix array algorithm. For the identical
and sqrtn strings, the speedup is less than 2× mostly due to the poor performance
of the parallel suffix array algorithm relative to divsufsort-SA.

Linear Work and Polylogarithmic Depth Algorithms. skew-SA+LCP and skew-LCP are
the two LCP algorithms with linear work and polylogarithmic depth without depen-
dence on the lcp values of the suffixes of the input. From Tables 12.2 and 12.3, we
observe that in parallel, skew-LCP outperforms skew-SA+LCP by 1.8–2× for the real-
world inputs and 1.4–2× for the artificial inputs.





13Parallel Lempel-Ziv
Factorization

13.1 Introduction
Compression techniques are widely studied as a means of reducing the space of
storing data. The techniques studied fall into two categories—lossless and lossy.
For lossless methods (e.g., Lempel-Ziv compression [Ziv and Lempel 1977, Ziv and
Lempel 1978], arithmetic coding [Rissanen and Langdon 1979], Huffman cod-
ing [Huffman 1952], and Burrows-Wheeler [Burrows and Wheeler 1994]), no infor-
mation is lost when the data is compressed, while compression with lossy methods
(e.g., JPEG and MPEG) can result in some information loss.

Lempel-Ziv-77 (LZ77) [Ziv and Lempel 1977] and Lempel-Ziv-78 (LZ78) [Ziv and
Lempel 1978] form the basis for the family of Lempel-Ziv methods. They are dic-
tionary coders, meaning that the encoder searches a dictionary for matches of
substrings of the text, and returns a pointer to the substring’s location in the dic-
tionary. In LZ77, the encoder uses a sliding window (implicit dictionary) over the
text to search for previous occurrences of substrings. Lempel-Ziv-Storer-Szymanski
(LZSS) [Storer and Szymanski 1982] is a variant of LZ77 that returns a pointer to the
dictionary only if the matched substring is “long enough.” LZ78 stores an explicit
dictionary containing substrings previously seen, and in each iteration searches
this dictionary to find the longest substring that exists in the dictionary, and then
inserts a new entry into the dictionary. Lempel-Ziv-Welch [Welch 1984] is a variant
of LZ78 that uses a pre-initialized dictionary.

This chapter studies LZ77 rather than LZ78, since LZ77 admits efficient parallel
solutions, whereas LZ78 has been shown to be P-complete (unlikely to have an
efficient parallel solution) [De Agostino 1994, De Agostino 2011].

LZ77 is a lossless dynamic compression method that has been popular due to
its simplicity and computational efficiency. It is a component of the DEFLATE al-
gorithm, which is used in software packages such as gzip and PKZIP. It has also
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been used in algorithms for detecting maximal repetitions in strings [Kolpakov
and Kucherov 1999, Gusfield and Stoye 2004]. The LZ77 algorithm consists of
a compression stage, which computes the Lempel-Ziv factorization (henceforth
LZ-factorization) of the input string, and a decompression stage, which recovers
the original string from the compressed string. The LZ-factorization can be com-
puted sequentially [Rodeh et al. 1981] in linear work with a suffix tree [McCreight
1976], and decompression can be done sequentially in linear work with a scan.
The first parallel algorithms for LZ-factorization were described independently
by Naor [1991] and Crochemore and Rytter [1991]. For a string of length n, their
algorithms require O(log n) depth and O(n log n) work, making them not work-
efficient. Farach and Muthukrishnan [1995] give the first linear-work algorithms
for both LZ-factorization and decompression, each requiring O(log n) depth. These
parallel algorithms all make use of parallel suffix trees. LZ77 decompression is
much simpler and faster than LZ-factorization, so this chapter focuses on the latter.

There has been much research done in designing practical sequential algo-
rithms for computing the LZ-factorization. Recently, researchers have proposed the
use of suffix arrays instead of suffix trees to obtain faster and more space-efficient
algorithms for LZ-factorization [Crochemore et al. 2008, Crochemore and Ilie 2008,
Chen et al. 2008, Crochemore et al. 2009, Ohlebusch and Gog 2011]. Since suffix
arrays can be computed in linear work [Kärkkäinen and Sanders 2003], these LZ-
factorization algorithms are also able to run in linear work. The aforementioned
sequential algorithms have been shown to perform well in practice.

The only parallel implementations of LZ-factorization described in the litera-
ture prior to the publication of this work [Shun and Zhao 2013] are those of Klein
and Wiseman (using CPUs) [Klein and Wiseman 2005] and Ozsoy and Swany (using
GPUs) [Ozsoy and Swany 2011]. Both implementations involve splitting the input
string among cores and having each core independently compute the factorization
of its substring. Because in these implementations the cores do not necessarily
have access to the entire input string, they do not always compute the same LZ-
factorization as would be computed sequentially, and thus can produce larger
compressed files. Furthermore, the corresponding papers [Klein and Wiseman
2005, Ozsoy and Swany 2011] do not provide any complexity bounds on work and
depth. Subsequent to the publication of the results in this chapter, other GPU im-
plementations of LZ-factorization have been presented in [Ching 2014, Zu and Hua
2014], although again the algorithms do not return the same factorization as the se-
quential algorithm. Previous work on parallel algorithms for computing the same
LZ-factorization as would be computed sequentially do not include any implemen-
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tations or experiments [Farach and Muthukrishnan 1995, Naor 1991, Crochemore
and Rytter 1991]. The linear-work algorithm of Farach and Muthukrishnan [1995]
is quite involved and does not lead to a practical implementation.

This chapter presents a simple linear-work parallel algorithm for LZ-factoriza-
tion and practical shared-memory implementations of the algorithm. The algo-
rithm computes the same factorization as would be computed sequentially. The
algorithm is based on parallel suffix arrays [Kärkkäinen and Sanders 2003], finding
all nearest smaller values [Berkman et al. 1993], and uses simple parallel rou-
tines such as prefix sums and leaffix computation [JaJa 1992]. Theoretically, the
algorithm requires O(n) work and O(log2 n) depth w.h.p. due to the use of suf-
fix arrays [Kärkkäinen and Sanders 2003], so does not achieve the O(log n) depth
bound of Farach and Muthukrishnan [1995]. However, it lends itself to a practical
implementation. This chapter shows experimentally that on 40 cores with two-way
hyper-threading, the parallel LZ-factorization algorithm achieve speedups between
11.1 and 23.1 compared to running the algorithm on a single thread. A sequential
algorithm for LZ-factorization that is faster than previous algorithms1 is also pre-
sented, and the parallel algorithm achieves a 7.9–16.6-fold speedup on 40 cores
over this sequential algorithm.

13.2 Preliminaries
The LZ-factorization of a string S[0, . . . , n − 1] is S = ω0ω1 . . . ωm−1, where m ≤ n

and for each 0 ≤ i < m, ωi (called the i’th factor of the string) is either a sin-
gle character which does not appear in ω0 . . . ωi−1 or is the longest prefix of
ωi . . . ωm−1 that also appears starting at a position to the left of ωi in S. For
example, the string abbaabbbaaabab$ has the factorization S = ω0 . . . ω8 where
ω0 = a, ω1 = b, ω2 = b, ω3 = a, ω4 = abb, ω5 = baa, ω6 = ab, ω7 = ab, and ω8 = $
(example borrowed from [Crochemore et al. 2008]). To achieve compression,
the ω values are not explicitly returned. Instead, LZ77 returns a sequence of
pairs (starti , previ) where starti indicates the starting position of ωi in S and
previ indicates the position of ωi’s left match in S if it exists (coded), and other-
wise stores the character at position starti (uncoded). For decompression, each
pair i can reconstruct its factor by looking at previ and either directly copying
previ if it is a character or copying (starti+1 − starti) characters starting at the

1. Faster sequential algorithms have been independently described in [Kempa and Puglisi 2013,
Goto and Bannai 2013, Kärkkäinen et al. 2013].
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i S[i] SA[i] LCP[i] suf i LPF[SA[i]] prevOcc[SA[i]] LZ[i]

0 a 14 0 $ 0 -1 0
1 b 8 0 aaabab$ 2 3 1
2 b 9 2 aabab$ 3 3 2
3 a 3 3 aabbbaaabab$ 1 0 3
4 a 12 1 ab$ 2 10 4
5 b 10 2 abab$ 2 0 7
6 b 0 2 abbaabbbaaabab$ 0 -1 10
7 b 4 3 abbbaaabab$ 3 0 12
8 a 13 0 b$ 1 7 14
9 a 7 1 baaabab$ 3 2 –

10 a 2 3 baabbbaaabab$ 1 1 –
11 b 11 2 bab$ 2 2 –
12 a 6 1 bbaaabab$ 4 1 –
13 b 1 4 bbaabbbaaabab$ 0 -1 –
14 $ 5 2 bbbaaabab$ 2 1 –

Figure 13.1 Example: SA, LCP, LPF, prevOcc and LZ for S = abbaabbbaaabab$.

position stored in previ (the value of start0 is defined to be 0 and startm is de-
fined to be n). The sequence of pairs returned for the string abbaabbbaaabab$ is
[(0, a), (1, b), (2, 1), (3, 0), (4, 0), (7, 2), (10, 0), (12, 10), (14, $)].

Throughout this chapter, the LZ-factorization of a string is denoted by an array
LZ of size m where LZ[i] stores only the starti value of the pair. To obtain the LZ77
representation, the previ value of the pair can easily be computed given the previous
occurrence array, defined later in this section. This can easily be modified to return
the LZSS representation [Storer and Szymanski 1982].

This chapter will use the suffix array SA and longest common prefix array LCP,
as defined in Section 2.6.3. The longest previous factor of an index i in S is equal
to the maximum value of lcp(suf i , suf j ), for all j < i. LPF is defined to be the
longest previous factor array, where LPF[i] stores the longest previous factor of
index i (0 if none). prevOcc is defined to be the previous occurrence array, where
prevOcc[i] stores the starting location of the longest previous factor of suf i in S (−1
if none). Figure 13.1 shows the SA, LCP, LPF, prevOcc, and LZ arrays for the string
abbaabbbaaabab$. The chapter will also use algorithms for solving the all nearest
smaller values (ANSV) problem as defined in Section 11.4. An algorithm for ANSV
returns two arrays LN and RN where LN[i] (RN[i]) contains the index of the nearest
smaller element to the left (right) of element i (−1 if none).
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1 procedure LPFTOLZ(LPF,n)
2 LZ[0] = 0
3 i = 0
4 while LZ[i] < n do
5 LZ[i + 1] = LZ[i] + max(1, LPF[LZ[i]])
6 i = i + 1
7 return LZ

Figure 13.2 LPFtoLZ: Algorithm for generating the Lempel-Ziv factorization from the longest
previous factors.

13.3 Parallel Lempel-Ziv Factorization Algorithm
The parallel algorithm developed in this chapter is based on the sequential algo-
rithm described by Crochemore, Ilie, and Smyth (henceforth CIS) [Crochemore et
al. 2008], which first computes the LPF array. Computing the LZ-factorization can
then be computed with a single pass over the LPF array [Crochemore and Ilie 2008].
The psuedocode for computing LZ from LPF is shown in Figure 13.2.

We now review Farach and Muthukrishnan’s method of parallelizing LPFtoLZ
given the LPF array as an input [Farach and Muthukrishnan 1995]. Their method
creates a size n + 1 array of pointers, next, where

next[i] = min(i + max(LPF[i], 1), n)

for i < n and next[n] = −1. Following the indices (pointers) starting at next[0] until
reaching a value of -1 is sufficient to determine the indices in LZ. Using a parallel
leaffix algorithm [JaJa 1992] with the value at index 0 set to 1 and the remaining
values set to 0, the result is an array of flags indicating which indices are in the LZ-
factorization. This can be done in O(n) work and O(log n) depth. A prefix sum [JaJa
1992] is then done on the array of flags to get the start values for the elements in
the LZ-factorization, which can also be done in O(n) work and O(log n) depth.

Now what remains is to show how to compute the LPF array. As done in CIS, the
suffix array SA is first computed. While CIS computes the LCP array after computing
SA, the algorithm in this chapter computes LCP while computing SA. Using the skew
algorithm of Kärkkäinen and Sanders [2003], both SA and LCP can be computed in
parallel using O(n) work and O(log2 n) depth w.h.p. for constant-sized alphabets
and O(n/ε) work and O((1/ε)nε) depth for 0 < ε < 1 on integer alphabets.

After computing SA and LCP, the algorithm uses the following lemma due to
Crochemore et al. [2009], which states that any LPF[i] can be computed using
an ANSV computation and range minima queries on SA and LCP. To deal with
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boundary cases, let us assume that suf SA[−1] evaluates to the empty string (and
therefore has an lcp of 0 with any other string).

Lemma 13.1 Let LN[i] and RN[i] be the left and right nearest smaller neighbors of element i in
SA. Then LPF[i] = max(lcp(suf SA[i], suf SA[LN[i]]), lcp(suf SA[i], suf SA[RN[i]])).

Berkman et al. [1993] show that ANSVs can be computed in O(n) work and
O(log log n) depth. It can be shown that for any 0 ≤ i < j < n, lcp(suf SA[i], suf SA[j ]) =
mini<k≤j LCP[k], so using range minima queries, one can compute the lcp values
and hence the LPF values [Kärkkäinen and Sanders 2003]. prevOcc[i] is set to LN[i] if
suf SA[LN[i]] has a longer lcp with suf SA[i], and RN[i] otherwise. Range minima queries
can be performed in O(1) work and depth, and require O(n) work and O(log n)

depth for pre-processing [JaJa 1992].
In the example shown in Figure 13.1, to determine LPF[7] and prevOcc[7] (corre-

sponding to suffix baaabab$), look at its left nearest smaller value in SA, which is 4,
and its right nearest smaller value, which is 2, and then select the one correspond-
ing to the suffix with a larger lcp with baaabab$, which is of length 3. Therefore,
LPF[7] = 3 and prevOcc[7] = 2.

We now describe two variants of the parallel LZ-factorization algorithm, differ-
ing only in how LPF is computed. The first variant (PLZ1) uses Lemma 13.1 directly.
It builds a range minima query table on the LCP array for constant-time queries and
then in parallel does range minima queries to compute each LPF[i]. The n queries
require a total of O(n) work and O(1) depth.

The second variant (PLZ2) uses as a component the sequential algorithm of
Crochemore and Ilie [2008], which takes the ANSVs as input and does a single pass
over the string to compute the LPF array. Their crucial observation is that LPF[i] ≥
LPF[i − 1] − 1, and using this dependence they derive a linear-work algorithm for
computing LPF.

Unlike PLZ1, PLZ2 does not build a range minima query table for constant-time
queries but instead builds a segment tree [de Berg et al. 2008] on the LCP array,
an idea which was also investigated by Canovas and Navarro [2010]. The segment
tree is a binary tree whose leaves store the elements of LCP and internal nodes
store the minimum value of its children. It requires O(n) work and O(log n) depth
to construct. Range minima queries can be answered by traversing the O(log n)

levels of the tree, hence requiring O(log n) work and depth. PLZ2 then divides the
input into n/ log n blocks and computes the LPF values of each block. The longest
previous factor of the first element is computed using a range minima query on
the segment tree described above, and since LPF[i] only depends on LPF[i − 1], the
sequential algorithm of Crochemore and Ilie [2008] can be used to compute the
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remaining longest previous factors of each block. Since one query is performed for
each of the n/ log n blocks in parallel, this leads to a cost of O(n) work and O(log n)

depth. Running the linear-work sequential algorithm per block in parallel takes a
total of O(n) work and O(log n) depth, since the size of each block is O(log n). The
motivation for designing PLZ2 was that constructing the segment tree is simpler
than constructing the table for constant-time queries, and since queries are only
performed on a subset of the elements, in practice the decreased construction time
more than makes up for the increased query times.

The steps for LZ-factorization are summarized below. PLZ1 and PLZ2 differ only
in the computation of step 3.

1. Compute the suffix array, SA, and longest common prefix array, LCP, for S.

2. Compute the left and right smaller neighbor arrays, LN and RN, on SA using
an ANSV algorithm.

3. Compute the LPF and prevOcc arrays.

4. Return LPFtoLZ(LPF, n).

From the above discussion, it can be seen that all the steps require O(n) work,
and the depth is dominated by suffix array construction. This gives the following
lemma.

Lemma 13.2 Our parallel algorithm for computing the Lempel-Ziv factorization requires O(n)

work and O(log2 n) depth with high probability for constant-sized alphabets and
O(n/ε) work and O((1/ε)nε) depth (0 < ε < 1) for integer alphabets.

The algorithm can be mapped onto the CRCW PRAM, and concurrent writes are
required by the suffix array algorithm.

Excluding the suffix array and LCP array computation, the algorithm takes only
O(log n) depth for arbitrary alphabets, so improvements to the bounds for suffix
array and LCP array computation can improve the overall bounds as well. This
algorithm is amenable to implementation, as described in the next section.

13.4 Implementations

Parallel LZ-factorization
This section describes the implementations of PLZ1 and PLZ2, as well as a simple
variant of PLZ2 that avoids computing the LCP array. For suffix arrays, the linear-
work and O((1/ε)nε) depth (for some constant 0 < ε < 1) implementation from the
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Problem Based Benchmark Suite, which is an implementation of the skew algo-
rithm of Kärkkäinen and Sanders [2003], was used. We implemented an optimized
version of the O(n log n) work and O(log n) depth ANSV algorithm of Berkman et al.
[1993] instead of their much more complicated linear-work version. For LPFtoLZ,
we implemented a random sampling-based leaffix algorithm [JaJa 1992] and used
the parallel sequence routines from the Problem Based Benchmark Suite. For the
range minima query table used for computing the LCP array inside the suffix array
algorithm, we used an O(n log n) work and O(log n) depth construction algorithm
for constant-time range minima queries. For PLZ1, we built a range minima table
on the resulting LCP array using the same construction.

In PLZ2, the number of blocks was set to n/8196, as this gave the best results
experimentally. We implemented the sequential algorithm of Crochemore and Ilie
[2008], which is used in each block. The variant of PLZ2, referred to as PLZ3, does
not compute the LCP array, but instead computes the lcp values of the first element
of each block with its nearest smaller neighbors using naive string comparison, and
uses this to compute its LPF value. The rest of each block is computed in the same
way as in PLZ2.

Sequential LZ-factorization
This section describes a simple sequential algorithm for LZ-factorization that is
more efficient in practice than existing sequential algorithms at the time this work
was initially published [Shun and Zhao 2013]. This algorithm is used in the experi-
ments in Section 13.5 as a sequential baseline. This sequential algorithm (LZ-ANSV )
first computes the suffix array (without the LCP array), and then computes the
ANSVs on the suffix array sequentially using the stack-based algorithm of Gabow
et al. [1984]. It then loops through the suffixes in their original order, and for the
positions appearing in the LZ-factorization, it computes the longest previous factor
with the suffixes corresponding to the positions of their left and right smaller neigh-
bors in SA using naive string comparison. By incrementing the index of the loop by
the length of the longest previous factor after computing it for an element, it by-
passes the LPF computation for the elements not appearing in the LZ-factorization.
LZ-ANSV requires O(n) work.

13.5 Experiments
This section experimentally compares the performance of the different implemen-
tations of the parallel LZ-factorization algorithm as well as sequential algorithms.
We are not aware of any existing parallel implementations for computing the same
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LZ-factorization as would be computed sequentially. Previous parallel algorithms
for doing so [Farach and Muthukrishnan 1995, Naor 1991, Crochemore and Rytter
1991] use parallel suffix trees and are relatively complicated (no implementations
are available). The experiments will show that the entire LZ-factorization algorithm
developed in this chapter is faster than the parallel suffix tree algorithm from Chap-
ter 11 (the fastest shared-memory parallel suffix tree algorithm) on most strings;
hence it is unlikely that a parallel implementation of LZ-factorization that uses
suffix trees will outperform the implementation developed in this chapter.

The parallel implementations are compared with our sequential LZ-ANSV code
and the sequential algorithm of Ohlebusch and Gog [2011], the fastest sequential
algorithm at the time the results of this chapter were published [Shun and Zhao
2013]. The code was obtained from Ohlebusch and Gog, and is referred to as LZ-
OG. All of the implementations in the experiments compute pairs containing the
starting position and previous occurrence for each factor in the LZ-factorization.
For fair comparison, all of the implementations use the same suffix array code from
the Problem Based Benchmark Suite.

Experimental Setup
The experiments were performed on the 40-core Intel machine (with two-way hyper-
threading) described in Section 2.7. The parallel programs were written using
Cilk Plus and compiled with Intel’s icpc compiler. The sequential programs were
compiled using g++.

The experiments use a variety of real-world strings that are available online
(http://people.unipmn.it/manzini/lightweight/corpus/ and http://pizzachili.dcc
.uchile.cl/texts.html), XML code from Wikipedia samples (wikisamp*.xml), and
artificial inputs. The artificial inputs are of size 107 and include an all identical
string (10Midentical), a random string with an alphabet size of 10 (10Mrandom),
and a string with an alphabet size of 2 where every

√
107’th position contains the

first character and all other positions contain the second character (10Msqrtn).

Experimental Results
The experiments first compare the three variants of the parallel LZ-factorization
algorithm. The parallel running times on 40 cores with two-way hyper-threading
(T40h) for all three variants are shown in Table 13.1. T1 is the time (in seconds)
for running PLZ3 on a single thread and the self-relative speedup is computed as
T1/T40h. Among the three variants, PLZ3 gives the best absolute performance across
the board. This is due to the fact that PLZ3 does not need to compute the LCP array
(which takes about one-third of the time of the suffix array code), and this more

http://people.unipmn.it/manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html
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Table 13.1 Comparison of running times (seconds) of parallel and sequential LZ-factorization
algorithms on different inputs on a 40-core machine with two-way hyper-threading

Size LZ-ANSV LZ-OG PLZ3 PLZ1 PLZ2

Text (MB) T1 T40h Speedup T40h T40h

10Midentical 10 1.68 1.74 2.35 0.212 11.08 0.313 0.318

10Mrandom 10 3.97 4.67 6.2 0.268 23.13 0.312 0.331

10Msqrtn 10 2.14 2.44 3.36 0.279 12.04 0.418 0.379

chr22.dna 34.6 19.4 22.0 28.9 1.3 22.23 1.71 1.75

etext99 105 69.9 75.2 99.0 4.47 22.15 5.23 5.71

howto.txt 39.4 24.0 25.5 33.4 1.53 21.83 2.02 2.1

jdk13c 69.7 40.4 41.4 54.1 2.5 21.64 3.67 3.67

pitches 55.8 31.8 34.3 43 1.92 22.4 2.61 2.61

proteins 210 147 172 203 9.25 21.95 11.1 11.9

rctail96 115 70.0 72.9 96.5 4.42 21.83 5.94 6.16

rfc 116 72.8 76.6 100 4.46 22.42 5.87 6.12

sources 211 140 163 186 8.74 21.28 11.1 11.5

sprot34.dat 110 69.0 72.2 93.7 4.23 22.15 5.64 5.79

w3c2 104 63.1 64.7 84.1 4.03 20.87 5.64 5.63

wikisamp8.xml 100 59.9 61.4 81.2 3.74 21.71 5.13 5.17

wikisamp9.xml 1000 653 670 894 40.8 21.92 50.9 53.6

than makes up for the extra time spent in performing naive string comparisons for
the first element of each block. On average over all inputs, PLZ3 is 1.33× faster than
PLZ1 in parallel and 1.36× faster than PLZ2 in parallel. PLZ3 achieves a self-relative
speedup of 11.1–23.1×.

The experiments also compare PLZ3 to the two sequential algorithms LZ-ANSV
and LZ-OG (see Table 13.1). The results show that the sequential algorithm de-
scribed in Section 13.4 (LZ-ANSV) outperforms LZ-OG on all of the input strings.
However, note that LZ-ANSV does not compute the entire LPF array whereas LZ-OG
does, so for applications where the entire LPF array is required, LZ-ANSV will not
suffice. On a single thread, PLZ3 is 1.3–1.6 times slower than LZ-ANSV, and on 40
cores PLZ3 achieves a 7.9–16.6× speedup over LZ-ANSV.

The running times of PLZ3 and LZ-ANSV as a function of the number of
threads for the 10Mrandom and wikisamp8.xml inputs are shown in Figures 13.3(a)
and 13.3(b), respectively. PLZ3 achieves good speedup and outperforms LZ-ANSV
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(a) (b)

Figure 13.3 Log-log plots of running times on a 40-core machine (with two-way hyper-threading).
(a) 10Mrandom; (b) wikisamp8.xml. “40h” corresponds to 80 hyper-threads.

(a) (b)

Figure 13.4 (a) Running time vs. input size of PLZ3 on 40 cores. (b) Breakdown of running time of
PLZ3 on 40 cores.

with just two or more threads. Figure 13.4 (left) shows the running time of PLZ3
on 40 cores as a function of the input size on random characters with an alphabet
size of 10. We see that the performance of PLZ3 scales gracefully with input size.
Figure 13.4 (right) shows the breakdown of the running time of PLZ3 on several in-
put strings. For PLZ3, the suffix array takes 70–80% of the time. If the lcp values are
also computed (as in PLZ1 and PLZ2), then the suffix array time becomes about 1.5
times slower,2 which explains why PLZ3 improves over PLZ1 and PLZ2 by not com-
puting the LCP array. The LPF computation takes about 15–20% of the overall time,

2. This could be improved by using the algorithms in Chapter 12, which were developed subse-
quent to the work in this chapter.
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and the ANSV computation and conversion from LPF to LZ take very little time. The
suffix array portion of the code achieves the lowest speedup, so improvements in
parallel suffix array code will likely improve the LZ-factorization code as well.

Comparing the 40-core times for LZ-factorization (Table 13.1) with the times for
suffix tree construction using the code from Chapter 11 (Table 11.2), it can be seen
that the suffix tree algorithm takes more time than the entire PLZ3 algorithm for the
inputs appearing in both tables.3 Since a suffix tree-based parallel LZ-factorization
algorithm involves many other procedures (e.g., tree contraction, least common
ancestors, and Euler tours), it is unlikely that such an algorithm will have a better
overall performance.

3. The hash table portion of the suffix tree code is not needed for LZ-factorization, but this portion
takes less than 10% of the overall time, as shown in Chapter 11. Even after adjusting for this, PLZ3
is still as fast as or faster than the suffix tree code.



14Parallel Wavelet Tree
Construction

14.1 Introduction
The wavelet tree was first described by Grossi et al. [2003], where it was used in
compressed suffix arrays. It is a space-efficient data structure that supports access,
rank, and select queries on a sequence in O(log σ) work, where σ is the alphabet
size of the sequence. Since its initial use, wavelet trees have found many other appli-
cations; for example, in compressed representations of sequences, permutations,
grids, graphs, self-indexes based on the Burrows-Wheeler transform [Burrows and
Wheeler 1994], images, two-dimensional range queries [Makinen and Navarro
2007], among many others (see [Navarro 2012, Makris 2012] for surveys of appli-
cations). While applications of wavelet trees have attracted significant attention,
wavelet tree construction has not been widely studied. This is not surprising, as
the standard sequential algorithm for wavelet tree construction is very straightfor-
ward. The algorithm requires O(n log σ) work for a sequence of length n. However,
constructing the wavelet tree of large sequences (with large alphabets) can be time-
consuming, and hence parallelizing the construction is important. A step in this
direction was taken recently by Fuentes-Sepulveda et al. [2014], who describe par-
allel algorithms for constructing wavelet trees that require O(n) depth.

This chapter presents parallel algorithms for wavelet tree construction that ex-
hibit much more parallelism (in particular, polylogarithmic depth) [Shun 2015].
First, an algorithm that constructs the tree level-by-level is introduced, and shown
to require O(n log σ) work and O(log n log σ) depth. Then, a second algorithm
that requires O(Wsort(n) log σ) work and O(Dsort(n) + log n) depth is presented,
where Wsort(n) and Dsort(n) are the work and depth, respectively, of the parallel
stable integer sorting routine used in the algorithm. Using a linear-work integer
sort [Rajasekaran and Reif 1989], this gives a work bound of O((n/ε) log σ) and
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depth bound of O((1/ε)(σ ε + log n)) for some constant 0 < ε < 1, which is sub-
linear. For alphabets of polylogarithmic size, this gives an algorithm with O(log n)

depth. Using a super-linear work integer sort [Raman 1990, Bhatt et al. 1991], a
work bound of O(n log log n log σ) and depth bound of O(log n) for all alphabets
can be obtained. In addition to having good theoretical bounds, the algorithms de-
veloped in this chapter are also efficient in practice. We implement the algorithms
using Cilk Plus and show experiments on a 40-core shared-memory machine (with
two-way hyper-threading) indicating that they outperform the existing parallel al-
gorithms for wavelet tree construction by 1.3–5.6× and achieve up to 27× speedup
over the sequential algorithm. The experiments also show that the implementa-
tions scale well with increasing thread count, input size, and alphabet size. The
parallel construction of rank/select structures on binary sequences, which are an
essential component to wavelet trees, is then described. Finally, the chapter de-
scribes how to adapt the algorithms to variants of wavelet trees—Huffman-shaped
wavelet trees [Foschini et al. 2006], multiary wavelet trees [Ferragina et al. 2007],
and wavelet matrices [Claude and Navarro 2012].

14.2 Preliminaries
For a sequence S, access(S, i) returns the symbol at position i of S, rankc(S, i)

returns the number of times c appears in S from positions 0 to i, and selectc(S, i)

returns the position of the i’th occurrence of c in S.
A wavelet tree is a data structure that supports access, rank, and select opera-

tions on a sequence in O(log σ) work. The standard wavelet tree is a binary tree
where each node represents a range of the symbols in � using a bitmap (binary se-
quence). This chapter assumes σ ≤ n as the symbols can be mapped to a contiguous
range otherwise. The structure of the wavelet tree is defined recursively as follows:
the root represents the symbols [0, . . . , 2�log σ� − 1]. A node v which represents the
symbols [a , . . . , b] stores a bitmap which has a 0 in position i if the i’th symbol in
the range [a , . . . , b] is in the range [a , . . . , ((a + b + 1)/2) − 1], and 1 otherwise. It
will have a left child that represents the symbols [a , . . . , ((a + b + 1)/2) − 1] and a
right child that represents the symbols [(a + b + 1)/2, . . . , b]. The recursion stops
when the size of the range is 2 or less or if a node has no symbols to represent. Note
that the original wavelet tree description in [Grossi et al. 2003] uses a root whose
range is not necessarily a power of 2. However, the definition used here gives the
same query complexities and leads to a simpler description of the algorithms.

Along with the bitmaps, each node stores a succinct rank/select structure (whose
size is sub-linear in the bitmap length) to allow for constant work rank and select
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queries. The structure of a wavelet tree requires n�log σ� + o(n log σ) bits (the
lower-order term is for the rank/select structures). The tree topology (parent and
child pointers) requires O(σ log n) bits, though this can be reduced or removed
by modifying the queries accordingly [Makinen and Navarro 2007, Claude and
Navarro 2008]. The standard sequential algorithm for wavelet tree construction
takes O(n log σ) work.

14.3 Related Work
Fuentes-Sepulveda et al. [2014] describe a parallel algorithm for constructing a
wavelet tree. They observe that for an alphabet where the symbols are contiguous in
[0, σ − 1], the node at which a symbol s is represented at level i of the wavelet tree
can be computed as s � �log σ� − i, requiring constant work. With this observation
they can compute the bitmaps of each level independently. Each level is computed
sequentially, requiring O(n) work and depth. Thus, their algorithm requires an
overall work of O(n log σ) and O(n) depth. They describe a second algorithm which
splits the input sequence into P sub-sequences, where P is the number of cores
available. In the first step, the wavelet tree for each sub-sequence is computed
sequentially and independently. Then in the second step, the partial wavelet trees
are merged. The merging step requires O(n) depth. Thus, the algorithm again
requires O(n log σ) work and O(n) depth. This algorithm was shown to perform
better than the first algorithm due to the high parallelism in the first step.

Multiple queries on the wavelet tree can be answered in parallel since they do
not modify the tree. Furthermore, they can be batched to take advantage of cache
locality [Fuentes-Sepulveda et al. 2014]. Arroyuelo et al. [2012] explore the use of
wavelet trees in distributed search engines. They do not construct the wavelet tree
for the entire text in parallel, but instead sequentially construct the wavelet tree for
parts of the text on each machine.

Tischler [2011] and Claude et al. [2011] discuss how to reduce the space usage
of sequential wavelet tree construction. Foschini et al. [2006] describe an improved
algorithm for sequentially constructing the wavelet tree in compressed format, re-
quiring O(n + min(n, nHh) log σ) work, where Hh is the h’th order entropy of the
input. The approach only works if the object produced is the wavelet tree com-
pressed using run-length encoding. Parallelizing these techniques is a direction for
future work. Very recently, Babenko et al. [2015] and Munro et al. [2014] describe se-
quential wavelet tree construction algorithms that require O(n log σ/

√
log n) work.

The algorithms pack small integers into words, and require extensive bit manipula-
tion. As far as we know, there are no implementations of the algorithms available.
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Designing practical (parallel) implementations of these algorithms is left for fu-
ture work.

Subsequent to the work in this chapter, faster and more space-efficient parallel
algorithms for wavelet tree construction have been developed by Labeit et al. [2016].
Parallel implementations of constructing rank and select structures have also been
developed by the same authors [Labeit et al. 2016].

14.4 Parallel Wavelet Tree Construction
This section describes new parallel algorithms for wavelet tree construction. The
construction requires a rank/select data structure for binary sequences. For now, we
assume that such structures can be created in linear work and logarithmic depth,
and the description of how to do so is deferred to Section 14.6.

14.4.1 LevelWT Algorithm
The first algorithm, levelWT , constructs the wavelet tree level-by-level. On each
level, the nodes and their bitmaps are constructed in parallel in O(n) work and
O(log n) depth, which gives an overall complexity of O(n log σ) work and
O(log n log σ) depth since there are O(log σ) levels in the tree. The pseudocode
for levelWT is shown in Algorithm 14.1. The algorithm maintains a bitmap B of
length n shared by all nodes on each level (line 4). Each node will simply store its
starting point in this array along with its bitmap length. To keep track of which
nodes need to be constructed on each level, the algorithm maintains an array A

of information for nodes to be added at the next level. Each entry in A stores the
starting point (start) in the level bitmap (also the starting point in the sequence for
the level) for the node, bitmap length (len), node identifier (id), and length of the
alphabet range that it represents (range). An entry of A is represented as a 4-tuple
(start, len, id, range).

Initially, the array A contains just the root node, with a starting index of 0, length
of n (it represents all elements), node ID of 0, and a range of 2�log σ� (line 2). The
array A′ is used as the output array for the level. The algorithm proceeds one level
at a time for �log σ� levels (line 3). The bitmaps on each level are determined by
the l + 1’st highest bit in the symbols, so the algorithm uses a mask to determine
the sign of this bit in the symbols (line 4). The algorithm then loops through all the
nodes on the current level in parallel (lines 5–26). For each node, it sets its bitmap
pointer and length in the Nodes array (line 7). If the alphabet range of the node is
2 or less, then it has no children (line 8). The algorithm then just loops over the
node’s symbols in S in parallel, and sets each bit in the bitmap according to the
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Algorithm 14.1 levelWT: Level-by-level parallel algorithm for wavelet tree construction

1 procedure LEVELWT(S, n, σ )
2 Nodes = {}, L = �log σ�, S′ = S, A = {(0, n, 0, 2L)}, A′ = {}
3 for l = 0 to L − 1 do � Process level-by-level
4 mask = 2L−(l+1), B = bitmap of length n � Mask and bitmap for this level
5 parfor j = 0 to |A| − 1 do
6 start = A[j ].start, len = A[j ].len, id = A[j ].id, r = A[j ].range
7 Nodes[id].bitmap = B + start, Nodes[id].len = len
8 if r ≤ 2 then � Node has no children
9 parfor i = 0 to len − 1 do

10 if S[start + i] and mask �= 0 then B[start + i] = 1 else B[start + i] = 0
11 else
12 X = {} � Array used to store target positions into S′
13 parfor i = 0 to len − 1 do
14 if S[start + i] and mask = 0) then X[i] = 1 else X[i] = 0
15 Perform prefix sum on X to get offsets of “left” characters (Xs is the
16 total sum, i.e., number of “left” characters)
17 parfor i = 0 to len − 1 do
18 if S[start + i] and mask �= 0 then
19 B[start + i] = 1
20 S′[start + Xs + i − X[i]] = S[start + i]
21 else B[start + i] = 0, S′[start + X[i]] = S[start + i]
22 if Xs > 0 then A′[2 ∗ j ] = (start, Xs , 2 ∗ id + 1, r/2) � Left child
23 if (len − Xs) > 0 then A′[2 ∗ j + 1] = (start + Xs, len − Xs, 2 ∗ id + 2, r/2)
24 � Right child
25 Filter out empty A′ entries and store into A

26 swap(S, S′)
27 return Nodes

sign of the symbol’s l + 1’st highest bit (lines 9–10).1 Otherwise, the symbols in S
are rearranged (and stored into S′) so that they are in the correct order on the next
level. To do this in parallel, the algorithm first counts the number of symbols that
go to the left child (l + 1’st highest bit is 0), and the offset of each such symbol using
a prefix sum (lines 12–16). With the prefix sum array X and result Xs, the symbols
that go to the right child can be computed as well using the formula Xs + i − X[i]
(the number of symbols with an l + 1’st highest bit of 0 is Xs, so this is the number
of symbols to offset, and then the number of symbols with an l + 1’st highest bit of
1 up to index i is i − X[i]). In lines 17–21, the bits in the bitmap and positions in S′

are set in parallel. Children nodes are placed into A′ on lines 22–23 if the number
of symbols represented for the child is greater than 0. The children’s node IDs are

1. The actual code requires bit arithmetic to access the appropriate bit in the word, which is
omitted for simplicity.
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computed as twice the current node ID plus one for the left child and twice the
current node ID plus two for the right child in order to give all nodes unique IDs.
The starting point in the bitmap of the next level is the same as the current starting
point for the left child, and is the current starting point plus the number of elements
on the left (Xs) for the right child. The length is stored from the computation before.
The range of each child is half of the current range. After each level, the non-empty
entries of A′ are filtered out and stored into A (line 25). The roles of S and S′ are
swapped for the next level (line 26).

Note that setting the bits in B (lines 10, 19, and 21) must be done atomically since
multiple cores may write to the same word concurrently. This can be implemented
using a loop with a compare-and-swap until successful. An optimization is to only
perform atomic writes if a word is shared between two nodes (there can be at most
two shared words per node, as the bits for each node are contiguous in B), and for
the remaining words we parallelize at the granularity of a word. Inside each word,
the updates are done sequentially. This allows the algorithm to use regular writes
for all but at most two words per node.

Note that the algorithm is able to stop early when the range of a node is 2 or
less since the construction of the previous level provides this information. The
algorithm of [Fuentes-Sepulveda et al. 2014] (and also the next algorithm described
in this section) processes all levels independently, so it is not easy to stop early.

Let us now analyze the complexity of levelWT. For each level, there is a total of
O(n) work performed, since each symbol is processed a constant number of times.
The prefix sum on line 15 and the filter on line 25 require linear work and O(log n)

depth per level. The parallel for-loops on Lines 9–10, 13–14, and 17–21 require
linear work and O(1) depth per level. There are O(log σ) levels so the total work
is O(n log σ) and depth is O(log n log σ). Since σ ≤ n, the depth is polylogarithmic
in n. This gives the following theorem.

Theorem 14.1 levelWT requires O(n log σ) work and O(log n log σ) depth.

14.4.2 SortWT Algorithm
This section describes the second wavelet tree construction algorithm, which con-
structs all levels of the wavelet tree in parallel, and is referred to as sortWT . Since
preceding levels cannot provide information to later levels, independent compu-
tation must be performed per level to obtain the correct ordering of the sequence
for the level. The algorithm makes use of the observation of Fuentes-Sepulveda et
al. [2014] that the node at which a symbol s is represented at level l of the wavelet
tree (l = 0 for the root) is encoded in the top l bits. For level l, the algorithm sorts
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Algorithm 14.2 sortWT: Sorting-based parallel algorithm for wavelet tree construction

1 procedure SORTWT(S, n, σ )
2 Nodes = {}, L = �log σ�
3 parfor l = 0 to L − 1 do
4 mask = 2L−(l+1), B = bitmap of length n � Mask and bitmap for this level
5 if l = 0 then � No sorting required for first level
6 parfor i = 0 to n − 1 do
7 if S[i] and mask �= 0 then B[i] = 1 else B[i] = 0
8 Nodes[0].bitmap = 0, Nodes[0].len = n

9 else
10 S′ = S stably sorted by top l bits
11 parfor i = 0 to n − 1 do
12 if (S′[i] and mask �= 0) then B[i] = 1 else B[i] = 0
13 O = indices i such that (S′[i] � L − l) �= (S′[i − 1] � L − l) � Using a filter
14 parfor i = 0 to |O| − 1 do
15 id = 2l − 1 + (S′[O[i]] � L − l)

16 Nodes[id].bitmap = O[i]
17 Nodes[id].len = O[i + 1] − O[i]
18 return Nodes

S using the top l bits as the key, which gives the correct ordering of the sequence
for the level. Note that the sort must be stable since the relative ordering of nodes
with the same top l bits must be preserved in the wavelet tree.

The pseudocode for sortWT is shown in Algorithm 14.2. As in levelWT, a mask
and a bitmap B is used for each level (line 4). For the first level (l = 0), no sorting
of S is required, so the algorithm simply fills the bitmap according to the highest
bit of each symbol (lines 5–7). For each subsequent level, the algorithm first stably
sorts S by the top l bits to obtain the symbols in the correct order, and stores it in

S′ (line 10). The bitmap is filled according to the l + 1’st highest bit of each symbol
(lines 11–12). To compute the length of each node’s bitmap, a filter is used to find
all the indices where the symbol’s top l bits differ from the previous symbol’s top
l bits in S′ (line 13). These mark the bitmaps of each node since S′ is sorted by the
top l bits. The length of each bitmap can be computed by the difference in indices.
On lines 14–17, the algorithm sets the bitmap pointers and lengths for the nodes
on the current level. The IDs of the nodes start at 2l − 1, since there are up to 2l − 1
nodes in previous levels, and each node ID is offset by the top l bits of the symbols
that it represents, as this determines the node’s position in the level. As in levelWT,
updates to the bitmaps are done in parallel at word granularity.

Let us now analyze the algorithm’s complexity. Let Wsort(n) and Dsort(n) be the
work and depth, respectively, of the stable sort on line 10. The filter on line 13
requires O(n) work and O(log n) depth. The parallel for-loops on lines 6–7, 11–12,
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and 14–17 require O(n) work and O(1) depth. The overall work is O(Wsort(n) log σ)

and since all levels can be computed in parallel, the overall depth is O(Dsort(n) +
log n). This gives the following theorem.

Theorem 14.2 sortWT requires O(Wsort(n) log σ) work and O(Dsort(n) + log n) depth.

Using linear-work parallel stable integer sorting [Rajasekaran and Reif 1989],
where Wsort(n) = O(n/ε) and Dsort(n) = O((1/ε)(σ ε + log n)) for some constant
0 < ε < 1, gives a work bound of O((n/ε) log σ) and depth bound of O((1/ε)(σ ε +
log n)), which is sub-linear. For σ = O(logc n) for any constant c, this gives O(log n)

depth (by setting ε appropriately). Alternatively, a stable integer sorting algorithm
with Wsort(n) = O(n log log n) and Dsort = O(log n/ log log n) (either using random-
ization [Raman 1990] or using super-linear space [Bhatt et al. 1991]) can be used to
obtain an overall work of O(n log log n log σ) and depth of O(log n) for any alphabet
size.

14.4.3 Space usage
The input and output of the algorithms is O(n log σ) bits. levelWT requires two
auxiliary arrays for the prefix sum on each level (that can be reused per level),
which takes O(n log n) bits. For sortWT, since all levels are processed in parallel,
and each level requires O(n log n) bits for the integer sort, the total space usage is
O(n log n log σ) bits.

Due to the high space usage and hence memory footprint of sortWT, processing
the levels one-by-one gives better performance in practice, as will be discussed in
Section 14.5 (although this increases the depth by a factor of O(log σ)). This modi-
fied version is referred to as msortWT . On each level, msortWT sorts the sequence
from the previous level. Since the levels are processed one-by-one, msortWT has a
space usage of O(n log n) bits.

14.5 Experiments

Implementations
This section compares implementations of levelWT, sortWT, and msortWT with
existing parallel implementations as well as a sequential implementation. The
implementations all use the levelwise representation of the bitmaps, where one
bitmap of length n is stored per level, and nodes have pointers into the bitmaps.
sortWT and msortWT use linear-work parallel stable integer sorting. The imple-
mentations use the parallel prefix sum, filter, and integer sorting routines from the
Problem Based Benchmark Suite [Shun et al. 2012]. The experiments compare the
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parallel implementations developed in this chapter with the implementations of
Fuentes-Sepulveda et al. [2014], one which computes each level of the wavelet tree
independently in parallel (FEFS), and the other which computes a partial wavelet
tree for each thread, and then merges them together (FEFS2). Both implementa-
tions require the alphabet size to be a power of 2, so times are reported only for the
inputs with such an alphabet size. We implemented a sequential version of wavelet
tree construction (serialWT ), and found its performance to be competitive with the
times of the sequential algorithm reported in [Grossi et al. 2011]. We also tried the
serial implementation in SDSL [Gog et al. 2014] for constructing a balanced wavelet
tree, but found it to be slower than serialWT on the inputs used in this section.
However, the SDSL implementation is more space-efficient, and sometimes faster
on the Burrows-Wheeler transformed inputs. A comparison with SDSL is presented
in the full version of the article that this chapter is based on [Shun 2015].

Experimental Setup
The experiments are performed on the 40-core (with two-way hyper-threading) ma-
chine described in Section 2.7. The parallel codes use Cilk Plus, and are compiled
with g++. The times reported are based on a median of three trials.

The experiments use a variety of real-world and artificial sequences. The real-
world sequences include strings from http://people.unipmn.it/manzini/light
weight/corpus/, XML code from Wikipedia (wikisamp), protein data from
http://pizzachili.dcc.uchile.cl/texts/protein/ (proteins), the human genome from
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz (HG18), and a document ar-
ray of text collections (trec8). The artificial inputs (rand), parameterized by σ , are
generated by drawing each symbol uniformly at random from the range [0, . . . ,
σ − 1]. The lengths and alphabet sizes of the inputs are listed in Table 14.1.

Due to the various choices for rank/select structures, each of which has different
space/time trade-offs, their construction times are not included in the wavelet
tree construction time. The FEFS and FEFS2 codes were modified accordingly.
The times for the implementations developed in this chapter include generating
the parent/child pointers for the nodes, although these could be removed using
techniques from [Makinen and Navarro 2007, Claude and Navarro 2008]. FEFS and
FEFS2 do not generate these pointers.

Results
Table 14.1 shows the single-thread (T1) and 40-core with two-way hyper-threading
(T40h) running times on the inputs for the various implementations. The experimen-
tal results show that levelWT is faster than sortWT and msortWT both sequentially
and in parallel. This is because sortWT and msortWT use sorting, which has a

http://people.unipmn.it/manzini/lightweight/corpus/
http://people.unipmn.it/manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/texts/protein/
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
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Figure 14.1 Speedup of implementations relative to serialWT for HG18 (left) and rand-216 (right).
“40h” corresponds to 80 hyper-threads.

larger overhead. msortWT is slightly faster than sortWT due to its smaller memory
footprint. Compared to serialWT, levelWT is 1.2–1.8× slower on a single thread,
and 13–27× faster on 40 cores with hyper-threading. The self-relative speedup of
levelWT ranges from 23–35. On 40 cores, sortWT and msortWT are 6–19× and 7–
22× faster than serialWT, respectively. sortWT and msortWT achieve self-relative
speedups of 17–31 and 22–34, respectively.

FEFS2 always outperforms FEFS on 40 cores with two-way hyper-threading be-
cause FEFS splits the work among only log σ threads, which is less than 80 on all
of the inputs (σ < 280), whereas FEFS2 splits the work among all available threads
in its first step. The second (merging) step of FEFS2, however, only makes use of
log σ threads, but this is a smaller fraction of the total time. On 40 cores with
hyper-threading, the best implementation from this chapter (levelWT) outperforms
FEFS2 by a factor of 1.3–5.6×, and FEFS by much more. Compared to msortWT,
FEFS2 is faster in some cases and slower in others.

Figure 14.1 shows the speedup of the parallel implementations relative to seri-
alWT as a function of the number of threads for HG18 and rand-216. For HG18, the
implementations developed in this chapter and FEFS2 scale well up to 80 hyper-
threads. FEFS only scales up to 2 threads due to the small alphabet size. For rand-
216, the implementations developed in this chapter again exhibit good scalability.
FEFS scales up to 16 threads as there are 16 levels in the tree, while FEFS2 scales to
more threads. FEFS2 is competitive with msortWT, but slower than levelWT.

Figure 14.2 (left) shows the 40-core parallel running time of the three implemen-
tations from this chapter as a function of the alphabet size for random sequences
of length 108. We see that for fixed n, the running times increase nearly linearly with
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Figure 14.2 40-core (with hyper-threading) running times vs. σ (left, x-axis in log-scale) and vs. n

(right) on random sequences (σ = 28).

O(log σ), which is expected since the total work is O(n log σ). Figure 14.2 (right)
shows the running time of the implementations as a function of n for σ = 28 on ran-
dom sequences, and we see that the times increase linearly with n as expected. The
algorithms introduced in this chapter exhibit similar parallel speedups on 40 cores
as σ or n is varied, since the core count is much lower than the available parallelism
of the algorithms.

In summary, the experiments show that the parallel algorithms for wavelet tree
construction developed in this chapter scale well with the number of threads, input
length, and alphabet size. levelWT outperforms sortWT and msortWT as it does not
have the overheads of sorting, and achieves good speedup over serialWT. Overall,
levelWT outperforms FEFS and FEFS2.

14.6 Parallel Construction of Rank/Select Structures
Wavelet trees make use of succinct rank/select structures which support constant-
work rank and select queries on binary sequences. This section describes how to
construct these structures in parallel using O(n) work and O(log n) depth for a
binary sequence of length n. Sequential construction of rank/select structures in
o(n) work have been described in [Babenko et al. 2015, Munro et al. 2014], however
parallel construction in linear work suffices for the purposes of using them in the
wavelet tree construction algorithms in this chapter.

The rank structure of Jacobson [1988] stores the rank of every log2 n’th bit in
a first-level directory, and the rank of every log n’th bit in each of the ranges in a
second-level directory. Rank queries in each range of size log n can be answered
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by at most two table look-ups, where the table stores the rank of all bit-strings of
length up to log(n)/2. The first- and second-level directories of can be constructed
by converting the bit-string to a length n array of 0’s and 1’s and computing a
prefix sum on the array in O(n) work and O(log n) depth. Entries in the second-
level directory require log log n bits each, and for space efficiency, they need to be
packed into words. This can be done by processing groups of O(log n/ log log n)

entries (the number that fits in a word) in parallel, and packing each group into
a word sequentially. There are O(n/ log n) entries, and word operations take O(1)

work and depth per entry, so this process takes O(n) work and O(log n) depth. The
look-up table can be constructed in o(n) work and O(log n) depth, as the number
of 1’s in bit-strings of size O(log n) can be computed in O(log n) work and depth,
and there are O(2log(n)/2 log n) = O(

√
n log n) such bit-strings.

Clark’s select structure [Clark 1996] stores the position of every log n log log n’th
1 bit in a first-level directory. Then for each range r between the positions, if r ≥
log2 n(log log n)2, then the log n log log n answers in the range are stored directly.
Otherwise, the position of every log r log log n’th 1 bit is stored in a second-level
directory. The sub-ranges r ′ in the second-level directory are again considered,
and if r ′ ≥ log r ′ log r(log log n)2, then all answers in the range are stored directly.
Otherwise, a look-up table is constructed for all bit-strings of length less than r ′.
To parallelize the construction, the bit-string is first converted to an array of 0’s
and 1’s, and then the positions of all the 1 bits are computed using a prefix sum
and filter in O(n) work and O(log n) depth. This allows all of the ranges to be
processed in parallel. Constructing each second-level directory again uses prefix
sum and filter. Over all directories, this sums to O(n) work and O(log n) depth.
The look-up table can be constructed in o(n) work and O(1) depth, similar to the
rank structure. Packing entries into words can also be done within the complexity
bounds.

It is worth noting that there have been more practical variants of rank/select
structures (see, e.g., [Zhou et al. 2013, Gog and Petri 2013] and references therein)
that have a similar high-level structure to the ones described above.

14.7 Extensions
The Huffman-shaped wavelet tree, where each node is placed at a level proportional
to the length of its Huffman code, was introduced to improve compression and
average query performance [Foschini et al. 2006]. The Huffman-shaped wavelet
tree can be constructed in parallel by first computing the Huffman tree and prefix
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codes in O(σ + n) work and O(σ + log n) depth using the algorithm of Edwards and
Vishkin [2014]. The construction then follows the strategy of levelWT. To decide
how to set the bitmaps in the internal nodes and rearrange S, the algorithm must
know the side of the tree that each symbol is located on. The algorithm maps each
symbol to an integer corresponding to the location of its leaf in an in-order traversal
of the Huffman tree, which can be done in parallel using an Euler tour algorithm
in O(σ) work and O(log σ) depth [JaJa 1992]. At each internal node, the symbols to
the left and to the right are in consecutive ranges, and the highest mapped integer
of nodes in its left sub-tree is stored during the Euler tour computation. Then the
decision of how to set the bitmap and where to place the symbol in S′ can be made
with a single comparison with the mapped integers. The rest of the computation
follows the logic of levelWT. For a tree of height h, the overall work (including
Huffman encoding) is O(nh) as linear work is done per level. The overall depth
is O(σ + h log n), as each level of the tree takes O(log n) depth.

Ferragina et al. [2007] describe the multiary wavelet tree where each node has
up to d children for some value d, and stores sequences of symbols in the range
[0, . . . , d − 1]. The height of the tree is O(logd σ ). This section describes the parallel
construction for the case where d = O(logε n) for ε < 1/3, and d is a power of two.2

To do this, sortWT is modified to process the levels one-by-one and save the sorted
sequence S′ for the next level. On level l, S′ is already sorted by the top (l − 1) log d

bits, so the algorithm only needs to sort the next log d highest bits within each
of the sub-sequences sharing the same top (l − 1) log d bits. The sub-sequence
boundaries can be identified with a filter, and for each sub-sequence the algorithm
applies a stable integer sort using the log d appropriate bits for the level as the key.
The bitmap B is substituted with a sequence of log d-bit entries, and in parallel each
entry is set according to the value of the appropriate log d bits of each symbol. There
will be up to dl nodes on level l, and the offset to the Nodes array is dl − 1. Since
d = O(logε n), the integer sort on each level requires O(n) work and O(log n) depth,
giving an overall work of O(n logd σ ) and depth of O(log n logd σ ). The parallel
construction of rank/select structures on sequences with larger alphabets, which
are used in the multiary wavelet tree, is described in [Shun 2015].

The wavelet matrix [Claude and Navarro 2012] is a variant of the wavelet tree
where on level l, all symbols with a 0 as their l’th highest bit are represented on
the left side of the level’s bitmap and all symbols with a 1 as their l’th highest bit
are represented on the right. Each level stores the number of 0’s on the level. The

2. The requirement ε < 1/3 is necessary for the analysis of the rank/select structure [Babenko et
al. 2015] that we parallelize.
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bitmap is filled based on the l + 1’st highest bit of the symbols. To construct the
wavelet matrix, the algorithm proceeds level-by-level and stably reorders S based on
the l’th highest bit of the symbols using standard operations involving prefix sum
(similar to levelWT) in O(n) work and O(log n) depth, which also gives the number
of 0’s on the level. The bitmap for the level is then filled in parallel in O(n) work
and O(1) depth. This gives an algorithm with O(n log σ) work and O(log n log σ)

depth. Alternatively, a strategy similar to sortWT can be employed, but using the
reverse of the top l bits as the key when sorting.





15Conclusion and
Future Work

15.1 Summary
The emergence of commodity shared-memory multicore machines in the past
decade has enabled a wide class of problems to be solved very efficiently without
resorting to expensive supercomputers. This book demonstrated the power of mul-
ticore machines for solving various important irregular problems in computing,
providing efficient solutions that scale well with the number of cores and that are
capable of (and sufficient for) processing the largest real-world data sets studied
in the literature. Prior to this work, many of these problems were typically solved
using distributed-memory solutions and were much less efficient on a per-core,
per-dollar, and per-joule basis. To make large-scale computing using multicores
more accessible to the masses, this book adopted a three-pronged approach of ad-
dressing challenges in the programming, algorithm design, and performance of
shared-memory solutions.

Part I of this book introduced techniques for writing efficient internally deter-
ministic parallel programs, guaranteeing that the final result as well as certain
intermediate states are deterministic, independent of the number of threads, how
they are scheduled, and any nondeterminism in the underlying hardware and soft-
ware. The book developed a new approach for writing efficient internally deter-
ministic code using commutative building blocks (e.g., priority updates, phase-
concurrent hash tables, and disjoint sets), and introduced the deterministic reser-
vations framework for parallelizing sequential loops with dependencies among
iterations. These tools were employed to design internally deterministic paral-
lel solutions that are simple, efficient (competitive with nondeterministic solu-
tions for the same problem), and scalable. Furthermore, this book gave the first
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theoretical proofs that several natural sequential iterative algorithms are in fact
highly parallel (have polylogarithmic depth), leading to efficient and deterministic
parallel implementations of the algorithms.

Part II of the book introduced Ligra, a lightweight graph processing system
for shared-memory. The book showed that the two simple functions provided by
the framework are sufficient for expressing a wide class of graph algorithms. The
Ligra system includes optimizations that make graph traversal algorithms partic-
ularly efficient, and the book demonstrated that the programs written in Ligra are
very simple and also outperform existing high-level graph processing systems. Ex-
periments showed that Ligra can process the largest publicly-available real-world
graphs on the order of seconds to minutes on just a single shared-memory server.
To enable shared-memory graph processing to become even more efficient and
scalable, Ligra+, an extension of Ligra with graph compression techniques, was de-
veloped to reduce space usage while improving parallel performance at the same
time. Ligra+ is the first graph processing system to use in-memory compression to
reduce space usage and improve parallel performance.

Parts III and IV of this book bridged the gap between theory and practice in
parallel algorithms by designing simple and practical shared-memory algorithms
with strong theoretical guarantees for important problems on graphs and strings.
Part III gave the first practical linear-work and polylogarithmic-depth algorithm
for graph connectivity as well as the first work-efficient, polylogarithmic-depth,
and cache-efficient algorithms for triangle computations. Part IV introduced the
first practical linear-work and polylogarithmic-depth algorithm for suffix tree con-
struction, several new theoretically efficient parallel algorithms for computing
longest common prefixes, the first practical linear-work and polylogarithmic-depth
Lempel-Ziv factorization algorithm, and the first polylogarithmic-depth algorithms
for wavelet tree construction. The book experimentally evaluated shared-memory
implementations of all of the algorithms on multicore machines, and showed that
they achieve good speedup relative to the best sequential solutions, outperform ex-
isting parallel implementations, and scale to the largest real-world data sets used
in the literature.

By addressing challenges in programming, algorithm design, and performance
of large-scale shared-memory solutions, this book provides evidence showing
that with appropriate programming techniques, frameworks, and algorithms, shared-
memory programs can be simple, efficient, and scalable, both in theory and in practice.
The tools developed in this book make shared-memory parallelism more accessible
to the community.
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15.2 Future Work
This section describes directions for future work that build on the results in this
book.

Commutativity Violation Detection
The approach of this book to developing internally deterministic parallel programs
in Chapter 3 uses nested parallelism with commuting and linearizable parallel op-
erations. This book has not addressed the issue of how to verify that operations
commute or are linearizable, but the techniques used are simple enough that it
is quite easy to reason about the correctness. For example, in deterministic reser-
vations a programmer only needs to verify that the operations within the reserve
component and separately within the commit component commute. However, to
lessen the burden on the programmer, we would like to investigate using runtime
techniques for automatically detecting commutativity violations [Westbrook et al.
2014, Dimitrov et al. 2014] in conjunction with the techniques presented in this
book.

Proving Bounds for Sequential Iterative Algorithms
Chapter 4 of this book showed that the sequential maximal independent set and
maximal matching algorithms have an iteration depth of O(log2 n) with high prob-
ability. An interesting direction for future work is to investigate whether this bound
is tight. In addition to the problems that studied in Chapter 4, we are also interested
in proving bounds for other sequential iterative algorithms that can be parallelized,
such as connected components, spanning forest, and minimum spanning forest.

Resizing and Automatic Phase-Concurrency
Although the experiments on the phase-concurrent hash table in Chapter 5 did not
require resizing, the resizing solution described in the chapter uses locks. We are
interested in investigating whether there is an efficient lock-free solution to resizing
the hash table. We are also interested in exploring ways to automatically separate
operations into phases efficiently, e.g., by using room synchronizations [Blelloch et
al. 2003]. Finally, we are eager to study other data structures that can be simplified
and made more efficient by restricting its use to the phase-concurrent setting.

Uniformity of memory access
While all cores on a multicore machine have access to the same shared memory, the
memory access time is not necessarily uniform among the cores. Most multicore
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machines with multiple sockets (e.g., the ones used for experiments in this book)
have non-uniform memory access (NUMA) times. In NUMA machines, each socket
contains part of the global shared memory, and the latency to access a particular
object in memory depends on the distance from the accessing core to where the ob-
ject is located. Designing NUMA-aware programs for these machines may improve
performance, although often requires explicitly controlling the threads which com-
plicates programming. In the future, we are interested in developing programming
abstractions that simplify writing NUMA-aware shared-memory code. We note that
a NUMA-aware version of our Ligra graph processing framework from Part II has
recently been developed [Zhang et al. 2015].

Real-time Graph Algorithms
Currently, Ligra does not support algorithms based on modifying the input graph.
An interesting direction for future work is to extend the system to support efficient
graph modifications. This feature would also be useful for streaming algorithms
in which graph updates arrive in real-time and need to be efficiently processed.
There has been significant work on graph databases, which support efficient up-
dates to the graph. However, the systems are mostly optimized for local queries on
the graph. We would like to explore whether some of these techniques work well
for traversal algorithms that explore most of the graph. Instead of restarting algo-
rithms from scratch when updates occur, the interface could be extended with a
user-defined function indicating when and where recomputation is necessary. In
addition, the graph compression techniques of Ligra+ assume a static graph, and
we are interested in extending the graph compression techniques to more easily
cope with dynamic graph updates.

External Memory
Recent work has shown that large-scale graph computations that do not fit in
memory can be performed efficiently relative to distributed memory by optimizing
access to disk [Kyrola et al. 2012, Han et al. 2013, Roy et al. 2013, Kyrola et al. 2014,
Yuan et al. 2014, Macko et al. 2015, Cheng et al. 2015]. However, if the data fits in
memory, then these solutions are slower than shared-memory solutions, such as
those presented in this book. For data sets that exceed the size of memory, we are
interested in designing solutions that take advantage of shared-memory processing
for the data that fits in memory, while also having optimized access to data that
needs to be stored on disk. In addition to having practical algorithms, we would
also like to prove theoretical guarantees about the algorithms, so that they perform
well under many possible settings.
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Emerging Memory Technologies
In contrast to dynamic random-access memory (DRAM), which is the type of RAM
on current multicore machines, emerging non-volatile memory technologies will
exhibit a significant gap in cost between writing to memory and reading from mem-
ory, both in terms of latency as well as energy. These technologies include phase-
change memory, Spin-Torque Transfer Magnetic RAM, and Memristor-based Re-
sistive RAM. We are interested in exploring how to adapt parallel algorithms for
these technologies by minimizing the number of memory writes. We have done
preliminary theoretical work [Blelloch et al. 2015, Ben-David et al. 2016, Blelloch et
al. 2016] proposing models where reads and writes have different costs (reads have
unit cost while writes have a cost of ω > 1), and describing both sequential and par-
allel algorithms that perform asymptotically better than traditional algorithms in
the asymmetric setting. A common theme in designing these algorithms is to trade
off doing additional memory reads for fewer memory writes. We are interested in
studying more problems in the asymmetric setting. When such technologies be-
come readily available on multicore machines, we are also interested in testing the
actual performance of our algorithms, and using the results to guide us in finding
the best cost model.
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Local triangle counting, 262, 270–271,

274–275, 282–283
Locality measures in graphs, 227–228
Lock-free data structures, 7, 151
Lock-free hash tables, 124–125, 145
Locks, 7
Log cost, 227–228
Log gap cost, 227–228
Logically parallel operations, 23
Longest common prefixes (LCPs)

analysis, 327–331
definition, 29
dk-LCP, 321–323
dk-PLCP, 326
experiments, 331–343
implementation, 332–333
introduction, 315–318
irreducible-LCP, 324
klaap-LCP, 320
kmp-LCP, 320–321
Lempel-Ziv factorization, 349–350,

352
naive-LCP, 319
par-LCP, 325–326
par-PLCP, 325–326
preliminaries, 318–325
skew-SA+LCP, 323–324
suffix arrays, 309, 311, 340–343
suffix trees, 303–304, 314

Longest previous factor in Lempel-Ziv
factorization, 348–351

Lossless compression, 345
Lossy compression, 345

Low-diameter decompositions of graphs,
235, 237

LPF arrays, 349–352, 355
LPFtoLZ algorithm, 349, 351–352
LZ-ANSV algorithm, 352, 354–355
LZ (Lempel-Ziv) factorization. See Lempel-

Ziv (LZ) factorization
LZ-OG algorithm, 354
LZSS (Lempel-Ziv-Storer-Szymanski)

compression, 345

MapReduce, 184, 195, 205, 212, 278, 282,
286

Maps, dynamic, 45
Massively Parallel Processors (MPPs), 234
Maximal independent set (MIS)

definition, 28
depth, 69–74
experiments, 105–113
iteration dependence graph, 69–70
linear-work algorithms, 75–79
modified parallel algorithm, 70–71
overview, 62–63
sequential algorithm, 68–69

Maximal matching (MM)
activation-based implementation, 82–

83
definition, 28
experiments, 105–113
modified parallel algorithm, 80
overview, 63, 79
parallel graph separator, 148, 227
prefix-based implementation, 79–82
priority updates, 168–169, 173–174

MCSTL (Multi-Core Standard Template
Library), 7

Memory
emerging technologies, 377
external, 376
Ligra+ usage, 224–225
uniformity of access, 375–376

Merge-based algorithm for triangle
counting, 266–267

Merge primitive, 26
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MESI (Modified, Exclusive, Shared, Invalid)
protocol, 157–158

METIS, 226, 229
Minimum spanning forest (MSF)

definition, 28
internally deterministic parallelism, 47,

53–54, 56–59
priority updates, 169, 173–174

MIS. See Maximal independent set (MIS)
MM. See Maximal matching (MM)
Modified, Exclusive, Shared, Invalid (MESI)

protocol, 157–158
Moore’s law, 1–2
MSF (minimum spanning forest). See

Minimum spanning forest (MSF)
msortWT algorithm, 364–368
MTGL (Multithreaded Graph Library),

185–186
Multi-Core Standard Template Library

(MCSTL), 7
Multiary wavelet trees, 370
Multicore machines, 1–3
Multiple BFS for Ligra, 194–197
multistep-CC, 248–252
Multithreaded Graph Library (MTGL),

185–186
Multithreading, dynamic, 4, 11, 24
Multiway Cartesian trees, 293, 295, 299–301,

309–310
MUMmer, 292, 304

N-body algorithm, 30, 47, 54–56
Naive-LCP algorithm, 318–319, 332–336,

338–339
Nested parallelism, 4, 9, 10, 23–25, 36–40,

42–43, 47–48
Nibble codes in Ligra+, 214, 218, 220–223
nlpkkt240 graph, 218–220, 222–225, 229
Node-iterator algorithm for triangle

computations, 286–287
Nondeterminism, 5, 9, 35–36
NUMA (non-uniform memory access), 376

OASIS, 292

Occurring priorities, 162
OpenMP, 4, 24
Optimizations in Ligra, 189–191
Ordering

deterministic hash table, 124, 129–132
graphs, 219–220, 225–229
list contraction, 93–95, 103
maximal independent set, 63, 68–72, 74
maximal matching, 63, 79–81, 83
priority updates, 156, 162–163
random permutation, 85
sortWT wavelet tree algorithm, 362–363
tree contraction, 98–101
triangle counting, 263

Out-triangles, 270

P-complete problem, 63
p-sep (Parallel Separator-Based Reordering

Algorithm), 226–229
PageRank algorithm

Ligra, 198–200, 203–207
Ligra+, 219, 222–225

PageRank-Delta algorithm, 200, 203–204,
206, 208–209

Pagh-Silvestri (PS) algorithm, 283–285, 278,
287

Pagh-Tsourakakis (PT) algorithm, 268, 279,
287

par-iLCP algorithm, 317–318, 330–332,
334–336, 339

par-LCP algorithm, 317–318, 325–328,
332–339

par-PLCP algorithm, 317–318, 325–328,
332–342

Parallel and cache-oblivious triangle
computations. See Triangle
computations

Parallel blocks in nested fork-join
parallelism, 23

Parallel Boost Graph Library (PBGL), 7,
185–186

Parallel cache complexity (PCC) model, 260,
262

Parallel decoding in Ligra+, 216–217
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Parallel greedy algorithm
maximal independent sets, 69–70, 74
maximal matching, 79–80

Parallel primitives, 26
Parallel programming model, 23–24
Parallel Random Access Model (PRAM),

10–11, 25
Parallel Separator-Based Reordering

Algorithm (p-sep), 226–229
parallel-SF-PBBS, 248–252
parallel-SF-PRM, 247, 249–252
Parallelization of Pagh-Silvestri algorithm,

278, 283–285
Path compression in Cartesian trees,

299–300
PATRIC triangle counting algorithm, 278
Patricia trees, 29, 291, 294–295
PBBS (Problem Based Benchmark Suite),

16–17
PBGL (Parallel Boost Graph Library), 7,

185–186
PCC (parallel cache complexity) model, 260,

262
Pegasus, 183–184, 205
Performance guarantees for priority

updates, 162–166
Permuted longest common prefix (PLCP)

array, 316, 318–319
Phase-concurrency, 121–134, 375
pitches text, 354
PLCP (permuted longest common prefix)

arrays, 316, 318–319
PLZ1 algorithm, 350–352, 354–355
PLZ2 algorithm, 350–352, 354–355
PLZ3 algorithm, 352, 354–355
Polymer, 186
PowerGraph, 184, 206
PRAM (Parallel Random Access Model),

10–11, 25
Prefix sum (scan) primitive, 26
Prefixes

Delaunay triangulation, 54
deterministic reservations, 38, 49–50
LCP. See Longest common prefixes

(LCPs)

list contraction, 114, 116–120
maximal independent set, 70–77, 106–

113
maximal matching, 79–82, 106–107,

109–113
random permutation, 114, 117–120
spanning forest, 52
tree contraction, 114, 117–120

Pregel, 182, 184–185, 206
Previous occurrence arrays in Lempel-Ziv

factorization, 348, 350–351
Priority reserves in commutative building

blocks, 44, 49
Priority updates, 7

adversarial model, 163, 166
applications, 154–155, 167–170
breadth-first search, 168, 172–174
connected components, 169
contention, 158–161
fair model, 163–166
hash-based dictionary, 169–170, 173–176
implementation, 155–157
maximal matching, 168–169, 173–174
minimum spanning forest, 169, 173–174
performance guarantees, 162–166

Priority writes, 43–44
BFS algorithm, 51–52, 136
maximal matching, 80, 107
PRAM, 157
special case of priority update, 153

priorityUpdate-BFS algorithm, 172–174
priorityUpdate-RemDups hash table, 173,

175–176
PRISM, 186
Problem Based Benchmark Suite (PBBS),

16–17
Processor allocation problem, 10, 25
Programming frameworks, 7–9
Programming model for internally

deterministic parallelism, 38–43
Protected nodes in Cartesian trees, 298
proteins text

Lempel-Ziv factorization, 354
longest common prefixes, 333–334, 341
wavelet trees, 365–366
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PS (Pagh-Silvestri) algorithm, 278, 283–285,
287

Pseudorandom generators, 102–105
PT (Pagh-Tsourakakis) algorithm, 268, 279,

287

Rank query, 358
Rank structure, 358–359, 368–370
Random binary search trees, 85–86, 93
random graphs

hash tables, 148–149
internal determinism, 55, 57–59
Ligra, 202–203
Ligra+, 218–220, 222–223, 228–229
linear-work parallel graph connectivity,

248–251, 254–257
maximal matching and maximal

independent set, 105–106, 110–113
priority updates, 170–171, 173
triangle counting, 13, 273–275, 280

Random permutation
activation-based implementation, 88–90
algorithms, 87–91
CRQW PRAM, 90–91
definition, 27
deterministic parallelism in sequential

iterative algorithms, 64–65, 83–91
deterministic reservations-based

implementation, 87–88
experiments, 113–120
iteration dependence depth and

aggregate delay, 83–87
limited randomness, 65, 103, 105
rotations, 91

random text
Cartesian trees, 304–305
Lempel-Ziv factorization, 353–355
longest common prefixes, 333, 336,

338–340, 342
suffix trees, 304, 308–309, 311, 313
wavelet trees, 365–368

Randomization in algorithms, 25
randomSeq-int distribution, 139–146
randomSeq-pairInt distribution, 139–143
range-SA algorithm, 340–343

Ranked adjacency lists, 263–264
Ranking in triangle counting, 263–266
rctail96 text

Cartesian trees, 304–306
hash tables, 146–147
Lempel-Ziv factorization, 354–355
longest common prefixes, 334, 336, 338,

341
suffix trees, 146–147, 308–311
wavelet trees, 366

Ready steps
activation-based approach, 68
iteration dependence graphs, 67
random permutation, 85, 88–89

Real-time graph algorithms, 376
Recursive breadth-first search (bfs-r), 226,

229
Reduce primitive, 26
Remove duplicates, 27, 47, 51, 135, 146,

169–170, 173–176
Reordering algorithms in Ligra+, 225–229
REPuter, 292
Reserve-and-commit, 167
Reserve function

list contraction, 94–95
maximal independent set, 106–107
random permutation, 87–88
spanning forest, 5–6, 52–53
tree contraction, 100–101

Reserve phase in deterministic reservations,
5–6, 38, 49–50, 167

Resizing hash tables, 133–134, 375
rfc text

Cartesian trees, 304–306
Lempel-Ziv factorization, 354–355
longest common prefixes, 334, 336, 338,

341
suffix trees, 308–311
wavelet trees, 366

Right-protected nodes in Cartesian trees,
298

Right-spines in parallel Cartesian trees,
295–297

rMat graphs
hash tables, 148–149
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rMat graphs (continued)
internal determinism, 55, 57, 59
Ligra, 202–206, 209
linear-work parallel graph connectivity,

248–252, 254–257
maximal matching and maximal

independent set, 105–106, 109–113
priority updates, 170–171, 173
triangle counting, 13, 273–276, 280–281

Rotations in random permutation, 91
Run-length encoded byte codes (byte-RLE)

in Ligra+, 214, 218, 220–225

S-space machines, 102–103
Scalability in shared-memory performance,

15–16
Scan PRAM, 25
Select query, 358
Select structure, 358–359, 368–370
seqOrder-BFS algorithm, 172–174
Sequential algorithms for triangle counting

and listing, 285–286
Sequential history-independent hash table,

122, 126, 139, 141–144
Sequential LZ-factorization, 352–355
Sequential priority updates, 162
Sequential list contraction, 91–93
Sequential random permutation, 83–87
Sequential tree contraction, 96–100
serial-BFS algorithm, 172–174
serial-OB algorithm, 274–275
serial-RemDups hash table, 175
serial-SF algorithm, 248, 250–252
serialHash-HD hash table, 139, 142–143
serialHash-HI hash table, 139, 141–144
serialWT algorithm, 365–368
Shared-memory algorithm design

bridging theory and practice, 11–14
PRAM, 10
traditional design goals, 11
work-depth model, 10–11

Shared-memory multicore machines, 1–3
Shared-memory performance

cache performance, 14

contention, 14–15
scalability, 15–16

Shared-memory programming overview
concurrency, 9
controlling shared access, 7
determinism, 5–7
languages, 4
nested fork-join parallelism, 4
programming frameworks, 7–9

Sharing vs. contention, 157
Shifted distance in linear-work low-

diameter decomposition, 237
Shortest paths, Bellman-Ford algorithm,

200–201
Single-source shortest paths, 28, 200-201
Skew algorithm for suffix arrays and longest

common prefixes, 303, 309, 311,
316–318, 323–324, 329–332, 334–
336, 339–343

skew-LCP algorithm, 318, 329–332, 334–
336, 339, 343

skew-SA algorithm, 340–343
skew-SA+LCP algorithm, 318, 323–324,

341–343
soc-LJ graph

Ligra+, 218–220, 222–223, 229
triangle counting, 13, 273–275, 277, 280

Software combining, 152
sortWT algorithm, 362–368, 370–371
sources text, 354
Spanning forest

connectivity, 233, 247–252, 256–257
definition, 28
hash tables, 137–138, 149
internally deterministic parallelism, 47,

52–53, 56
Sparse matrix–vector (spMV) multiplication,

212–214
Spines in parallel Cartesian trees, 295–299
sprot34.dat text

hash tables, 146–147
Lempel-Ziv factorization, 354
longest common prefixes, 335–336, 341
suffix trees, 146–147, 308, 313
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wavelet trees, 366
sqrtn text

Lempel-Ziv factorization, 353–354
longest common prefixes, 333, 335–336,

341–343
suffix trees, 304, 308√
n unique sequence, 173–175

Steps
hash tables, 130
sequential iterative algorithms, 66

Strands in nested fork-join parallelism, 23
Streaming triangle counting, 288
Strings

Cartesian trees. See Cartesian trees
definition, 27
Lempel-Ziv factorization. See Lempel-Ziv

(LZ) factorization
longest common prefixes. See Longest

common prefixes (LCPs)
problems, 29
suffix trees. See Suffix trees
wavelet trees. See Wavelet trees

Succinct rank/select structure for wavelet
trees, 358–359, 368–369

Suffix arrays, 29, 47, 54, 56, 309, 311,
316–318, 323-324, 340–343

Suffix trees
definition, 29
experiments, 13–14, 307–313
hash tables, 136, 146–147
introduction, 291–294
preliminaries, 294–295
searching, 312–313
space requirements, 313–314

SWARM, 7
Synchronous parallelism, 36

Task Parallel Library, 24
Tasks in nested fork-join parallelism, 23
TC-Approx algorithm, 279–282
TC-Hash algorithm, 260–261, 267, 269–277
TC-Local algorithm, 274–275, 282–283
TC-Merge algorithm, 260–261, 266–267,

269–279, 282

Test and test-and-set operation, 152–154,
158–159

thesaurus.doc text, 304, 308
Through triangles, 270
TOTEM, 185
Traces for internal determinism, 36, 39–40,

42
Transactional memory (TM), 7
Transitivity ratio in triangle computations,

271–272
trec8 text, 365–366
Tree contraction

activation-based implementation, 101–
102

algorithms, 100–102
background, 65
Cartesian trees, 299–302
definition, 28
deterministic parallelism in sequential

iterative algorithms, 65, 96–102
deterministic reservations-based

implementation, 100–101
experiments, 113–120
iteration dependence depth and

aggregate delay, 96–100
Trellis+, 292
Triangle computations

approximate, 268–269, 279–282, 287
clustering coefficients and transitivity

ratio, 271–272
counting step, 266–267
definitions, 261–262
directed graphs, 270
evaluation, 12–13, 272–283
exact, 263–267, 274–279, 285–286
I/O complexity, 287
introduction, 259–261
local, 270–271, 274–275, 282–283
Pagh-Silvestri algorithm, 278, 283–285,

287
ranking step, 265–266
sequential algorithms, 274–275, 285–286
streaming algorithms, 288
triangle enumeration, 262, 269–270
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Triangle computations (continued)
triangle listing, 262

Triangle ray intersect
definition, 29
internally deterministic parallelism, 47,

54, 56
Trigram distribution, 57–58, 139–144, 146,

160–161, 173–175
Twitter graph

Ligra, 202–203, 205–206
Ligra+, 217–220, 222–223, 228–229
triangle counting, 13, 272–276, 280–281,

283

uk-union graph, 218–220, 222–223, 229
Uniformity of memory access, 375–376
Update-and-read programs, 167–168
Update attempts (CAS attempt) in priority

updates, 156

Venter0 text, 333, 335, 341
Vertex–induced subgraphs, 27
VERTEXMAP function

Ligra, 8, 180–181, 187–188, 191
Ligra+, 215

vertexSubset data type
Ligra, 8, 180–181, 186–187
Ligra+, 215

w3c2 text
Cartesian trees, 304–306
Lempel-Ziv factorization, 354–355
longest common prefixes, 335–336, 338,

341
suffix trees, 304, 308–311
wavelet trees, 366

Wavelet matrix, 370–371
Wavelet trees

experiments, 364–368

extensions, 369–371
introduction, 357–358
levelWT algorithm, 360–362, 364–368
msortWT algorithm, 364–368
preliminaries, 358–359
rank/select structures, 358–359, 368–369
related work, 359–360
sortWT algorithm, 362–368, 370–371
space usage, 364

Weighted graphs, 26, 186–187, 189, 218
wikisamp text

Cartesian trees, 304–306
Lempel-Ziv factorization, 354–355
longest common prefixes, 333, 335,

337–339, 341
suffix trees, 304, 308–311
wavelet trees, 365–366

with high probability (w.h.p.), 25
Work-depth model, 10–11, 24–25
Work-efficiency, 11, 25
Work-stealing, 11, 25, 134
Work-Time Framework, 10, 25
write-BFS algorithm, 172–174
Write-once operation in priority updates,

156–157, 161
write-RemDups hash table, 175
write-with-max operation, 155–156
write-with-min operation, 155, 158, 160–161
writeOnce-BFS algorithm, 172–174
writeOnce-RemDups hash table, 175

X-Stream, 186
X10, 4, 24

Yahoo! graph
Ligra, 202–203, 206
Ligra+, 218–220, 222–223, 229
triangle counting, 261, 272–276, 280–281,

283
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